WO2003030870A1 - Microspheres biodegradables a liberation prolongee et leur procede de preparation - Google Patents

Microspheres biodegradables a liberation prolongee et leur procede de preparation Download PDF

Info

Publication number
WO2003030870A1
WO2003030870A1 PCT/FR2002/003447 FR0203447W WO03030870A1 WO 2003030870 A1 WO2003030870 A1 WO 2003030870A1 FR 0203447 W FR0203447 W FR 0203447W WO 03030870 A1 WO03030870 A1 WO 03030870A1
Authority
WO
WIPO (PCT)
Prior art keywords
microspheres
active principle
weight
present
release
Prior art date
Application number
PCT/FR2002/003447
Other languages
English (en)
Inventor
Eulalia Ferret
Miguel Angel Asin
Jésus GARCIA
Pere Tarin
Rosa Arola
Montserrat Rutllan
Amadeo Perez
Original Assignee
Pierre Fabre Medicament
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES200102261A external-priority patent/ES2194590B2/es
Priority claimed from FR0113031A external-priority patent/FR2830448B1/fr
Application filed by Pierre Fabre Medicament filed Critical Pierre Fabre Medicament
Priority to JP2003533903A priority Critical patent/JP2005509611A/ja
Priority to BRPI0213226A priority patent/BRPI0213226B1/pt
Priority to CA2463358A priority patent/CA2463358C/fr
Priority to ES02793162.5T priority patent/ES2541908T3/es
Priority to AU2002358831A priority patent/AU2002358831B2/en
Priority to MXPA04003433A priority patent/MXPA04003433A/es
Priority to EP02793162.5A priority patent/EP1450766B1/fr
Priority to US10/492,417 priority patent/US7691412B2/en
Publication of WO2003030870A1 publication Critical patent/WO2003030870A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)

