WO2003028073A1 - Aberration measuring device, aberration measuring method, regulation method for optical system, and exposure system provided with optical system regulated by the regulation method - Google Patents

Aberration measuring device, aberration measuring method, regulation method for optical system, and exposure system provided with optical system regulated by the regulation method Download PDF

Info

Publication number
WO2003028073A1
WO2003028073A1 PCT/JP2002/009810 JP0209810W WO03028073A1 WO 2003028073 A1 WO2003028073 A1 WO 2003028073A1 JP 0209810 W JP0209810 W JP 0209810W WO 03028073 A1 WO03028073 A1 WO 03028073A1
Authority
WO
WIPO (PCT)
Prior art keywords
aberration
optical system
light beam
measuring
linearly polarized
Prior art date
Application number
PCT/JP2002/009810
Other languages
French (fr)
Japanese (ja)
Inventor
Naomasa Shiraishi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2003531505A priority Critical patent/JPWO2003028073A1/en
Publication of WO2003028073A1 publication Critical patent/WO2003028073A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement

Definitions

  • the present invention relates to an aberration measurement device, an aberration measurement method, an adjustment method of an optical system, and an exposure apparatus including an optical system adjusted by the adjustment method.
  • the present invention particularly relates to aberration measurement of a projection optical system mounted on an exposure apparatus used when a micro device such as a semiconductor device or a liquid crystal display device is manufactured by a photolithography process.
  • micropatterns for electronic devices such as semiconductor integrated circuits and liquid crystal displays
  • the pattern of the photomask also referred to as a reticle
  • a method of performing reduced exposure transfer onto a photosensitive substrate (substrate to be exposed) such as Jehachi using an exposure apparatus is used.
  • the exposure wavelength keeps shifting to shorter wavelengths in order to cope with miniaturization of semiconductor integrated circuits.
  • the exposure wavelength of the KrF excimer laser is 248 nm, but the shorter wavelength of the ArF excimer laser, 193 nm, is entering the stage of practical use.
  • the A r 2 laser having a wavelength of 1 5 7 nm of F 2 laser one and the wavelength 1 2 6 nm proposed a projection exposure equipment that uses the light source for supplying light in a wavelength band so-called vacuum ultraviolet region Is being done.
  • high resolution can be achieved by increasing the numerical aperture (NA) of the projection optical system, not only development of a shorter exposure wavelength but also development of a projection optical system with a larger numerical aperture Has also been made.
  • a smaller exposure field of view (exposure field) of the projection optical system is advantageous for increasing the NA of the optical system. Therefore, the field of view of the projection optical system itself is reduced, and instead, the reticle and the wafer are relatively scanned during exposure to ensure a substantially large field of view.
  • Type exposure apparatus has also been put to practical use.
  • the projection optical systems mounted on these exposure apparatuses are required to have extremely small residual aberrations in order to achieve high resolution. Therefore, in the manufacturing process of the projection optical system, wavefront aberration measurement using light interference is performed, the amount of residual aberration is measured with an accuracy of about 1/1000 of the exposure wavelength, and the projection optical system is evaluated based on the measured value. The system is being adjusted.
  • the wavefront aberration that represents the change in the optical path length from one point on the reticle to each point on the wafer through each optical path in the projection optical system and to each point on the wafer Is generally measured.
  • Several methods that apply the principle of interferometers have been put to practical use and have been proposed for measuring wavefront aberration.
  • a Fizeau interferometer using a laser of the same wavelength as the exposure wavelength as the light source has high measurement accuracy and is suitable for measuring the wavefront aberration of the projection optical system.
  • the laser as the light source must have a coherent distance (temporal coherence length) in the traveling direction that is larger than the reciprocating distance (2 m) of the optical path of the projection optical system having a length of 1 m or more. It is said.
  • wavefront aberration measurement methods include, for example, PDI (Point Diffraction Interferoieter), Twyman-Green interferometer, sharing interferometer, etc., and various measurement methods such as Shack-Hartmann method. Has been put into practical use and proposed.
  • PDI Point Diffraction Interferoieter
  • Twyman-Green interferometer Twyman-Green interferometer
  • sharing interferometer etc.
  • various measurement methods such as Shack-Hartmann method. Has been put into practical use and proposed.
  • the exposure wavelength is shortened for higher resolution, optical materials having good transparency to the exposure wavelength are limited.
  • synthetic quartz glass and fluorite (calcium fluoride crystal) can be used as transmissive optical materials.
  • quartz has a compaction problem, so it is necessary to increase the composition ratio of optical members using fluorite (such as fluorite lenses). .
  • fluorite such as fluorite lenses.
  • the transparency of synthetic quartz glass is poor, and the usable optical materials are practically limited to fluorite.
  • Fluorite has been considered to be optically isotropic and has no birefringence because its crystal structure is classified as cubic.
  • the NIST in the United States reported the essential birefringence of fluorite, and the wavelength of It was found that fluorite has relatively large birefringence to light. It was also found that cubic crystal materials other than fluorite, such as barium fluoride and strontium fluoride, also have birefringence to such short wavelength light.
  • the amount of this intrinsic birefringence is uniquely determined based on the wavelength of light and the angular relationship between the direction of the crystal lattice and the direction of light propagation in the crystal. It is decided. Therefore, at the stage of optical design, it is possible to predict the amount of birefringence and to compensate for the effect by design. More specifically, the optical axis of each fluorite lens is made to coincide with the predetermined crystal axis of the fluorite crystal, and each fluorite lens is oriented so that another predetermined crystal axis is oriented in a predetermined direction. By arranging them around a predetermined angle around them, it is possible to offset the adverse effects of fluorite on birefringence.
  • the present invention has been made in view of the above-mentioned problems, and is capable of measuring, with high accuracy, residual aberration of an optical system caused by, for example, birefringence of an optical member formed of a crystal such as fluorite. It is an object to provide a measuring device and an aberration measuring method. In addition, based on the aberration result measured with high accuracy using the aberration measuring device and the aberration measuring method of the present invention, the adjustment of the optical system capable of favorably removing the residual aberration of the optical system caused by the birefringence. The aim is to provide a method. It is a further object of the present invention to provide an exposure apparatus having an optical system having good optical performance, which has been optically adjusted using the adjustment method of the present invention.
  • Another object of the present invention is to provide a microdevice manufacturing method capable of manufacturing a high-performance microdevice according to a high-resolution exposure technology using an exposure apparatus equipped with an optical system having good optical performance. Aim.
  • an aberration measuring apparatus for measuring an aberration of an optical system including an optical member formed of a crystal belonging to a cubic system.
  • a light beam irradiation unit for irradiating the light beam;
  • An aberration measurement unit for measuring aberration of the optical system based on a light beam transmitted through the optical system
  • the light beam irradiation unit includes a first linearly polarized light polarized along a first direction and a second linearly polarized light polarized along a second direction different from the first direction,
  • an aberration measuring device characterized by having a polarization switching means for switching the polarization state of the predetermined light flux.
  • the aberration measurement unit includes: a first aberration measurement result measured based on a light beam transmitted through the optical system irradiated with the first linearly polarized light beam; An aberration of the optical system caused by birefringence of the optical member is measured based on a second aberration measurement result measured based on a light beam transmitted through the optical system irradiated with the linearly polarized light beam.
  • the polarization switching means includes: a linearly polarized light separating means for separating a predetermined linearly polarized light beam polarized along a predetermined direction from an incident light beam; And a polarization plane rotating means for rotating the polarization plane of the predetermined linearly polarized light beam separated via the separation means around a central axis of the predetermined linearly polarized light beam.
  • the linearly polarized light separating means has a location prism.
  • the polarization plane rotating means has a 1Z2 wavelength plate that can rotate about the central axis.
  • the polarization plane rotating means may include a first quarter-wave plate rotatable about the central axis, and a second quarter-wave plate rotatable about the central axis.
  • an aberration measuring method for measuring an aberration of an optical system including an optical member formed of a crystal belonging to a cubic system,
  • a first aberration measurement step for measuring aberration of the optical system based on a light beam transmitted through the optical system irradiated with the light beam of the first linearly polarized light
  • the first direction and the second direction are substantially orthogonal to each other.
  • the wavelength of the light beam is preferably 193 nm or 157 ⁇ m.
  • the aberration measurement result of the optical system measured by using the aberration measuring device of the first invention or the aberration measurement result of the optical system measured by using the aberration measurement method of the second invention An optical adjustment step of optically adjusting the optical system in order to substantially remove aberration remaining in the optical system due to birefringence of the optical member based on I do.
  • the optical adjustment step includes: a clocking step of rotating the optical member around an optical axis of the optical system; and a moving step of moving the optical member along the optical axis. And a tilting step of moving the optical member along a plane substantially perpendicular to the optical axis; and a tilting step of tilting the optical member with respect to the optical axis.
  • an illumination optical system for illuminating a mask and an optical system adjusted by an adjustment method of a third aspect for forming an image of a pattern formed on the mask on a photosensitive substrate.
  • the present invention provides an exposure apparatus characterized by comprising a system.
  • an exposure step of exposing the pattern of the mask to the photosensitive substrate using the exposure apparatus of the fourth invention, and a development step of developing the photosensitive substrate exposed in the exposure step The present invention provides a method for manufacturing a micro device characterized by including: BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a diagram schematically showing a configuration of an exposure apparatus including a projection optical system to which an aberration measurement apparatus and an aberration measurement method according to an embodiment of the present invention are applied.
  • FIG. 2 is a diagram schematically showing a configuration of an aberration measuring device according to an embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing a configuration of a sharing interferometer as the aberration measurement unit of FIG.
  • FIG. 4 is a diagram schematically showing a configuration of a Schattk-Hartmann sensor as the aberration measurement unit in FIG.
  • FIG. 5 is a diagram schematically showing a configuration of the polarization control optical system of FIG.
  • FIG. 6 is a diagram showing a modification in which a pair of quarter-wave plates are used instead of the half-wave plate of FIG.
  • FIG. 7 is a diagram schematically showing a configuration of a polarization conversion measurement unit for measuring how much polarization conversion is caused by the projection optical system of FIG.
  • FIG. 8 is a flowchart of a method for obtaining a semiconductor device as a micro device.
  • FIG. 9 is a flowchart of a method for obtaining a liquid crystal display element as a micro device.
  • Birefringence means that the refractive index varies depending on the polarization direction of light, that is, the refraction angle and the wavelength of light propagating in a medium (lens) vary depending on the polarization direction of light.
  • each of the aberration measurement of the optical system is performed by using two linearly polarized light beams having different polarization directions, specifically, two linearly polarized light beams having polarization directions orthogonal to each other.
  • the aberration for linearly polarized light is measured independently. In this way, it is possible to respectively measure the wavefront differences experienced by linearly polarized light having polarization planes in directions orthogonal to each other.
  • the amount of aberration of the optical system due to birefringence can be measured (calculated) as the difference between the aberration measurement values of two linearly polarized lights having polarization directions orthogonal to each other.
  • the aberration measurement result, the birefringence characteristics of the optical material such as fluorite, and the design data of the optical member (lens) are obtained.
  • clocking adjustment to rotate the optical member around the optical axis, movement adjustment to move the optical member along the optical axis, or to make the optical member almost orthogonal to the optical axis It is possible to estimate whether the effects of birefringence can be eliminated by performing a shift adjustment that moves along the surface to be adjusted or a tilt adjustment that tilts the optical member with respect to the optical axis.
  • a predetermined optical adjustment to a predetermined optical member based on the estimation result it becomes possible to remove residual aberration of the optical system caused by birefringence.
  • FIG. 1 is a diagram schematically showing a configuration of an exposure apparatus including a projection optical system to which an aberration measurement apparatus and an aberration measurement method according to an embodiment of the present invention are applied.
  • the Z axis is parallel to the reference optical axis AX of the projection optical system PL
  • the Y axis is parallel to the plane of FIG. 1 in a plane perpendicular to the reference optical axis AX
  • the X axis is set perpendicular to the plane of Fig. 1 in a plane perpendicular to the plane.
  • the exposure apparatus shown in FIG. 1 as a light source LS for supplying illumination light in the ultraviolet region, F 2 laser primary light source (wavelength 1 5 7 nm) or A r F excimer laser light source (wavelength 1 9 3 nm) Have.
  • Light emitted from the light source LS passes through the illumination optical system IL.
  • the reticle (mask) R on which the predetermined pattern is formed is uniformly illuminated.
  • the optical path between the light source LS and the illumination optical system IL is sealed with a casing (shown in a tree), and the space from the light source LS to the optical member closest to the reticle side in the illumination optical system IL is exposed to the exposure light. It has been replaced by inert gas such as helium gas or nitrogen, which is a gas with low absorption rate, or is kept almost in vacuum.
  • the reticle R is held in parallel with the XY plane on the reticle stage RS via a reticle holder RH.
  • a pattern to be transferred is formed on reticle R, and a rectangular pattern area having a long side along the X direction and a short side along the Y direction in the entire pattern area is illuminated.
  • the reticle stage RS can be moved two-dimensionally along the reticle plane (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are measured by an interferometer RIF using a reticle moving mirror RM. And the position is controlled.
  • a reticle pattern image on the wafer W as a photosensitive substrate via the projection optical system PL Light from the pattern formed on the reticle R forms a reticle pattern image on the wafer W as a photosensitive substrate via the projection optical system PL.
  • the wafer W is held in parallel with the XY plane on the wafer stage WS via a wafer table (wafer holder) WT. Then, on the wafer W, a rectangular exposure area having a long side along the X direction and a short side along the Y direction so as to optically correspond to the rectangular illumination area on the reticle R.
  • a pattern image is formed on the substrate.
  • the wafer stage WS can be moved two-dimensionally along the wafer surface (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are measured by an interferometer WIF using a wafer moving mirror WM. In addition, the position is controlled.
  • the optical member (the lens 15 1 in the present embodiment) disposed closest to the reticle and the optical member disposed closest to the wafer side (in the present embodiment) among the optical members constituting the projection optical system PL.
  • the inside of the projection optical system PL is configured to maintain an airtight state with the lens 16 4), and the gas inside the projection optical system PL is replaced with an inert gas such as helium gas or nitrogen. It is kept or almost kept in a vacuum state.
  • a narrow optical path between the illumination optical system IL and the projection optical system PL includes a reticle R And a reticle stage RS, etc., are placed.
  • An inert gas such as nitrogen or helium gas is filled inside a casing (not shown) that hermetically surrounds the reticle R and the reticle stage RS. Alternatively, it is kept almost in a vacuum state.
  • the wafer W and the wafer stage WS are arranged, but a casing (not shown) that hermetically surrounds the wafer W and the wafer stage WS. ) Is filled with an inert gas such as nitrogen or helium gas, or is maintained in a nearly vacuum state.
  • an inert gas such as nitrogen or helium gas
  • the illumination area on the reticle R and the exposure area on the wafer W (that is, the effective exposure area ER) defined by the projection optical system PL are rectangular with short sides along the Y direction. . Therefore, while controlling the position of the reticle R and the wafer W using a drive system and an interferometer (RIF, WIF), the reticle stage RS is moved along the short side direction of the rectangular exposure area and the illumination area, that is, along the Y direction. By moving (scanning) the wafer stage WS and, consequently, the reticle R and the wafer W synchronously, the wafer W has a width equal to the long side of the exposure area and the scanning amount of the wafer W (moving). The reticle pattern is scanned and exposed to a region having a length corresponding to the amount of the reticle.
  • FIG. 2 is a diagram schematically showing a configuration of an aberration measuring device according to an embodiment of the present invention.
  • the Z axis is parallel to the reference optical axis of the projection optical system 15 (PL)
  • the Y axis is parallel to the plane of FIG. 2 in a plane perpendicular to the reference optical axis.
  • the X axis is set perpendicular to the paper in the figure.
  • the projection optical system 15 (corresponding to the projection optical system PL in FIG. 1) to be measured is irradiated with a light beam having an exposure wavelength from the object side (the reticle R side).
  • the light beam is received on the image side (Wafer W side).
  • the aberration (wavefront aberration) generated when transmitting through the projection optical system 15 is measured.
  • the aberration measuring apparatus has the same configuration as the exposure apparatus of FIG.
  • a light source 1 including one F 2 laser light source (wavelength: 157 nm) or one ArF excimer laser light source (wavelength: 193 nm) is provided.
  • the light beam L 1 emitted from the light source 1 enters the shaping optical system 7 via the mirror 3 and the beam window 4.
  • the airtight shielding member 5 since such a short-wavelength light beam is strongly absorbed by oxygen in the atmosphere, the light path from the light source 1 to the beam window 4 is covered with the airtight shielding member 5.
  • the optical path from the shaping optical system 7 to a test reticle 14 described later is also covered with an airtight shielding member 6.
  • the insides of the shielding members 5 and 6 are filled (gas replacement) with a gas such as nitrogen or a rare gas, which has a small absorption for the used wavelength.
  • the insides of the shielding members 5 and 6 may be evacuated.
  • the shaping optical system 7 is an optical system for converting the light beam 1 into a substantially parallel light beam and making the illuminance in the light beam substantially uniform, and includes a beam expander, a cylindrical lens, and the like.
  • the light beam L 2 which is converted into a parallel light beam by the operation of the shaping optical system 7 and has uniform illuminance, enters the polarization control optical system 8.
  • the polarization control optical system 8 is a characteristic component of the present invention, and controls the polarization state of the incident light beam L2 to a desired state. The detailed configuration and operation of the polarization control optical system 8 will be described later.
  • the light beam L 3 whose polarization state is controlled by the operation of the polarization control optical system 8 is reflected by the mirror 9 and then enters the movable light transmission optical system 10.
  • the movable light-sending optical system 10 includes a mirror 11 and a condenser lens group 12. Accordingly, the light beam L3 reflected by the mirror 9 and incident on the movable light transmitting optical system 10 is reflected by the mirror 11 and condensed through the condenser lens group 12, and then the light beam L3. Illuminate the pattern for inspection on Stretchle 14.
  • the movable light-transmitting optical system 10 that integrally holds the mirror 11 and the condenser lens group 12 moves on the guide rail 13 provided on the shielding member 6 on the test reticle 14. It is configured to be two-dimensionally movable along a plane (XY plane) parallel to the plane.
  • the light beam L3 via the movable light-transmitting optical system 10 can illuminate an arbitrary position on the test reticle 14.
  • the light beam (measurement light beam) transmitted through the inspection pattern on the test reticle 14 enters the projection optical system 15 to be measured.
  • the light beam incident on the projection optical system 15 is After passing through the lenses 15 1 and 15 2 and being reflected by the first reflecting surface of the plane mirror 15 3, the light enters the concave reflecting mirror 15 6 via the lenses 15 4 and 15 5.
  • the light beam reflected by the concave reflecting mirror 156 enters the plane mirror 153 again through the lenses 154 and 155.
  • the light beam reflected by the second reflecting surface of the flat mirror 15 3 passes through the lenses 15 7, 15 8, 15 9, 16 0, 16 1, 16 2, 16 3 and 16 4.
  • the light sequentially passes through and enters the aberration measurement unit 17.
  • the aberration measurement unit 17 is arranged with reference to a position (image plane position) where the wafer is arranged when the projection optical system 15 is used in the exposure apparatus.
  • the projection optical system 15 is designed on the assumption that an F 2 laser light source is used, almost all lenses constituting the optical system are made of a cubic system such as fluorite (calcium fluoride crystal). It is formed of a crystalline material. Further, even when the projection optical system 15 is designed on the assumption that an ArF excimer laser light source is used, a lens formed of a cubic crystal material such as fluorite is included.
  • a catadioptric projection optical system ( 15 is assumed, but the optical system to be measured may be a refraction type.
  • the aberration measurement unit 17 is a projection optical system 1 This unit measures the aberration (wavefront aberration) of 5, and its detailed configuration and operation will be described later.
  • the aberration measurement unit 17 is a stage that can move along the XY plane on the surface plate 24.
  • the aberration measuring unit 17 and the movable light-transmitting optical system 10 are set in a positional relationship optically corresponding to each other via the projection optical system 15. This makes it possible to measure the wavefront aberration of the projection optical system 15.
  • the aberration measurement unit 17 and the movable light transmission optical system 10 are placed on the XY plane. By moving the projection optical system 15 two-dimensionally along the It is possible to go-between aberration measurement.
