WO2003034385A2 - System and method for illumination timing compensation in response to row resistance - Google Patents

System and method for illumination timing compensation in response to row resistance Download PDF

Info

Publication number
WO2003034385A2
WO2003034385A2 PCT/US2002/033374 US0233374W WO03034385A2 WO 2003034385 A2 WO2003034385 A2 WO 2003034385A2 US 0233374 W US0233374 W US 0233374W WO 03034385 A2 WO03034385 A2 WO 03034385A2
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
column
current
row
light emitting
Prior art date
Application number
PCT/US2002/033374
Other languages
French (fr)
Other versions
WO2003034385A9 (en
WO2003034385A3 (en
Inventor
Robert E. Lechevalier
Original Assignee
Clare Micronix Integrated Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clare Micronix Integrated Systems, Inc. filed Critical Clare Micronix Integrated Systems, Inc.
Priority to AU2002335857A priority Critical patent/AU2002335857A1/en
Publication of WO2003034385A2 publication Critical patent/WO2003034385A2/en
Publication of WO2003034385A3 publication Critical patent/WO2003034385A3/en
Publication of WO2003034385A9 publication Critical patent/WO2003034385A9/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3216Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using a passive matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3283Details of drivers for data electrodes in which the data driver supplies a variable data current for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0248Precharge or discharge of column electrodes before or after applying exact column voltages
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0259Details of the generation of driving signals with use of an analog or digital ramp generator in the column driver or in the pixel circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)
  • Logic Circuits (AREA)
  • Amplifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Electronic Switches (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

A current driving circuit (264) for use with a display of light emitting elements arranged in rows and columns. The current driving circuit (264) is configured to control the exposure time of column current sources (270) based on the row voltage seen by the pixel in that column. The current driving circuit (264) allows for more closely matching the currents across the array of light emitting elements in the display by compensating for variations in voltage caused by resistance in the row lines. The invention also provides a method of balancing currents in a display device comprising controlling the exposure time of column current sources based on the row voltage seen by the light emitting elements in the column.