Definitions

  • the present invention relates to a process for preparing a pharmaceutical composition in the form of microspheres with sustained release of a water-soluble active principle.
  • the subject of the invention is also microspheres capable of being obtained by the implementation of this method, having a continuous release of active principle over a period of more than two months, advantageously at least three months.
  • compositions in the form of microspheres based on biodegradable polymers and copolymers, containing pharmacologically active compounds, and designed for a controlled and prolonged release of said compounds, have been described in various documents of the state of the prior art.
  • Such pharmaceutical compositions are of great interest for the treatment of various diseases requiring a continuous and prolonged release of active ingredient.
  • the formulations developed so far for the development of this type of composition have various drawbacks and few of them reach the stage of clinical trials.
  • This release generally leads to a sudden increase in plasma concentrations of the drug, which in many cases leads to toxicological problems unacceptable to humans.
  • This “burst” release also leads to a reduction in the duration of activity of the pharmaceutical composition, due to the sudden and rapid release of a large amount of said active ingredient following administration of the composition.
  • a second problem resides in the fact that ineffective encapsulation rates are generally obtained by using the usual microencapsulation methods, in particular when the active principle is a water-soluble drug.
  • a third problem which it is necessary to solve during the development of these formulations is the instability of the active principles in the face of the rigorous conditions employed during the manufacture of the microspheres, such as high temperatures or prolonged contacting of the active ingredient with organic solvents during the solvent evaporation step.
  • additives such as sugars, oils, wax, proteins, polymers, salts, or acids, have been used in the preparation of pharmaceutical compositions in the form of microspheres.
  • These additives which act as substances retaining the drug in the microsphere, make it possible to increase the efficiency of the microencapsulation process and even possibly to protect the active principle during the process, by playing the role of stabilizing agents.
  • microspheres can lead to problems of interaction between the additives and the active principle or the polymer-based matrix, thereby inducing problems with regard to toxicology and pharmacological activity of the drug.
  • the additives which retain the active ingredient inside the microspheres during the manufacturing process, influence the release profile of the active ingredient contained in the microspheres, which can prevent a continuous release of said active ingredient following administration.
  • microspheres Other microencapsulation methods have also been developed in an attempt to increase the efficiency of the microencapsulation of the active principle within the microspheres, based on the use of mixtures of organic solvents, but such methods lead stability problems of the active ingredient during the microsphere manufacturing process.
  • microspheres based on active principle and biodegradable matrix copolymer of the d, l-lactide-co-glycolide type having a specific molecular weight and a specific lactic acid / glycolic acid ratio , by a rapid process of the multiple emulsion-solvent evaporation type, without using any additive or modulating agent as is the case in patent FR 2 718 642, made it possible to obtain microspheres having a continuous and sustained release of active ingredient over a period of more than two months, while presenting a restricted "burst" effect.
  • Such an encapsulation process which employs mild conditions which are not very aggressive for the medicament, also makes it possible to preserve the stability of said medicament and to obtain a homogeneous distribution of the medicament within the microsphere obtained.
  • the Applicant has surprisingly discovered that the use of an osmotic agent during the step of emulsifying the first emulsion in the external aqueous phase made it possible to obtain a particularly high encapsulation efficiency by increasing the content of active ingredient encapsulated within the polymer matrix, and influence the size of the microspheres.
  • the object of the present invention relating to a rapid encapsulation process, very effective and not very aggressive for the active principle, thus makes it possible to obtain microspheres, based on water-soluble active principle and of matrix copolymer of type d, l -lactide-co-glycolide, having a continuous and sustained release of active ingredient over a period of more than two months, preferably at least three months, while having a weak "burst" effect in the hours following administration of composition.
  • the present invention thus relates to a process for the preparation of a pharmaceutical composition in the form of microspheres with prolonged release of a water-soluble active principle, characterized in that it comprises the following sequence of steps: - dissolution of the active principle in an appropriate amount of water, emulsification of the aqueous solution of active principle thus obtained with a solution of a matrix copolymer d, l-lactide-co-glycolide, of average molecular weight between 40,000 and 80,000 and having a proportion lactic acid / glycolic acid between 50/50 and 80/20, dissolved in a chlorinated hydrocarbon, leading to a first microfine and homogeneous emulsion, the size of said emulsion being advantageously less than 1 ⁇ m, emulsification of said first emulsion thus obtained in an external aqueous phase, containing a surfactant, an agent increasing the viscosity and an osmotic agent, - extraction-evaporation of the solva nt to obtain
  • the water-soluble active principle usable in the context of the process according to the present invention is advantageously chosen from the group consisting of peptides, proteins, vaccines, antibiotics, antidepressants, analgesics, anti-inflammatories and cytostatics. Even more advantageously according to the present invention, the active principle is 5-OxoPro-His-Trp-Ser-Tyr-D-Leu-Leu-Arg-ProNHEt or one of its salts. This active ingredient is an analogue of the hormone GnRH with agonist activity.
  • the first step of dissolving the active principle in water to form an internal aqueous phase is carried out without the addition of any substance which retains the active principle, nor of stabilizing agent of the emulsion and without any operation intended to increase the viscosity.
  • the active principle is dissolved in the internal aqueous phase without any additive or adjuvant whatsoever.
  • concentrations used in the internal aqueous phase in the context of the present invention are a function of the solubility of the active principle in water, of the characteristics of said active principle and of the duration of release which it is desired to obtain.
  • the active principle is present at a concentration of between 0.01 and 95% by weight, advantageously between 0.5 and 40% by weight, relative to the total weight of the internal aqueous phase.
  • the formation of the first emulsion can in particular be carried out using an ultrasonic device or a homogenizer.
  • the matrix copolymer which can be used according to the present invention for preparing microspheres by W / O / W must be able to be dissolved in an appropriate volatile solvent, such as halogenated alkanes.
  • the solvent is a chlorinated hydrocarbon such as methylene chloride, chloroform, chloroethane, dichloroethane, or trichloroethane.
  • the chlorinated hydrocarbon is methylene chloride.
  • the matrix copolymer d, l-lactide-co-glycolide which can be used in the process according to the present invention has the cumulative advantages of being insoluble in water, of being biodegradable (such a copolymer is absorbed without accumulating in the organs vital and is ultimately completely eliminated), to be biocompatible with the organism and to be perfectly tolerated by it, and ultimately to have a minimal inflammatory response.
  • the solution of the matrix copolymer d, l-lactide-co-glycolide is obtained by dissolving the copolymer in a chlorinated hydrocarbon such as methylene chloride, without the addition of a release modulating agent.
  • a release modulating agent is not suitable for the manufacture of microspheres designed for release over a period of more than two months.
  • the selection carried out on the copolymer, with a specific molecular weight and a specific lactic acid / glycolic acid ratio, combined with the fact of not using a release modulating agent in the process which is the subject of the present invention thus has the advantage of '' obtain microspheres with a continuous and sustained release of active ingredient over a period of more than two months, preferably at least at least three months, while exhibiting a restricted burst effect in the hours following the administration of the composition.
  • concentrations of the polymer dissolved in the organic solution of methylene chloride depend on the active ingredient and the desired rate of release.
  • the matrix copolymer is present at a concentration of between 5 and 50% by weight, relative to the total weight of the solution consisting of the copolymer dissolved in the chlorinated hydrocarbon.
  • the external aqueous phase contains a surfactant such as polysorbate 80, an agent increasing the viscosity such as polyvinylpyrrolidone and an osmotic agent such as mannitol or sodium chloride.
  • a surfactant such as polysorbate 80
  • an agent increasing the viscosity such as polyvinylpyrrolidone
  • an osmotic agent such as mannitol or sodium chloride.
  • the external aqueous phase contains a solution of polysorbate 80, polyvinylpyrrolidone and mannitol or sodium chloride.
  • the external aqueous phase contains a solution of polysorbate 80, polyvinylpyrrolidone and sodium chloride.
  • the surfactant is present at a concentration of between 0.1 and 0.5% by weight
  • the agent increasing the viscosity is present at a concentration of between 1 and 25% by weight
  • the osmotic agent is present at a concentration of between 0.1 and 10% by weight, relative to the total weight of the external aqueous phase.
  • the composition of the external aqueous phase is decisive for the formation of the second emulsion (emulsification of the first emulsion), and it is therefore decisive for the manufacture of the microspheres. It thus contributes to the rapid stabilization of the microspheres, it influences the encapsulation efficiency of the active ingredients and constitutes an essential factor for controlling the size of the final microspheres and their morphology.
  • the solvent is rapidly removed at room temperature and under atmospheric pressure, according to a continuous evaporator system consisting of a slope of adequate length over which the suspension of microspheres flows in a thin layer.
  • a continuous evaporator system consisting of a slope of adequate length over which the suspension of microspheres flows in a thin layer.
  • the rapid stabilization of the polymer matrix obtained during this extraction-evaporation step of the organic solvent also makes it possible to obtain a homogeneous distribution of the active substance throughout the microsphere (thus making it possible to obtain a low concentration of active ingredient encapsulated by of the surface of the microsphere), thus helping to reduce the phenomenon of "burst" release, following the administration of the microspheres.
  • the fact of implementing the process at ambient temperature and under atmospheric pressure makes it possible to avoid problems such as the alteration of the thermolabile products or the breaking of the microspheres when the vacuum is used during the extraction step. -evaporation.
  • the process for manufacturing the microspheres according to the present invention comprises the following steps:
  • a certain amount of active ingredient is dissolved in a volume of water.
  • This solution emulsifies, using an ultrasound device for example, in a volume of methylene chloride containing a polylactide-co-glycolide copolymer, of average molecular weight between 40,000 and 80,000 daltons and having a proportion of lactic acid to glycolic acid between 50/50 and 80/20.
