WO2003023128A1 - Selective laundry process using water - Google Patents

Selective laundry process using water Download PDF

Info

Publication number
WO2003023128A1
WO2003023128A1 PCT/US2002/028675 US0228675W WO03023128A1 WO 2003023128 A1 WO2003023128 A1 WO 2003023128A1 US 0228675 W US0228675 W US 0228675W WO 03023128 A1 WO03023128 A1 WO 03023128A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
fabric articles
cleaning
fabric
cleaned
Prior art date
Application number
PCT/US2002/028675
Other languages
French (fr)
Inventor
William Michael Scheper
John Christian Haught
John Christopher Deak
Paul Amaat Raymond Gerald France
John Cort Severns
Anna Vadimovna Noyes
Christiaan Arthur Jacques Kamiel Thoen
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to KR1020047003549A priority Critical patent/KR100623899B1/en
Priority to EP02798189A priority patent/EP1425460B1/en
Priority to AT02798189T priority patent/ATE515592T1/en
Priority to CA002456923A priority patent/CA2456923A1/en
Priority to BR0212426-2A priority patent/BR0212426A/en
Priority to JP2003527182A priority patent/JP4076949B2/en
Priority to AU2002333532A priority patent/AU2002333532B2/en
Priority to MXPA04002253A priority patent/MXPA04002253A/en
Publication of WO2003023128A1 publication Critical patent/WO2003023128A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L1/00Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods
    • D06L1/12Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods using aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5004Organic solvents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L1/00Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods
    • D06L1/02Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods using organic solvents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L1/00Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods
    • D06L1/02Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods using organic solvents
    • D06L1/04Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods using organic solvents combined with specific additives
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L1/00Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods
    • D06L1/22Processes involving successive treatments with aqueous and organic agents
    • C11D2111/12