  • the aberration measurement unit 17 and the optical path between the projection optical system 15 and the aberration measurement unit 17 in order to avoid absorption of light by oxygen, the space is replaced with a gas, Or it is necessary to make a vacuum. Therefore, the aberration measurement unit 17, the stage 19, the surface plate 24, and the movable mirror 18, which will be described later, are covered with the purge partition 16, and the inside thereof is gas-purged or evacuated. Also purge Between the bulkhead 16 and the surface plate 24, vibration isolator 26A and 26B are provided. In order to further improve the accuracy of the aberration measurement, it is preferable to measure the position of the aberration measurement unit 17 and the position of the movable light transmitting optical system 10 by measuring means such as an interferometer.
  • a laser-interferometer 22 for measuring the position of the aberration measurement unit 17 is installed on the pedestal 21.
  • the laser light emitted from the laser interferometer 22 enters the inside of the purge bulkhead 16 through the airtight glass window 16 a provided in the purge bulkhead 16, and is provided on the stage 19. After being reflected by the moving mirror 18, it returns to the laser-interferometer 22 through the glass window 16 a.
  • the laser interferometer 22 measures the position of the reflecting surface of the movable mirror 18 and thus the position of the aberration measurement unit 17.
  • FIG. 2 shows only the interferometer 22 for measuring the position in the Y direction of the aberration measurement unit 17, but it is more preferable to provide an interferometer for measuring the position in the X direction. Needless to say. Similarly, it is preferable to provide a pair of interferometers for measuring the positions of the movable light transmitting optical system 10 in the X and Y directions.
  • the aberration information measured by the aberration measurement unit 17 is transmitted to the outside as an electric signal.
  • a current introducer 27 for a vacuum device provided on the purge partition 16 is used. Is good.
  • the signal line 28 led to the outside via the current introducer 27 is connected to the processing device 29.
  • the processing device 29 performs signal processing on the aberration information detected by the aberration measurement unit 17 to calculate the wavefront aberration of the projection optical system 15. Further, the processing device 29 reads the position of the aberration measurement unit 17 based on the output from the laser-interferometer 22 as necessary, and supplies a movement command to the stage 19.
  • a signal line 25 from the processing device 29 to the stage 19 is guided to the inside of the purge partition 16 via a current introducer 26 provided in the purge partition 16.
  • FIG. 3 is a diagram schematically showing a configuration of a sharing interferometer as the aberration measurement unit of FIG.
  • a sharing interferometer 17A as shown in FIG. 3 can be used as the aberration measurement unit 17 in FIG. in this case,
  • a so-called pinhole (a minute transmission opening formed on the back ground of the light-shielding portion) is used as an inspection panel for the test reticle 14.
  • a projection image of a pinhole as an inspection pattern of the test reticle 14 by the projection optical system 15 is formed at a position FP near and above the sharing interferometer 17A.
  • the divergent luminous flux from the pinhole image formed at position FP is converted to a parallel luminous flux by the lens group 171, and is a phase grating with the same pitch (duty is 1: 1 and phase difference is 180 degrees)
  • the two parallel plane plates 17 2 and 1 73 on which 17 2 a and 17 3 a are formed are incident.
  • the light beam incident on the first parallel plane plate 172 is split by the first phase grating 1772a into two diffracted lights separated by a predetermined angle left and right in the figure.
  • the two light beams enter the second parallel plane plate 173, and are diffracted again by the second phase grating 173a in the left and right directions at the same angle.
  • the light beam (light beam A) diffracted to the left at the first phase grating 1772a and to the right at the second phase grating 1773a, and the first phase grating A light beam diffracted to the right at 172a and then diffracted to the left at the second phase grating 173a (a light beam is transmitted to the lens group 174 along the same direction as shown by the solid line in the figure.
  • the luminous flux condensed through the lens group 174 is condensed through the lens group 176, and then the two luminous fluxes are focused on the imaging surface of the image sensor 174 such as a CCD.
  • the light beam A and the light beam B are originally the same light beam and have the wavefront difference information of the projection optical system 15.
  • the phase grating 17a is formed. Is determined by the pitch along the optical axis between the pitch of the phase grating 1 and the pitch of the phase grating. Therefore, the light beam A and the light beam B are superposed with a positional shift.
  • the interference fringes on the image sensor 1777 show a difference corresponding to the above-mentioned position shift amount of the wavefront aberration information of the projection optical system 15, and the projection optical system is analyzed by analyzing the interference fringes.
  • the wavefront aberration (aberration) of 15 can be calculated.
  • the amount of this position shift, that is, the difference distance can be changed. It is desirable that 72 and 173 have a structure that can be moved in the optical axis direction (vertical direction in the figure).
  • the diffracted light generated from the phase gratings 172a and 1773a generates not only the light flux A and the light flux B described above, but also unnecessary diffracted light as indicated by the broken line in the figure, and the unnecessary light has a wavefront aberration.
  • the accuracy of the measurement may be degraded. Therefore, it is preferable to provide an aperture stop 175 between the lens group 174 and the lens group 176, and shield unnecessary diffracted light with the aperture stop 175.
  • Even in the sharing interferometer 17A it is necessary to replace the inside of the gas with the inside or to evacuate the inside so that the measuring light to be used is not absorbed. In some cases, it is desirable that the signal line from the image sensor 177 be guided to the outside of the sharing interferometer 17A via a current introducer for a vacuum device or the like.
  • FIG. 4 is a diagram schematically showing a configuration of a Schattt-Hartmann sensor as the aberration measurement unit of FIG.
  • a Schartsquart sensor 17B as shown in FIG. 4 may be used as the aberration measurement unit 17 in FIG. 2.
  • a pinhole is used as an inspection pattern on the test reticle 14.
  • a projection image of the pinhole by the projection optical system 15 is formed at a position FP near and above the Schattsquart Man sensor 17B.
  • the divergent light beam from the pinhole image formed at the position FP is converted into a parallel light beam via the lens group 178, and then enters the microlens array 179.
  • the micro lens array 179 is an optical element configured by two-dimensionally densely arranging a large number of micro lens elements like a fly-eye lens.
  • a parallel light beam enters the micro-lens array 179, the incident light beam is split into wavefronts by the respective minute lens elements, and thereafter, condensing points 181 are formed in the vicinity of the side focal plane.
  • An imaging surface of an imaging element 180 such as a CCD is positioned at a position where a large number of light condensing points 181 are formed. In this way, the position of each focal point 18 1 is measured by the image sensor 180.
  • the luminous flux incident on the Schatts-Hartmann sensor 17B is a luminous flux transmitted through the projection optical system 15, and the wavefront thereof is changed by the aberration (wavefront aberration) of the projection optical system 15. It is slightly deformed. As a result, the position of each condensing point 18 1 is shifted by a small amount depending on the wavefront aberration of the projection optical system 15 from each reference position where light is condensed when the projection optical system 15 has no aberration. Shift. Therefore, the Schatt-Khaltmann sensor 17 B can calculate the wavefront aberration of the projection optical system 15 by measuring the amount of displacement of each light-collecting point 18 1 from each reference position.
  • the aberration measurement unit 17 is not limited to the above-described sharing interferometer 17A and Shack-Hartmann sensor 17B, but may use, for example, the aforementioned PDI.
  • a method of detecting the projection image itself of the pinhole as the inspection pattern on the test reticle 14 by the projection optical system 15 and calculating the wavefront aberration from the Fourier transform of the aerial image can be used.
  • the projection optical system 15 to be measured is irradiated with a light beam having an exposure wavelength from the object side (reticle side), and the projection is performed based on the light beam received on the image side (wafer side).
  • a configuration is used to measure the aberration (wavefront aberration) generated when the light passes through the optical system 15.
  • the projection optical system 15 is irradiated with a light beam having an exposure wavelength from the image side (wafer side) from the image side (wafer side) and passes through the projection optical system 15 based on the light beam received on the object side. It is also possible to adopt a configuration for measuring the wavefront aberration that has occurred.
  • FIG. 5 is a diagram schematically showing a configuration of the polarization control optical system of FIG.
  • the incident light beam L2 to the polarization control optical system 8 is incident on a location prism 81 composed of a first prism member 81A and a second prism member 81B.
  • the location prism 81 is formed of a uniaxial crystal material having a large birefringence such as magnesium fluoride.
  • the composition of the Rossion prism 81 is a general Rossion It is the same as the prism, and the optical axis of the uniaxial crystal is set in the direction parallel to the traveling direction of the light beam L2 (Z direction) in the first prism member 81A.
  • the optical axis of the axial crystal is set in the direction (Y direction) perpendicular to the plane of the paper in Fig. 5.
  • a linearly polarized light beam having a polarization direction in a direction parallel to the paper surface (X direction) goes straight and changes the polarization direction in a direction perpendicular to the paper surface (Y direction).
  • the linearly polarized light beam has a refraction effect. That is, the light beam L 2 incident on the location prism 81 is composed of linearly polarized light LO (shown by a solid line) having a polarization direction parallel to the paper surface and linearly refracted light LE having a polarization direction perpendicular to the paper surface. (Shown by a broken line in the figure).
  • the location prism 81 constitutes a linearly polarized light separating means for separating a predetermined linearly polarized light beam polarized along a predetermined direction from an incident light beam.
  • the polarization direction of the straight-ahead light LO matches the direction of the linearly polarized light component contained more in the incident light beam L 2, the amount of light will be secured. It is advantageous in terms of.
  • the optical axis of the second prism member 81B and the direction of the linearly polarized light component included in the light beam L2 be orthogonal to each other.
  • the straight light LO enters the half-wave plate 82.
  • the half-wave plate 82 is formed of a uniaxial crystal material such as magnesium fluoride or a cubic crystal material such as fluorite.
  • its optic axis is set to be orthogonal to the Z axis. This is the same as a general 1Z2 wavelength plate, and the setting method of the length S1 of the 1/2 wavelength plate 82 is the same as that of a general 1Z2 wavelength plate.
  • the crystal axis [1 10] is set so as to coincide with the Z axis. This is because the birefringence is maximized when the light beam travels along a direction parallel to the crystal axis [1 10].
  • the birefringence for light traveling in a direction parallel to the crystal axis [110] is The difference between the refractive index n 100 of light having a polarization direction (electric field direction) in the direction of [100] and the refractive index n 01 1 of light having a polarization direction in the direction of the crystal axis [0—11] is for a r F laser length 1 93 nm 3. is about 2 X 10- 7, the wavelength 1 of 57 nm? 2 is about 1 1. 2 X 10- 7 for record one The first light.
  • the 12-wavelength plate 82 is installed so as to be rotatable around the Z direction as a rotation axis. Therefore, depending on the rotation position of the 1Z2 wave plate 82, the polarization state of the exit light beam L3 is changed to the linear polarization state having the polarization direction in the X direction parallel to the paper surface similarly to the incident light beam L0, and to the Y direction perpendicular to the paper surface. It is possible to switch between a linear polarization state having a polarization direction.
  • the 12-wavelength plate 82 constitutes a polarization plane rotating means for rotating the polarization plane of a predetermined linearly polarized light flux about the central axis of the light flux.
  • a linearly polarized light beam having a polarization direction in the X direction is made incident on the projection optical system 15, and the aberration of the optical system with respect to the X direction polarization is measured based on the light beam transmitted through the projection optical system 15.
  • a linearly polarized light beam having a polarization direction in the Y direction is made incident on the projection optical system 15, and the aberration of the optical system with respect to the Y direction polarization is measured based on the light beam transmitted through the projection optical system 15.
  • the aberration measurement units (17A and 17B) illustrated in FIGS. 3 and 4 are both systems capable of measuring aberrations with linear polarization, two linear polarizations having polarization directions orthogonal to each other are used. There is no problem in measuring the aberration for each light beam.
  • the mirrors 9 and 11 be configured so as not to change the polarization state of the light beam L3.
  • the polarization direction of the transmitted light (straight light) LO of the location prism 81 is set to be P-polarized light or S-polarized light with respect to the reflection surfaces of the mirrors 9 and 11 (set not to be in an intermediate state). By doing so, it is also possible to prevent a change in the polarization state due to the mirrors 9 and 11.
  • FIG. 6 is a diagram showing a modification in which a pair of quarter-wave plates are used instead of the half-wave plate of FIG.
  • the modification of FIG. 6 shows that the same effect can be obtained by using a pair of 1/4 wavelength plates 82A and 82B instead of the 1Z2 wavelength plate 82 of FIG.
  • the optical members 82A and 82B are both 1Z4 wave plates, and are formed of a uniaxial crystal material or a cubic crystal material.
  • both 1Z4 wave plates 82A and 82B are configured to be rotatable about the Z-axis direction.
  • the structure is the same as a general quarter wave plate.
  • the 1/4 wavelength plate 82B or 82A is made of a cubic crystal material, its structure is basically the same as that of the 1/2 wavelength plate 82 in Fig. 5, but its length S 2 and S 3 are halved. That is, for two lasers and one light, it becomes a quarter-wave plate with a length of 3.5 cm.
  • the quarter-wave plate 82B on the incident side can convert the linearly polarized incident light LO into a circularly polarized light flux LT and emit it according to the set angle.
  • the light beam L3 emitted from the 1/4 wavelength plate 82A is a linearly polarized light beam having a polarization direction coinciding with the rotation direction of the 1/4 wavelength plate 82A.
  • the light beam L3 can be converted into a linearly polarized light beam having an arbitrary polarization direction according to the rotation of the 1Z 4 wavelength plate 82A.
  • the emitted light beam LT can be made the same linearly polarized light as the incident light beam L O.
  • the emitted light beam L3 can be turned around or counterclockwise as a circularly polarized light beam.
  • the false light state of the emitted light L3 can be switched to two linear polarization states orthogonal to each other, but the two polarization states are changed. It cannot be rotated as a whole.
  • a pair of quarter-wave plates 8 2 B or 82 A in FIG. 6 in addition to switching the polarization state of the emitted light L 3 to two linear polarization states orthogonal to each other, This is even more convenient because the two polarization states can be rotated as a whole.
  • the emitted light L3 can be in a circularly polarized state. In this case, since the aberration of the projection optical system 15 can be measured with a light beam in a state close to natural light (randomly polarized light), the influence of birefringence can be reduced. It is also possible to perform ignored aberration measurement.
  • the polarization conversion measurement unit 30 shown in FIG. 7 is a device for measuring how much such polarization conversion occurs by the projection optical system 15.
  • the polarization conversion measurement unit 30 is installed on the stage 19, for example, along with the aberration measurement unit 17 in FIG.
  • light transmitted through the pinhole pattern on the test reticle 14 forms a pinhole image at a position FP near and above the polarization conversion measurement unit 30 via the projection optical system 15.
  • the divergent luminous flux from the pinhole image formed at position FP is converted into a parallel luminous flux by the lens group 182, and then passed through a pair of 1/4 wavelength plates 183 and 1884 to the location prism. It is incident on 1 85.
  • the light beam is split by the linearly polarized light component, and the linearly polarized light beam L10 having a polarization direction parallel to the plane of FIG. 7 is input to an image sensor 186 such as a CCD. Shoot.
  • the projection optical system 1 Similar to the pair of quarter-wave plates 82B and 82A shown in FIG. 6, depending on the rotation angle of the pair of quarter-wave plates 1833 and 1884 with respect to the optical axis, the projection optical system 1
  • the polarization direction of the luminous flux emitted from 5 can be optimized with respect to the Rossion prism 185.
  • a pair of quarter-wave plates 18 3 and 18 are arranged so that the polarization direction of the incident light on the position prism 185 and the polarization direction of the emitted light (straight light) L 1 ⁇ are the same.
  • a pair of quarter-wave plates 18 3 and 18 4 are set so that the polarization direction of the incident light on the prism 1885 and the polarization direction of the emitted light (straight light) L 10 are orthogonal to each other. Set the rotation direction of. Then, even in this setting state, the light amount signal SG2 from the image sensor 186 is sampled. In this case, if the projection optical system 15 has no wavefront deviation (retardation) between orthogonal linearly polarized lights due to birefringence, the light quantity signal SG2 should be zero. Therefore, the conversion ratio of polarized light in the projection optical system 15 can be calculated from the ratio between the light amount signal SG2 and the light amount signal SG1. Also, based on this, the amount of wavefront aberration associated with the birefringence of the projection optical system 15 can be roughly calculated.
  • the measurement result of the residual aberration associated with the birefringence in the projection optical system 15 is obtained using the aberration measurement apparatus of the present embodiment, the measurement result, the design data of the projection optical system 15 and the crystal Based on the birefringence characteristics of the material and the like, it is possible to determine which lens element should be adjusted and how to remove the residual aberration caused by birefringence.
  • the specific adjustment method differs depending on the type of the projection optical system 15 and cannot be unconditionally determined.
  • clocking adjustment to rotate a lens (15 1 to 16 4) made of a crystal such as fluorite around the optical axis, movement adjustment to move along the optical axis, and almost orthogonal to the optical axis
  • a shift adjustment that moves along the surface to be moved, a tilt adjustment that inclines with respect to the optical axis, and the like can be applied.
  • the residual aberration associated with the birefringence is measured by the aberration measuring device of the present embodiment. Then, based on the measured aberration results, the design data of the projection optical system 15 and the birefringence characteristics of the crystalline material such as fluorite, etc., which lens element is used to correct the residual aberration caused by birefringence? Calculate whether adjustment is necessary. Then, optical adjustment of the projection optical system 15 is performed based on the calculation result. After the optical adjustment of the projection optical system 15, the residual difference due to birefringence is measured again by using the aberration measuring device of the present embodiment. Refer to the measured aberration results and confirm that the aberrations associated with birefringence If the correction has been made, the adjustment process is completed, but if the aberrations associated with birefringence have not been sufficiently corrected, the above adjustment process will be repeated.
  • a calcium fluoride crystal (fluorite) is used as the birefringent optical material.
  • a barium fluoride crystal (fluorite) may be used.
  • B a F 2 lithium fluoride crystal (L i F), sodium fluoride crystal (N a F), strontium fluoride crystal (S r F 2 ), beryllium fluoride crystal (B e F 2 ), etc.
  • Other crystalline materials that are transparent to ultraviolet light can also be used.
  • barium fluoride crystals have already been developed for large crystal materials with diameters exceeding 200 mm, and are promising as lens materials.
  • the crystal axis direction such as vacuum fluoride (B a F 2 ) is also determined in accordance with the present invention.
  • the reticle (mask) is illuminated by the illumination device. Process), exposing the transfer pattern formed on the mask to the light-sensitive substrate using the projection optical system (exposure process), resulting in a micro device (semiconductor device, imaging device, liquid crystal display device, thin film magnetic head, etc.) ) Can be manufactured.
  • the flowchart of FIG. 8 shows an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the present embodiment. It will be described with reference to FIG.
  • a metal film is deposited on one lot of wafers.
  • a photoresist is applied on the metal film on the one lot of wafers.
  • the pattern image on the mask is sequentially exposed and transferred to each shot area on the one-port wafer via the projection optical system. Is done.
  • the photoresist on the one lot of wafers is developed, and then in step 305, etching is performed on the one lot of wafers using the resist pattern as a mask. Thereby, a circuit pattern corresponding to the pattern on the mask is formed in each shot area on each wafer.
  • a device such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer and the like.
  • a semiconductor device having a fine circuit pattern can be obtained with good throughput.
  • steps 301 to 305 a metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the respective steps of exposure, development, and etching are performed.
  • a resist may be applied on the silicon oxide film, and each step of exposure, development, etching and the like may be performed.
  • a liquid crystal display element as a micro device can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate).
  • a predetermined pattern circuit pattern, electrode pattern, etc.
  • a photosensitive substrate eg, a glass substrate coated with a resist
  • a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate.
  • the exposed substrate undergoes various processes such as a developing process, an etching process, a resist stripping process, and the like, whereby a predetermined pattern is formed on the substrate, and the process proceeds to a next color filter forming process 402. .
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or R, G,
  • a color filter is formed by arranging a plurality of sets of three stripe filters B in the horizontal scanning line direction.
  • a cell assembling step 403 is executed.
  • a liquid crystal panel is formed using the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. (Liquid crystal cell).
  • Liquid crystal cell Liquid crystal cell
  • the assembled liquid crystal panel (liquid A liquid crystal display element is completed by attaching various components such as an electric circuit and a backlight that perform the display operation of the crystal cell.
  • a liquid crystal display element having an extremely fine circuit pattern can be obtained with high throughput.
  • the present invention is applied to the projection optical system mounted on the exposure apparatus.
  • the present invention is not limited to this, and the present invention may be applied to other general optical systems. It can also be applied.
  • an Ar 2 laser light source that supplies light having a wavelength of 126 nm can be used.
  • the aberration measurement device and the aberration measurement method of the present invention determine the difference between the aberration measurement values of two linearly polarized light beams having polarization directions orthogonal to each other, thereby forming a crystal such as fluorite.
  • the residual error of the optical system caused by the birefringence of the optical member can be measured with high accuracy.
  • residual aberration of the optical system due to birefringence can be satisfactorily removed.
  • a high-performance microdevice can be manufactured according to a high-resolution exposure technique using an exposure apparatus equipped with an optical system having good optical performance.