  • the first emulsion which results therefrom must be micro-fine and homogeneous, thus making it possible to spread the active principle over the entire polymer matrix, ensuring the reproducibility of the different batches, without the need to use surfactants or other adjuvants.
  • the first emulsion is in turn emulsified in an external phase, consisting of an aqueous solution of polysorbate 80 as a surfactant, of polyvinylpyrrolidone as a viscosity-increasing agent and of mannitol or NaCl in as an osmotic agent, with stirring for a short time.
  • an external phase consisting of an aqueous solution of polysorbate 80 as a surfactant, of polyvinylpyrrolidone as a viscosity-increasing agent and of mannitol or NaCl in as an osmotic agent, with stirring for a short time.
  • the double emulsion is diluted with water, then the suspension is passed under atmospheric conditions over a continuous evaporator system consisting of a slope of adequate length over which flows in a layer thin the suspension of microspheres.
  • This system makes it possible to promote contact between the emulsion and the atmosphere, which reduces the duration of evaporation of the organic solvent, and to increase the stabilization of the active principle.
  • the microspheres obtained in this way are then recovered by filtration, washed with water and dried by lyophilization.
  • microspheres obtained according to the process which is the subject of the present invention are microspheres with a high content of active principle, allowing continuous release in vivo of the drug over a period of more than two months, preferably at least 3 months, with a weak burst effect after parenteral administration of the microspheres.
  • the present invention also relates to the microspheres capable of being obtained by implementing the method according to the present invention, having a continuous release of active principle over a period of more than two months, advantageously over a period of at least three months.
  • the active principle is present at a concentration of between 0.5 and 20% by weight, advantageously between 5 and 15% by weight, relative to the total weight of the microspheres.
  • the size of the microspheres is less than 250 ⁇ m, even more advantageously less than 90 ⁇ m. This size is adequate for administration of the microspheres.
  • microspheres according to the present invention are advantageously administered parenterally, even more advantageously in the form of intramuscular, subcutaneous, intra-arterial injections or in the place where a tumor is found.
  • the microspheres are preferably dispersed in a standard aqueous medium with dispersing agents and isotonizing agents.
  • Example 1 (comparative):
  • Arg-ProNHEt acetate are prepared according to the manufacturing process described in the publication Advanced Drug Delivery Reviews, 28 (1997), 43-70, which differs from the process which is the subject of the present invention.
  • the microspheres are produced by dissolving an appropriate quantity of active principle in water, then by emulsifying the aqueous solution of active principle thus obtained with a solution of a polylactide (100% lactide) , with an average molecular weight of 15,000, in methylene chloride.
  • the emulsification is carried out with an agitator, with vigorous stirring.
  • the first Ei / H emulsion has been formed, it is in turn emulsified, in order to obtain an E emulsion !
  • Example 1 The main differences between the microspheres obtained according to the method described in the document of the prior art cited above and those obtained according to the method object of the present invention lie in: the choice of the polymer.
  • the polymer used is a polylactide (100% lactide), with an average molecular weight of 15,000. It is a standard polymer, according to this document, for a sustained release of 5-OxoPro-His-Trp-Ser-T r-D-Leu-Leu-Arg-ProNHEt acetate over a period of three months.
  • the composition of the aqueous external phase which consists of a polyvinyl alcohol (0.25%) in Example 1. the evaporation system of the organic solvent. In Example 1, the double emulsion is stirred for several hours.
  • the 5-OxoPro-His-Trp-Ser-Tyr-D-Leu-Leu-Arg-ProNHEt acetate is dissolved in water, then the aqueous solution of active principle is emulsified, using an ultrasound device, in a methylene chloride solution containing 15% of a copolymer d, l-lactide-co-glycolide, this copolymer having a weight average molecular weight of 63,000 daltons (inherent viscosity of about 0.6 dl / g) and a proportion of lactic acid to glycolic acid of 75/25.
  • the first emulsion is in turn emulsified with an aqueous solution consisting of 0.25% polysorbate 80, 7% polyvinylpyrrolidone and 5% mannitol, with stirring, using a propeller stirrer with blades.
  • the double emulsion is passed, under atmospheric conditions, over a continuous evaporator system consisting of a slope of adequate length over which the suspension of microspheres flows in a thin layer.
  • a continuous evaporator system consisting of a slope of adequate length over which the suspension of microspheres flows in a thin layer.
  • the organic solvent is quickly evaporated, leading to rapid stabilization of the polymer matrix.
  • the microspheres are finally recovered by filtration, washed with water and then dried under lyophilization.
  • the final charge of the microspheres in drug is from 9 to 11% by weight.
  • Microspheres are produced by following the process described in Example 2, using 5% sodium chloride in the external aqueous phase as an osmotic agent, instead of 5% mannitol.
  • compositions prepared according to the process of the prior art of Example 1 agree with the results obtained in vitro (Example 3) and demonstrate that the formulations prepared in accordance with the process of the present invention exhibit a much less burst release than the burst release. "compositions prepared according to the process of the prior art of Example 1.
  • Example 5 In order to supplement the previous results (Examples 3 and 4), an in-depth study of the in vivo release of active ingredient during the first 24 hours following the administration of the microspheres was carried out.
  • the microspheres of Example 1 After 2, 3, 4, 8 and 24 hours, the microspheres of Example 1 have respectively serum concentrations of 103.7; 50.1; 30.3; 9.5 and 3.8 ⁇ g / 1, while the microspheres of Example 2 have values of 28.0 respectively; 5.5; 4.5; 9.3 and 1.0 ⁇ g / 1 respectively.
  • the complete release profile of 5-OxoPro-His-T ⁇ -Ser-Tyr-D-Leu-Leu-Arg-ProNHEt acetate from the microspheres prepared according to Example 2 is studied in rats.
  • the object of the study is to demonstrate that, following the phenomenon of release "burst" (which takes place systematically, but which is relatively weak compared to microspheres described in the prior art), the microspheres obtained according to the method of the present invention release the peptide continuously over a period of several months.
  • Example 4 the microspheres are suspended in a standard aqueous vehicle for their subcutaneous administration in a dorsal area previously shaved in rats.
  • the dose administered to each animal is 3.6 mg of 5-OxoPro-His-T ⁇ -Ser-Tyr-D-Leu-Leu-Arg-ProNHEt encapsulated acetate.
  • Example 7 Study of the in vivo biological activity of 5-OxoPro-His-T ⁇ -Ser-Tyr-D-Leu-
  • 5-OxoPro-His-T ⁇ -Ser-Tyr-D-Leu-Leu-Arg-ProNHEt acetate is a potent agonist analogue of the hormone LH-RH, which stimulates the secretion of gonadotropins by the pituitary gland and steroidogenesis in the genitals in acute doses.
  • LH-RH lactidomasine
  • Examples 8 to 10 is to show the various advantages of the microspheres prepared according to the process which is the subject of the present invention compared to the microspheres prepared according to the process described in patent FR 2 718 642.
  • the main differences between the present invention and the invention described in patent FR 2 718 642 are the following: • No release modulating agent used in the process of the present invention.
  • Microspheres are prepared following the manufacturing process described in Example 2, using as organic phase a solution of methylene chloride containing 30% of a copolymer d, l-lactide-co-glycolide, having a weight average molecular weight of 34,000 daltons (inherent viscosity of about 0.4 dl / g) and a proportion of lactic acid to glycolic acid of 50/50 as well as different amounts (examples 8.1, 8.2 and 8.3) of a pory (d-lactide having an average molecular weight of 2,000 daltons (PLA 2,000).
  • Example 8.1 0% of PLA 2,000.
  • Example 8.2 2.5% of PLA 2,000.
  • Example 8.3 5% of PLA 2,000.
  • the external aqueous phase is an aqueous solution composed of 0.25% of polysorbate 80, 4% of polyvinylpyrrolidone and 5% of mannitol.
  • the initial in vitro release of 5-OxoPro-His-T ⁇ -Ser-Tyr-D-Leu-Leu-Arg-ProNHEt acetate from the microspheres prepared according to Examples 8.1, 8.2 and 8.3 is carried out in a phosphate buffer.
  • EXAMPLE 9 Effect of the Modulating Release Agent on the Pharmacodynaic Profile and Selection of the Polymer for a Prolonged Release Over Three Months
  • the effect of the polymer composition of the microspheres on the release of the active ingredient is studied in a pharmacodynamic study carried out in rats.
  • the microspheres are prepared by following the manufacturing process described in Example 2, using different types of polymer:
  • Example 9.1 97.5% mixture of a d, l-lactide-co-glycolide copolymer, having an average molecular weight of 34,000 daltons and a proportion of lactic acid to glycolic acid of 50/50, and 2.5% of a poly (d, l-lactide) having an average molecular weight of 2,000 daltons (release modulating agent).
  • Example 9.2 Copolymer d, l-lactide-co-glycolide, having an average molecular weight of 34,000 daltons and a proportion of lactic acid to glycolic acid of 50/50.
  • Example 9.3 Copolymer d, l-lactide-co-glycolide, having an average molecular weight of 63,000 daltons and a proportion of lactic acid to glycolic acid of 75/25.
  • Microspheres are prepared by following the manufacturing process described in Example 2, using as external aqueous phase a solution composed of 0.25% of Polysorbate 80 and 4% of polyvinylpyrrolidone.
  • Microspheres are prepared following the manufacturing process described in Example 10.1, adding between 2.5% and 5% of mannitol in the external aqueous phase as an osmotic agent.
  • Microspheres are prepared following the manufacturing process described in Example 10.1, adding between 2.5% and 5% of sodium chloride in the external aqueous phase as an osmotic agent.
  • the size and peptide content of the microspheres depend on the presence of the osmotic agent in the external aqueous phase.
  • the addition of mannitol or NaCl as osmotic agent increases the encapsulation efficiency, ie the percentage of microencapsulated active ingredient (content).
  • the type and amount of the osmotic agent added may also allow particle size control.
  • NaCl is advantageously used as an osmotic agent, since it has been demonstrated that under identical conditions of agitation and viscosity, sodium chloride allows a greater reduction in the particle size as mannitol, without producing a decrease in the encapsulation efficiency.
  • Example 11 Effect of the concentration of the viscosity-increasing agent ( “ viscosifying agent " ) present in the external aqueous phase on the particle size Formulation 11.1:
  • Microspheres are prepared by following the manufacturing process described in example 2, but without active principle, using as external aqueous phase a solution composed of 0.25% of Polysorbate 80, 5% of mannitol and 6.8 % of polyvinylpyrrolidone.
  • Microspheres are prepared by following the manufacturing process described in example 2, but without active principle, using as external aqueous phase a solution composed of 0.25% of Polysorbate 80, 5% of mannitol and 8.0 % of polyvinylpyrrolidone.
  • Example 10.2 developed with an external aqueous phase composed of 0.25% of Polysorbate 80, 5% of mannitol and 4% of polyvinylpyrrolidone, made it possible to obtain a particle size of 43.8 ⁇ m. By increasing the concentration of viscosifier, it can be seen that a notable reduction in the size of the particles is obtained as shown in Table 5 above. Thus, the size of the microspheres depends on the presence of the viscosifying agent in the external aqueous phase, and on its concentration.

Abstract

La présente invention concerne un procédé de préparation d'une composition pharmaceutique sous forme de microsphères à libération prolongée d'un principe actif hydrosoluble, caractérisé en ce qu'il comprend la succession d'étapes suivantes: dissolution du principe actif dans une quantité appropriée d'eau, émulsification de la solution aqueuse de principe actif ainsi obtenue avec une solution d'un copolymère matriciel d,l-lactide-co-glycolide, de poids moléculaire moyen compris entre 40000 et 80000 et ayant une proportion acide lactique/acide glycolique comprise entre 50/50 et 80/20, dissous dans un hydrocarbure chloré, conduisant à une première émulsion microfine et homogène, émulsification de ladite première émulsion ainsi obtenue dans une phase aqueuse externe, contenant un surfactant, un agent augmentant la viscosité et un agent osmotique, extraction-évaporation du solvant pour obtenir des microsphères que l'on récupère après filtration, lavage et séchage. L'invention a également pour objet des microsphères, susceptibles d'être obtenues par la mise en oeuvre de ce procédé, présentant une libération continue de principe actif sur une période de plus de deux mois, avantageusement sur une période d'au moins trois mois.

Description

« Microsphères biodégradables à libération prolongée et leur procédé de préparation »
La présente invention concerne un procédé de préparation d'une composition pharmaceutique sous forme de microsphères à libération prolongée d'un principe actif hydrosoluble. L'invention a également pour objet des microsphères susceptibles d'être obtenues par la mise en œuvre de ce procédé, présentant une libération continue de principe actif sur une période de plus de deux mois, avantageusement d'au moins trois mois.
De nombreuses compositions pharmaceutiques, sous forme de microsphères à base de polymères et copolymères biodégradables, contenant des composés pharmacologiquement actifs, et conçues pour une libération contrôlée et prolongée desdits composés, ont été décrites dans divers documents de l'état de la technique antérieure. De telles compositions pharmaceutiques présentent un grand intérêt pour le traitement de diverses maladies nécessitant une libération continue et prolongée de principe actif. Néanmoins, les formulations développées jusqu'à présent pour la mise au point de ce type de compositions présentent divers inconvénients et peu d'entre elles parviennent jusqu'au stade des essais cliniques.
Un des problèmes majeurs liés à ces formulations à libération prolongée est la libération d'une quantité importante de principe actif pendant les premières heures qui suivent l'administration de la composition pharmaceutique. Il est communément fait référence à une telle libération sous le terme d'effet "burst" ou de libération "burst".
Cette libération conduit généralement à une brusque augmentation des concentrations plasmatiques du médicament, ce qui débouche dans de nombreux cas sur des problèmes toxicologiques inacceptables pour l'être humain. Cette libération "burst" conduit également à une réduction de la durée d'activité de la composition pharmaceutique, du fait de la libération brusque et rapide d'une quantité importante dudit principe actif suite à l'administration de la composition.
Un second problème réside dans le fait que l'on obtient généralement des taux d'encapsulation peu efficaces en utilisant les procédés de microencapsulation habituels, en particulier lorsque le principe actif est un médicament soluble dans l'eau. Un troisième problème qu'il est nécessaire de résoudre lors de la mise au point de ces formulations est l'instabilité des principes actifs face aux conditions rigoureuses employées lors de la fabrication des microsphères, telles que des températures élevées ou une mise en contact prolongée du principe actif avec des solvants organiques durant l'étape d'évaporation du solvant.
Plusieurs essais ont été mis en oeuvre afin de résoudre ces divers problèmes. Ainsi, des additifs tels que les sucres, les huiles, la cire, les protéines, les polymères, les sels, ou les acides, ont été utilisés dans la préparation de compositions pharmaceutiques sous forme de microsphères. Ces additifs, qui agissent comme des substances retenant le médicament dans la microsphère, permettent d'augmenter l'efficacité du procédé de microencapsulation et même éventuellement de protéger le principe actif durant le procédé, en jouant le rôle d'agents stabilisants.
Néanmoins, l'inclusion de ces additifs dans les microspheres peut conduire à des problèmes d'interaction entre les additifs et le principe actif ou la matrice à base de polymères, induisant ainsi des problèmes en matière de toxicologie et d'activité pharmacologique du médicament. En outre, les additifs, qui retiennent le principe actif à l'intérieur des microsphères pendant le procédé de fabrication, influent sur le profil de libération du principe actif contenu dans les microsphères, pouvant empêcher une libération continue dudit principe actif suite à l'administration des microsphères. D'autres procédés de microencapsulation ont également été mis au point afin de tenter d'augmenter l'efficacité de la microencapsulation du principe actif au sein des microsphères, en se fondant sur l'utilisation de mélanges de solvants organiques, mais de tels procédés conduisent à des problèmes de stabilité du principe actif au cours du procédé de fabrication des microsphères. Par conséquent, il existait un besoin de mettre au point un procédé de préparation d'une composition pharmaceutique sous forme de microsphères à base de polymères et copolymères biodégradables, conçues pour une libération prolongée d'un principe actif hydrosoluble, ne présentant pas les inconvénients des compositions décrites dans les documents de l'état de la technique antérieure ou des compositions développées j usqu' à présent. La présente invention vient combler ce besoin. La Demanderesse a ainsi découvert de manière surprenante que l'élaboration de microsphères, à base de principe actif et de copolymère matriciel biodégradable du type d,l-lactide-co- glycolide ayant un poids moléculaire spécifique et un ratio acide lactique/acide glycolique spécifique, par un procédé rapide du type emulsion multiple-évaporation de solvant, sans utiliser un quelconque additif ou un agent de modulation comme cela est le cas dans le brevet FR 2 718 642, permettait d'obtenir des microsphères présentant une libération continue et soutenue de principe actif sur une période de plus de deux mois, tout en présentant un effet "burst" restreint. Un tel procédé d'encapsulation, qui emploie des conditions douces et peu agressives pour le médicament, permet en outre de préserver la stabilité dudit médicament et d'obtenir une répartition homogène du médicament au sein de la microsphère obtenue.
Le principe physique d'émulsion multiple pour encapsuler des principes actifs hydrosolubles a notamment été décrit dans le brevet US 3 523 906. De manière générale, dans un procédé de ce type par emulsion multiple E/H/E et évaporation du solvant, le principe actif hydrosoluble est tout d'abord solubilisé dans la phase interne d'une première emulsion E/H, puis dans un second temps, cette première emulsion est à son tour émulsionnée dans une phase aqueuse externe.
La demanderesse a découvert de manière surprenante que l'utilisation d'un agent osmotique lors de l'étape d' émulsification de la première emulsion dans la phase aqueuse externe permettait d'obtenir une efficacité d'encapsulation particulièrement élevée par augmentation de la teneur de principe actif encapsulé au sein de la matrice polymérique, et d'influer sur la taille des microsphères.
L'objet de la présente invention, relatif à un procédé d'encapsulation rapide, très efficace et peu agressif pour le principe actif, permet ainsi d'obtenir des microsphères, à base de principe actif hydrosoluble et de copolymère matriciel du type d,l-lactide-co-glycolide, présentant une libération continue et soutenue de principe actif sur une période de plus de deux mois, de préférence d'au moins trois mois, tout en présentant un effet "burst" faible dans les heures suivant l'administration de la composition. La présente invention a ainsi pour objet un procédé de préparation d'une composition pharmaceutique sous forme de microsphères à libération prolongée d'un principe actif hydrosoluble, caractérisé en ce qu'il comprend la succession d'étapes suivantes : - dissolution du principe actif dans une quantité appropriée d'eau, émulsification de la solution aqueuse de principe actif ainsi obtenue avec une solution d'un copolymère matriciel d,l-lactide-co-glycolide, de poids moléculaire moyen compris entre 40 000 et 80 000 et ayant une proportion acide lactique/acide glycolique comprise entre 50/50 et 80/20, dissous dans un hydrocarbure chloré, conduisant à une première emulsion microfine et homogène, la taille de ladite emulsion étant avantageusement inférieure à 1 μm, émulsification de ladite première emulsion ainsi obtenue dans une phase aqueuse externe, contenant un surfactant, un agent augmentant la viscosité et un agent osmotique, - extraction-evaporation du solvant pour obtenir des microsphères que l'on récupère après filtration, lavage et séchage.
D'autres caractéristiques et avantages apparaîtront à la lecture de la description détaillée faite ci-après, notamment en s' appuyant sur quelques exemples de mise en œuvre particuliers. Le principe actif hydrosoluble utilisable dans le cadre du procédé selon la présente invention est avantageusement choisi dans le groupé constitué par les peptides, les protéines, les vaccins, les antibiotiques, les antidépresseurs, les analgésiques, les anti-inflammatoires et les cytostatiques. De manière encore plus avantageuse selon la présente invention, le principe actif est le 5-OxoPro-His-Trp-Ser- Tyr-D-Leu-Leu-Arg-ProNHEt ou l'un de ses sels. Ce principe actif est un analogue de l'hormone GnRH avec activité agoniste.
Dans le cadre du procédé selon la présente invention, la première étape de dissolution du principe actif dans de l'eau pour former une phase aqueuse interne est réalisée sans l'addition d'aucune substance qui retienne le principe actif, ni d'agent stabilisateur de l' emulsion et sans aucune opération destinée à augmenter la viscosité. Avantageusement selon la présente invention, le principe actif est dissous dans la phase aqueuse interne sans aucun additif ou adjuvant quelconque. Les concentrations utilisées dans la phase aqueuse interne dans le cadre de la présente invention sont fonction de la solubilité du principe actif dans l'eau, des caractéristiques dudit principe actif et de la durée de libération que l'on désire obtenir. Avantageusement selon la présente invention, le principe actif est présent à une concentration comprise entre 0,01 et 95% en poids, avantageusement entre 0,5 et 40% en poids, par rapport au poids total de la phase aqueuse interne.
La formation de la première emulsion peut être notamment réalisée à l'aide d'un appareil à ultrasons ou d'un homogénéiseur.
Le copolymère matriciel utilisable selon la présente invention pour préparer des microsphères par E/H/E doit pouvoir être solubilisé dans un solvant volatil approprié, tel que les alcanes halogènes. Avantageusement selon la présente invention, le solvant est un hydrocarbure chloré tel que le chlorure de méthylène, le chloroforme, le chloroéthane, le dichloroéthane, ou le trichloroéthane. De manière encore plus avantageuse selon la présente invention, l'hydrocarbure chloré est le chlorure de méthylène.
Le copolymère matriciel d,l-lactide-co-glycolide utilisable dans le procédé selon la présente invention présente les avantages cumulés d'être insoluble dans l'eau, d'être biodégradable (un tel copolymère est absorbé sans s'accumuler dans les organes vitaux et est finalement totalement éliminé), d'être biocompatible avec l'organisme et d'être parfaitement toléré par lui, et finalement d'avoir une réponse inflammatoire minime.
Dans le cadre du procédé selon la présente invention, la solution du copolymère matriciel d,l-lactide-co-glycolide est obtenue par dissolution du copolymère dans un hydrocarbure chloré tel que le chlorure de méthylène, sans addition d'agent modulateur de libération. En effet, il a été découvert que l'utilisation d'un agent modulateur de libération n'était pas appropriée pour la fabrication de microsphères conçues pour une libération sur une période de temps de plus de deux mois.
La sélection effectuée sur le copolymère, avec un poids moléculaire spécifique et un ratio acide lactique/acide glycolique spécifique, combinée avec le fait de ne pas utiliser d'agent modulateur de libération dans le procédé objet de la présente invention présente ainsi l'avantage d'obtenir des microsphères présentant une libération continue et soutenue de principe actif sur une période de plus de deux mois, de préférence d'au moins trois mois, tout en présentant un effet "burst" restreint dans les heures suivant l'administration de la composition.
Les concentrations du polymère dissous dans la solution organique de chlorure de méthylène sont fonction du principe actif et de la vitesse de libération souhaitée. Avantageusement selon le procédé objet de la présente invention, le copolymère matriciel est présent à une concentration comprise entre 5 et 50% en poids, par rapport au poids total de la solution constituée du copolymère dissous dans l'hydrocarbure chloré.
Selon le procédé objet de la présente invention, la phase aqueuse externe contient un surfactant tel que le polysorbate 80, un agent augmentant la viscosité tel que le polyvinylpyrrolidone et un agent osmotique tel que le mannitol ou le chlorure de sodium. Avantageusement selon la présente invention, la phase aqueuse externe contient une solution de polysorbate 80, de polyvinylpyrrolidone et de mannitol ou de chlorure de sodium. De manière encore plus avantageuse selon la présente invention, la phase aqueuse externe contient une solution de polysorbate 80, de polyvinylpyrrolidone et de chlorure de sodium.
Avantageusement selon le procédé objet de la présente invention, le surfactant est présent à une concentration comprise entre 0,1 et 0,5% en poids, l'agent augmentant la viscosité est présent à une concentration comprise entre 1 et 25% en poids et l'agent osmotique est présent à une concentration comprise entre 0,1 et 10% en poids, par rapport au poids total de la phase aqueuse externe. La composition de la phase aqueuse externe est déterminante pour la formation de la deuxième emulsion (émulsification de la première emulsion), et elle est par conséquent déterminante pour la fabrication des microsphères. Elle contribue ainsi à la stabilisation rapide des microsphères, elle influe sur l'efficacité d'encapsulation des principes actifs et constitue un facteur essentiel pour contrôler la taille des microsphères finales et leur morphologie.
Durant l'étape d' extraction-evaporation du solvant, le solvant est rapidement éliminé à température ambiante et sous pression atmosphérique, selon un système évaporateur continu constitué d'une pente de longueur adéquate sur laquelle s'écoule en couche mince la suspension de microsphères. Un tel système d' évaporation continue du solvant organique, qui augmente et favorise le contact entre l'émulsion et l'air, permet d'obtenir une stabilisation rapide de la matrice polymérique, ce qui a pour effet d'augmenter la stabilisation du principe actif tout en piégeant un fort pourcentage dudit principe au sein des microsphères (efficacité de l'encapsulation), et de conduire à une évaporation rapide du solvant, ce qui a pour effet de réduire le temps total de mise en œuvre du procédé. La stabilisation rapide de la matrice polymérique obtenue lors de cette étape d' extraction-evaporation du solvant organique permet également d'obtenir une répartition homogène de la substance active dans toute la microsphère (permettant ainsi d'obtenir une faible concentration de principe actif encapsulé près de la surface de la microsphère), contribuant ainsi à diminuer le phénomène de libération "burst", suite à l'administration des microsphères. En outre, le fait de mettre en œuvre le procédé à température ambiante et sous pression atmosphérique permet d'éviter des problèmes tels que l'altération des produits thermolabiles ou la cassure des microsphères quand le vide est utilisé lors de l'étape d' extraction-evaporation.
De façon plus détaillée, le procédé de fabrication des microsphères selon la présente invention comprend les étapes suivantes :
Une certaine quantité de principe actif est dissoute dans un volume d'eau. Cette solution s'émulsionne, à l'aide d'un appareil à ultrasons par exemple, dans un volume de chlorure de méthylène contenant un copolymère polylactide-co-glycolide, de poids moléculaire moyen compris entre 40,000 et 80,000 daltons et ayant une proportion de l'acide lactique à l'acide glycolique comprise entre 50/50 et 80/20. La première emulsion qui en résulte doit être micro-fine et homogène, permettant ainsi de répandre le principe actif sur toute la matrice polymérique, en assurant la reproductibilité des différents lots, sans avoir besoin d'utiliser des tensioactifs ni d'autres agents adjuvants. Une fois la première emulsion formée, on Pémulsionne à son tour dans une phase externe, constituée d'une solution aqueuse de polysorbate 80 en tant qu'agent de surface, de polyvinylpyrrolidone en tant qu'agent augmentant la viscosité et de mannitol ou NaCl en tant qu'agent osmotique, sous agitation pendant une courte période. Après cette étape, la double emulsion est diluée avec de l'eau, puis on fait passer la suspension dans des conditions atmosphériques sur un système évaporateur continu constitué d'une pente de longueur adéquate sur laquelle s'écoule en couche mince la suspension de microsphères. Ce système permet de favoriser le contact entre l'émulsion et l'atmosphère, ce qui réduit la durée d'évaporation du solvant organique, et d'augmenter la stabilisation du principe actif. Les microsphères obtenues de cette façon sont ensuite récupérées par filtration, lavées avec de l'eau et séchées par lyophilisation.
Les microsphères obtenues selon le procédé objet de la présente invention sont des microsphères à forte teneur en principe actif, permettant la libération en continu in vivo du médicament sur une période de plus de deux mois, de préférence d'au moins 3 mois, avec un faible effet "burst", après une administration parentérale des microsphères.
La présente invention a également pour objet les microsphères susceptibles d'être obtenues par la mise en œuvre du procédé selon la présente invention, présentant une libération continue de principe actif sur une période de plus de deux mois, avantageusement sur une période d'au moins trois mois.
Avantageusement selon la présente invention, le principe actif est présent à une concentration comprise entre 0,5 et 20 % en poids, avantageusement entre 5 et 15 % en poids, par rapport au poids total des microsphères.
Avantageusement selon la présente invention, la taille des microsphères est inférieure à 250 μm, de manière encore plus avantageuse inférieure à 90 μm. Cette taille est adéquate pour l'administration des microsphères.
Les microsphères selon la présente invention sont avantageusement administrées par voie parentérale, de manière encore plus avantageuse sous la forme d'injections intramusculaires, sous-cutanées, intra-artérielles ou à l'endroit où se trouve une tumeur. Pour une administration adéquate, les microsphères sont de préférence dispersées dans un milieu aqueux standard avec des agents dispersants et des agents isotonisants.
Les exemples suivants (études in vivo et in vitro) sont donnés à titre non limitatif et illustrent la présente invention. Exemple 1 (comparatif) :
Des lots de microsphères à base de 5-OxoPro-His-Trp-Ser-Tyr-D-Leu-Leu- o
Arg-ProNHEt acétate sont préparés conformément au procédé de fabrication décrit dans la publication Advanced Drug Delivery Reviews, 28 (1997), 43-70, lequel diffère du procédé objet de la présente invention. La fabrication des microsphères est réalisée par dissolution d'une quantité appropriée de principe actif dans de l'eau, puis par une mise en emulsion de la solution aqueuse de principe actif ainsi obtenue avec une solution d'un polylactide (100% de lactide), de poids moléculaire moyen de 15,000, dans du chlorure de méthylène. La mise en emulsion est réalisée avec un agitateur, sous agitation vigoureuse. Une fois la première emulsion Ei/H formée, on l'émulsionne à son tour, afin d'obtenir une emulsion E!/H/E2, avec une solution aqueuse d'alcool polyvinylique (0,25%) en utilisant un mélangeur à grande vitesse. La double emulsion qui en résulte est ensuite doucement agitée pendant plusieurs heures afin d'évaporer le solvant organique. Les microsphères sont ensuite lavées, récupérées par centrifugation et lyophilisées. La charge finale des microsphères en médicament est de 9 à 11 % en poids.
Les différences principales entre les microspheres obtenues selon le procédé décrit dans le document de l'état antérieur de la technique cité ci-dessus et celles obtenues selon le procédé objet de la présente invention résident dans : le choix du polymère. Dans l'exemple 1, le polymère utilisé est un polylactide (100 % de lactide), de poids moléculaire moyen de 15,000. Il s'agit d'un polymère standard, selon ce document, pour une libération prolongée de 5-OxoPro-His-Trp-Ser- T r-D-Leu-Leu-Arg-ProNHEt acétate sur une période de trois mois. - la composition de la phase externe aqueuse, qui est constituée par un alcool polyvinylique (0,25 %) dans l'exemple 1. le système d' évaporation du solvant organique. Dans l'exemple 1, la double emulsion est agitée pendant plusieurs heures.
Exemple 2 :
En suivant le procédé de fabrication objet de la présente invention, le 5- OxoPro-His-Trp-Ser-Tyr-D-Leu-Leu-Arg-ProNHEt acétate est dissous dans de l'eau, puis la solution aqueuse de principe actif est émulsionnée, à l'aide d'un appareil à ultrasons, dans une solution de chlorure de méthylène contenant 15 % d'un copolymère d,l-lactide-co-glycolide, ce copolymère ayant un poids moléculaire moyen de 63,000 daltons (viscosité inhérente d'environ 0,6 dl/g) et une proportion de l'acide lactique à l'acide glycolique de 75/25. Une fois la première emulsion formée, on l'émulsionne à son tour avec une solution aqueuse constituée de 0,25 % de polysorbate 80, de 7 % de polyvinylpyrrolidone et de 5 % de mannitol, sous agitation, en utilisant un agitateur à hélices à pales. Après cette étape, on fait passer la double emulsion, dans des conditions atmosphériques, sur un système évaporateur continu constitué d'une pente de longueur adéquate sur laquelle s'écoule en couche mince la suspension de microsphères. A l'aide d'un tel système évaporateur, le solvant organique est rapidement évaporé, conduisant à une rapide stabilisation de la matrice polymérique. Les microsphères sont finalement récupérées par filtration, lavées avec de l'eau puis séchées sous lyophilisation. La charge finale des microsphères en médicament est de 9 à ll % enpoids.
Exemple 2 bis :
Des microsphères sont élaborées en suivant le procédé décrit à l'exemple 2, en utilisant 5% de chlorure de sodium dans la phase aqueuse externe en tant qu'agent osmotique, au lieu de 5 % de mannitol.
Exemple 3 :
L'étude de la libération in vitro de 5-OxoPro-His-Tφ-Ser-Tyr-D-Leu-Leu-Arg- ProNHEt acétate à partir des microsphères préparées selon les exemples 1 et 2 est réalisée dans un tampon phosphate.
25 mg de chaque formulation sous forme de microsphères sont mis en suspension dans un milieu de libération composé de 5 ml de tampon phosphate (pH = 7,4), puis agités (rotation) pendant 4 jours à 37°C. A divers instants, la quantité de peptide libéré a été u mesurée par chromatographie en phase liquide à haute pression (HPLC). Les résultats de cette étude sont présentés dans le tableau 1. Ils démontrent que la composition préparée conformément au procédé objet de la présente invention (exemple 2) présente une libération "burst" bien inférieure à la libération "burst" des compositions préparées conformément au procédé de l'état antérieur de la technique de l'exemple 1. Ainsi, 4 jours après le début de l'étude, les microsphères de l'exemple 2 n'ont libéré que 3,4 % de la quantité totale de peptide présente dans les microsphères, alors que les microsphères de l'exemple 1 en ont libéré jusqu'à 22,6 %.
Tableau 1 :
Figure imgf000012_0001
Exemple 4 :
L'étude de la libération in vivo de 5-OxoPro-His-Trp-Ser-Tyr-D-Leu-Leu-Arg- ProNHEt acétate à partir des microsphères préparées selon les exemples 1, 2 et 2 bis est réalisée sur des rats. Pour cette étude, les trois types de microsphères (exemples 1, 2 et 2 bis) sont mis en suspension dans un excipient aqueux standard, avant de procéder à leur administration sous-cutanée au niveau d'une zone dorsale préalablement rasée chez des rats. La dose administrée à chaque animal est de 3,6 mg de 5-OxoPro-His-Trp-Ser-Tyr-D-Leu-Leu- Arg-ProNHEt acétate microencapsulé. Certains rats sont sacrifiés trois jours après l'administration, alors que d'autres sont sacrifiés sept jours après l'administration. Une fois les rats morts, le site d'injection est alors excisé, puis les microsphères restantes au niveau du site, avec le tissu conjonctif contigu, sont récupérées. Le 5-OxoPro-His-Trp- Ser-Tyr-D-Leu-Leu-Arg-ProNHEt acétate restant est alors extrait, puis quantifié par chromatographie en phase liquide à haute pression (HPLC).
Les résultats de cette étude sont présentés dans le tableau 2. On peut constater qu'au bout de 3 jours, les microsphères de l'exemple 1 libèrent déjà 35,3 % de la quantité totale de peptide présente dans les microsphères, alors que les microsphères de l'exemple 2 n'en libèrent que 20,6 %.
Tableau 2 :
Figure imgf000013_0001
On peut ainsi conclure que les résultats de cette étude in vivo concordent avec les résultats obtenus in vitro (exemple 3) et démontrent que les formulations préparées conformément au procédé de la présente invention présentent une libération "burst" beaucoup moins importante que la libération "burst" des compositions préparées conformément au procédé de l'état antérieur de la technique de l'exemple 1.
Exemple 5 : Afin de compléter les résultats précédents (exemples 3 et 4), une étude approfondie de la libération in vivo de principe actif pendant les premières 24 heures suite à l'administration des microsphères a été réalisée.
Dans ce test, la teneur sérique de 5-OxoPro-His-Trp-Ser-Tyr-D-Leu-Leu-Arg- ProNHEt acétate est évaluée chez des rats par chromatographie en phase liquide - spectrométrie de masse - spectrométrie de masse (CL/SM/SM), après l'administration sous-cutanée des formulations sous forme de microsphères préparées selon les exemples 1 et 2. Ainsi, 3,6 mg de 5-OxoPro-His-Trp-Ser-Tyr-D-Leu-Leu-Arg- ProNHEt acétate encapsulé sont injectés chez des rats et, à divers moments après l'administration, des échantillons de sang sont prélevés pour l'estimation de la teneur de 5-OxoPro-His-Tφ-Ser-Tyr-D-Leu-Leu-Arg-ProNHEt acétate dans le sérum. Les résultats de cette étude sont présentés sur la figure 1. Ainsi, une heure après radministration des microsphères de l'exemple 1, la concentration de peptide dans le sérum est de 107,8 μg/1, alors que pour les microsphères de l'exemple 2, la concentration de peptide dans le sérum est de 51,8 μg/1. Après 2, 3, 4, 8 et 24 heures, les microsphères de l'exemple 1 présentent respectivement des concentrations sériques de 103,7 ; 50,1 ; 30,3 ; 9,5 et 3,8 μg/1, alors que les microsphères de l'exemple 2 présentent respectivement des valeurs de 28,0 ; 5,5 ; 4,5 ; 9,3 et 1,0 μg/1 respectivement.
Ainsi, les résultats de cette étude sont en accord avec les résultats obtenus pour les exemples 3 et 4, puisque l'on constate que les microsphères de l'exemple 2 libèrent moins de peptide pendant les premières 24 heures (effet "burst") que les microsphères de l'exemple 1. Nous pouvons en conclure que lorsque les microsphères contiennent la matrice polymérique selon la présente invention, et qu'elles sont fabriquées en utilisant le procédé selon la présente invention, elles présentent une libération "burst" sensiblement inférieure aux microsphères préparées conformément au procédé de l'état antérieur de la technique après une administration in vivo.
Exemple 6 :
Le profil complet de libération du 5-OxoPro-His-Tφ-Ser-Tyr-D-Leu-Leu-Arg- ProNHEt acétate à partir des microsphères préparées selon l'exemple 2 est étudié chez des rats. L'objet de l'étude est de démontrer que, suite au phénomène de libération "burst" (qui a lieu systématiquement, mais qui est relativement faible par rapport à des microsphères décrites dans l'état antérieur de la technique), les microsphères obtenues selon le procédé de la présente invention libèrent le peptide en continu sur une période de plusieurs mois.
De manière similaire à l'exemple 4, les microsphères sont mises en suspension dans un véhicule aqueux standard pour leur administration sous-cutanée au niveau d'une zone dorsale préalablement rasée chez des rats. La dose administrée à chaque animal est de 3,6 mg de 5-OxoPro-His-Tφ-Ser-Tyr-D-Leu-Leu-Arg-ProNHEt acétate encapsulé.
A divers moments sur une période de trois mois, des groupes de rats sont sacrifiés, le site d'injection est excisé, puis les microsphères restantes au niveau du site, avec le tissu conjonctif contigu, sont récupérées. Le 5-OxoPro-His-Tφ-Ser-Tyr-D- Leu-Le -Arg-ProNHEt acétate restant au niveau du site d'injection est alors extrait, puis quantifié par chromatographie en phase liquide à haute pression (HPLC).
Les résultats de cette étude sont présentés sur la figure 2. Ils montrent ainsi que les microsphères libèrent le peptide en continu sur une période d'au moins trois mois.
Exemple 7 : L'étude de l'activité biologique in vivo du 5-OxoPro-His-Tφ-Ser-Tyr-D-Leu-
Leu-Arg-ProNHEt acétate microencapsulé dans des microsphères préparées selon l'exemple 2 et l'exemple 2 bis est réalisée ici.
Le 5-OxoPro-His-Tφ-Ser-Tyr-D-Leu-Leu-Arg-ProNHEt acétate est un analogue agoniste puissant de l'hormone LH-RH, qui stimule la sécrétion des gonadotrophines par l'hypophyse et la stéroïdogénèse dans les organes génitaux à des doses aiguës. Toutefois, lorsqu'il est administré de manière chronique, il produit, paradoxalement, des effets inhibiteurs antagonistes sur la gonadotrophine hypophysaire et la stéroïdogénèse testiculaire et ovarienne. Une administration initiale de 5-OxoPro-His-Tφ-Ser-Tyr-D-Leu-Leu-Arg-ProNHEt acétate provoque une brusque augmentation des taux sériques de gonadotrophines et d'hormones sexuelles, mais dans le cas d'une exposition continue au médicament, ces taux d'hormones diminuent sensiblement jusqu'à parvenir en dessous des valeurs initiales de base après plusieurs jours d'administration, et ce phénomène demeure pendant la durée du traitement. Par conséquent, afin de vérifier que la faible libération "burst" des formulations fabriquées selon les exemples 2 et 2 bis n'altère pas son activité pharmacologique, 3,6 mg de 5-OxoPro-His-Tφ-Ser-Tyr-D-Leu-Leu-Arg-ProNHEt acétate micro-encapsulé dans ces microsphères sont injectés par administration sous-cutanée chez des rats et, à divers moments après l'administration, des échantillons de sang sont prélevés pour l'estimation de la testostérone sérique par dosage radio-immunologique.
Les résultats de cette étude sont présentés sur la figure 3. Les résultats montrent ainsi un profil de testostérone sérique approprié : une brusque augmentation pendant les premiers jours, suivie d'une suppression de la concentration plasmatique de testostérone, et ils démontrent ainsi une activité biologique correcte du peptide libéré à partir de la formulation selon la présente invention.
L'objet des exemples 8 à 10 est de montrer les divers avantages que présentent les microsphères préparées conformément au procédé objet de la présente invention par rapport aux microsphères préparées selon le procédé décrit dans le brevet FR 2 718 642. Les différences principales existant entre la présente invention et l'invention décrite dans le brevet FR 2 718 642 sont les suivantes : • Pas d'agent modulateur de libération utilisé dans le procédé de la présente invention.
• Ajout de mannitol ou de NaCl en tant qu'agent osmotique dans la phase aqueuse externe dans laquelle la première emulsion est émulsifiée.
• Sélection d'une plage de poids moléculaire (40 000 à 80 000) et d'une proportion acide lactique / acide glycolique (50/50 à 80/20) du copolymère d,l-lactide-co- glycolide (PLGA) dans la présente invention.
Exemple 8 : Effet de l'agent de modulation de libération sur la libération in vitro
Des microsphères sont préparées en suivant le procédé de fabrication décrit dans l'exemple 2, en utilisant en tant que phase organique une solution de chlorure de méthylène contenant 30 % d'un copolymère d,l-lactide-co-glycolide, ayant un poids moléculaire moyen de 34,000 daltons (viscosité inhérente d'environ 0,4 dl/g) et une proportion de l'acide lactique à l'acide glycolique de 50/50 ainsi que différentes quantités (exemples 8.1, 8.2 et 8.3) d'un pory(d -lactide ayant un poids moléculaire moyen de 2,000 daltons (PLA 2.000).
Exemple 8.1 : 0 % de PLA 2,000. Exemple 8.2 : 2,5 % de PLA 2,000. Exemple 8.3 : 5 % de PLA 2,000. La phase aqueuse externe est une solution aqueuse composée de 0,25 % de polysorbate 80, de 4 % de polyvinylpyrrolidone et de 5 % de mannitol. La libération initiale in vitro de 5-OxoPro-His-Tφ-Ser-Tyr-D-Leu-Leu-Arg- ProNHEt acétate à partir des microsphères préparées selon les exemples 8.1, 8.2 et 8.3 est réalisée dans un tampon phosphate.
25 mg de chaque formulation sont mis en suspension dans un milieu de libération composé de 5 ml de tampon phosphate (pH = 7,4), puis agités (rotation) pendant 7 jours à 37°C. A divers instants, la quantité de peptide libéré est mesurée par chromatographie en phase liquide à haute pression (HPLC). Les résultats sont présentés dans le tableau 3 suivant.
Tableau 3
Figure imgf000017_0001
Les résultats montrent, pour ces 3 cas de figure 8.1, 8.2 et 8.3, une libération "burst" très faible et montrent que l'agent de modulation (PLA) de libération a un effet d'accélération de la libération du principe actif, et ceci même à de faibles concentrations (2,5 %) de PLA, indiquant que l'utilisation de cet agent peut ne pas être adéquat pour la fabrication de microsphères conçues pour une libération prolongée (sur une période de trois mois).
Exemple 9 : Effet de l'agent de modulation de libération sur le profil pharmacodyna ique et sélection du polymère pour une libération prolongée sur trois mois L'effet de la composition polymérique des microsphères sur la libération du principe actif est étudié dans une étude pharmacodynamique réalisée chez des rats. Les microsphères sont préparées en suivant le procédé de fabrication décrit dans l'exemple 2, en utilisant différents types de polymère :
Exemple 9.1 : Mélange de 97,5 % d'un copolymère d,l-lactide-co-glycolide, ayant un poids moléculaire moyen de 34,000 daltons et une proportion de l'acide lactique à l'acide glycolique de 50/50, et de 2,5 % d'un poly(d,l-lactide) ayant un poids moléculaire moyen de 2,000 daltons (agent de modulation de libération).
Exemple 9.2 : Copolymère d,l-lactide-co-glycolide, ayant un poids moléculaire moyen de 34,000 daltons et une proportion de l'acide lactique à l'acide glycolique de 50/50.
Exemple 9.3 : Copolymère d,l-lactide-co-glycolide, ayant un poids moléculaire moyen de 63,000 daltons et une proportion de l'acide lactique à l'acide glycolique de 75/25.
L'étude de la libération in vivo du 5-OxoPro-His-Tφ-Ser-Tyr-D-Leu-Leu-Arg- ProNHEt acétate à partir des microsphères est suivie à travers son effet pharmacologique de suppression des taux plasmatiques de testostérone. Les résultats de cette étude sont présentés sur la figure 4. Les résultats confirment ainsi que la présence de l'agent de modulation de libération accélère la libération du principe actif et que l'agent de modulation de libération ne peut donc pas être utilisé dans des formulations à libération très prolongée (taux de testostérone supprimés pendant 5 semaines). Les résultats montrent également qu'un copolymère d,l-lactide-co-glycolide, ayant un poids moléculaire moyen de 34,000 daltons et une proportion de l'acide lactique à l'acide glycolique de 50/50, peut maintenir la suppression des taux de testostérone pendant 8 semaines, alors qu'un copolymère d,l-lactide-co-glycolide, ayant un poids moléculaire moyen de 63,000 daltons et une proportion de l'acide lactique à l'acide glycolique de 75/25, peut maintenir la castration pendant au moins trois mois. Exemple 10 : Effet de l'addition d'un agent osmotique dans la phase aqueuse externe
Formulation 10.1 :
Des microsphères sont préparées en suivant le procédé de fabrication décrit dans l'exemple 2, en utilisant en tant que phase aqueuse externe une solution composée de 0,25 % de Polysorbate 80 et de 4 % de polyvinylpyrrolidone.
Formulation 10.2 :
Des microsphères sont préparées en suivant le procédé de fabrication décrit dans l'exemple 10.1, en ajoutant entre 2,5 % et 5 % de mannitol dans la phase aqueuse externe en tant qu'agent osmotique.
Formulation 10.3 :
Des microsphères sont préparées en suivant le procédé de fabrication décrit dans l'exemple 10.1, en ajoutant entre 2,5 % et 5 % de chlorure de sodium dans la phase aqueuse externe en tant qu'agent osmotique.
Les résultats de l'étude montrant l'influence de l'agent osmotique dans la phase aqueuse externe sont présentés dans le tableau 4 suivant :
Tableau 4 :
Figure imgf000019_0001
Ainsi, la taille et la teneur en peptide des microsphères dépendent de la présence de l'agent osmotique dans la phase aqueuse externe. L'addition de mannitol ou de NaCl en tant qu'agent osmotique augmente l'efficacité d'encapsulation, c'est à dire le pourcentage de principe actif microencapsulé (teneur). Le type et la quantité de l'agent osmotique ajouté peuvent également permettre le contrôle de la taille des particules. Dans le cadre de la présente invention, le NaCl est avantageusement utilisé en tant qu'agent osmotique, car il a été mis en évidence que dans des conditions d'agitation et de viscosité identiques, le chlorure de sodium permet une plus grande réduction de la taille des particules que le mannitol, sans produire pour autant une diminution de l'efficacité d'encapsulation.
Exemple 11 : Effet de la concentration de l'agent augmentant la viscosité ("agent viscosifiant) présent dans la phase aqueuse externe sur la taille des particules Formulation 11.1 :
Des microsphères sont préparées en suivant le procédé de fabrication décrit dans l'exemple 2, mais sans principe actif, en utilisant en tant que phase aqueuse externe une solution composée de 0,25 % de Polysorbate 80, 5 % de mannitol et 6,8 % de polyvinylpyrrolidone.
Formulation 11.2 :
Des microsphères sont préparées en suivant le procédé de fabrication décrit dans l'exemple 2, mais sans principe actif, en utilisant en tant que phase aqueuse externe une solution composée de 0,25 % de Polysorbate 80, 5 % de mannitol et 8,0 % de polyvinylpyrrolidone.
Les résultats de l'étude montrant l'influence de l'agent viscosifiant dans la phase aqueuse externe sont présentés dans le tableau 5 suivant : Tableau 5
Figure imgf000021_0001
L'exemple 10.2 élaboré avec une phase aqueuse externe composée de 0,25% de Polysorbate 80, 5% de mannitol et 4% de polyvinylpyrrolidone permettait d'obtenir une taille de particules de 43,8 μm. En augmentant la concentration d'agent viscosifiant, on peut constater qu'une diminution notable de la taille des particules est obtenue comme le montre le tableau 5 ci-dessus. Ainsi, la taille des microsphères dépend de la présence de l'agent viscosifiant dans la phase aqueuse externe, et de sa concentration.

Claims

REVENDICATIONS
1. Procédé de préparation d'une composition pharmaceutique sous forme de microsphères à libération prolongée d'un principe actif hydrosoluble, caractérisé en ce qu'il comprend la succession d'étapes suivantes : dissolution du principe actif dans une quantité appropriée d'eau, émulsification de la solution aqueuse de principe actif ainsi obtenue avec une solution d'un copolymère matriciel d,l-lactide-co-glycolide, de poids moléculaire moyen compris entre 40 000 et 80 000 et ayant une proportion acide lactique/acide glycolique comprise entre 50/50 et 80/20, dissous dans un hydrocarbure chloré, conduisant à une première emulsion microfine et homogène, émulsification de ladite première emulsion ainsi obtenue dans une phase aqueuse externe, contenant un surfactant, un agent augmentant la viscosité et un agent osmotique, extraction-evaporation du solvant pour obtenir des microsphères que l'on récupère après filtration, lavage et séchage.
2. Procédé selon la revendication 1, caractérisé en ce que le principe actif est choisi dans le groupe constitué par les peptides, les protéines, les vaccins, les antibiotiques, les antidépresseurs, les analgésiques, les anti-inflammatoires et les cytostatiques.
3. Procédé selon la revendication 2, caractérisé en ce que le principe actif est le 5-OxoPro-His-Tφ-Ser-Tyr-D-Leu-Leu-Arg-ProNHEt ou l'un de ses sels.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la première étape de dissolution du principe actif dans de l'eau pour former une phase aqueuse interne est réalisée sans l'addition d'aucune substance qui retienne le principe actif, ni d'agent stabilisateur de l' emulsion et sans aucune opération destinée à augmenter la viscosité. 5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le principe actif est présent à une concentration comprise entre 0,01 et 95% en poids, avantageusement entre 0,
5 et 40% en poids, par rapport au poids total de la phase aqueuse interne.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que rhydrocarbure chloré est le chlorure de méthylène.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le copolymère matriciel est présent à une concentration comprise entre 5 et 50% en poids, par rapport au poids total de la solution constituée du copolymère dissous dans l'hydrocarbure chloré.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la phase aqueuse externe contient une solution de polysorbate 80, de polyvinylpyrrolidone et de mannitol ou de chlorure de sodium, avantageusement une solution de polysorbate 80, de polyvinylpyrrolidone et de chlorure de sodium.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le surfactant est présent à une concentration comprise entre 0,1 et 0,5% en poids, l'agent augmentant la viscosité est présent à une concentration comprise entre 1 et 25% en poids et l'agent osmotique est présent à une concentration comprise entre 0,1 et 10% en poids, par rapport au poids total de la phase aqueuse externe.
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, durant l'étape d' extraction-evaporation du solvant, le solvant est rapidement éliminé à température ambiante et sous pression atmosphérique, selon un système évaporateur continu constitué d'une pente de longueur adéquate sur laquelle s'écoule en couche mince la suspension de microsphères.
11. Microsphères susceptibles d'être obtenues par la mise en œuvre du procédé selon l'une quelconque des revendications 1 à 10, présentant une libération continue de principe actif sur une période de plus de deux mois, avantageusement sur une période d'au moins trois mois.
12. Microsphères selon la revendication 11, caractérisées en ce que le principe actif est présent à une concentration comprise entre 0,5 et 20 % en poids, avantageusement entre 5 et 15 % en poids, par rapport au poids total des microsphères.
13. Microsphères selon l'une des revendications 11 et 12, caractérisées en ce que leur taille est inférieure à 250 μm, avantageusement inférieure à 90 μm. 14^ Microsphères selon l'une des revendications 11 à 13, caractérisées en ce qu'elles sont administrées par voie parentérale, avantageusement sous la forme d'injections intramusculaires, sous-cutanées, intra-artérielles ou à l'endroit où se trouve une tumeur.
PCT/FR2002/003447 2001-10-10 2002-10-10 Microspheres biodegradables a liberation prolongee et leur procede de preparation WO2003030870A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003533903A JP2005509611A (ja) 2001-10-10 2002-10-10 徐放型生物分解性微小球およびその製造方法
BRPI0213226A BRPI0213226B1 (pt) 2001-10-10 2002-10-10 processo de preparação de uma composição farmacêutica sob forma de microesferas com liberação prolongada de um princípio ativo hidrossolúvel, e, microesferas
CA2463358A CA2463358C (fr) 2001-10-10 2002-10-10 Microspheres biodegradables a liberation prolongee et leur procede de preparation
ES02793162.5T ES2541908T3 (es) 2001-10-10 2002-10-10 Microesferas biodegradables de liberación prolongada y su procedimiento de preparación
AU2002358831A AU2002358831B2 (en) 2001-10-10 2002-10-10 Prolonged release biodegradable microspheres and method for preparing same
MXPA04003433A MXPA04003433A (es) 2001-10-10 2002-10-10 Microesferas biodegradables de liberacion prolongada y metodo para preparar las mismas.
EP02793162.5A EP1450766B1 (fr) 2001-10-10 2002-10-10 Microspheres biodegradables a liberation prolongee et leur procede de preparation
US10/492,417 US7691412B2 (en) 2001-10-10 2002-10-10 Prolonged release biodegradable microspheres and method for preparing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES200102261A ES2194590B2 (es) 2001-10-10 2001-10-10 Microesferas biodegradables con liberacion prolongada y su procedimiento de preparacion.
ES0102261 2001-10-10
FR01/13031 2001-10-10
FR0113031A FR2830448B1 (fr) 2001-10-10 2001-10-10 Microspheres biodegradables a liberation prolongee et leur procede de preparation

Publications (1)

Publication Number Publication Date
WO2003030870A1 true WO2003030870A1 (fr) 2003-04-17

Family

ID=26156245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003447 WO2003030870A1 (fr) 2001-10-10 2002-10-10 Microspheres biodegradables a liberation prolongee et leur procede de preparation

Country Status (10)

Country Link
US (1) US7691412B2 (fr)
EP (1) EP1450766B1 (fr)
JP (2) JP2005509611A (fr)
CN (1) CN100518828C (fr)
AU (1) AU2002358831B2 (fr)
BR (1) BRPI0213226B1 (fr)
CA (1) CA2463358C (fr)
ES (1) ES2541908T3 (fr)
MX (1) MXPA04003433A (fr)
WO (1) WO2003030870A1 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003252751A (ja) * 2001-12-26 2003-09-10 Takeda Chem Ind Ltd 新規マイクロスフェアおよびその製造法
US9492400B2 (en) 2004-11-04 2016-11-15 Massachusetts Institute Of Technology Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals
WO2007070682A2 (fr) 2005-12-15 2007-06-21 Massachusetts Institute Of Technology Systeme de criblage de particules
CA2648099C (fr) 2006-03-31 2012-05-29 The Brigham And Women's Hospital, Inc Systeme pour l'administration ciblee d'agents therapeutiques
WO2007150030A2 (fr) * 2006-06-23 2007-12-27 Massachusetts Institute Of Technology Synthèse microfluidique de nanoparticules organiques
US20100144845A1 (en) * 2006-08-04 2010-06-10 Massachusetts Institute Of Technology Oligonucleotide systems for targeted intracellular delivery
CN101541316A (zh) * 2006-10-05 2009-09-23 万能药生物有限公司 可注射的储库组合物及其制备方法
KR100816065B1 (ko) * 2006-11-27 2008-03-24 동국제약 주식회사 초기 방출억제 특성이 우수한 서방출성 마이크로캡슐의제조방법 및 이에 의해 제조되는 마이크로캡슐
WO2008098165A2 (fr) 2007-02-09 2008-08-14 Massachusetts Institute Of Technology Bioréacteur oscillant pour la culture de cellules
WO2008124632A1 (fr) * 2007-04-04 2008-10-16 Massachusetts Institute Of Technology Nanoparticules assistées par des composés amphiphiles pour délivrance ciblée
UA99830C2 (uk) * 2007-06-06 2012-10-10 Дебио Ресшерчи Фармасютикю С.А. Фармацевтична композиція з пролонгованим вивільненням, виготовлена з мікрочастинок
SI2644594T1 (sl) * 2007-09-28 2017-10-30 Pfizer Inc. Ciljanje rakavih celic z uporabo nanodelcev
EP3424525A1 (fr) 2007-10-12 2019-01-09 Massachusetts Institute Of Technology Nanotechnologie de vaccin
CA2728176C (fr) 2008-06-16 2017-07-04 Bind Biosciences, Inc. Nanoparticules polymeres pharmacologiquement chargees et leurs methodes de fabrication et d'utilisation
ES2721850T3 (es) * 2008-06-16 2019-08-05 Pfizer Nanopartículas poliméricas terapéuticas que comprenden alcaloides vinca y procedimientos de fabricación y uso de las mismas
US8613951B2 (en) * 2008-06-16 2013-12-24 Bind Therapeutics, Inc. Therapeutic polymeric nanoparticles with mTor inhibitors and methods of making and using same
EP2334288B1 (fr) * 2008-09-18 2021-05-19 Evonik Corporation Procédé de micro-encapsulation avec un solvant et un sel
US8591905B2 (en) 2008-10-12 2013-11-26 The Brigham And Women's Hospital, Inc. Nicotine immunonanotherapeutics
US8277812B2 (en) 2008-10-12 2012-10-02 Massachusetts Institute Of Technology Immunonanotherapeutics that provide IgG humoral response without T-cell antigen
US8563041B2 (en) * 2008-12-12 2013-10-22 Bind Therapeutics, Inc. Therapeutic particles suitable for parenteral administration and methods of making and using same
JP2012512175A (ja) * 2008-12-15 2012-05-31 バインド バイオサイエンシズ インコーポレイテッド 治療薬を徐放するための長時間循環性ナノ粒子
TR201906255T4 (tr) 2009-12-11 2019-05-21 Pfizer Terapötik partiküllerin liyofilize edilmesine yönelik stabil formülasyonlar.
EP2515942B1 (fr) 2009-12-15 2020-02-12 Pfizer Inc. Compositions de nanoparticules polymères à visée thérapeutique à base de copolymères à température de transition vitreuse élevée ou poids moléculaires élevés
EA032943B1 (ru) 2012-09-17 2019-08-30 Пфайзер Инк. Способ получения терапевтических наночастиц (варианты) и терапевтическая наночастица (варианты)
TWI636798B (zh) 2014-03-14 2018-10-01 輝瑞大藥廠 包含治療劑之治療性奈米顆粒及其製造及使用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0469520A2 (fr) * 1990-08-01 1992-02-05 Sandoz Ag Préparation de polyactides et purification de ceux-ci
EP0582459A2 (fr) * 1992-08-07 1994-02-09 Takeda Chemical Industries, Ltd. Production de microcapsules de médicaments solubles dans l'eau
WO1995028149A1 (fr) * 1994-04-15 1995-10-26 Pierre Fabre Medicament Microspheres biodegradables a liberation controlee et leur procede de preparation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE634668A (fr) 1962-07-11
JP3372558B2 (ja) * 1990-09-14 2003-02-04 中外製薬株式会社 マイクロカプセル型徐放性製剤及びその製造法
JPH07196479A (ja) 1994-01-04 1995-08-01 Unitika Ltd マイクロカプセルの製造法
ES2078182B1 (es) * 1994-04-15 1996-07-01 Pierre Fabre Iberica S A Procedimiento para la preparacion de microesferas biodegradables con liberacion controlada y microesferas correspondientes.
JPH08259460A (ja) * 1995-01-23 1996-10-08 Takeda Chem Ind Ltd 徐放性製剤の製造法
AU4611496A (en) * 1995-02-28 1996-09-18 Innapharma, Inc. Elcatonin controlled release microsphere formulation for treatment of osteoporosis
JP2001522812A (ja) * 1997-11-07 2001-11-20 カイロン コーポレイション Igf−1持続放出性処方物の作製方法
US6740634B1 (en) 1998-01-16 2004-05-25 Takeda Chemical Industries, Ltd. Sustained release compositions, process for producing the same and utilization thereof
JP4536837B2 (ja) * 1998-01-21 2010-09-01 武田薬品工業株式会社 徐放性製剤の製造法
EP1044683A1 (fr) * 1999-04-15 2000-10-18 Debio Recherche Pharmaceutique S.A. Procédé de dispersion à une étape pour la microencapsulation de substances solubles dans l'eau

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0469520A2 (fr) * 1990-08-01 1992-02-05 Sandoz Ag Préparation de polyactides et purification de ceux-ci
EP0582459A2 (fr) * 1992-08-07 1994-02-09 Takeda Chemical Industries, Ltd. Production de microcapsules de médicaments solubles dans l'eau
WO1995028149A1 (fr) * 1994-04-15 1995-10-26 Pierre Fabre Medicament Microspheres biodegradables a liberation controlee et leur procede de preparation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T. UCHIDA ET AL.: "Optimization of Preparative Cnditions for Polylactide (PLA) Microspheres Containing Ovalbumin", CHEMICAL AND PHARMACEUTICAL BULLETIN, vol. 43, no. 9, 1 September 1995 (1995-09-01), Tokyo (jp), pages 1569 - 1573, XP000533273 *

Also Published As

Publication number Publication date
JP2010174021A (ja) 2010-08-12
CN1602186A (zh) 2005-03-30
BRPI0213226B1 (pt) 2016-03-01
ES2541908T3 (es) 2015-07-28
EP1450766A1 (fr) 2004-09-01
EP1450766B1 (fr) 2015-04-22
AU2002358831B2 (en) 2007-09-06
MXPA04003433A (es) 2004-08-11
CA2463358A1 (fr) 2003-04-17
US7691412B2 (en) 2010-04-06
JP2005509611A (ja) 2005-04-14
BR0213226A (pt) 2004-12-21
CA2463358C (fr) 2012-03-13
CN100518828C (zh) 2009-07-29
US20060110460A1 (en) 2006-05-25

Similar Documents

Publication Publication Date Title
EP1450766B1 (fr) Microspheres biodegradables a liberation prolongee et leur procede de preparation
EP0585151B1 (fr) Procédé de préparation de microsphères pour la libération prolongée de l'hormone LHRH et ses analogues, microsphères et formulations obtenues
JP2010174021A6 (ja) 徐放型生物分解性微小球およびその製造方法
BE1004486A3 (fr) Formulations a liberation prolongee de peptides solubles dans l'eau.
JP6494657B2 (ja) 徐放特性を持つペプチド充填plgaミクロスフェアの調製
US20170281548A1 (en) Organic Compounds
FR2810885A1 (fr) Microparticule a liberation soutenue et procede de fabrication
WO1993001802A1 (fr) Composition pour la liberation prolongee et controlee d'une substance medicamenteuse peptidique et procede pour sa preparation
FR2691631A1 (fr) Compositions contenant des sels de peptides formés avec des polyesters à terminaison carboxy et procédés pour leur production.
WO1993007861A1 (fr) Preparation et utilisations de microspheres a plusieurs phases
JP2013177406A (ja) オクトレオチドおよび2種またはそれ以上のポリラクチドコグリコリドポリマーを含む徐放性製剤
JP5713897B2 (ja) 生理活性ペプチドを含有する微粒子を調製するためのプロセス
EP0804173B1 (fr) Microspheres biodegradables a liberation controlee et leur procede de preparation
JP2012501321A (ja) 溶媒交流蒸発法による徐放性マイクロスフェアの製造方法
CN1438881A (zh) 胰岛素控释制剂及其方法
FR2748205A1 (fr) Compositions pharmaceutiques pour la liberation controlee de principes actifs insolubles
FR2830448A1 (fr) Microspheres biodegradables a liberation prolongee et leur procede de preparation
JP7030720B2 (ja) 先端巨大症、先端巨大症がん、sst-r5発現腫瘍、2型糖尿病、高血糖症、及びホルモン関連腫瘍の治療において使用するための、生理学的条件において難溶性であるベルドレオチド
CN117427046A (zh) 一种用于装载多肽类药物的缓释微球及其制备方法
WO2003043605A1 (fr) Procede de preparation de microparticules sans solvant toxique, microparticules obtenues selon ce procede, utilisations et compositions pharmaceutiques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN JP MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR US

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2463358

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003533903

Country of ref document: JP

Ref document number: PA/A/2004/003433

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2002358831

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004/03065

Country of ref document: ZA

Ref document number: 200403065

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2002793162

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002824575X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002793162

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006110460

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10492417

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10492417

Country of ref document: US