Definitions

  • the present invention relates to a fabric article cleaning system, especially a system for use in a consumer's home, utilizing a lipophilic fluid and a low level of water in an automatic laundry machine capable of delivering different levels of water to the wash medium based on the type of fabric articles being cleaned.
  • a non-aqueous solvent based fabric article cleaning system especially a dry cleaning system, utilizing a lipophilic fluid, such as cyclic siloxanes (especially cyclopentasiloxanes, sometimes termed "D5"), has been developed.
  • a lipophilic fluid such as cyclic siloxanes (especially cyclopentasiloxanes, sometimes termed "D5")
  • D5 cyclopentasiloxanes
  • the present invention is directed to a convenient, safe and effective system for cleaning a variety of fabric articles (including dry clean only garments) which is especially useful for a consumer to use in the home.
  • the present invention relates to a method (process) for cleaning fabric articles in need of cleaning comprising contacting the fabric articles in need of cleaning with a cleaning composition comprising a lipophilic fluid and water; wherein the amount of water present in the cleaning composition is selected based upon the type of fabric articles being cleaned.
  • the present invention also provides a method (process) for cleaning fabric articles in need of cleaning comprising contacting the fabric articles in need of cleaning with a cleaning composition comprising a lipophilic fluid and water; wherein the amount of water present in the cleaning composition is selected based upon the amount of soil on the fabric articles to be cleaned.
  • an apparatus for example an automatic laundry machine, preferably an automatic home laundry machine, is provided.
  • a method for cleaning fabric articles in need of cleaning comprising contacting the fabric articles with a cleaning composition comprising a lipophilic fluid and a lipophilic cosolvent, wherein the lipophilic cosolvent is present in the cleaning composition at a level of from about 0.1% to about 35% by weight of the cleaning composition, wherein the lipophilic cosolvent forms an azeotrope with water such that water can be incorporated into the cleaning composition as a third solvent in the cleaning composition; and wherein the water is present in the cleaning composition at a level of from about 0.5% to about 25% by weight of the cleaning composition.
  • the amount of water may be selected based upon different characteristics; namely, fabric article type or amount of soil on the fabric article, the cleaning process and the apparatus used in the methods of the present invention are similar.
  • fabric article used herein is intended to mean any article that is customarily cleaned in a conventional laundry process or in a dry cleaning process. As such the term encompasses articles of clothing, linen, drapery, and clothing accessories. The term also encompasses other items made in whole or in part of fabric, such as tote bags, furniture covers, tarpaulins and the like.
  • machine washable fabric articles means those fabric articles readily identified by the fabric industry and consumers as safe for laundering by a conventional aqueous automatic home laundry process. Consumers are frequently helped in this identification of fabric articles by manufacturer's tags identifying the fabric article as “machine washable” or some similar description.
  • dry clean only fabric articles means those fabric articles readily identified by the fabric industry and consumers as unsafe for laundering by a conventional aqueous automatic home laundry process, and instead requiring special handling with a conventional non-aqueous solvent such as Perc. Again, consumers are frequently helped in this identification of fabric articles by manufacturer's tags indentifying the fabric article as "dry clean only” or some similar description.
  • lipophilic fluid used herein is intended to mean any nonaqueous fluid capable of removing sebum, as described in more detail herein below.
  • cleaning composition and/or "treating composition” used herein are intended to mean any lipophilic fluid-containing composition that comes into direct contact with fabric articles to be cleaned. It should be understood that the term encompasses uses other than cleaning, such as conditioning and sizing.
  • soil means any undesirable substance on a fabric article that is desired to be removed.
  • water-based soils it is meant that the soil comprised water at the time it first came in contact with the fabric article, that the soil has high water solubility or affinity, or the soil retains a significant portion of water on the fabric article.
  • water-based soils include, but are not limited to beverages, many food soils, water soluble dyes, bodily fluids such as sweat, urine or blood, outdoor soils such as grass stains and mud.
  • a material is able to suspend, solvate or emulsify water, which is immiscible with the lipophilic fluid, in a way that the water remains visibly suspended, solvated or emulsified when left undisturbed for a period of at least five minutes after initial mixing of the components
  • insoluble in a lipohilic fluid means that when added to a lipophilic fluid, a material physically separates from the lipophilic fluid (i.e. settle-out, flocculate, float) within 5 minutes after addition, whereas a material that is "soluble in a lipophilic fluid" does not physically separate from the lipophilic fluid within 5 minutes after addition.
  • consumer detergent composition means any composition, that when combined with a lipophilic fluid, results in a cleaning composition useful according to the present invention process.
  • processing aid refers to any material that renders the consumable detergent composition more suitable for formulation, stability, and/or dilution with a lipophilic fluid to form a cleaning composition useful for the present invention process.
  • mixing means combining two or more materials (i.e., fluids, more specifically a lipophilic fluid and a consumable detergent composition) in such a way that a homogeneous mixture is formed.
  • suitable mixing processes are known in the art. Nonlimiting examples of suitable mixing processes include vortex mixing processes and static mixing processes.
  • the present invention process may be described as follows.
  • the present invention is a method for cleaning fabric articles in need of cleaning comprising contacting said fabric articles in need of cleaning with a cleaning composition comprising a lipophilic fluid and water (i.e., low level of water preferably less than 50%, more preferably less than 40% by weight of the cleaning composition), preferably in an automatic laundry machine.
  • a cleaning composition comprising a lipophilic fluid and water (i.e., low level of water preferably less than 50%, more preferably less than 40% by weight of the cleaning composition), preferably in an automatic laundry machine.
  • the amount of water in the cleaning composition is selected based upon the type of fabric articles being cleaned.
  • the level of water utilized can vary significantly depending on the fabric article to be cleaned. Limitations on the level of water to be used based on fabric article type are as follows: silks use less than about 1% water; rayons use less than about 2% water; wools also use less than about 2% water; cottons and polycottons generally can safely be contacted with any level of water; the need for reasonable drying times (preferably less than 1 hour, more preferably less than 45 minutes); and reasonable limits on the amount of water that needs to be separated from the lipophilic fluid if the lipophilic fluid is to be cleaned and reused (which is highly desirable). In one embodiment, the amount of water used in the process is less than about 20% and/or less than about 10% and/or less than about 5% by weight of the cleaning composition.
  • the cleaning composition may comprise less than about 1% by weight of the cleaning composition of water.
  • the cleaning composition may comprise less than about 50% water and/or less than 25% water and/or less than 10% by weight of the cleaning composition of water.
  • the level of water used must be selected to safely contact the most water sensitive fabric article in the load. For example, a wash load containing both cotton and wool fabric articles must use a level of water less than about 2% as needed to safely contact the wool fabric articles in the load. If a silk fabric article is also present, then the water level selected would be less than about 1%. For loads that contain dry clean only fabric articles (with or without machine washable fabric articles also being present in the wash load), it is highly preferred to use less than about 1% water unless the load does not contain any silk fabric articles, then the water level selected may be 2%.
  • the preferred methods of the present invention use an automatic laundry machine preprogrammed to deliver a select level of water in combination with a lipophilic fluid based on the type of fabric articles to be cleaned.
  • One method involves the use of a machine that automatically selects the level of water to be use.
  • the selection of the level of water by the machine may be in response to a sensor in the machine which detects the types of fabric article being cleaned.
  • the machine may have a sensor that reads labels attached to the fabric articles in the wash load and selects the water level safe for all the fabric articles being cleaned or notifies the operator of problems with the machine options available for making such a selection.
  • the automatic selection may also be in response to information about the fabric articles to be cleaned provided to the machine by the operator (e.g., the consumer when the process is practiced in the home with a home laundry machine according to the present invention).
  • the machine operator may also be able to select the level of water to be used from the preprogrammed machine options (for example, the machine may have a "silk load” setting, a "wool/rayon” load setting, and a "cotton load” setting that the operator can select based on knowledge of the fabric articles selected for cleaning; or "dry clean only fabric articles” and "machine washable fabric articles only” settings).
  • the automatic laundry machines used for the present invention process have a water level sensor which can measure the level of water present during the wash process when the fabric articles are contacted with the cleaning composition containing the lipophilic fluid.
  • This sensor preferably limits the level of purposefully added water, if any, which is also introduced into the wash medium, such that if the water level is lower than desired for maximizing the cleaning of the fabric articles being contacted with the cleaning composition, then purposefully added water is metered into the wash process to the level selected for the fabric articles being cleaned.
  • the machine preferably is designed to quickly and efficiently remove the water present in the cleaning composition to the selected level (e.g., by cycling the cleaning composition through a separator system designed to remove water and cycle the cleaning composition back into contact with the fabric articles).
  • Detergents comprising one or more laundry additives is preferably added to lipophilic fluid and/or water either before or after the cleaning composition contacts the fabric articles in need of cleaning in the automatic washing machine.
  • the cleaning composition may contain water added as part of the consumable detergent composition and/or by separate addition from a source of water connected to the machine. After the wash cycle, the cleaning composition is drained from drum of the machine and one or more of these laundry additives as well as the water present in the cleaning composition are separated from lipophilic fluid.
  • Preferred mode of separation is extraction of additives into a water phase that is introduced during the process of purifying the lipophilic fluid for reuse by the machine. As such, water can be added during the separation step to enhance the extraction of additives and other contaminants.
  • Prefered hydrotrope is a short chain, low ethoxylated nonionic such as Dehydol TM.
  • Other modes of separation are filtration, coalescence, adsorption, centrifugation, and distillation. Removal of laundry additives is such that the lipophilic fluid is sufficiently clean of laundry additives and soil contaminants that it is ready for use with next load of fabric article to be cleaned.
  • the water phase containing laundry additives (and likely also some of the soil removed from the fabric articles) is substantially free of lipophilic fluid and is safe for disposal down the drain.
  • An automatic washing machine useful according to the present invention is any machine designed to clean fabric articles with a cleaning composition containing lipophilic fluid and water, and being capable of carrying out the wash process of the present invention by delivering different levels of water to the fabric articles based on the fabric articles to be cleaned. While the machine will typically have a rotating drum capable of contacting the lipophilic fluid and laundry additives with the fabric articles to be cleaned, for purposes of this invention any method for contacting the lipophilic fluid and water with the fabric article is envisioned, obviously as long as such contact permits the cleaning process to occur.
  • Such machines must comprise a connection for supplying lipophilic fluid (alone or with the water and optionally the laundry additives already mixed therewith) into a chamber for contacting the fabric articles to be cleaned with the lipophilic fluid and selected level of water.
  • Preferred machines also comprise a storage chamber for storing the lipophilic fluid to be supplied to the wash process carried out in the machine.
  • these machines typically have a source of lipophilic fluid.
  • the machines also comprise a separation system capable of separating the lipophilic fluid from the water and laundry additives during or after the fabric article cleaning process in order to reuse the lipophilic fluid.
  • machines preferably comprise a connection for attachment to an aqueous waste removal system such that at least some (preferably all) of the water and laundry additives removed by the separation system are disposed of down the drain.
  • Preferred machines also have a connection for attachment to a source of water, typically tap water, to provide a meterable source of water for addition to the cleaning composition at the desired level. If tap water is to be used, such water source preferably is filtered or otherwise treated prior to introduction into contact with the fabric articles to reduce the water "hardness" by removing dissolved materials.
  • a water filter may be part of the machine or part of the home water treatment system.
  • the present invention machines also preferably have the above noted sensors (to detect fabric article types in the wash load and/or to measure the water level present in the wash medium in contact with the fabric articles being cleaned) and/or are preferably preprogrammed to deliver the selected level of water based on the fabric article types being cleaned.
  • Substantially free of lipophilic fluid means that the aqueous mixture to be disposed of down the drain does not contain unacceptably high levels (for example, no more than 5% and/or 3% and/or 1% and/or less than 1% by weight of the aqueous mixture to be disposed of down the drain) of lipophilic fluid as determined by both environmental safety and cost of replacement of the lost lipophilic fluid from the washing machine store of lipophilic fluid. Since it is highly desireable that essentially all the lipophilic fluid be reused in the current wash system, it is highly desireable that very little if any of the lipophilic fluid is disposed of down the drain with the above-noted aqueous phase containing laundry additives.
  • Down the drain means both the conventional in-home disposal of materials into the municipal water waste removal systems such as by sewer systems or via site specific systems such as septic systems, as well as for commercial applications the removal to on-site water treatment systems or some other centralized containment means for collecting contaminated water from the facility.
  • the lipophilic fluid herein is one having a liquid phase present under operating conditions of a fabric article treating appliance, in other words, during treatment of a fabric article in accordance with the present invention.
  • a lipophilic fluid can be fully liquid at ambient temperature and pressure, can be an easily melted solid, e.g., one which becomes liquid at temperatures in the range from about 0 deg. C to about 60 deg. C, or can comprise a mixture of liquid and vapor phases at ambient temperatures and pressures, e.g., at 25 deg. C and 1 atm. pressure.
  • the lipophilic fluid is not a compressible gas such as carbon dioxide.
  • the lipophilic fluids herein be nonflammable or have relatively high flash points and/or low VOC (volatile organic compound) characteristics, these terms having their conventional meanings as used in the dry cleaning industry, to equal or, preferably, exceed the characteristics of known conventional dry cleaning fluids.
  • lipophilic fluids herein are readily flowable and nonviscous.
  • lipophilic fluids herein are required to be fluids capable of at least partially dissolving sebum or body soil as defined in the test hereinafter.
  • Mixtures of lipophilic fluid are also suitable, and provided that the requirements of the Lipophilic Fluid Test, as described below, are met, the lipophilic fluid can include any fraction of dry-cleaning solvents, especially newer types including fluorinated solvents, or perfluorinated amines.
  • Some perfluorinated amines such as perfluorotributylamines while unsuitable for use as lipophilic fluid may be present as one of many possible adjuncts present in the lipophilic fluid-containing composition.
  • lipophilic fluids include, but are not limited to, diol solvent systems e.g., higher diols such as C6- or C8- or higher diols, organosilicone solvents including both cyclic and acyclic types, and the like, and mixtures thereof.
  • nonaqueous lipophilic fluids suitable for incorporation as a major component of the compositions of the present invention include low-volatility nonfluorinated organics, silicones, especially those other than amino functional silicones, and mixtures thereof.
  • Low volatility nonfluorinated organics include for example OLEAN® and other polyol esters, or certain relatively nonvolatile biodegradable mid-chain branched petroleum fractions.
  • nonaqueous lipophilic fluids suitable for incorporation as a major component of the compositions of the present invention include, but are not limited to, glycol ethers, for example propylene glycol methyl ether, propylene glycol n-propyl ether, propylene glycol t-butyl ether, propylene glycol n-butyl ether, dipropylene glycol methyl ether, dipropylene glycol n-propyl ether, dipropylene glycol t-butyl ether, dipropylene glycol n-butyl ether, tripropylene glycol methyl ether, tripropylene glycol n-propyl ether, tripropylene glycol t- butyl ether, tripropylene glycol n-butyl ether.
  • glycol ethers for example propylene glycol methyl ether, propylene glycol n-propyl ether, propylene glycol t-butyl ether, prop
  • Suitable silicones for use as a major component, e.g., more than 50%, of the composition include cyclopentasiloxanes, sometimes termed "D5", and/or linear analogs having approximately similar volatility, optionally complemented by other compatible silicones.
  • Suitable silicones are well known in the literature, see, for example, Kirk Othmer's Encyclopedia of Chemical Technology, and are available from a number of commercial sources, including General Electric, Toshiba Silicone, Bayer, and Dow Coming. Other suitable lipophilic fluids are commercially available from Procter & Gamble or from Dow Chemical and other suppliers.
  • LF Test Lipophilic Fluid and Lipophilic Fluid Test
  • any nonaqueous fluid that is both capable of meeting known requirements for a dry- cleaning fluid (e.g, flash point etc.) and is capable of at least partially dissolving sebum, as indicated by the test method described below, is suitable as a lipophilic fluid herein.
  • perfluorobutylamine Fluorinert FC-43®
  • cyclopentasiloxanes have suitable sebum-dissolving properties and dissolves sebum.
  • the following is the method for investigating and qualifying other materials, e.g., other low-viscosity, free-flowing silicones, for use as the lipophilic fluid.
  • the method uses commercially available Crisco ® canola oil, oleic acid (95% pure, available from Sigma Aldrich Co.) and squalene (99% pure, available from J.T. Baker) as model soils for sebum.
  • the test materials should be substantially anhydrous and free from any added adjuncts, or other materials during evaluation.
  • each vial will contain one type of lipophilic soil.
  • To each vial add 1 g of the fluid to be tested for lipophilicity. Separately mix at room temperature and pressure each vial containing the lipophilic soil and the fluid to be tested for 20 seconds on a standard vortex mixer at maximum setting. Place vials on the bench and allow to settle for 15 minutes at room temperature and pressure.
  • the nonaqueous fluid qualifies as suitable for use as a "lipophilic fluid" in accordance with the present invention.
  • the amount of nonaqueous fluid dissolved in the oil phase will need to be further determined before rejecting or accepting the nonaqueous fluid as qualified.
  • test fluid is also qualified for use as a lipophilic fluid.
  • the method can be further calibrated using heptacosafluorotributylamine, i.e., Fluorinert FC-43 (fail) and cyclopentasiloxane (pass).
  • a suitable GC is a Hewlett Packard Gas Chromatograph HP5890 Series II equipped with a split/splitless injector and FID.
  • a suitable column used in determining the amount of lipophilic fluid present is a J&W Scientific capillary column DB-1HT, 30 meter, 0.25mm id, 0.1 urn film thickness cat# 1221131.
  • the GC is suitably operated under the following conditions: Carrier Gas: Hydrogen Column Head Pressure: 9 psi
  • Preferred lipophilic fluids suitable for use herein can further be qualified for use on the basis of having an excellent garment care profile.
  • Garment care profile testing is well known in the art and involves testing a fluid to be qualified using a wide range of garment or fabric article components, including fabrics, threads and elastics used in seams, etc., and a range of buttons.
  • Preferred lipophilic fluids for use herein have an excellent garment care profile, for example they have a good shrinkage and/or fabric puckering profile and do not appreciably damage plastic buttons.
  • lipophilic fluids for example ethyl lactate
  • ethyl lactate can be quite objectionable in their tendency to dissolve buttons, and if such a material is to be used in the compositions of the present invention, it will be formulated with water and/or other solvents such that the overall mix is not substantially damaging to buttons.
  • Some suitable lipophilic fluids may be found in granted U.S. Patent Nos. 5,865,852; 5,942,007; 6,042,617; 6,042,618; 6,056,789; 6,059,845; and 6,063,135, which are incorporated herein by reference.
  • Lipophilic fluids can include linear and cyclic polysiloxanes, hydrocarbons and chlorinated hydrocarbons, with the exception of PERC and DF2000 which are explicitly not covered by the lipophilic fluid definition as used herein. More preferred are the linear and cyclic polysiloxanes and hydrocarbons of the glycol ether, acetate ester, lactate ester families. Preferred lipophilic fluids include cyclic siloxanes having a boiling point at 760 mm Hg. of below about 250°C. Specifically preferred cyclic siloxanes for use in this invention are octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane.
  • the cyclic siloxane comprises decamethylcyclopentasiloxane (D5, pentamer) and is substantially free of octamethylcyclotetrasiloxane (tetramer) and dodecamethylcyclohexasiloxane (hexamer).
  • D5 decamethylcyclopentasiloxane
  • octamethylcyclotetrasiloxane tetramer
  • dodecamethylcyclohexasiloxane hexamer
  • useful cyclic siloxane mixtures might contain, in addition to the preferred cyclic siloxanes, minor amounts of other cyclic siloxanes including octamethylcyclotetrasiloxane and hexamethylcyclotrisiloxane or higher cyclics such as tetradecamethylcycloheptasiloxane.
  • the amount of these other cyclic siloxanes in useful cyclic siloxane mixtures will be less than about 10 percent based on the total weight of the mixture.
  • the industry standard for cyclic siloxane mixtures is that such mixtures comprise less than about 1% by weight of the mixture of octamethylcyclotetrasiloxane.
  • the lipophilic fluid of the present invention preferably comprises more than about 50%, more preferably more than about 75%, even more preferably at least about 90%, most preferably at least about 95% by weight of the lipophilic fluid of decamethylcyclopentasiloxane.
  • the lipophilic fluid may comprise siloxanes which are a mixture of cyclic siloxanes having more than about 50%, preferably more than about 75%, more preferably at least about 90%, most preferably at least about 95% up to about 100% by weight of the mixture of decamethylcyclopentasiloxane and less than about 10%, preferably less than about 5%, more preferably less than about 2%, even more preferably less than about 1%, most preferably less than about 0.5% to about 0% by weight of the mixture of octamethylcyclotetrasiloxane and/or dodecamethylcyclohexasiloxane.
  • siloxanes which are a mixture of cyclic siloxanes having more than about 50%, preferably more than about 75%, more preferably at least about 90%, most preferably at least about 95% up to about 100% by weight of the mixture of decamethylcyclopentasiloxane and less than about 10%, preferably less than about 5%, more preferably less than about 2%,
  • the level of lipophilic fluid present in the cleaning compositions according to the present invention may be from about 70% to about 99.99% and/or from about 90% to about 99.9% and/or from about 95% to about 99.8% by weight of the cleaning composition.
  • the level of lipophilic fluid, when present in a consumable detergent composition useful for the present invention may be from about 0% to about 90% and/or from about 0.1% to about 75% and/or from about 1% to about 50% by weight of the consumable detergent composition.
  • Detergent compositions useful herein comprise laundry additives.
  • "Laundry additives” as used herein, means additives useful in a lipophilic fluid-based cleaning system, and preferably are selected from those materials that can be safely disposed down the drain within all constraints on environmental fate and toxicity (e.g. biodegradability, aquatic toxicity, pH, etc.). Although solubility in water or lipophilic fluid are not necessarily required, preferred materials are simultaneously soluble in both water and lipophilic fluid.
  • the laundry additives can vary widely and can be used at widely ranging levels.
  • laundry additives include, but are not limited to, builders, surfactants, enzymes, bleach activators, bleach catalysts, bleach boosters, bleaches, alkalinity sources, antibacterial agents, colorants, perfumes, pro-perfumes, finishing aids, lime soap dispersants, odor control agents, odor neutralizers, polymeric dye transfer inhibiting agents, crystal growth inhibitors, photobleaches, heavy metal ion sequestrants, anti-tarnishing agents, anti-microbial agents, anti-oxidants, anti-redeposition agents, soil release polymers, electrolytes, pH modifiers, thickeners, abrasives, divalent or trivalent ions, metal ion salts, enzyme stabilizers, corrosion inhibitors, diamines or polyamines and/or their alkoxylates, suds stabilizing polymers, solvents, process aids, fabric softening agents, optical brighteners, hydrotropes, suds or foam suppressors, suds or foam boosters and mixtures thereof.
  • a preferred surfactant laundry additive is a material that is capable of suspending water in a lipophilic fluid and enhancing soil removal benefits of a lipophilic fluid. As a condition of their performance, said materials are soluble in the lipophilic fluid.
  • One preferred class of materials is siloxane-based surfactants. Such materials, derived from poly(dimethylsiloxane), are well known in the art. For the present invention, not all such siloxane materials are suitable, either because they are insoluble in the lipophilic fluid and/or because they do not provide improved cleaning of soils compared to the level of cleaning provided by the lipophilic fluid itself.
  • the surfactant component of the present invention can be a material that is capable of suspending water in a lipophilic fluid and/or enhancing soil removal benefits of a lipophilic fluid.
  • the materials may be soluble in the lipophilic fluid.
  • One class of materials can include siloxane-based surfactants (siloxane-based materials).
  • the siloxane-based surfactants in this application may be siloxane polymers for other applications.
  • the siloxane-based surfactants typically have a weight average molecular weight from 500 to 20,000.
  • Such materials, derived from poly(dimethylsiloxane), are well known in the art. In the present invention, not all such siloxane-based surfactants are suitable, because they do not provide improved cleaning of soils compared to the level of cleaning provided by the lipophilic fluid itself.
  • Suitable siloxane-based surfactants comprise a polyether siloxane having the formula:
  • M is Rl3_ e X e SiO ⁇ /2 wherein R ⁇ is independently H, or a monovalent hydrocarbon group, X is hydroxyl group, and e is 0 or 1 ;
  • M' is R ⁇ SiOi ⁇ wherein R ⁇ is independently H, a monovalent hydrocarbon group, or (CH2)f-(C6H4)gO-(C 2 H4 ⁇ )h-(C3H6 ⁇ )i-(CkH2 O)j-R 3 , provided that at least one R 2 is (CH2)f-(C6H4) g O-(C2H 4 O)h-(C3H 6 O)i-(CkH2kO)j-R 3 , wherein R 3 is independently
  • H a monovalent hydrocarbon group or an alkoxy group
  • f is 1-10
  • g is 0 or 1
  • h is 1-50
  • i is 0-50
  • j is 0-50
  • k is 4-8;
  • D is R42Si ⁇ 2/2 wherein R ⁇ is independently H or a monovalent hydrocarbon group; D' is R ⁇ 2Si ⁇ 2/2 wherein R ⁇ is independently R 2 provided that at least one R ⁇ is
  • H a monovalent hydrocarbon group or an alkoxy group
  • f is 1-10
  • g is 0 or 1
  • h is 1-50
  • i is 0-50
  • j is 0-50
  • k is 4-8;
  • D" is R ⁇ 2Si ⁇ 2/2 wherein R ⁇ is independently H, a monovalent hydrocarbon group or (CH 2 ) 1 (C 6 H 4 ) m (A) n -[(L) 0 — (A') p -] q -(L') r Z(G) s , wherein 1 is 1-10; m is 0 or 1 ; n is 0-5; o is 0-3; p is 0 or 1; q is 0-10; r is 0-3; s is 0-3;C 6 H 4 is unsubstituted or substituted with a C MO alkyl or alkenyl; A and A' are each independently a linking moiety representing an ester, a keto, an ether, a thio, an amido, an amino, a C1.4 fluoroalkyl, a C1.4 fluoroalkenyl, a branched or straight chained polyalkylene oxide, a phosphate,
  • Nonlimiting commercially available examples of suitable siloxane-based surfactants are TSF 4446 (ex. General Electric Silicones), XS69-B5476 (ex. General Electric Silicones), XS69-B5476 (ex. General Electric Silicones), XS69-B5476 (ex. General Electric Silicones), XS69-B5476 (ex. General Electric Silicones), XS69-B5476 (ex. General Electric Silicones), XS69-B5476 (ex. General Electric Silicones), XS69-B5476 (ex. General Electric Silicones).
  • a second preferred class of materials suitable for the surfactant component is organic in nature.
  • Preferred materials are organosulfosuccinate surfactants, with carbon chains of from about 6 to about 20 carbon atoms.
  • Nonlimiting commercially available examples of suitable organosulfosuccinate surfactants are available under the trade names of Aerosol OT and Aerosol TR-70 (ex.
  • the surfactant component when present in the fabric article treating compositions of the present invention, preferably comprises from about 0.01% to about 10%, more preferably from about 0.02% to about 5%, even more preferably from about 0.05% to about 2% by weight of the fabric article treating composition.
  • the surfactant component when present in the consumable detergent compositions of the present invention, preferably comprises from about 1% to about 99%, more preferably 2% to about 75%, even more preferably from about 5% to about 60% by weight of the consumable detergent composition.
  • a second preferred class of materials suitable for the surfactant component is organic in nature. Again, solubility in the lipophilic fluid, as identified above, is essential. Preferred materials are organosulfosuccinate surfactants, with carbon chains of from about 6 to about 20 carbon atoms.
  • Nonlimiting commercially available examples of suitable organosulfosuccinate surfactants are available under the trade names of Aerosol OT and Aerosol TR-70 (ex. Cytec).
  • nonionic surfactants are nonionic surfactants, especially those having low HLB values.
  • Preferred nonionic surfactants have HLB values of less than about 10, more preferably less than about 7.5, and most preferably less than about 5.
  • Preferred nonionic surfactants also have from about 6-20 carbons in the surfactant chain and from about 1-15 ethylene oxide (EO) and/or propylene oxide (PO) units in the hydrophilic portion of the surfactant (i.e., C6-20 EO/PO 1-15), and preferably nonionic surfactants selected from those within C7-11 EO/PO 1-5 (e.g., C7-11 EO 2.5).
  • EO ethylene oxide
  • PO propylene oxide
  • the surfactant laundry additives when present, typically comprises from about 0.001% to about 10%, more preferably from about 0.01% to about 5%, even more preferably from about 0.02% to about 2% by weight of the cleaning composition combined with the lipophilic fluid for the present invention process.
  • These surfactant laundry additives when present in the consumable detergent compositions before addition to the lipophilic fluid, preferably comprises from about 1% to about 90%, more preferably 2% to about 75%, even more preferably from about 5% to about 60% by weight of the consumable detergent composition.
  • Non-silicone additives if present, which preferably comprises a strongly polar and/or hydrogen-bonding head group, further enhances soil removal by the process of the present invention.
  • the strongly polar and/or hydrogen-bonding head group are alcohols, carboxylic acids, sulfates, sulphonates, phosphates, phosphonates, and nitrogen containing materials.
  • Preferred non-silicone additives are nitrogen containing materials selected from the group consisting of primary, secondary and tertiary amines, diamines, triamines, ethoxylated amines, amine oxides, amides, betaines, quaternary ammonium salts, and mixtures thereof.
  • Alkylamines are particularly preferred. Additionally, branching on the alkyl chain to help lower the melting point is highly preferred. Even more preferred are primary alkylamines comprising from about 6 to about 22 carbon atoms.
  • Particularly preferred primary alkylamines are oleylamine (commercially available from Akzo under the trade name Armeen OLD), dodecylamine (commercially available from Akzo under the trade name Armeen 12D), branched C ⁇ 6 -C 22 alkylamine (commercially available from Rohm & Haas under the trade name Primene JM-T) and mixtures thereof.
  • the non-silicone additive when present in the cleaning compositions used for the present invention process, preferably comprises from about 0.001% to about 10%, more preferably from about 0.01% to about 5%, even more preferably from about 0.02% to about 2% by weight of the cleaning composition.
  • Non-silicone additives when present in the consumable detergent compositions for the present invention process, preferably comprises from about 1% to about 90%, more preferably from about 2% to about 75%, even more preferably from about 5% to about 60% by weight of the consumable detergent composition.
  • consumable detergent compositions useful in the present invention process may contain water.
  • water preferably comprises from about 1% to about 90%, more preferably from about 2% to about 75%, even more preferably from about 5% to about 40% by weight of the consumable detergent composition.
  • compositions useful for the present invention process may comprise processing aids.
  • Processing aids facilitate the formation of the cleaning compositions by maintaining the fluidity and/or homogeneity of the consumable detergent composition, and/or aiding in the dilution process.
  • Processing aids suitable for the present invention are solvents, preferably solvents other than those described above, hydrotropes, and/or surfactants, preferably surfactants other than those described above with respect to the surfactant component.
  • Particularly preferred processing aids are protic solvents such as aliphatic alcohols, diols, triols, etc. and nonionic surfactants such as ethoxylated fatty alcohols.
  • Processing aids when present in the cleaning compositions, preferably comprise from about 0.02% to about 10%, more preferably from about 0.05% to about 10%, even more preferably from about 0.1% to about 10% by weight of the cleaning composition. Processing aids, when present in the consumable detergent compositions, preferably comprise from about 1% to about 75%, more preferably from about 5% to about 50% by weight of the consumable detergent composition.
  • Suitable odor control agents include agents include, cyclodextrins, odor neutralizers, odor blockers and mixtures thereof.
  • Suitable odor neutralizers include aldehydes, flavanoids, metallic salts, water- soluble polymers, zeolites, activated carbon and mixtures thereof.
  • Perfumes and perfumery ingredients useful in the compositions for the present invention process comprise a wide variety of natural and synthetic chemical ingredients, including, but not limited to, aldehydes, ketones, esters, and the like.
  • various natural extracts and essences which can comprise complex mixtures of ingredients, such as orange oil, lemon oil, rose extract, lavender, musk, patchouli, balsamic essence, sandalwood oil, pine oil, cedar, and the like.
  • Finished perfumes may comprise extremely complex mixtures of such ingredients.
  • Pro-perfumes are also useful in the present invention. Such materials are those precursors or mixtures thereof capable of chemically reacting, e.g., by hydrolysis, to release a perfume, and are described in patents and/or published patent applications to Procter and Gamble, Firmenich, Givaudan and others.
  • Bleaches especially oxygen bleaches, are another type of laundry additive suitable for use in the compositions for the present invention.
  • Such bleach activators as nonanoyloxybenzenesulfonate and/or any of its linear or branched higher or lower homologs, and or tetraacetylethylenediamine and/or any of its derivatives or derivatives of phthaloylimidoperoxycaproic acid (PAP; available from Ausimont SpA under trademane Euroco) or other imido- or amido-substituted bleach activators including the lactam types, or more generally any mixture of hydrophilic and/or hydrophobic bleach activators (especially acyl derivatives including those of the C 6 -C ⁇ 6 substituted oxybenzenesulfonates).
  • PAP phthaloylimidoperoxycaproic acid
  • other imido- or amido-substituted bleach activators including the lactam types, or more generally any mixture of hydrophilic and/or hydro
  • organic or inorganic peracids both including PAP and other than PAP.
  • Suitable organic or inorganic peracids for use herein include, but are not limited to: percarboxylic acids and salts; percarbonic acids and salts; perimidic acids and salts; peroxymonosulfuric acids and salts; persulphates such as monopersulfate; peroxyacids such as diperoxydodecandioic acid (DPDA); magnesium peroxyphthalic acid; perlauric acid; perbenzoic and alkylperbenzoic acids; and mixtures thereof.
  • DPDA diperoxydodecandioic acid
  • magnesium peroxyphthalic acid perlauric acid
  • perbenzoic and alkylperbenzoic acids and mixtures thereof.
  • Detersive enzymes such as proteases, amylases, cellulases, Upases and the like as well as bleach catalysts including the macrocyclic types having manganese or similar transition metals all useful in laundry and cleaning products can be used herein at very low, or less commonly, higher levels.
  • Laundry Additives that are catalytic, for example enzymes can be used in "forward" or “reverse” modes.
  • a lipolase or other hydrolase may be used, optionally in the presence of alcohols as laundry additives, to convert fatty acids to esters, thereby increasing their solubility in the lipohilic fluid.
  • Nonlimiting examples of finishing polymers that are commercially available are: polyvinylpyrrolidone/dimethylaminoethyl methacrylate copolymer, such as Copolymer 958 ® , molecular weight of about 100,000 and Copolymer 937, molecular weight of about
  • polyvinyl alcohol copolymer resin such as Vinex 2019 ,®
  • polyamine resins such as Cypro 515 , available from Cytec
  • polyquaternary amine resins such as Kymene 557H , available from
  • the laundry additive may also be an antistatic agent.
  • Any suitable well-known antistatic agents used in conventional laundering and dry cleaning are suitable for use in the compositions and methods of the present invention.
  • Especially suitable as antistatic agents are the subset of fabric softeners which are known to provide antistatic benefits. For example those fabric softeners that have a fatty acyl group which has an iodine value of above 20, such as N,N-di(tallowoyl-oxy-ethyl)-N,N-dimethyl ammonium methylsulfate.
  • antistatic agent is not to be limited to just this subset of fabric softeners and includes all antistatic agents.
  • Preferred insect and moth repellent laundry additives useful in the compositions of the present invention are perfume ingredients, such as citronellol, citronellal, citral, linalool, cedar extract, geranium oil, sandalwood oil, 2-(diethylphenoxy)ethanol, 1- dodecene, etc.
  • Other examples of insect and/or moth repellents useful in the compositions of the present invention are disclosed in U.S. Pat. Nos. 4,449,987; 4,693,890; 4,696,676; 4,933,371; 5,030,660; 5,196,200; and in "Semio Activity of Flavor and Fragrance Molecules on Various Insect Species", B.D.

Abstract

A process for cleaning fabric articles, with lipophilic fluid and water. Wherein the amount of water in the cleaning composition is selected based upon the type of fabric articles being cleaned and/or the amount of soil present on said fabric articles.

Description

SELECTIVE LAUNDRY PROCESS USING WATER
RELATED APPLICATIONS This application claims priority to U.S. Provisional Application Serial No.
60/318,650 filed on September 10, 2001.
FIELD OF THE INVENTION The present invention relates to a fabric article cleaning system, especially a system for use in a consumer's home, utilizing a lipophilic fluid and a low level of water in an automatic laundry machine capable of delivering different levels of water to the wash medium based on the type of fabric articles being cleaned.
BACKGROUND OF THE INVENTION Recently, a non-aqueous solvent based fabric article cleaning system, especially a dry cleaning system, utilizing a lipophilic fluid, such as cyclic siloxanes (especially cyclopentasiloxanes, sometimes termed "D5"), has been developed. Such a system is particularly desired for cleaning textile articles without causing damage associated with wet-washing, like shrinkage and dye transfer. To maximize fabric article cleaning in such a system, especially to remove hydrophilic soils, it is highly desirable to use some water along with laundry additives for cleaning, softening, finishing, etc. However, the level of water which can safely be used in such methods varies significantly depending on the type of fabric articles being cleaned.
The present invention is directed to a convenient, safe and effective system for cleaning a variety of fabric articles (including dry clean only garments) which is especially useful for a consumer to use in the home.
SUMMARY OF THE INVENTION The present invention relates to a method (process) for cleaning fabric articles in need of cleaning comprising contacting the fabric articles in need of cleaning with a cleaning composition comprising a lipophilic fluid and water; wherein the amount of water present in the cleaning composition is selected based upon the type of fabric articles being cleaned.
The present invention also provides a method (process) for cleaning fabric articles in need of cleaning comprising contacting the fabric articles in need of cleaning with a cleaning composition comprising a lipophilic fluid and water; wherein the amount of water present in the cleaning composition is selected based upon the amount of soil on the fabric articles to be cleaned.
In another aspect of the present invention, an apparatus, for example an automatic laundry machine, preferably an automatic home laundry machine, is provided.
In yet another aspect of the present invention, a method wherein the fabric articles to be cleaned are contacted by the lipophilic fluid prior to being contacted separately by water is provided.
In still yet another aspect of the present invention, a method for cleaning fabric articles in need of cleaning comprising contacting the fabric articles with a cleaning composition comprising a lipophilic fluid and a lipophilic cosolvent, wherein the lipophilic cosolvent is present in the cleaning composition at a level of from about 0.1% to about 35% by weight of the cleaning composition, wherein the lipophilic cosolvent forms an azeotrope with water such that water can be incorporated into the cleaning composition as a third solvent in the cleaning composition; and wherein the water is present in the cleaning composition at a level of from about 0.5% to about 25% by weight of the cleaning composition.
Even though the amount of water may be selected based upon different characteristics; namely, fabric article type or amount of soil on the fabric article, the cleaning process and the apparatus used in the methods of the present invention are similar.
The features and advantages of such washing process using a lipophilic fluid and water will become apparent to those of ordinary skill in the art from a reading of the following detailed description and the appended claims. All percentages, ratios and proportions herein are by weight, unless otherwise specified. All temperatures are in degrees Celsius (°C) unless otherwise specified. All measurements are in SI units unless otherwise specified. All documents cited are in relevant part, incorporated herein by reference.
DETAILED DESCRIPTION OF THE INVENTION Definitions: The term "fabric article" used herein is intended to mean any article that is customarily cleaned in a conventional laundry process or in a dry cleaning process. As such the term encompasses articles of clothing, linen, drapery, and clothing accessories. The term also encompasses other items made in whole or in part of fabric, such as tote bags, furniture covers, tarpaulins and the like.
The term "machine washable fabric articles", as used herein, means those fabric articles readily identified by the fabric industry and consumers as safe for laundering by a conventional aqueous automatic home laundry process. Consumers are frequently helped in this identification of fabric articles by manufacturer's tags identifying the fabric article as "machine washable" or some similar description.
The term "dry clean only fabric articles", as used herein, means those fabric articles readily identified by the fabric industry and consumers as unsafe for laundering by a conventional aqueous automatic home laundry process, and instead requiring special handling with a conventional non-aqueous solvent such as Perc. Again, consumers are frequently helped in this identification of fabric articles by manufacturer's tags indentifying the fabric article as "dry clean only" or some similar description.
The term "lipophilic fluid" used herein is intended to mean any nonaqueous fluid capable of removing sebum, as described in more detail herein below.
The term "cleaning composition" and/or "treating composition" used herein are intended to mean any lipophilic fluid-containing composition that comes into direct contact with fabric articles to be cleaned. It should be understood that the term encompasses uses other than cleaning, such as conditioning and sizing.
The term "soil" means any undesirable substance on a fabric article that is desired to be removed. By the terms "water-based" or "hydrophilic" soils, it is meant that the soil comprised water at the time it first came in contact with the fabric article, that the soil has high water solubility or affinity, or the soil retains a significant portion of water on the fabric article. Examples of water-based soils include, but are not limited to beverages, many food soils, water soluble dyes, bodily fluids such as sweat, urine or blood, outdoor soils such as grass stains and mud. The term "capable of suspending water in a lipophilic fluid" means that a material is able to suspend, solvate or emulsify water, which is immiscible with the lipophilic fluid, in a way that the water remains visibly suspended, solvated or emulsified when left undisturbed for a period of at least five minutes after initial mixing of the components
The term "insoluble in a lipohilic fluid" means that when added to a lipophilic fluid, a material physically separates from the lipophilic fluid (i.e. settle-out, flocculate, float) within 5 minutes after addition, whereas a material that is "soluble in a lipophilic fluid" does not physically separate from the lipophilic fluid within 5 minutes after addition.
The term "consumable detergent composition" means any composition, that when combined with a lipophilic fluid, results in a cleaning composition useful according to the present invention process.
The term "processing aid" refers to any material that renders the consumable detergent composition more suitable for formulation, stability, and/or dilution with a lipophilic fluid to form a cleaning composition useful for the present invention process. The term "mixing" as used herein means combining two or more materials (i.e., fluids, more specifically a lipophilic fluid and a consumable detergent composition) in such a way that a homogeneous mixture is formed. Suitable mixing processes are known in the art. Nonlimiting examples of suitable mixing processes include vortex mixing processes and static mixing processes. Process Description:
The present invention process may be described as follows. The present invention is a method for cleaning fabric articles in need of cleaning comprising contacting said fabric articles in need of cleaning with a cleaning composition comprising a lipophilic fluid and water (i.e., low level of water preferably less than 50%, more preferably less than 40% by weight of the cleaning composition), preferably in an automatic laundry machine. The amount of water in the cleaning composition is selected based upon the type of fabric articles being cleaned.
The level of water utilized can vary significantly depending on the fabric article to be cleaned. Limitations on the level of water to be used based on fabric article type are as follows: silks use less than about 1% water; rayons use less than about 2% water; wools also use less than about 2% water; cottons and polycottons generally can safely be contacted with any level of water; the need for reasonable drying times (preferably less than 1 hour, more preferably less than 45 minutes); and reasonable limits on the amount of water that needs to be separated from the lipophilic fluid if the lipophilic fluid is to be cleaned and reused (which is highly desirable). In one embodiment, the amount of water used in the process is less than about 20% and/or less than about 10% and/or less than about 5% by weight of the cleaning composition.
In one embodiment, if the fabric articles to be cleaned comprise a fabric article selected from the group consisting of silks, wools, rayon and mixtures thereof, then the cleaning composition may comprise less than about 1% by weight of the cleaning composition of water.
In another embodiment, if the fabric articles to be cleaned do not include a fabric article selected from the group consisting of silks, wools, rayon and mixtures thereof, (for example they include a fabric article selected from the group consisting of cotton, polyester, nylon, and polycottons and mixtures thereof), then the cleaning composition may comprise less than about 50% water and/or less than 25% water and/or less than 10% by weight of the cleaning composition of water.
For wash loads that contain more than one fabric article type, the level of water used must be selected to safely contact the most water sensitive fabric article in the load. For example, a wash load containing both cotton and wool fabric articles must use a level of water less than about 2% as needed to safely contact the wool fabric articles in the load. If a silk fabric article is also present, then the water level selected would be less than about 1%. For loads that contain dry clean only fabric articles (with or without machine washable fabric articles also being present in the wash load), it is highly preferred to use less than about 1% water unless the load does not contain any silk fabric articles, then the water level selected may be 2%.
The preferred methods of the present invention use an automatic laundry machine preprogrammed to deliver a select level of water in combination with a lipophilic fluid based on the type of fabric articles to be cleaned. One method involves the use of a machine that automatically selects the level of water to be use. The selection of the level of water by the machine may be in response to a sensor in the machine which detects the types of fabric article being cleaned. For example, the machine may have a sensor that reads labels attached to the fabric articles in the wash load and selects the water level safe for all the fabric articles being cleaned or notifies the operator of problems with the machine options available for making such a selection.
The automatic selection may also be in response to information about the fabric articles to be cleaned provided to the machine by the operator (e.g., the consumer when the process is practiced in the home with a home laundry machine according to the present invention). The machine operator may also be able to select the level of water to be used from the preprogrammed machine options (for example, the machine may have a "silk load" setting, a "wool/rayon" load setting, and a "cotton load" setting that the operator can select based on knowledge of the fabric articles selected for cleaning; or "dry clean only fabric articles" and "machine washable fabric articles only" settings). Because the fabric articles themselves may bring into the wash process different levels of water (e.g., wet towels versus dry towels being added to the automatic laundry machine), it is highly desirable that the automatic laundry machines used for the present invention process have a water level sensor which can measure the level of water present during the wash process when the fabric articles are contacted with the cleaning composition containing the lipophilic fluid. This sensor preferably limits the level of purposefully added water, if any, which is also introduced into the wash medium, such that if the water level is lower than desired for maximizing the cleaning of the fabric articles being contacted with the cleaning composition, then purposefully added water is metered into the wash process to the level selected for the fabric articles being cleaned. If the water level exceeds the level selected, then the machine preferably is designed to quickly and efficiently remove the water present in the cleaning composition to the selected level (e.g., by cycling the cleaning composition through a separator system designed to remove water and cycle the cleaning composition back into contact with the fabric articles).
Detergents (and/or other fabric article products) comprising one or more laundry additives is preferably added to lipophilic fluid and/or water either before or after the cleaning composition contacts the fabric articles in need of cleaning in the automatic washing machine. The cleaning composition may contain water added as part of the consumable detergent composition and/or by separate addition from a source of water connected to the machine. After the wash cycle, the cleaning composition is drained from drum of the machine and one or more of these laundry additives as well as the water present in the cleaning composition are separated from lipophilic fluid. Preferred mode of separation is extraction of additives into a water phase that is introduced during the process of purifying the lipophilic fluid for reuse by the machine. As such, water can be added during the separation step to enhance the extraction of additives and other contaminants. Together with this water one can add "extraction aids" such as hydrotopes and emulsifiers. Prefered hydrotrope is a short chain, low ethoxylated nonionic such as Dehydol ™. Other modes of separation are filtration, coalescence, adsorption, centrifugation, and distillation. Removal of laundry additives is such that the lipophilic fluid is sufficiently clean of laundry additives and soil contaminants that it is ready for use with next load of fabric article to be cleaned. In a preferred system, the water phase containing laundry additives (and likely also some of the soil removed from the fabric articles) is substantially free of lipophilic fluid and is safe for disposal down the drain. An automatic washing machine useful according to the present invention is any machine designed to clean fabric articles with a cleaning composition containing lipophilic fluid and water, and being capable of carrying out the wash process of the present invention by delivering different levels of water to the fabric articles based on the fabric articles to be cleaned. While the machine will typically have a rotating drum capable of contacting the lipophilic fluid and laundry additives with the fabric articles to be cleaned, for purposes of this invention any method for contacting the lipophilic fluid and water with the fabric article is envisioned, obviously as long as such contact permits the cleaning process to occur. Such machines must comprise a connection for supplying lipophilic fluid (alone or with the water and optionally the laundry additives already mixed therewith) into a chamber for contacting the fabric articles to be cleaned with the lipophilic fluid and selected level of water. Preferred machines also comprise a storage chamber for storing the lipophilic fluid to be supplied to the wash process carried out in the machine. Thus, these machines typically have a source of lipophilic fluid. The machines also comprise a separation system capable of separating the lipophilic fluid from the water and laundry additives during or after the fabric article cleaning process in order to reuse the lipophilic fluid. Further the present invention machines preferably comprise a connection for attachment to an aqueous waste removal system such that at least some (preferably all) of the water and laundry additives removed by the separation system are disposed of down the drain. Preferred machines also have a connection for attachment to a source of water, typically tap water, to provide a meterable source of water for addition to the cleaning composition at the desired level. If tap water is to be used, such water source preferably is filtered or otherwise treated prior to introduction into contact with the fabric articles to reduce the water "hardness" by removing dissolved materials. Such a water filter may be part of the machine or part of the home water treatment system. The present invention machines also preferably have the above noted sensors (to detect fabric article types in the wash load and/or to measure the water level present in the wash medium in contact with the fabric articles being cleaned) and/or are preferably preprogrammed to deliver the selected level of water based on the fabric article types being cleaned.
"Substantially free of lipophilic fluid", as used herein, means that the aqueous mixture to be disposed of down the drain does not contain unacceptably high levels (for example, no more than 5% and/or 3% and/or 1% and/or less than 1% by weight of the aqueous mixture to be disposed of down the drain) of lipophilic fluid as determined by both environmental safety and cost of replacement of the lost lipophilic fluid from the washing machine store of lipophilic fluid. Since it is highly desireable that essentially all the lipophilic fluid be reused in the current wash system, it is highly desireable that very little if any of the lipophilic fluid is disposed of down the drain with the above-noted aqueous phase containing laundry additives. "Down the drain", as used herein, means both the conventional in-home disposal of materials into the municipal water waste removal systems such as by sewer systems or via site specific systems such as septic systems, as well as for commercial applications the removal to on-site water treatment systems or some other centralized containment means for collecting contaminated water from the facility. Lipophilic Fluid
The lipophilic fluid herein is one having a liquid phase present under operating conditions of a fabric article treating appliance, in other words, during treatment of a fabric article in accordance with the present invention. In general such a lipophilic fluid can be fully liquid at ambient temperature and pressure, can be an easily melted solid, e.g., one which becomes liquid at temperatures in the range from about 0 deg. C to about 60 deg. C, or can comprise a mixture of liquid and vapor phases at ambient temperatures and pressures, e.g., at 25 deg. C and 1 atm. pressure. Thus, the lipophilic fluid is not a compressible gas such as carbon dioxide.
It is preferred that the lipophilic fluids herein be nonflammable or have relatively high flash points and/or low VOC (volatile organic compound) characteristics, these terms having their conventional meanings as used in the dry cleaning industry, to equal or, preferably, exceed the characteristics of known conventional dry cleaning fluids.
Moreover, suitable lipophilic fluids herein are readily flowable and nonviscous. In general, lipophilic fluids herein are required to be fluids capable of at least partially dissolving sebum or body soil as defined in the test hereinafter. Mixtures of lipophilic fluid are also suitable, and provided that the requirements of the Lipophilic Fluid Test, as described below, are met, the lipophilic fluid can include any fraction of dry-cleaning solvents, especially newer types including fluorinated solvents, or perfluorinated amines. Some perfluorinated amines such as perfluorotributylamines while unsuitable for use as lipophilic fluid may be present as one of many possible adjuncts present in the lipophilic fluid-containing composition. Other suitable lipophilic fluids include, but are not limited to, diol solvent systems e.g., higher diols such as C6- or C8- or higher diols, organosilicone solvents including both cyclic and acyclic types, and the like, and mixtures thereof.
A preferred group of nonaqueous lipophilic fluids suitable for incorporation as a major component of the compositions of the present invention include low-volatility nonfluorinated organics, silicones, especially those other than amino functional silicones, and mixtures thereof. Low volatility nonfluorinated organics include for example OLEAN® and other polyol esters, or certain relatively nonvolatile biodegradable mid-chain branched petroleum fractions.
Another preferred group of nonaqueous lipophilic fluids suitable for incorporation as a major component of the compositions of the present invention include, but are not limited to, glycol ethers, for example propylene glycol methyl ether, propylene glycol n-propyl ether, propylene glycol t-butyl ether, propylene glycol n-butyl ether, dipropylene glycol methyl ether, dipropylene glycol n-propyl ether, dipropylene glycol t-butyl ether, dipropylene glycol n-butyl ether, tripropylene glycol methyl ether, tripropylene glycol n-propyl ether, tripropylene glycol t- butyl ether, tripropylene glycol n-butyl ether. Suitable silicones for use as a major component, e.g., more than 50%, of the composition include cyclopentasiloxanes, sometimes termed "D5", and/or linear analogs having approximately similar volatility, optionally complemented by other compatible silicones. Suitable silicones are well known in the literature, see, for example, Kirk Othmer's Encyclopedia of Chemical Technology, and are available from a number of commercial sources, including General Electric, Toshiba Silicone, Bayer, and Dow Coming. Other suitable lipophilic fluids are commercially available from Procter & Gamble or from Dow Chemical and other suppliers. Qualification of Lipophilic Fluid and Lipophilic Fluid Test (LF Test)
Any nonaqueous fluid that is both capable of meeting known requirements for a dry- cleaning fluid (e.g, flash point etc.) and is capable of at least partially dissolving sebum, as indicated by the test method described below, is suitable as a lipophilic fluid herein. As a general guideline, perfluorobutylamine (Fluorinert FC-43®) on its own (with or without adjuncts) is a reference material which by definition is unsuitable as a lipophilic fluid for use herein (it is essentially a nonsolvent) while cyclopentasiloxanes have suitable sebum-dissolving properties and dissolves sebum. The following is the method for investigating and qualifying other materials, e.g., other low-viscosity, free-flowing silicones, for use as the lipophilic fluid. The method uses commercially available Crisco ® canola oil, oleic acid (95% pure, available from Sigma Aldrich Co.) and squalene (99% pure, available from J.T. Baker) as model soils for sebum. The test materials should be substantially anhydrous and free from any added adjuncts, or other materials during evaluation.
Prepare three vials, each vial will contain one type of lipophilic soil. Place 1.0 g of canola oil in the first; in a second vial place 1.0 g of the oleic acid (95%), and in a third and final vial place l.Og of the squalene (99.9%). To each vial add 1 g of the fluid to be tested for lipophilicity. Separately mix at room temperature and pressure each vial containing the lipophilic soil and the fluid to be tested for 20 seconds on a standard vortex mixer at maximum setting. Place vials on the bench and allow to settle for 15 minutes at room temperature and pressure. If, upon standing, a clear single phase is formed in any of the vials containing lipophilic soils, then the nonaqueous fluid qualifies as suitable for use as a "lipophilic fluid" in accordance with the present invention. However, if two or more separate layers are formed in all three vials, then the amount of nonaqueous fluid dissolved in the oil phase will need to be further determined before rejecting or accepting the nonaqueous fluid as qualified.
In such a case, with a syringe, carefully extract a 200-microliter sample from each layer in each vial. The syringe-extracted layer samples are placed in GC auto sampler vials and subjected to conventional GC analysis after determining the retention time of calibration samples of each of the three models soils and the fluid being tested. If more than 1% of the test fluid by GC, preferably greater, is found to be present in any one of the layers which consists of the oleic acid, canola oil or squalene layer, then the test fluid is also qualified for use as a lipophilic fluid. If needed, the method can be further calibrated using heptacosafluorotributylamine, i.e., Fluorinert FC-43 (fail) and cyclopentasiloxane (pass). A suitable GC is a Hewlett Packard Gas Chromatograph HP5890 Series II equipped with a split/splitless injector and FID. A suitable column used in determining the amount of lipophilic fluid present is a J&W Scientific capillary column DB-1HT, 30 meter, 0.25mm id, 0.1 urn film thickness cat# 1221131. The GC is suitably operated under the following conditions: Carrier Gas: Hydrogen Column Head Pressure: 9 psi
Flows: Column Flow @ ~1.5 ml/min.
Split Vent @ -250-500 ml/min. Septum Purge @ 1 ml/min. Injection: HP 7673 Autosampler, 10 ul syringe, lul injection Injector Temperature: 350 °C
Detector Temperature: 380 °C Oven Temperature Program: initial 60 °C hold 1 min. rate 25 °C/min. final 380 °C hold 30 min. Preferred lipophilic fluids suitable for use herein can further be qualified for use on the basis of having an excellent garment care profile. Garment care profile testing is well known in the art and involves testing a fluid to be qualified using a wide range of garment or fabric article components, including fabrics, threads and elastics used in seams, etc., and a range of buttons. Preferred lipophilic fluids for use herein have an excellent garment care profile, for example they have a good shrinkage and/or fabric puckering profile and do not appreciably damage plastic buttons. Certain materials which in sebum removal qualify for use as lipophilic fluids, for example ethyl lactate, can be quite objectionable in their tendency to dissolve buttons, and if such a material is to be used in the compositions of the present invention, it will be formulated with water and/or other solvents such that the overall mix is not substantially damaging to buttons. Other lipophilic fluids, D5, for example, meet the garment care requirements quite admirably. Some suitable lipophilic fluids may be found in granted U.S. Patent Nos. 5,865,852; 5,942,007; 6,042,617; 6,042,618; 6,056,789; 6,059,845; and 6,063,135, which are incorporated herein by reference.
Lipophilic fluids can include linear and cyclic polysiloxanes, hydrocarbons and chlorinated hydrocarbons, with the exception of PERC and DF2000 which are explicitly not covered by the lipophilic fluid definition as used herein. More preferred are the linear and cyclic polysiloxanes and hydrocarbons of the glycol ether, acetate ester, lactate ester families. Preferred lipophilic fluids include cyclic siloxanes having a boiling point at 760 mm Hg. of below about 250°C. Specifically preferred cyclic siloxanes for use in this invention are octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane. Preferably, the cyclic siloxane comprises decamethylcyclopentasiloxane (D5, pentamer) and is substantially free of octamethylcyclotetrasiloxane (tetramer) and dodecamethylcyclohexasiloxane (hexamer).
However, it should be understood that useful cyclic siloxane mixtures might contain, in addition to the preferred cyclic siloxanes, minor amounts of other cyclic siloxanes including octamethylcyclotetrasiloxane and hexamethylcyclotrisiloxane or higher cyclics such as tetradecamethylcycloheptasiloxane. Generally the amount of these other cyclic siloxanes in useful cyclic siloxane mixtures will be less than about 10 percent based on the total weight of the mixture. The industry standard for cyclic siloxane mixtures is that such mixtures comprise less than about 1% by weight of the mixture of octamethylcyclotetrasiloxane.
Accordingly, the lipophilic fluid of the present invention preferably comprises more than about 50%, more preferably more than about 75%, even more preferably at least about 90%, most preferably at least about 95% by weight of the lipophilic fluid of decamethylcyclopentasiloxane. Alternatively, the lipophilic fluid may comprise siloxanes which are a mixture of cyclic siloxanes having more than about 50%, preferably more than about 75%, more preferably at least about 90%, most preferably at least about 95% up to about 100% by weight of the mixture of decamethylcyclopentasiloxane and less than about 10%, preferably less than about 5%, more preferably less than about 2%, even more preferably less than about 1%, most preferably less than about 0.5% to about 0% by weight of the mixture of octamethylcyclotetrasiloxane and/or dodecamethylcyclohexasiloxane. The level of lipophilic fluid present in the cleaning compositions according to the present invention may be from about 70% to about 99.99% and/or from about 90% to about 99.9% and/or from about 95% to about 99.8% by weight of the cleaning composition. The level of lipophilic fluid, when present in a consumable detergent composition useful for the present invention, may be from about 0% to about 90% and/or from about 0.1% to about 75% and/or from about 1% to about 50% by weight of the consumable detergent composition. Laundry Additives:
Detergent compositions useful herein comprise laundry additives. "Laundry additives" as used herein, means additives useful in a lipophilic fluid-based cleaning system, and preferably are selected from those materials that can be safely disposed down the drain within all constraints on environmental fate and toxicity (e.g. biodegradability, aquatic toxicity, pH, etc.). Although solubility in water or lipophilic fluid are not necessarily required, preferred materials are simultaneously soluble in both water and lipophilic fluid. The laundry additives can vary widely and can be used at widely ranging levels.
Some suitable laundry additives include, but are not limited to, builders, surfactants, enzymes, bleach activators, bleach catalysts, bleach boosters, bleaches, alkalinity sources, antibacterial agents, colorants, perfumes, pro-perfumes, finishing aids, lime soap dispersants, odor control agents, odor neutralizers, polymeric dye transfer inhibiting agents, crystal growth inhibitors, photobleaches, heavy metal ion sequestrants, anti-tarnishing agents, anti-microbial agents, anti-oxidants, anti-redeposition agents, soil release polymers, electrolytes, pH modifiers, thickeners, abrasives, divalent or trivalent ions, metal ion salts, enzyme stabilizers, corrosion inhibitors, diamines or polyamines and/or their alkoxylates, suds stabilizing polymers, solvents, process aids, fabric softening agents, optical brighteners, hydrotropes, suds or foam suppressors, suds or foam boosters and mixtures thereof.