Abstract

An aberration measuring device capable of very accurately measuring the residual aberration of an optical system caused by the double refraction of an optical member formed of a crystal such as fluorite. An aberration measuring device for measuring the aberration of an optical system (15) including an optical member formed of a crystal belonging to a cubic system. The device comprises light flux irradiation units (1-13) for applying specific light flux to an optical system, and an aberration measuring unit (17) for measuring the aberration of the optical system based on a light flux passed through the optical system. A light flux irradiation unit has a polarization switching means for switching the polarizing condition of a specified light flux between a first linear polarization polarized along a first direction and a second linear polarization polarized along a second direction almost orthogonal to the first direction.

Description

明 細 書 収差測定装置、 収差測定方法、 光学系の調整方法、  Description Aberration measurement device, Aberration measurement method, Optical system adjustment method,
および該調整方法で調整された光学系を備えた露光装置 技術分野  And exposure apparatus having an optical system adjusted by the adjusting method
本発明は、 収差測定装置、 収差測定方法、 光学系の調整方法、 および該調整方 法で調整された光学系を備えた露光装置に関する。 本発明は、 特に半導体素子や 液晶表示素子などのマイクロデバイスをフォトリソグラフィ工程で製造する際に 使用される露光装置に搭載される投影光学系の収差測定に関するものである。 背景技術  The present invention relates to an aberration measurement device, an aberration measurement method, an adjustment method of an optical system, and an exposure apparatus including an optical system adjusted by the adjustment method. The present invention particularly relates to aberration measurement of a projection optical system mounted on an exposure apparatus used when a micro device such as a semiconductor device or a liquid crystal display device is manufactured by a photolithography process. Background art
半導体集積回路や液晶ディスプレイ等の電子デバイス (マイクロデバイス) の 微細パターンの形成に際して、 形成すべきパターンを 4〜 5倍程度に比例拡大し て描画したフォトマスク (レチクルとも呼ぶ) のパターンを、 投影露光装置を用 いてゥェ八等の感光性基板 (被露光基板) 上に縮小露光転写する方法が用いられ ている。 この種の投影露光装置では、 半導体集積回路の微細化に対応するために、 その露光波長が短波長側へシフトし続けている。  When forming micropatterns for electronic devices (microdevices) such as semiconductor integrated circuits and liquid crystal displays, the pattern of the photomask (also referred to as a reticle) drawn by enlarging the pattern to be formed by about 4 to 5 times is projected. A method of performing reduced exposure transfer onto a photosensitive substrate (substrate to be exposed) such as Jehachi using an exposure apparatus is used. In this type of projection exposure apparatus, the exposure wavelength keeps shifting to shorter wavelengths in order to cope with miniaturization of semiconductor integrated circuits.
現在、 露光波長は K r Fエキシマレーザ一の 2 4 8 n mが主流となっているが、 より短波長の A r Fエキシマレ一ザ一の 1 9 3 n mも実用化段階に入りつつある。 さらに、 波長 1 5 7 n mの F 2レーザ一や波長 1 2 6 n mの A r 2レーザー等の、 いわゆる真空紫外域と呼ばれる波長帯の光を供給する光源を使用する投影露光装 置の提案も行なわれている。 また、 投影光学系の大開口数 (N A) 化によっても 高解像度化が可能であるため、 露光波長の短波長化のための開発だけでなく、 よ り大きい開口数を有する投影光学系の開発もなされている。 Currently, the exposure wavelength of the KrF excimer laser is 248 nm, but the shorter wavelength of the ArF excimer laser, 193 nm, is entering the stage of practical use. Furthermore, the A r 2 laser having a wavelength of 1 5 7 nm of F 2 laser one and the wavelength 1 2 6 nm, proposed a projection exposure equipment that uses the light source for supplying light in a wavelength band so-called vacuum ultraviolet region Is being done. In addition, since high resolution can be achieved by increasing the numerical aperture (NA) of the projection optical system, not only development of a shorter exposure wavelength but also development of a projection optical system with a larger numerical aperture Has also been made.
この場合、 投影光学系の露光視野 (露光フィールド) が小さい方が、 光学系の 大 N A化に有利である。 そこで、 投影光学系自体の視野を小さくし、 その代わり にレチクルとウェハとを露光中に相対走査して実質的に大視野を確保するスキヤ ン型の露光装置も実用化されている。 これらの露光装置に搭載される投影光学系 には、 高解像度の実現のために、 その残存収差が極めて小さいことが要求される。 従って、 投影光学系の製造工程では、 光の干渉を利用した波面収差計測を行い、 残存収差量を露光波長の 1 / 1 0 0 0程度の精度で計測し、 その計測値に基づい て投影光学系の調整を行っている。 In this case, a smaller exposure field of view (exposure field) of the projection optical system is advantageous for increasing the NA of the optical system. Therefore, the field of view of the projection optical system itself is reduced, and instead, the reticle and the wafer are relatively scanned during exposure to ensure a substantially large field of view. Type exposure apparatus has also been put to practical use. The projection optical systems mounted on these exposure apparatuses are required to have extremely small residual aberrations in order to achieve high resolution. Therefore, in the manufacturing process of the projection optical system, wavefront aberration measurement using light interference is performed, the amount of residual aberration is measured with an accuracy of about 1/1000 of the exposure wavelength, and the projection optical system is evaluated based on the measured value. The system is being adjusted.
このような微小量の収差の計測では、 レチクル上の 1点を発し投影光学系内の 各光路を経てウェハ上の 1点に到達するまでの光路長の各光路による変化を表わ す波面収差を計測するのが一般的である。 波面収差の計測ために、 干渉計の原理 を応用した幾つかの方法が実用化され、 提案されている。 露光波長と同一の波長 のレーザーを光源とするフィゾー干渉計は、 計測精度が高く、 投影光学系の波面 収差の計測に適している。 しかしながら、 光源となるレーザ一には、 1 m以上の 長さを有する投影光学系光路の往復距離 (2 m) よりも大きな、 進行方向への可 干渉距離 (時間的コヒ一レンス長) が必要とされる。  To measure such a small amount of aberration, the wavefront aberration that represents the change in the optical path length from one point on the reticle to each point on the wafer through each optical path in the projection optical system and to each point on the wafer Is generally measured. Several methods that apply the principle of interferometers have been put to practical use and have been proposed for measuring wavefront aberration. A Fizeau interferometer using a laser of the same wavelength as the exposure wavelength as the light source has high measurement accuracy and is suitable for measuring the wavefront aberration of the projection optical system. However, the laser as the light source must have a coherent distance (temporal coherence length) in the traveling direction that is larger than the reciprocating distance (2 m) of the optical path of the projection optical system having a length of 1 m or more. It is said.
露光波長が 2 4 8 n mの K r Fエキシマレ一ザ一の場合には、 波長がほぼ等し く、 且つ時間的コヒ一レンスが十分に長いレ一ザ一 (例えばアルゴンレーザーの 高調波や半導体レーザーの高調波) が使用可能である。 しかしながら、 露光波長 が 1 9 3 n mの A r Fエキシマレーザーの場合や露光波長が 1 5 7 11 111の?2レ 一ザ一の場合には、 波長がほぼ等しく且つ時間的コヒーレンスが十分に長いレー ザ一が存在しないので、 別の手法による波面収差計測が必要となる。 その他の波 面収差計測方法として、 たとえば P D I (Point Di f frac t ion Inter feroieter) , トワイマングリーン型干渉計、 シェアリング干渉計等の干渉式計測方法や、 シャ ックハルトマン方式等の各種の計測方法が実用化され、 提案されている。 In the case of a KrF excimer laser with an exposure wavelength of 248 nm, lasers with almost the same wavelength and sufficiently long temporal coherence (eg, harmonics of an argon laser or semiconductors) Laser harmonics) can be used. However, in the case of an ArF excimer laser with an exposure wavelength of 193 nm or an exposure wavelength of 15711111? In the case of two lasers, since there is no laser having substantially the same wavelength and sufficiently long temporal coherence, it is necessary to measure the wavefront aberration by another method. Other wavefront aberration measurement methods include, for example, PDI (Point Diffraction Interferoieter), Twyman-Green interferometer, sharing interferometer, etc., and various measurement methods such as Shack-Hartmann method. Has been put into practical use and proposed.
高解像化のために露光波長を短波長化すると、 露光波長に対して良好な透過性 を有する光学材料が限られてくる。 波長が 2 4 8 n mの K r Fエキシマレ一ザ一 光に対しては、 透過性の光学材料として合成石英ガラスおよび蛍石 (フッ化カル シゥム結晶) を使用することができる。 しかしながら、 波長が 1 9 3 n mの A r Fエキシマレーザー光に対しては、 石英はコンパクションの問題があるため、 蛍 石を用いた光学部材 (蛍石レンズなど) の構成比率を高める必要がある。 さらに、 波長が 1 5 7 n mの F 2レーザ一光の場合には、 合成石英ガラスの透過性が悪く、 使用可能な光学材料は事実上蛍石に限定されることになる。 If the exposure wavelength is shortened for higher resolution, optical materials having good transparency to the exposure wavelength are limited. For KrF excimer laser light with a wavelength of 248 nm, synthetic quartz glass and fluorite (calcium fluoride crystal) can be used as transmissive optical materials. However, for ArF excimer laser light with a wavelength of 193 nm, quartz has a compaction problem, so it is necessary to increase the composition ratio of optical members using fluorite (such as fluorite lenses). . further, In the case of a single F 2 laser with a wavelength of 157 nm, the transparency of synthetic quartz glass is poor, and the usable optical materials are practically limited to fluorite.
蛍石は、 その結晶構造が立方晶系に分類されるため、 光学的に等方であり複屈 折はないものと考えられてきた。 しかしながら、 2 0 0 1年 5月に開かれた S E MAT E C H主催の 1 5 7— W o r k s h o pにおいて、 米国 N I S Tより蛍石 の本質的な複屈折が報告され、 約 2 0 0 n m以下の波長の光に対して蛍石が比較 的大きな複屈折を有することが明らかになった。 また、 蛍石以外の立方晶系の結 晶材料、 例えばフッ化バリウムやフッ化ストロンチウムも、 このような短波長光 に対して複屈折を有することが判明した。  Fluorite has been considered to be optically isotropic and has no birefringence because its crystal structure is classified as cubic. However, at the 157—Workshop hosted by SE MAT ECH held in May 2001, the NIST in the United States reported the essential birefringence of fluorite, and the wavelength of It was found that fluorite has relatively large birefringence to light. It was also found that cubic crystal materials other than fluorite, such as barium fluoride and strontium fluoride, also have birefringence to such short wavelength light.
ただし、 この本質的な複屈折 (int r ins i c b i ref r ingence) の量は、 光の波長 と、 結晶格子の方向と結晶中の光の進行方向との角度関係とに基づいて、 一義的 に決まるものである。 したがって、 光学設計の段階において、 複屈折の量を予測 し、 その影響を設計的に補正することが可能である。 より具体的には、 各蛍石レ ンズの光軸を蛍石結晶の所定の結晶軸に一致させるとともに、 別の所定の結晶軸 が所定の方向を向くように各蛍石レンズをその光軸廻りに所定角度回転させて配 置すること等により、 蛍石の複屈折による悪影響を相殺することが可能である。 しかしながら、 上述の手法により蛍石の複屈折に起因する収差が設計上ほぼ完 全に補正されていたとしても、 実際に製造される投影光学系では、 各蛍石レンズ の製造誤差や各蛍石レンズの位置決め誤差 (取付け誤差) によって、 蛍石の複屈 折に起因する収差が残存している可能性がある。 発明の開示  However, the amount of this intrinsic birefringence (intr ins icbirefringence) is uniquely determined based on the wavelength of light and the angular relationship between the direction of the crystal lattice and the direction of light propagation in the crystal. It is decided. Therefore, at the stage of optical design, it is possible to predict the amount of birefringence and to compensate for the effect by design. More specifically, the optical axis of each fluorite lens is made to coincide with the predetermined crystal axis of the fluorite crystal, and each fluorite lens is oriented so that another predetermined crystal axis is oriented in a predetermined direction. By arranging them around a predetermined angle around them, it is possible to offset the adverse effects of fluorite on birefringence. However, even if the aberration caused by the birefringence of fluorite is almost completely corrected by design by the above-mentioned method, the manufacturing error of each fluorite lens and each fluorite Due to lens positioning errors (mounting errors), aberrations due to birefringence of fluorite may remain. Disclosure of the invention
本発明は、 前述の課題に鑑みてなされたものであり、 たとえば蛍石などの結晶 で形成された光学部材の複屈折に起因する光学系の残存収差を高精度に測定する ことのできる、 収差測定装置および収差測定方法を提供することを目的とする。 また、 本発明の収差測定装置および収差測定方法を用いて高精度に測定した収 差結果に基づいて、 複屈折に起因する光学系の残存収差を良好に除去することの できる、 光学系の調整方法を提供することを目的とする。 さらに、 本発明の調整方法を用いて良好に光学調整された良好な光学性能を有 する光学系を備えた露光装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and is capable of measuring, with high accuracy, residual aberration of an optical system caused by, for example, birefringence of an optical member formed of a crystal such as fluorite. It is an object to provide a measuring device and an aberration measuring method. In addition, based on the aberration result measured with high accuracy using the aberration measuring device and the aberration measuring method of the present invention, the adjustment of the optical system capable of favorably removing the residual aberration of the optical system caused by the birefringence. The aim is to provide a method. It is a further object of the present invention to provide an exposure apparatus having an optical system having good optical performance, which has been optically adjusted using the adjustment method of the present invention.
また、 本発明は、 良好な光学性能を有する光学系が搭載された露光装置を用い て、 高解像度の露光技術にしたがって高性能のマイクロデバイスを製造すること のできるマイクロデバィス製造方法を提供することを目的とする。  Another object of the present invention is to provide a microdevice manufacturing method capable of manufacturing a high-performance microdevice according to a high-resolution exposure technology using an exposure apparatus equipped with an optical system having good optical performance. Aim.
前記課題を解決するために、 本発明の第 1発明では、 立方晶系に属する結晶で 形成された光学部材を含む光学系の収差を測定する収差測定装置であって、 前記光学系に所定の光束を照射するための光束照射ュニットと、  According to a first aspect of the present invention, there is provided an aberration measuring apparatus for measuring an aberration of an optical system including an optical member formed of a crystal belonging to a cubic system. A light beam irradiation unit for irradiating the light beam;
前記光学系を透過した光束に基づいて前記光学系の収差を計測するための収差 計測ュニットとを備え、  An aberration measurement unit for measuring aberration of the optical system based on a light beam transmitted through the optical system,
前記光束照射ユニットは、 第 1の方向に沿って偏光した第 1の直線偏光と、 前 記第 1の方向とは異なる第 2の方向に沿って偏光した第 2の直線偏光との間で、 前記所定の光束の偏光状態を切り換えるための偏光切換え手段を有することを特 徴とする収差測定装置を提供する。  The light beam irradiation unit includes a first linearly polarized light polarized along a first direction and a second linearly polarized light polarized along a second direction different from the first direction, There is provided an aberration measuring device characterized by having a polarization switching means for switching the polarization state of the predetermined light flux.
第 1発明の好ましい態様によれば、 前記収差計測ユニットは、 前記第 1の直線 偏光の光束が照射された前記光学系を透過した光束に基づいて計測した第 1収差 計測結果と、 前記第 2の直線偏光の光束が照射された前記光学系を透過した光束 に基づいて計測した第 2収差計測結果とに基づいて、 前記光学部材の複屈折に起 因する前記光学系の収差を測定する。  According to a preferred aspect of the first invention, the aberration measurement unit includes: a first aberration measurement result measured based on a light beam transmitted through the optical system irradiated with the first linearly polarized light beam; An aberration of the optical system caused by birefringence of the optical member is measured based on a second aberration measurement result measured based on a light beam transmitted through the optical system irradiated with the linearly polarized light beam.
また、 第 1発明の好ましい態様によれば、 前記偏光切換え手段は、 入射光束か ら所定の方向に沿って偏光した所定の直線偏光の光束を分離するための直線偏光 分離手段と、 前記直線偏光分離手段を介して分離された前記所定の直線偏光の光 束の偏光面を、 前記所定の直線偏光の光束の中心軸線を中心として回転させるた めの偏光面回転手段とを有する。 この場合、 前記直線偏光分離手段は、 ロシヨン プリズムを有することが好ましい。 また、 前記偏光面回転手段は、 前記中心軸線 を中心として回転可能な 1 Z 2波長板を有することが好ましい。 あるいは、 前記 偏光面回転手段は、 前記中心軸線を中心として回転可能な第 1の 1 / 4波長板と、 前記中心軸線を中心として回転可能な第 2の 1 / 4波長板とを有することが好ま しい。 Further, according to a preferred aspect of the first invention, the polarization switching means includes: a linearly polarized light separating means for separating a predetermined linearly polarized light beam polarized along a predetermined direction from an incident light beam; And a polarization plane rotating means for rotating the polarization plane of the predetermined linearly polarized light beam separated via the separation means around a central axis of the predetermined linearly polarized light beam. In this case, it is preferable that the linearly polarized light separating means has a location prism. Further, it is preferable that the polarization plane rotating means has a 1Z2 wavelength plate that can rotate about the central axis. Alternatively, the polarization plane rotating means may include a first quarter-wave plate rotatable about the central axis, and a second quarter-wave plate rotatable about the central axis. Like New
本発明の第 2発明では、 立方晶系に属する結晶で形成された光学部材を含む光 学系の収差を測定する収差測定方法であって、  According to a second aspect of the present invention, there is provided an aberration measuring method for measuring an aberration of an optical system including an optical member formed of a crystal belonging to a cubic system,
第 1の方向に沿って偏光した第 1の直線偏光の光束を前記光学系に照射する第 1照射工程と、  A first irradiation step of irradiating the optical system with a first linearly polarized light beam polarized along a first direction,
前記第 1の直線偏光の光束が照射された前記光学系を透過した光束に基づいて 前記光学系の収差を計測するための第 1収差計測工程と、  A first aberration measurement step for measuring aberration of the optical system based on a light beam transmitted through the optical system irradiated with the light beam of the first linearly polarized light,
前記第 1の方向とは異なる第 2の方向に沿って偏光した第 2の直線偏光の光束 を前記光学系に照射する第 2照射工程と、  A second irradiation step of irradiating the optical system with a second linearly polarized light beam polarized along a second direction different from the first direction;
前記第 2の直線偏光の光束が照射された前記光学系を透過した光束に基づいて 前記光学系の収差を計測するための第 2収差計測工程と、  A second aberration measurement step for measuring aberration of the optical system based on a light beam transmitted through the optical system irradiated with the light beam of the second linearly polarized light;
前記第 1収差計測工程で得られた第 1収差計測結果と前記第 2収差計測工程で 得られた第 2収差計測結果とに基づいて、 前記光学部材の複屈折に起因する前記 光学系の収差を測定する収差測定工程とを含むことを特徴とする収差測定方法を 提供する。  Based on the first aberration measurement result obtained in the first aberration measurement step and the second aberration measurement result obtained in the second aberration measurement step, aberration of the optical system caused by birefringence of the optical member And an aberration measuring step of measuring the aberration.
第 1発明および第 2発明の好ましい態様によれば、 前記第 1の方向と前記第 2 の方向とはほぼ直交する。 また、 前記光束の波長は、 1 9 3 n mまたは 1 5 7 η mであることが好ましい。  According to a preferred aspect of the first invention and the second invention, the first direction and the second direction are substantially orthogonal to each other. Further, the wavelength of the light beam is preferably 193 nm or 157 ηm.
本発明の第 3発明では、 第 1発明の収差測定装置を用いて測定された前記光学 系の収差測定結果、 または第 2発明の収差測定方法を用いて測定された前記光学 系の収差測定結果に基づいて、 前記光学部材の複屈折に起因して前記光学系に残 存する収差を実質的に除去するために前記光学系を光学調整する光学調整工程を 含むことを特徴とする調整方法を提供する。  In the third invention of the present invention, the aberration measurement result of the optical system measured by using the aberration measuring device of the first invention or the aberration measurement result of the optical system measured by using the aberration measurement method of the second invention An optical adjustment step of optically adjusting the optical system in order to substantially remove aberration remaining in the optical system due to birefringence of the optical member based on I do.
第 3発明の好ましい態様によれば、 前記光学調整工程は、 前記光学部材を前記 光学系の光軸を中心として回転させるクロッキング工程と、 前記光学部材を前記 光軸に沿って移動させる移動工程と、 前記光学部材を前記光軸とほぼ直交する面 に沿って移動させるシフト工程と、 前記光学部材を前記光軸に対して傾斜させる チルト工程とのうちの少なくとも 1つの工程を含む。 本発明の第 4発明では、 マスクを照明するための照明光学系と、 前記マスクに形成されたパターンの像を感光性基板上に形成するための第 3発 明の調整方法で調整された光学系とを備えていることを特徴とする露光装置を提 供する。 According to a preferred aspect of the third invention, the optical adjustment step includes: a clocking step of rotating the optical member around an optical axis of the optical system; and a moving step of moving the optical member along the optical axis. And a tilting step of moving the optical member along a plane substantially perpendicular to the optical axis; and a tilting step of tilting the optical member with respect to the optical axis. According to a fourth aspect of the present invention, there is provided an illumination optical system for illuminating a mask, and an optical system adjusted by an adjustment method of a third aspect for forming an image of a pattern formed on the mask on a photosensitive substrate. The present invention provides an exposure apparatus characterized by comprising a system.
本発明の第 5発明では、 第 4発明の露光装置を用いて前記マスクのパターンを 前記感光性基板に露光する露光工程と、 前記露光工程により露光された前記感光 性基板を現像する現像工程とを含むことを特徴とするマイクロデバイスの製造方 法を提供する。 図面の簡単な説明  In the fifth invention of the present invention, an exposure step of exposing the pattern of the mask to the photosensitive substrate using the exposure apparatus of the fourth invention, and a development step of developing the photosensitive substrate exposed in the exposure step The present invention provides a method for manufacturing a micro device characterized by including: BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施形態にかかる収差測定装置および収差測定方法を適用 すべき投影光学系を備えた露光装置の構成を概略的に示す図である。  FIG. 1 is a diagram schematically showing a configuration of an exposure apparatus including a projection optical system to which an aberration measurement apparatus and an aberration measurement method according to an embodiment of the present invention are applied.
第 2図は、 本発明の実施形態にかかる収差測定装置の構成を概略的に示す図で ある。  FIG. 2 is a diagram schematically showing a configuration of an aberration measuring device according to an embodiment of the present invention.
第 3図は、 第 2図の収差計測ュニットとしてのシェアリング干渉計の構成を概 略的に示す図である。  FIG. 3 is a diagram schematically showing a configuration of a sharing interferometer as the aberration measurement unit of FIG.
第 4図は、 第 2図の収差計測ュニットとしてのシャツクハルトマンセンサ一の 構成を概略的に示す図である。  FIG. 4 is a diagram schematically showing a configuration of a Schattk-Hartmann sensor as the aberration measurement unit in FIG.
第 5図は、 第 2図の偏光制御光学系の構成を概略的に示す図である。  FIG. 5 is a diagram schematically showing a configuration of the polarization control optical system of FIG.
第 6図は、 第 5図の 1 / 2波長板に代えて一対の 1 / 4波長板を用いた変形例 を示す図である。  FIG. 6 is a diagram showing a modification in which a pair of quarter-wave plates are used instead of the half-wave plate of FIG.
第 7図は、 第 2図の投影光学系によって偏光の変換がどの程度生じているかを 計測するための偏光変換計測ュニットの構成を概略的に示す図である。  FIG. 7 is a diagram schematically showing a configuration of a polarization conversion measurement unit for measuring how much polarization conversion is caused by the projection optical system of FIG.
第 8図は、 マイクロデバイスとしての半導体デバイスを得る際の手法のフロー チヤ一卜である。  FIG. 8 is a flowchart of a method for obtaining a semiconductor device as a micro device.
第 9図は、 マイクロデバイスとしての液晶表示素子を得る際の手法のフロ一チ ャ—卜である。 発明を実施するための最良の形態 FIG. 9 is a flowchart of a method for obtaining a liquid crystal display element as a micro device. BEST MODE FOR CARRYING OUT THE INVENTION
複屈折とは、 光の偏光方向によって屈折率が異なること、 すなわち屈折角度や 媒質 (レンズ) 中を伝搬する光の波長が光の偏光方向によって異なることを意味 する。 本発明の収差測定装置および収差測定方法においては、 光学系の収差計測 に際し、 偏光方向が異なる 2つの直線偏光光束、 具体的には互いに直交する偏光 方向を有する 2つの直線偏光光束を用いて各直線偏光に対する収差を独立に計測 する。 こうして、 互いに直交する方向に偏光面を有する直線偏光が受ける波面収 差をそれぞれ計測することが可能である。 その結果、 互いに直交する偏光方向を 有する 2つの直線偏光による収差計測値の差として、 複屈折に起因する光学系の 収差量を測定 (算定) することができる。  Birefringence means that the refractive index varies depending on the polarization direction of light, that is, the refraction angle and the wavelength of light propagating in a medium (lens) vary depending on the polarization direction of light. In the aberration measurement device and the aberration measurement method of the present invention, each of the aberration measurement of the optical system is performed by using two linearly polarized light beams having different polarization directions, specifically, two linearly polarized light beams having polarization directions orthogonal to each other. The aberration for linearly polarized light is measured independently. In this way, it is possible to respectively measure the wavefront differences experienced by linearly polarized light having polarization planes in directions orthogonal to each other. As a result, the amount of aberration of the optical system due to birefringence can be measured (calculated) as the difference between the aberration measurement values of two linearly polarized lights having polarization directions orthogonal to each other.
また、 本発明の収差測定装置および収差測定方法を用いて複屈折による収差が 得られると、 この収差計測結果と蛍石等の光学材料の複屈折特性と光学部材 (レ ンズ) の設計データとなどに基づいて、 どの光学部材をどの程度調整 (すなわち 光学部材を光軸中心に回転させるクロッキング調整や、 光学部材を光軸に沿って 移動させる移動調整や、 光学部材を光軸とほぼ直交する面に沿って移動させるシ フト調整や、 光学部材を光軸に対して傾斜させるチルト調整など) すれば複屈折 の影響を除去することが可能であるかを推定することが可能である。 その結果、 この推定結果に基づいて、 所定の光学部材に所定の光学調整を施こすことにより、 複屈折に起因する光学系の残存収差を除去することが可能になる。  When the aberration due to birefringence is obtained by using the aberration measuring apparatus and the aberration measuring method of the present invention, the aberration measurement result, the birefringence characteristics of the optical material such as fluorite, and the design data of the optical member (lens) are obtained. (Eg clocking adjustment to rotate the optical member around the optical axis, movement adjustment to move the optical member along the optical axis, or to make the optical member almost orthogonal to the optical axis) It is possible to estimate whether the effects of birefringence can be eliminated by performing a shift adjustment that moves along the surface to be adjusted or a tilt adjustment that tilts the optical member with respect to the optical axis. As a result, by performing a predetermined optical adjustment to a predetermined optical member based on the estimation result, it becomes possible to remove residual aberration of the optical system caused by birefringence.
本発明の実施形態を、 添付図面に基づいて説明する。  An embodiment of the present invention will be described with reference to the accompanying drawings.
第 1図は、 本発明の実施形態にかかる収差測定装置および収差測定方法を適用 すべき投影光学系を備えた露光装置の構成を概略的に示す図である。 なお、 第 1 図において、 投影光学系 P Lの基準光軸 A Xに平行に Z軸を、 基準光軸 A Xに垂 直な面内において第 1図の紙面に平行に Y軸を、 基準光軸 A Xに垂直な面内にお いて第 1図の紙面に垂直に X軸を設定している。  FIG. 1 is a diagram schematically showing a configuration of an exposure apparatus including a projection optical system to which an aberration measurement apparatus and an aberration measurement method according to an embodiment of the present invention are applied. In FIG. 1, the Z axis is parallel to the reference optical axis AX of the projection optical system PL, the Y axis is parallel to the plane of FIG. 1 in a plane perpendicular to the reference optical axis AX, and the reference optical axis AX The X axis is set perpendicular to the plane of Fig. 1 in a plane perpendicular to the plane.
第 1図に示す露光装置は、 紫外領域の照明光を供給するための光源 L Sとして、 F 2レーザ一光源 (波長 1 5 7 n m) または A r Fエキシマレーザー光源 (波長 1 9 3 n m) を備えている。 光源 L Sから射出された光は、 照明光学系 I Lを介 して、 所定のパターンが形成されたレチクル (マスク) Rを均一に照明する。 な お、 光源 L Sと照明光学系 I Lとの間の光路はケーシング (木図示) で密封され ており、 光源 L Sから照明光学系 I L中の最もレチクル側の光学部材までの空間 は、 露光光の吸収率が低い気体であるヘリゥムガスや窒素などの不活性ガスで置 換されているか、 あるいはほぼ真空状態に保持されている。 The exposure apparatus shown in FIG. 1 as a light source LS for supplying illumination light in the ultraviolet region, F 2 laser primary light source (wavelength 1 5 7 nm) or A r F excimer laser light source (wavelength 1 9 3 nm) Have. Light emitted from the light source LS passes through the illumination optical system IL. Then, the reticle (mask) R on which the predetermined pattern is formed is uniformly illuminated. The optical path between the light source LS and the illumination optical system IL is sealed with a casing (shown in a tree), and the space from the light source LS to the optical member closest to the reticle side in the illumination optical system IL is exposed to the exposure light. It has been replaced by inert gas such as helium gas or nitrogen, which is a gas with low absorption rate, or is kept almost in vacuum.
レチクル Rは、 レチクルホルダ R Hを介して、 レチクルステージ R S上におい て X Y平面に平行に保持されている。 レチクル Rには転写すべきパターンが形成 されており、 パターン領域全体のうち X方向に沿って長辺を有し且つ Y方向に沿 つて短辺を有する矩形状のパタ一ン領域が照明される。 レチクルステージ R Sは、 図示を省略した駆動系の作用により、 レチクル面 (すなわち X Y平面) に沿って 二次元的に移動可能であり、 その位置座標はレチクル移動鏡 RMを用いた干渉計 R I Fによって計測され且つ位置制御されるように構成されている。  The reticle R is held in parallel with the XY plane on the reticle stage RS via a reticle holder RH. A pattern to be transferred is formed on reticle R, and a rectangular pattern area having a long side along the X direction and a short side along the Y direction in the entire pattern area is illuminated. . The reticle stage RS can be moved two-dimensionally along the reticle plane (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are measured by an interferometer RIF using a reticle moving mirror RM. And the position is controlled.
レチクル Rに形成されたパターンからの光は、 投影光学系 P Lを介して、 感光 性基板であるウェハ W上にレチクルパターン像を形成する。 ウェハ Wは、 ウェハ テーブル (ウェハホルダ) WTを介して、 ウェハステージ W S上において X Y平 面に平行に保持されている。 そして、 レチクル R上での矩形状の照明領域に光学 的に対応するように、 ウェハ W上では X方向に沿って長辺を有し且つ Y方向に沿 つて短辺を有する矩形状の露光領域にパターン像が形成される。 ウェハステージ W Sは、 図示を省略した駆動系の作用によりウェハ面 (すなわち X Y平面) に沿 つて二次元的に移動可能であり、 その位置座標はウェハ移動鏡 WMを用いた干渉 計 W I Fによって計測され且つ位置制御されるように構成されている。  Light from the pattern formed on the reticle R forms a reticle pattern image on the wafer W as a photosensitive substrate via the projection optical system PL. The wafer W is held in parallel with the XY plane on the wafer stage WS via a wafer table (wafer holder) WT. Then, on the wafer W, a rectangular exposure area having a long side along the X direction and a short side along the Y direction so as to optically correspond to the rectangular illumination area on the reticle R. A pattern image is formed on the substrate. The wafer stage WS can be moved two-dimensionally along the wafer surface (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are measured by an interferometer WIF using a wafer moving mirror WM. In addition, the position is controlled.
また、 図示の露光装置では、 投影光学系 P Lを構成する光学部材のうち最もレ チクル側に配置された光学部材 (本実施形態ではレンズ 1 5 1 ) と最もウェハ側 に配置された光学部材 (本実施形態ではレンズ 1 6 4 ) との間で投影光学系 P L の内部が気密状態を保つように構成され、 投影光学系 P Lの内部の気体はへリウ ムガスや窒素などの不活性ガスで置換されているか、 あるいはほぼ真空状態に保 持されている。  In the illustrated exposure apparatus, the optical member (the lens 15 1 in the present embodiment) disposed closest to the reticle and the optical member disposed closest to the wafer side (in the present embodiment) among the optical members constituting the projection optical system PL. In the present embodiment, the inside of the projection optical system PL is configured to maintain an airtight state with the lens 16 4), and the gas inside the projection optical system PL is replaced with an inert gas such as helium gas or nitrogen. It is kept or almost kept in a vacuum state.
さらに、 照明光学系 I Lと投影光学系 P Lとの間の狭い光路には、 レチクル R およびレチクルステージ R Sなどが配置されているが、 レチクル Rおよびレチク ルステージ R Sなどを密封包囲するケ一シング (不図示) の内部に窒素やへリウ ムガスなどの不活性ガスが充填されているか、 あるいはほぼ真空状態に保持され ている。 In addition, a narrow optical path between the illumination optical system IL and the projection optical system PL includes a reticle R And a reticle stage RS, etc., are placed. An inert gas such as nitrogen or helium gas is filled inside a casing (not shown) that hermetically surrounds the reticle R and the reticle stage RS. Alternatively, it is kept almost in a vacuum state.
また、 投影光学系 P Lとウェハ Wとの間の狭い光路には、 ウェハ Wおよびゥェ ハステージ W Sなどが配置されているが、 ゥェハ Wおよびウェハステージ W Sな どを密封包囲するケーシング (不図示) の内部に窒素やヘリウムガスなどの不活 性ガスが充填されているか、 あるいはほぼ真空状態に保持されている。 このよう に、 光源 L Sからウェハ Wまでの光路の全体に亘つて、 露光光がほとんど吸収さ れることのない雰囲気が形成されている。  In the narrow optical path between the projection optical system PL and the wafer W, the wafer W and the wafer stage WS are arranged, but a casing (not shown) that hermetically surrounds the wafer W and the wafer stage WS. ) Is filled with an inert gas such as nitrogen or helium gas, or is maintained in a nearly vacuum state. Thus, an atmosphere in which the exposure light is hardly absorbed is formed over the entire optical path from the light source LS to the wafer W.
上述したように、 投影光学系 P Lによって規定されるレチクル R上の照明領域 およびゥェ八 W上の露光領域 (すなわち実効露光領域 E R) は、 Y方向に沿って 短辺を有する矩形状である。 したがって、 駆動系および干渉計 (R I F、 W I F ) などを用いてレチクル Rおよびウェハ Wの位置制御を行いながら、 矩形状の 露光領域および照明領域の短辺方向すなわち Y方向に沿ってレチクルステージ R Sとウェハステージ W Sとを、 ひいてはレチクル Rとウェハ Wとを同期的に移動 (走査) させることにより、 ウェハ W上には露光領域の長辺に等しい幅を有し且 つウェハ Wの走査量 (移動量) に応じた長さを有する領域に対してレチクルパタ ーンが走査露光される。  As described above, the illumination area on the reticle R and the exposure area on the wafer W (that is, the effective exposure area ER) defined by the projection optical system PL are rectangular with short sides along the Y direction. . Therefore, while controlling the position of the reticle R and the wafer W using a drive system and an interferometer (RIF, WIF), the reticle stage RS is moved along the short side direction of the rectangular exposure area and the illumination area, that is, along the Y direction. By moving (scanning) the wafer stage WS and, consequently, the reticle R and the wafer W synchronously, the wafer W has a width equal to the long side of the exposure area and the scanning amount of the wafer W (moving). The reticle pattern is scanned and exposed to a region having a length corresponding to the amount of the reticle.
第 2図は、 本発明の実施形態にかかる収差測定装置の構成を概略的に示す図で ある。 なお、 第 2図においても、 投影光学系 1 5 ( P L ) の基準光軸に平行に Z 軸を、 基準光軸に垂直な面内において第 2図の紙面に平行に Y軸を、 第 2図の紙 面に垂直に X軸を設定している。 本実施形態の収差測定装置では、 計測対象であ る投影光学系 1 5 (第 1図の投影光学系 P Lに対応) に対して物体側 (レチクル R側) から露光波長の光束を照射し、 像側 (ウェハ W側) でその光束を受光する。 そして、 像側で受光した光束に基づいて、 投影光学系 1 5を透過する際に生じた 収差 (波面収差) を計測する。  FIG. 2 is a diagram schematically showing a configuration of an aberration measuring device according to an embodiment of the present invention. Also in FIG. 2, the Z axis is parallel to the reference optical axis of the projection optical system 15 (PL), and the Y axis is parallel to the plane of FIG. 2 in a plane perpendicular to the reference optical axis. The X axis is set perpendicular to the paper in the figure. In the aberration measuring apparatus of the present embodiment, the projection optical system 15 (corresponding to the projection optical system PL in FIG. 1) to be measured is irradiated with a light beam having an exposure wavelength from the object side (the reticle R side). The light beam is received on the image side (Wafer W side). Then, based on the light beam received on the image side, the aberration (wavefront aberration) generated when transmitting through the projection optical system 15 is measured.
第 2図を参照すると、 本実施形態の収差測定装置は、 第 1図の露光装置と同様 に、 F 2レーザ一光源 (波長 1 5 7 n m) または A r Fエキシマレーザ一光源 (波長 1 9 3 n m) からなる光源 1を備えている。 光源 1を発した光束 L 1は、 ミラー 3およびビーム窓 4を経て、 整形光学系 7に入射する。 上述したように、 このような短波長の光束は大気中の酸素による激しい吸収を受けるので、 光源 1 からビーム窓 4までの光路は気密性の遮蔽部材 5で覆われている。 同様に、 整形 光学系 7から後述するテストレチクル 1 4までの光路も、 気密性の遮蔽部材 6で 覆われている。 遮蔽部材 5および 6の内部には、 窒素や希ガス等のように使用波 長に対する吸収の少ないガスが充填 (ガス置換) されている。 あるいは、 遮蔽部 材 5および 6の内部を真空状態にしても良い。 Referring to FIG. 2, the aberration measuring apparatus according to the present embodiment has the same configuration as the exposure apparatus of FIG. In addition, a light source 1 including one F 2 laser light source (wavelength: 157 nm) or one ArF excimer laser light source (wavelength: 193 nm) is provided. The light beam L 1 emitted from the light source 1 enters the shaping optical system 7 via the mirror 3 and the beam window 4. As described above, since such a short-wavelength light beam is strongly absorbed by oxygen in the atmosphere, the light path from the light source 1 to the beam window 4 is covered with the airtight shielding member 5. Similarly, the optical path from the shaping optical system 7 to a test reticle 14 described later is also covered with an airtight shielding member 6. The insides of the shielding members 5 and 6 are filled (gas replacement) with a gas such as nitrogen or a rare gas, which has a small absorption for the used wavelength. Alternatively, the insides of the shielding members 5 and 6 may be evacuated.
整形光学系 7は、 光束 1をほぼ平行光束に変換し且つ光束内の照度をほぼ均 一化するための光学系であり、 ビームエキスパンダ一ゃシリンドリカルレンズ等 を含んでいる。 整形光学系 7の作用により平行光束に変換され且つ照度の均一化 された光束 L 2は、 偏光制御光学系 8に入射する。 偏光制御光学系 8は、 本発明 の特徴的な構成要素であり、 入射光束 L 2の偏光状態を所望の状態に制御する。 偏光制御光学系 8の詳細な構成および作用については後述する。 偏光制御光学系 8の作用によって偏光状態の制御された光束 L 3は、 ミラー 9により反射された 後、 可動式送光光学系 1 0に入射する。  The shaping optical system 7 is an optical system for converting the light beam 1 into a substantially parallel light beam and making the illuminance in the light beam substantially uniform, and includes a beam expander, a cylindrical lens, and the like. The light beam L 2, which is converted into a parallel light beam by the operation of the shaping optical system 7 and has uniform illuminance, enters the polarization control optical system 8. The polarization control optical system 8 is a characteristic component of the present invention, and controls the polarization state of the incident light beam L2 to a desired state. The detailed configuration and operation of the polarization control optical system 8 will be described later. The light beam L 3 whose polarization state is controlled by the operation of the polarization control optical system 8 is reflected by the mirror 9 and then enters the movable light transmission optical system 10.
可動式送光光学系 1 0は、 ミラー 1 1と集光レンズ群 1 2とから構成されてい る。 したがって、 ミラ一 9により反射されて可動式送光光学系 1 0に入射した光 束 L 3は、 ミラ一 1 1で反射され、 集光レンズ群 1 2を介して集光された後、 テ ストレチクル 1 4上の検査用パターンを照明する。 ここで、 ミラー 1 1と集光レ ンズ群 1 2とを一体的に保持する可動式送光光学系 1 0は、 遮蔽部材 6に設けら れたガイドレール 1 3上を、 テストレチクル 1 4に平行な面 (X Y平面) に沿つ て二次元的に移動可能に構成されている。 こうして、 可動式送光光学系 1 0を介 した光束 L 3は、 テストレチクル 1 4上の任意の箇所を照明することが可能であ る。  The movable light-sending optical system 10 includes a mirror 11 and a condenser lens group 12. Accordingly, the light beam L3 reflected by the mirror 9 and incident on the movable light transmitting optical system 10 is reflected by the mirror 11 and condensed through the condenser lens group 12, and then the light beam L3. Illuminate the pattern for inspection on Stretchle 14. Here, the movable light-transmitting optical system 10 that integrally holds the mirror 11 and the condenser lens group 12 moves on the guide rail 13 provided on the shielding member 6 on the test reticle 14. It is configured to be two-dimensionally movable along a plane (XY plane) parallel to the plane. Thus, the light beam L3 via the movable light-transmitting optical system 10 can illuminate an arbitrary position on the test reticle 14.
テストレチクル 1 4上の検査用パターンを透過した光束 (計測光束) は、 計測 対象である投影光学系 1 5に入射する。 投影光学系 1 5に入射した光束は、 レン ズ 1 5 1および 1 5 2を透過し、 平面ミラ一 1 5 3の第 1反射面で反射された後、 レンズ 1 5 4および 1 5 5を介して凹面反射鏡 1 5 6に入射する。 凹面反射鏡 1 5 6で反射された光束は、 レンズ 1 5 4および 1 5 5を介して、 平面ミラー 1 5 3に再び入射する。 平面ミラー 1 5 3の第 2反射面で反射された光束は、 レンズ 1 5 7、 1 5 8、 1 5 9、 1 6 0、 1 6 1、 1 6 2、 1 6 3および 1 6 4を順次 透過し、 収差計測ュニット 1 7に入射する。 The light beam (measurement light beam) transmitted through the inspection pattern on the test reticle 14 enters the projection optical system 15 to be measured. The light beam incident on the projection optical system 15 is After passing through the lenses 15 1 and 15 2 and being reflected by the first reflecting surface of the plane mirror 15 3, the light enters the concave reflecting mirror 15 6 via the lenses 15 4 and 15 5. The light beam reflected by the concave reflecting mirror 156 enters the plane mirror 153 again through the lenses 154 and 155. The light beam reflected by the second reflecting surface of the flat mirror 15 3 passes through the lenses 15 7, 15 8, 15 9, 16 0, 16 1, 16 2, 16 3 and 16 4. The light sequentially passes through and enters the aberration measurement unit 17.
ここで、 収差計測ユニット 1 7は、 投影光学系 1 5が露光装置で使用される際 にウェハが配置される位置 (像面位置) を基準にして配置されている。 なお、 投 影光学系 1 5が F 2レーザー光源の使用を前提として設計されている場合、 光学 系を構成するほぼすベてのレンズは蛍石 (フッ化カルシウム結晶) 等の立方晶系 の結晶材料で形成されている。 また、 投影光学系 1 5が A r Fエキシマレーザー 光源の使用を前提として設計されている場合にも、 蛍石等の立方晶系の結晶材料 で形成されたレンズを含むことになる。 なお、 本実施形態では、 反射屈折型の投 影光学系 (1 5を想定しているが、 計測対象の光学系は屈折型であってもよい。 収差計測ュニット 1 7は、 投影光学系 1 5の収差 (波面収差) を計測するュニ ットであり、 その詳細な構成および作用については後述する。 収差計測ユニット 1 7は、 定盤 2 4上を X Y平面に沿って移動可能なステージ 1 9上に載置されて いる。 本実施形態では、 収差計測ュニット 1 7と可動式送光光学系 1 0とを投影 光学系 1 5を介して光学的に対応する位置関係に設置することによって、 投影光 学系 1 5の波面収差の計測が可能になる。 そして、 この光学的な対応関係を保つ たまま、 収差計測ユニット 1 7と可動式送光光学系 1 0とを X Y平面に沿って二 次元的に移動させることにより、 投影光学系 1 5の有効視野の全体に亘つて収差 計測することが可能になる。 Here, the aberration measurement unit 17 is arranged with reference to a position (image plane position) where the wafer is arranged when the projection optical system 15 is used in the exposure apparatus. When the projection optical system 15 is designed on the assumption that an F 2 laser light source is used, almost all lenses constituting the optical system are made of a cubic system such as fluorite (calcium fluoride crystal). It is formed of a crystalline material. Further, even when the projection optical system 15 is designed on the assumption that an ArF excimer laser light source is used, a lens formed of a cubic crystal material such as fluorite is included. In the present embodiment, a catadioptric projection optical system ( 15 is assumed, but the optical system to be measured may be a refraction type. The aberration measurement unit 17 is a projection optical system 1 This unit measures the aberration (wavefront aberration) of 5, and its detailed configuration and operation will be described later.The aberration measurement unit 17 is a stage that can move along the XY plane on the surface plate 24. In this embodiment, the aberration measuring unit 17 and the movable light-transmitting optical system 10 are set in a positional relationship optically corresponding to each other via the projection optical system 15. This makes it possible to measure the wavefront aberration of the projection optical system 15. Then, while maintaining this optical correspondence, the aberration measurement unit 17 and the movable light transmission optical system 10 are placed on the XY plane. By moving the projection optical system 15 two-dimensionally along the It is possible to go-between aberration measurement.
ここで、 収差計測ュニット 1 7の内部光路および投影光学系 1 5と収差計測ュ ニット 1 7との間の光路についても、 酸素による光の吸収を避けるために、 その 空間をガス置換するか、 あるいは真空にする必要がある。 したがって、 収差計測 ユニット 1 7、 ステージ 1 9、 定盤 2 4および後述する移動鏡 1 8がパージ隔壁 1 6で覆われ、 その内部がガスパージまたは真空引きされている。 また、 パージ 隔壁 1 6と定盤 2 4との間には、 防振材 2 6 Aおよび 2 6 Bが設けられている。 収差計測に際して、 その精度を一層向上させるには、 収差計測ユニット 1 7の 位置および可動式送光光学系 1 0の位置を干渉計等の計測手段でそれぞれ計測す ることが好ましい。 第 2図に示す例では、 収差計測ユニット 1 7の位置を計測す るためのレ一ザ一干渉計 2 2を台座 2 1上に設置している。 レーザー干渉計 2 2 から射出されたレーザー光は、 パージ隔壁 1 6に設けられた気密性のガラス窓 1 6 aを介してパージ隔壁 1 6の内部に入射し、 ステージ 1 9上に設けられた移動 鏡 1 8で反射された後に、 ガラス窓 1 6 aを介してレーザ一干渉計 2 2に戻る。 レーザー干渉計 2 2は、 移動鏡 1 8の反射面の位置を、 ひいては収差計測ュニッ ト 1 7の位置を計測する。 Here, for the internal optical path of the aberration measurement unit 17 and the optical path between the projection optical system 15 and the aberration measurement unit 17, in order to avoid absorption of light by oxygen, the space is replaced with a gas, Or it is necessary to make a vacuum. Therefore, the aberration measurement unit 17, the stage 19, the surface plate 24, and the movable mirror 18, which will be described later, are covered with the purge partition 16, and the inside thereof is gas-purged or evacuated. Also purge Between the bulkhead 16 and the surface plate 24, vibration isolator 26A and 26B are provided. In order to further improve the accuracy of the aberration measurement, it is preferable to measure the position of the aberration measurement unit 17 and the position of the movable light transmitting optical system 10 by measuring means such as an interferometer. In the example shown in FIG. 2, a laser-interferometer 22 for measuring the position of the aberration measurement unit 17 is installed on the pedestal 21. The laser light emitted from the laser interferometer 22 enters the inside of the purge bulkhead 16 through the airtight glass window 16 a provided in the purge bulkhead 16, and is provided on the stage 19. After being reflected by the moving mirror 18, it returns to the laser-interferometer 22 through the glass window 16 a. The laser interferometer 22 measures the position of the reflecting surface of the movable mirror 18 and thus the position of the aberration measurement unit 17.
第 2図では、 収差計測ユニット 1 7の Y方向位置を計測するための干渉計 2 2 のみを示しているが、 その X方向位置を計測するための干渉計を設けることがさ らに好ましいことは言うまでもない。 また同様に、 可動式送光光学系 1 0の X方 向位置および Y方向位置を計測するための一対の干渉計を設けることが好ましい。 収差計測ュニット 1 7が計測した収差情報は、 電気信号として外部へ伝達される。 この場合、 収差計測ユニット 1 7からの信号線 (電気配線) 2 8をパージ隔壁 1 6の外へ導くには、 パージ隔壁 1 6に設けられた真空装置用の電流導入器 2 7を 用いるのが良い。  FIG. 2 shows only the interferometer 22 for measuring the position in the Y direction of the aberration measurement unit 17, but it is more preferable to provide an interferometer for measuring the position in the X direction. Needless to say. Similarly, it is preferable to provide a pair of interferometers for measuring the positions of the movable light transmitting optical system 10 in the X and Y directions. The aberration information measured by the aberration measurement unit 17 is transmitted to the outside as an electric signal. In this case, in order to guide the signal line (electrical wiring) 28 from the aberration measurement unit 17 to the outside of the purge partition 16, a current introducer 27 for a vacuum device provided on the purge partition 16 is used. Is good.
こうして、 電流導入器 2 7を介して外部へ導かれた信号線 2 8は、 処理装置 2 9に接続されている。 処理装置 2 9は、 収差計測ュニット 1 7が検出した収差情 報を信号処理して、 投影光学系 1 5の波面収差を算定する。 また、 処理装置 2 9 は、 必要に応じて、 レーザ一干渉計 2 2からの出力に基づいて収差計測ユニット 1 7の位置を読み込み、 ステージ 1 9に移動指令を供給する。 処理装置 2 9から ステージ 1 9への信号線 2 5は、 パージ隔壁 1 6に設けられた電流導入器 2 6を 介して、 パージ隔壁 1 6の内部に導かれている。  Thus, the signal line 28 led to the outside via the current introducer 27 is connected to the processing device 29. The processing device 29 performs signal processing on the aberration information detected by the aberration measurement unit 17 to calculate the wavefront aberration of the projection optical system 15. Further, the processing device 29 reads the position of the aberration measurement unit 17 based on the output from the laser-interferometer 22 as necessary, and supplies a movement command to the stage 19. A signal line 25 from the processing device 29 to the stage 19 is guided to the inside of the purge partition 16 via a current introducer 26 provided in the purge partition 16.
第 3図は、 第 2図の収差計測ュニットとしてのシェアリング干渉計の構成を概 略的に示す図である。 本実施形態では、 第 2図の収差計測ユニット 1 7として、 第 3図に示すようなシェアリング干渉計 1 7 Aを用いることができる。 この場合、 テストレチクル 1 4の検査用パ夕一ンとして、 いわゆるピンホール (遮光部のパ ックグランド上に形成された微小透過開口) を使用する。 第 3図を参照すると、 テストレチクル 1 4の検査用パターンとしてのピンホールの投影光学系 1 5によ る投影像は、 シェアリング干渉計 1 7 Aの上方近傍の位置 F Pに形成される。 位置 F Pに形成されたピンホール像からの発散光束は、 レンズ群 1 7 1によつ て平行光束に変換され、 ピッチの等しい位相グレーティング (デューティーは 1 : 1で位相差は 1 8 0度) 1 7 2 aおよび 1 7 3 aが形成された 2枚の透過性 平行平面板 1 7 2および 1 7 3に入射する。 第 1の平行平面板 1 7 2に入射した 光束は、 第 1の位相グレーティング 1 7 2 aによって、 図中左右に所定角度離れ た 2本の回折光に分割される。 次いで、 この 2光束は第 2の平行平面板 1 7 3に 入射し、 第 2の位相グレーティング 1 7 3 aによって、 再度同じ角度で左右 2方 向にそれぞれ回折される。 FIG. 3 is a diagram schematically showing a configuration of a sharing interferometer as the aberration measurement unit of FIG. In the present embodiment, a sharing interferometer 17A as shown in FIG. 3 can be used as the aberration measurement unit 17 in FIG. in this case, A so-called pinhole (a minute transmission opening formed on the back ground of the light-shielding portion) is used as an inspection panel for the test reticle 14. Referring to FIG. 3, a projection image of a pinhole as an inspection pattern of the test reticle 14 by the projection optical system 15 is formed at a position FP near and above the sharing interferometer 17A. The divergent luminous flux from the pinhole image formed at position FP is converted to a parallel luminous flux by the lens group 171, and is a phase grating with the same pitch (duty is 1: 1 and phase difference is 180 degrees) The two parallel plane plates 17 2 and 1 73 on which 17 2 a and 17 3 a are formed are incident. The light beam incident on the first parallel plane plate 172 is split by the first phase grating 1772a into two diffracted lights separated by a predetermined angle left and right in the figure. Next, the two light beams enter the second parallel plane plate 173, and are diffracted again by the second phase grating 173a in the left and right directions at the same angle.
その結果、 第 1の位相ダレ一ティング 1 7 2 aで左に回折し、 第 2の位相グレ 一ティング 1 7 3 aで右に回折した光束 (光束 A) と、 第 1の位相ダレ一ティン グ 1 7 2 aで右に回折し、 第 2の位相グレーティング 1 7 3 aで左に回折した光 束 (光束 とは、 図中実線で示すように同一方向に沿ってレンズ群 1 7 4に入 射する。 レンズ群 1 7 4を介して集光された光束は、 レンズ群 1 Ί 6を介して集 光された後、 C C D等の撮像素子 1 Ί 7の撮像面上に 2つの光束の干渉縞を形成 する。 光束 Aと光束 Bとは、 元々同一の光束であり且つ投影光学系 1 5の波面収 差情報を有する。 しかしながら、 撮像素子 1 7 7上では、 位相グレーティング 1 7 2 aおよび 1 7 3 aのピッチと、 位相グレーティング 1 7 2 aと位相ダレ一テ イング 1 7 3 aとの光軸に沿った間隔とで決まる量だけ、 光束 Aと光束 Bとが位 置シフトして重ね合わされることになる。  As a result, the light beam (light beam A) diffracted to the left at the first phase grating 1772a and to the right at the second phase grating 1773a, and the first phase grating A light beam diffracted to the right at 172a and then diffracted to the left at the second phase grating 173a (a light beam is transmitted to the lens group 174 along the same direction as shown by the solid line in the figure. The luminous flux condensed through the lens group 174 is condensed through the lens group 176, and then the two luminous fluxes are focused on the imaging surface of the image sensor 174 such as a CCD. The light beam A and the light beam B are originally the same light beam and have the wavefront difference information of the projection optical system 15. However, on the image sensor 1777, the phase grating 17a is formed. Is determined by the pitch along the optical axis between the pitch of the phase grating 1 and the pitch of the phase grating. Therefore, the light beam A and the light beam B are superposed with a positional shift.
こうして、 撮像素子 1 7 7上の干渉縞には投影光学系 1 5の波面収差情報の上 記位置シフト量分だけの差分が現れることになり、 この干渉縞を解析することに より投影光学系 1 5の波面収差 (収差) を算定することができる。 なお、 上述の ように、 位相グレーティング 1 7 2 aと 1 7 3 aとの間隔を変更すると、 この位 置シフト量すなわち差分間隔を変更することができるので、 2枚の平行平面板 1 7 2および 1 7 3は光軸方向 (図中上下方向) に移動可能な構造とすることが望 ましい。 In this way, the interference fringes on the image sensor 1777 show a difference corresponding to the above-mentioned position shift amount of the wavefront aberration information of the projection optical system 15, and the projection optical system is analyzed by analyzing the interference fringes. The wavefront aberration (aberration) of 15 can be calculated. As described above, by changing the distance between the phase gratings 17 2 a and 17 3 a, the amount of this position shift, that is, the difference distance can be changed. It is desirable that 72 and 173 have a structure that can be moved in the optical axis direction (vertical direction in the figure).
また、 位相グレーティング 1 7 2 aおよび 1 7 3 aから生じる回折光は、 上記 の光束 Aおよび光束 Bだけではなく、 図中破線で示すような不要な回折光も生じ、 この不要光が波面収差測定の精度を悪化させる恐れがある。 そこで、 レンズ群 1 7 4とレンズ群 1 7 6との間に開口絞り 1 7 5を設け、 この開口絞り 1 7 5によ り不要な回折光を遮蔽することが好ましい。 なお、 シェアリング干渉計 1 7 Aに おいても、 使用する測定光が吸収されないように、 その内部をガス置換するか、 あるいは真空にする必要がある。 また、 場合によっては、 撮像素子 1 7 7からの 信号線も、 真空装置用の電流導入器等を介して、 シェアリング干渉計 1 7 Aの外 部へ導くことが望ましい。  In addition, the diffracted light generated from the phase gratings 172a and 1773a generates not only the light flux A and the light flux B described above, but also unnecessary diffracted light as indicated by the broken line in the figure, and the unnecessary light has a wavefront aberration. The accuracy of the measurement may be degraded. Therefore, it is preferable to provide an aperture stop 175 between the lens group 174 and the lens group 176, and shield unnecessary diffracted light with the aperture stop 175. Even in the sharing interferometer 17A, it is necessary to replace the inside of the gas with the inside or to evacuate the inside so that the measuring light to be used is not absorbed. In some cases, it is desirable that the signal line from the image sensor 177 be guided to the outside of the sharing interferometer 17A via a current introducer for a vacuum device or the like.
第 4図は、 第 2図の収差計測ュニットとしてのシャツクハルトマンセンサーの 構成を概略的に示す図である。 本実施形態では、 第 2図の収差計測ュニット 1 7 として、 第 4図に示すようなシャツクハルトマンセンサー 1 7 Bを用いることも できる。 この場合にも、 テストレチクル 1 4上の検査用パターンとしてピンホー ルを使用する。 ピンホールの投影光学系 1 5による投影像は、 シャツクハルトマ ンセンサ一 1 7 Bの上方近傍の位置 F Pに形成される。  FIG. 4 is a diagram schematically showing a configuration of a Schattt-Hartmann sensor as the aberration measurement unit of FIG. In the present embodiment, as the aberration measurement unit 17 in FIG. 2, a Schartsquart sensor 17B as shown in FIG. 4 may be used. Also in this case, a pinhole is used as an inspection pattern on the test reticle 14. A projection image of the pinhole by the projection optical system 15 is formed at a position FP near and above the Schattsquart Man sensor 17B.
位置 F Pに形成されたピンホール像からの発散光束は、 レンズ群 1 7 8を介し て平行光束に変換された後、 マイクロレンズアレイ 1 7 9に入射する。 マイクロ レンズアレイ 1 7 9は、 フライアイレンズと同様に、 多数の微小レンズ要素を二 次元的に稠密に配列することによって構成された光学素子である。 マイクロレン ズアレイ 1 7 9に平行光束が入射すると、 入射光束は各微小レンズ要素によって 波面分割され、 その後側焦点面の近傍には集光点 1 8 1がそれぞれ形成される。 多数の集光点 1 8 1が形成される位置には、 C C D等の撮像素子 1 8 0の撮像面 が位置決めされている。 こうして、 撮像素子 1 8 0により、 各集光点 1 8 1の位 置がそれぞれ計測される。  The divergent light beam from the pinhole image formed at the position FP is converted into a parallel light beam via the lens group 178, and then enters the microlens array 179. The micro lens array 179 is an optical element configured by two-dimensionally densely arranging a large number of micro lens elements like a fly-eye lens. When a parallel light beam enters the micro-lens array 179, the incident light beam is split into wavefronts by the respective minute lens elements, and thereafter, condensing points 181 are formed in the vicinity of the side focal plane. An imaging surface of an imaging element 180 such as a CCD is positioned at a position where a large number of light condensing points 181 are formed. In this way, the position of each focal point 18 1 is measured by the image sensor 180.