Description

SYSTEM AND METHOD FOR EXPOSURE TIMING COMPENSATION FOR ROW RESISTANCE
Background of the Invention Field of the Invention
[0001] This invention generally relates to electrical drivers for a matrix of current driven devices, and more particularly to methods and apparatus for determining and providing a precharge for such devices. Description of the Related Art
[0002] There is a great deal of interest in "flat panel" displays, particularly for small to midsized displays, such as may be used in laptop computers, cell phones, and personal digital assistants. Liquid crystal displays (LCDs) are a well-known example of such flat panel video displays, and employ a matrix of "pixels" which selectably block or transmit light. LCDs do not provide their own light; rather, the light is provided from an independent source. Moreover, LCDs are operated by an applied voltage, rather than by current. Luminescent displays are an alternative to LCD displays. Luminescent displays produce their own light, and hence do not require an independent light source. They typically include a matrix of elements which luminesce when excited by current flow. A common luminescent device for such displays is a light emitting diode (LED).
[0003] LED arrays produce their own light in response to current flowing through the individual elements of the array. The current flow may be induced by either a voltage source or a current source. A variety of different LED-like luminescent sources have been used for such displays. As used herein, organic electroluminescent OLEDs (organic light emitting diodes), include polymer OLEDs (PLEDs) and small-molecule OLEDs, each of which is distinguished by their color, the molecular structure of the light producing material, as well as by their manufacturing processes. Electrically, these devices look like diodes with forward "on" voltage drops ranging from 2 volts (V) to 20 V depending on the type of OLED material used, the OLED aging, the magnitude of current flowing through the device, temperature, and other parameters. Unlike LCDs, OLEDs are current driven devices; however, they may be similarly arranged in a 2 dimensional array (matrix) of elements arranged in columns and rows to form a display. Therefore, the matrix contains current sources and column and row lines configured to drive current through the OLEDs in the display.
[0004] To improve the display response, it is desirable to initiate a precharge cycle to force an initial voltage onto column lines connecting the OLEDs prior to activation of the current source. The precharge immediately forces the OLEDs to peak luminescence at the voltage level they would have if the column lines were given sufficient time to stabilize in the absence of precharge. Display capacitance makes precharge a voltage driven operation that ideally brings all column lines to the same voltage. In reality, although the row lines can be made of low-resistive materials, finite row resistance causes voltage drops across row lines of the display. These voltage drops can cause undesirable luminosity variations across the columns of the display.
[0005] It may be appreciated that there is a need for a method and apparatus for compensating for luminosity variations due to inherent row resistances.
Summary of the Invention
[0006] In one embodiment, the invention provides an apparatus for driving current through a pixel of a display device having a display portion having a plurality of pixels arranged in columns. The apparatus includes a current source configured to generate a current across a pixel in one of the plurality of columns. The apparatus also comprises an exposure counter for generating counter values, an exposure data register and a memory for storing a look-up table, wherein said look up table contains values relating to an ideal exposure time of the pixel and values relating to a correction time for the exposure time of the pixel. The memory is connected to the exposure data register and is configured to send a compensating exposure time for the pixel of the display portion to the exposure data register. The apparatus further comprises a comparator configured to compare the compensating exposure value in the exposure data register and the counter values. The comparator generates a signal when the counter value matches the compensating exposure value, and wherein the signal causes the current source to stop generating the current.
[0007] In another embodiment, the invention includes a method of controlling the exposure of a pixel generated by a current source in a display having a plurality of pixels arranged in columns and rows. The method includes generating an ideal exposure time value for the pixel. The method also includes generating a correcting time value for the pixel that accounts for row-line resistance in the display. The method further includes generating a compensating exposure time value by combining the ideal exposure time and the corrected time. The method then includes the steps of comparing the compensating exposure time value with a counter value, and generating a signal to turn off the current source when the compensating exposure time value matches the counter value.
[0008] In another embodiment, the invention includes a method of generating a lookup table to be used by an apparatus for driving currents through a pixel of a display device having a display portion having a plurality of pixels arranged in a plurality of columns and rows. The method includes measuring the resistance in a row between the plurality of columns. The method further includes deteπnining the total charge flowing into the pixel for each of a plurality of sub- intervals, summing the currents in each sub-interval is multiplied by the length of a subinterval and determining a voltage drop across the row from the exposure drive current and the resistance in the row. The method also includes averaging the exposure times to obtain an effective average row voltage drop, converting the average row voltage drop into a charge error for the plurality of with a table and converting the charge error to an exposure compensating time. The method the includes combining the exposure compensating time with an exposure time to obtain a compensated exposure time
[0009] Embodiments of the present invention incorporate may incorporate various combinations of the aspects explained above in order to promote speed and accuracy while efficiently driving a matrix of luminescent elements.
Brief Description of the Drawings
[0010] FIGURE 1A is a simplified perspective view of an OLED display.
[0011] FIGURE IB is a cross-sectional view of the OLED display of Figure 1A.
[0012] FIGURE 2 is a simplified schematic diagram of a display, column driver cell and row driver cell for use with the OLED display of Figure 1A.
[0013] FIGURE 3 is a current- voltage curve for a typical OLED used in the display of
Figure 3.
[0014] FIGURE 4 is a simplified schematic diagram of the column driver cell of
Figure 2.
[0015] FIGURE 5 is a flow chart illustrating a method of compensating exposure timing according to an embodiment of the invention.
[0016] FIGURE 6 is a flow chart illustrating the steps to create a look-up table for compensating exposure data according to an embodiment of the invention.
Detailed Description of the Invention
[0017] The aspects, features and advantages of the invention will be better understood by referring to the following detailed description in conjunction with the accompanying drawings. These drawings and the associated description are provided to illustrate embodiments of the invention, and not to limit the scope of the invention. The embodiments described below overcome obstacles to the accurate generation of a desired amount of light output from an LED display.
[0018] Figure 1 A is an exploded view of a typical physical structure of such a passive- matrix display 100 of OLEDs. A layer 110 having a representative series of rows, such as parallel conductors 111-118, is disposed on one side of a sheet of light emitting polymer, or other emissive material, 120. A representative series of columns are shown as parallel transparent conductors 131- 138, which are disposed on the other side of sheet 120, adjacent to a glass plate 140. Figure IB is a cross-section of the display 100, and shows a drive voltage V applied between a row 111 and a column 134. A portion of the sheet 120 disposed between the row 111 and the column 134 forms an element 150 which behaves like an LED. The potential developed across this LED causes current flow, so the LED emits light 170. Since the emitted light 170 must pass through the column conductor 134, such column conductors are transparent. Most such transparent conductors have relatively high resistance compared with the row conductors 111-118, which may be formed from opaque materials, such as copper, having a low resistivity. [0019] This, structure results in a matrix of devices, one device formed at each point where a row overlies a column. There will generally be M x N devices in a matrix having M rows and N columns. Typical devices function like light emitting diodes (LEDs), which conduct current and luminesce when voltage of one polarity is imposed across them, and block current when voltage of the opposite polarity is applied. Exactly one device is common to both a particular row and a particular column, so to control these individual LED devices located at the matrix junctions it is useful to have two distinct driver circuits, one to drive the columns and one to drive the rows. It is conventional to sequentially scan the rows (conventionally connected to device cathodes) with a driver switch to a known voltage such as ground, and to provide another driver, which may be a current source, to drive the columns (which are conventionally connected to device anodes).
[0020] Figure 2 is an embodiment of an arrangement for driving a display having M rows and N columns. A column driver device 260 includes one column drive circuit (e.g. 262, 264, 266) for each column. The column driver circuit 264 shows some of the details which are typically provided in each column driver, including a current source 270 and a switch 272 which enables a column connection 274 to be connected to either the current source 270 to illuminate the selected diode, or to ground to turn off the selected diode. A scan circuit 250 includes representations of row driver switches (208, 218, 228, 238 and 248). A luminescent display 280 represents a display having M rows and N columns, though only five representative rows and three representative columns are drawn.
[0021] The rows of Figure 2 are typically a series of parallel connection lines traversing the back of a polymer, organic or other luminescent sheet, and the columns are a second series of connection lines perpendicular to the rows and traversing the front of such sheet, as shown in Figure 1A. Luminescent elements are established at each region where a row and a column overlie each other so as to form connections on either side of the element. Figure 2 represents each element as including both an LED aspect (indicated by a diode schematic symbol) and a parasitic capacitor aspect (indicated by a capacitor symbol labeled "CP").
[0022] In operation, information is transferred to the matrix display by scanning each row in sequence. During each row scan period, each column connected to an element intended to emit light is also driven. For example, in Figure 2 a row switch 228 grounds the row to which the cathodes of elements 222, 224 and 226 are connected during a scan of Row K. The column driver switch 272 connects the column connection 274 to the current source 270, such that the element 224 is provided with current. Each of the other columns 1 to N may also be providing current to the respective elements connected to Row K at this time, such as the elements 222 or 226. All current sources are typically at the same amplitude. OLED element light output is controlled by controlling the amount of time the current source for the particular column is on. When an OLED element has completed outputting light, its anode is pulled to ground to turn off the element. At the end of the scan period for Row K, the row switch 228 will typically disconnect Row K from ground and apply Vdd instead. Then, the scan of the next row will begin, with row switch 238 connecting the row to ground, and the appropriate column drivers supplying current to the desired elements, e.g. 232, 234 and/or 236.
[0023] Only one element (e.g. element 224) of a particular column (e.g. column J) is connected to each row (e.g. Row K), and hence only that element of the column is connected to both the particular column drive (264) and row drive (228) so as to conduct current and luminesce (or be "exposed") during the scan of that row. However, each of the other devices on that particular column (e.g. elements 204, 214, 234 and 244 as shown, but typically including many other devices) are connected by the driver for their respective row (208, 218, 238 and 248 respectively) to a voltage source, Vdd. Therefore, the parasitic capacitance of each of the devices of the column is effectively in parallel with, or added to, the capacitance of the element being driven. The combined parasitic capacitance of the column limits the slew rate of a current drive such as drive 270 of column J. Nonetheless, rapid driving of the elements is necessary. All rows must be scanned many times per second to obtain a reasonable visual appearance, which permits very little time for conduction for each row. Low slew rates may cause large exposure errors for short exposure periods. Thus, for practical implementations of display drivers using the prior art scheme, the parasitic capacitance of the columns may be a severe limitation on drive accuracy.
[0024] Current sources such as the current source 270 are typically used to drive a predetermined current through a selected pixel element such as the element 224. However, the applied current will not flow through an OLED element until the parasitic capacitance is first charged. When the row switch 228 is connected to ground to scan Row K, the entire column connection 274 must reach a requisite voltage in order to drive the desired current in element 224. That voltage may be, for example, about 6V, and is a value which varies as a function of current, temperature, and time.
[0025] The voltage on the column connection 274 will move from a starting value toward a steady-state value, but not faster than the current source 270 can charge the combined capacitance of all of the parasitic capacitances of the elements connected to the column connection 274. In one display, for example, there may be 96 rows, and thus 96 devices connected to each column 274.
[0026] Each device may have a typical parasitic capacitance value of about 25 pF, for a total column parasitic capacitance of 2400 pF (96x25pF). A typical value of cuιτent from current source 270 is lOOμA. Under these circumstances, the voltage will not rise faster than about 100μA/(96x25pF), or 1/24 V/μS, and will change even more slowly as the LED begins to conduct significantly. The result is that the current through the LED (as opposed to the current through the parasitic capacitance) will rise very slowly, and may not achieve the target current by the end of the scan period if starting from a low voltage. For example, if an exemplary display having 96 rows operates at 150 frames per second, then each scan has a duration of not more than 1/150/96 seconds, or less than about 70 μS. At a typical 100 μA drive current the voltage can charge at only about 42 mV per μS (when current begins to flow in the OLED, this charging rate will fall off). At 1/24 V/μS, the voltage would rise by no more than about 2.9 V during the scan period, which would not even bring a column voltage (Vcol) from 0 to a nominal conduction voltage of 6V.
[0027] Since the current source 270, alone, will be unable to bring an OLED from zero volts to operating voltage during the entire scan period in the circumstance described above, a distinct "precharge" period may be set aside during which the voltage on each device is driven to a precharge voltage value Vpr. Vpr is ideally the voltage which causes the OLED to achieve, at the beginning of its exposure period, the voltage which it would develop at equilibrium when conducting the selected current. The precharge is preferably provided at a relatively low impedance in order to minimize the time needed to achieve Vpr.
[0028] Each column has a connection switch 272 that connects the column to various sources at appropriate times. For example, during a precharge period, each of the switches 272 will connect the column to a precharge voltage source 288. The figure is shown during an exposure period, when a row switch such as 228 connects a row (K) to a drive voltage, and when each switch 272 connects each column (if active) to the corresponding current source 270. At the end of each column exposure period, the length of which may vary between columns, the corresponding column switch 272 may connect the column to a column discharge potential 290. The column discharge potential 290 may be ground, or another potential which is low enough to ensure rapid turn-off of the active elements.
[0029] It can be seen that at any instant in time, all of the column currents pass through a single row line, such as row line 252. Finite row resistance along the row line 252 creates a progressively larger voltage drop at progressively distant columns from the row switch. This voltage drop can cause irregularities in the current that is driven through the OLED as will be explained below. These current irregularities can cause undesirable variations in OLED luminosity across the display 280. In one embodiment, it is desirable to compensate for this voltage drop across the display 280 by driving the current sources 270 in the columns with larger voltage drops for longer periods of time than the current sources located in columns with smaller voltage drops to achieve the same pixel intensity.
[0030] The row line resistance can be determined with a fair degree of accuracy from the display manufacturing process. Using an estimate of the row line resistance and the precharge voltage Vpc, it can be determined how long to control the exposure for each column so that pixels have the same brightness to within an acceptable degree of tolerance. Creating a Look-Up Table
[0031] In one embodiment, the duration the current source 270 is driven is obtained from a look-up table. This look-up table contains the ideal exposure times and correction times that are combined to produce compensating exposure times. Data for each column can be incorporated into the table, or alternately, the lookup table can be simplified by subdividing the row line 252 into regions where the row line voltage drop from one region to the adjacent regions will never be greater than a desired tolerance, for example less than 200 mV, less than 150 V, or less than 100 mV, for any combination of exposures. It will be apparent to those skilled in the art that the actual value of voltage tolerance is unimportant, but it is desirable to determine tolerance level(s) suitable for each device. In most embodiments, this probably requires about six or fewer regions, though with a large number of columns, more regions can be required. If desired, no division of regions is necessary, and current exposure for individual pixels may be compensated on a pixel-by-pixel basis.
[0032] The look up table can be generated by measuring the pixel voltages of each column for the various combinations of row current caused by the various columns generating a current. Voltages can be measured using the process discussed above to determine Vcm. Alternately, the voltages of representative columns are sampled and the look-up table is generated using the row line resistance. As a practical matter, the exposure correction should be dynamic because the row line drop will depend on the length of all the exposures in every column driven by the row.
[0033] In an embodiment that divides the row line into regions, the same exposure correction is applied to every pixel in a region. The look up table is indexed by region, and by the exposure combinations. The index for the exposure of each region is determined by adding up the exposure combinations for each region. Table 1 illustrates example values of exposure corrections for an embodiment with 6 regions. One skilled in the art will understand that the values displayed in Table 1 are for demonstrative purposes and this table is not limited to the displayed values. This sum of the exposures corresponds to an average current drive for the region, which corresponds to a voltage drop across the row line resistance for that region. The total row line voltage drop seen by a given region of pixels is the sum of the voltage drops for all the regions between the row switch (e.g., 228) and the region itself. The regions that are located a greater distance from the row switch than the region of pixels being corrected need not be counted.
Table 1 - Compensation Values for Regions
Figure imgf000009_0001
[0034] An embodiment of a method of generating the look-up table can be better appreciated after viewing the following examples. In one situation, where the desired exposure for columns 1 through (N-l) is zero, but column N is some non-zero exposure, there is no row line voltage drop error, and the exposure correction time is zero. In another situation, where some columns have short exposure and some columns have long exposure, randomly distributed over the length of the row, an exposure correction time should be determined. To determine the exposure correction time for column N, the exposures for the columns 1 through (N-l) would be added to estimate the average row line voltage drop.
[0035] The process for creating the look-up table can be explained using the following simplified example. The simplified display has four columns and a row line resistance of Ik ohm between columns, for a total row line resistance of 41 ohms. This example is for ease of discussion, most displays will have substantially more columns and lower row line resistance between columns. Column current is 100 μA, and the row scan time is 100 μsec. Assume the columns are precharged and that the precharge interval is negligibly small. Ideally, with no row line resistance and all columns on, the row line draws 4 x 100 μA = 400 μA. At a first time TI, when all the columns are driving current, the voltage drop on the row line is (100 μA * Ik + 100 μA * 2k + 100 μA * 3k + 100 μA *4k) = 1 volt. It can be seen that the voltage drop along the row line is non-linear.
[0036] At a second time T2, suppose columns 1, 2, 3 are not driving a current. Then the voltage drop seen by column 4 is lOOμA * 4k = 400 mV. The voltage difference for any combination of exposures is bounded by these two cases.
[0037] In a further situation of the above example, four 25 μsec time intervals can be defined. In one case, column 1 has 100% exposure (i.e., 100 μsec on-time), column 2 has 50% exposure (i.e., 50 μsec on-time), column 3 has 25% exposure and column 4 has 75% exposure. The row line voltage drops seen by each column versus time are shown in Table 2.
Table 2 Voltage Drop
Figure imgf000010_0001
[0038] It is apparent that there are significant changes in voltage drops across the time intervals. Figure 5 is a curve showing the current to voltage characteristics of a typical PLED of one manufacturer. The curve shows that the I-V characteristics of the PLEDs or OLEDs are non- linear. Referring to Table 2, the row line-drop on column 4 changes from an initial value of 1000 mV to only 100 mV. The effect is to transiently increase the current drive as the intermediate columns turn off. So, for instance, when column 3 turns off after 25 μsec, the drop at column 4 decreases by 300 mV. The capacitance on each column (equal to the number of rows multiplied by the pixel capacitance) is large enough to hold the column voltage up while the row voltage (as seen at the intersection with the column pixel) changes.
[0039] In this example, if the pixel of column 4, starts out with a voltage drop of 6v in time interval 1, in time interval 2 the voltage drop will increase to 6.3 V, in time interval 3, the voltage drop will increase to 6.5 V, and the voltage drop will increase to 6.9 V in time interval 4. The I-V curve for a PLED from one manufacturer can be expressed as I = 130 nA * (V -.7 V) Λ 4.08, where V is the diode voltage and I is the diode current. Calculating the change in diode current caused by the sudden change in the row voltage between a PLED initial voltage of 6 V and a voltage of 6.3 V, the current changes by +25%.
[0040] One factor that must be considered in determining exposure time compensation is the assumption that the column capacitance sustains the column voltage. If the column is driven with a current source, this is only true for the initial transient. Over the remainder of the exposure time, the column voltage will start to droop, i.e., diminish or simply decrease. For example, with a 100 μA current drive and a column line capacitance of 2nF (80 rows x 25 pF per pixel, for example), the droop rate will be 50 volts per millisecond (100μA/2nF). In a 25 μsec time sub- interval (1/4 of the total exposure period), the column could droop 1.25 V. The column voltage will drop until the transient decays enough to intersect the I-V operating point of the PLED. In this example, it will take about δusec for it to droop 300mv.
[0041] The excess charge flowing through the PLED during the droop period represents the correctable exposure. If the total charge of the ideal exposure is Q = I * t, and the excess charge is the initial transient excess current ΔI times the droop time Δt, the excess charge ΔQ = 1/2 * ΔI * Δt. The 1/2 comes about because the current declines approximately linearly with a current drive. This is an approximation, but accurate enough for the needed results. Then the exposure correction (tcorr) equals -(ΔQ / Q) * t. Simplifying the above equations, we obtain Equation 1:
tcorr = - 0.5 * (ΔI / 1) * Δt (Equation 1)
[0042] If I = 100 μA, ΔI = 25 μA (25% more), t = 25 μsec, Δt = 6 μsec, then the exposure correction is tcorr = 0.75 μsec. This accounts only for the transition between one sub- interval to the next. The same procedure is followed for each transition. For instance, with 108 columns (a typical number) there could be 108 transitions. [0043] Additionally, when creating the look up table, it is advantageous to account for the fact that when the sub-intervals (typically 1/16 to 1/64 of the total period available for exposure) get small, the transitions do not finish drooping, resulting in overlapping droops. Assuming the sub-intervals are small with respect to the droop simplifies the calculations dramatically while still providing acceptable results. The exposure correction is then directly proportional to the average row-line drop change. The changes in the row line drop correspond to current in the PLED, which can be determined from a table (voltage in, current out). Thus, knowing the PLED current versus time (but assumed constant across each exposure sub-interval) we can integrate to calculate the total charge that flows through the PLED during the entire exposure period, and compare this to the desired charge and determine the appropriate correction.
[0044] In summary, with the assumption that the changes in current do not droop during the subinterval, the current waveform in any OLED can be approximated by a staircase type of function. The total charge into the OLED is then the sum of the currents in each sub-interval multiplied by the length of a subinterval. The current in the subinterval is the nominal current with a correction corresponding to the row-line voltage drop, adjusted for the V-I characteristic of the OLED. The row-line drop is the sum of the exposure drive currents distributed across the row-line resistance. Averaging the exposure times results in a number that gives an effective average row- line voltage drop, which can in turn be non-linearly corrected via table lookup for a charge error for a given column. Then the charge error can be directly (linearly) related to an exposure timing compensation value. The compensation value can be added to or subtracted from the uncompensated exposure value so that the effective luminosity as seen by the eye is correct.
[0045] The conversion can take place in the microcontroller (not shown) and the conversion table can accept an uncompensated value as an argument and generate the compensated value via a look-up. Ideally, the process involves compensating for the exposure of the other pixels in the array. The microcontroller can use multiple table look-ups to accomplish this. Alternately, the microcontroller can calculate the value using multiple exposure values using equations.
[0046] The compensated value can be sent to the shift register (RXL) 520 as explained above. Alternately, the uncompensated values can be shifted in one register, and the compensation values can be shifted in a second register and combined within the column driver cell 264.
[0047] Figure 4 illustrates a method 400 of creating a look-up table for compensating exposure data for a pixel element in a display as set forth above. In step 402, the total charge flowing into the pixel elements for each sub-interval is determined. In step 404, the sum of the exposure drive currents flowing into the pixel elements in each sub-interval is multiplied by the length of the subinterval. The current in the subinterval is the nominal current with a correction corresponding to the row-line voltage drop, adjusted for the V-I characteristic of the OLED. In step 406, the row-line drop is determined. The row-line drop is the sum of the exposure drive current multiplied by the row-line resistance. In step 408, the exposure times are averaged, resulting in a number that is proportional to an effective average row-line voltage drop. In step 410, the effective average row-line voltage drop is non-linearly corrected for a charge error for a given column. In step 412, the charge error is converted into an exposure timing compensating value. In step 414, the compensating value is added to or subtracted from the uncompensated exposure value to create the compensated exposure timing. Step 414 can be performed and stored in the look-up table or the combination of the compensation value and uncompensated value can be performed by a microcontroller. Column Driver Operation
[0048] Figure 5 illustrates the column drive circuit 264 for column J of the display 280 of Figure 2. Column drive circuit 264 is typical of the column drive circuits for each of the columns in the display. The column drive circuit 264 includes an exposure data register (RXD) 410 that is loaded with exposure data at the beginning of a new row line. The exposure data sets the duration of time the column current source 270 will be active during the row cycle. As explained above, the amount of charge driven by the column current source 270 controls the luminosity of the pixel element 224 (see Figure 2). Operating the column current source 270 for less than the entire row cycle reduces the average pixel luminosity for the corresponding pixel in the column 274 over what it would have been if held on for the entire row cycle, thereby achieving gray-scale intensity modulation.
[0049] In one embodiment in which there are 108 columns, the exposure data loaded into the exposure data register (RXD) 510 for each of the 108 columns is loaded from a 6 bit x 108 stage shift register (RXL) 520 at the beginning of each row cycle. Exposure data is loaded serially into the shift register (RXL) 520 during the previous row cycle via an external microcontroller and a 6-bit data interface (not shown). At the beginning of each row cycle, each 6-bit wide stage of the exposure shift register (RXL) 520 transfers 6 bits of exposure data in the exposure data register (RXD) 510 within the corresponding column drive circuit (e.g. 262, 264, 268 of Figure 2).
[0050] The exposure data in the exposure register (RXD) 510 of column drive circuit 264 represents the number of counts of an exposure clock CLKX 525 that the column current source 270 stays active. In one embodiment, the maximum number of counts the column current source 270 can stay active is 63. For any exposure data count from 1 to 63, the column 274 will be precharged to the voltage on pin Vpc with the PMOS switch 527, as explained above.
[0051] An exposure counter (RXN) 530 begins incrementing from zero following precharge at the beginning of the row cycle. It is desirable that the exposure counter 530 does not start counting until precharge is over because counting does not begin until the columns turn on and that binary values of the exposure words provide a linear estimate of the PWN pixel drive without offset. In one embodiment, all the column drive circuits (e.g., 262, 264, and 266 of Figure 3) can share the exposure counter 530. Alternately, each column drive circuit can include a separate exposure counter. [0052] A digital comparator 535 compares the word in the exposure counter (RXN) 530 with the word in the exposure data register (RXD) 510. Upon detecting a match, the digital comparator 535 generates a column disable signal, which is sent through a disable gate 540. The column disable signal turns off the column current source 270. The column disable signal also pulls the column 274 to ground via an NMOS pulldown switch 545. Operating the column current source 270 for less than the entire row cycle reduces the average pixel luminosity for the corresponding pixel in the column 274 over what it would have been if held on for the entire row cycle.
[0053] The column drive circuit 264 also includes a detection gate 550 to inhibit precharge if the exposure word in the exposure data register (RXD) 510 is zero. If the exposure data in the exposure data register 510 is zero, column precharge is inhibited by pulling the column 274 to ground rather than to VPC. This prevents transient luminescence during the time it takes to discharge a precharge pixel. If the detection gate 550 detects that the exposure word is zero, the detection gate 550 sends a signal to the disable gate 540, preventing the column current source 270 from biasing and driving a current and grounding the column 274 via the NMOS pulldown switch 545.
[0054] Thus, each individual pixel (i.e. 222, 224, 226 of Figure 2) may generally be turned off at a different time during the scan of the pixels' row, permitting time-based control of the output of each pixel. The fractional activation time of the column current source 270 controls the pixel luminosity, i.e., the longer the exposure, the higher the intensity of the pixel in the display.
[0055] As explained above, exposure time is controlled by a value loaded into the shift register (RXL) 520 during the previous row cycle via an external microcontroller and a 6-bit data interface. An exposure compensating time is added to the ideal exposure time to create an exposure time that compensates for the voltage drop and reduces the variations in pixel luminosity across the display. For example, columns (i.e., column 276) further from the row switch 228 can be compensated to receive longer exposures than columns (i.e., 278) closer to the row switch 228 to correct for luminosity variations across the columns of the display 280. A look-up table of precalculated values generated as described above can be used as the source of values to be loaded into the shift register (RXL) 520. Alternately, a digital signal processor can be used to generate the values to be loaded into the shift register (RXL) 520.
[0056] Figure 6 illustrates a method 600 of controlling a current driven device by compensating for a voltage drop caused by row line resistance. In step 602, a current source is turned on to drive current through a pixel element in a display. In step 604, the activation time of the current source is deteπnined for the desired luminosity of a pixel element in a display. In step 606, a compensating time is determined based on the change in luminosity of the pixel element caused by a voltage drop resulting from resistance in the row line. In step 608 the uncompensated exposure time and the compensating time are combined to obtain a compensated exposure time. In step 610, the compensated exposure time is compared to a counter until the exposure time and counter match. In step 612, a signal is generated to turn off the current source.
[0057] One skilled in the art will understand that there can be a similar exposure coirection for the different rows in the display, reflecting the error in the precharge corresponding to the effect of column resistance, h this case, the same correction would be applied to all the columns in a row. Creating a lookup table to compensate for this error is based on the same principle, with essentially the same implementation.
[0058] While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the foπn and details of the device or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. The scope of the invention is indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims

WHAT IS CLAIMED IS:
1. A circuit configured to drive current through at least one light emitting element in a display, the circuit comprising: at least one driver, wherein the driver is configured to drive current through the light emitting element; and a processor configured to determine a period of time during which the driver is to drive current through the at least one light emitting element, wherein the processor is further configured to adjust the duration of the period of time based at least in part on compensating for luminosity variations in the display.
2. The circuit of Claim 1, wherein the light emitting diode is organic.
3. The circuit of Claim 1, wherein processor is configured to determine the period of time based upon a line resistance of at least a part of the circuit.
4. The circuit of Claim 1, additionally comprising a table for storing the determined period of time.
5. A method of driving a current, comprising: determining a voltage drop across at least a portion of a line in a circuit; identifying an exposure period, wherein the exposure period compensates for the determined voltage drop; and driving a current through a light emitting diode during the exposure period.
6. The method of Claim 5, wherein the portion of a line in the circuit is located in a path between the light emitting diode and ground.
7. The method of Claim 5, additionally comprising storing a value identifying the exposure period in a table.
8. The method of Claim 5, wherein the light emitting diode is organic.
9. The method of Claim 5, wherein identifying an exposure period comprises determining an effective average line drop voltage.
10. The method of Claim 5, wherein driving a current though the light emitting diode comprises: comparing a compensating time value with a counter value; and generating a signal to turn off a current source when the compensating exposure time value matches the counter value.
11. The method of Claim 5 wherein determining a voltage drop across at least a portion of a line in a circuit comprises measuring a resistance between two light emitting diodes in the circuit.
12. A system configured to drive a current, the system comprising: means for determining a voltage drop across at least a portion of a line in a circuit; means for identifying an exposure period, wherein the exposure period compensates for the determined voltage drop; and means for driving a current through a light emitting diode for the exposure period.
13. The system of Claim 12, wherein the portion of a line in the circuit is located in a path between the light emitting diode and ground.
14. The system of Claim 12, additionally comprising means for storing a value identifying the exposure period in a table.
15. The system of Claim 12, wherein the light emitting diode is organic.
16. The system of Claim 12, wherein the means for identifying an exposure period comprises means for determining an effective average line drop voltage.
17. The system of Claim 12, wherein the means for driving a current though the light emitting diode comprises: means for comparing a compensating time value with a counter value; and means for generating a signal to turn off a current source when the compensating exposure time value matches the counter value.
18. The system of Claim 12, wherein the means for determining a voltage drop across at least a portion of a line in a circuit comprises means for measuring a resistance between two light emitting diodes in the circuit.
PCT/US2002/033374 2001-10-19 2002-10-17 System and method for illumination timing compensation in response to row resistance WO2003034385A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002335857A AU2002335857A1 (en) 2001-10-19 2002-10-17 System and method for illumination timing compensation in response to row resistance