A preferred surfactant laundry additive is a material that is capable of suspending water in a lipophilic fluid and enhancing soil removal benefits of a lipophilic fluid. As a condition of their performance, said materials are soluble in the lipophilic fluid. One preferred class of materials is siloxane-based surfactants. Such materials, derived from poly(dimethylsiloxane), are well known in the art. For the present invention, not all such siloxane materials are suitable, either because they are insoluble in the lipophilic fluid and/or because they do not provide improved cleaning of soils compared to the level of cleaning provided by the lipophilic fluid itself. Surfactant Component
The surfactant component of the present invention can be a material that is capable of suspending water in a lipophilic fluid and/or enhancing soil removal benefits of a lipophilic fluid. The materials may be soluble in the lipophilic fluid. One class of materials can include siloxane-based surfactants (siloxane-based materials). The siloxane-based surfactants in this application may be siloxane polymers for other applications. The siloxane-based surfactants typically have a weight average molecular weight from 500 to 20,000. Such materials, derived from poly(dimethylsiloxane), are well known in the art. In the present invention, not all such siloxane-based surfactants are suitable, because they do not provide improved cleaning of soils compared to the level of cleaning provided by the lipophilic fluid itself.
Suitable siloxane-based surfactants comprise a polyether siloxane having the formula:
MaDbD'cD"dM'2.a wherein a is 0-2; b is 0-1000; c is 0-50; d is 0-50, provided that a+c+d is at least 1 ;
M is Rl3_eXeSiOι/2 wherein R^is independently H, or a monovalent hydrocarbon group, X is hydroxyl group, and e is 0 or 1 ;
M' is R^SiOi ^ wherein R^ is independently H, a monovalent hydrocarbon group, or (CH2)f-(C6H4)gO-(C2H4θ)h-(C3H6θ)i-(CkH2 O)j-R3, provided that at least one R2 is (CH2)f-(C6H4)g O-(C2H4O)h-(C3H6O)i-(CkH2kO)j-R3, wherein R3 is independently
H, a monovalent hydrocarbon group or an alkoxy group, f is 1-10, g is 0 or 1, h is 1-50, i is 0-50, j is 0-50, k is 4-8;
D is R42Siθ2/2 wherein R^ is independently H or a monovalent hydrocarbon group; D' is R^2Siθ2/2 wherein R^ is independently R2 provided that at least one R^ is
(CH2)f-(C6H4)g O-(C2H4O) -(C3H6O)i-(CkH2kO)j-R3, wherein R3 is independently
H, a monovalent hydrocarbon group or an alkoxy group, f is 1-10, g is 0 or 1, h is 1-50, i is 0-50, j is 0-50, k is 4-8; and
D" is R^2Siθ2/2 wherein R^ is independently H, a monovalent hydrocarbon group or (CH2)1(C6H4)m(A)n-[(L)0— (A')p-]q-(L')rZ(G)s, wherein 1 is 1-10; m is 0 or 1 ; n is 0-5; o is 0-3; p is 0 or 1; q is 0-10; r is 0-3; s is 0-3;C6H4 is unsubstituted or substituted with a CMO alkyl or alkenyl; A and A' are each independently a linking moiety representing an ester, a keto, an ether, a thio, an amido, an amino, a C1.4 fluoroalkyl, a C1.4 fluoroalkenyl, a branched or straight chained polyalkylene oxide, a phosphate, a sulfonyl, a sulfate, an ammonium, and mixtures thereof; L and L' are each independently a C\_ Q straight chained or branched alkyl or alkenyl or an aryl which is unsubstituted or substituted; Z is a hydrogen, carboxylic acid, a hydroxy, a phosphato, a phosphate ester, a sulfonyl, a sulfonate, a sulfate, a branched or straight-chained polyalkylene oxide, a nitryl, a glyceryl, an aryl unsubstituted or substituted with a Ci _ 3o lk l or alkenyl, a carbohydrate unsubstituted or substituted with a C\_\ galkyl or alkenyl or an ammonium; G is an anion or cation such as H+, Na+, Li+, K+, NH4 +, Ca+2,
Mg+2, CI", Br", I", mesylate or tosylate.
Examples of the types of siloxane-based surfactants described herein above may be found in EP-1,043,443A1, EP-1,041,189 and WO-01/34,706 (all to GE Silicones) and US-5,676,705, US-5,683,977, US-5,683,473, and EP-1, 092,803 Al (all to Lever
Brothers).
Nonlimiting commercially available examples of suitable siloxane-based surfactants are TSF 4446 (ex. General Electric Silicones), XS69-B5476 (ex. General
Electric Silicones); Jenamine HSX (ex. DelCon) and Y12147 (ex. OSi Specialties). A second preferred class of materials suitable for the surfactant component is organic in nature. Preferred materials are organosulfosuccinate surfactants, with carbon chains of from about 6 to about 20 carbon atoms. Most preferred are organosulfosuccinates containing dialkly chains, each with carbon chains of from about 6 to about 20 carbon atoms. Also preferred are chains containing aryl or alkyl aryl, substituted or unsubstituted, branched or linear, saturated or unsaturated groups.
Nonlimiting commercially available examples of suitable organosulfosuccinate surfactants are available under the trade names of Aerosol OT and Aerosol TR-70 (ex.
Cytec).
The surfactant component, when present in the fabric article treating compositions of the present invention, preferably comprises from about 0.01% to about 10%, more preferably from about 0.02% to about 5%, even more preferably from about 0.05% to about 2% by weight of the fabric article treating composition.
The surfactant component, when present in the consumable detergent compositions of the present invention, preferably comprises from about 1% to about 99%, more preferably 2% to about 75%, even more preferably from about 5% to about 60% by weight of the consumable detergent composition.
A second preferred class of materials suitable for the surfactant component is organic in nature. Again, solubility in the lipophilic fluid, as identified above, is essential. Preferred materials are organosulfosuccinate surfactants, with carbon chains of from about 6 to about 20 carbon atoms.
Nonlimiting commercially available examples of suitable organosulfosuccinate surfactants are available under the trade names of Aerosol OT and Aerosol TR-70 (ex. Cytec).
Another preferred class of surfactants is nonionic surfactants, especially those having low HLB values. Preferred nonionic surfactants have HLB values of less than about 10, more preferably less than about 7.5, and most preferably less than about 5. Preferred nonionic surfactants also have from about 6-20 carbons in the surfactant chain and from about 1-15 ethylene oxide (EO) and/or propylene oxide (PO) units in the hydrophilic portion of the surfactant (i.e., C6-20 EO/PO 1-15), and preferably nonionic surfactants selected from those within C7-11 EO/PO 1-5 (e.g., C7-11 EO 2.5).
The surfactant laundry additives, when present, typically comprises from about 0.001% to about 10%, more preferably from about 0.01% to about 5%, even more preferably from about 0.02% to about 2% by weight of the cleaning composition combined with the lipophilic fluid for the present invention process. These surfactant laundry additives, when present in the consumable detergent compositions before addition to the lipophilic fluid, preferably comprises from about 1% to about 90%, more preferably 2% to about 75%, even more preferably from about 5% to about 60% by weight of the consumable detergent composition.
Non-silicone additives, if present, which preferably comprises a strongly polar and/or hydrogen-bonding head group, further enhances soil removal by the process of the present invention. Examples of the strongly polar and/or hydrogen-bonding head group are alcohols, carboxylic acids, sulfates, sulphonates, phosphates, phosphonates, and nitrogen containing materials. Preferred non-silicone additives are nitrogen containing materials selected from the group consisting of primary, secondary and tertiary amines, diamines, triamines, ethoxylated amines, amine oxides, amides, betaines, quaternary ammonium salts, and mixtures thereof. Alkylamines are particularly preferred. Additionally, branching on the alkyl chain to help lower the melting point is highly preferred. Even more preferred are primary alkylamines comprising from about 6 to about 22 carbon atoms.
Particularly preferred primary alkylamines are oleylamine (commercially available from Akzo under the trade name Armeen OLD), dodecylamine (commercially available from Akzo under the trade name Armeen 12D), branched Cι6-C22 alkylamine (commercially available from Rohm & Haas under the trade name Primene JM-T) and mixtures thereof.
The non-silicone additive, when present in the cleaning compositions used for the present invention process, preferably comprises from about 0.001% to about 10%, more preferably from about 0.01% to about 5%, even more preferably from about 0.02% to about 2% by weight of the cleaning composition. Non-silicone additives, when present in the consumable detergent compositions for the present invention process, preferably comprises from about 1% to about 90%, more preferably from about 2% to about 75%, even more preferably from about 5% to about 60% by weight of the consumable detergent composition.
As noted before, optionally, consumable detergent compositions useful in the present invention process may contain water. When present in the consumable detergent compositions, water preferably comprises from about 1% to about 90%, more preferably from about 2% to about 75%, even more preferably from about 5% to about 40% by weight of the consumable detergent composition.
Optionally, the compositions useful for the present invention process may comprise processing aids. Processing aids facilitate the formation of the cleaning compositions by maintaining the fluidity and/or homogeneity of the consumable detergent composition, and/or aiding in the dilution process. Processing aids suitable for the present invention are solvents, preferably solvents other than those described above, hydrotropes, and/or surfactants, preferably surfactants other than those described above with respect to the surfactant component. Particularly preferred processing aids are protic solvents such as aliphatic alcohols, diols, triols, etc. and nonionic surfactants such as ethoxylated fatty alcohols. Processing aids, when present in the cleaning compositions, preferably comprise from about 0.02% to about 10%, more preferably from about 0.05% to about 10%, even more preferably from about 0.1% to about 10% by weight of the cleaning composition. Processing aids, when present in the consumable detergent compositions, preferably comprise from about 1% to about 75%, more preferably from about 5% to about 50% by weight of the consumable detergent composition.
Suitable odor control agents, which may optionally be used as finishing agents, include agents include, cyclodextrins, odor neutralizers, odor blockers and mixtures thereof. Suitable odor neutralizers include aldehydes, flavanoids, metallic salts, water- soluble polymers, zeolites, activated carbon and mixtures thereof. Perfumes and perfumery ingredients useful in the compositions for the present invention process comprise a wide variety of natural and synthetic chemical ingredients, including, but not limited to, aldehydes, ketones, esters, and the like. Also included are various natural extracts and essences which can comprise complex mixtures of ingredients, such as orange oil, lemon oil, rose extract, lavender, musk, patchouli, balsamic essence, sandalwood oil, pine oil, cedar, and the like. Finished perfumes may comprise extremely complex mixtures of such ingredients. Pro-perfumes are also useful in the present invention. Such materials are those precursors or mixtures thereof capable of chemically reacting, e.g., by hydrolysis, to release a perfume, and are described in patents and/or published patent applications to Procter and Gamble, Firmenich, Givaudan and others.
Bleaches, especially oxygen bleaches, are another type of laundry additive suitable for use in the compositions for the present invention. This is especially the case for the activated and catalyzed forms with such bleach activators as nonanoyloxybenzenesulfonate and/or any of its linear or branched higher or lower homologs, and or tetraacetylethylenediamine and/or any of its derivatives or derivatives of phthaloylimidoperoxycaproic acid (PAP; available from Ausimont SpA under trademane Euroco) or other imido- or amido-substituted bleach activators including the lactam types, or more generally any mixture of hydrophilic and/or hydrophobic bleach activators (especially acyl derivatives including those of the C6-Cι6 substituted oxybenzenesulfonates).
Also suitable are organic or inorganic peracids both including PAP and other than PAP. Suitable organic or inorganic peracids for use herein include, but are not limited to: percarboxylic acids and salts; percarbonic acids and salts; perimidic acids and salts; peroxymonosulfuric acids and salts; persulphates such as monopersulfate; peroxyacids such as diperoxydodecandioic acid (DPDA); magnesium peroxyphthalic acid; perlauric acid; perbenzoic and alkylperbenzoic acids; and mixtures thereof.
Detersive enzymes such as proteases, amylases, cellulases, Upases and the like as well as bleach catalysts including the macrocyclic types having manganese or similar transition metals all useful in laundry and cleaning products can be used herein at very low, or less commonly, higher levels. Laundry Additives that are catalytic, for example enzymes, can be used in "forward" or "reverse" modes. For example, a lipolase or other hydrolase may be used, optionally in the presence of alcohols as laundry additives, to convert fatty acids to esters, thereby increasing their solubility in the lipohilic fluid. Nonlimiting examples of finishing polymers that are commercially available are: polyvinylpyrrolidone/dimethylaminoethyl methacrylate copolymer, such as Copolymer 958 ® , molecular weight of about 100,000 and Copolymer 937, molecular weight of about
1 ,000,000, available from GAF Chemicals Corporation; adipic acid/dimethylaminohydroxypropyl diethylenetriamine copolymer, such as Cartaretin F-
4 and F-23, available from Sandoz Chemicals Corporation; methacryloyl ethyl
® betaine/methacrylates copolymer, such as Diaformer Z-SM , available from M liittsubishi
Chemicals Corporation; polyvinyl alcohol copolymer resin, such as Vinex 2019 ,®
® available from Air Products and Chemicals or Moweol , available from Clariant; adipic
® acid/epoxypropyl diethylenetriamine copolymer, such as Delsette 101 , available from
®
Hercules Incorporated; polyamine resins, such as Cypro 515 , available from Cytec
® Industries; polyquaternary amine resins, such as Kymene 557H , available from
® Hercules Incorporated; and polyvinylpyrrolidone/acrylic acid, such as Sokalan EG 310 , available from BASF. The laundry additive may also be an antistatic agent. Any suitable well-known antistatic agents used in conventional laundering and dry cleaning are suitable for use in the compositions and methods of the present invention. Especially suitable as antistatic agents are the subset of fabric softeners which are known to provide antistatic benefits. For example those fabric softeners that have a fatty acyl group which has an iodine value of above 20, such as N,N-di(tallowoyl-oxy-ethyl)-N,N-dimethyl ammonium methylsulfate. However, it is to be understood that the term antistatic agent is not to be limited to just this subset of fabric softeners and includes all antistatic agents.
Preferred insect and moth repellent laundry additives useful in the compositions of the present invention are perfume ingredients, such as citronellol, citronellal, citral, linalool, cedar extract, geranium oil, sandalwood oil, 2-(diethylphenoxy)ethanol, 1- dodecene, etc. Other examples of insect and/or moth repellents useful in the compositions of the present invention are disclosed in U.S. Pat. Nos. 4,449,987; 4,693,890; 4,696,676; 4,933,371; 5,030,660; 5,196,200; and in "Semio Activity of Flavor and Fragrance Molecules on Various Insect Species", B.D. Mookherjee et al., published in Bioactive Volatile Compounds from Plants, ACS Symposium Series 525, R. Teranishi, R.G. Buttery, and H. Sugisawa, 1993, pp. 35-48, all of said patents and publications being incorporated herein by reference.

Claims

What is claimed is:
1. A method for cleaning fabric articles in need of cleaning comprising contacting said fabric articles in need of cleaning with a cleaning composition comprising a lipophilic fluid and water; wherein the amount of water in the cleaning composition is selected based upon the type of fabric articles being cleaned and/or the amount of soil present on the fabric articles being cleaned.
2. The method according to Claim 1 wherein the fabric articles are contacted by the cleaning composition in a fabric article cleaning chamber of an automatic laundry machine capable of varying the amount of water present in the fabric article cleaning chamber; preferably wherein the automatic laundry machine is preprogrammed to use a selected amount of water, based upon the type of fabric articles being cleaned, in the cleaning composition to contact the fabric articles during operation of the cleaning method; more preferably wherein the automatic laundry machine automatically selects the amount of water to be used; even more preferably wherein the selection of the amount of water by the automatic laundry machine is in response to a sensor in the automatic laundry machine which detects the types of fabric articles within its fabric article cleaning chamber and even more preferably wherein the sensor reads a label attached to the fabric articles and selects an amount of water safe for all the fabric articles being cleaned; and or wherein the automatic selection of the amount of water is in response to information about the fabric articles to be cleaned provided to the automatic laundry machine by an operator.
3. The method according to Claim 2 wherein the operator selects the amount of water to be used from a preprogrammed option within the automatic laundry machine.
4. The method according to Claim 1 wherein the fabric articles to be cleaned include a fabric article selected from the group consisting of silks, wools, rayon and mixtures thereof, and these fabric articles are cleaned in the automatic laundry machine with a cleaning composition comprising less than about 1% water by weight of the cleaning composition.
5. The method according to Claim 1 wherein the fabric articles to be cleaned include fabric articles selected from the group consisting of cotton, polyester, nylon, and polycottons and mixtures thereof, and these fabric articles are cleaned in the automatic laundry machine with a cleaning composition comprising less than about 50% water by weight of the cleaning composition.
6. An automatic laundry machine for cleaning fabric articles, said machine being designed to operate according to the method of any of the preceding claims.
7. The automatic laundry machine according to Claim 6 wherein the automatic laundry machine comprises a fabric article cleaning chamber within which the fabric articles are contacted by the cleaning composition; preferably wherein the automatic laundry machine is preprogrammed to use for the cleaning process a select level of water in combination with a lipophilic fluid based on the type of fabric articles to be cleaned; preferably wherein the machine is equipped with a sensor which detects the types of fabric article being cleaned; preferably wherein the machine is preprogrammed with options for the machine operator to select the level of water to be used; preferably wherein the machine has a connection for attachment to a source of water; preferably wherein the machine is equipped with a water sensor which detects the level of water in the cleaning composition in contact with the fabric articles being cleaned.
8. A method according to any of Claims 1-5 wherein said lipophilic fluid comprises less than about 1% water by weight of the lipophilic fluid, and water; wherein the fabric articles are subsequently contacted by said non-lipophilic fluid water.
9. A method according to Claim 8 wherein the total water level present in the cleaning composition is less than about 50% by weight of the cleaning composition and/or where cleaning additives are added to the lipophilic fluid and/or wherein cleaning additives are added to the non-lipophilic fluid water.
10. A method according to any of Claims 1-5 and 8-9 wherein the fabric articles are contacted by the water subsequent to being contacted by the lipophilic fluid.
PCT/US2002/028675 2001-09-10 2002-09-10 Selective laundry process using water WO2003023128A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020047003549A KR100623899B1 (en) 2001-09-10 2002-09-10 Selective laundry process using water
EP02798189A EP1425460B1 (en) 2001-09-10 2002-09-10 Selective laundry process using water
AT02798189T ATE515592T1 (en) 2001-09-10 2002-09-10 SELECTIVE WASHING PROCESS USING WATER
CA002456923A CA2456923A1 (en) 2001-09-10 2002-09-10 Selective laundry process using water
BR0212426-2A BR0212426A (en) 2001-09-10 2002-09-10 Method for cleaning fabric articles and automatic washing machine for cleaning such articles
JP2003527182A JP4076949B2 (en) 2001-09-10 2002-09-10 Selective washing process using water
AU2002333532A AU2002333532B2 (en) 2001-09-10 2002-09-10 Selective laundry process using water
MXPA04002253A MXPA04002253A (en) 2001-09-10 2002-09-10 Selective laundry process using water.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31865001P 2001-09-10 2001-09-10
US60/318,650 2001-09-10

Publications (1)

Publication Number Publication Date
WO2003023128A1 true WO2003023128A1 (en) 2003-03-20

Family

ID=23239038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/028675 WO2003023128A1 (en) 2001-09-10 2002-09-10 Selective laundry process using water

Country Status (13)

Country Link
US (2) US20030046963A1 (en)
EP (1) EP1425460B1 (en)
JP (1) JP4076949B2 (en)
KR (1) KR100623899B1 (en)
CN (2) CN1821480A (en)
AT (1) ATE515592T1 (en)
AU (1) AU2002333532B2 (en)
BR (1) BR0212426A (en)
CA (1) CA2456923A1 (en)
CZ (1) CZ2004323A3 (en)
ES (1) ES2368999T3 (en)
MX (1) MXPA04002253A (en)
WO (1) WO2003023128A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7534304B2 (en) * 1997-04-29 2009-05-19 Whirlpool Corporation Non-aqueous washing machine and methods
US6045588A (en) 1997-04-29 2000-04-04 Whirlpool Corporation Non-aqueous washing apparatus and method
JP2005511859A (en) * 2001-12-06 2005-04-28 ザ プロクター アンド ギャンブル カンパニー Bleaching together with cleaning methods using lipophilic fluids
US20040148708A1 (en) * 2003-01-30 2004-08-05 Steven Stoessel Methods and compositions for cleaning articles
US20040267473A1 (en) * 2003-06-27 2004-12-30 The Procter & Gamble Company Method for transferring and utilizing data among laundry devices, users, and the like
US20050096243A1 (en) * 2003-10-31 2005-05-05 Luckman Joel A. Fabric laundering using a select rinse fluid and wash fluids
US7695524B2 (en) * 2003-10-31 2010-04-13 Whirlpool Corporation Non-aqueous washing machine and methods
US7739891B2 (en) * 2003-10-31 2010-06-22 Whirlpool Corporation Fabric laundering apparatus adapted for using a select rinse fluid
US7513004B2 (en) * 2003-10-31 2009-04-07 Whirlpool Corporation Method for fluid recovery in a semi-aqueous wash process
US20050091755A1 (en) * 2003-10-31 2005-05-05 Conrad Daniel C. Non-aqueous washing machine & methods
US20050150059A1 (en) * 2003-10-31 2005-07-14 Luckman Joel A. Non-aqueous washing apparatus and method
US7300468B2 (en) * 2003-10-31 2007-11-27 Whirlpool Patents Company Multifunctioning method utilizing a two phase non-aqueous extraction process
US20050096242A1 (en) * 2003-10-31 2005-05-05 Luckman Joel A. Method for laundering fabric with a non-aqueous working fluid using a select rinse fluid
US20050222002A1 (en) * 2003-10-31 2005-10-06 Luckman Joel A Method for a semi-aqueous wash process
US20050224099A1 (en) * 2004-04-13 2005-10-13 Luckman Joel A Method and apparatus for cleaning objects in an automatic cleaning appliance using an oxidizing agent
US7837741B2 (en) 2004-04-29 2010-11-23 Whirlpool Corporation Dry cleaning method
DE102005014937A1 (en) * 2005-04-01 2006-10-05 Voith Fabrics Patent Gmbh cleaning process
US20060260064A1 (en) * 2005-05-23 2006-11-23 Luckman Joel A Methods and apparatus for laundering with aqueous and non-aqueous working fluid
US7966684B2 (en) * 2005-05-23 2011-06-28 Whirlpool Corporation Methods and apparatus to accelerate the drying of aqueous working fluids
US20090158492A1 (en) * 2007-12-21 2009-06-25 Min Yao Quick-drying textile
CN103510343B (en) * 2012-06-18 2017-11-28 海尔集团技术研发中心 A kind of dry-cleaning method and dry-cleaning apparatus
CN104372599B (en) * 2014-11-29 2016-08-24 浙江腾马纺织有限公司 A kind of processing method making denim present outmoded visual effect
US10565242B2 (en) * 2017-01-10 2020-02-18 International Business Machines Corporation Method of label transform for managing heterogeneous information

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1002277B (en) * 1956-01-30 1957-02-14 Stockhausen & Cie Chem Fab Process for determining and automatically metering water in dry cleaning liquors
GB830548A (en) * 1957-02-01 1960-03-16 Hoechst Ag Improvements in and relating to the measurement of the partial pressure of the water vapour of liquids
US2949336A (en) * 1956-05-28 1960-08-16 Stamford Chemical Company Methods and apparatus for dry cleaning
GB1385584A (en) * 1971-04-29 1975-02-26 Grunow H E A Method for the treatment of textiles
US4889644A (en) * 1987-06-15 1989-12-26 Henkel Kommanditgesellschaft Auf Aktien Machine washing process: detergent paste and automatic dispenser
WO2000063340A1 (en) * 1999-04-16 2000-10-26 The Dow Chemical Company Method and composition for reduced water damage laundry care
WO2001094675A2 (en) * 2000-06-05 2001-12-13 The Procter & Gamble Company Washing apparatus

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1455905A (en) * 1964-05-28 1966-10-21 New methods for the treatment of fibrous materials as well as products obtained
US3401052A (en) * 1966-03-01 1968-09-10 Minnesota Mining & Mfg Method and apparatus for waterproofing textiles
JPS531204A (en) * 1976-06-25 1978-01-09 Kao Corp Nonaqueous detergent compositions
US4685930A (en) * 1984-11-13 1987-08-11 Dow Corning Corporation Method for cleaning textiles with cyclic siloxanes
US4639321A (en) * 1985-01-22 1987-01-27 The Procter And Gamble Company Liquid detergent compositions containing organo-functional polysiloxanes
US4708807A (en) * 1986-04-30 1987-11-24 Dow Corning Corporation Cleaning and waterproofing composition
US5057240A (en) * 1989-10-10 1991-10-15 Dow Corning Corporation Liquid detergent fabric softening laundering composition
MY114292A (en) * 1989-10-26 2002-09-30 Momentive Performance Mat Jp Method for removing residual liquid cleaning agent using a rinsing composition containing a polyorganosiloxane
US5461742A (en) * 1994-02-16 1995-10-31 Levi Strauss & Co. Mist treatment of garments
US5676705A (en) * 1995-03-06 1997-10-14 Lever Brothers Company, Division Of Conopco, Inc. Method of dry cleaning fabrics using densified carbon dioxide
US5683977A (en) * 1995-03-06 1997-11-04 Lever Brothers Company, Division Of Conopco, Inc. Dry cleaning system using densified carbon dioxide and a surfactant adjunct
US5876510A (en) * 1995-03-09 1999-03-02 The Dow Chemical Company Process for cleaning articles
US6036727A (en) * 1995-06-05 2000-03-14 Creative Products Resource, Inc. Anhydrous dry-cleaning compositions containing polysulfonic acid, and dry-cleaning kits for delicate fabrics
GB9604849D0 (en) * 1996-03-07 1996-05-08 Reckitt & Colman Inc Improvements in or relating to organic compositions
US5705562A (en) * 1995-11-20 1998-01-06 Dow Corning Corporation Spontaneously formed clear silicone microemulsions
US6060546A (en) * 1996-09-05 2000-05-09 General Electric Company Non-aqueous silicone emulsions
US6273919B1 (en) * 1997-04-04 2001-08-14 Rynex Holdings Ltd. Biodegradable ether dry cleaning solvent
US5888250A (en) * 1997-04-04 1999-03-30 Rynex Holdings Ltd. Biodegradable dry cleaning solvent
US6042617A (en) * 1997-08-22 2000-03-28 Greenearth Cleaning, Llc Dry cleaning method and modified solvent
US5865852A (en) * 1997-08-22 1999-02-02 Berndt; Dieter R. Dry cleaning method and solvent
US6063135A (en) * 1997-08-22 2000-05-16 Greenearth Cleaning Llc Dry cleaning method and solvent/detergent mixture
US6059845A (en) * 1997-08-22 2000-05-09 Greenearth Cleaning, Llc Dry cleaning apparatus and method capable of utilizing a siloxane composition as a solvent
US5942007A (en) * 1997-08-22 1999-08-24 Greenearth Cleaning, Llp Dry cleaning method and solvent
US6042618A (en) * 1997-08-22 2000-03-28 Greenearth Cleaning Llc Dry cleaning method and solvent
US6056789A (en) * 1997-08-22 2000-05-02 Greenearth Cleaning Llc. Closed loop dry cleaning method and solvent
TW374095B (en) * 1998-10-07 1999-11-11 Dow Corning Taiwan Inc A process for cleaning textile
US6013683A (en) * 1998-12-17 2000-01-11 Dow Corning Corporation Single phase silicone and water compositions
US6310029B1 (en) * 1999-04-09 2001-10-30 General Electric Company Cleaning processes and compositions
US6908962B1 (en) * 1999-07-26 2005-06-21 The Procter & Gamble Company Stable silicone oil emulsion composition, article of manufacture, and method of fabric wrinkle control
US6309425B1 (en) * 1999-10-12 2001-10-30 Unilever Home & Personal Care, Usa, Division Of Conopco, Inc. Cleaning composition and method for using the same
US6258130B1 (en) * 1999-11-30 2001-07-10 Unilever Home & Personal Care, A Division Of Conopco, Inc. Dry-cleaning solvent and method for using the same
US6368359B1 (en) * 1999-12-17 2002-04-09 General Electric Company Process for stabilization of dry cleaning solutions
US6521580B2 (en) * 2000-02-22 2003-02-18 General Electric Company Siloxane dry cleaning composition and process
US6313079B1 (en) * 2000-03-02 2001-11-06 Unilever Home & Personal Care Usa, Division Of Conopco Heterocyclic dry-cleaning surfactant and method for using the same
US20020004953A1 (en) * 2000-03-03 2002-01-17 Perry Robert J. Siloxane dry cleaning composition and process
US6548465B2 (en) * 2000-03-10 2003-04-15 General Electric Company Siloxane dry cleaning composition and process
US6840963B2 (en) * 2000-06-05 2005-01-11 Procter & Gamble Home laundry method
US6673764B2 (en) * 2000-06-05 2004-01-06 The Procter & Gamble Company Visual properties for a wash process using a lipophilic fluid based composition containing a colorant
US7018423B2 (en) * 2000-06-05 2006-03-28 Procter & Gamble Company Method for the use of aqueous vapor and lipophilic fluid during fabric cleaning
US6939837B2 (en) * 2000-06-05 2005-09-06 Procter & Gamble Company Non-immersive method for treating or cleaning fabrics using a siloxane lipophilic fluid
US6828292B2 (en) * 2000-06-05 2004-12-07 Procter & Gamble Company Domestic fabric article refreshment in integrated cleaning and treatment processes
US6369014B1 (en) * 2001-05-24 2002-04-09 Unilever Home & Personal Care Usa Dry cleaning system comprising carbon dioxide solvent and carbohydrate containing cleaning surfactant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1002277B (en) * 1956-01-30 1957-02-14 Stockhausen & Cie Chem Fab Process for determining and automatically metering water in dry cleaning liquors
US2949336A (en) * 1956-05-28 1960-08-16 Stamford Chemical Company Methods and apparatus for dry cleaning
GB830548A (en) * 1957-02-01 1960-03-16 Hoechst Ag Improvements in and relating to the measurement of the partial pressure of the water vapour of liquids
GB1385584A (en) * 1971-04-29 1975-02-26 Grunow H E A Method for the treatment of textiles
US4889644A (en) * 1987-06-15 1989-12-26 Henkel Kommanditgesellschaft Auf Aktien Machine washing process: detergent paste and automatic dispenser
WO2000063340A1 (en) * 1999-04-16 2000-10-26 The Dow Chemical Company Method and composition for reduced water damage laundry care
WO2001094675A2 (en) * 2000-06-05 2001-12-13 The Procter & Gamble Company Washing apparatus

Also Published As

Publication number Publication date
JP2005502795A (en) 2005-01-27
EP1425460B1 (en) 2011-07-06
US20030046963A1 (en) 2003-03-13
CN1561420A (en) 2005-01-05
CN1821480A (en) 2006-08-23
US20050124520A1 (en) 2005-06-09
JP4076949B2 (en) 2008-04-16
EP1425460A1 (en) 2004-06-09
KR20040034727A (en) 2004-04-28
ATE515592T1 (en) 2011-07-15
MXPA04002253A (en) 2004-06-29
CZ2004323A3 (en) 2004-06-16
AU2002333532B2 (en) 2006-03-09
CN1293252C (en) 2007-01-03
ES2368999T3 (en) 2011-11-24
BR0212426A (en) 2004-08-03
KR100623899B1 (en) 2006-09-19
CA2456923A1 (en) 2003-03-20

Similar Documents

Publication Publication Date Title
US20050124520A1 (en) Selective laundry process using water
AU2002333532A1 (en) Selective laundry process using water
US6706076B2 (en) Process for separating lipophilic fluid containing emulsions with electric coalescence
AU2002318367B2 (en) Fabric care compositions for lipophilic fluid systems
CA2407752C (en) Improved visual properties for a wash process
US6673764B2 (en) Visual properties for a wash process using a lipophilic fluid based composition containing a colorant
CA2448398C (en) Compositions and methods for removal of incidental soils from fabric articles
US6828295B2 (en) Non-silicone polymers for lipophilic fluid systems
CA2455959C (en) Silicone polymers for lipophilic fluid systems
US7323014B2 (en) Down the drain cleaning system
US20050223500A1 (en) Solvent treatment of fabric articles
WO2001094501A2 (en) A process for separating lipophilic fluid containing emulsions with electric coalescence

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NO NZ OM PH PT RO RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2456923

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003527182

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PV2004-323

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 2002333532

Country of ref document: AU

Ref document number: PA/a/2004/002253

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 20028176839

Country of ref document: CN

Ref document number: 1020047003549

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002798189

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002798189

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2004-323

Country of ref document: CZ