シャツクハルトマンセンサ一 1 7 Bに入射する光束は、 投影光学系 1 5を透過 した光束であるため、 投影光学系 1 5の収差 (波面収差) によって、 その波面が 微妙に変形している。 その結果、 各集光点 1 8 1の位置は、 投影光学系 1 5が無 収差のときに集光する各基準位置から、 投影光学系 1 5の波面収差に依存する微 小量だけそれぞれ位置ずれする。 したがって、 シャツクハルトマンセンサ一 1 7 Bでは、 各集光点 1 8 1の各基準位置からの位置ずれ量を計測することにより、 投影光学系 1 5の波面収差を算定することができる。 The luminous flux incident on the Schatts-Hartmann sensor 17B is a luminous flux transmitted through the projection optical system 15, and the wavefront thereof is changed by the aberration (wavefront aberration) of the projection optical system 15. It is slightly deformed. As a result, the position of each condensing point 18 1 is shifted by a small amount depending on the wavefront aberration of the projection optical system 15 from each reference position where light is condensed when the projection optical system 15 has no aberration. Shift. Therefore, the Schatt-Khaltmann sensor 17 B can calculate the wavefront aberration of the projection optical system 15 by measuring the amount of displacement of each light-collecting point 18 1 from each reference position.
なお、 収差計測ユニット 1 7は、 上述のシェアリング干渉計 1 7 Aおよびシャ ックハルトマンセンサー 1 7 Bに限定されることなく、 たとえば前述の P D Iを 用いることもできる。 あるいは、 テストレチクル 1 4上の検査パターンとしての ピンホールの投影光学系 1 5による投影像そのものを検出し、 その空間像のフー リェ変換から波面収差を算定する方法を用いることもできる。  The aberration measurement unit 17 is not limited to the above-described sharing interferometer 17A and Shack-Hartmann sensor 17B, but may use, for example, the aforementioned PDI. Alternatively, a method of detecting the projection image itself of the pinhole as the inspection pattern on the test reticle 14 by the projection optical system 15 and calculating the wavefront aberration from the Fourier transform of the aerial image can be used.
また、 以上の説明では、 計測対象である投影光学系 1 5に対して物体側 (レチ クル側) から露光波長の光束を照射し、 その像側 (ウェハ側) で受光した光束に 基づいて投影光学系 1 5を透過する際に生じた収差 (波面収差) を計測する構成 を採用している。 しかしながら、 これとは反対に、 投影光学系 1 5に対して像側 (ウェハ側) から露光波長の光束を照射し、 その物体側で受光した光束に基づい て投影光学系 1 5を透過する際に生じた波面収差を計測する構成を採用すること もできる。  In the above description, the projection optical system 15 to be measured is irradiated with a light beam having an exposure wavelength from the object side (reticle side), and the projection is performed based on the light beam received on the image side (wafer side). A configuration is used to measure the aberration (wavefront aberration) generated when the light passes through the optical system 15. However, on the contrary, when the projection optical system 15 is irradiated with a light beam having an exposure wavelength from the image side (wafer side) from the image side (wafer side) and passes through the projection optical system 15 based on the light beam received on the object side. It is also possible to adopt a configuration for measuring the wavefront aberration that has occurred.
また、 投影光学系 1 5の波面収差を測定する他の方法として、 フィゾー干渉計 ゃトワイマングリーン干渉計を応用した測定方法を採用するのであれば、 投影光 学系 1 5の像側または物体側のいずれか一方の側を、 照射側 (送光側) および受 光側に設定することもできる。 この場合、 照射側でも受光側でもない他方の側に おける計測光束の集光点の近傍に、 その集光点を球心とする球面反射鏡を設置し、 この球面反射鏡により照射側からの計測光を受光側へ戻すように構成すればよい。 第 5図は、 第 2図の偏光制御光学系の構成を概略的に示す図である。 第 5図を 参照すると、 偏光制御光学系 8への入射光束 L 2は、 第 1のプリズム部材 8 1 A と第 2のプリズム部材 8 1 Bとから構成されたロシヨンプリズム 8 1に入射する。 ロシヨンプリズム 8 1は、 フッ化マグネシウム等の大きな複屈折を有する 1軸性 結晶材料で形成されている。 ロシヨンプリズム 8 1の構成は、 一般的なロシヨン プリズムと同様であり、 第 1のプリズム部材 81 Aでは 1軸性結晶の光学軸が光 束 L 2の進行方向と平行な方向 (Z方向) に設定され、 第 2のプリズム部材 81 Bでは 1軸性結晶の光学軸が第 5図の紙面と垂直な方向 (Y方向) に設定されて いる。 In addition, as another method for measuring the wavefront aberration of the projection optical system 15, if a measurement method using a Fizeau interferometer ゃ Twyman Green interferometer is adopted, the image side of the projection optical system 15 or an object may be used. Either side can be set as the irradiation side (transmitting side) and the receiving side. In this case, a spherical reflector whose center is the spherical point is set near the focal point of the measurement light beam on the other side that is neither the irradiation side nor the light receiving side. What is necessary is just to comprise so that measurement light may be returned to a light receiving side. FIG. 5 is a diagram schematically showing a configuration of the polarization control optical system of FIG. Referring to FIG. 5, the incident light beam L2 to the polarization control optical system 8 is incident on a location prism 81 composed of a first prism member 81A and a second prism member 81B. . The location prism 81 is formed of a uniaxial crystal material having a large birefringence such as magnesium fluoride. The composition of the Rossion prism 81 is a general Rossion It is the same as the prism, and the optical axis of the uniaxial crystal is set in the direction parallel to the traveling direction of the light beam L2 (Z direction) in the first prism member 81A. The optical axis of the axial crystal is set in the direction (Y direction) perpendicular to the plane of the paper in Fig. 5.
ロシヨンプリズム 8 1では、 入射光束 L 2のうち、 紙面に平行な方向 (X方 向) に偏光方向を有する直線偏光の光束は直進し、 紙面に垂直な方向 (Y方向) に偏光方向を有する直線偏光の光束は屈折作用を受ける。 すなわち、 ロシヨンプ リズム 81への入射光束 L 2は、 紙面に平行な偏光方向を有する直線偏光の直進 光 LO (図中実線で示す) と、 紙面に垂直な偏光方向を有する直線偏光の屈折光 LE (図中破線で示す) とに分割される。 屈折光 LEは開口絞り 84により遮蔽 され、 直進光 LOのみが開口絞り 84を通過して 1Z2波長板 82に入射する。 このように、 ロシヨンプリズム 81は、 入射光束から所定の方向に沿って偏光 した所定の直線偏光の光束を分離するための直線偏光分離手段を構成している。 なお、 F2レーザ一光も A r Fレーザ一光もある程度の偏光特性を有するので、 入射光束 L 2により多く含まれる直線偏光成分の方向に直進光 LOの偏光方向を 合致させると、 光量確保の点で有利になる。 この目的のためには、 第 2のプリズ ム部材 81 Bの光学軸と、 光束 L 2により多く含まれる直線偏光成分の方向とを 直交させることが好ましい。 In the location prism 81, of the incident light beam L2, a linearly polarized light beam having a polarization direction in a direction parallel to the paper surface (X direction) goes straight and changes the polarization direction in a direction perpendicular to the paper surface (Y direction). The linearly polarized light beam has a refraction effect. That is, the light beam L 2 incident on the location prism 81 is composed of linearly polarized light LO (shown by a solid line) having a polarization direction parallel to the paper surface and linearly refracted light LE having a polarization direction perpendicular to the paper surface. (Shown by a broken line in the figure). The refracted light LE is shielded by the aperture stop 84, and only the straight light LO passes through the aperture stop 84 and enters the 1Z2 wavelength plate 82. Thus, the location prism 81 constitutes a linearly polarized light separating means for separating a predetermined linearly polarized light beam polarized along a predetermined direction from an incident light beam. In addition, since one F 2 laser beam and one Ar F laser beam have a certain degree of polarization characteristics, if the polarization direction of the straight-ahead light LO matches the direction of the linearly polarized light component contained more in the incident light beam L 2, the amount of light will be secured. It is advantageous in terms of. For this purpose, it is preferable that the optical axis of the second prism member 81B and the direction of the linearly polarized light component included in the light beam L2 be orthogonal to each other.
上述したように、 直進光 LOは、 1/2波長板 82に入射する。 1/2波長板 82は、 フッ化マグネシウム等の 1軸性結晶材料、 あるいは蛍石等の立方晶系の 結晶材料で形成されている。 1/2波長板 82を 1軸性結晶で形成する場合、 そ の光学軸が Z軸と直交するように設定する。 これは、 一般的な 1Z2波長板と同 様であり、 1/2波長板 82の長さ S 1の設定方法も一般的な 1Z 2波長板と同 じである。  As described above, the straight light LO enters the half-wave plate 82. The half-wave plate 82 is formed of a uniaxial crystal material such as magnesium fluoride or a cubic crystal material such as fluorite. When the half-wave plate 82 is formed of a uniaxial crystal, its optic axis is set to be orthogonal to the Z axis. This is the same as a general 1Z2 wavelength plate, and the setting method of the length S1 of the 1/2 wavelength plate 82 is the same as that of a general 1Z2 wavelength plate.
一方、 1Z 2波長板 82を蛍石等の立方晶系の結晶材料で形成する場合、 その 結晶軸 [1 10] が Z軸と一致するように設定する。 これは、 結晶軸 [1 10] に平行な方向に沿って光束が進むときに、 複屈折が最大になるからである。 結晶 が蛍石の場合、 結晶軸 [110] に平行な方向に進む光での複屈折量は、 結晶軸 [100] の方向に偏光方向 (電場方向) を有する光の屈折率 n 100と、 結晶 軸 [0— 1 1] の方向に偏光方向を有する光の屈折率 n 01 1との差として、 波 長 1 93 nmの A r Fレーザー光に対しては 3. 2 X 10- 7程度であり、 波長 1 57 nmの?2レ一ザ一光に対しては 1 1. 2 X 10— 7程度となる。 On the other hand, when the 1Z two-wavelength plate 82 is formed of a cubic crystal material such as fluorite, the crystal axis [1 10] is set so as to coincide with the Z axis. This is because the birefringence is maximized when the light beam travels along a direction parallel to the crystal axis [1 10]. If the crystal is fluorite, the birefringence for light traveling in a direction parallel to the crystal axis [110] is The difference between the refractive index n 100 of light having a polarization direction (electric field direction) in the direction of [100] and the refractive index n 01 1 of light having a polarization direction in the direction of the crystal axis [0—11] is for a r F laser length 1 93 nm 3. is about 2 X 10- 7, the wavelength 1 of 57 nm? 2 is about 1 1. 2 X 10- 7 for record one The first light.
これは、 蛍石を 1 cm進行する毎に、 進行する両直線偏光での波面の相対位置 関係が、 Ar Fレーザー光では 3. 2 nm変化し、 2レ一ザ一光では 1 1. 2 nm変化することを表わしている。 したがって、 蛍石で形成された 1Z 2波長板 82の長さ S 1を 7. 0 cmに設定すると、 F 2レーザー光に対しては、 7. 0 I I. 2 nm 78 nmとなり、 両直線偏光の間に 1 Z 2波長の光路差が生じ る。 すなわち、 1 2波長板として作用することになる。 This is for each traveling 1 cm fluorite, relative positional relationship between the wavefronts of both linearly polarized light progresses, the Ar F laser beam 3. 2 nm varies, the 2, single The first light 1 1.2 It indicates that the value changes by nm. Therefore, if the length S 1 of the 1Z 2 wave plate 82 made of fluorite is set to 7.0 cm, the F 2 laser light will be 7.0 I I. 2 nm 78 nm An optical path difference of 1 Z 2 wavelength occurs between the polarized lights. That is, it acts as a 12-wave plate.
なお、 1 2波長板82は、 Z方向を回転軸として回転可能に設置されている。 したがって、 1Z2波長板 82の回転位置によって、 射出光束 L 3の偏光状態を、 入射光束 L 0と同様に紙面に平行な X方向に偏光方向を有する直線偏光状態と、 紙面に垂直な Y方向に偏光方向を有する直線偏光状態との間で切り換えることが できる。 このように、 1 2波長板82は、 所定の直線偏光の光束の偏光面をそ の光束の中心軸線を中心として回転させるための偏光面回転手段を構成している。 本実施形態では、 X方向に偏光方向を有する直線偏光の光束を投影光学系 15 に入射させ、 投影光学系 15を透過した光束に基づいて X方向偏光に対する光学 系の収差を計測する。 次いで、 Y方向に偏光方向を有する直線偏光の光束を投影 光学系 15に入射させ、 投影光学系 15を透過した光束に基づいて Y方向偏光に 対する光学系の収差を計測する。 こうして、 X方向偏光に対して得られた収差計 測結果と Y方向偏光に対して得られた収差計測結果とに基づいて、 蛍石などの結 晶で形成された結晶レンズの複屈折に起因する投影光学系 15の残存収差を測定 する。  The 12-wavelength plate 82 is installed so as to be rotatable around the Z direction as a rotation axis. Therefore, depending on the rotation position of the 1Z2 wave plate 82, the polarization state of the exit light beam L3 is changed to the linear polarization state having the polarization direction in the X direction parallel to the paper surface similarly to the incident light beam L0, and to the Y direction perpendicular to the paper surface. It is possible to switch between a linear polarization state having a polarization direction. Thus, the 12-wavelength plate 82 constitutes a polarization plane rotating means for rotating the polarization plane of a predetermined linearly polarized light flux about the central axis of the light flux. In the present embodiment, a linearly polarized light beam having a polarization direction in the X direction is made incident on the projection optical system 15, and the aberration of the optical system with respect to the X direction polarization is measured based on the light beam transmitted through the projection optical system 15. Next, a linearly polarized light beam having a polarization direction in the Y direction is made incident on the projection optical system 15, and the aberration of the optical system with respect to the Y direction polarization is measured based on the light beam transmitted through the projection optical system 15. Thus, based on the aberration measurement results obtained for the X-direction polarization and the aberration measurement results obtained for the Y-direction polarization, it is caused by the birefringence of the crystal lens formed of crystals such as fluorite. The residual aberration of the projection optical system 15 to be measured is measured.
第 3図および第 4図に例示した収差計測ユニット (17 Aおよび 17 B) は、 いずれも直線偏光での収差計測が可能な系であるため、 互いに直交する偏光方向 を有する 2つの直線偏光の光束の各々について収差計測することに何ら問題はな い。 ただし、 第 2図に示すミラー 9および 1 1の構成によっては、 光束 L 3の偏 光状態を変化させてしまうので、 ミラ一 9および 11は光束 L 3の偏光状態を変 化させない構成とすることが好ましい。 また、 ロシヨンプリズム 81の透過光 (直進光) LOの偏光方向がミラ一 9および 11の反射面に対して P偏光または S偏光になるように設定 (その中間状態にはならないように設定) することによ り、 ミラー 9および 11による偏光状態の変化を防止することもできる。 Since the aberration measurement units (17A and 17B) illustrated in FIGS. 3 and 4 are both systems capable of measuring aberrations with linear polarization, two linear polarizations having polarization directions orthogonal to each other are used. There is no problem in measuring the aberration for each light beam. However, depending on the configuration of mirrors 9 and 11 shown in FIG. Since the optical state is changed, it is preferable that the mirrors 9 and 11 be configured so as not to change the polarization state of the light beam L3. In addition, the polarization direction of the transmitted light (straight light) LO of the location prism 81 is set to be P-polarized light or S-polarized light with respect to the reflection surfaces of the mirrors 9 and 11 (set not to be in an intermediate state). By doing so, it is also possible to prevent a change in the polarization state due to the mirrors 9 and 11.
第 6図は、 第 5図の 1/2波長板に代えて一対の 1 / 4波長板を用いた変形例 を示す図である。 第 6図の変形例は、 第 5図の 1Z2波長板 82に代えて一対の 1ノ 4波長板 82 Aおよび 82 Bを用いても同様の効果を得ることができること を示している。 第 6図を参照すると、 光学部材 82 Aおよび光学部材 82 Bはと もに 1 Z4波長板であり、 1軸性結晶材料または立方晶系の結晶材料で形成され ている。 また、 第 5図の 1/2波長板 92と同様に、 両方の 1Z4波長板 82 A および 82 Bは、 Z軸方向を中心として回転可能に構成されている。  FIG. 6 is a diagram showing a modification in which a pair of quarter-wave plates are used instead of the half-wave plate of FIG. The modification of FIG. 6 shows that the same effect can be obtained by using a pair of 1/4 wavelength plates 82A and 82B instead of the 1Z2 wavelength plate 82 of FIG. Referring to FIG. 6, the optical members 82A and 82B are both 1Z4 wave plates, and are formed of a uniaxial crystal material or a cubic crystal material. Similarly to the half-wave plate 92 in FIG. 5, both 1Z4 wave plates 82A and 82B are configured to be rotatable about the Z-axis direction.
1Z4波長板 82 Bまたは 82 Aが 1軸性結晶材料で形成されている場合、 そ の構造は一般的な 1/4波長板と同様である。 1ノ4波長板 82 Bまたは 82 A が立方晶系の結晶材料で形成されている場合、 その構造は第 5図の 1/2波長板 82と基本的に同様であるが、 その長さ S 2および S 3は半分となる。 すなわち、 2レ一ザ一光に対しては、 3. 5 cmの長さで 1/4波長板となる。 入射側の 1/4波長板 82Bは、 その設定角度に応じて直線偏光の入射光 LOを円偏光の 光束 L Tに変換して射出することが可能である。  When the 1Z4 wave plate 82B or 82A is formed of a uniaxial crystal material, the structure is the same as a general quarter wave plate. When the 1/4 wavelength plate 82B or 82A is made of a cubic crystal material, its structure is basically the same as that of the 1/2 wavelength plate 82 in Fig. 5, but its length S 2 and S 3 are halved. That is, for two lasers and one light, it becomes a quarter-wave plate with a length of 3.5 cm. The quarter-wave plate 82B on the incident side can convert the linearly polarized incident light LO into a circularly polarized light flux LT and emit it according to the set angle.
この場合、 1/4波長板 82 Aからの射出光束 L 3は、 1/4波長板 82 Aの 回転方向に一致する偏光方向を有する直線偏光の光束となる。 換言すれば、 1Z 4波長板 82 Aの回転に応じて、 光束 L 3を任意の偏光方向を有する直線偏光の 光束とすることができる。 また、 1 4波長板 82Bの設定角度によっては、 射 出光束 L Tを入射光束 L Oと同じ直線偏光とすることができる。 この場合には、 1Z4波長板 82 Aの回転方向によっては、 射出光束 L 3をお回りまたは左回り の円偏光の光束とすることができる。  In this case, the light beam L3 emitted from the 1/4 wavelength plate 82A is a linearly polarized light beam having a polarization direction coinciding with the rotation direction of the 1/4 wavelength plate 82A. In other words, the light beam L3 can be converted into a linearly polarized light beam having an arbitrary polarization direction according to the rotation of the 1Z 4 wavelength plate 82A. Further, depending on the set angle of the 14-wavelength plate 82B, the emitted light beam LT can be made the same linearly polarized light as the incident light beam L O. In this case, depending on the rotation direction of the 1Z4 wavelength plate 82A, the emitted light beam L3 can be turned around or counterclockwise as a circularly polarized light beam.
第 5図の 1Z2波長板 82を用いた場合には、 射出光 L 3の僞光状態を、 互い に直交する 2つの直線偏光状態に切り換えることはできるが、 2つの偏光状態を 全体として回転させることはできない。 一方、 第 6図の一対の 1 / 4波長板 8 2 Bまたは 8 2 Aを用いた場合には、 射出光 L 3の偏光状態を、 互いに直交する 2 つの直線偏光状態に切り換えることに加え、 2つの偏光状態を全体として回転さ せることもできるので、 一層好都合である。 また、 射出光 L 3を円偏光状態とす ることもでき、 この場合には自然光 (ランダム偏光) に近い状態の光束で投影光 学系 1 5の収差を計測できるので、 複屈折の影響を無視した収差計測を行うこと もできる。 When the 1Z2 wavelength plate 82 in FIG. 5 is used, the false light state of the emitted light L3 can be switched to two linear polarization states orthogonal to each other, but the two polarization states are changed. It cannot be rotated as a whole. On the other hand, when a pair of quarter-wave plates 8 2 B or 82 A in FIG. 6 is used, in addition to switching the polarization state of the emitted light L 3 to two linear polarization states orthogonal to each other, This is even more convenient because the two polarization states can be rotated as a whole. In addition, the emitted light L3 can be in a circularly polarized state. In this case, since the aberration of the projection optical system 15 can be measured with a light beam in a state close to natural light (randomly polarized light), the influence of birefringence can be reduced. It is also possible to perform ignored aberration measurement.
ところで、 投影光学系 1 5に残存する複屈折による波面収差が大きいと、 投影 光学系 1 5を透過する光束内での所定の直交する直線偏光の波面の差が大きくな り、 これが 1 / 2波長板や 1 Z 4波長板と同様に作用して、 光束の偏光状態を変 換してしまうこともあり得る。 第 7図に示す偏光変換計測ユニット 3 0は、 投影 光学系 1 5によって、 このような偏光の変換がどの程度生じているかを計測する ための装置である。 偏光変換計測ユニット 3 0は、 例えば第 2図中の収差計測ュ ニット 1 7と並んでステージ 1 9上に設置される。  By the way, if the wavefront aberration due to the birefringence remaining in the projection optical system 15 is large, the difference between the wavefronts of predetermined orthogonal linearly polarized light in the light flux transmitted through the projection optical system 15 becomes large, and this is 1/2. Acting in the same way as a wave plate or a 1Z4 wave plate, the polarization state of a light beam may be changed. The polarization conversion measurement unit 30 shown in FIG. 7 is a device for measuring how much such polarization conversion occurs by the projection optical system 15. The polarization conversion measurement unit 30 is installed on the stage 19, for example, along with the aberration measurement unit 17 in FIG.
第 7図を参照すると、 テストレチクル 1 4上のピンホールパターンを透過した 光が、 投影光学系 1 5を介して偏光変換計測ュニット 3 0の上方近傍の位置 F P にピンホール像を形成する。 位置 F Pに形成されたピンホール像からの発散光束 は、 レンズ群 1 8 2によって平行光束に変換された後、 一対の 1 / 4波長板 1 8 3および 1 8 4を介して、 ロシヨンプリズム 1 8 5に入射する。 ロシヨンプリズ ム 1 8 5では、 直線偏光成分によって光束が分割され、 第 7図の紙面に平行な方 向に偏光方向を有する直線偏光の光束 L 1 0は、 C C D等の撮像素子 1 8 6に入 射する。  Referring to FIG. 7, light transmitted through the pinhole pattern on the test reticle 14 forms a pinhole image at a position FP near and above the polarization conversion measurement unit 30 via the projection optical system 15. The divergent luminous flux from the pinhole image formed at position FP is converted into a parallel luminous flux by the lens group 182, and then passed through a pair of 1/4 wavelength plates 183 and 1884 to the location prism. It is incident on 1 85. In the position prism 185, the light beam is split by the linearly polarized light component, and the linearly polarized light beam L10 having a polarization direction parallel to the plane of FIG. 7 is input to an image sensor 186 such as a CCD. Shoot.
第 6図に示す一対の 1 / 4波長板 8 2 Bおよび 8 2 Aと同様に、 一対の 1 / 4 波長板 1 8 3および 1 8 4の光軸に対する回転角度によっては、 投影光学系 1 5 から射出される光束の偏光方向を、 ロシヨンプリズム 1 8 5に対して最適化する ことができる。 すなわち、 ロシヨンプリズム 1 8 5への入射光の偏光方向とその 射出光 (直進光) L 1〇の偏光方向とが同一になるように、 一対の 1 / 4波長板 1 8 3および 1 8 4の回転方向を初期設定する。 そして、 この初期設定状態で、 撮像素子 1 8 6からの光量信号 S G Iを採取する。 これは、 基本的には、 投影光 学系 1 5の瞳面内透過率を計測することに他ならない。 Similar to the pair of quarter-wave plates 82B and 82A shown in FIG. 6, depending on the rotation angle of the pair of quarter-wave plates 1833 and 1884 with respect to the optical axis, the projection optical system 1 The polarization direction of the luminous flux emitted from 5 can be optimized with respect to the Rossion prism 185. In other words, a pair of quarter-wave plates 18 3 and 18 are arranged so that the polarization direction of the incident light on the position prism 185 and the polarization direction of the emitted light (straight light) L 1〇 are the same. Initialize the rotation direction of 4. And in this initial setting state, The light intensity signal SGI from the image sensor 186 is collected. This is basically nothing but measuring the transmittance of the projection optical system 15 in the pupil plane.
次いで、 ロシヨンプリズム 1 8 5への入射光の偏光方向とその射出光 (直進 光) L 1 0の偏光方向とが直交するように、 一対の 1 / 4波長板 1 8 3および 1 8 4の回転方向を設定する。 そして、 この設定状態においても、 撮像素子 1 8 6 からの光量信号 S G 2を採取する。 この場合、 投影光学系 1 5に複屈折に起因す る直交する直線偏光間の波面のズレ (リタデ一シヨン) が無ければ、 光量信号 S G 2は 0になるはずである。 したがって、 光量信号 S G 2と光量信号 S G 1との 比率から、 投影光学系 1 5内での偏光の変換比率を算定することができる。 また、 これに基づいて、 投影光学系 1 5の複屈折に伴う波面収差の量を概略的に算定す ることもできる。  Next, a pair of quarter-wave plates 18 3 and 18 4 are set so that the polarization direction of the incident light on the prism 1885 and the polarization direction of the emitted light (straight light) L 10 are orthogonal to each other. Set the rotation direction of. Then, even in this setting state, the light amount signal SG2 from the image sensor 186 is sampled. In this case, if the projection optical system 15 has no wavefront deviation (retardation) between orthogonal linearly polarized lights due to birefringence, the light quantity signal SG2 should be zero. Therefore, the conversion ratio of polarized light in the projection optical system 15 can be calculated from the ratio between the light amount signal SG2 and the light amount signal SG1. Also, based on this, the amount of wavefront aberration associated with the birefringence of the projection optical system 15 can be roughly calculated.
ところで、 本実施形態の収差計測装置を用いて投影光学系 1 5における複屈折 に伴う残存収差の測定結果が得られると、 この測定結果や投影光学系 1 5の設計 データや蛍石等の結晶材料の複屈折特性などに基づいて、 複屈折に伴う残存収差 を除去するためにどのレンズエレメントをどのように調整すればよいかを判断す ることができる。 具体的な調整方法は、 投影光学系 1 5のタイプによって異なる ので一概には決まらない。 一般的には、 蛍石等の結晶からなるレンズ (1 5 1〜 1 6 4 ) を光軸廻りに回転させるクロッキング調整や、 光軸に沿って移動させる 移動調整や、 光軸とほぼ直交する面に沿って移動させるシフト調整や、 光軸に対 して傾斜させるチルト調整などが適用可能である。  By the way, when the measurement result of the residual aberration associated with the birefringence in the projection optical system 15 is obtained using the aberration measurement apparatus of the present embodiment, the measurement result, the design data of the projection optical system 15 and the crystal Based on the birefringence characteristics of the material and the like, it is possible to determine which lens element should be adjusted and how to remove the residual aberration caused by birefringence. The specific adjustment method differs depending on the type of the projection optical system 15 and cannot be unconditionally determined. In general, clocking adjustment to rotate a lens (15 1 to 16 4) made of a crystal such as fluorite around the optical axis, movement adjustment to move along the optical axis, and almost orthogonal to the optical axis A shift adjustment that moves along the surface to be moved, a tilt adjustment that inclines with respect to the optical axis, and the like can be applied.
すなわち、 本実施形態の調整方法において、 投影光学系 1 5から複屈折の影響 による波面収差を除去する手順では、 本実施形態の収差計測装置によって複屈折 に伴う残存収差を測定する。 次いで、 測定された収差結果や投影光学系 1 5の設 計データや蛍石等の結晶材料の複屈折特性などに基づいて、 複屈折に伴う残存収 差を補正するためにどのレンズエレメントをどの程度調整すればよいかを算定す る。 そして、 算定結果に基づいて、 投影光学系 1 5の光学調整を行う。 投影光学 系 1 5の光学調整後に、 本実施形態の収差計測装置を用いて複屈折に伴う残存収 差を再度測定する。 測定された収差結果を参照して、 複屈折に伴う収差が良好に 補正されていれば調整工程は完了するが、 複屈折に伴う収差が十分に補正されて いなければ上記調整工程を繰り返すことになる。 That is, in the adjustment method according to the present embodiment, in the procedure for removing the wavefront aberration caused by the influence of birefringence from the projection optical system 15, the residual aberration associated with the birefringence is measured by the aberration measuring device of the present embodiment. Then, based on the measured aberration results, the design data of the projection optical system 15 and the birefringence characteristics of the crystalline material such as fluorite, etc., which lens element is used to correct the residual aberration caused by birefringence? Calculate whether adjustment is necessary. Then, optical adjustment of the projection optical system 15 is performed based on the calculation result. After the optical adjustment of the projection optical system 15, the residual difference due to birefringence is measured again by using the aberration measuring device of the present embodiment. Refer to the measured aberration results and confirm that the aberrations associated with birefringence If the correction has been made, the adjustment process is completed, but if the aberrations associated with birefringence have not been sufficiently corrected, the above adjustment process will be repeated.
なお、 上述の実施形態では、 複屈折性の光学材料としてフッ化カルシウム結晶 (蛍石) を用いているが、 これに限定されることなく、 他の一軸性結晶、 たとえ ばフッ化バリウム結晶 (B a F 2)、 フッ化リチウム結晶 (L i F )、 フッ化ナト リウム結晶 (N a F )、 フッ化ストロンチウム結晶 (S r F 2)、 フッ化ベリリウ ム結晶 (B e F 2) など、 紫外線に対して透明な他の結晶材料を用いることもで きる。 このうち、 フッ化バリウム結晶は、 すでに直径 2 0 0 mmを越す大型の結 晶材料も開発されており、 レンズ材料として有望である。 この場合、 フッ化バリ ゥム (B a F 2 ) などの結晶軸方位も本発明に従って決定されることが好ましい 上述の実施形態の露光装置では、 照明装置によってレチクル (マスク) を照明 し (照明工程)、 投影光学系を用いてマスクに形成された転写用のパターンを感 光性基板に露光する (露光工程) ことにより、 マイクロデバイス (半導体素子、 撮像素子、 液晶表示素子、 薄膜磁気ヘッド等) を製造することができる。 以下、 本実施形態の露光装置を用いて感光性基板としてのウェハ等に所定の回路パター ンを形成することによって、 マイクロデバイスとしての半導体デバイスを得る際 の手法の一例につき第 8図のフローチャートを参照して説明する。 In the above-described embodiment, a calcium fluoride crystal (fluorite) is used as the birefringent optical material. However, the present invention is not limited to this, and other uniaxial crystals, for example, a barium fluoride crystal (fluorite) may be used. B a F 2 ), lithium fluoride crystal (L i F), sodium fluoride crystal (N a F), strontium fluoride crystal (S r F 2 ), beryllium fluoride crystal (B e F 2 ), etc. Other crystalline materials that are transparent to ultraviolet light can also be used. Among these, barium fluoride crystals have already been developed for large crystal materials with diameters exceeding 200 mm, and are promising as lens materials. In this case, it is preferable that the crystal axis direction such as vacuum fluoride (B a F 2 ) is also determined in accordance with the present invention. In the exposure apparatus of the above-described embodiment, the reticle (mask) is illuminated by the illumination device. Process), exposing the transfer pattern formed on the mask to the light-sensitive substrate using the projection optical system (exposure process), resulting in a micro device (semiconductor device, imaging device, liquid crystal display device, thin film magnetic head, etc.) ) Can be manufactured. The flowchart of FIG. 8 shows an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the present embodiment. It will be described with reference to FIG.
先ず、 第 8図のステップ 3 0 1において、 1ロットのウェハ上に金属膜が蒸着 される。 次のステップ 3 0 2において、 その 1ロットのウェハ上の金属膜上にフ オトレジストが塗布される。 その後、 ステップ 3 0 3において、 本実施形態の露 光装置を用いて、 マスク上のパターンの像がその投影光学系を介して、 その 1口 ットのウェハ上の各ショット領域に順次露光転写される。 その後、 ステップ 3 0 4において、 その 1ロットのウェハ上のフォトレジストの現像が行われた後、 ス テツプ 3 0 5において、 その 1ロットのウェハ上でレジストパターンをマスクと してエッチングを行うことによって、 マスク上のパターンに対応する回路パター ンが、 各ウェハ上の各ショット領域に形成される。  First, in step 301 of FIG. 8, a metal film is deposited on one lot of wafers. In the next step 302, a photoresist is applied on the metal film on the one lot of wafers. Then, in step 303, using the exposure apparatus of the present embodiment, the pattern image on the mask is sequentially exposed and transferred to each shot area on the one-port wafer via the projection optical system. Is done. Thereafter, in step 304, the photoresist on the one lot of wafers is developed, and then in step 305, etching is performed on the one lot of wafers using the resist pattern as a mask. Thereby, a circuit pattern corresponding to the pattern on the mask is formed in each shot area on each wafer.
その後、 更に上のレイヤの回路パターンの形成等を行うことによって、 半導体 素子等のデバイスが製造される。 上述の半導体デバイス製造方法によれば、 極め て微細な回路パターンを有する半導体デバイスをスループット良く得ることがで きる。 なお、 ステップ 3 0 1〜ステップ 3 0 5では、 ウェハ上に金属を蒸着し、 その金属膜上にレジストを塗布、 そして露光、 現像、 エッチングの各工程を行つ ているが、 これらの工程に先立って、 ウェハ上にシリコンの酸化膜を形成後、 そ のシリコンの酸化膜上にレジストを塗布、 そして露光、 現像、 エッチング等の各 工程を行っても良いことはいうまでもない。 Thereafter, a device such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer and the like. According to the semiconductor device manufacturing method described above, A semiconductor device having a fine circuit pattern can be obtained with good throughput. In steps 301 to 305, a metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the respective steps of exposure, development, and etching are performed. Prior to forming a silicon oxide film on the wafer in advance, it is needless to say that a resist may be applied on the silicon oxide film, and each step of exposure, development, etching and the like may be performed.
また、 本実施形態の露光装置では、 プレート (ガラス基板) 上に所定のパター ン (回路パターン、 電極パターン等) を形成することによって、 マイクロデバイ スとしての液晶表示素子を得ることもできる。 以下、 第 9図のフローチャートを 参照して、 このときの手法の一例につき説明する。 第 9図において、 パターン形 成工程 4 0 1では、 本実施形態の露光装置を用いてマスクのパターンを感光性基 板 (レジストが塗布されたガラス基板等) に転写露光する、 所謂光リソグラフィ 工程が実行される。 この光リソグラフィ一工程によって、 感光性基板上には多数 の電極等を含む所定パターンが形成される。 その後、 露光された基板は、 現像ェ 程、 エッチング工程、 レジスト剥離工程等の各工程を経ることによって、 基板上 に所定のパターンが形成され、 次のカラ一フィルター形成工程 4 0 2へ移行する。 次に、 カラーフィルター形成工程 4 0 2では、 R (Red)、 G (Green) , B (Blue) に対応した 3つのドットの組がマトリックス状に多数配列されたり、 ま たは R、 G、 Bの 3本のストライプのフィルターの組を複数水平走査線方向に配 列されたりしたカラーフィルタ一を形成する。 そして、 カラーフィルター形成工 程 4 0 2の後に、 セル組み立て工程 4 0 3が実行される。 セル組み立て工程 4 0 3では、 パターン形成工程 4 0 1にて得られた所定パターンを有する基板、 およ びカラーフィルター形成工程 4 0 2にて得られたカラーフィルタ一等を用いて液 晶パネル (液晶セル) を組み立てる。 セル組み立て工程 4 0 3では、 例えば、 パ ターン形成工程 4 0 1にて得られた所定パターンを有する基板とカラ一フィルタ 一形成工程 4 0 2にて得られたカラ一フィルタ一との間に液晶を注入して、 液晶 パネル (液晶セル) を製造する。  In the exposure apparatus of the present embodiment, a liquid crystal display element as a micro device can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate). Hereinafter, an example of the technique at this time will be described with reference to the flowchart in FIG. In FIG. 9, in a pattern forming step 401, a so-called photolithography step is performed in which a mask pattern is transferred and exposed to a photosensitive substrate (eg, a glass substrate coated with a resist) using the exposure apparatus of the present embodiment. Is executed. By this photolithography process, a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate. Thereafter, the exposed substrate undergoes various processes such as a developing process, an etching process, a resist stripping process, and the like, whereby a predetermined pattern is formed on the substrate, and the process proceeds to a next color filter forming process 402. . Next, in the color filter forming step 402, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or R, G, A color filter is formed by arranging a plurality of sets of three stripe filters B in the horizontal scanning line direction. Then, after the color filter forming step 402, a cell assembling step 403 is executed. In the cell assembling step 403, a liquid crystal panel is formed using the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. (Liquid crystal cell). In the cell assembling step 403, for example, between the substrate having a predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. Injects liquid crystal to manufacture liquid crystal panels (liquid crystal cells).
その後、 モジュール組み立て工程 4 0 4にて、 組み立てられた液晶パネル (液 晶セル) の表示動作を行わせる電気回路、 バックライト等の各部品を取り付けて 液晶表示素子として完成させる。 上述の液晶表示素子の製造方法によれば、 極め て微細な回路パターンを有する液晶表示素子をスループット良く得ることができ る。 Then, in the module assembly process 404, the assembled liquid crystal panel (liquid A liquid crystal display element is completed by attaching various components such as an electric circuit and a backlight that perform the display operation of the crystal cell. According to the above-described method for manufacturing a liquid crystal display element, a liquid crystal display element having an extremely fine circuit pattern can be obtained with high throughput.
なお、 上述の実施形態では、 露光装置に搭載される投影光学系に対して本発明 を適用しているが、 これに限定されることなく、 他の一般的な光学系に対して本 発明を適用することもできる。 また、 上述の実施形態では、 1 9 3 n mの波長光 を供給する A r Fエキシマ レーザ一光源や 1 5 7 n mの波長光を供給する F 2 レーザ一光源を用いているが、 これに限定されることなく、 たとえば 1 2 6 n m の波長光を供給する A r 2 レーザー光源などを用いることもできる。 産業上の利用の可能性 In the above-described embodiment, the present invention is applied to the projection optical system mounted on the exposure apparatus. However, the present invention is not limited to this, and the present invention may be applied to other general optical systems. It can also be applied. Further, in the embodiment described above, but using a 1 9 3 nm F 2 laser primary light source for supplying wavelength light A r F excimer laser primary light source and 1 5 7 nm supplying wavelength light, limited to Instead, for example, an Ar 2 laser light source that supplies light having a wavelength of 126 nm can be used. Industrial applicability
以上説明したように、 本発明の収差測定装置および収差測定方法では、 互いに 直交する偏光方向を有する 2つの直線偏光による収差計測値の差を求めることに より、 蛍石などの結晶で形成された光学部材の複屈折に起因する光学系の残存収 差を高精度に測定することができる。 また、 本発明の収差測定装置および収差測 定方法を用いて高精度に測定した収差結果に基づいて、 複屈折に起因する光学系 の残存収差を良好に除去することができる。 さらに、 本発明では、 良好に光学調 整された良好な光学性能を有する光学系を備えた露光装置を実現することができ る。 また、 本発明では、 良好な光学性能を有する光学系が搭載された露光装置を 用いて、 高解像度の露光技術にしたがって高性能のマイクロデバイスを製造する ことができる。  As described above, in the aberration measurement device and the aberration measurement method of the present invention, the aberration measurement device and the aberration measurement method determine the difference between the aberration measurement values of two linearly polarized light beams having polarization directions orthogonal to each other, thereby forming a crystal such as fluorite. The residual error of the optical system caused by the birefringence of the optical member can be measured with high accuracy. In addition, based on the aberration result measured with high accuracy using the aberration measuring device and the aberration measuring method of the present invention, residual aberration of the optical system due to birefringence can be satisfactorily removed. Further, according to the present invention, it is possible to realize an exposure apparatus including an optical system having good optical performance and good optical adjustment. Further, according to the present invention, a high-performance microdevice can be manufactured according to a high-resolution exposure technique using an exposure apparatus equipped with an optical system having good optical performance.

Claims

請 求 の 範 囲 The scope of the claims
1 . 立方晶系に属する結晶で形成された光学部材を含む光学系の収差を測定す る収差測定装置であって、 1. An aberration measuring apparatus for measuring aberration of an optical system including an optical member formed of a crystal belonging to a cubic system,
前記光学系に所定の光束を照射するための光束照射ュニットと、  A light beam irradiation unit for irradiating the optical system with a predetermined light beam,
前記光学系を透過した光束に基づいて前記光学系の収差を計測するための収差 計測ユニットとを備え、  An aberration measurement unit for measuring aberration of the optical system based on a light beam transmitted through the optical system,
前記光束照射ユニットは、 第 1の方向に沿って偏光した第 1の直線偏光と、 前 記第 1の方向とは異なる第 2の方向に沿って偏光した第 2の直線偏光との間で、 前記所定の光束の偏光状態を切り換えるための偏光切換え手段を有することを特 徵とする収差測定装置。  The light beam irradiation unit includes a first linearly polarized light polarized along a first direction and a second linearly polarized light polarized along a second direction different from the first direction, An aberration measuring device comprising: a polarization switching unit for switching a polarization state of the predetermined light flux.
2 . 請求の範囲第 1項に記載の収差測定装置において、 2. In the aberration measuring device according to claim 1,
前記第 1の方向と前記第 2の方向とはほぼ直交することを特徴とする収差測定  Aberration measurement, wherein the first direction and the second direction are substantially orthogonal to each other.
3 . 請求の範囲第 1項または第 2項に記載の収差測定装置において、 3. In the aberration measuring device according to claim 1 or 2,
前記収差計測ュニットは、 前記第 1の直線偏光の光束が照射された前記光学系 を透過した光束に基づいて計測した第 1収差計測結果と、 前記第 2の直線偏光の 光束が照射された前記光学系を透過した光束に基づいて計測した第 2収差計測結 果とに基づいて、 前記光学部材の複屈折に起因する前記光学系の収差を測定する ことを特徴とする収差測定装置。  The aberration measurement unit comprises: a first aberration measurement result measured based on a light beam transmitted through the optical system irradiated with the first linearly polarized light beam; and the second linearly polarized light beam irradiated by the second linearly polarized light beam. An aberration measuring device, wherein an aberration of the optical system caused by a birefringence of the optical member is measured based on a second aberration measurement result measured based on a light beam transmitted through the optical system.
4 . 請求の範囲第 1項乃至第 3項のいずれか 1項に記載の収差測定装置におい て、 4. In the aberration measuring apparatus according to any one of claims 1 to 3,
前記偏光切換え手段は、  The polarization switching means,
入射光束から所定の方向に沿って偏光した所定の直線偏光の光束を分離するた めの直線偏光分離手段と、 前記直線偏光分離手段を介して分離された前記所定の直線偏光の光束の偏光面 を、 前記所定の直線偏光の光束の中心軸線を中心として回転させるための偏光面 回転手段とを有することを特徴とする収差測定装置。 Linear polarization separation means for separating a predetermined linearly polarized light beam polarized along a predetermined direction from the incident light beam; A polarizing plane rotating means for rotating the polarization plane of the predetermined linearly polarized light beam separated via the linearly polarized light separating means around a central axis of the predetermined linearly polarized light beam. Aberration measuring device.
5 . 請求の範囲第 4項に記載の収差測定装置において、 5. The aberration measuring apparatus according to claim 4, wherein
前記直線偏光分離手段は、 ロシヨンプリズムを有することを特徴とする収差測  Wherein said linearly polarized light separating means has a location prism.
6 . 請求の範囲第 4項または第 5項に記載の収差測定装置において、 6. In the aberration measuring device according to claim 4 or 5,
前記偏光面回転手段は、 前記中心軸線を中心として回転可能な 1 / 2波長板を 有することを特徴とする収差測定装置。  The aberration measuring apparatus, wherein the polarization plane rotating means has a half-wave plate rotatable about the central axis.
7 . 請求の範囲第 4項または第 5項に記載の収差測定装置において、 7. The aberration measuring apparatus according to claim 4 or 5, wherein
前記偏光面回転手段は、 前記中心軸線を中心として回転可能な第 1の 1 Z 4波 長板と、 前記中心軸線を中心として回転可能な第 2の 1 / 4波長板とを有するこ とを特徴とする収差測定装置。  The polarization plane rotating means includes a first 1Z4 wavelength plate rotatable about the central axis, and a second 1/4 wavelength plate rotatable about the central axis. Characteristic aberration measurement device.
8 . 請求の範囲第 1項乃至第 7項のいずれか 1項に記載の収差測定装置におい て、 8. In the aberration measuring apparatus according to any one of claims 1 to 7,
前記光束の波長は、 1 9 3 n mまたは 1 5 7 n mであることを特徴とする収差  Aberration characterized in that the wavelength of the light beam is 1 93 nm or 1 57 nm
9 . 立方晶系に属する結晶で形成された光学部材を含む光学系の収差を測定す る収差測定方法であって、 9. An aberration measuring method for measuring aberration of an optical system including an optical member formed of a crystal belonging to a cubic system,
第 1の方向に沿って偏光した第 1の直線偏光の光束を前記光学系に照射する第 1照射工程と、  A first irradiation step of irradiating the optical system with a first linearly polarized light beam polarized along a first direction,
前記第 1の直線偏光の光束が照射された前記光学系を透過した光束に基づいて 前記光学系の収差を計測するための第 1収差計測工程と、 前記第 1の方向とは異なる第 2の方向に沿って偏光した第 2の直線偏光の光束 を前記光学系に照射する第 2照射工程と、 A first aberration measurement step for measuring aberration of the optical system based on a light beam transmitted through the optical system irradiated with the light beam of the first linearly polarized light, A second irradiation step of irradiating the optical system with a second linearly polarized light beam polarized along a second direction different from the first direction;
前記第 2の直線偏光の光束が照射された前記光学系を透過した光束に基づいて 前記光学系の収差を計測するための第 2収差計測工程と、  A second aberration measurement step for measuring aberration of the optical system based on a light beam transmitted through the optical system irradiated with the light beam of the second linearly polarized light;
前記第 1収差計測工程で得られた第 1収差計測結果と前記第 2収差計測工程で 得られた第 2収差計測結果とに基づいて、 前記光学部材の複屈折に起因する前記 光学系の収差を測定する収差測定工程とを含むことを特徴とする収差測定方法。  Based on the first aberration measurement result obtained in the first aberration measurement step and the second aberration measurement result obtained in the second aberration measurement step, aberration of the optical system caused by birefringence of the optical member And an aberration measuring step of measuring the aberration.
1 0 . 請求の範囲第 9項に記載の収差測定方法において、 10. The method for measuring aberration according to claim 9, wherein:
前記第 1の方向と前記第 2の方向とはほぼ直交することを特徴とする収差測定 方法。  An aberration measurement method, wherein the first direction and the second direction are substantially orthogonal to each other.
1 1 . 請求の範囲第 9項または第 1 0項に記載の収差測定方法において、 前記光束の波長は、 1 9 3 n mまたは 1 5 7 n mであることを特徴とする収差 測定方法。 11. The aberration measuring method according to claim 9 or 10, wherein the wavelength of the light beam is 193 nm or 157 nm.
1 2 . 請求の範囲第 2項乃至第 8項のいずれか 1項に記載の収差測定装置を用 いて測定された前記光学系の収差測定結果、 または請求の範囲第 9項乃至第 1 1 項のいずれか 1項に記載の収差測定方法を用いて測定された前記光学系の収差測 定結果に基づいて、 前記光学部材の複屈折に起因して前記光学系に残存する収差 を実質的に除去するために前記光学系を光学調整する光学調整工程を含むことを 特徴とする調整方法。 12. An aberration measurement result of the optical system measured by using the aberration measurement device according to any one of claims 2 to 8, or claim 9 to 11 The method according to any one of claims 1 to 6, wherein the aberration remaining in the optical system due to the birefringence of the optical member is substantially reduced based on an aberration measurement result of the optical system measured using the aberration measurement method. An adjustment method comprising an optical adjustment step of optically adjusting the optical system to remove the optical system.
1 3 . 請求の範囲第 1 2項に記載の調整方法において、 1 3. In the adjustment method described in claim 12,
前記光学調整工程は、 前記光学部材を前記光学系の光軸を中心として回転させ るクロッキング工程と、 前記光学部材を前記光軸に沿つて移動させる移動工程と、 前記光学部材を前記光軸とほぼ直交する面に沿って移動させるシフト工程と、 前 記光学部材を前記光軸に対して傾斜させるチルト工程とのうちの少なくとも 1つ の工程を含むことを特徴とする調整方法。 The optical adjustment step includes: a clocking step of rotating the optical member around an optical axis of the optical system; a moving step of moving the optical member along the optical axis; At least one of a shift step of moving the optical member along a plane substantially perpendicular to the tilt direction and a tilt step of tilting the optical member with respect to the optical axis. An adjustment method comprising the steps of:
1 4 . マスクを照明するための照明光学系と、 1 4. An illumination optical system for illuminating the mask,
前記マスクに形成されたパターンの像を感光性基板上に形成するための請求の 範囲第 1 2項または第 1 3項に記載の調整方法で調整された光学系とを備えてい ることを特徴とする露光装置。  An optical system adjusted by the adjustment method according to claim 12 or 13 for forming an image of a pattern formed on the mask on a photosensitive substrate. Exposure apparatus.
1 5 . 請求の範囲第 1 4項に記載の露光装置を用いて前記マスクのパターンを 前記感光性基板に露光する露光工程と、 15. An exposure step of exposing the pattern of the mask to the photosensitive substrate using the exposure apparatus according to claim 14,
前記露光工程により露光された前記感光性基板を現像する現像工程とを含むこ とを特徴とするマイク口デバイスの製造方法。  A developing step of developing the photosensitive substrate exposed in the exposing step.
PCT/JP2002/009810 2001-09-26 2002-09-24 Aberration measuring device, aberration measuring method, regulation method for optical system, and exposure system provided with optical system regulated by the regulation method WO2003028073A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003531505A JPWO2003028073A1 (en) 2001-09-26 2002-09-24 Aberration measuring apparatus, aberration measuring method, optical system adjusting method, and exposure apparatus including an optical system adjusted by the adjusting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-292878 2001-09-26
JP2001292878 2001-09-26

Publications (1)

Publication Number Publication Date
WO2003028073A1 true WO2003028073A1 (en) 2003-04-03

Family

ID=19114762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009810 WO2003028073A1 (en) 2001-09-26 2002-09-24 Aberration measuring device, aberration measuring method, regulation method for optical system, and exposure system provided with optical system regulated by the regulation method

Country Status (3)

Country Link
JP (1) JPWO2003028073A1 (en)
TW (1) TW561254B (en)
WO (1) WO2003028073A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7212289B1 (en) 2002-11-18 2007-05-01 Carl Zeiss Smt Ag Interferometric measurement device for determining the birefringence in a transparent object
JP2007515768A (en) * 2003-09-26 2007-06-14 カール・ツァイス・エスエムティー・アーゲー Microlithography illumination method and projection illumination system for performing the method
JP2007528595A (en) * 2004-02-26 2007-10-11 カール・ツァイス・エスエムティー・アーゲー System for reducing the coherence of laser radiation
US7286245B2 (en) 2002-07-29 2007-10-23 Carl Zeiss Smt Ag Method and apparatus for determining the influencing of the state of polarization by an optical system; and an analyser
US7289223B2 (en) 2003-01-31 2007-10-30 Carl Zeiss Smt Ag Method and apparatus for spatially resolved polarimetry
EP2009500A2 (en) 2007-06-25 2008-12-31 Canon Kabushiki Kaisha Measurement apparatus, exposure apparatus, and device manufacturing method
US7675629B2 (en) 2006-09-12 2010-03-09 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method using a common path interferometer to form an interference pattern and a processor to calculate optical characteristics of projection optics using the interference pattern
US7688424B2 (en) 2007-09-11 2010-03-30 Canon Kabushiki Kaisha Measurement apparatus, exposure apparatus, and device fabrication method
JP2013195442A (en) * 2012-03-15 2013-09-30 V Technology Co Ltd Exposure device, exposure method, and manufacturing method of exposed material
CN112394620A (en) * 2019-08-16 2021-02-23 上海微电子装备(集团)股份有限公司 Measuring device and photoetching machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283428A (en) * 1988-09-20 1990-03-23 Tsunehiro Umeda Automatic double refraction measuring apparatus
JPH02116732A (en) * 1988-10-27 1990-05-01 Sony Corp Method and apparatus for optical measurement
JPH10160582A (en) * 1996-12-02 1998-06-19 Nikon Corp Interferometer for measuring transmitted wave front
US5789734A (en) * 1993-05-14 1998-08-04 Canon Kabushiki Kaisha Exposure apparatus that compensates for spherical aberration of an image forming device
JP2000258339A (en) * 1999-03-05 2000-09-22 Ricoh Co Ltd Birefringence-measuring device
US20020024673A1 (en) * 2000-08-31 2002-02-28 Chidane Ouchi Measuring device and measuring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283428A (en) * 1988-09-20 1990-03-23 Tsunehiro Umeda Automatic double refraction measuring apparatus
JPH02116732A (en) * 1988-10-27 1990-05-01 Sony Corp Method and apparatus for optical measurement
US5789734A (en) * 1993-05-14 1998-08-04 Canon Kabushiki Kaisha Exposure apparatus that compensates for spherical aberration of an image forming device
JPH10160582A (en) * 1996-12-02 1998-06-19 Nikon Corp Interferometer for measuring transmitted wave front
JP2000258339A (en) * 1999-03-05 2000-09-22 Ricoh Co Ltd Birefringence-measuring device
US20020024673A1 (en) * 2000-08-31 2002-02-28 Chidane Ouchi Measuring device and measuring method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286245B2 (en) 2002-07-29 2007-10-23 Carl Zeiss Smt Ag Method and apparatus for determining the influencing of the state of polarization by an optical system; and an analyser
US7212289B1 (en) 2002-11-18 2007-05-01 Carl Zeiss Smt Ag Interferometric measurement device for determining the birefringence in a transparent object
US7289223B2 (en) 2003-01-31 2007-10-30 Carl Zeiss Smt Ag Method and apparatus for spatially resolved polarimetry
JP2007515768A (en) * 2003-09-26 2007-06-14 カール・ツァイス・エスエムティー・アーゲー Microlithography illumination method and projection illumination system for performing the method
JP4769788B2 (en) * 2004-02-26 2011-09-07 カール・ツァイス・エスエムティー・ゲーエムベーハー System for reducing the coherence of laser radiation
JP2007528595A (en) * 2004-02-26 2007-10-11 カール・ツァイス・エスエムティー・アーゲー System for reducing the coherence of laser radiation
US7675629B2 (en) 2006-09-12 2010-03-09 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method using a common path interferometer to form an interference pattern and a processor to calculate optical characteristics of projection optics using the interference pattern
EP2009500A2 (en) 2007-06-25 2008-12-31 Canon Kabushiki Kaisha Measurement apparatus, exposure apparatus, and device manufacturing method
US7956987B2 (en) 2007-06-25 2011-06-07 Canon Kabushiki Kaisha Measurement apparatus, exposure apparatus, and device manufacturing method
US7688424B2 (en) 2007-09-11 2010-03-30 Canon Kabushiki Kaisha Measurement apparatus, exposure apparatus, and device fabrication method
JP2013195442A (en) * 2012-03-15 2013-09-30 V Technology Co Ltd Exposure device, exposure method, and manufacturing method of exposed material
CN112394620A (en) * 2019-08-16 2021-02-23 上海微电子装备(集团)股份有限公司 Measuring device and photoetching machine
CN112394620B (en) * 2019-08-16 2022-04-01 上海微电子装备(集团)股份有限公司 Measuring device and photoetching machine

Also Published As

Publication number Publication date
TW561254B (en) 2003-11-11
JPWO2003028073A1 (en) 2005-01-13

Similar Documents

Publication Publication Date Title
US9140992B2 (en) Illumination optical apparatus and projection exposure apparatus
US7932994B2 (en) Exposure apparatus, exposure method, and method for producing device
JP4668953B2 (en) Lithographic apparatus and device manufacturing method
KR100856976B1 (en) Exposure apparatus and device manufacturing method
US7221460B2 (en) Optical system in exposure apparatus, and device manufacturing method
WO1999060361A1 (en) Aberration measuring instrument and measuring method, projection exposure apparatus provided with the instrument and device-manufacturing method using the measuring method, and exposure method
TWI406107B (en) Exposure apparatus and semiconductor device fabrication method
JP2008544507A (en) Polarization analyzer, polarization sensor and method for determining polarization characteristics of a lithographic apparatus
US20070242254A1 (en) Exposure apparatus and device manufacturing method
US6762824B2 (en) Correction apparatus that corrects optical shift in two optical units, and exposure apparatus having the same
WO2000070660A1 (en) Exposure method, illuminating device, and exposure system
US9243896B2 (en) Two axis encoder head assembly
JP2007201457A (en) Exposure apparatus, exposure method, and device production method
WO2003028073A1 (en) Aberration measuring device, aberration measuring method, regulation method for optical system, and exposure system provided with optical system regulated by the regulation method
US20080036992A1 (en) Exposure apparatus and device manufacturing method
JP2003043223A (en) Beam splitter and wave plate made of crystal material, and optical device, exposure device and inspection device equipped with the crystal optical parts
WO2014006935A1 (en) Position measurement device, stage apparatus, exposure equipment, and device manufacturing method
JP5505685B2 (en) Projection optical system, and exposure method and apparatus
US7081960B2 (en) Interferometer, exposure apparatus, exposure method and interference length measurement method
JP2004134756A (en) Lithographic apparatus and manufacturing method of device
JP3958261B2 (en) Optical system adjustment method
JP2003202204A (en) Interferometer, exposure device and exposure method
WO2013168457A1 (en) Surface position measurement device, surface position measurement method, exposure device, and device production method
JP2006073798A (en) Positioning device and exposure device
TW202217480A (en) Self-referencing integrated alignment sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003531505

Country of ref document: JP

122 Ep: pct application non-entry in european phase