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
US34363801P 2001-10-19 2001-10-19
US34263701P 2001-10-19 2001-10-19
US34385601P 2001-10-19 2001-10-19
US34610201P 2001-10-19 2001-10-19
US34279301P 2001-10-19 2001-10-19
US34279101P 2001-10-19 2001-10-19
US34337001P 2001-10-19 2001-10-19
US34279401P 2001-10-19 2001-10-19
US34258201P 2001-10-19 2001-10-19
US35375301P 2001-10-19 2001-10-19
US34278301P 2001-10-19 2001-10-19
US60/342,637 2001-10-19
US60/342,582 2001-10-19
US60/342,791 2001-10-19
US60/342,793 2001-10-19
US60/343,856 2001-10-19
US60/342,794 2001-10-19
US60/343,370 2001-10-19
US60/346,102 2001-10-19
US60/343,638 2001-10-19
US60/353,753 2001-10-19
US60/342,783 2001-10-19

Publications (3)

Publication Number Publication Date
WO2003034385A2 true WO2003034385A2 (en) 2003-04-24
WO2003034385A3 WO2003034385A3 (en) 2003-12-18
WO2003034385A9 WO2003034385A9 (en) 2005-01-06

Family

ID=27582780

Family Applications (10)

Application Number Title Priority Date Filing Date
PCT/US2002/033375 WO2003034386A2 (en) 2001-10-19 2002-10-17 Method and system for ramp control of precharge voltage
PCT/US2002/033426 WO2003033749A1 (en) 2001-10-19 2002-10-17 Matrix element precharge voltage adjusting apparatus and method
PCT/US2002/033364 WO2003034383A2 (en) 2001-10-19 2002-10-17 Drive circuit for adaptive control of precharge current and method therefor
PCT/US2002/033373 WO2003034576A2 (en) 2001-10-19 2002-10-17 Method and system for charge pump active gate drive
PCT/US2002/033583 WO2003034587A1 (en) 2001-10-19 2002-10-17 Method and system for proportional plus integral loop compensation using a hybrid of switched capacitor and linear amplifiers
PCT/US2002/033374 WO2003034385A2 (en) 2001-10-19 2002-10-17 System and method for illumination timing compensation in response to row resistance
PCT/US2002/033428 WO2003034388A2 (en) 2001-10-19 2002-10-17 Circuit for predictive control of boost current in a passive matrix oled display and method therefor
PCT/US2002/033427 WO2003034387A2 (en) 2001-10-19 2002-10-17 Method and clamping apparatus for securing a minimum reference voltage in a video display boost regulator
PCT/US2002/033574 WO2003034391A2 (en) 2001-10-19 2002-10-17 Method and system for adjusting the voltage of a precharge circuit
PCT/US2002/033369 WO2003034384A2 (en) 2001-10-19 2002-10-17 Method and system for precharging oled/pled displays with a precharge latency

Family Applications Before (5)

Application Number Title Priority Date Filing Date
PCT/US2002/033375 WO2003034386A2 (en) 2001-10-19 2002-10-17 Method and system for ramp control of precharge voltage
PCT/US2002/033426 WO2003033749A1 (en) 2001-10-19 2002-10-17 Matrix element precharge voltage adjusting apparatus and method
PCT/US2002/033364 WO2003034383A2 (en) 2001-10-19 2002-10-17 Drive circuit for adaptive control of precharge current and method therefor
PCT/US2002/033373 WO2003034576A2 (en) 2001-10-19 2002-10-17 Method and system for charge pump active gate drive
PCT/US2002/033583 WO2003034587A1 (en) 2001-10-19 2002-10-17 Method and system for proportional plus integral loop compensation using a hybrid of switched capacitor and linear amplifiers

Family Applications After (4)

Application Number Title Priority Date Filing Date
PCT/US2002/033428 WO2003034388A2 (en) 2001-10-19 2002-10-17 Circuit for predictive control of boost current in a passive matrix oled display and method therefor
PCT/US2002/033427 WO2003034387A2 (en) 2001-10-19 2002-10-17 Method and clamping apparatus for securing a minimum reference voltage in a video display boost regulator
PCT/US2002/033574 WO2003034391A2 (en) 2001-10-19 2002-10-17 Method and system for adjusting the voltage of a precharge circuit
PCT/US2002/033369 WO2003034384A2 (en) 2001-10-19 2002-10-17 Method and system for precharging oled/pled displays with a precharge latency

Country Status (3)

Country Link
US (8) US7126568B2 (en)
AU (9) AU2002343544A1 (en)
WO (10) WO2003034386A2 (en)

Families Citing this family (245)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569849B2 (en) 2001-02-16 2009-08-04 Ignis Innovation Inc. Pixel driver circuit and pixel circuit having the pixel driver circuit
JP4123791B2 (en) * 2001-03-05 2008-07-23 富士ゼロックス株式会社 Light emitting element driving apparatus and light emitting element driving system
EP1386394A1 (en) * 2001-04-26 2004-02-04 Koninklijke Philips Electronics N.V. Wearable touch pad device
JP3951687B2 (en) * 2001-08-02 2007-08-01 セイコーエプソン株式会社 Driving data lines used to control unit circuits
JP4452076B2 (en) * 2001-09-07 2010-04-21 パナソニック株式会社 EL display device.
JP3866606B2 (en) * 2002-04-08 2007-01-10 Necエレクトロニクス株式会社 Display device drive circuit and drive method thereof
WO2003092165A1 (en) * 2002-04-26 2003-11-06 Toshiba Matsushita Display Technology Co., Ltd. Semiconductor circuits for driving current-driven display and display
JP2003330419A (en) * 2002-05-15 2003-11-19 Semiconductor Energy Lab Co Ltd Display device
SG119186A1 (en) * 2002-05-17 2006-02-28 Semiconductor Energy Lab Display apparatus and driving method thereof
TWI360098B (en) 2002-05-17 2012-03-11 Semiconductor Energy Lab Display apparatus and driving method thereof
US7474285B2 (en) * 2002-05-17 2009-01-06 Semiconductor Energy Laboratory Co., Ltd. Display apparatus and driving method thereof
US7184034B2 (en) * 2002-05-17 2007-02-27 Semiconductor Energy Laboratory Co., Ltd. Display device
EP1383103B1 (en) * 2002-07-19 2012-03-21 St Microelectronics S.A. Automatic adaptation of the supply voltage of an electroluminescent panel depending on the desired luminance
US20040150594A1 (en) * 2002-07-25 2004-08-05 Semiconductor Energy Laboratory Co., Ltd. Display device and drive method therefor
JP4103544B2 (en) * 2002-10-28 2008-06-18 セイコーエプソン株式会社 Organic EL device
FR2846454A1 (en) * 2002-10-28 2004-04-30 Thomson Licensing Sa VISUALIZATION DEVICE FOR IMAGES WITH CAPACITIVE ENERGY RECOVERY
JP2004157250A (en) * 2002-11-05 2004-06-03 Hitachi Ltd Display device
JP2004157467A (en) * 2002-11-08 2004-06-03 Tohoku Pioneer Corp Driving method and driving-gear of active type light emitting display panel
EP1563481A1 (en) * 2002-11-15 2005-08-17 Koninklijke Philips Electronics N.V. Display device with pre-charging arrangement
KR100432554B1 (en) * 2002-11-29 2004-05-24 하나 마이크론(주) organic light emitting device display driving apparatus and the method thereof
JP3830888B2 (en) * 2002-12-02 2006-10-11 オプトレックス株式会社 Driving method of organic EL display device
EP1439443B9 (en) * 2003-01-14 2016-01-20 Infineon Technologies AG Circuit for the voltage supply and method for producing a supply voltage
KR100481514B1 (en) * 2003-02-07 2005-04-07 삼성전자주식회사 a apparatus and method of controlling input signal level
JP3864145B2 (en) * 2003-02-10 2006-12-27 オプトレックス株式会社 Driving method of organic EL display device
CA2419704A1 (en) 2003-02-24 2004-08-24 Ignis Innovation Inc. Method of manufacturing a pixel with organic light-emitting diode
JP3918770B2 (en) * 2003-04-25 2007-05-23 セイコーエプソン株式会社 Electro-optical device, driving method of electro-optical device, and electronic apparatus
TW200428688A (en) * 2003-06-05 2004-12-16 Au Optronics Corp Organic light-emitting display and its pixel structure
KR101115295B1 (en) * 2003-07-08 2012-03-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display and its driving method
US8378939B2 (en) * 2003-07-11 2013-02-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8085226B2 (en) 2003-08-15 2011-12-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2005084260A (en) * 2003-09-05 2005-03-31 Agilent Technol Inc Method for determining conversion data of display panel and measuring instrument
WO2005027085A1 (en) * 2003-09-12 2005-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of the same
CA2443206A1 (en) 2003-09-23 2005-03-23 Ignis Innovation Inc. Amoled display backplanes - pixel driver circuits, array architecture, and external compensation
US7173600B2 (en) * 2003-10-15 2007-02-06 International Business Machines Corporation Image display device, pixel drive method, and scan line drive circuit
KR20050037303A (en) * 2003-10-18 2005-04-21 삼성오엘이디 주식회사 Method for driving electro-luminescence display panel wherein preliminary charging is selectively performed
KR100670129B1 (en) * 2003-11-10 2007-01-16 삼성에스디아이 주식회사 Image display apparatus and driving method thereof
KR100600865B1 (en) * 2003-11-19 2006-07-14 삼성에스디아이 주식회사 Electro luminescence display contained EMI shielding means
JP4036184B2 (en) * 2003-11-28 2008-01-23 セイコーエプソン株式会社 Display device and driving method of display device
US7889157B2 (en) * 2003-12-30 2011-02-15 Lg Display Co., Ltd. Electro-luminescence display device and driving apparatus thereof
KR100580554B1 (en) * 2003-12-30 2006-05-16 엘지.필립스 엘시디 주식회사 Electro-Luminescence Display Apparatus and Driving Method thereof
JP4263153B2 (en) 2004-01-30 2009-05-13 Necエレクトロニクス株式会社 Display device, drive circuit for display device, and semiconductor device for drive circuit
KR100692854B1 (en) * 2004-02-20 2007-03-13 엘지전자 주식회사 Method and apparatus for driving electro-luminescensce dispaly panel
US7990740B1 (en) * 2004-03-19 2011-08-02 Marvell International Ltd. Method and apparatus for controlling power factor correction
US7482629B2 (en) * 2004-05-21 2009-01-27 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US7245297B2 (en) * 2004-05-22 2007-07-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
EP1605432B1 (en) * 2004-06-01 2010-10-06 LG Display Co., Ltd. Organic electro luminescent display device and driving method thereof
TWI277031B (en) * 2004-06-22 2007-03-21 Rohm Co Ltd Organic EL drive circuit and organic EL display device using the same organic EL drive circuit
CA2472671A1 (en) 2004-06-29 2005-12-29 Ignis Innovation Inc. Voltage-programming scheme for current-driven amoled displays
US7298351B2 (en) * 2004-07-01 2007-11-20 Leadia Technology, Inc. Removing crosstalk in an organic light-emitting diode display
WO2006009294A1 (en) 2004-07-23 2006-01-26 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
US7812576B2 (en) 2004-09-24 2010-10-12 Marvell World Trade Ltd. Power factor control systems and methods
KR100613449B1 (en) 2004-10-07 2006-08-21 주식회사 하이닉스반도체 Internal Voltage Supplying Circuit
CA2490858A1 (en) 2004-12-07 2006-06-07 Ignis Innovation Inc. Driving method for compensated voltage-programming of amoled displays
US9275579B2 (en) 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
JP5128287B2 (en) 2004-12-15 2013-01-23 イグニス・イノベイション・インコーポレーテッド Method and system for performing real-time calibration for display arrays
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US9280933B2 (en) 2004-12-15 2016-03-08 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US9171500B2 (en) 2011-05-20 2015-10-27 Ignis Innovation Inc. System and methods for extraction of parasitic parameters in AMOLED displays
US8576217B2 (en) 2011-05-20 2013-11-05 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US20140111567A1 (en) 2005-04-12 2014-04-24 Ignis Innovation Inc. System and method for compensation of non-uniformities in light emitting device displays
US8599191B2 (en) 2011-05-20 2013-12-03 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
KR100612124B1 (en) * 2004-12-28 2006-08-14 엘지전자 주식회사 Organic electroluminescent device and method of driving the same
US20060158392A1 (en) * 2005-01-19 2006-07-20 Princeton Technology Corporation Two-part driver circuit for organic light emitting diode
CA2495726A1 (en) 2005-01-28 2006-07-28 Ignis Innovation Inc. Locally referenced voltage programmed pixel for amoled displays
CA2496642A1 (en) 2005-02-10 2006-08-10 Ignis Innovation Inc. Fast settling time driving method for organic light-emitting diode (oled) displays based on current programming
US7626565B2 (en) * 2005-03-01 2009-12-01 Toshiba Matsushita Display Technology Co., Ltd. Display device using self-luminous elements and driving method of same
TWI327720B (en) * 2005-03-11 2010-07-21 Sanyo Electric Co Active matrix type display device and driving method thereof
JP4986468B2 (en) * 2005-03-11 2012-07-25 三洋電機株式会社 Active matrix display device
JP2006251453A (en) * 2005-03-11 2006-09-21 Sanyo Electric Co Ltd Active matrix type display device and method for driving the same
US7598935B2 (en) * 2005-05-17 2009-10-06 Lg Electronics Inc. Light emitting device with cross-talk preventing circuit and method of driving the same
US7852298B2 (en) 2005-06-08 2010-12-14 Ignis Innovation Inc. Method and system for driving a light emitting device display
CA2510855A1 (en) * 2005-07-06 2007-01-06 Ignis Innovation Inc. Fast driving method for amoled displays
JP2007025122A (en) * 2005-07-14 2007-02-01 Oki Electric Ind Co Ltd Display device
KR100698699B1 (en) * 2005-08-01 2007-03-23 삼성에스디아이 주식회사 Data Driving Circuit and Driving Method of Light Emitting Display Using the same
CA2518276A1 (en) 2005-09-13 2007-03-13 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
US7450094B2 (en) * 2005-09-27 2008-11-11 Lg Display Co., Ltd. Light emitting device and method of driving the same
US7813460B2 (en) * 2005-09-30 2010-10-12 Slt Logic, Llc High-speed data sampler with input threshold adjustment
KR100773088B1 (en) * 2005-10-05 2007-11-02 한국과학기술원 Active matrix oled driving circuit with current feedback
KR100691564B1 (en) * 2005-10-18 2007-03-09 신코엠 주식회사 Drive circuit of oled(organic light emitting diode) display panel and precharge method using it
US8172097B2 (en) * 2005-11-10 2012-05-08 Daktronics, Inc. LED display module
US8130175B1 (en) 2007-04-12 2012-03-06 Daktronics, Inc. Pixel interleaving configurations for use in high definition electronic sign displays
US7907133B2 (en) * 2006-04-13 2011-03-15 Daktronics, Inc. Pixel interleaving configurations for use in high definition electronic sign displays
JP2007171225A (en) * 2005-12-19 2007-07-05 Sony Corp Amplifier circuit, driving circuit for liquid crystal display device, and liquid crystal display device
KR101182538B1 (en) * 2005-12-28 2012-09-12 엘지디스플레이 주식회사 Liquid crystal display device
TWI318392B (en) * 2006-01-13 2009-12-11 Ritdisplay Corp Organic light emitting display and driving device thereof
US20070182448A1 (en) * 2006-01-20 2007-08-09 Oh Kyong Kwon Level shifter for flat panel display device
TWI450247B (en) * 2006-02-10 2014-08-21 Ignis Innovation Inc Method and system for pixel circuit displays
DE102006008018A1 (en) * 2006-02-21 2007-08-23 Osram Opto Semiconductors Gmbh lighting device
WO2007118332A1 (en) 2006-04-19 2007-10-25 Ignis Innovation Inc. Stable driving scheme for active matrix displays
TW200803539A (en) * 2006-06-02 2008-01-01 Beyond Innovation Tech Co Ltd Signal level adjusting apparatus
US7679586B2 (en) 2006-06-16 2010-03-16 Roger Green Stewart Pixel circuits and methods for driving pixels
US8446394B2 (en) * 2006-06-16 2013-05-21 Visam Development L.L.C. Pixel circuits and methods for driving pixels
US20080062090A1 (en) * 2006-06-16 2008-03-13 Roger Stewart Pixel circuits and methods for driving pixels
CA2556961A1 (en) 2006-08-15 2008-02-15 Ignis Innovation Inc. Oled compensation technique based on oled capacitance
TWI349251B (en) * 2006-10-05 2011-09-21 Au Optronics Corp Liquid crystal display for reducing residual image phenomenon and its related method
JP2008102404A (en) * 2006-10-20 2008-05-01 Hitachi Displays Ltd Display device
US7579860B2 (en) * 2006-11-02 2009-08-25 Freescale Semiconductor, Inc. Digital bandgap reference and method for producing reference signal
US7772894B2 (en) * 2006-11-13 2010-08-10 Atmel Corporation Method for providing a power on reset signal with a quadratic current compared to an exponential current
US7777537B2 (en) * 2006-11-13 2010-08-17 Atmel Corporation Method for providing a power on reset signal with a logarithmic current compared with a quadratic current
US8390536B2 (en) * 2006-12-11 2013-03-05 Matias N Troccoli Active matrix display and method
JP2008146568A (en) * 2006-12-13 2008-06-26 Matsushita Electric Ind Co Ltd Current driving device and display
TWI363328B (en) * 2007-02-09 2012-05-01 Richtek Technology Corp Circuit and method for matching current channels
FR2915018B1 (en) * 2007-04-13 2009-06-12 St Microelectronics Sa CONTROL OF AN ELECTROLUMINESCENT SCREEN.
JP5180510B2 (en) * 2007-04-16 2013-04-10 長野計器株式会社 LED display device
EP2156432A1 (en) * 2007-06-13 2010-02-24 Osram Gesellschaft mit Beschränkter Haftung Circuit arrangement and actuation method for semi-conductor light sources
US8350788B1 (en) 2007-07-06 2013-01-08 Daktronics, Inc. Louver panel for an electronic sign
US8441018B2 (en) 2007-08-16 2013-05-14 The Trustees Of Columbia University In The City Of New York Direct bandgap substrates and methods of making and using
WO2009023263A1 (en) * 2007-08-16 2009-02-19 The Trustees Of Columbia University In The City Of New Yor Direct bandgap substrate with silicon thin film circuitry
US8115414B2 (en) * 2008-03-12 2012-02-14 Freescale Semiconductor, Inc. LED driver with segmented dynamic headroom control
US8106604B2 (en) * 2008-03-12 2012-01-31 Freescale Semiconductor, Inc. LED driver with dynamic power management
US7825610B2 (en) * 2008-03-12 2010-11-02 Freescale Semiconductor, Inc. LED driver with dynamic power management
GB2460018B (en) * 2008-05-07 2013-01-30 Cambridge Display Tech Ltd Active matrix displays
US8164588B2 (en) * 2008-05-23 2012-04-24 Teledyne Scientific & Imaging, Llc System and method for MEMS array actuation including a charge integration circuit to modulate the charge on a variable gap capacitor during an actuation cycle
US8253477B2 (en) * 2008-05-27 2012-08-28 Analog Devices, Inc. Voltage boost circuit without device overstress
KR101471157B1 (en) * 2008-06-02 2014-12-10 삼성디스플레이 주식회사 Method for driving lighting blocks, back light assembly for performing the method and display apparatus having the back light assembly
US8035314B2 (en) * 2008-06-23 2011-10-11 Freescale Semiconductor, Inc. Method and device for LED channel managment in LED driver
US8279144B2 (en) * 2008-07-31 2012-10-02 Freescale Semiconductor, Inc. LED driver with frame-based dynamic power management
US8373643B2 (en) * 2008-10-03 2013-02-12 Freescale Semiconductor, Inc. Frequency synthesis and synchronization for LED drivers
US8599625B2 (en) * 2008-10-23 2013-12-03 Marvell World Trade Ltd. Switch pin multiplexing
US8004207B2 (en) * 2008-12-03 2011-08-23 Freescale Semiconductor, Inc. LED driver with precharge and track/hold
US8035315B2 (en) * 2008-12-22 2011-10-11 Freescale Semiconductor, Inc. LED driver with feedback calibration
US8049439B2 (en) * 2009-01-30 2011-11-01 Freescale Semiconductor, Inc. LED driver with dynamic headroom control
US8179051B2 (en) * 2009-02-09 2012-05-15 Freescale Semiconductor, Inc. Serial configuration for dynamic power control in LED displays
US8493003B2 (en) * 2009-02-09 2013-07-23 Freescale Semiconductor, Inc. Serial cascade of minimium tail voltages of subsets of LED strings for dynamic power control in LED displays
US8040079B2 (en) * 2009-04-15 2011-10-18 Freescale Semiconductor, Inc. Peak detection with digital conversion
US8148962B2 (en) * 2009-05-12 2012-04-03 Sandisk Il Ltd. Transient load voltage regulator
CA2669367A1 (en) 2009-06-16 2010-12-16 Ignis Innovation Inc Compensation technique for color shift in displays
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
CA2688870A1 (en) 2009-11-30 2011-05-30 Ignis Innovation Inc. Methode and techniques for improving display uniformity
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US8305007B2 (en) * 2009-07-17 2012-11-06 Freescale Semiconductor, Inc. Analog-to-digital converter with non-uniform accuracy
US8228098B2 (en) * 2009-08-07 2012-07-24 Freescale Semiconductor, Inc. Pulse width modulation frequency conversion
US7843242B1 (en) 2009-08-07 2010-11-30 Freescale Semiconductor, Inc. Phase-shifted pulse width modulation signal generation
US8633873B2 (en) 2009-11-12 2014-01-21 Ignis Innovation Inc. Stable fast programming scheme for displays
US8237700B2 (en) * 2009-11-25 2012-08-07 Freescale Semiconductor, Inc. Synchronized phase-shifted pulse width modulation signal generation
US10996258B2 (en) 2009-11-30 2021-05-04 Ignis Innovation Inc. Defect detection and correction of pixel circuits for AMOLED displays
CA2686174A1 (en) * 2009-12-01 2011-06-01 Ignis Innovation Inc High reslution pixel architecture
US8803417B2 (en) 2009-12-01 2014-08-12 Ignis Innovation Inc. High resolution pixel architecture
CA2687631A1 (en) 2009-12-06 2011-06-06 Ignis Innovation Inc Low power driving scheme for display applications
CA2692097A1 (en) 2010-02-04 2011-08-04 Ignis Innovation Inc. Extracting correlation curves for light emitting device
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US20140313111A1 (en) 2010-02-04 2014-10-23 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US8169245B2 (en) * 2010-02-10 2012-05-01 Freescale Semiconductor, Inc. Duty transition control in pulse width modulation signaling
US9490792B2 (en) * 2010-02-10 2016-11-08 Freescale Semiconductor, Inc. Pulse width modulation with effective high duty resolution
CA2696778A1 (en) 2010-03-17 2011-09-17 Ignis Innovation Inc. Lifetime, uniformity, parameter extraction methods
EP2388763A1 (en) * 2010-05-19 2011-11-23 Dialog Semiconductor GmbH PWM precharge of organic light emitting diodes
US8513897B2 (en) * 2010-10-01 2013-08-20 Winstar Display Co., Ltd OLED display with a current stabilizing device and its driving method
US8907991B2 (en) 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US8599915B2 (en) 2011-02-11 2013-12-03 Freescale Semiconductor, Inc. Phase-shifted pulse width modulation signal generation device and method therefor
US9047810B2 (en) 2011-02-16 2015-06-02 Sct Technology, Ltd. Circuits for eliminating ghosting phenomena in display panel having light emitters
US20110163941A1 (en) * 2011-03-06 2011-07-07 Eric Li Led panel
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
WO2012156942A1 (en) 2011-05-17 2012-11-22 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
CN106910464B (en) 2011-05-27 2020-04-24 伊格尼斯创新公司 System for compensating pixels in a display array and pixel circuit for driving light emitting devices
US8963811B2 (en) 2011-06-27 2015-02-24 Sct Technology, Ltd. LED display systems
US8963810B2 (en) 2011-06-27 2015-02-24 Sct Technology, Ltd. LED display systems
CN102354241B (en) * 2011-07-29 2015-04-01 开曼群岛威睿电通股份有限公司 Voltage/current conversion circuit
US8901579B2 (en) 2011-08-03 2014-12-02 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US9070775B2 (en) 2011-08-03 2015-06-30 Ignis Innovations Inc. Thin film transistor
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US8525424B2 (en) * 2011-12-05 2013-09-03 Sct Technology, Ltd. Circuitry and method for driving LED display
US8937632B2 (en) 2012-02-03 2015-01-20 Ignis Innovation Inc. Driving system for active-matrix displays
US9190456B2 (en) 2012-04-25 2015-11-17 Ignis Innovation Inc. High resolution display panel with emissive organic layers emitting light of different colors
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9485827B2 (en) 2012-11-22 2016-11-01 Sct Technology, Ltd. Apparatus and method for driving LED display panel
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
WO2014108879A1 (en) 2013-01-14 2014-07-17 Ignis Innovation Inc. Driving scheme for emissive displays providing compensation for driving transistor variations
US9721505B2 (en) 2013-03-08 2017-08-01 Ignis Innovation Inc. Pixel circuits for AMOLED displays
EP3043338A1 (en) 2013-03-14 2016-07-13 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for amoled displays
DE112014001402T5 (en) 2013-03-15 2016-01-28 Ignis Innovation Inc. Dynamic adjustment of touch resolutions of an Amoled display
WO2014174427A1 (en) 2013-04-22 2014-10-30 Ignis Innovation Inc. Inspection system for oled display panels
WO2014197611A1 (en) * 2013-06-04 2014-12-11 Eagle Harbor Technologies, Inc. Analog integrator system and method
DE112014003719T5 (en) 2013-08-12 2016-05-19 Ignis Innovation Inc. compensation accuracy
US9655221B2 (en) 2013-08-19 2017-05-16 Eagle Harbor Technologies, Inc. High frequency, repetitive, compact toroid-generation for radiation production
US11539352B2 (en) 2013-11-14 2022-12-27 Eagle Harbor Technologies, Inc. Transformer resonant converter
US10978955B2 (en) 2014-02-28 2021-04-13 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US10020800B2 (en) 2013-11-14 2018-07-10 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser with variable pulse width and pulse repetition frequency
CN109873621B (en) 2013-11-14 2023-06-16 鹰港科技有限公司 High-voltage nanosecond pulse generator
US10892140B2 (en) 2018-07-27 2021-01-12 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
US10790816B2 (en) 2014-01-27 2020-09-29 Eagle Harbor Technologies, Inc. Solid-state replacement for tube-based modulators
WO2015131199A1 (en) 2014-02-28 2015-09-03 Eagle Harbor Technologies, Inc. Galvanically isolated output variable pulse generator disclosure
US10997901B2 (en) 2014-02-28 2021-05-04 Ignis Innovation Inc. Display system
US10483089B2 (en) 2014-02-28 2019-11-19 Eagle Harbor Technologies, Inc. High voltage resistive output stage circuit
US10176752B2 (en) 2014-03-24 2019-01-08 Ignis Innovation Inc. Integrated gate driver
DE102015206281A1 (en) 2014-04-08 2015-10-08 Ignis Innovation Inc. Display system with shared level resources for portable devices
TWI648986B (en) * 2014-04-15 2019-01-21 日商新力股份有限公司 Image element, electronic equipment
US9552794B2 (en) * 2014-08-05 2017-01-24 Texas Instruments Incorporated Pre-discharge circuit for multiplexed LED display
JP6525547B2 (en) * 2014-10-23 2019-06-05 イー インク コーポレイション Electrophoretic display device and electronic device
CA2872563A1 (en) 2014-11-28 2016-05-28 Ignis Innovation Inc. High pixel density array architecture
CA2879462A1 (en) 2015-01-23 2016-07-23 Ignis Innovation Inc. Compensation for color variation in emissive devices
CA2889870A1 (en) 2015-05-04 2016-11-04 Ignis Innovation Inc. Optical feedback system
US11542927B2 (en) 2015-05-04 2023-01-03 Eagle Harbor Technologies, Inc. Low pressure dielectric barrier discharge plasma thruster
CA2892714A1 (en) 2015-05-27 2016-11-27 Ignis Innovation Inc Memory bandwidth reduction in compensation system
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
CA2898282A1 (en) 2015-07-24 2017-01-24 Ignis Innovation Inc. Hybrid calibration of current sources for current biased voltage progra mmed (cbvp) displays
CA2900170A1 (en) 2015-08-07 2017-02-07 Gholamreza Chaji Calibration of pixel based on improved reference values
CA2909813A1 (en) 2015-10-26 2017-04-26 Ignis Innovation Inc High ppi pattern orientation
US9698813B2 (en) 2015-12-01 2017-07-04 Mediatek Inc. Input buffer and analog-to-digital converter
US10365833B2 (en) 2016-01-22 2019-07-30 Micron Technology, Inc. Apparatuses and methods for encoding and decoding of signal lines for multi-level communication architectures
CN107452347B (en) * 2016-05-31 2021-09-14 安恩科技香港有限公司 Variable VCOM level generator
US11430635B2 (en) 2018-07-27 2022-08-30 Eagle Harbor Technologies, Inc. Precise plasma control system
US11004660B2 (en) 2018-11-30 2021-05-11 Eagle Harbor Technologies, Inc. Variable output impedance RF generator
US10903047B2 (en) 2018-07-27 2021-01-26 Eagle Harbor Technologies, Inc. Precise plasma control system
US10447158B2 (en) * 2016-07-01 2019-10-15 Texas Instruments Incorporated Reducing voltage rating of devices in a multilevel converter
DE102017222059A1 (en) 2016-12-06 2018-06-07 Ignis Innovation Inc. Pixel circuits for reducing hysteresis
US9876328B1 (en) * 2017-01-30 2018-01-23 Infineon Technologies Ag Driving light emitting elements with reduced voltage drivers
EP3580841A4 (en) 2017-02-07 2020-12-16 Eagle Harbor Technologies, Inc. Transformer resonant converter
US10714018B2 (en) 2017-05-17 2020-07-14 Ignis Innovation Inc. System and method for loading image correction data for displays
US10277117B2 (en) * 2017-05-23 2019-04-30 Taiwan Semiconductor Manufacturing Company Limited Device with a voltage multiplier
US10283187B2 (en) 2017-07-19 2019-05-07 Micron Technology, Inc. Apparatuses and methods for providing additional drive to multilevel signals representing data
US11025899B2 (en) 2017-08-11 2021-06-01 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
KR102208429B1 (en) 2017-08-25 2021-01-29 이글 하버 테크놀로지스, 인코포레이티드 Arbitrary waveform generation using nanosecond pulses
US10971078B2 (en) 2018-02-12 2021-04-06 Ignis Innovation Inc. Pixel measurement through data line
US10755628B2 (en) * 2018-03-08 2020-08-25 Raydium Semiconductor Corporation Display apparatus and voltage stabilization method
CN108539973B (en) * 2018-05-18 2019-12-31 深圳市华星光电技术有限公司 TFT-LCD display, driving circuit thereof and switching power supply
US10531035B1 (en) * 2018-07-17 2020-01-07 Semiconductor Components Industries, Llc Image sensors with predictive pre-charging circuitry
US11302518B2 (en) 2018-07-27 2022-04-12 Eagle Harbor Technologies, Inc. Efficient energy recovery in a nanosecond pulser circuit
US11222767B2 (en) 2018-07-27 2022-01-11 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US11532457B2 (en) 2018-07-27 2022-12-20 Eagle Harbor Technologies, Inc. Precise plasma control system
US10607814B2 (en) 2018-08-10 2020-03-31 Eagle Harbor Technologies, Inc. High voltage switch with isolated power
WO2020033931A1 (en) 2018-08-10 2020-02-13 Eagle Harbor Technologies, Inc. Plasma sheath control for rf plasma reactors
WO2020146436A1 (en) 2019-01-08 2020-07-16 Eagle Harbor Technologies, Inc. Efficient energy recovery in a nanosecond pulser circuit
CN110838276B (en) * 2019-11-08 2020-11-27 四川遂宁市利普芯微电子有限公司 Pre-charging method of LED display screen
CN110827748B (en) * 2019-11-08 2020-12-25 四川遂宁市利普芯微电子有限公司 Pre-charging circuit of LED display screen driving chip
TWI778449B (en) 2019-11-15 2022-09-21 美商鷹港科技股份有限公司 High voltage pulsing circuit
US11527383B2 (en) 2019-12-24 2022-12-13 Eagle Harbor Technologies, Inc. Nanosecond pulser RF isolation for plasma systems
US11835710B2 (en) * 2020-12-15 2023-12-05 Infineon Technologies Ag Method of mode coupling detection and damping and usage for electrostatic MEMS mirrors
CN113067469B (en) * 2021-03-30 2022-07-15 苏州源特半导体科技有限公司 Quick response loop compensation circuit, loop compensation chip and switching power supply

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684368A (en) * 1996-06-10 1997-11-04 Motorola Smart driver for an array of LEDs
WO1998052182A1 (en) * 1997-05-14 1998-11-19 Unisplay S.A. Display system with brightness correction
GB2337354A (en) * 1998-05-13 1999-11-17 Futaba Denshi Kogyo Kk Drive circuit for electroluminescent display providing uniform brightness
EP1067505A2 (en) * 1999-07-08 2001-01-10 Nichia Corporation Image display apparatus with light emitting elements
WO2001027910A1 (en) * 1999-10-12 2001-04-19 Koninklijke Philips Electronics N.V. Led display device

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2001A (en) * 1841-03-12 Sawmill
US24186A (en) * 1859-05-31 Straw-cutter
US32526A (en) * 1861-06-11 Improvement
US4366504A (en) * 1977-10-07 1982-12-28 Sharp Kabushiki Kaisha Thin-film EL image display panel
US4236199A (en) * 1978-11-28 1980-11-25 Rca Corporation Regulated high voltage power supply
DE3016737A1 (en) * 1980-04-30 1981-11-05 Siemens AG, 1000 Berlin und 8000 München INTEGRATOR CIRCUIT WITH SAMPLE LEVEL
US4574249A (en) * 1981-09-08 1986-03-04 At&T Bell Laboratories Nonintegrating lightwave receiver
JPS5997223A (en) * 1982-11-27 1984-06-05 Nissan Motor Co Ltd Load driving circuit
US4603269A (en) 1984-06-25 1986-07-29 Hochstein Peter A Gated solid state FET relay
USRE32526E (en) 1984-06-25 1987-10-20 Gated solid state FET relay
JPS61139232A (en) * 1984-12-10 1986-06-26 松下電工株式会社 Battery voltage monitoring circuit
JPS6289090A (en) 1985-10-15 1987-04-23 シャープ株式会社 El panel driver
KR890008746A (en) * 1986-11-26 1989-07-12 피이터 체리 Display system
US5076597A (en) 1989-12-21 1991-12-31 Daihatsu Motor Co., Ltd. Four-wheel steering system for vehicle
US5117426A (en) 1990-03-26 1992-05-26 Texas Instruments Incorporated Circuit, device, and method to detect voltage leakage
FR2665986B1 (en) 1990-07-30 1994-03-18 Peugeot Automobiles BRUSH HOLDER DEVICE FOR AN ELECTRICAL COLLECTOR MACHINE.
JP2718258B2 (en) 1990-11-02 1998-02-25 日本電気株式会社 Output circuit
US5162668A (en) * 1990-12-14 1992-11-10 International Business Machines Corporation Small dropout on-chip voltage regulators with boosted power supply
JPH05102853A (en) * 1991-10-08 1993-04-23 Mitsubishi Electric Corp A/d conversion circuit
JP2838344B2 (en) * 1992-10-28 1998-12-16 三菱電機株式会社 Semiconductor device
JP3307473B2 (en) 1992-09-09 2002-07-24 ソニー エレクトロニクス インコーポレイテッド Test circuit for semiconductor memory
JPH06337400A (en) * 1993-05-31 1994-12-06 Sharp Corp Matrix type display device and method for driving it
US5594463A (en) * 1993-07-19 1997-01-14 Pioneer Electronic Corporation Driving circuit for display apparatus, and method of driving display apparatus
JP2850728B2 (en) * 1993-11-15 1999-01-27 株式会社デンソー Driving device and driving method for EL display device
KR950015768A (en) 1993-11-17 1995-06-17 김광호 Wiring short detection circuit of nonvolatile semiconductor memory device and method thereof
JPH07199861A (en) 1993-12-30 1995-08-04 Takiron Co Ltd Emission luminous intensity adjusting device for dot matrix light emitting diode display unit
JP3482683B2 (en) 1994-04-22 2003-12-22 ソニー株式会社 Active matrix display device and driving method thereof
JP3451717B2 (en) 1994-04-22 2003-09-29 ソニー株式会社 Active matrix display device and driving method thereof
JPH07322605A (en) 1994-05-18 1995-12-08 Fujitsu Ltd Switching circuit for power supply line
US6545653B1 (en) * 1994-07-14 2003-04-08 Matsushita Electric Industrial Co., Ltd. Method and device for displaying image signals and viewfinder
US5684365A (en) * 1994-12-14 1997-11-04 Eastman Kodak Company TFT-el display panel using organic electroluminescent media
US5514995A (en) * 1995-01-30 1996-05-07 Micrel, Inc. PCMCIA power interface
US5672992A (en) 1995-04-11 1997-09-30 International Rectifier Corporation Charge pump circuit for high side switch
GB2339638B (en) 1995-04-11 2000-03-22 Int Rectifier Corp Charge pump circuit for high side switch
JPH08289483A (en) * 1995-04-18 1996-11-01 Rohm Co Ltd Power supply
KR100198617B1 (en) 1995-12-27 1999-06-15 구본준 Circuit for detecting leakage voltage of mos capacitor
JP3507239B2 (en) 1996-02-26 2004-03-15 パイオニア株式会社 Method and apparatus for driving light emitting element
JP3106953B2 (en) 1996-05-16 2000-11-06 富士電機株式会社 Display element driving method
JP3535963B2 (en) * 1997-02-17 2004-06-07 シャープ株式会社 Semiconductor storage device
US5952789A (en) 1997-04-14 1999-09-14 Sarnoff Corporation Active matrix organic light emitting diode (amoled) display pixel structure and data load/illuminate circuit therefor
JP3290926B2 (en) * 1997-07-04 2002-06-10 松下電器産業株式会社 Transmit diversity device
JP3613940B2 (en) 1997-08-29 2005-01-26 ソニー株式会社 Source follower circuit, liquid crystal display device, and output circuit of liquid crystal display device
JP4046811B2 (en) 1997-08-29 2008-02-13 ソニー株式会社 Liquid crystal display
JP3381572B2 (en) * 1997-09-24 2003-03-04 安藤電気株式会社 Offset correction circuit and DC amplifier circuit
US6229508B1 (en) * 1997-09-29 2001-05-08 Sarnoff Corporation Active matrix light emitting diode pixel structure and concomitant method
US6067061A (en) 1998-01-30 2000-05-23 Candescent Technologies Corporation Display column driver with chip-to-chip settling time matching means
JPH11231834A (en) * 1998-02-13 1999-08-27 Pioneer Electron Corp Luminescent display device and its driving method
JP4081852B2 (en) * 1998-04-30 2008-04-30 ソニー株式会社 Matrix driving method for organic EL element and matrix driving apparatus for organic EL element
JPH11322605A (en) 1998-05-07 1999-11-24 Pola Chem Ind Inc Pharmaceutical preparation containing dopamine uptake inhibitor
JP3422928B2 (en) 1998-05-19 2003-07-07 東芝マイクロエレクトロニクス株式会社 Charge pump drive circuit
JP3737889B2 (en) 1998-08-21 2006-01-25 パイオニア株式会社 Light emitting display device and driving method
GB9902343D0 (en) 1999-02-04 1999-03-24 Sharp Kk overnment Of The United Kingdom Of Great Britain And Northern Ireland The Addressable matrix arrays
US6121831A (en) * 1999-05-12 2000-09-19 Level One Communications, Inc. Apparatus and method for removing offset in a gain circuit
JP4092857B2 (en) 1999-06-17 2008-05-28 ソニー株式会社 Image display device
JP4126909B2 (en) 1999-07-14 2008-07-30 ソニー株式会社 Current drive circuit, display device using the same, pixel circuit, and drive method
US6191534B1 (en) 1999-07-21 2001-02-20 Infineon Technologies North America Corp. Low current drive of light emitting devices
US6201717B1 (en) 1999-09-04 2001-03-13 Texas Instruments Incorporated Charge-pump closely coupled to switching converter
JP3367099B2 (en) 1999-11-11 2003-01-14 日本電気株式会社 Driving circuit of liquid crystal display device and driving method thereof
US6584589B1 (en) 2000-02-04 2003-06-24 Hewlett-Packard Development Company, L.P. Self-testing of magneto-resistive memory arrays
GB0008019D0 (en) * 2000-03-31 2000-05-17 Koninkl Philips Electronics Nv Display device having current-addressed pixels
GB0014961D0 (en) 2000-06-20 2000-08-09 Koninkl Philips Electronics Nv Light-emitting matrix array display devices with light sensing elements
JP3437152B2 (en) 2000-07-28 2003-08-18 ウインテスト株式会社 Apparatus and method for evaluating organic EL display
JP2002108284A (en) * 2000-09-28 2002-04-10 Nec Corp Organic el display device and its drive method
TW561445B (en) * 2001-01-02 2003-11-11 Chi Mei Optoelectronics Corp OLED active driving system with current feedback
US6366116B1 (en) 2001-01-18 2002-04-02 Sunplus Technology Co., Ltd. Programmable driving circuit
US6594606B2 (en) 2001-05-09 2003-07-15 Clare Micronix Integrated Systems, Inc. Matrix element voltage sensing for precharge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684368A (en) * 1996-06-10 1997-11-04 Motorola Smart driver for an array of LEDs
WO1998052182A1 (en) * 1997-05-14 1998-11-19 Unisplay S.A. Display system with brightness correction
GB2337354A (en) * 1998-05-13 1999-11-17 Futaba Denshi Kogyo Kk Drive circuit for electroluminescent display providing uniform brightness
EP1067505A2 (en) * 1999-07-08 2001-01-10 Nichia Corporation Image display apparatus with light emitting elements
WO2001027910A1 (en) * 1999-10-12 2001-04-19 Koninklijke Philips Electronics N.V. Led display device

Also Published As

Publication number Publication date
AU2002349965A1 (en) 2003-04-28
US20030169107A1 (en) 2003-09-11
AU2002343544A1 (en) 2003-04-28
AU2002342069A1 (en) 2003-04-28
WO2003033749A1 (en) 2003-04-24
WO2003034387A2 (en) 2003-04-24
AU2002335857A1 (en) 2003-04-28
AU2002340265A1 (en) 2003-04-28
WO2003034391A2 (en) 2003-04-24
US6995737B2 (en) 2006-02-07
WO2003034391A3 (en) 2004-04-01
WO2003034384A2 (en) 2003-04-24
WO2003034388A2 (en) 2003-04-24
WO2003034386A2 (en) 2003-04-24
US7019719B2 (en) 2006-03-28
US7019720B2 (en) 2006-03-28
WO2003034576A3 (en) 2004-06-03
US7126568B2 (en) 2006-10-24
WO2003034383A3 (en) 2003-08-21
WO2003034587A1 (en) 2003-04-24
WO2003034384A3 (en) 2003-12-18
AU2002335107A1 (en) 2003-04-28
US6828850B2 (en) 2004-12-07
US20040085086A1 (en) 2004-05-06
US6943500B2 (en) 2005-09-13
US7050024B2 (en) 2006-05-23
WO2003034383A2 (en) 2003-04-24
US20030156101A1 (en) 2003-08-21
WO2003034387A3 (en) 2003-11-20
US20030146784A1 (en) 2003-08-07
US20030137341A1 (en) 2003-07-24
WO2003034391A9 (en) 2005-01-06
US20030142088A1 (en) 2003-07-31
AU2002335856A1 (en) 2003-04-28
WO2003034385A9 (en) 2005-01-06
WO2003034386A3 (en) 2003-10-16
WO2003034388A3 (en) 2004-01-08
AU2002335853A1 (en) 2003-04-28
US20030173904A1 (en) 2003-09-18
WO2003034576A2 (en) 2003-04-24
US20040004590A1 (en) 2004-01-08
AU2002342070A1 (en) 2003-04-28
WO2003033749A8 (en) 2003-07-24
WO2003034385A3 (en) 2003-12-18
WO2003033749A3 (en) 2004-01-29

Similar Documents

Publication Publication Date Title
WO2003034385A2 (en) System and method for illumination timing compensation in response to row resistance
US20030169219A1 (en) System and method for exposure timing compensation for row resistance
US6963321B2 (en) Method of providing pulse amplitude modulation for OLED display drivers
JP4059537B2 (en) Organic thin film EL display device and driving method thereof
US10325554B2 (en) OLED luminance degradation compensation
WO2003034389A2 (en) System and method for providing pulse amplitude modulation for oled display drivers
US7046220B2 (en) Display and driving method thereof
US20030169241A1 (en) Method and system for ramp control of precharge voltage
US7446744B2 (en) Display device with pre-charging arrangement
US7079131B2 (en) Apparatus for periodic element voltage sensing to control precharge
US7079130B2 (en) Method for periodic element voltage sensing to control precharge
US20060022964A1 (en) Removing crosstalk in an organic light-emitting diode display by adjusting display scan periods
WO2002091341A2 (en) Apparatus and method of periodic voltage sensing for control of precharging of a pixel
US20110227815A1 (en) PWM precharge of organic light emitting diodes
JP2007108774A (en) Organic thin-film el display device and its driving method
US20040032381A1 (en) Circuit and system for driving an organic thin-film EL element and the method thereof
KR20080066434A (en) Circuit for compensation brightness interference of passive matrix-organic light emitting diode panel
LAO RELATED APPLICATIONS

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NO NZ OM PH PT RO RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
COP Corrected version of pamphlet

Free format text: PAGES 1/6-6/6, DRAWINGS, REPLACED BY NEW PAGES 1/6-6/6

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP