WO2003032526A1 - Performing two-way ranging to determine the location of a wireless node - Google Patents

Performing two-way ranging to determine the location of a wireless node Download PDF

Info

Publication number
WO2003032526A1
WO2003032526A1 PCT/US2002/032241 US0232241W WO03032526A1 WO 2003032526 A1 WO2003032526 A1 WO 2003032526A1 US 0232241 W US0232241 W US 0232241W WO 03032526 A1 WO03032526 A1 WO 03032526A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
nodes
range
over
message
Prior art date
Application number
PCT/US2002/032241
Other languages
French (fr)
Inventor
Eric Whitehill
Original Assignee
Meshnetworks, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meshnetworks, Inc. filed Critical Meshnetworks, Inc.
Publication of WO2003032526A1 publication Critical patent/WO2003032526A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/876Combination of several spaced transponders or reflectors of known location for determining the position of a receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation

Definitions

  • the present invention relates to a system and method for efficiently performing two-way ranging to determine the location of a wireless node, such as a user terminal, in a communications network. More particularly, the present invention relates to a system and method for reducing the number of transmissions required between a source node and reference nodes to determine the geographic location of the source node, and for reducing the number of transmissions required for the source node to retrieve data from any of the reference nodes.
  • Related subject matter is disclosed in a U.S. patent application of Eric A. Whitehall et al. entitled “Methods and Apparatus for Coordinating Channel Access to Shared Parallel Data Channels", Serial No. 09/705,588, filed on November 3, 2000, and in a U.S.
  • Carrier Sense Multiple Access with Collision Avoidance is a well-known protocol specified in the IEEE802.i l standard for wireless local area networks (LANs) which enables wireless communications devices to communicate with each other.
  • CSMA/CA involves an initial handshake of a Request-to-Send
  • RTS Clear-to-Send
  • CTS Clear-to-Send
  • the source node transmits an RTS message to the intended destination node. If the intended destination node wishes to receive the message and believes that the channel is available (i.e., free of other traffic), the destination node responds with a CTS message.
  • the receipt of the CTS message by the source node permits the transmission of the information message (MSG) which is typically followed by an Acknowledgment (ACK) message from the destination node when reception of the information message is successful. All other nodes within range of the CTS message mark the channel as busy for the duration of the message transfer. Provided that all nodes receive every CTS message, the protocol works well.
  • MSG information message
  • ACK Acknowledgment
  • node refers to a communication device operating in a network of communication devices.
  • the node may be a mobile communication device, such as a radio or wireless telephone, or the node may be stationary or fixed in a particular location.
  • channel refers to a communication path between nodes, and different channels can exist on separate communication media or on a common communication medium, with individual channels being separated by any suitable means, such as time, frequency, or encoding.
  • Increased throughput is achieved by transferring messages over the multiple parallel data channels.
  • One channel is dedicated for use as the reservation channel, and channel access is allocated on the multiple data channels in a distributed fashion. Access to the data channels is coordinated among the nodes by communicating message requests and corresponding replies on the separate reservation channel.
  • Any node in the network can also use the CSMA/CA technique described above to determine its distance or range to nodes at known locations, to thus enable a node to determine its own location.
  • any node can determine its location by deterh ining its range from three known reference points.
  • a node can therefore use the CSMA/CA technique to determine its ranges from three nodes at known locations, and can thus use these range values to calculate its own geographic location.
  • a source node In determining its range to a destination node, a source node transmits an RTS-T message to the intended destination node which, if available, responds with a time of arrival (TOA) message. To perform the ranging, the controller of the source node starts a timer immediately following transmission of the RTS-T message, and stops the timer when synchronization to the TOA message is obtained.
  • TOA time of arrival
  • the value of the timer represents the aggregate time equal to twice the propagation delay between the source and destination nodes, plus the fixed delay at the destination node that occurs between its receipt of the RTS-T message and transmission of the first symbol of the TOA message, and the duration of time for the source node to complete the synchronization sequence.
  • the source node can perform the ranging during a desired number of RTS-T and TOA exchanges (e.g., ten RTS-T and TOA exchanges), and can average the ranged values to obtain a more accurate ranging value.
  • the ranging technique described above is suitable for obtaining an accurate ranging measurement
  • the technique can have several drawbacks.
  • the 4096 bit TOA sequence unnecessarily consumes precious bandwidth on the reservation channel. That is, assuming that the RTS-T waveform is 320 microseconds, the TOA reply is much greater in length in order to provide position information (e.g., GPS coordinates), delay calibration- information, curve fitting results, and so on. If this TOA reply is transmitted on the reservation channel, the transmission reduces the amount of time available to make data channel reservations, and thus idles these data channels when they could be delivering messages.
  • position information e.g., GPS coordinates
  • delay calibration- information e.g., curve fitting results, and so on.
  • the two nodes involved in transmitting and receiving the TOA message are unable to monitor the reservation channel during this period, and thus miss information transmitted over the reservation channel pertaining to the channel reservations that are made while these node are tuned away from the reservation channel.
  • the turnaround time caused by the delay calibration (if required) and the curve fitting results is excessive and directly impacts the reservation channel. For example, calibration of a node thru an internal loopback removes the node from being tuned to the reservation channel, which can result in channel collisions, loss of routing updates, and the node's failure to respond to requests from other nodes. All of these occurrences can have negative performance implications on the network.
  • each node in the network can include a secondary receiver in addition to its primary receiver.
  • the secondary receiver permits each node to continuously monitor the reservation channel, even when transmitting or receiving a message on one of the data channels. While monitoring the reservation channel, the nodes store the channel reservations that have been accomplished and avoid use of those channels until the reservations expire.
  • the dedication of the second receiver eliminates the loss of reservation knowledge that occurs with the use of a single receiver for both the reservation and data transfer mechanisms, which is a serious limitation of conventional CSMA/CA schemes.
  • a second receiver in a mobile user terminal, such as a mobile telephony device, in order to keep the device as compact as possible. It may also be desirable to avoid employing a second receiver in certain types of nodes in order to reduce their overall cost and manufacturing complexity.
  • a source node in order for a source node to retrieve an information message (MSG) from a destination node, a total of 8 transmissions (i.e., two series of RTS/CTS/MSG/ACK messages) must occur between the source and destination nodes. It is noted that when the MSG and ACK messages are being transmitted and received by the source and destination nodes, the primary receivers of those nodes are tuned to a data channel, and it is necessary for the secondary receivers to monitor the reservation channel. However, it would be desirable for the source node to be capable of retrieving an information message from the destination node on the reservation channel, to thus eliminate or at least minimize the need for a second transceiver.
  • An object of the present invention is to provide a system and method for reducing the number of transmissions required for a node in a wireless communications network to range other nodes in the network, while also enabling the node to continuously monitor the reservation channel during the ranging process without the use of a second receiver, to enable the node to more efficiently determine its geographic location.
  • Another object of the present invention it to provide a system and method which enables a node in a wireless communications network to substantially reduce the amount of time the node is unable to monitor the reservation channel, while receiving information messages from other nodes in the network.
  • a communication node which is adapted for use in a wireless communications network and comprises a transceiver and a controller.
  • the transceiver is adapted to transmit and receive messages to and from other nodes in the network over at least one of a plurality of shared data channels, and is tunable to a reservation channel to monitor channel access reservation messages transmitted by the other nodes in said network.
  • the controller is adapted to control the transceiver to transmit a range request message to at least one other of the nodes in the network over the reservation channel and to receive a range reply message from at least one other node over the reservation channel in response to the range request message, to enable the controller to determine a distance of the communication node from the other node based on the range request message and the range reply message.
  • the range request message is configured so as to indicate to the node being ranged, as well as any other node within the radio frequency (RF) range of the node performing the ranging, that the transceivers of the ranging and ranged nodes are not transitioning to a data channel.
  • RF radio frequency
  • the controller can determine the distance by measuring a duration of time that elapses between a first moment when a portion of the range request message is transmitted by the transceiver and a second moment when a portion of the range reply message is received by the transceiver.
  • the controller is further adapted to control the transceiver to receive an information message that has been transmitted over a reserved data channel by the other node substantially immediately after the other node transmitted the range reply message.
  • Fig. 1 is a block diagram of an example of a plurality of nodes in a wireless communications network that are each capable of ranging other nodes in the network, as well as receiving data from other nodes in the network, while continuing to monitor the reservation channel of the network without the use of a second receiver, in accordance with an embodiment of the present invention
  • Fig. 2 is a block diagram of an example of a wireless node as shown in Fig. 1;
  • Fig. 3 is a time line of message events occurring on the reservation channel and the parallel data channels of the network shown in Fig. 1 ; and [0022] Fig. 4 is a state diagram illustrating an example of states through which the channel access state machine of the modem of a node transit during transmitting, receiving and channel monitoring operations in accordance with an exemplary embodiment of the present invention.
  • Fig. 1 is a block diagram illustrating an example of a wireless communications network 100 employing an embodiment of the present invention.
  • the network 100 can be an ad-hoc packet switched network, which includes a plurality of mobile nodes 102-1 through 102-n (referred to generally as nodes 102), and a fixed network 104 having a plurality of fixed nodes or access points 106-1, 106-2, ..., 106-n (referred to generally as nodes 106), for providing the mobile nodes 102 with access to the fixed network 104.
  • a node 102 can be a wireless telephone, radio, user terminal or any other suitable mobile wireless device.
  • the fixed network 104 includes, for example, a core local access network (LAN), and a plurality of servers and gateway routers, to thus provide the mobile nodes 102 with access to other networks, such as the public switched telephone network (PSTN) and the Internet.
  • LAN local access network
  • PSTN public switched telephone network
  • each mobile node 102 or fixed node 106 includes a modem which is essentially a transceiver 108 including a transmitter and a receiver which are coupled to an antenna 110 and capable of respectively transmitting and receiving signals, such as packetized data signals, under the control of a controller 112.
  • the packetized data signals can include, for example, voice, data or multimedia.
  • Each node 102 or 106 further includes a memory 114, which can include a random access memory (ROM) for storing information pertaining to the operation of the node 102 or 106, and a random access memory (RAM) for storing information such as routing table information and the like in accordance with which data packets are transmitted, received and routed by the transceiver 108.
  • ROM random access memory
  • RAM random access memory
  • each mobile node 102 and fixed node 106 can communicate over plural data channels as well as a reservation channel. These channels are not limited to any particular architecture or configuration, so long as each node 102 and 106 has the ability to access the channels.
  • the channels can exist over any communication medium, such as wire, optical fiber, or wireless (over-the-air), and may employ any suitable transmission protocol.
  • node 102-1 When a node, for example, node 102-1, wishes to transmit a message to another node, for example, node 102-2, node 102-1 transmits a Request-to-Send (RTS) message to node 102-2 in order to notify node 102-2 and other nodes 102 and 106 of its intent to reserve one of the available data channels. As shown in Fig. 3, the RTS message is transmitted by node 102-1 on the reservation channel.
  • RTS Request-to-Send
  • the RTS message is transmitted by node 102-1 on the reservation channel.
  • a node 102 or 106 When a node 102 or 106 is not engaged in transmission or reception of messages on one of the data channels, its receiver is tuned to the reservation channel. However, when a node 102 or 106 is engaged in the transmission or reception of messages on one of the data channels, the receiver is tuned to that data channel instead of the reservation channel. Consequently, each node 102 and 106 is continuously monitoring the reservation channel with its receiver when it is not transmit
  • node 102-2 Upon receiving the RTS from node 102-1 on the reservation channel, assuming a data channel is available, node 102-2 replies to node 102-1 with a CTS message on the reservation channel. Upon receiving the CTS message, node 102-1 then transmits the information message to node 102-2 on the available data channel, for example, data channel 1. Because channel access requests are transmitted on the separate reservation channel, another node 102 or 106 can transmit an RTS message shortly after a previous RTS/CTS exchange is completed without waiting for the subsequent information message to be completed.
  • node 102-3 can transmit an RTS message on the reservation channel after the CTS message from node 102-2 to node 102-1, irrespective of whether the information message being transmitted from node 102-1 to node 102-2 is still being transmitted on data channel 1.
  • Node 102-4 replies to node 102-3 with a CTS message, and node 102-3 subsequently transmits an information message on another available data channel, such as data channel 2.
  • the information message sent from node 102-3 to node 102-4 on data channel 2 can be transmitted simultaneously with the information message sent from node 102-1 to node 102-2 on data channel 1.
  • the message from node 102-3 to node 102-4 is transmitted with essentially no delay resulting from transmission of the long message transmitted from node 102-1 to node 102-2.
  • any node in particular, any mobile node 102, can determine its location by determining its range from three known reference points.
  • a node 102 can therefore use the CSMA/CA technique to determine its ranges from three nodes 102 and/or 106 at known locations, and can thus use these range values to calculate its own geographic location.
  • node 102-1 can range nodes 102-2, 102-3 and 102-4 using the CSMA/CA technique to obtain the necessary information to enable node 102-1 to calculate its own location.
  • FIG. 4 is presented which illustrates a state diagram of the state machine of a modem of any node, for example, a node 102, in network 100 employing multi-channel carrier sense multiple access with enhanced collision avoidance (MC-CSMA/E-CA) as described in U.S. patent application Serial No. 09/705,588, referenced above.
  • the state machine implements the CSMA/CA protocol with multiple data channels, and for ease of description, the modem states shown in Fig. 4 are loosely separated into "source modem states" (right side of Fig. 4) that each modem may typically enter while in the process of transferring a message, and "destination modem states" (left side of Fig. 4) that each modem may typically enter while in the process of receiving a message.
  • each modem upon initial turn on and power up (INITIATE), each modem enters the IDLE state 100 and is tuned to the reservation channel.
  • the standard cycle of modem states of the source node includes the states of IDLE (100), TIME CHANNEL ACCESS (102), TRANSMIT RTS (104), WAIT CTS (106), PROCESS CTS (108), TRANSMIT MESSAGE (110), WAIT LINK ACKNOWLEDGE (112), and back to IDLE (100).
  • node 102-1 ranges another node, for example, node 102-2
  • the modem of node 102-1 transits through the above eight states.
  • the ranging node 102-1 is away from the reservation channel and thus can experience a degradation in channel access reliability.
  • the modem of node 102-2 transits through the following states: IDLE (100), PROCESS RTS/CTS (114), TRANSMIT CTS/NCTS (120), RECEIVE MESSAGE (122), CHECK CRC (124), TRANSMIT LINK ACK/NACK (126), INTERRUPT WAVEFORM PROCESSOR (128) and IDLE (100).
  • IDLE 100
  • PROCESS RTS/CTS 114
  • TRANSMIT CTS/NCTS 120
  • RECEIVE MESSAGE 122
  • CHECK CRC 124
  • TRANSMIT LINK ACK/NACK 126
  • INTERRUPT WAVEFORM PROCESSOR (128) IDLE
  • the node 102-2 being ranged is away from the reservation channel, and thus can also experience a degradation in channel access reliability.
  • the ranging node 102-1 then repeats the above process to range two other nodes, for example, nodes 102-3 and 102-4, to obtain the necessary amount of information to calculate its own location based on a triangulation technique as can be appreciated by one skilled in the art.
  • This process of ranging three nodes 102-2, 102- 3 and 102-4 takes about 10 ms, and during a large portion of this time, the modems of ranging node 102-1 and ranged nodes 102-2, 102-3 and 102-4, are tuned away from the reservation channel.
  • an embodiment of tjie present invention enables a node, for example, node 102-1, to determine the range to a known location, for example, node 102-2, using a modified request-to-send/clear-to-send procedure that does not require the modems of ranging node 102-1 and ranged node 102-2 to tune away from the reservation channel during the ranging process.
  • a Range Request RTS is transmitted by the ranging node 102-1, and is answered by a Range Reply CTS from the ranged node 102-2.
  • the Range Request RTS is configured so as to indicate to the ranged node 102-2, as well as any other node 102-1 within the radio frequency (RF) range of the ranging node 102-1, that the transceivers 108 of the ranging and ranged nodes 102-1 and 102-2, respectively, are not transitioning to a data channel.
  • RF radio frequency
  • the range measurement is determined by measuring the amount of time from any known point in the Range Request RTS transmission until the reception of any known point in the Range Reply CTS.
  • the known point can be, for example, the end of the synchronization pattern or the last bit in the message.
  • the controller 112 of the ranging node 102-1 can start a timer immediately following transmission of the Range Request RTS message, and stop the timer when synchronization to the Range Reply CTS is obtained.
  • the value of the timer represents the aggregate time equal to twice the propagation delay between the source and destination nodes, plus the fixed delay at the destination node that occurs between its receipt of the Range Request RTS and transmission of the first symbol of the Range Reply CTS, and the duration of time for the source node to complete the synchronization sequence.
  • the modem of the ranging node 102-1 transits through the states of IDLE (100), TIME CHANNEL ACCESS (102), TRANSMIT RTS (104), WAIT CTS (106), PROCESS CTS (108), and back to IDLE (100). It is noted that the two states TRANSMIT MESSAGE (110), WAIT LINK ACKNOWLEDGE (112), which are the most expensive in terms of channel access reliability and bandwidth utilized, have been eliminated.
  • the modem of the node being ranged transits through the states of IDLE (100) PROCESS RTS/CTS (114), TRANSMIT CTS/NCTS (120), IDLE (100). Accordingly, the RECEIVE MESSAGE (122), CHECK CRC (124), TRANSMIT LINK ACK/NACK (126), and INTERRUPT WAVEFORM PROCESSOR (128) states have been eliminated.
  • the collective amount of time that a ranging node 102-1 and ranged nodes 102-2, 102-3 and 102-4 spend to enable ranging node 102-1 to perform the location determining operations is reduced from approximately 10 ms to approximately 1.5 ms.
  • a significant improvement in channel access performance is also obtained. That is, since the modems of ranging node 102-1 and ranged nodes 102-2, 102-3 and 102-4 do not switch over to a data channel, the nodes 102-1, 102-2, 102-3 and 102-4 are able to continue their participation in the network 100 instead of merely noting that they missed a message while their modems were tuned to the data channel.
  • the modem of a node which is not involved in the transmission or reception of the RTS and CTS messages during the ranging process according to the embodiment of the present invention described above, or during a ranging process performed by the dual receiver design described in U.S. patent application Serial No. 09/705,588, transits through the following states when the ranging process is being performed by the other nodes: IDLE (100), PROCESS RTS/CTS (114) , RECV CTS (116) , IDLE (100).
  • the uninvolved node 102-5 In the dual receiver design, during the RECV CTS (116) state, the uninvolved node 102-5 expects to mark a channel and two addresses as busy for the expected duration of the ranging measurement, which is on the order of two milliseconds. However, in the improved process according to the embodiment of the present invention described above, this uninvolved node 102-5 has an additional channel and two additional nodes (e.g., nodes 102-1 and 102-2), with which it can transact messages without delay. [0040] In addition, as will now be discussed, a modification to the RTS/CTS exchange described above can also enable a node, such as node 102-1, to more efficiently obtain an information packet from another node.
  • the node e.g., node 102-1
  • the node e.g., node 102-2
  • the modems of nodes 102-1 and 102-2 change their frequency from the reservation channel to a data channel during the MSG and ACK transmissions.
  • a node 102-1 can obtain an information packet from another node 102-2 with a total of 3 or 4 transmission between the nodes instead of 8.
  • the channel access state machine shown in Fig. 4 has been annotated to indicate that instead of the requestor node (e.g., node 102-1) transmitting a message (MSG) to the requestee node (e.g., node 102-2) after receiving a CTS message from the requestee node, the requestor node receives a data packet from the requestee node immediately after or substantially immediately after receiving the CTS message from the requestee node.
  • MSG message
  • the requestor node 102-1 issues an RTS
  • the requestee node 102-2 issues the CTS over the reservation channel, and then the MSG on the reserved data channel, which are received by the requestor node 102-1.
  • the requestor node 102-1 Upon successfully receiving the message MSG, the requestor node 102-1 then optionally transmits an acknowledgement message ACK to the requestee node 102-2 on the reserved data channel.
  • the states that the modem of the requesting node 102-1 transit during this process are IDLE (100), TIME CHANNEL ACCESS (102), TRANSMIT RTS (104), WAIT CTS (106), PROCESS CTS (108), RECEIVE MESSAGE (122), CHECK CRC (124), INTERRUPT WAVEFORM PROCESSOR (128) and IDLE (100). It can be noted from this sequence that the channel access state machine of node 102-1 has jumped from the transmit side to the receive side between PROCESS CTS and RECEIVE MESSAGE. This jump thereby reduces the number of total transmission between the nodes 102-1 and 102-2 from 8 to 3.
  • the acknowledgement message ACK generally has two purposes, namely, to indicate the need for a retransmission attempt by the requestee node, and to return signal quality information to the requestee node.
  • the requests for information made by the requestor node 102-1 are typically not subject to a retransmission attempt. Rather, any retransmission attempt must be re-initiated by the requestor.
  • the return of signal quality information to the requestee node 102-2 can be sacrificed to reduce the transmission overhead associated with this service.
  • the states that the modem of the requestee node 102-2 transit during this process are IDLE (100), PROCESS RTS/CTS (114), TRANSMIT CTS (120) TRANSMIT MESSAGE (110) and IDLE (100). It is noted that in this sequence, the channel access state machine of the requestee node 102-2 has jumped from the receive side between XMIT CTS and TRANSMIT MESSAGE. This requires the requestee node 102-2 to create a message for transmission immediately following the transmission of a CTS. This message consists of the transmission overhead (# bytes in message, CRC, ...) and the requested information.
  • the number of transmissions between the requestor node 102- 1 and requestee node 102-2 are reduced from 8 to either 3 or 4, depending on whether the requestor node 102-1 issues the optional acknowledgement message ACK.
  • This reduction in transmissions thus improves the network throughput, delay, and reliability. These improvements further translate directly into improved service as viewed by the end user.
  • Typical usage of this capability include, but are not limited to, the ability to obtain information such as the requestee' s current position, access codes for a private network, regional transmit power or data rate limitations, data rates for routing and neighbor discovery messages, currently accepted priority level at a wireless router (WR) or IAP, available bandwidth at a WR or IAP, and the suitability of a node to act as a position reference, to name a few.
  • information such as the requestee' s current position, access codes for a private network, regional transmit power or data rate limitations, data rates for routing and neighbor discovery messages, currently accepted priority level at a wireless router (WR) or IAP, available bandwidth at a WR or IAP, and the suitability of a node to act as a position reference, to name a few.

Abstract

A system and method for reducing the number of transmissions required for a node (102-1) in a communications network (100) to range other nodes (102-2 through 102-n) in the network, while also enabling the node (102-1) to continuously monitor the reservation channel during the ranging process without the use of a second receiver, and to indicate to the ranged node (106-1 through 106-n) and other nodes (102-2 through 102-n) in the network that the ranging node and the ranged node are not tuning to a data channel to perform the ranging, to thus enable the node (102-1) to more efficiently determine its geographic location. The system and method further enables a node (102-1) in a wireless communications network (100) to minimize the amount of time it is not monitoring the reservation channel while receiving information messages from other nodes (102-2 through 102-n) in the network.

Description

Performing Two- Way Ranging To Determine The Location Of A Wireless Node
BACKGROUND OF THE INVENTION
Field of the Invention:
[OOOl] The present invention relates to a system and method for efficiently performing two-way ranging to determine the location of a wireless node, such as a user terminal, in a communications network. More particularly, the present invention relates to a system and method for reducing the number of transmissions required between a source node and reference nodes to determine the geographic location of the source node, and for reducing the number of transmissions required for the source node to retrieve data from any of the reference nodes. Related subject matter is disclosed in a U.S. patent application of Eric A. Whitehall et al. entitled "Methods and Apparatus for Coordinating Channel Access to Shared Parallel Data Channels", Serial No. 09/705,588, filed on November 3, 2000, and in a U.S. patent application of Dennis D. McCrady et al. entitled "Method and Apparatus for Determining the Position of a Mobile Communication Device Using Low Accuracy Clocks", Serial No. 09/365,702, filed on August 2, 1999, the entire content of both of said applications being incorporated herein by reference.
Description of the Related Art:
[0002] Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) is a well-known protocol specified in the IEEE802.i l standard for wireless local area networks (LANs) which enables wireless communications devices to communicate with each other. CSMA/CA involves an initial handshake of a Request-to-Send
(RTS) message followed by a Clear-to-Send (CTS) message exchanged between a source node and a destination node prior to sending an information message (e.g., a message containing audio, multimedia or data information).
[0003] Specifically, the source node transmits an RTS message to the intended destination node. If the intended destination node wishes to receive the message and believes that the channel is available (i.e., free of other traffic), the destination node responds with a CTS message. The receipt of the CTS message by the source node permits the transmission of the information message (MSG) which is typically followed by an Acknowledgment (ACK) message from the destination node when reception of the information message is successful. All other nodes within range of the CTS message mark the channel as busy for the duration of the message transfer. Provided that all nodes receive every CTS message, the protocol works well. [0004] An example of a network employing CSMA/CA techniques is described in U.S. patent application Serial No. 09/705,588, referenced above. In this type of network, a plurality of nodes communicate with each other using plural, shared parallel data channels and a separate reservation channel. As used herein, the term node refers to a communication device operating in a network of communication devices. The node may be a mobile communication device, such as a radio or wireless telephone, or the node may be stationary or fixed in a particular location. Also, as used herein, the term channel refers to a communication path between nodes, and different channels can exist on separate communication media or on a common communication medium, with individual channels being separated by any suitable means, such as time, frequency, or encoding.
[0005] Increased throughput is achieved by transferring messages over the multiple parallel data channels. One channel is dedicated for use as the reservation channel, and channel access is allocated on the multiple data channels in a distributed fashion. Access to the data channels is coordinated among the nodes by communicating message requests and corresponding replies on the separate reservation channel.
[0006] Any node in the network can also use the CSMA/CA technique described above to determine its distance or range to nodes at known locations, to thus enable a node to determine its own location. Specifically, as can be appreciated by one skilled in the art, any node can determine its location by deterh ining its range from three known reference points. A node can therefore use the CSMA/CA technique to determine its ranges from three nodes at known locations, and can thus use these range values to calculate its own geographic location.
[0007] An example of this type of ranging is described in U.S. patent application Serial No. 09/365,702, referenced above. In determining its range to a destination node, a source node transmits an RTS-T message to the intended destination node which, if available, responds with a time of arrival (TOA) message. To perform the ranging, the controller of the source node starts a timer immediately following transmission of the RTS-T message, and stops the timer when synchronization to the TOA message is obtained. The value of the timer represents the aggregate time equal to twice the propagation delay between the source and destination nodes, plus the fixed delay at the destination node that occurs between its receipt of the RTS-T message and transmission of the first symbol of the TOA message, and the duration of time for the source node to complete the synchronization sequence. The source node can perform the ranging during a desired number of RTS-T and TOA exchanges (e.g., ten RTS-T and TOA exchanges), and can average the ranged values to obtain a more accurate ranging value.
[0008] Although the ranging technique described above is suitable for obtaining an accurate ranging measurement, the technique can have several drawbacks. For example, the 4096 bit TOA sequence unnecessarily consumes precious bandwidth on the reservation channel. That is, assuming that the RTS-T waveform is 320 microseconds, the TOA reply is much greater in length in order to provide position information (e.g., GPS coordinates), delay calibration- information, curve fitting results, and so on. If this TOA reply is transmitted on the reservation channel, the transmission reduces the amount of time available to make data channel reservations, and thus idles these data channels when they could be delivering messages. On the other hand, if the TOA reply is transmitted on a data channel, the two nodes involved in transmitting and receiving the TOA message are unable to monitor the reservation channel during this period, and thus miss information transmitted over the reservation channel pertaining to the channel reservations that are made while these node are tuned away from the reservation channel. [0009] Furthermore, the turnaround time caused by the delay calibration (if required) and the curve fitting results is excessive and directly impacts the reservation channel. For example, calibration of a node thru an internal loopback removes the node from being tuned to the reservation channel, which can result in channel collisions, loss of routing updates, and the node's failure to respond to requests from other nodes. All of these occurrences can have negative performance implications on the network. Also, by requiring the reference node (i.e., the node being ranged) to perform the calibration while the ranging node is waiting for a response unnecessarily ties up the reservation channel which, in a multi-hop ad-hoc network, could result in a lost channel reservation attempt by another node due to both the near/far and the hidden terminal problems as can be appreciated by one skilled in the art. [0010] It can be further noted that when the transceivers of the source and destination nodes perform any ranging transmissions (e.g., TOA transmissions) over a data channel when performing the ranging operations described above, or when exchanging any information messages, they are incapable of monitoring the information being transmitted from other nodes over the reservation channel. Therefore, during these periods, the source and destination nodes can miss messages pertaining to channel reservations that are being made by other nodes in the network. [0011] In order to eliminate this deficiency, each node in the network can include a secondary receiver in addition to its primary receiver. The secondary receiver permits each node to continuously monitor the reservation channel, even when transmitting or receiving a message on one of the data channels. While monitoring the reservation channel, the nodes store the channel reservations that have been accomplished and avoid use of those channels until the reservations expire. The dedication of the second receiver eliminates the loss of reservation knowledge that occurs with the use of a single receiver for both the reservation and data transfer mechanisms, which is a serious limitation of conventional CSMA/CA schemes. By transmitting requests for channel access on a separate reservation channel and dedicating a receiver to receive and respond to such requests, transmission of information messages on the multiple parallel data channels can be coordinated among the nodes, collisions between request messages and information messages are eliminated, and collisions between the short request messages transmitted on the reservation channel are dramatically reduced. Further details of these features are set forth in U.S. patent application Serial No. 09/705,588, referenced above. [0012] Although the addition of a secondary receiver to the nodes is effective in enabling the nodes to monitor the reservation channel while transmitting and receiving data over a data channel, it is not always possible or desirable to add a second receiver to a node. For example, it may be preferable to avoid employing a second receiver in a mobile user terminal, such as a mobile telephony device, in order to keep the device as compact as possible. It may also be desirable to avoid employing a second receiver in certain types of nodes in order to reduce their overall cost and manufacturing complexity.
[0013] In addition, as discussed above, in order for a source node to retrieve an information message (MSG) from a destination node, a total of 8 transmissions (i.e., two series of RTS/CTS/MSG/ACK messages) must occur between the source and destination nodes. It is noted that when the MSG and ACK messages are being transmitted and received by the source and destination nodes, the primary receivers of those nodes are tuned to a data channel, and it is necessary for the secondary receivers to monitor the reservation channel. However, it would be desirable for the source node to be capable of retrieving an information message from the destination node on the reservation channel, to thus eliminate or at least minimize the need for a second transceiver.
[0014] Accordingly, a need exists for a system and method that is capable of reducing the number of transmissions required for a node to range other nodes while also enabling a node to continuously monitor the reservation channel during the ranging process, without the use of a second receiver. A need also exists for a system and method for enabling a source node to retrieve an information message from a destination node on a data channel with a reduced number of transmissions. SUMMARY OF THE INVENTION [0015] An object of the present invention is to provide a system and method for reducing the number of transmissions required for a node in a wireless communications network to range other nodes in the network, while also enabling the node to continuously monitor the reservation channel during the ranging process without the use of a second receiver, to enable the node to more efficiently determine its geographic location.
[0016] Another object of the present invention it to provide a system and method which enables a node in a wireless communications network to substantially reduce the amount of time the node is unable to monitor the reservation channel, while receiving information messages from other nodes in the network. [0017] These and other objects of the present invention are substantially achieved by providing a communication node which is adapted for use in a wireless communications network and comprises a transceiver and a controller. The transceiver is adapted to transmit and receive messages to and from other nodes in the network over at least one of a plurality of shared data channels, and is tunable to a reservation channel to monitor channel access reservation messages transmitted by the other nodes in said network. The controller is adapted to control the transceiver to transmit a range request message to at least one other of the nodes in the network over the reservation channel and to receive a range reply message from at least one other node over the reservation channel in response to the range request message, to enable the controller to determine a distance of the communication node from the other node based on the range request message and the range reply message. Specifically, the range request message is configured so as to indicate to the node being ranged, as well as any other node within the radio frequency (RF) range of the node performing the ranging, that the transceivers of the ranging and ranged nodes are not transitioning to a data channel. The controller can determine the distance by measuring a duration of time that elapses between a first moment when a portion of the range request message is transmitted by the transceiver and a second moment when a portion of the range reply message is received by the transceiver. The controller is further adapted to control the transceiver to receive an information message that has been transmitted over a reserved data channel by the other node substantially immediately after the other node transmitted the range reply message.
BRIEF DESCRIPTION OF THE DRAWINGS [0018] These and other objects, advantages and novel features of the invention will be more readily appreciated from the following detailed description when read in conjunction with the accompanying drawings, in which:
[0019] Fig. 1 is a block diagram of an example of a plurality of nodes in a wireless communications network that are each capable of ranging other nodes in the network, as well as receiving data from other nodes in the network, while continuing to monitor the reservation channel of the network without the use of a second receiver, in accordance with an embodiment of the present invention; [0020] Fig. 2 is a block diagram of an example of a wireless node as shown in Fig. 1;
[0021] Fig. 3 is a time line of message events occurring on the reservation channel and the parallel data channels of the network shown in Fig. 1 ; and [0022] Fig. 4 is a state diagram illustrating an example of states through which the channel access state machine of the modem of a node transit during transmitting, receiving and channel monitoring operations in accordance with an exemplary embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0023] Fig. 1 is a block diagram illustrating an example of a wireless communications network 100 employing an embodiment of the present invention. Specifically, the network 100 can be an ad-hoc packet switched network, which includes a plurality of mobile nodes 102-1 through 102-n (referred to generally as nodes 102), and a fixed network 104 having a plurality of fixed nodes or access points 106-1, 106-2, ..., 106-n (referred to generally as nodes 106), for providing the mobile nodes 102 with access to the fixed network 104. A node 102 can be a wireless telephone, radio, user terminal or any other suitable mobile wireless device. The fixed network 104 includes, for example, a core local access network (LAN), and a plurality of servers and gateway routers, to thus provide the mobile nodes 102 with access to other networks, such as the public switched telephone network (PSTN) and the Internet.
[0024] As shown in Fig. 2, each mobile node 102 or fixed node 106 includes a modem which is essentially a transceiver 108 including a transmitter and a receiver which are coupled to an antenna 110 and capable of respectively transmitting and receiving signals, such as packetized data signals, under the control of a controller 112. The packetized data signals can include, for example, voice, data or multimedia. Each node 102 or 106 further includes a memory 114, which can include a random access memory (ROM) for storing information pertaining to the operation of the node 102 or 106, and a random access memory (RAM) for storing information such as routing table information and the like in accordance with which data packets are transmitted, received and routed by the transceiver 108.
[0025] As described in U.S. patent application Serial No. 09/705,588, referenced above, each mobile node 102 and fixed node 106 can communicate over plural data channels as well as a reservation channel. These channels are not limited to any particular architecture or configuration, so long as each node 102 and 106 has the ability to access the channels. The channels can exist over any communication medium, such as wire, optical fiber, or wireless (over-the-air), and may employ any suitable transmission protocol.
[0026] When a node, for example, node 102-1, wishes to transmit a message to another node, for example, node 102-2, node 102-1 transmits a Request-to-Send (RTS) message to node 102-2 in order to notify node 102-2 and other nodes 102 and 106 of its intent to reserve one of the available data channels. As shown in Fig. 3, the RTS message is transmitted by node 102-1 on the reservation channel. When a node 102 or 106 is not engaged in transmission or reception of messages on one of the data channels, its receiver is tuned to the reservation channel. However, when a node 102 or 106 is engaged in the transmission or reception of messages on one of the data channels, the receiver is tuned to that data channel instead of the reservation channel. Consequently, each node 102 and 106 is continuously monitoring the reservation channel with its receiver when it is not transmitting or receiving a message on one of the data channels.
[0027] Upon receiving the RTS from node 102-1 on the reservation channel, assuming a data channel is available, node 102-2 replies to node 102-1 with a CTS message on the reservation channel. Upon receiving the CTS message, node 102-1 then transmits the information message to node 102-2 on the available data channel, for example, data channel 1. Because channel access requests are transmitted on the separate reservation channel, another node 102 or 106 can transmit an RTS message shortly after a previous RTS/CTS exchange is completed without waiting for the subsequent information message to be completed.
[0028] For example, as further shown in Fig. 3, if node 102-3 wishes to send a message to node 102-4, node 102-3 can transmit an RTS message on the reservation channel after the CTS message from node 102-2 to node 102-1, irrespective of whether the information message being transmitted from node 102-1 to node 102-2 is still being transmitted on data channel 1. Node 102-4 then replies to node 102-3 with a CTS message, and node 102-3 subsequently transmits an information message on another available data channel, such as data channel 2. As seen in Fig. 3, the information message sent from node 102-3 to node 102-4 on data channel 2 can be transmitted simultaneously with the information message sent from node 102-1 to node 102-2 on data channel 1. The message from node 102-3 to node 102-4 is transmitted with essentially no delay resulting from transmission of the long message transmitted from node 102-1 to node 102-2.
[0029] As discussed in the Background section above, any node, in particular, any mobile node 102, can determine its location by determining its range from three known reference points. A node 102 can therefore use the CSMA/CA technique to determine its ranges from three nodes 102 and/or 106 at known locations, and can thus use these range values to calculate its own geographic location. For example, assuming that the locations of nodes 102-2, 102-3 and 102-4 are known, node 102-1 can range nodes 102-2, 102-3 and 102-4 using the CSMA/CA technique to obtain the necessary information to enable node 102-1 to calculate its own location. [0030] To assist in describing the ranging process, Fig. 4 is presented which illustrates a state diagram of the state machine of a modem of any node, for example, a node 102, in network 100 employing multi-channel carrier sense multiple access with enhanced collision avoidance (MC-CSMA/E-CA) as described in U.S. patent application Serial No. 09/705,588, referenced above. The state machine implements the CSMA/CA protocol with multiple data channels, and for ease of description, the modem states shown in Fig. 4 are loosely separated into "source modem states" (right side of Fig. 4) that each modem may typically enter while in the process of transferring a message, and "destination modem states" (left side of Fig. 4) that each modem may typically enter while in the process of receiving a message. However, it will be understood that the states shown in Fig. 4 constitute a single state machine, and the modem of each node 102 (or 106) may enter any of these states. [003 ] For example, upon initial turn on and power up (INITIATE), each modem enters the IDLE state 100 and is tuned to the reservation channel. When a source node is attempting to transfer a message to a destination node, the standard cycle of modem states of the source node includes the states of IDLE (100), TIME CHANNEL ACCESS (102), TRANSMIT RTS (104), WAIT CTS (106), PROCESS CTS (108), TRANSMIT MESSAGE (110), WAIT LINK ACKNOWLEDGE (112), and back to IDLE (100). These and the other states shown in Fig. 4 are described in much greater detail in U.S. patent application Serial No. 09/705,588.
[0032] According to the technique described in the Background section above, if node 102-1 ranges another node, for example, node 102-2, the modem of node 102-1 transits through the above eight states. During the TRANSMIT MESSAGE (110) and WAIT LINK ACKNOWLEDGE (112) states, the ranging node 102-1 is away from the reservation channel and thus can experience a degradation in channel access reliability. In addition, as can be appreciated from Fig. 4, when node 102-2 is being ranged according to the technique described in the Background section above, the modem of node 102-2 transits through the following states: IDLE (100), PROCESS RTS/CTS (114), TRANSMIT CTS/NCTS (120), RECEIVE MESSAGE (122), CHECK CRC (124), TRANSMIT LINK ACK/NACK (126), INTERRUPT WAVEFORM PROCESSOR (128) and IDLE (100). During the RECEIVE MESSAGE (122), CHECK CRC (124), TRANSMIT LINK ACK/NACK (126), INTERRUPT WAVEFORM PROCESSOR (128), the node 102-2 being ranged is away from the reservation channel, and thus can also experience a degradation in channel access reliability.
[0033] The ranging node 102-1 then repeats the above process to range two other nodes, for example, nodes 102-3 and 102-4, to obtain the necessary amount of information to calculate its own location based on a triangulation technique as can be appreciated by one skilled in the art. This process of ranging three nodes 102-2, 102- 3 and 102-4 takes about 10 ms, and during a large portion of this time, the modems of ranging node 102-1 and ranged nodes 102-2, 102-3 and 102-4, are tuned away from the reservation channel.
[0034] As will now be described, an embodiment of tjie present invention enables a node, for example, node 102-1, to determine the range to a known location, for example, node 102-2, using a modified request-to-send/clear-to-send procedure that does not require the modems of ranging node 102-1 and ranged node 102-2 to tune away from the reservation channel during the ranging process. Specifically, a Range Request RTS is transmitted by the ranging node 102-1, and is answered by a Range Reply CTS from the ranged node 102-2. The Range Request RTS is configured so as to indicate to the ranged node 102-2, as well as any other node 102-1 within the radio frequency (RF) range of the ranging node 102-1, that the transceivers 108 of the ranging and ranged nodes 102-1 and 102-2, respectively, are not transitioning to a data channel.
[0035] The range measurement is determined by measuring the amount of time from any known point in the Range Request RTS transmission until the reception of any known point in the Range Reply CTS. The known point can be, for example, the end of the synchronization pattern or the last bit in the message. As discussed in the Background section above, the controller 112 of the ranging node 102-1 can start a timer immediately following transmission of the Range Request RTS message, and stop the timer when synchronization to the Range Reply CTS is obtained. The value of the timer represents the aggregate time equal to twice the propagation delay between the source and destination nodes, plus the fixed delay at the destination node that occurs between its receipt of the Range Request RTS and transmission of the first symbol of the Range Reply CTS, and the duration of time for the source node to complete the synchronization sequence.
[0036] Referring again to Fig. 4, when performing the ranging operation according to an embodiment of the present invention, the modem of the ranging node 102-1 transits through the states of IDLE (100), TIME CHANNEL ACCESS (102), TRANSMIT RTS (104), WAIT CTS (106), PROCESS CTS (108), and back to IDLE (100). It is noted that the two states TRANSMIT MESSAGE (110), WAIT LINK ACKNOWLEDGE (112), which are the most expensive in terms of channel access reliability and bandwidth utilized, have been eliminated.
[0037] In accordance with an embodiment of the present invention, the modem of the node being ranged, for example, node 102-2, transits through the states of IDLE (100) PROCESS RTS/CTS (114), TRANSMIT CTS/NCTS (120), IDLE (100). Accordingly, the RECEIVE MESSAGE (122), CHECK CRC (124), TRANSMIT LINK ACK/NACK (126), and INTERRUPT WAVEFORM PROCESSOR (128) states have been eliminated.
[0038] As can be appreciated from the above, the collective amount of time that a ranging node 102-1 and ranged nodes 102-2, 102-3 and 102-4 spend to enable ranging node 102-1 to perform the location determining operations is reduced from approximately 10 ms to approximately 1.5 ms. Of somewhat greater importance, a significant improvement in channel access performance is also obtained. That is, since the modems of ranging node 102-1 and ranged nodes 102-2, 102-3 and 102-4 do not switch over to a data channel, the nodes 102-1, 102-2, 102-3 and 102-4 are able to continue their participation in the network 100 instead of merely noting that they missed a message while their modems were tuned to the data channel. It can be also noted that this avoids the use of a second receiver in the nodes to maintain continuous knowledge of the reservation channel as described in U.S. patent application Serial No. 09/705,588, referenced above. The ability to accomplish the ranging measurements on the reservation channel achieves the same benefits associated with the ability to continuously monitor the reservation channel as in dual receiver design, without the additional expense, complexity and size increase associated with employing a second receiver in the nodes.
[0039] In addition, referring to Fig. 4, it is noted that the modem of a node (e.g., node 102-5) which is not involved in the transmission or reception of the RTS and CTS messages during the ranging process according to the embodiment of the present invention described above, or during a ranging process performed by the dual receiver design described in U.S. patent application Serial No. 09/705,588, transits through the following states when the ranging process is being performed by the other nodes: IDLE (100), PROCESS RTS/CTS (114) , RECV CTS (116) , IDLE (100). In the dual receiver design, during the RECV CTS (116) state, the uninvolved node 102-5 expects to mark a channel and two addresses as busy for the expected duration of the ranging measurement, which is on the order of two milliseconds. However, in the improved process according to the embodiment of the present invention described above, this uninvolved node 102-5 has an additional channel and two additional nodes (e.g., nodes 102-1 and 102-2), with which it can transact messages without delay. [0040] In addition, as will now be discussed, a modification to the RTS/CTS exchange described above can also enable a node, such as node 102-1, to more efficiently obtain an information packet from another node. As described in the Background section above, in the standard RTS/CTS/MSG/ACK exchange, the node (e.g., node 102-1) requesting the information packet and the node (e.g., node 102-2) providing the information packet each perform the RTS/CTS/MSG/ACK transmission and receiving operations. Accordingly, a total of 8 transmissions are required for a node 102-1 to obtain an information packet from another node 102-2. As also described, the modems of nodes 102-1 and 102-2 change their frequency from the reservation channel to a data channel during the MSG and ACK transmissions. [0041] In accordance with an embodiment of the present invention, a node 102-1 can obtain an information packet from another node 102-2 with a total of 3 or 4 transmission between the nodes instead of 8. Specifically, as will now be described, the channel access state machine shown in Fig. 4 has been annotated to indicate that instead of the requestor node (e.g., node 102-1) transmitting a message (MSG) to the requestee node (e.g., node 102-2) after receiving a CTS message from the requestee node, the requestor node receives a data packet from the requestee node immediately after or substantially immediately after receiving the CTS message from the requestee node.
[0042] That is, when the requestor node 102-1 issues an RTS, the requestee node 102-2 issues the CTS over the reservation channel, and then the MSG on the reserved data channel, which are received by the requestor node 102-1. Upon successfully receiving the message MSG, the requestor node 102-1 then optionally transmits an acknowledgement message ACK to the requestee node 102-2 on the reserved data channel. The states that the modem of the requesting node 102-1 transit during this process are IDLE (100), TIME CHANNEL ACCESS (102), TRANSMIT RTS (104), WAIT CTS (106), PROCESS CTS (108), RECEIVE MESSAGE (122), CHECK CRC (124), INTERRUPT WAVEFORM PROCESSOR (128) and IDLE (100). It can be noted from this sequence that the channel access state machine of node 102-1 has jumped from the transmit side to the receive side between PROCESS CTS and RECEIVE MESSAGE. This jump thereby reduces the number of total transmission between the nodes 102-1 and 102-2 from 8 to 3.
[0043] It can be further noted that the transmission of the acknowledgement message ACK has been removed in this example 'to reduce the amount of transmission overhead. The acknowledgement message ACK generally has two purposes, namely, to indicate the need for a retransmission attempt by the requestee node, and to return signal quality information to the requestee node. However, the requests for information made by the requestor node 102-1 are typically not subject to a retransmission attempt. Rather, any retransmission attempt must be re-initiated by the requestor. Also, the return of signal quality information to the requestee node 102-2 can be sacrificed to reduce the transmission overhead associated with this service.
[0044] The states that the modem of the requestee node 102-2 transit during this process are IDLE (100), PROCESS RTS/CTS (114), TRANSMIT CTS (120) TRANSMIT MESSAGE (110) and IDLE (100). It is noted that in this sequence, the channel access state machine of the requestee node 102-2 has jumped from the receive side between XMIT CTS and TRANSMIT MESSAGE. This requires the requestee node 102-2 to create a message for transmission immediately following the transmission of a CTS. This message consists of the transmission overhead (# bytes in message, CRC, ...) and the requested information.
[0045] Accordingly, the number of transmissions between the requestor node 102- 1 and requestee node 102-2 are reduced from 8 to either 3 or 4, depending on whether the requestor node 102-1 issues the optional acknowledgement message ACK. This reduction in transmissions thus improves the network throughput, delay, and reliability. These improvements further translate directly into improved service as viewed by the end user. Typical usage of this capability include, but are not limited to, the ability to obtain information such as the requestee' s current position, access codes for a private network, regional transmit power or data rate limitations, data rates for routing and neighbor discovery messages, currently accepted priority level at a wireless router (WR) or IAP, available bandwidth at a WR or IAP, and the suitability of a node to act as a position reference, to name a few.
[0046] Although only a few exemplary embodiments of the present invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims.

Claims

What is claimed is:
1. A communication node, adapted for use in a communications network, comprising: a transceiver, adapted to transmit and receive messages to and from other nodes in said network over at least one of a plurality of shared data channels, and being tunable to a reservation channel to monitor channel access reservation messages transmitted by said other nodes in said network; and a controller, adapted to control said transceiver to transmit a range request message to at least one other of said nodes in said network over said reservation channel and to receive a range reply message from said at least one other node over said reservation channel in response to said range request message, to enable said controller to determine a distance of said communication node from said at least one other node based on said range request message and said range reply message, said range request message being configured to indicate to at least said one other node that said transceiver and a transceiver of said one other node are not tuning to a data channel as a result of an exchange of said range request message and said range reply message.
2. A communication node as claimed in claim 1, wherein: said controller is further adapted to determine said distance by measuring a duration of time that elapses between a first moment when a portion of said range request message is transmitted by said transceiver and a second moment when a portion of said range reply message is received by said transceiver.
3. A communication node as claimed in claim 1, wherein: said controller is further adapted to control said transceiver to transmit a respective said range request message to each of a plurality of said other nodes in said network over said reservation channel and to receive a respective said range reply message from each of said plurality of other nodes over said reservation channel in response to said respective range request messages, to enable said controller to determine a respective distance of said communication node from each of said other nodes based on said respective range request messages and said respective range reply messages.
4. A communication node as claimed in claim 3, wherein: said controller is further adapted to determine a geographic location of said communications node based on said respective distances.
5. A communication node as claimed in claim 1, wherein: said controller is further adapted to control said transceiver to receive an information message that has been transmitted over a data channel by said at least one other node substantially immediately after said at least one other node transmitted said range reply message.
6. A communication node, adapted for use in a communications network, comprising: a transceiver, adapted to transmit and receive messages to and from other nodes in said network over at least one of a plurality of shared data channels, and being tunable to a reservation channel to monitor channel access reservation messages transmitted by said other nodes in said network; and a controller, adapted to control said transceiver to transmit a range request message to at least one other of said nodes in said network over said reservation channel, and to receive a range reply message from said at least one other node over said reservation channel and an information message from said at least one other node over a reserved data channel in response to said range request message.
7. A communication node as claimed in claim 6, wherein: said information message includes at least one of the following: information representing the current position of said at least one other node, access codes for a private network in which said at least one other node is operating, regional transmit power or data rate limitations associated with said at least one other node, data rates for routing and neighbor discovery messages relating to said at least one other node, currently accepted priority level at said at least one other node, available bandwidth at said at least one other node, and the suitability of said at least one other node to act as a position reference.
8. A communication node as claimed in claim 6, wherein: said controller is further adapted to control said transceiver to transmit a respective said range request message to each of a plurality of said other nodes in said network over said reservation channel and to receive a respective said range reply message over said reservation channel and a respective said information message from each of said plurality of other nodes over respective reserved data channels in response to said respective range request messages.
9. A method for controlling a communication node, adapted for use in a communications network, to determine its position relative to at least one of a plurality of other nodes in said network, said other nodes in said network being adapted to communicate with each other over at least one of a plurality of shared data channels and to transmit channel access reservation messages over a reservation channel, the method comprising: controlling a transceiver of said communication node to transmit a range request message to at least one other of said nodes in said network over said reservation channel and to receive a range reply message from said at least one other node over said reservation channel in response to said range request message, said range request message being configured to indicate to at least said one other node that said transceiver and a transceiver of said one other node are not tuning to a data channel as a result of an exchange of said range request message and said range reply message; and determining a distance of said communication node from said at least one other node based on said range request message and said range reply message.
10. A method as claimed in claim 9, wherein: said determining step determines said distance by measuring a duration of time that elapses between a first moment when a portion of said range request message is transmitted by said transceiver and a second moment when a portion of said range reply message is received by said transceiver.
11. A method as claimed in claim 9, wherein: said controlling step controls said transceiver to transmit a respective said range request message to each of a plurality of said other nodes in said network over said reservation channel and to receive a respective said range reply message from each of said plurality of other nodes over said reservation channel in response to said respective range request messages; and said determining step determines a respective distance of said communication node from each of said other nodes based on said respective range request messages and said respective range reply messages.
12. A method as claimed in claim 11, further comprising: determining a geographic location of said communications node based on said respective distances.
13. A method as claimed in claim 9, further comprising: controlling said transceiver to receive an information message that has been transmitted over a data channel by said at least one other node substantially immediately after said at least one other node transmitted said range reply message.
14. A method for controlling a communication node, adapted for use in a communications network, to receive an information message from at least one of a plurality of other nodes in said network, said other nodes in said network being adapted to communicate with each other over at least one of a plurality of shared data channels and to transmit channel access reservation messages over a reservation channel, the method comprising: controlling a transceiver of said communication node to transmit a range request message to at least one other of said nodes in said network over said reservation channel; and controlling said transceiver to receive a range reply message over said reservation channel and an information message from said at least one other node over a reserved data channel in response to said range request message.
15. A method as claimed in claim 14, wherein: said information message includes at least one of the following: information representing the current position of said at least one other node, access codes for a private network in which said at least one other node is operating, regional transmit power or data rate limitations associated with said at least one other node, data rates for routing and neighbor discovery messages relating to said at least one other node, currently accepted priority level at said at least one other node, available bandwidth at said at least one other node, and the suitability of said at least one other node to act as a position reference.
16. A method as claimed in claim 14, further comprising: controlling said transceiver to transmit a respective said range request message to each of a plurality of said other nodes in said network over said reservation channel and to receive a respective said range reply message over said reservation channel and a respective said information message from each of said plurality of other nodes over respective reserved data channels in response to said respective range request messages.
17. A computer readable medium of instructions for controlling a communication node, adapted for use in a communications network, to determine its position relative to at least one of a plurality of other nodes in said network, said other nodes in said network being adapted to communicate with each other over at least one of a plurality of shared data channels and to transmit channel access reservation messages over a reservation channel, the computer readable medium of instructions comprising: a first set of instructions, adapted to control a transceiver of said communication node to transmit a range request message to at least one other of said nodes in said network over said reservation channel and to receive a range reply message from said at least one other node over said reservation channel in response to said range request message, said range request message being configured to indicate to at least said one other node that said transceiver and a transceiver of said one other node are not tuning to a data channel as a result of an exchange of said range request message and said range reply message; and a second set of instructions, adapted to control said communication node to determine a distance of said communication node from said at least one other node based on said range request message and said range reply message.
18. A computer readable medium of instructions as claimed in claim 17, wherein: said second set of instructions is adapted to control said communication node to determine said distance by measuring a duration of time that elapses between a first moment when a portion of said range request message is transmitted by said transceiver and a second moment when a portion of said range reply message is received by said transceiver.
19. A computer readable medium of instructions as claimed in claim 17, wherein: said first set of instructions is adapted to control said transceiver to transmit a respective said range request message to each of a plurality of said other nodes in said network over said reservation channel and to receive a respective said range reply message from each of said plurality of other nodes over said reservation channel in response to said respective range request messages; and said second set of instructions is adapted to control said communication node to determine its respective distance from each of said other nodes based on said respective range request messages and said respective range reply messages.
20. A computer readable medium of instructions as claimed in claim 19, further comprising: a third set of instructions, adapted to control said communication node to determine its geographic location based on said respective distances.
21. A computer readable medium of instructions as claimed in claim 17, further comprising: a fourth set of instructions, adapted to control said transceiver to receive an information message that has been transmitted over a data channel by said at least one other node substantially immediately after said at least one other node transmitted said range reply message.
22. A computer readable medium of instructions for controlling a communication node, adapted for use in a communications network, to receive an information message from at least one of a plurality of other nodes in said network, said other nodes in said network being adapted to communicate with each other over at least one of a plurality of shared data channels and to transmit channel access reservation messages over a reservation channel, the computer readable medium of instructions comprising: a first set of instructions, adapted to control a transceiver of said communication node to transmit a range request message to at least one other of said nodes in said network over said reservation channel; and a second set of instructions, adapted to control said transceiver to receive a range reply message over said reservation channel and an information message from said at least one other node over a reserved data channel in response to said range request message.
23. A computer readable medium of instructions as claimed in claim 22, wherein: said information message includes at least one of the following: information representing the current position of said at least one other node, access codes for a private network in which said at least one other node is operating, regional transmit power or data rate limitations associated with said at least one other node, data rates for routing and neighbor discovery messages relating to said at least one other node, currently accepted priority level at said at least one other node, available bandwidth at said at least one other node, and the suitability of said at least one other node to act as a position reference.
24. A computer readable medium of instructions as claimed in claim 22, wherein: said first set of instructions is further adapted to control said transceiver to transmit a respective said range request message to each of a plurality of said other nodes in said network over said reservation channel; and said second set of instructions is further adapted to control said transceiver to receive a respective said range reply message over said reservation channel and a respective said information message from each of said plurality of other nodes over respective reserved data channels in response to said respective range request messages.
PCT/US2002/032241 2001-10-11 2002-10-10 Performing two-way ranging to determine the location of a wireless node WO2003032526A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/973,799 2001-10-11
US09/973,799 US6768730B1 (en) 2001-10-11 2001-10-11 System and method for efficiently performing two-way ranging to determine the location of a wireless node in a communications network

Publications (1)

Publication Number Publication Date
WO2003032526A1 true WO2003032526A1 (en) 2003-04-17

Family

ID=25521239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/032241 WO2003032526A1 (en) 2001-10-11 2002-10-10 Performing two-way ranging to determine the location of a wireless node

Country Status (2)

Country Link
US (1) US6768730B1 (en)
WO (1) WO2003032526A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539004A (en) * 2005-04-27 2008-11-13 カーディアック・ペースメーカーズ・インコーポレーテッド System and method for communicating with an implantable medical device
US7818018B2 (en) 2004-01-29 2010-10-19 Qualcomm Incorporated Distributed hierarchical scheduling in an AD hoc network
US7882412B2 (en) 2004-10-05 2011-02-01 Sanjiv Nanda Enhanced block acknowledgement
US8315271B2 (en) 2004-03-26 2012-11-20 Qualcomm Incorporated Method and apparatus for an ad-hoc wireless communications system
US8355372B2 (en) 2004-05-07 2013-01-15 Qualcomm Incorporated Transmission mode and rate selection for a wireless communication system
US8401018B2 (en) 2004-06-02 2013-03-19 Qualcomm Incorporated Method and apparatus for scheduling in a wireless network
WO2013045425A1 (en) * 2011-09-28 2013-04-04 Siemens Aktiengesellschaft Method and device for determining the distance between communication apparatuses
US8472473B2 (en) 2003-10-15 2013-06-25 Qualcomm Incorporated Wireless LAN protocol stack
US8774098B2 (en) 2003-10-15 2014-07-08 Qualcomm Incorporated Method, apparatus, and system for multiplexing protocol data units
US8842657B2 (en) 2003-10-15 2014-09-23 Qualcomm Incorporated High speed media access control with legacy system interoperability
US8903440B2 (en) 2004-01-29 2014-12-02 Qualcomm Incorporated Distributed hierarchical scheduling in an ad hoc network
US9072101B2 (en) 2003-10-15 2015-06-30 Qualcomm Incorporated High speed media access control and direct link protocol
US9137087B2 (en) 2003-10-15 2015-09-15 Qualcomm Incorporated High speed media access control
US9198194B2 (en) 2005-09-12 2015-11-24 Qualcomm Incorporated Scheduling with reverse direction grant in wireless communication systems
US9226308B2 (en) 2003-10-15 2015-12-29 Qualcomm Incorporated Method, apparatus, and system for medium access control

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6934297B1 (en) * 2000-11-02 2005-08-23 Agency For Science, Technology And Research Method and apparatus for communicating in a distributed multiple access wireless communication system
US7181214B1 (en) 2001-11-13 2007-02-20 Meshnetworks, Inc. System and method for determining the measure of mobility of a subscriber device in an ad-hoc wireless network with fixed wireless routers and wide area network (WAN) access points
US7729776B2 (en) 2001-12-19 2010-06-01 Cardiac Pacemakers, Inc. Implantable medical device with two or more telemetry systems
US6993393B2 (en) 2001-12-19 2006-01-31 Cardiac Pacemakers, Inc. Telemetry duty cycle management system for an implantable medical device
US6985773B2 (en) 2002-02-07 2006-01-10 Cardiac Pacemakers, Inc. Methods and apparatuses for implantable medical device telemetry power management
US7167715B2 (en) 2002-05-17 2007-01-23 Meshnetworks, Inc. System and method for determining relative positioning in AD-HOC networks
US7050819B2 (en) * 2002-07-16 2006-05-23 Qwest Communications International Inc. Mesh network mobile unit with positioning system
US7031757B2 (en) * 2002-07-16 2006-04-18 Qwest Communications International Inc. Power utilization enhancement system and method for mobile mesh networks units
US7042867B2 (en) * 2002-07-29 2006-05-09 Meshnetworks, Inc. System and method for determining physical location of a node in a wireless network during an authentication check of the node
US20040203870A1 (en) * 2002-08-20 2004-10-14 Daniel Aljadeff Method and system for location finding in a wireless local area network
US8315211B2 (en) * 2002-09-17 2012-11-20 Broadcom Corporation Method and system for location based configuration of a wireless access point (WAP) and an access device in a hybrid wired/wireless network
US7269138B2 (en) * 2003-06-04 2007-09-11 Motorola, Inc. Distributed MAC protocol facilitating collaborative ranging in communications networks
JP2007526445A (en) * 2003-06-06 2007-09-13 メッシュネットワークス インコーポレイテッド System and method for identifying floor number with firefighter in need of rescue using received signal strength indication and signal propagation time
US20040264475A1 (en) * 2003-06-30 2004-12-30 The Nature Of The Conveyance Class of high throughput MAC architectures for multi-channel CSMA systems
US7065144B2 (en) * 2003-08-27 2006-06-20 Qualcomm Incorporated Frequency-independent spatial processing for wideband MISO and MIMO systems
US20050058081A1 (en) * 2003-09-16 2005-03-17 Elliott Brig Barnum Systems and methods for measuring the distance between devices
US8284752B2 (en) 2003-10-15 2012-10-09 Qualcomm Incorporated Method, apparatus, and system for medium access control
US7436780B2 (en) * 2003-12-17 2008-10-14 Time Warner, Inc. Method and apparatus for approximating location of node attached to a network
US20050153732A1 (en) * 2004-01-13 2005-07-14 The Boeing Company Satellite-capable mobile terminals
WO2005099816A1 (en) * 2004-04-07 2005-10-27 Cardiac Pacemakers, Inc. System and method for rf transceiver duty cycling in an implantable medical device
WO2005099817A1 (en) 2004-04-07 2005-10-27 Cardiac Pacemakers, Inc. Rf wake-up of implantable medical device
JP4779438B2 (en) * 2004-05-31 2011-09-28 パナソニック株式会社 Wireless communication method and wireless communication apparatus
DE112005001747T5 (en) * 2004-07-28 2007-06-14 MeshNetworks, Inc., Maitland System and method for locating persons or objects by means of central calculation of a node position and for displaying the node positions
US7502360B2 (en) * 2005-03-04 2009-03-10 Itt Manufacturing Enterprises, Inc. Method and apparatus for dynamic neighbor discovery within wireless networks using time division multiple access (TDMA)
US7639663B1 (en) 2005-03-04 2009-12-29 Itt Manufacturing Enterprises, Inc. Method and apparatus for dynamic channel access within wireless networks
US7633870B2 (en) * 2005-04-18 2009-12-15 Symmetricom, Inc. Network forwarding device and method that forward timing packets through the device with a constant delay
KR101243501B1 (en) * 2005-05-13 2013-03-13 삼성전자주식회사 Apparatus and method for transmitting and receiving data in wireless local area network mesh communication system
US20070127422A1 (en) * 2005-12-07 2007-06-07 Belcea John M System and method for computing the position of a mobile device operating in a wireless network
US8179879B2 (en) 2006-09-18 2012-05-15 Pmc-Sierra Israel Ltd. Robust ranging method
US8643545B2 (en) * 2007-12-27 2014-02-04 Motorola Solutions, Inc. Determining position of a node and representing the position as a position probability space
US8068851B2 (en) * 2008-08-29 2011-11-29 Motorola Solutions, Inc. Method for proximity detection in a wireless communication network
EP2326030B1 (en) * 2009-11-23 2012-10-17 Lakeside Labs GmbH Apparatus and method for cooperative relaying in wireless systems using an extended channel reservation
US8259745B2 (en) * 2010-03-29 2012-09-04 Intel Corporation Enhanced carrier sensing for multi-channel operation
US8810452B2 (en) * 2010-05-24 2014-08-19 Trueposition, Inc. Network location and synchronization of peer sensor stations in a wireless geolocation network
US10142966B2 (en) * 2014-04-24 2018-11-27 Sony Corporation Wireless communication device and method for communication between a base station and a wireless node
US10948584B2 (en) 2017-03-15 2021-03-16 The Regents Of The University Of Michigan Latent oscillator frequency estimation for ranging measurements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010009544A1 (en) * 2000-01-26 2001-07-26 Nokia Mobile Phones Ltd. Location of subscriber terminal in packet-switched radio system
US6453168B1 (en) * 1999-08-02 2002-09-17 Itt Manufacturing Enterprises, Inc Method and apparatus for determining the position of a mobile communication device using low accuracy clocks
US20020154622A1 (en) * 2001-04-18 2002-10-24 Skypilot Network, Inc. Network channel access protocol - slot scheduling
US20020167963A1 (en) * 2001-03-27 2002-11-14 Mario Joa-Ng Method and apparatus for spread spectrum medium access protocol with collision avoidance using controlled time of arrival

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910521A (en) 1981-08-03 1990-03-20 Texas Instruments Incorporated Dual band communication receiver
US4494192A (en) 1982-07-21 1985-01-15 Sperry Corporation High speed bus architecture
JPS59115633A (en) 1982-12-22 1984-07-04 Toshiba Corp Information transmitting system
US4675863A (en) 1985-03-20 1987-06-23 International Mobile Machines Corp. Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels
US4747130A (en) 1985-12-17 1988-05-24 American Telephone And Telegraph Company, At&T Bell Laboratories Resource allocation in distributed control systems
US4736371A (en) 1985-12-30 1988-04-05 Nec Corporation Satellite communications system with random multiple access and time slot reservation
US4742357A (en) 1986-09-17 1988-05-03 Rackley Ernie C Stolen object location system
GB2229064B (en) 1987-06-11 1990-12-12 Software Sciences Limited An area communications system
US5210846B1 (en) 1989-05-15 1999-06-29 Dallas Semiconductor One-wire bus architecture
US5555425A (en) 1990-03-07 1996-09-10 Dell Usa, L.P. Multi-master bus arbitration system in which the address and data lines of the bus may be separately granted to individual masters
US5068916A (en) 1990-10-29 1991-11-26 International Business Machines Corporation Coordination of wireless medium among a plurality of base stations
JP2692418B2 (en) 1991-05-17 1997-12-17 日本電気株式会社 Radio channel allocation method
US5241542A (en) 1991-08-23 1993-08-31 International Business Machines Corporation Battery efficient operation of scheduled access protocol
US5369748A (en) 1991-08-23 1994-11-29 Nexgen Microsystems Bus arbitration in a dual-bus architecture where one bus has relatively high latency
FR2683326B1 (en) 1991-10-31 1993-12-24 Thomson Applic Radars Centre METHOD FOR QUERYING A RADAR ANSWERING MACHINE AND AN ANSWERING MACHINE FOR IMPLEMENTING THE METHOD.
US5231634B1 (en) 1991-12-18 1996-04-02 Proxim Inc Medium access protocol for wireless lans
US5392450A (en) 1992-01-08 1995-02-21 General Electric Company Satellite communications system
US5896561A (en) 1992-04-06 1999-04-20 Intermec Ip Corp. Communication network having a dormant polling protocol
FR2690252B1 (en) 1992-04-17 1994-05-27 Thomson Csf METHOD AND SYSTEM FOR DETERMINING THE POSITION AND ORIENTATION OF A MOBILE, AND APPLICATIONS.
US5233604A (en) 1992-04-28 1993-08-03 International Business Machines Corporation Methods and apparatus for optimum path selection in packet transmission networks
GB9304638D0 (en) 1993-03-06 1993-04-21 Ncr Int Inc Wireless data communication system having power saving function
US5696903A (en) 1993-05-11 1997-12-09 Norand Corporation Hierarchical communications system using microlink, data rate switching, frequency hopping and vehicular local area networking
IT1270938B (en) 1993-05-14 1997-05-16 Cselt Centro Studi Lab Telecom PROCEDURE FOR THE CONTROL OF THE TRANSMISSION ON A SAME CHANNEL OF INFORMATION FLOWS AT VARIABLE SPEED IN COMMUNICATION SYSTEMS BETWEEN MOBILE VEHICLES, AND A SYSTEM USING SUCH PROCEDURE
US5317566A (en) 1993-08-18 1994-05-31 Ascom Timeplex Trading Ag Least cost route selection in distributed digital communication networks
US5631897A (en) 1993-10-01 1997-05-20 Nec America, Inc. Apparatus and method for incorporating a large number of destinations over circuit-switched wide area network connections
US5857084A (en) 1993-11-02 1999-01-05 Klein; Dean A. Hierarchical bus structure access system
US5412654A (en) 1994-01-10 1995-05-02 International Business Machines Corporation Highly dynamic destination-sequenced destination vector routing for mobile computers
JP2591467B2 (en) 1994-04-18 1997-03-19 日本電気株式会社 Access method
US5502722A (en) 1994-08-01 1996-03-26 Motorola, Inc. Method and apparatus for a radio system using variable transmission reservation
CA2132180C (en) 1994-09-15 2001-07-31 Victor Pierobon Massive array cellular system
JP3043958B2 (en) 1994-09-29 2000-05-22 株式会社リコー Network communication method by wireless communication
US6029217A (en) 1994-10-03 2000-02-22 International Business Machines Corporation Queued arbitration mechanism for data processing system
DE69433872T2 (en) 1994-10-26 2005-07-14 International Business Machines Corp. Medium access control scheme for wireless local area networks with interleaved variable length time division frames
US5618045A (en) 1995-02-08 1997-04-08 Kagan; Michael Interactive multiple player game system and method of playing a game between at least two players
US5555540A (en) 1995-02-17 1996-09-10 Sun Microsystems, Inc. ASIC bus structure
US5796741A (en) 1995-03-09 1998-08-18 Nippon Telegraph And Telephone Corporation ATM bus system
US5572528A (en) 1995-03-20 1996-11-05 Novell, Inc. Mobile networking method and apparatus
US5886992A (en) 1995-04-14 1999-03-23 Valtion Teknillinen Tutkimuskeskus Frame synchronized ring system and method
US5517491A (en) 1995-05-03 1996-05-14 Motorola, Inc. Method and apparatus for controlling frequency deviation of a portable transceiver
US5822309A (en) 1995-06-15 1998-10-13 Lucent Technologies Inc. Signaling and control architecture for an ad-hoc ATM LAN
US5623495A (en) 1995-06-15 1997-04-22 Lucent Technologies Inc. Portable base station architecture for an AD-HOC ATM lan
US5781540A (en) 1995-06-30 1998-07-14 Hughes Electronics Device and method for communicating in a mobile satellite system
GB2303763B (en) 1995-07-26 2000-02-16 Motorola Israel Ltd Communications system and method of operation
GB9517943D0 (en) 1995-09-02 1995-11-01 At & T Corp Radio communication device and method
US6132306A (en) 1995-09-06 2000-10-17 Cisco Systems, Inc. Cellular communication system with dedicated repeater channels
US6192053B1 (en) 1995-09-07 2001-02-20 Wireless Networks, Inc. Enhanced adjacency detection protocol for wireless applications
US5615212A (en) 1995-09-11 1997-03-25 Motorola Inc. Method, device and router for providing a contention-based reservation mechanism within a mini-slotted dynamic entry polling slot supporting multiple service classes
US5805593A (en) 1995-09-26 1998-09-08 At&T Corp Routing method for setting up a service between an origination node and a destination node in a connection-communications network
US5805842A (en) 1995-09-26 1998-09-08 Intel Corporation Apparatus, system and method for supporting DMA transfers on a multiplexed bus
US5701294A (en) 1995-10-02 1997-12-23 Telefonaktiebolaget Lm Ericsson System and method for flexible coding, modulation, and time slot allocation in a radio telecommunications network
US5717689A (en) 1995-10-10 1998-02-10 Lucent Technologies Inc. Data link layer protocol for transport of ATM cells over a wireless link
US5920821A (en) 1995-12-04 1999-07-06 Bell Atlantic Network Services, Inc. Use of cellular digital packet data (CDPD) communications to convey system identification list data to roaming cellular subscriber stations
US5991279A (en) 1995-12-07 1999-11-23 Vistar Telecommunications Inc. Wireless packet data distributed communications system
US5878036A (en) 1995-12-20 1999-03-02 Spartz; Michael K. Wireless telecommunications system utilizing CDMA radio frequency signal modulation in conjunction with the GSM A-interface telecommunications network protocol
KR100197407B1 (en) 1995-12-28 1999-06-15 유기범 Communication bus architecture between process in the full electronic switching system
US5680392A (en) 1996-01-16 1997-10-21 General Datacomm, Inc. Multimedia multipoint telecommunications reservation systems
US5684794A (en) 1996-01-25 1997-11-04 Hazeltine Corporation Validation of subscriber signals in a cellular radio network
US5706428A (en) 1996-03-14 1998-01-06 Lucent Technologies Inc. Multirate wireless data communication system
US5652751A (en) 1996-03-26 1997-07-29 Hazeltine Corporation Architecture for mobile radio networks with dynamically changing topology using virtual subnets
US5796732A (en) 1996-03-28 1998-08-18 Cisco Technology, Inc. Architecture for an expandable transaction-based switching bus
US5805977A (en) 1996-04-01 1998-09-08 Motorola, Inc. Method and apparatus for controlling transmissions in a two-way selective call communication system
US5943322A (en) 1996-04-24 1999-08-24 Itt Defense, Inc. Communications method for a code division multiple access system without a base station
US5787080A (en) 1996-06-03 1998-07-28 Philips Electronics North America Corporation Method and apparatus for reservation-based wireless-ATM local area network
US5845097A (en) 1996-06-03 1998-12-01 Samsung Electronics Co., Ltd. Bus recovery apparatus and method of recovery in a multi-master bus system
SE518132C2 (en) 1996-06-07 2002-08-27 Ericsson Telefon Ab L M Method and apparatus for synchronizing combined receivers and transmitters in a cellular system
US5774876A (en) 1996-06-26 1998-06-30 Par Government Systems Corporation Managing assets with active electronic tags
US5844905A (en) 1996-07-09 1998-12-01 International Business Machines Corporation Extensions to distributed MAC protocols with collision avoidance using RTS/CTS exchange
US5909651A (en) 1996-08-02 1999-06-01 Lucent Technologies Inc. Broadcast short message service architecture
US5987011A (en) 1996-08-30 1999-11-16 Chai-Keong Toh Routing method for Ad-Hoc mobile networks
FI103848B (en) * 1996-12-02 1999-09-30 Nokia Telecommunications Oy Maintaining a group call in a mobile communication system
US6044062A (en) 1996-12-06 2000-03-28 Communique, Llc Wireless network system and method for providing same
US5903559A (en) 1996-12-20 1999-05-11 Nec Usa, Inc. Method for internet protocol switching over fast ATM cell transport
US5877724A (en) 1997-03-25 1999-03-02 Trimble Navigation Limited Combined position locating and cellular telephone system with a single shared microprocessor
US6052594A (en) 1997-04-30 2000-04-18 At&T Corp. System and method for dynamically assigning channels for wireless packet communications
US5881095A (en) 1997-05-01 1999-03-09 Motorola, Inc. Repeater assisted channel hopping system and method therefor
US5870350A (en) 1997-05-21 1999-02-09 International Business Machines Corporation High performance, high bandwidth memory bus architecture utilizing SDRAMs
US6240294B1 (en) 1997-05-30 2001-05-29 Itt Manufacturing Enterprises, Inc. Mobile radio device having adaptive position transmitting capabilities
GB2326065B (en) 1997-06-05 2002-05-29 Mentor Graphics Corp A scalable processor independent on-chip bus
US6108738A (en) 1997-06-10 2000-08-22 Vlsi Technology, Inc. Multi-master PCI bus system within a single integrated circuit
US5987033A (en) 1997-09-08 1999-11-16 Lucent Technologies, Inc. Wireless lan with enhanced capture provision
US6163699A (en) 1997-09-15 2000-12-19 Ramot University Authority For Applied Research And Industrial Development Ltd. Adaptive threshold scheme for tracking and paging mobile users
US6067291A (en) 1997-09-23 2000-05-23 Lucent Technologies Inc. Wireless local area network with enhanced carrier sense provision
US6034542A (en) 1997-10-14 2000-03-07 Xilinx, Inc. Bus structure for modularized chip with FPGA modules
US6009553A (en) 1997-12-15 1999-12-28 The Whitaker Corporation Adaptive error correction for a communications link
US5936953A (en) 1997-12-18 1999-08-10 Raytheon Company Multi-mode, multi-channel communication bus
US6047330A (en) 1998-01-20 2000-04-04 Netscape Communications Corporation Virtual router discovery system
US6065085A (en) 1998-01-27 2000-05-16 Lsi Logic Corporation Bus bridge architecture for a data processing system capable of sharing processing load among a plurality of devices
US6130881A (en) 1998-04-20 2000-10-10 Sarnoff Corporation Traffic routing in small wireless data networks
US6078566A (en) 1998-04-28 2000-06-20 Genesys Telecommunications Laboratories, Inc. Noise reduction techniques and apparatus for enhancing wireless data network telephony
US6064626A (en) 1998-07-31 2000-05-16 Arm Limited Peripheral buses for integrated circuit
US6304556B1 (en) 1998-08-24 2001-10-16 Cornell Research Foundation, Inc. Routing and mobility management protocols for ad-hoc networks
US6115580A (en) 1998-09-08 2000-09-05 Motorola, Inc. Communications network having adaptive network link optimization using wireless terrain awareness and method for use therein
US6208870B1 (en) 1998-10-27 2001-03-27 Lucent Technologies Inc. Short message service notification forwarded between multiple short message service centers
US6285892B1 (en) 1998-11-24 2001-09-04 Philips Electronics North America Corp. Data transmission system for reducing terminal power consumption in a wireless network
US6104712A (en) 1999-02-22 2000-08-15 Robert; Bruno G. Wireless communication network including plural migratory access nodes
US6147975A (en) 1999-06-02 2000-11-14 Ac Properties B.V. System, method and article of manufacture of a proactive threhold manager in a hybrid communication system architecture
US6275707B1 (en) 1999-10-08 2001-08-14 Motorola, Inc. Method and apparatus for assigning location estimates from a first transceiver to a second transceiver
US6327300B1 (en) 1999-10-25 2001-12-04 Motorola, Inc. Method and apparatus for dynamic spectrum allocation
KR100669130B1 (en) * 1999-11-03 2007-01-15 아이티티 매뉴팩츄어링 엔터프라이즈, 인코포레이티드 Methods and apparatus for coordinating channel access to shared parallel data channels
US6349091B1 (en) 1999-11-12 2002-02-19 Itt Manufacturing Enterprises, Inc. Method and apparatus for controlling communication links between network nodes to reduce communication protocol overhead traffic
US6349210B1 (en) * 1999-11-12 2002-02-19 Itt Manufacturing Enterprises, Inc. Method and apparatus for broadcasting messages in channel reservation communication systems
US6556582B1 (en) * 2000-05-15 2003-04-29 Bbnt Solutions Llc Systems and methods for collision avoidance in mobile multi-hop packet radio networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6453168B1 (en) * 1999-08-02 2002-09-17 Itt Manufacturing Enterprises, Inc Method and apparatus for determining the position of a mobile communication device using low accuracy clocks
US20010009544A1 (en) * 2000-01-26 2001-07-26 Nokia Mobile Phones Ltd. Location of subscriber terminal in packet-switched radio system
US20020167963A1 (en) * 2001-03-27 2002-11-14 Mario Joa-Ng Method and apparatus for spread spectrum medium access protocol with collision avoidance using controlled time of arrival
US20020154622A1 (en) * 2001-04-18 2002-10-24 Skypilot Network, Inc. Network channel access protocol - slot scheduling

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8774098B2 (en) 2003-10-15 2014-07-08 Qualcomm Incorporated Method, apparatus, and system for multiplexing protocol data units
US9226308B2 (en) 2003-10-15 2015-12-29 Qualcomm Incorporated Method, apparatus, and system for medium access control
US9137087B2 (en) 2003-10-15 2015-09-15 Qualcomm Incorporated High speed media access control
US9072101B2 (en) 2003-10-15 2015-06-30 Qualcomm Incorporated High speed media access control and direct link protocol
US8472473B2 (en) 2003-10-15 2013-06-25 Qualcomm Incorporated Wireless LAN protocol stack
US8842657B2 (en) 2003-10-15 2014-09-23 Qualcomm Incorporated High speed media access control with legacy system interoperability
US7818018B2 (en) 2004-01-29 2010-10-19 Qualcomm Incorporated Distributed hierarchical scheduling in an AD hoc network
US8903440B2 (en) 2004-01-29 2014-12-02 Qualcomm Incorporated Distributed hierarchical scheduling in an ad hoc network
US8315271B2 (en) 2004-03-26 2012-11-20 Qualcomm Incorporated Method and apparatus for an ad-hoc wireless communications system
US8355372B2 (en) 2004-05-07 2013-01-15 Qualcomm Incorporated Transmission mode and rate selection for a wireless communication system
US8401018B2 (en) 2004-06-02 2013-03-19 Qualcomm Incorporated Method and apparatus for scheduling in a wireless network
US8578230B2 (en) 2004-10-05 2013-11-05 Qualcomm Incorporated Enhanced block acknowledgement
US7882412B2 (en) 2004-10-05 2011-02-01 Sanjiv Nanda Enhanced block acknowledgement
JP2008539004A (en) * 2005-04-27 2008-11-13 カーディアック・ペースメーカーズ・インコーポレーテッド System and method for communicating with an implantable medical device
US9198194B2 (en) 2005-09-12 2015-11-24 Qualcomm Incorporated Scheduling with reverse direction grant in wireless communication systems
WO2013045425A1 (en) * 2011-09-28 2013-04-04 Siemens Aktiengesellschaft Method and device for determining the distance between communication apparatuses

Also Published As

Publication number Publication date
US6768730B1 (en) 2004-07-27

Similar Documents

Publication Publication Date Title
US6768730B1 (en) System and method for efficiently performing two-way ranging to determine the location of a wireless node in a communications network
EP1430619B1 (en) A system and method employing algorithms and protocols for optimizing carrier sense multiple access (CSMA) protocols in wireless networks
EP1228603B1 (en) Methods and apparatus for coordinating channel access to shared parallel data channels
US8175003B2 (en) Cooperative wireless communications
US6556582B1 (en) Systems and methods for collision avoidance in mobile multi-hop packet radio networks
KR100603951B1 (en) Wireless packet communication apparatus and method
US7953055B2 (en) Multi-channel MAC apparatus and method for WLAN devices with single radio interface
US20020167963A1 (en) Method and apparatus for spread spectrum medium access protocol with collision avoidance using controlled time of arrival
US20070263567A1 (en) System and Method to Free Unused Time-Slots In a Distributed Mac Protocol
JP2004530349A (en) Increase link capacity through simultaneous transmission in centralized wireless LAN
JP2011517156A (en) Method and apparatus for wireless network connection recovery
RU2391784C2 (en) Method and device for exchange of messages with help of wireless distribution system between groups operating at various frequencies
JP2008524898A (en) Multicast communication system with power control
US20030140296A1 (en) Method of improving system performance in a wireless network by making requests without acknowledgement
EP1665668B1 (en) Method of providing a medium access protocol
KR20030066343A (en) Method for radio link adaptation in a network with contention-based medium access
US20020181435A1 (en) Communications systems
GB2443862A (en) Real-time transmission of data in the Point Coordination Function Mode of operation of a wireless network
JP2005502273A (en) Method for identifying a station having a special radio function in a radio supported Ad-hoc network, and a network station for implementing this method
EP1616407A2 (en) Network with subnets being connectable via bridge terminals
Carlson et al. Distributed allocation of time slots for real-time traffic in a wireless multi-hop network
KR20080097831A (en) Method and apparatus for packet transmission in multi-channel multi-interface wireless networks
JP2002217913A (en) Wireless lan system
Lin et al. P-TDMA-SYS: A TDMA System over Commodity 802.11 Hardware for Mobile Ad-Hoc Networks.
KR100580834B1 (en) Access method between mobile terminals in Mobile Ad hoc network and mobile terminal therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NO NZ OM PH PT RO RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP