WO2003045608A1 - Method for continuous casting of steel - Google Patents

Method for continuous casting of steel Download PDF

Info

Publication number
WO2003045608A1
WO2003045608A1 PCT/JP2001/010444 JP0110444W WO03045608A1 WO 2003045608 A1 WO2003045608 A1 WO 2003045608A1 JP 0110444 W JP0110444 W JP 0110444W WO 03045608 A1 WO03045608 A1 WO 03045608A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
alumina
immersion nozzle
nozzle
powder
Prior art date
Application number
PCT/JP2001/010444
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Nomura
Akihiro Morita
Shigeki Uchida
Tomoaki Omoto
Wei Lin
Original Assignee
Shinagawa Refractories Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000174553A priority Critical patent/JP2001353561A/en
Application filed by Shinagawa Refractories Co., Ltd. filed Critical Shinagawa Refractories Co., Ltd.
Priority to CNA018238440A priority patent/CN1589187A/en
Priority to PCT/JP2001/010444 priority patent/WO2003045608A1/en
Priority to CA002454946A priority patent/CA2454946A1/en
Priority to US10/484,388 priority patent/US20040159419A1/en
Priority to KR10-2004-7007511A priority patent/KR20040079407A/en
Priority to EP01274842A priority patent/EP1449603A1/en
Priority to AU2002222564A priority patent/AU2002222564A1/en
Priority to TW090130104A priority patent/TW590823B/en
Publication of WO2003045608A1 publication Critical patent/WO2003045608A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/52Manufacturing or repairing thereof
    • B22D41/54Manufacturing or repairing thereof characterised by the materials used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/111Treating the molten metal by using protecting powders

Definitions

  • the present invention relates to a method for continuously producing steel, and particularly to a method for continuously producing steel, in which a refractory material containing a specific mold powder and alumina as main materials (specifically, an alumina-based refractory and / or an alumina-based refractory material).
  • a refractory material containing a specific mold powder and alumina as main materials specifically, an alumina-based refractory and / or an alumina-based refractory material.
  • the present invention relates to a method for continuously producing steel, which is used in combination with an immersion nozzle composed of (carbon-based refractory). Background technology>
  • alumina / graphite-based material containing and / or not containing fused silica is used as the main body material
  • zirconia ⁇ graphite-based material and / or zirconia ⁇ force Lucia ⁇ graphite-based material is powdered.
  • An immersion nozzle as a line material and a mold powder containing a fluorine component are used in combination.
  • low-carbon A1 killed steel, high-oxygen steel, high-Mn steel, stainless steel, Ca-treated steel, and other parts that come into contact with molten steel are made of a refractory material made of spinel, or a refractory material made of spinel and polyclase.
  • an immersion nozzle see Japanese Patent Application Laid-Open No. H10-305355 in which an immersion nozzle is provided, which has both erosion resistance and blocking resistance and suppresses inclusions caused by refractories. "Prior art 2-2").
  • the mold powder usually as a fluxing agent to increase the fluidity, and / or, as it is possible to heat extraction control, Kasupidai emissions (3CaO ⁇ 2Si0 2 ⁇ CaF 2 ) can be generated crystals "Raw materials containing a fluorine component" such as natural fluorite are generally used (hereinafter referred to as "prior art 3").
  • the fluorine component promotes the erosion of the immersion nozzle and indirectly makes the production of clean steel difficult. Therefore, it is necessary to use a mold pad which is free of fluorine or has a reduced fluorine component.
  • the conventional technologies for fluorine-free mold powder include: (1) spray cooling water for one-side cooling, secondary cooling water after cooling, and machine cooling water at neutral pH; Technology aimed at improving the durability of metal structures and concrete equipment (JP-A-58-125349);
  • the inner pipe and the powder line of the immersion nozzle are not immersed in molten steel, inclusions in molten steel, mold powder. First, it is eroded by slag. When melted in this way, the shape of the immersion nozzle changes, and the molten steel flow in the mold is disturbed, causing a piece defect.
  • the immersion nozzle material reacts with the molten elements in the molten steel and / or the mold powder and slag to form low- and high-melting compounds that are formed during production.
  • the thermal conductivity of the immersion nozzle changes. Due to this change in thermal conductivity, the amount of heat extracted from the molten steel through the immersion nozzle was not constant, and as a result, the formation of a solidified shell was not uniform, which caused fragment defects.
  • the flow of inert gas blown out of the nozzle becomes more and more deflected, further contributing to erosion and / or alumina deposition of the nozzle. Then, the nozzle is melted and the steel is contaminated.
  • the conventional technology 2-2 "Immersion nozzle in which a refractory material made of spinel or a refractory material made of spinel and vericlase is disposed in a portion that comes into contact with molten steel" is a commonly used alumina-graphite nozzle.
  • alumina-graphite nozzle is a commonly used alumina-graphite nozzle.
  • an alumina-graphite material generally used as an immersion nozzle material generally causes the following reaction with molten steel, and is an undesirable material for producing clean steel. That is, since the carbon concentration in molten steel is extremely low, the graphite (C (s): solid graphite) in the alumina-graphite nozzle material is
  • the permeation amount of (FeO) and (MnO) into the spinel is small, and the solid phase is maintained without generating a liquid phase even if inclusions such as FeO-MnO adhere. That is, there is little erosion of the nozzle in which the spinel is distributed at the part in contact with the molten steel, and therefore, the molten steel contamination is reduced.
  • the present inventors have found that, by using the specific mold powder, surprisingly, it is not necessary to combine the specific immersion nozzle with the powder. Even when using an immersion nozzle composed of a refractory material mainly composed of alumina, including one line section, it is possible to produce clean steel with almost no erosion and no adherence of alumina. The inventors have found that the present invention can be performed and completed the present invention.
  • an object of the present invention is to prevent contamination of steel due to refractories, to enable stable production of highly clean steel, and to use the same “alumina” as a main material from the viewpoint of manufacturing an immersion nozzle. Therefore, it is an object of the present invention to provide a method for continuously producing steel, which has an operational effect that can be produced extremely easily.
  • the molten steel is supplied into the mold by the immersion nozzle, and the mold powder is contained in the mold.
  • the amount of fluorine is less than 3% by weight and 130.000.
  • a continuous steel making method characterized by using a combination of an immersion nozzle made of a refractory material as a main material.
  • the "fluorine component” was inevitable for reducing the viscosity of the mold powder and controlling the heat removal.
  • the chemical composition of the mold powder used in the present invention A 1 2 0 3: 5 ⁇ 2 5 wt%, S i 0 2: 2 5 ⁇ 7 0 wt%, C a O: 1 0 ⁇ 5 0 wt %, Mg 0: 20% by weight or less, F: 0 to 2% by weight (inevitable impurities) are preferable.
  • the immersion nozzle used in combination with the mold powder is an immersion nozzle composed of a refractory material mainly composed of alumina, specifically, an alumina-based refractory and / or an alumina-carbon type. Made of refractory.
  • the refractory material "silica (Si0 2), silicon carbide (SiC), boron carbide (B 4 C), silicon nitride (Si 3 N 4), nitride ⁇ Ruminiumu (A1N), zirconium boride (ZrB 2) , boride magnesium (Mg 3 B 2), sulfuric acid di Rukoniumu (ZrS0 4), silicon (Si), containing one or more selected from aluminum (A1) "can be used immersion nozzle I found something.
  • FIG. 1 is a diagram showing an example of a immersion nozzle structure of a type having a discharge port used in Examples (including Comparative Examples) of the present invention.
  • FIG. 2 is a view showing another example of the immersion nozzle structure of the type having a discharge port used in Examples (including Comparative Examples) of the present invention.
  • FIG. 3 is a view showing an example of a straight type immersion nozzle having no discharge port used in Examples (including Comparative Examples) of the present invention.
  • 1 denotes the inner pipe of the immersion nozzle that comes into contact with the molten steel
  • 2 denotes the discharge port of the immersion nozzle that comes into contact with the molten steel
  • 3 denotes the line of the immersion nozzle that comes into contact with the mold powder
  • I the main part of the immersion nozzle
  • 5 is the straight type immersion nozzle This is the tip of the nozzle that comes into contact with molten steel.
  • the mold padder used in the present invention has a fluorine content of less than 3% by weight and a viscosity at 1300 ° C. of 4 to 100,000 boise. .
  • the amount of fluorine in the mold powder is 3% by weight or more, the amount of erosion of the immersion nozzle, especially in the powder line, increases, and the refractory material that has flowed into the steel contaminates the molten steel to obtain clean steel. Can not.
  • viscosity of the mold powder (viscosity at 1300 ° C) is less than 4 voids, uneven flow of the mold powder will occur, and in the molten mold powder, such as dicalcium silicate and tricalcium silicate, etc. Undesirably, crystals develop and the temperature fluctuation of the molded copper plate increases, resulting in unstable heat removal.
  • the above viscosity is 10
  • the viscosity for example, A 1 2 0 3, CaO / S i0 can adjust 2 or the like, in the case when A 1 2 0 3 is large and C a 0 / S i 0 2 is low
  • the viscosity can be adjusted higher.
  • the mold powder used in the present invention melts the mold powder, and cuts the mold powder droplets when the platinum cylinder having a diameter of 7 mm is pulled up at a constant speed in the platinum powder when it separates from the liquid surface.
  • the breaking strength of the molten mold powder the breaking strength of the molten mold powder at 1300 ° C is preferably 3.7 g / cm 2 or more. If the breaking strength is less than 3.7 g / cm 2 , the liquid layer in the slag film tends to break, which is not preferable.
  • the mold powder used in the present invention is composed of base materials such as portland cement, wollastonite, and synthetic calcium silicate, and S powders such as perlite and fly ash.
  • a liquid eg, water
  • an organic binder or an inorganic binder are added as required, and the mixture is granulated by a method such as extrusion granulation, stirring granulation, tumbling granulation, fluidized granulation, or spray granulation.
  • granules can also be used.
  • a material constituting the immersion nozzle is a refractory material mainly composed of alumina, and a preferred embodiment is an alumina-based refractory and / or an alumina-carbon refractory.
  • alumina-based refractories alumina - carbon-based refractories, silica (Si0 2), carbonization silicon (SiC), boron carbide (B 4 C), silicon nitride (Si 3 N 4), aluminum nitride (A1N ), zirconium boride (ZrB 2), magnesium boride (Mg 3 B 2), it can also be used those containing one or more selected from zirconium sulfate (ZrS0 4), thus A wide range of materials can be used.
  • silicon (Si), aluminum (A1) Contains one or more.
  • the metal reacts with the refractory material and / or the components in the air, particularly in the powder line portion of the immersion nozzle, at a high temperature during use to generate a metal reactant.
  • This metal reactant strengthens the powder line and contributes to improved durability.
  • the powder line portion contains carbon, the metal also functions as an antioxidant for carbon.
  • an excellent immersion nozzle can be provided by blending the above metal.
  • the content of silicon (Si) and aluminum (A1) is preferably 0.1 to 15% by weight, and more preferably 1 to 8% by weight. If the content is less than 0.1% by weight, the above-mentioned effect of the metal cannot be obtained.
  • the content exceeds 15% by weight, a large amount of metal reactant is generated, so that the refractory structure due to the volume increase is produced. This leads to the destruction of steel and loss of the effect of the refractory material of the main aggregate, which is not preferable.
  • the same material can be used for the powder line portion and the main body portion of the immersion nozzle. The reason for this is that the specific mold powder of the present invention (mold powder having a fluorine content of less than 3% by weight and a viscosity at 1300 ° C. of 4 to 1000 vise) is used. is there.
  • FIG. 1 is a diagram showing an example of an immersion nozzle structure having a discharge port
  • FIG. 2 is a diagram showing another example of a immersion nozzle structure having a discharge port
  • FIG. 3 is a view showing an example of a straight type immersion nozzle having no discharge port.
  • the immersion nozzle shown in Fig. 1 is a type of immersion nozzle that has a discharge port.
  • 1 is the inner tube of the immersion nozzle that comes into contact with molten steel
  • 2 is the immersion nozzle that also contacts the molten steel.
  • the discharge port portion 3 is a powder line portion that comes into contact with the mold powder and / or slag
  • the reference numeral 4 is a main portion of the immersion nozzle.
  • this immersion nozzle is a immersion nozzle having a structure in which the discharge port 2a of the immersion nozzle that comes into contact with the molten steel has the body 4 and the discharge port 2 integrated integrally.
  • the immersion nozzle shown in FIG. 2 is a type of immersion nozzle having a discharge port like the immersion nozzle shown in FIG. However, it does not have an integrated structure as shown in Fig. 1 (see “Part 2a” in Fig. 1), and as shown in Fig. 2, the discharge port 2b of the immersion nozzle that comes into contact with molten steel.
  • This is an immersion nozzle having a structure in which the portion of the nozzle is formed as a discharge port 2 made of the same material.
  • Reference numerals 1 to 4 in FIG. 2 are the same as above, 1 is an inner tube portion, 2 is a discharge port portion, 3 is a powder line portion, and 4 is a main body portion.
  • the immersion nozzle shown in FIG. 3 is a straight type immersion nozzle having no discharge port.
  • Reference numeral 5 in FIG. 3 denotes a nozzle tip portion that comes into contact with molten steel, and other symbols are the same as those described above, where 1 is an inner tube portion, 3 is a powder line portion, and 4 is a main body portion.
  • Table 1 shows the chemical composition of the mold powder (sample numbers 1 to 7) used in the following examples, and Table 2 shows the chemical composition of the mold powder for comparison (sample numbers 8 to 21). Shown in Tables 1 and 2 also show the “fluorine component”, “viscosity (at 1300 ° C), and“ breaking strength (at 1300 ° C) ”of each mold powder.
  • the mold powders of Sample Nos. 1 to 7, 8 to 10 and 13 to 17 in Tables 1 and 2 were obtained by mixing powders having a predetermined chemical composition ratio using a mixer. Goods ".
  • a solution consisting of 90% by weight of water and 10% by weight of sodium silicate was mixed with 20 to 30% by weight. It is a "granule” obtained by adding the slurry to produce a slurry, spray-granulating the slurry, and drying the slurry, which is finally prepared to have a predetermined chemical composition.
  • Examples 1 to 17 are shown in Tables 3 and 4, and Comparative Examples 1 to 6 are shown in Table 5.
  • molten steel (“steel type” in the table) was supplied into a mold by a nozzle, and The continuous production was performed while supplying mold powder to the plant.
  • the structure of the nozzle used in each example is indicated by the drawing number in the table.
  • the mold powder used in each example was composed of those having the chemical compositions of Sample Nos. 1 to 21 in Tables 1 and 2 above. The sample numbers are shown in the table, and the mold powder used was used. Only the "fluorine component", “viscosity (at 1300 ° C)" and “breaking strength (at 1300 ° C)" of "No. of materials for each nozzle site” in the table indicate "% by weight".
  • “stable structure”, “nozzle erosion amount or alumina adhesion amount (each erosion amount of inner tube, discharge port inside, powder line)”, “steel cleanliness” and “steel defect rate” are as follows. Table 3 to Table 5 show the evaluation results.
  • Solid structure indicates whether a stable structure is possible or not.
  • a BO prediction warning [A system that predicts the occurrence of B.O. (break fault) by continuous measurement of the mold surface temperature. No evaluation method when using a stem]
  • Nozzle erosion amount [mm / (steel ton)] is shown as nozzle erosion size per ton of forged volume. The greater the amount of nozzle erosion, the shorter the life of the nozzle, and the more impurities that are eroded into the steel, thus contaminating the steel.
  • Step cleanliness was evaluated based on the degree of sliver scratch.
  • the index “100” indicates the case where there is no sliver flaw, and the index “0” indicates the case where the steel does not become a product due to the slipper flaw.
  • Step defect rate was evaluated by surface cracking. " ⁇ ” indicates that the surface cracking was negligible, “ ⁇ ” indicates that the steel did not turn into a product due to surface cracking, and “ ⁇ ” indicates that the steel surface could be processed into a product.
  • Breaking strength (at 1300 ° C) (g / cm 2 ) 5.0 5.0 5.0 3.7 5.0 Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum
  • Nozzle part Material structure (Fig. 1) (Fig. 2) (Fig. 2) (Fig. 2) (Fig. 2) (Fig. 2) (Fig. 2) (Fig. 1) (Fig. 1) Inner pipe Al 2 0 3 100 100 100 70 80 80 100
  • Example 1 or using an immersion nozzle made of an alumina-based refractory (Example 12), that is, using a refractory of the same quality
  • the evaluations were all "OK", indicating that a stable structure was possible. Further, as can be seen from Examples 1 to 17, it was also found that a stable structure could be similarly obtained by using the same material for both the powder line portion and the main body portion.
  • nozzle erosion amount or alumina adhesion is all "0”
  • steel purity is “100”
  • steel defect rate is all “ ⁇ ”. The surface cracks of the steel were negligible.
  • the present invention relates to a continuous steel pipe using a combination of a mold powder in which a fluorine component having high erosion properties is substantially absent and a dipping nozzle composed of a refractory material mainly composed of alumina. It is characterized by a fabrication method.
  • the immersion nozzle used in the present invention has almost no erosion, so that the nozzle life can be improved, and high performance and low cost can be achieved by thinning and weight reduction.
  • aluminum-killed steel, silicon-killed steel, high-oxygen steel, stainless steel, steel for electrical steel sheets, calcium-treated steel, high-manganese steel, free-cutting steel, boron steel, steel cord, case-hardened steel It can be applied to all types of steel, such as high titanium steel, and has an extremely high industrial value.

Abstract

A method for continuous casting of steel, characterized in that use is made of a combination of a mold powder having a fluorine content of less than 3 wt % and exhibiting a viscosity at 1300 °C of 4 to 10,000 poise and an immersion nozzle comprising a refractory material containing alumina as a primary component (specifically, an alumina refractory and/or alumina-carbon refractory). The method allows the stable production of a clean cast steel product with little melting loss and with no deposit of alumina, also in the case when an immersion nozzle comprising a refractory material containing alumina as a primary component is used.

Description

明 細 書 鋼の連続鎵造方法 <技術分野 >  Description Continuous production of steel <Technical field>
本発明は、 鋼の連続錡造方法に関し、 特に、 鋼の連続錡造において、 特定のモ —ルドパウダーとアルミナを主材とする耐火材料 (具体的には、 アルミナ系耐火 物および/またはアルミナ—炭素系耐火物) で構成された浸漬ノズルとを組み合 わせて用いることを特徴とする鋼の連続錡造方法に関する。 ぐ背景技術 >  The present invention relates to a method for continuously producing steel, and particularly to a method for continuously producing steel, in which a refractory material containing a specific mold powder and alumina as main materials (specifically, an alumina-based refractory and / or an alumina-based refractory material). The present invention relates to a method for continuously producing steel, which is used in combination with an immersion nozzle composed of (carbon-based refractory). Background technology>
鋼の連続銪造において、 一般に、 溶融シリカを含有した及び/又は含有してい ないアルミナ ·黒鉛系材料を本体材とし、 ジルコニァ ·黒鉛系材料及び/又はジ ルコニァ ·力ルシア ·黒鉛系材料をパウダーライン材とした浸漬ノズルと、 フッ 素成分を含むモールドパウダーとが併用されている。  In continuous steelmaking, generally, alumina / graphite-based material containing and / or not containing fused silica is used as the main body material, and zirconia · graphite-based material and / or zirconia · force Lucia · graphite-based material is powdered. An immersion nozzle as a line material and a mold powder containing a fluorine component are used in combination.
上記浸漬ノズル材とモールドバウダー材とを組み合わせた技術 (以下 "従来技術 The technology combining the above immersion nozzle material and mold powder material
1 "という)に対して、 耐火物起因及び Z又はモールドパウダー材起因の介在物が 鋼中に入り込むことを避けるために、 以下の技術が開示されている。 1 "), the following technology is disclosed to prevent inclusions due to refractories and Z or mold powder material from entering steel.
浸漬ノズルについては、 力一ボンピックアップあるいはモールドパウダ一卷き 込み防止を図って、 浸漬ノズルから溶鋼中に不活性ガスを吹き込み、 溶鋼とノズ ルとが接触することを防止した技術 (特開平 8— 5 7 6 1 3号公報,特開昭 6 2 - 1 3 0 7 5 4号公報参照)が知られている (以下 "従来技術 2 -1" という)。  For the immersion nozzle, a technique was used to prevent the contact between the molten steel and the nozzle by blowing an inert gas into the molten steel from the immersion nozzle to prevent the coil pickup or mold powder from being wrapped around. — See Japanese Patent Application Laid-Open No. 77613 and Japanese Patent Application Laid-Open No. Sho 62-130754 (hereinafter referred to as “prior art 2-1”).
また、 低炭素 A 1キルド鋼, 高酸素鋼, 高 M n鋼, ステンレス鋼, C a処理鋼 等の溶鋼と接触する部分に、 スピネルからなる耐火材料、 又は、 スピネル及びぺ リクレースからなる耐火材料を配設し、 耐溶損性と耐閉塞性を兼備させ、 耐火物 起因の介在物を抑制した浸漬ノズル (特開平 1 0— 3 0 5 3 5 5号公報参照)が知 られている(以下 "従来技術 2 -2" という)。 一方、 モールドパウダーについては、 通常、 流動性を増すための融剤として、 および/または、 抜熱コントロールを図ることができるものとして、 カスピダイ ン (3CaO · 2Si02 · CaF2)結晶の生成が可能な螢石などの "フッ素成分を含む原料" が一般的に使用される (以下 "従来技術 3 " という)。 In addition, low-carbon A1 killed steel, high-oxygen steel, high-Mn steel, stainless steel, Ca-treated steel, and other parts that come into contact with molten steel are made of a refractory material made of spinel, or a refractory material made of spinel and polyclase. There is known an immersion nozzle (see Japanese Patent Application Laid-Open No. H10-305355) in which an immersion nozzle is provided, which has both erosion resistance and blocking resistance and suppresses inclusions caused by refractories. "Prior art 2-2"). On the other hand, the mold powder, usually as a fluxing agent to increase the fluidity, and / or, as it is possible to heat extraction control, Kasupidai emissions (3CaO · 2Si0 2 · CaF 2 ) can be generated crystals "Raw materials containing a fluorine component" such as natural fluorite are generally used (hereinafter referred to as "prior art 3").
しかし、 フッ素成分は、 浸漬ノズルの溶損を助長し、 間接的に清浄鋼の錡造を 困難にする。 そこで、 フッ素不在またはフッ素成分を極力減らしたモールドパゥ ダ一が必要になる。  However, the fluorine component promotes the erosion of the immersion nozzle and indirectly makes the production of clean steel difficult. Therefore, it is necessary to use a mold pad which is free of fluorine or has a reduced fluorine component.
このうち、 フッ素不在のモールドパウダーに関する従来技術としては、 •鍊片冷却用スプレー冷却水や冷却後の二次冷却水, マシン冷却水の p Hを中 性に保ち、 錶造機本体や配管等の金属構造物, コンクリート設備の耐用向上 を目的とした技術 (特開昭 5 8 - 1 2 5 3 4 9号公報)、  Among these technologies, the conventional technologies for fluorine-free mold powder include: (1) spray cooling water for one-side cooling, secondary cooling water after cooling, and machine cooling water at neutral pH; Technology aimed at improving the durability of metal structures and concrete equipment (JP-A-58-125349);
•同じく、 铸片冷却用スプレー冷却水や冷却後の二次冷却水, マシン冷却水の p Hを中性に保ち、 そして、 錶造機本体や配管等の腐食防止, 流動性および 滓化性維持を目的とした技術 (特開昭 5 1 - 9 3 7 2 8号公報)、  • Similarly, ス プ レ ー Maintain the neutral pH of spray cooling water for piece cooling, secondary cooling water after cooling, and machine cooling water, and 腐 食 Prevent corrosion of the machine body and piping, maintain fluidity and slagging properties. Technology for the purpose of (JP-A-51-93772),
•人畜に有害なフッ素発生の防止を目的とした技術 (特開昭 5 0— 8 6 4 2 3号 公報)、  • Technology aimed at preventing the generation of fluorine that is harmful to humans and animals (Japanese Patent Laid-Open No. 50-86432)
•環境汚染防止, 連錶機周辺設備の腐食防止, 浸漬ノズルの損傷防止を目的と した技術 (特閧平 5— 2 0 8 2 5 0号公報)、  • Technology aimed at preventing environmental pollution, preventing corrosion of peripheral equipment of the serial machine, and preventing damage to the immersion nozzle (Japanese Patent Publication No. 5-2080250).
•珪酸塩と反応した四フッ化珪素による作業環境悪化の防止, 二次冷却水の汚 染防止を目的とした技術 (特開昭 5 1 - 6 7 2 2 7号公報)、  • Technology aimed at preventing the deterioration of the working environment due to silicon tetrafluoride reacted with silicate and the contamination of secondary cooling water (Japanese Patent Laid-Open No. 51-672227).
が知られている(以下 "従来技術 3 -1" という)。 (Hereinafter referred to as “prior art 3-1”).
また、 フッ素成分を極力減らしたモールドパウダーに係る従来技術としては、 -浸漬ノズルの損傷防止を目的とした技術 (特開平 5— 2 6 9 5 6 0号公報)、 •環境汚染防止を目的とした技術 (特開昭 5 1 - 1 3 2 1 1 3号公報)、  Further, as the prior art relating to the mold powder in which the fluorine component has been reduced as much as possible, a technique for preventing damage to the immersion nozzle (Japanese Patent Application Laid-Open No. Hei 5-269650); Technology (Japanese Unexamined Patent Publication No.
が知られている (以下 "従来技術 3 -2" という)。 ところで、 従来の浸漬ノズル (前記従来技術 1参照)を使用した錡造の場合、 浸 漬ノズルの内管やパウダーライン部が、 溶鋼, 溶鋼中の介在物, モールドパウダ 一, スラグによって溶損される。 このように溶損されると、 浸漬ノズルの形状が 変化し、 モールド内での溶鋼流に乱れが生じ、 錶片欠陥を発生させる。 (Hereinafter referred to as "prior art 3-2"). By the way, in the case of the construction using the conventional immersion nozzle (see the above-mentioned conventional technology 1), the inner pipe and the powder line of the immersion nozzle are not immersed in molten steel, inclusions in molten steel, mold powder. First, it is eroded by slag. When melted in this way, the shape of the immersion nozzle changes, and the molten steel flow in the mold is disturbed, causing a piece defect.
この "浸漬ノズルの形状変化" に加えて更に、 浸漬ノズル材料が溶鋼中の溶解 元素及び/又はモールドパウダー, スラグと反応してできる低融点や高融点の化 合物の生成により、 鎵造中の浸漬ノズルの熱伝導率が変化する。 この熱伝導率の 変化により、 溶鋼から浸漬ノズルを介して抜熱される熱量が一定にならず、 その ため、 凝固シェルの形成が不均一になり、 錶片欠陥を引き起こしていた。  In addition to this "change in shape of the immersion nozzle", the immersion nozzle material reacts with the molten elements in the molten steel and / or the mold powder and slag to form low- and high-melting compounds that are formed during production. The thermal conductivity of the immersion nozzle changes. Due to this change in thermal conductivity, the amount of heat extracted from the molten steel through the immersion nozzle was not constant, and as a result, the formation of a solidified shell was not uniform, which caused fragment defects.
これらの問題を解決するために、 従来は、 モールドパウダーによって改善を試 みており、 前記したように、 抜熱量をコントロールするための "フッ素系鉱物で あるカスピダイン (3CaO · 2Si02 · CaF2)結晶を晶出させるモールドパウダー" を 併用していた (前記従来技術 3参照)。 しかし、 モールドパウダー中のフッ素成分 により、 逆にパウダーライン部の溶損が助長され、 十分な効果が得られていない のも現状である。 To solve these problems, conventionally, attempts Miteori improved by mold powder, as described above, a "fluorine-based mineral to control the heat removal amount Kasupidain (3CaO · 2Si0 2 · CaF 2 ) crystals (See above-mentioned prior art 3). However, the fluorine component in the mold powder, on the contrary, promotes erosion of the powder line part, and at present it is not possible to obtain a sufficient effect.
また、 パウダーライン部の溶損を抑制する目的で、 フッ素成分を有しない又は 低フッ素成分のモールドパウダーの適用も試みられたことはあるが (前記従来技 術 3 -1, 同 3 -2参照)、 逆に、 抜熱が抑制できず、 モールドパウダーにより錶片欠 陥を引き起こしており、 完全な解決策がないのが現状であった。 そこで、 鋼の連続銪造において、 清浄な鋼を銪造するために、 前記した種々の 対策が取られているが、 これらもまた、 次に記載するように、 十分な効果を発揮 していない。  There have also been attempts to apply mold powders that have no fluorine component or low fluorine component in order to suppress erosion of the powder line part (see the above-mentioned conventional technologies 3-1, 3-2). ), Conversely, heat removal could not be suppressed, and mold powder caused chip defects, and there was no complete solution. Therefore, in the continuous production of steel, various measures described above have been taken in order to produce clean steel, but these also do not exert a sufficient effect as described below. .
前記従来技術 2 -1の 「ノズルから溶鋼中に不活性ガスを吹き込み、 溶鋼とノズ ルとが接触することを防止した技術」 では、 不活性ガスの吹き込み量, 吹き込み 角度, 気泡の大きさ等を精度良くコントロールすることが必要になる。 これらが コントロールされない場合、 却って溶鋼流の偏流が生じ、 ノズルの一部に溶鋼流 が衝突し、 局部溶損やアルミナ付着を生じることにもなる。  According to the above-mentioned prior art 2-1 “Technology in which inert gas is blown into molten steel from a nozzle to prevent the molten steel from contacting with the nozzle”, the amount of inert gas blown, the blow angle, the size of bubbles, etc. Needs to be controlled with high accuracy. If these are not controlled, the drift of the molten steel flow will instead occur, causing the molten steel flow to impinge on a part of the nozzle, causing local erosion and alumina adhesion.
また、 パブリングによる湯面変動により、 モールド内に充満している溶鋼中に 巻き込まれたモールドパウダー, スラグは、 吹き込まれた不活性ガスに捕捉され るが、 不活性ガス流が適切にコントロールされていないと、 却ってノズルが激し く溶損される。 この場合、 必ずしもパウダーライン部とモールドパウダーとが接 触することはないので、 通常の、 ノズル吐出孔部, 内管部を含めたノズル材質部 が溶損されることになる。 In addition, mold powder and slag entrained in the molten steel filling the mold due to fluctuations in the molten metal level due to publishing are captured by the injected inert gas. However, if the inert gas flow is not properly controlled, the nozzle will be severely eroded. In this case, since the powder line and the mold powder do not necessarily come into contact with each other, the normal nozzle material portion including the nozzle discharge hole portion and the inner tube portion is eroded.
さらに、 一度、 ノズルが溶損されると、 ノズルから吹き出される不活性ガスの 流れは、 ますます偏流になり、 ノズルの溶損および/またはアルミナ付着を助長 することにもなる。 そして、 ノズルが溶損されることにより、 鋼も汚染されるこ とになる。  In addition, once the nozzle is eroded, the flow of inert gas blown out of the nozzle becomes more and more deflected, further contributing to erosion and / or alumina deposition of the nozzle. Then, the nozzle is melted and the steel is contaminated.
前記従来技術 2 -2の 「溶鋼と接触する部分に、 スピネルからなる耐火材料、 又 は、 スピネル及びべリクレースからなる耐火材料を配設した浸漬ノズル」 では、 通常使用されるアルミナ '黒鉛系ノズルよりも溶鋼に対する溶損性は良好である。 以下に、 この点について詳細に説明する。  The conventional technology 2-2 "Immersion nozzle in which a refractory material made of spinel or a refractory material made of spinel and vericlase is disposed in a portion that comes into contact with molten steel" is a commonly used alumina-graphite nozzle. Thus, the erosion resistance to molten steel is better. Hereinafter, this point will be described in detail.
浸漬ノズル材料として通常使用されるアルミナ ·黒鉛系材料は、 一般に、 溶鋼 と次の反応を起こし、 清浄鋼錶造に望ましくない材料であることを本発明者等は 明らかにした。 即ち、 溶鋼中のカーボン濃度は極めて低いので、 アルミナ-黒鉛系 ノズル材料中の黒鉛(C (s):固体黒鉛)は、  The present inventors have clarified that an alumina-graphite material generally used as an immersion nozzle material generally causes the following reaction with molten steel, and is an undesirable material for producing clean steel. That is, since the carbon concentration in molten steel is extremely low, the graphite (C (s): solid graphite) in the alumina-graphite nozzle material is
C (s)→ C (1)式  C (s) → C (1)
の反応により、 速やかに溶鋼中に溶解する。 By the reaction of, it is rapidly dissolved in molten steel.
さらに、 アルミナ ·黒鉛系ノズル材料中のアルミナ (A1203)中に、 Further, in the alumina of the alumina-graphite nozzle material (A1 2 0 3),
F e (l)+ 0 → (F e 0) (2)式  F e (l) + 0 → (F e 0) Equation (2)
の反応により、 (F e O)が浸透し、 また、 溶鋼中の溶解元素も同様に浸透する。 例えば、 M nが溶解元素であれば、 (F e O) penetrates by the reaction, and the dissolved element in the molten steel also penetrates similarly. For example, if M n is a dissolved element,
M n + O → (M n O) (3)式  M n + O → (M n O) Equation (3)
の反応により、 アルミナ中に(M n O)が浸透する。 (なお、 (2)式, (3)式中の 0 , M nは、 溶鋼中に溶解している酸素, マンガンを示し、 また、 F e (l)は、 溶鋼中 の鉄成分を示す。) (MnO) permeates alumina. (Note that 0 and Mn in equations (2) and (3) indicate oxygen and manganese dissolved in the molten steel, and Fe (l) indicates the iron component in the molten steel. )
これらの物質の浸透により生成される "Al203-FeO" "Al203-MnO"は、 さらに 溶鋼中の介在物である "FeO-MnO"などと反応し、 "Al203-FeO-MnO"の液体ス ラグを生成する。 すなわち、 2つの要因が重なることにより、 アルミナは溶損さ れる。 Produced by penetration of these substances "Al 2 0 3 -FeO"" Al 2 0 3 -MnO" is still more inclusions in the molten steel "" react with such, "FeO-MnO Al 2 0 3 -FeO-MnO "liquid Generate lag. That is, the alumina is melted down by the combination of the two factors.
また、 耐スポーリング性を増すために、 アルミナ ·黒鉛系ノズル材料に溶融シ リカを含有することが通常行われているが、 溶融シリカもアルミナ同様に、 ある いは、 それ以上に溶損され、 望ましくない。  In addition, to increase spalling resistance, it is common practice to include fused silica in the alumina / graphite nozzle material. , Not desirable.
一方、 スピネルには、 (FeO),(MnO)などの浸透量は少なく、 また、 FeO-MnO 等の介在物が付着しても液相を生成することなく、 固相を維持する。 すなわち、 溶鋼と接触する部位にスピネルを配材したノズルの溶損は少なく、 したがって、 溶鋼汚染が軽減される。  On the other hand, the permeation amount of (FeO) and (MnO) into the spinel is small, and the solid phase is maintained without generating a liquid phase even if inclusions such as FeO-MnO adhere. That is, there is little erosion of the nozzle in which the spinel is distributed at the part in contact with the molten steel, and therefore, the molten steel contamination is reduced.
しかしながら、 溶鋼と接する部分, 本体部およびパウダーライン部に異材質の 材料を配設して製造することは、 製造コストアップにつながる。 また、 パウダー スラグによる浸漬ノズルの溶損は、 スピネル質材料を用いても改善されない。 こ れは、 パウダースラグ中のフッ素成分による。  However, arranging dissimilar materials in the part in contact with the molten steel, the main body and the powder line, leads to increased manufacturing costs. In addition, erosion of the immersion nozzle by powder slag is not improved by using a spinel material. This is due to the fluorine component in the powder slag.
そこで、 考えられるのがフッ素成分を無くすこと、 または、 低フッ素成分のモ 一ルドパウダーを用いること (前記従来技術 3 -1, 同 3 -2 で掲示した特閧昭 58- 125349号公報, 特開昭 51-93728号公報、 特開昭 50-86423号公報, 特開平 5- 208250号公報, 特開昭 51-67227号公報, 特開平 5-269560号公報, 特開昭 51- 132113号公報参照)である。  Therefore, it is conceivable to eliminate the fluorine component or to use a low-fluorine component mold powder (Japanese Patent Publication No. 58-125349 disclosed in the above-mentioned prior art 3-1 and 3-2). JP-A-51-93728, JP-A-50-86423, JP-A-5-208250, JP-A-51-67227, JP-A-5-269560, JP-A-51-132113 See).
しかしながら、 これらのモールドパウダーには、 フッ素成分が含まれていない ため、 または、 低フッ素成分のモールドパウダーであるため、 粘度調整, 結晶化 温度調整が悪く、 鋼のブレークアウト, 铸片割れ等が頻発し、 安定銪造できず実 用化されていないのが現状である。  However, because these mold powders do not contain a fluorine component, or because they are low-fluorine component mold powders, viscosity control and crystallization temperature control are poor, and breakout of steel and cracking of steel frequently occur. At present, however, it has not been stable and has not been put to practical use.
すなわち、 浸漬ノズルのパウダーライン材料の溶損が解決されない限り、 清浄 な鋼を得ることは困難であることがわかる。 本発明者等は、従来技術の前記問題点に鑑み、 「特定のモールドパウダー(フッ 素量が 3重量%未満でかつ 1 3 0 0 °Cの粘度が 4ボイズ以上 1 0 0 0 0 0ボイズ 以下のモールドパウダー)」を提案し、 そして、 「上記特定のモールドパウダーと、 特定の浸漬ノズル (浸漬ノズルの溶鋼と接触する部位の一部又は全部にスピネル 質及び Z又はスピネル質 ·カーボンを配設し、 モールドパウダ一及び z又はスラ グと接触する部位にパウダーライン材料を配設し、 それ以外の部位に本体材料を 配設した浸漬ノズル) とを組み合わせて用いることからなる鋼の連続鍊造方法」 の発明を開発した (特開 2001— 113345号公報参照)。 That is, it is understood that it is difficult to obtain clean steel unless the erosion of the powder line material of the immersion nozzle is solved. In view of the above-mentioned problems of the prior art, the inventors of the present invention have stated that “specific mold powder (fluorine amount is less than 3% by weight and viscosity at 130 ° C. is not less than 4% by The following mold powder) ", and" The above specific mold powder, Specific immersion nozzle (Spinel and Z or spinel carbon are placed on part or all of the part of the immersion nozzle that comes into contact with molten steel, and powder line material is placed on the part that comes into contact with mold powder and z or slag. And a submerged nozzle in which the main body material is disposed at other locations) and a method for continuously producing steel ”(see JP-A-2001-113345).
本発明者等は、 上記既開発の発明以降にさらに研究を重ねた結果、 前記特定の モールドパウダーを用いることにより、 驚くべきことに、 前記特定の浸漬ノズル とを組み合わせることを必要とせず、 パウダ一ライン部も含めて 「アルミナを主 材とする耐火材料で構成された浸漬ノズル」 を使用しても、 殆ど溶損することが なく、 かつアルミナ付着も生じることなく、 清浄な鋼を安定鎵造することができ ることを知見し、 本発明を完成した。  As a result of further research after the above-mentioned developed invention, the present inventors have found that, by using the specific mold powder, surprisingly, it is not necessary to combine the specific immersion nozzle with the powder. Even when using an immersion nozzle composed of a refractory material mainly composed of alumina, including one line section, it is possible to produce clean steel with almost no erosion and no adherence of alumina. The inventors have found that the present invention can be performed and completed the present invention.
そこで、 本発明の目的は、 耐火物起因の鋼の汚染を防止し、 清浄度の高い鋼の 安定錶造を可能にし、 しかも、 浸漬ノズルの製造面からみて、 同一の "アルミナ を主材とする耐火材料" を使用するものであるから、 極めて容易に製作できる作 用効果を奏する、 鋼の連続錡造方法を提供することである。 ぐ発明の開示 >  Therefore, an object of the present invention is to prevent contamination of steel due to refractories, to enable stable production of highly clean steel, and to use the same “alumina” as a main material from the viewpoint of manufacturing an immersion nozzle. Therefore, it is an object of the present invention to provide a method for continuously producing steel, which has an operational effect that can be produced extremely easily. Invention disclosure>
上記課題を解決し、 目的を達成するために、 本発明者等は、鋭意検討した結果、 前記知見に基づき、 「浸漬ノズルにより溶鋼を錶型内に供給すると共に、該铸型内 にモールドパウダーを供給しながら連続錡造する方法において、 フッ素量が 3重 量%未満でかつ 1 3 0 0。Cの粘度が 4ボイズ以上 1 0 0 0 0 0ボイズ以下のモ一 ルドパウダーと、 アルミナを主材とする耐火材料で構成された浸漬ノズルとを組 み合わせて用いることを特徴とする鋼の連続錄造方法。」 を発明するに到った。 従来、 モールドパウダーの低粘性化, 抜熱コントロールに "フッ素成分" が不 可避であったが、 特性および/または厚みの均一なスラグフィルムがモールドと 凝固シェル間に生成されれば、 フッ素成分に依存する必要がないことを本発明者 等は見い出した。 すなわち、 モールドパウダーの粘度を高めることが、 均一なス ラグフィルムを実現でき、 カスピダイン (3CaO ' 2Si02 ' CaF2)が果たす機能 (抜 熱コントロール) の代用になることが判明した。 In order to solve the above problems and achieve the object, the inventors of the present invention have made intensive studies and, based on the above findings, have stated, "The molten steel is supplied into the mold by the immersion nozzle, and the mold powder is contained in the mold. In the method of continuous production while supplying the powder, the amount of fluorine is less than 3% by weight and 130.000. A continuous steel making method characterized by using a combination of an immersion nozzle made of a refractory material as a main material. " In the past, the "fluorine component" was inevitable for reducing the viscosity of the mold powder and controlling the heat removal. However, if a slag film with uniform properties and / or thickness is formed between the mold and the solidified shell, the fluorine component will be eliminated. The present inventors have found that there is no need to rely on the information. In other words, to increase the viscosity of the mold powder, it can realize uniform slag film, Kasupidain function (3CaO '2Si0 2' CaF 2 ) play (unplug Heat control).
また、 1 3 0 0 °Cの破断強さが 3 . 7 g/ c m2以上のモ一ルドパウダーであれ ば、連続的なスラグフィルムを生成でき、連続錡造が可能であることが判明した。 そして、 本発明で用いる前記モールドパウダーの化学組成は、 A 1203 : 5〜2 5重量%, S i 0 2 : 2 5〜7 0重量%, C a O : 1 0〜5 0重量%, M g 0 : 2 0重量%以下, F : 0〜2重量% (不可避不純物) の範囲内にあるものが好ま しい。 In addition, it was found that a continuous slag film could be produced and a continuous production was possible if the breaking strength at 130 ° C. was 3.7 g / cm 2 or more. . The chemical composition of the mold powder used in the present invention, A 1 2 0 3: 5~2 5 wt%, S i 0 2: 2 5~7 0 wt%, C a O: 1 0~5 0 wt %, Mg 0: 20% by weight or less, F: 0 to 2% by weight (inevitable impurities) are preferable.
更に、 前記モールドパウダーと組み合わせて使用する浸漬ノズルとしては、 ァ ルミナを主材とする耐火材料で構成された浸漬ノズルであり、 具体的には、 アル ミナ系耐火物および/またはアルミナ一炭素系耐火物からなる。 また、 該耐火物 に 「シリカ(Si02 ), 炭化珪素(SiC), 炭化硼素(B4C), 窒化珪素(Si3N4 ) , 窒化ァ ルミニゥム(A1N) , 硼化ジルコニウム(ZrB2 ), 硼化マグネシウム(Mg3B2 ), 硫酸ジ ルコニゥム(ZrS04 ) , シリコン(Si) , アルミニウム (A1)から選ばれた 1種または 2 種以上を含有する」 浸漬ノズルを用いることが可能であることを見い出した。 銪造する溶鋼としては、 アルミキルド鋼, シリコンキルド鋼, 高酸素鋼, ステ ンレス鋼, 電磁鋼板用鋼, カルシウム処理鋼, 高マンガン鋼, 快削鋼, ボロン鋼, スチールコード, 肌焼き鋼または高チタン鋼等の全ての鋼種である。 Further, the immersion nozzle used in combination with the mold powder is an immersion nozzle composed of a refractory material mainly composed of alumina, specifically, an alumina-based refractory and / or an alumina-carbon type. Made of refractory. Further, the refractory material "silica (Si0 2), silicon carbide (SiC), boron carbide (B 4 C), silicon nitride (Si 3 N 4), nitride § Ruminiumu (A1N), zirconium boride (ZrB 2) , boride magnesium (Mg 3 B 2), sulfuric acid di Rukoniumu (ZrS0 4), silicon (Si), containing one or more selected from aluminum (A1) "can be used immersion nozzle I found something. Aluminum steel, silicon-killed steel, high oxygen steel, stainless steel, steel for electrical steel sheets, calcium-treated steel, high manganese steel, free-cutting steel, boron steel, steel cord, case hardened steel, All steel types such as titanium steel.
<図面の簡単な説明 > <Brief description of drawings>
図 1は、 本発明の実施例 (比較例を含む)で使用する、 吐出口部を持つタイプの 浸漬ノズル構造の一例を示す図である。  FIG. 1 is a diagram showing an example of a immersion nozzle structure of a type having a discharge port used in Examples (including Comparative Examples) of the present invention.
図 2は、 本発明の実施例 (比較例を含む)で使用する、 吐出口部を持つタイプの 浸漬ノズル構造の他の例を示す図である。  FIG. 2 is a view showing another example of the immersion nozzle structure of the type having a discharge port used in Examples (including Comparative Examples) of the present invention.
図 3本発明の実施例 (比較例を含む)で使用する、 吐出口部を持たないス トレー トタイプの浸漬ノズルの一例を示す図である。  FIG. 3 is a view showing an example of a straight type immersion nozzle having no discharge port used in Examples (including Comparative Examples) of the present invention.
なお、 図中の符号、 1は溶鋼と接触する浸漬ノズルの内管部、 2は溶鋼と接触 する浸漬ノズルの吐出口部、 3はモールドパウダーと接触する浸漬ノズルのパゥ ダ一ライン部、 4は浸漬ノズルの本体部、 5はストレートタイプの浸漬ノズルの 溶鋼と接触するノズル先端部である。 Reference numerals in the figure, 1 denotes the inner pipe of the immersion nozzle that comes into contact with the molten steel, 2 denotes the discharge port of the immersion nozzle that comes into contact with the molten steel, 3 denotes the line of the immersion nozzle that comes into contact with the mold powder, Is the main part of the immersion nozzle, 5 is the straight type immersion nozzle This is the tip of the nozzle that comes into contact with molten steel.
<発明を実施するための最良の形態 > <Best mode for carrying out the invention>
以下、 本発明の実施の形態について説明すると、 本発明で用いるモールドパゥ ダ一は、 前記したとおり、 フッ素量が 3重量%未満で、 かつ、 1300°Cの粘度 が 4~100000ボイズのものである。  Hereinafter, an embodiment of the present invention will be described. As described above, the mold padder used in the present invention has a fluorine content of less than 3% by weight and a viscosity at 1300 ° C. of 4 to 100,000 boise. .
モールドパウダー中のフッ素量が 3重量%以上になると、 浸漬ノズルの、 特に パウダーライン部分の溶損量が多くなり、 鋼中に流出した耐火物原料により溶鋼 が汚染され、 清浄な鋼を得ることができない。  If the amount of fluorine in the mold powder is 3% by weight or more, the amount of erosion of the immersion nozzle, especially in the powder line, increases, and the refractory material that has flowed into the steel contaminates the molten steel to obtain clean steel. Can not.
また、 モ一ルドパウダーの粘度(1300°Cの粘度)が 4ボイズ未満では、 モ一 ルドパウダーの不均一流入が生じ、 溶融モールドパウダー中でダイカルシウムシ リケート, トライカルシウムシリケ一トなどの結晶が発達し、 モールド銅板の温 度変動が大きくなり、 抜熱不安定のため、 好ましくない。 一方、 上記粘度が 10 In addition, if the viscosity of the mold powder (viscosity at 1300 ° C) is less than 4 voids, uneven flow of the mold powder will occur, and in the molten mold powder, such as dicalcium silicate and tricalcium silicate, etc. Undesirably, crystals develop and the temperature fluctuation of the molded copper plate increases, resulting in unstable heat removal. On the other hand, if the above viscosity is 10
0000ボイズを超えると、 溶融不良となり, しかもスラグベア一の生成が起こ り、 安定錶造ができなくなるので、 好ましくない。 If it exceeds 0000 vois, it is not preferable because melting becomes poor and slag bears are formed, and stable production cannot be performed.
本発明において、 上記粘度は、 例えば A 1203, CaO/S i02などで調整す ることができ、 A 1203が多い場合や C a 0/ S i 02が低い場合に粘度を高く 調整することができる。 In the present invention, the viscosity, for example, A 1 2 0 3, CaO / S i0 can adjust 2 or the like, in the case when A 1 2 0 3 is large and C a 0 / S i 0 2 is low The viscosity can be adjusted higher.
さらに、本発明で用いるモールドパウダーは、 このモールドパウダ一を溶融し、 その中で直径 7 mmの白金円柱を等速で引き上げたときの白金円柱が液面から離 れる時のモールドパウダー液滴切断時最高荷重を "溶融モールドパウダーの破断 強さ" と定義すると、 1300°Cでの溶融モールドパウダーの破断強さが 3. 7 g/cm2以上が好ましい。 破断強さが 3. 7 g/cm2未満であると、 スラグフ ィルム中の液層の破断が起こりやすく好ましくない。 本発明で用いるモールドパウダーは、 ポルトランドセメント, ウォラストナイ ト, 合成珪酸カルシウムなどの基材原料、 パーライ ト, フライアッシュなどの SFurther, the mold powder used in the present invention melts the mold powder, and cuts the mold powder droplets when the platinum cylinder having a diameter of 7 mm is pulled up at a constant speed in the platinum powder when it separates from the liquid surface. When the maximum load at time is defined as "the breaking strength of the molten mold powder", the breaking strength of the molten mold powder at 1300 ° C is preferably 3.7 g / cm 2 or more. If the breaking strength is less than 3.7 g / cm 2 , the liquid layer in the slag film tends to break, which is not preferable. The mold powder used in the present invention is composed of base materials such as portland cement, wollastonite, and synthetic calcium silicate, and S powders such as perlite and fly ash.
102原料、 炭酸塩, ガラス粉, フリッ 卜粉などの Na20, K20, L i20原料、 炭酸マグネシウム塩, 海水 MgO粉, ドロマイ ト粉などの MgO原料、 硼砂, コ レマナイ ト, ガラス粉, フリット粉などの B203原料、 コ一クス粉, 鱗状黒鉛, カーボンブラックなどの炭素質原料から作製できる。 ただし、 NaF, CaF2 などのフッ化物は含まない。 10 2 Raw materials, carbonates, glass powder, frit powders, etc. Na 20 , K 20 , Li 20 raw materials, Magnesium carbonate salts, seawater MgO powder, MgO raw materials such Doromai preparative flour, borax, co Remanai doo, glass powder, B 2 0 3 material such as frit powder, co one box powder, scaly graphite, carbonaceous materials such as carbon black From. However, NaF, fluoride, such as CaF 2 does not contain.
具体的には、 上記基材原料に上記 S i 02, Na20, K20, Li20, MgO, B203および炭素質の各原料を適宜添加し、 かつ、 前記したとおり、 A 1203, C aO/S i02などで粘度を調整して作製することができる。例えば、化学組成と して、 A 1203: 5〜25重量%, S i 02: 25〜70重量%, C aO: 10〜 50重量%, Na20, L i20および K20からなる群から選択される 1種または 2種以上: 3〜20重量%, MgO: 20重量%以下, 不可避的不純物としての フッ素成分: 3重量%以下, 炭素: 0. 5〜 8重量%からなり、 そして、 CaO /3:102の重量比を0. 2〜1. 5の範囲内にあるように調整された上記の各原 料を混合した後、 ミキサーで均一に混合することで得られる。 Specifically, by adding the above base material S i 0 2, Na 2 0 , K 2 0, Li 2 0, MgO, respective materials of the B 2 0 3 and carbonaceous appropriate, and, as described above can be prepared by adjusting the viscosity, etc. a 1 2 0 3, C aO / S i0 2. For example, as a chemical composition, A 1 2 0 3: 5~25 wt%, S i 0 2: 25~70 wt%, C aO: 10~ 50 wt%, Na 2 0, L i 2 0 and K 2 0 comprising one or more compounds selected from the group: 3 to 20 wt%, MgO: 20 wt% or less, the fluorine component as inevitable impurities: 3 wt% or less, carbon: 0.5 to 8 wt consists%, and, CaO / 3:. 10 0. 2 weight ratio 2 to 1 after mixing the adjusted respective raw materials of the above to be within a range of 5, to uniformly mixed in a mixer Is obtained.
また、 液体 (例えば水)と必要に応じて有機バインダ一もしくは無機バインダ一 を添加し、 押出造粒, 攪拌造粒, 転動造粒, 流動造粒, 噴霧造粒などの方法で造 粒し、 顆粒状にして使用することもできる。 次に、 上記モールドパウダーと組み合わせて使用する浸漬ノズルの材料に係る 実施の形態について説明する。  In addition, a liquid (eg, water) and an organic binder or an inorganic binder are added as required, and the mixture is granulated by a method such as extrusion granulation, stirring granulation, tumbling granulation, fluidized granulation, or spray granulation. However, granules can also be used. Next, an embodiment relating to a material of an immersion nozzle used in combination with the mold powder will be described.
本発明において、 浸漬ノズルを構成する材料としては、 アルミナを主材とする 耐火材料であり、 好ましい実施の形態としては、 アルミナ系耐火物および/また はアルミナ—炭素系耐火物である。  In the present invention, a material constituting the immersion nozzle is a refractory material mainly composed of alumina, and a preferred embodiment is an alumina-based refractory and / or an alumina-carbon refractory.
また、 上記アルミナ系耐火物, アルミナ—炭素系耐火物に、 シリカ(Si02), 炭 化珪素(SiC), 炭化硼素(B4C), 窒化珪素(Si3N4), 窒化アルミニウム(A1N), 硼化 ジルコニウム(ZrB2),硼化マグネシウム(Mg3B2),硫酸ジルコニウム(ZrS04)から 選ばれた 1種または 2種以上を含有するものも使用することができ、 このように 広範囲にわたる材料を使用することができる。 Moreover, the alumina-based refractories, alumina - carbon-based refractories, silica (Si0 2), carbonization silicon (SiC), boron carbide (B 4 C), silicon nitride (Si 3 N 4), aluminum nitride (A1N ), zirconium boride (ZrB 2), magnesium boride (Mg 3 B 2), it can also be used those containing one or more selected from zirconium sulfate (ZrS0 4), thus A wide range of materials can be used.
また、 別の好ましい実施の形態としては、 シリコン(Si), アルミニウム (A1)の 1種または 2種以上を含有する。 このような金属を配合することにより、 使用時 の高温下で金属と、 浸漬ノズルの特にパウダーライン部中の耐火材料及び/又は 空気中の成分とが反応し、 金属反応物が生成される。 この金属反応物は、 パウダ 一ライン部を強化し、 耐用向上に寄与する。 また、 パウダーライン部にカーボン が含有されていれば、前記金属は、 カーボンの酸化防止剤としての役割も果たす。 かくして、 上記金属を配合することにより、 優れた浸漬ノズルを提供することが できる。 シリコン(Si ), アルミニウム (A1)の含有量としては、 0 . 1〜1 5重量% が好ましく、 1〜8重量%がより好ましい。 含有量が 0 . 1重量%未満では、 前 記した金属による効果を得ることができず、 1 5重量%を超えると、 生成される 金属反応物が多量になるため、 体積増大による耐火物組織の破壊、 および、 主骨 材の耐火材料の効果の喪失につながり、 好ましくない。 本発明において、 浸漬ノズルのパウダーライン部と本体部とは、 同一材料を用 いることができる。 その理由は、 本発明の特定のモールドパウダー (フッ素量が 3重量%未満でかつ 1 3 0 0 °Cの粘度が 4ボイズ以上 1 0 0 0 0 0ボイズ以下の モールドパウダー) を使用することにある。 In another preferred embodiment, silicon (Si), aluminum (A1) Contains one or more. By blending such a metal, the metal reacts with the refractory material and / or the components in the air, particularly in the powder line portion of the immersion nozzle, at a high temperature during use to generate a metal reactant. This metal reactant strengthens the powder line and contributes to improved durability. Further, if the powder line portion contains carbon, the metal also functions as an antioxidant for carbon. Thus, an excellent immersion nozzle can be provided by blending the above metal. The content of silicon (Si) and aluminum (A1) is preferably 0.1 to 15% by weight, and more preferably 1 to 8% by weight. If the content is less than 0.1% by weight, the above-mentioned effect of the metal cannot be obtained. If the content exceeds 15% by weight, a large amount of metal reactant is generated, so that the refractory structure due to the volume increase is produced. This leads to the destruction of steel and loss of the effect of the refractory material of the main aggregate, which is not preferable. In the present invention, the same material can be used for the powder line portion and the main body portion of the immersion nozzle. The reason for this is that the specific mold powder of the present invention (mold powder having a fluorine content of less than 3% by weight and a viscosity at 1300 ° C. of 4 to 1000 vise) is used. is there.
従来は、 フッ素成分含有のモールドパウダーに対する耐溶損性の高い材料とし て、 ジルコ二ァ ·力一ボン材質が主に用いられていた。 この材料は、 一般の耐火 材料に比べて価格が高く、 しかも、 この材料によっても、 パウダーライン部の溶 損は大きく、 浸漬ノズルの寿命を決める要因になる場合もあった。  Hitherto, as a material having high erosion resistance to a fluorine component-containing mold powder, a zirconium / iron / carbon material has been mainly used. This material is more expensive than ordinary refractory materials, and even with this material, the powder line has a large amount of erosion, which may be a factor in determining the life of the immersion nozzle.
しかし、 本発明により、 フッ素成分を殆ど含有しない、 または、 全く含有しな い高粘度モールドパウダーを用いることにより、 フッ素成分による溶損が殆ど、 または、 全く無くなつたので、 ジルコ二ァ ·カーボン材質をパウダーライン部に 使用する必要がなく、 前記の材料 (アルミナを主材とする耐火材料) をパウダー ライン部に任意に使用することができ、 その結果として、 本体部と同一材料とす ることができるようになった。 <実施例 > However, according to the present invention, by using a high-viscosity mold powder containing little or no fluorine component, almost no or no erosion due to the fluorine component is eliminated. The material does not need to be used for the powder line part, and the above-mentioned material (a fire-resistant material mainly composed of alumina) can be arbitrarily used for the powder line part. As a result, the same material as the main body part is used. Now you can do it. <Example>
次に、 実施例および比較例を挙げ、 本発明について具体的に説明するが、 本発 明は、 以下の実施例により限定されるものではない。  Next, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
ここで、 以下の実施例および比較例で使用可能な浸漬ノズルについて、 その構 造を図 1〜図 3に基づいて説明する。 なお、 図 1は、 吐出口部を持つタイプの浸 漬ノズル構造の一例を示す図であり、 図 2は、 同じく吐出口部を持つタイプの浸 漬ノズル構造の他の例を示す図である。 また、 図 3は、 吐出口部を持たないスト レートタイプの浸漬ノズルの一例を示す図である。  Here, the structure of an immersion nozzle that can be used in the following examples and comparative examples will be described with reference to FIGS. 1 to 3. FIG. 1 is a diagram showing an example of an immersion nozzle structure having a discharge port, and FIG. 2 is a diagram showing another example of a immersion nozzle structure having a discharge port. . FIG. 3 is a view showing an example of a straight type immersion nozzle having no discharge port.
図 1に示す浸漬ノズルは、 吐出口部を持つタイプの浸漬ノズルであって、 図 1 中の 1は、 溶鋼と接触する浸漬ノズルの内管部、 2は、 同じく溶鋼と接触する浸 漬ノズルの吐出口部、 3は、 モールドパウダーおよび/またはスラグと接触する パウダーライン部、 4は、 浸漬ノズルの本体部である。  The immersion nozzle shown in Fig. 1 is a type of immersion nozzle that has a discharge port. In Fig. 1, 1 is the inner tube of the immersion nozzle that comes into contact with molten steel, and 2 is the immersion nozzle that also contacts the molten steel. The discharge port portion 3 is a powder line portion that comes into contact with the mold powder and / or slag, and the reference numeral 4 is a main portion of the immersion nozzle.
この浸漬ノズルは、 図 1に示すように、 溶鋼と接触する浸漬ノズルの吐出口部 2 aの部位が、 本体部 4と吐出口部 2とを一体複合化した構造の浸漬ノズルであ る o  As shown in Fig. 1, this immersion nozzle is a immersion nozzle having a structure in which the discharge port 2a of the immersion nozzle that comes into contact with the molten steel has the body 4 and the discharge port 2 integrated integrally.
図 2に示す浸漬ノズルは、 図 1に示す浸漬ノズルと同様、 吐出口部を持つタイ プの浸漬ノズルである。 しかし、 前記図 1に示すような一体複合化した構造のも のではなく(図 1の "部位 2 a " 参照)、 図 2に示すように、 溶鋼と接触する浸漬 ノズルの吐出口部 2 bの部位を同一の材質からなる吐出口部 2とした構造の浸漬 ノズルである。 なお、 図 2中の符号 1〜4は、 前記と同じであって、 1は内管部、 2は吐出口部、 3はパウダーライン部、 4は本体部である。  The immersion nozzle shown in FIG. 2 is a type of immersion nozzle having a discharge port like the immersion nozzle shown in FIG. However, it does not have an integrated structure as shown in Fig. 1 (see "Part 2a" in Fig. 1), and as shown in Fig. 2, the discharge port 2b of the immersion nozzle that comes into contact with molten steel. This is an immersion nozzle having a structure in which the portion of the nozzle is formed as a discharge port 2 made of the same material. Reference numerals 1 to 4 in FIG. 2 are the same as above, 1 is an inner tube portion, 2 is a discharge port portion, 3 is a powder line portion, and 4 is a main body portion.
図 3に示す浸漬ノズルは、 前記図 1, 図 2に示す浸漬ノズルと異なり、 吐出口 部を持たないストレートタイプの浸漬ノズルである。 図 3中の 5は、 溶鋼と接触 するノズル先端部であり、 その他の符号は、 前記と同じであって、 1は内管部、 3はパウダーライン部、 4は本体部である。 以下の実施例で用いたモールドパウダーの化学組成 (試料番号 1〜7 ) を表 1 に示し、 また、 比較用モールドパウダーの化学組成 (試料番号 8〜2 1 ) を表 2 に示す。 また、 各モールドパウダーの "フッ素成分"、 "粘度 (at 1300° "、 "破断 強さ(at 1300°C)" を、 同じく表 1, 表 2に示す。 Unlike the immersion nozzles shown in FIGS. 1 and 2, the immersion nozzle shown in FIG. 3 is a straight type immersion nozzle having no discharge port. Reference numeral 5 in FIG. 3 denotes a nozzle tip portion that comes into contact with molten steel, and other symbols are the same as those described above, where 1 is an inner tube portion, 3 is a powder line portion, and 4 is a main body portion. Table 1 shows the chemical composition of the mold powder (sample numbers 1 to 7) used in the following examples, and Table 2 shows the chemical composition of the mold powder for comparison (sample numbers 8 to 21). Shown in Tables 1 and 2 also show the “fluorine component”, “viscosity (at 1300 ° C), and“ breaking strength (at 1300 ° C) ”of each mold powder.
なお、 表 1 , 表 2の試料番号 1〜7, 8〜10及び 1 3〜 17のモールドパゥ ダ一は、ミキサーを用いて所定の化学組成割合になるように混合して得られた"粉 末品" である。 また、 上記以外の試料番号 1 1 , 1 2及び 1 8〜2 1のモールド パウダーは、 原料粉末を混合した後、 水 90重量%と珪酸ソーダ 10重量%とか らなる溶液を 20〜30重量%添加してスラリーを作製し、 該スラリーをスプレ 一造粒し、 乾燥させて得た "顆粒品" であり、 最終的に、 所定の化学組成になる ように調製しているものである。  Note that the mold powders of Sample Nos. 1 to 7, 8 to 10 and 13 to 17 in Tables 1 and 2 were obtained by mixing powders having a predetermined chemical composition ratio using a mixer. Goods ". For the mold powders of sample numbers 11, 12 and 18 to 21 other than the above, after mixing the raw material powder, a solution consisting of 90% by weight of water and 10% by weight of sodium silicate was mixed with 20 to 30% by weight. It is a "granule" obtained by adding the slurry to produce a slurry, spray-granulating the slurry, and drying the slurry, which is finally prepared to have a predetermined chemical composition.
0 0
表 1 実施例で用いたモールドパウダーの化学組成ォ  Table 1 Chemical composition of mold powder used in Examples
O  O
d  d
試料番号 1 2 3 4 5 6 7 Sample number 1 2 3 4 5 6 7
O C  O C
モ の SiOz 36 39 50 49 48 31 31 Mo SiO z 36 39 50 49 48 31 31
I 化 Al203 7 21 10 10 18 7 7 ル学 CaO 36 35 20 19 16 43 43 ド組 MgO 4 1 10 10 8 6 8 パ成 Na20+Li20+K20 5 2 6 8 6 8 6 ゥ MnO+BaO + SrO + B203 8 0 1 1 1 0 0 ダ I f m F 1 0 0 0 0 2 2 I of Al 2 0 3 7 21 10 10 18 7 7 Le Science CaO 36 35 20 19 16 43 43 de sets MgO 4 1 10 10 8 6 8 Pas forming Na 2 0 + Li 2 0 + K 2 0 5 2 6 8 6 8 6 ゥ MnO + BaO + SrO + B 2 0 3 8 0 1 1 1 0 0 Data I fm F 1 0 0 0 0 2 2
%合計炭素量 3 2 3 3 3 3 3  % Total carbon 3 2 3 3 3 3 3
CaO/SiOz (重量比) 1.00 0.90 0.33 1.40 1.40 CaO / SiO z (weight ratio) 1.00 0.90 0.33 1.40 1.40
'フッ素成分 (重量%) 1 0 0 0 0 2 2  'Fluorine component (% by weight) 100 0 0 0 2 2
-粘度(at1300°C) (ボイズ) 30 20 40 50 100 5 5  -Viscosity (at1300 ° C) (Boys) 30 20 40 50 100 5 5
-破断強さ(at1300°C) (g/cmZ) 5 8 10 3.7 5 6 5 -Breaking strength (at 1300 ° C) (g / cm Z ) 5 8 10 3.7 5 6 5
表 2(その 1) 比較用モールドパウダーの化学組成 Table 2 (Part 1) Chemical composition of comparative mold powder
Figure imgf000015_0001
Figure imgf000015_0001
表 2 (その 2) 比較用モールドパウダーの化学組成 試料番号 15 16 17 18 19 20 21 モ の Si02 30 30 29 27 26 25 22Table 2 (Part 2) of the comparative mold powder having the chemical composition Sample No. 15 16 17 18 19 20 21 Mo Si0 2 30 30 29 27 26 25 22
I 化 Al203 10 7 5 9 8 7 4 ル学 CaO 34 36 38 40 42 42 38 ド 組 MgO 6 8 3 5 5 0 8 パ成 Na20+Li20 + K20 8 6 10 3 2 5 6 ゥ Ϊ舌 MnO + BaO + SrO + B203 0 0 0 0 0 0 0 ダ Al 2 0 3 10 7 5 9 8 7 4 Iodine Al CaO 34 36 38 40 42 42 38 D group MgO 6 8 3 5 5 0 8 Na 2 0 + Li 2 0 + K 2 0 8 6 10 3 2 5 6 Ϊ Ϊ Tongue MnO + BaO + SrO + B 2 0 3 0 0 0 0 0 0 0
I 量 F 9 10 11 13 15 18 19 I amount F 9 10 11 13 15 18 19
% 合計炭素量 3 3 4 3 2 3 3% Total carbon 3 3 4 3 2 3 3
CaO Si02 (重量比) 1. 12 1.20 1.30 1.50 1.60 1.65 1.70CaO Si0 2 (weight ratio) 1.12 1.20 1.30 1.50 1.60 1.65 1.70
'フッ素成分 (重量%>) 9 10 11 13 15 18 19'Fluorine component (% by weight) 9 10 11 13 15 18 19
-粘度 (at1300°C) (ボイズ) 1.8 1.3 1.0 0.9 0.8 0.3 0.2-Viscosity (at1300 ° C) (Boys) 1.8 1.3 1.0 0.9 0.8 0.3 0.2
-破断強さ (at1300°C) (g/cm2) 2.7 2.4 2.8 1.3 1. 5 0.7 0.5 (実施例 1〜実施例 1 7, 比較例 1〜比較例 6 ) -Breaking strength (at 1 300 ° C) (g / cm 2 ) 2.7 2.4 2.8 1.3 1.5 0.7 0.5 (Examples 1 to 17, Comparative Examples 1 to 6)
実施例 1〜実施例 1 7を表 3, 表 4に示し、 また、 比較例 1〜比較例 6を表 5 に示す。  Examples 1 to 17 are shown in Tables 3 and 4, and Comparative Examples 1 to 6 are shown in Table 5.
以下の実施例 1〜実施例 1 7および比較例 1〜比較例 6の各例は、 いずれもノ ズルにより溶鋼 (表中の "鋼種" )を铸型内に供給するとともに、 該鎵型内にモー ルドパウダーを供給しながら連続錡造を行ったものである。 なお、 各例で用いた ノズルは、 その構造を表中に図面番号で示した。 また、 各例で用いたモールドパ ウダ一は、前記表 1 ,表 2の試料番号 1〜2 1の化学組成を有するものからなり、 表中に、 その試料番号を示し、 そして、 用いたモールドパウダーの "フッ素成分" "粘度 (at 1300°O" "破断強さ (at 1300°C)" のみを示した。 また、 表中の各ノズ ル部位の材質の "%" は "重量%" を意味する。 各例における 「安定錡造」 「ノズル溶損量またはアルミナ付着量 (内管, 吐出口 内側, パウダーラインの各溶損量)」 「鋼清浄度」 「鋼欠陥率」 について、 次のよう に評価し、 該評価結果を表 3〜表 5に示した。  In each of the following Examples 1 to 17 and Comparative Examples 1 to 6, molten steel (“steel type” in the table) was supplied into a mold by a nozzle, and The continuous production was performed while supplying mold powder to the plant. The structure of the nozzle used in each example is indicated by the drawing number in the table. In addition, the mold powder used in each example was composed of those having the chemical compositions of Sample Nos. 1 to 21 in Tables 1 and 2 above. The sample numbers are shown in the table, and the mold powder used was used. Only the "fluorine component", "viscosity (at 1300 ° C)" and "breaking strength (at 1300 ° C)" of "No. of materials for each nozzle site" in the table indicate "% by weight". In each example, “stable structure”, “nozzle erosion amount or alumina adhesion amount (each erosion amount of inner tube, discharge port inside, powder line)”, “steel cleanliness” and “steel defect rate” are as follows. Table 3 to Table 5 show the evaluation results.
•安定錶造の評価  • Evaluation of stable structure
"安定錶造" とは、 安定鍊造が可能であるか否かを示し、 錶造中に B O予知警 報 [モールド表面温度の連続測温により B . O (ブレークァゥト)発生を予知するシ ステムを用いて行ったときの評価方法] が出ず、 しかも、 浸漬ノズルの溶断事故 "Stable structure" indicates whether a stable structure is possible or not. During the fabrication, a BO prediction warning [A system that predicts the occurrence of B.O. (break fault) by continuous measurement of the mold surface temperature. No evaluation method when using a stem]
[パウダーライン及び/又は溶鋼接触部位の溶損により浸漬ノズルが錡造中に破 断する事故] が生じなかった場合を "可" とし、 それ以外を "否" とした。 The case where no [accidental breakage of the immersion nozzle during fabrication due to erosion of the powder line and / or the molten steel contact area] did not occur was judged as "OK", and the others were judged as "No".
• ノズル溶損量の評価  • Evaluation of nozzle erosion volume
"ノズル溶損量 [mm/(steel ton)]"は、錡造量 1 トン当たりのノズル溶損寸法で 示した。 ノズル溶損量が多いほど、 ノズル寿命が短くなるだけでなく、 溶損して 鋼中に入る不純物が多くなるので、 それだけ鋼が汚染されることになる。  "Nozzle erosion amount [mm / (steel ton)]" is shown as nozzle erosion size per ton of forged volume. The greater the amount of nozzle erosion, the shorter the life of the nozzle, and the more impurities that are eroded into the steel, thus contaminating the steel.
•アルミナ付着量  • Alumina adhesion amount
アルミキルド鋼を錄造したときに生じるアルミナ付着の量を示す。 アルミナ付 着は、 ノズルの内管及び/又は吐出口内部に生じ、 アルミナ付着量が多くなると 安定鎵造が不可能になる。 場合によっては、 ノズル中を溶鋼が流れなくなり、 铸 造ストップになることもある。 従って、 アルミナ付着が生じないほど良好なノズ ルと言える。 Indicates the amount of alumina adhered when aluminum killed steel was produced. Alumina adheres to the inner tube of the nozzle and / or the inside of the discharge port. Stable structure becomes impossible. In some cases, molten steel stops flowing through the nozzle, and 铸 the production stops. Therefore, it can be said that the nozzle is so good that no alumina adheres.
•鋼洗浄度の評価  • Evaluation of steel cleaning degree
"鋼清浄度" は、 スリバー傷の程度で評価した。 指数 "100"は、 スリバー 傷が全くない場合を示し、 指数 "0"は、 スリパー傷により鋼が製品とならない 場合を示し、 その間を統計的に段階化して評価した。  "Steel cleanliness" was evaluated based on the degree of sliver scratch. The index "100" indicates the case where there is no sliver flaw, and the index "0" indicates the case where the steel does not become a product due to the slipper flaw.
•鋼欠陥率の評価  • Evaluation of steel defect rate
"鋼欠陥率"は、 表面割れで評価した。 表面割れが無視できる場合を "〇"、 表 面割れにより鋼が製品にならない場合を "χ"、鋼表面を加工することによって製 品にできる場合を "△" とした。 "Steel defect rate" was evaluated by surface cracking. "〇" indicates that the surface cracking was negligible, "χ" indicates that the steel did not turn into a product due to surface cracking, and "△" indicates that the steel surface could be processed into a product.
表 3(その 1) 実施例 1〜5 Table 3 (Part 1) Examples 1 to 5
実 施 例  Example
1■ o o Λ■+ Ό ノスリレ部位 材 S (図 1) (図 2) (図 1) (図 2) (図 1) 内管部 Al203 80 70 90 60 65 1 ■ oo Λ ■ + Ό Nozzle part material S (Fig. 1) (Fig. 2) (Fig. 1) (Fig. 2) (Fig. 1) Inner pipe part Al 2 0 3 80 70 90 60 65
C 20 30 10 30 30 C 20 30 10 30 30
Si02 0 0 0 10 5 添加物種類 Si0 2 0 0 0 10 5 Additive type
添カロ物量  Amount of added calories
 No
吐出口部 Al203 80 70 90 60 65 ズ C 20 30 10 30 30 Discharge port Al 2 0 3 80 70 90 60 65 size C 20 30 10 30 30
Si02 0 0 0 10 5 ル 添加物種類 Si 0 2 0 0 0 10 5
添加物量  Additive amount
パウダー Al203 80 70 90 60 65 ライン部 C 20 30 10 30 30 及び SiOz 0 0 0 10 5 本体部 添加物種類 Powder Al 2 0 3 80 70 90 60 65 Line section C 20 30 10 30 30 and SiO z 0 0 0 10 5 Main body Additive type
添加物量  Additive amount
試料番号 [5] [1] [7] [4] [1] モパ  Sample No. [5] [1] [7] [4] [1] MOPA
フッ素成分 (重量%) 0 1 2 0 1 Fluorine component (wt%) 0 1 2 0 1
1 1
ルダ Ruda
粘度 (at1300°C) (ボイズ) 100 30 5 50 30 r 1  Viscosity (at1300 ° C) (Boys) 100 30 5 50 30 r 1
破断強さ (at1300°C) (g/cm2) 5.0 5.0 5.0 3.7 5.0 アルミ アルミ アルミ アルミ アルミ 鋼 種 Breaking strength (at 1300 ° C) (g / cm 2 ) 5.0 5.0 5.0 3.7 5.0 Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum
キルド キルド キルド キルド キルド 安定錶造 可 可 可 可 可 ノズル溶損量 内管 0 0 0 0 0 評 又は 吐出口内側 0 0 0 0 0 価 アルミナ付着 パウダーライン 0 0 0 0 0 鋼清浄度 100 100 100 100 100 鋼欠陥率 〇 〇 〇 〇 o Killed Killed Killed Killed Killed Stable structure Available Available Available Available Available Available Nozzle erosion amount Inner tube 0 0 0 0 0 Evaluation or inside discharge outlet 0 0 0 0 0 valent Alumina adhered powder line 0 0 0 0 0 Steel cleanliness 100 100 100 100 100 Steel defect rate 〇 〇 〇 〇 o
Figure imgf000019_0001
Figure imgf000020_0001
表 5 比較例"!〜 6
Figure imgf000019_0001
Figure imgf000020_0001
Table 5 Comparative Example "! ~ 6
比 較 例  Comparative example
I n  I n
Ό Ό  Ό Ό
ノス レ部位 材質 造 (図 1) (図 2) (図 2) (図 2) (図 2) (図 1) 内管部 Al203 100 100 100 70 80 100 Nozzle part Material structure (Fig. 1) (Fig. 2) (Fig. 2) (Fig. 2) (Fig. 2) (Fig. 1) Inner pipe Al 2 0 3 100 100 100 70 80 80 100
C 30 20 C 30 20
Si02 Si0 2
添加物種類  Additive type
添加物量  Additive amount
 No
吐出口部 Al203 100 70 90 70 80 100 ズ C 30 10 30 20 Discharge port Al 2 0 3 100 70 90 70 80 100 Size C 30 10 30 20
SiOz SiO z
ル 添加物種類 ― ― ― ― ― ― 添加物量  種類 Additive type ― ― ― ― ― ― Amount of additive
パウダー Al203 100 70 90 60 70 50 ライン部 C 30 10 20 20 20 及び Si02 ― ― ― 10 本体部 添加物種類 ZrU2 Zr(J2 添加物量 20 30 試料番号 [8] [10] [12] [20] [13] [11] モノ《 Powder Al 2 0 3 100 70 90 60 70 50 Line section C 30 10 20 20 20 and Si0 2 ― ― ― 10 Main body Additive type ZrU 2 Zr (J2 additive amount 20 30 Sample No. [8] [10] [12 ] [20] [13] [11] Mono <<
1 rt フッ素成分 (重量%) 5 8 12 18 8 10 1 ソ 1 rt Fluorine component (% by weight) 5 8 12 18 8 10 1
ルダ Ruda
1 粘度 (at1300°C) (ボイズ) 2 1.5 1.2 0.3 2.0 0.5 卜 1  1 Viscosity (at 1300 ° C) (Voize) 2 1.5 1.2 0.3 2.0 0.5 U 1
破断強さ (at1300°C) (g/cm2) 3.5 3.2 2.5 0.7 3.0 1.0 電磁 Ca処理スチー^ アルミ ステン 间 鋼 種 Breaking strength (at 1300 ° C) (g / cm 2 ) 3.5 3.2 2.5 0.7 3.0 1.0 Electromagnetic Ca treated steel ^ Aluminum stainless steel 间 Steel grade
鋼鈑 鋼 コード キルド レス鋼 素鋼 安定錶造 否 否 否 否 否 否 ノズル溶損量 内管 0.02 0.03 0.04 0.01 0.05 0.02 評 又は 吐出口内側 0.07 0.05 0.08 0.04 0.09 0.03 価 アルミナ付着 パウダーライン 0.50 0.30 0.60 0.20 0.60 0.40 鋼清浄度 30 40 30 50 20 40 鋼欠陥率 X X X X X X 表 3〜表 5から明らかなように、 本発明で特定するモールドパウダーを用いる ことにより、 内管部, 吐出口部, パウダーライン部, 本体部のいずれもアルミナ 一炭素系耐火物からなる浸漬ノズルを用いても(実施例 1 ~ 1 1 )、 また、 アルミ ナ系耐火物からなる浸漬ノズルを用いても(実施例 1 2 )、 つまり、 同質の耐火物 を用いても、 "安定錡造評価"はいずれも "可"であって、 安定銪造が可能である ことがわかった。 また、 実施例 1〜 1 7にみられるように、 パウダーライン部お よび本体部の両者を同質の材料を用いても、 同様に、 安定錡造が可能であること がわかった。 Steel plate Steel code Killless steel Raw steel Stable structure No No No No No No.Nozzle erosion amount Inner tube 0.02 0.03 0.04 0.01 0.05 0.02 Evaluation or inside discharge port 0.07 0.05 0.08 0.04 0.09 0.03 value 0.60 0.40 Steel cleanliness 30 40 30 50 20 40 Steel defect rate XXXXXX As is clear from Tables 3 to 5, by using the mold powder specified in the present invention, the inner pipe, the discharge port, the powder line, and the main body are all made of an alumina-carbon refractory nozzle. (Examples 1 to 11), or using an immersion nozzle made of an alumina-based refractory (Example 12), that is, using a refractory of the same quality, The evaluations were all "OK", indicating that a stable structure was possible. Further, as can be seen from Examples 1 to 17, it was also found that a stable structure could be similarly obtained by using the same material for both the powder line portion and the main body portion.
さらに、 "ノズル溶損量又はアルミナ付着" は全て " 0 " であり、 また、 "鋼清 浄度" は " 1 0 0 "であり、 "鋼欠陥率" も全て "〇"であって、 鋼の表面割れが 無視できるものであった。  Further, "nozzle erosion amount or alumina adhesion" is all "0", "steel purity" is "100", and "steel defect rate" is all "〇". The surface cracks of the steel were negligible.
これに対して、 本発明で特定するモールドパウダーを使用しない比較例 1〜比 較例 6では、 表 5から明らかなように、 "安定銪造"は、 いずれも "否"であって、 安定錡造が不可能であった。また、 "ノズル溶損量" "鋼清浄度" "鋼欠陥率"につ いても、 劣るものであった。 また、 内管部材質が実施例と同じであっても劣って いる。 これは、 錶造中に溶鋼の流れの方向とは逆の方向の流れも同時に生じてい るためである。 そのために、 逆流に乗ってパウダーが内管部に接し、 溶損等が起 こり、 表 5に示したように劣る結果になる。 以上の比較例 1〜 6の評価結果と、 本発明の実施例 1〜 1 7の評価結果とを対 比すると、本発明で特定するモールドパウダーを用いることによって、 はじめて、 安定錶造が可能となり、 また、 ノズルの溶損が極めて少ないので、 ノズル寿命が 向上することがわかった。 さらに、 スリパー傷が殆ど認められなく、 しかも、 鋼 の表面割れが無視できるものであることがわかった。  On the other hand, in Comparative Examples 1 to 6 in which the mold powder specified in the present invention was not used, as is clear from Table 5, “stable structure” was “No”, and Construction was impossible. In addition, "nozzle erosion amount", "steel cleanliness" and "steel defect rate" were also inferior. Further, even if the material of the inner tube member is the same as that of the embodiment, it is inferior. This is because a flow in a direction opposite to the flow direction of the molten steel is simultaneously generated during the production. As a result, the powder comes into contact with the inner pipe part due to the backflow, causing erosion and the like, resulting in inferior results as shown in Table 5. Comparing the evaluation results of Comparative Examples 1 to 6 with the evaluation results of Examples 1 to 17 of the present invention, the use of the mold powder specified in the present invention enables a stable structure for the first time. Also, it was found that the nozzle life was improved because the nozzle was extremely low in erosion. Furthermore, it was found that almost no slipper flaws were observed, and that the surface cracks of the steel were negligible.
なお、 前記実施例 1〜実施例 1 7で用いた図 1, 図 2の浸漬ノズル (図 3の浸漬 ノズルも当然に使用可能である),表 1に示したモールドパウダ一は、本発明の一 例として示した例であり、 本発明は、 これらの内容に限るものではなく、 発明を 特定する事項の範囲で、 種々の組み合わせを用いることができる。 <産業上の利用可能性 > The immersion nozzles of FIGS. 1 and 2 used in Examples 1 to 17 (the immersion nozzles of FIG. 3 can be used naturally) and the mold powder shown in Table 1 of the present invention This is an example shown as an example, and the present invention is not limited to these contents, and various combinations can be used within the scope of matters specifying the invention. <Industrial applicability>
本発明は、 以上詳記したとおり、 溶損性の高いフッ素成分を事実上不在にした モールドパウダーと、 アルミナを主材とする耐火材料で構成された浸漬ノズルと を組み合わせて用いる鋼の連続鍀造方法を特徴とする。  As described in detail above, the present invention relates to a continuous steel pipe using a combination of a mold powder in which a fluorine component having high erosion properties is substantially absent and a dipping nozzle composed of a refractory material mainly composed of alumina. It is characterized by a fabrication method.
そして、 これにより、 耐火物原料起因の不純物が溶鋼に入ることがなくなり、 また、 ノズル内のアルミナ付着が抑制されるため、 安定した铸造が可能になり、 かつ、 超清浄な鋼を得ることができ、 しかも耐火物起因の鎵片欠陥が激減するた め、 銪片歩留まりが向上する、 という顕著な効果が生じる。  This prevents impurities due to the refractory raw material from entering the molten steel, and suppresses the adhesion of alumina in the nozzle, thereby enabling a stable structure and obtaining ultra-clean steel. In addition, remarkable effects such as remarkable improvement in refractory-related defects due to drastic reduction of refractory defects.
また、 本発明で用いる浸漬ノズルは、 溶損が殆どないため、 ノズル寿命の向上 が図れ、 かつ薄肉軽量化により高性能でしかも低価格のものであり、 そして、 該 浸漬ノズルと、本発明で特定するモールドパウダーとを組み合わせることにより、 アルミキルド鋼, シリコンキルド鋼, 高酸素鋼, ステンレス鋼, 電磁鋼板用鋼, カルシウム処理鋼, 高マンガン鋼, 快削鋼, ボロン鋼, スチールコード, 肌焼き 鋼, 高チタン鋼など全ての鋼種に適用できる、 という工業的価値が極めて高い効 果を有するものである。  In addition, the immersion nozzle used in the present invention has almost no erosion, so that the nozzle life can be improved, and high performance and low cost can be achieved by thinning and weight reduction. Combined with the specified mold powder, aluminum-killed steel, silicon-killed steel, high-oxygen steel, stainless steel, steel for electrical steel sheets, calcium-treated steel, high-manganese steel, free-cutting steel, boron steel, steel cord, case-hardened steel It can be applied to all types of steel, such as high titanium steel, and has an extremely high industrial value.
さらに、 浸漬ノズルの製造面からみても、 同一の "アルミナを主材とする耐火 材料"を使用するものであるから、極めて容易に製作できるという利点を有する。  Furthermore, from the viewpoint of the production of the immersion nozzle, since the same “refractory material mainly composed of alumina” is used, there is an advantage that it can be manufactured extremely easily.

Claims

請 求 の 範 囲 The scope of the claims
1. 浸漬ノズルにより溶鋼を铸型内に供給すると共に、 該錡型内にモール ドパウダーを供給しながら連続銪造する方法において、 1. In a method of supplying molten steel into a mold by an immersion nozzle and continuously molding while supplying mold powder into the mold,
フッ素量が 3重量%未満でかつ 1300°Cの粘度が 4ボイズ以上 100000 ボイズ以下のモールドパウダーと、 アルミナを主材とする耐火材料で構成された 浸漬ノズルとを組み合わせて用いることを特徴とする鋼の連続鍊造方法。  It is characterized by using a combination of a mold powder with a fluorine content of less than 3% by weight and a viscosity at 1300 ° C of 4 to 100,000 boil and an immersion nozzle composed of a refractory material mainly composed of alumina. Continuous steel making method.
2. 前記モールドパウダーは、 1300°Cの破断強さが 3. 7 g/cm2 以上である、 請求の範囲第 1項に記載の鋼の連続錡造方法。 2. The method for continuously producing steel according to claim 1, wherein the mold powder has a breaking strength at 1300 ° C of 3.7 g / cm 2 or more.
3. 前記モールドパウダーは、 化学組成が、 A 1203: 5〜25重量%, S i 02 : 25〜70重量%, C aO: 10〜50重量%, MgO: 20重量% 以下, F: 0〜2重量% (不可避不純物) の範囲内にある、 請求の範囲第 1項ま たは第 2項に記載の鋼の連続铸造方法。 3. The mold powder, chemical composition, A 1 2 0 3: 5~25 wt%, S i 0 2: 25~70 wt%, C aO-: 10 to 50 wt%, MgO: 20 wt% or less, 3. The method for continuously producing steel according to claim 1 or 2, wherein F is in the range of 0 to 2% by weight (inevitable impurities).
4. 前記アルミナを主材とする耐火材料は、 アルミナ系耐火物および/ま たはアルミナー炭素系耐火物からなる、 請求の範囲第 1項に記載の鋼の連続銪造 方法。 4. The method for continuously producing steel according to claim 1, wherein the refractory material mainly composed of alumina is composed of an alumina-based refractory and / or an alumina-carbon-based refractory.
5. 前記アルミナ系耐火物および/またはアルミナ—炭素系耐火物は、 シ リカ(Si02), 炭化珪素(SiC), 炭化硼素(B4C), 窒化珪素(Si3N4), 窒化アルミ二 ゥム(A1N), 硼化ジルコニウム(ZrB2),硼化マグネシウム(Mg3B2), 硫酸ジルコ二 ゥム(ZrS04), シリコン(Si),アルミニウム (A1)から選ばれた 1種または 2種以上 を含有する、 請求の範囲第 4項に記載の鋼の連続錡造方法。 5. The alumina-based refractory and / or alumina - carbon-based refractory, shea silica (Si0 2), silicon carbide (SiC), boron carbide (B 4 C), silicon nitride (Si 3 N 4), aluminum nitride two © beam (A1N), zirconium boride (ZrB 2), boride magnesium (Mg 3 B 2), sulfuric acid zirconyl two © beam (ZrS0 4), silicon (Si), 1 kind selected from aluminum (A1) 5. The method for continuously producing steel according to claim 4, wherein the steel comprises two or more types.
6. 前記溶鋼として、 アルミキルド鋼, シリコンキルド鋼, 高酸素鋼, ス テンレス鋼, 電磁鋼板用鋼, カルシウム処理鋼, 高マンガン鋼, 快削鋼, ボロン 鋼, スチールコード, 肌焼き鋼または高チタン鋼を用いる、 請求の範囲第 1項- 第 5項のいずれか一項に記載の鋼の連続錡造方法。 6. Aluminum-killed steel, silicon-killed steel, high-oxygen steel, stainless steel, steel for electrical steel sheets, calcium-treated steel, high-manganese steel, free-cutting steel, boron 6. The method for continuously producing steel according to claim 1, wherein steel, steel cord, case hardened steel, or high titanium steel is used.
PCT/JP2001/010444 2001-11-29 2001-11-29 Method for continuous casting of steel WO2003045608A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000174553A JP2001353561A (en) 2001-11-29 2000-06-09 Method for continuously casting steel
CNA018238440A CN1589187A (en) 2001-11-29 2001-11-29 Process for continuously casting steel
PCT/JP2001/010444 WO2003045608A1 (en) 2001-11-29 2001-11-29 Method for continuous casting of steel
CA002454946A CA2454946A1 (en) 2001-11-29 2001-11-29 Method of continuous steel casting
US10/484,388 US20040159419A1 (en) 2001-11-29 2001-11-29 Method of continuous casting of steel
KR10-2004-7007511A KR20040079407A (en) 2001-11-29 2001-11-29 Method for continuous casting of steel
EP01274842A EP1449603A1 (en) 2001-11-29 2001-11-29 Method for continuous casting of steel
AU2002222564A AU2002222564A1 (en) 2001-11-29 2001-11-29 Method for continuous casting of steel
TW090130104A TW590823B (en) 2001-11-29 2001-12-05 Method for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/010444 WO2003045608A1 (en) 2001-11-29 2001-11-29 Method for continuous casting of steel

Publications (1)

Publication Number Publication Date
WO2003045608A1 true WO2003045608A1 (en) 2003-06-05

Family

ID=32089037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010444 WO2003045608A1 (en) 2001-11-29 2001-11-29 Method for continuous casting of steel

Country Status (9)

Country Link
US (1) US20040159419A1 (en)
EP (1) EP1449603A1 (en)
JP (1) JP2001353561A (en)
KR (1) KR20040079407A (en)
CN (1) CN1589187A (en)
AU (1) AU2002222564A1 (en)
CA (1) CA2454946A1 (en)
TW (1) TW590823B (en)
WO (1) WO2003045608A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7992561B2 (en) 2006-09-25 2011-08-09 Nellcor Puritan Bennett Llc Carbon dioxide-sensing airway products and technique for using the same
US8234357B2 (en) 2007-10-01 2012-07-31 Endress + Hauser Process Solutions Ag Method for servicing field devices of process automation technology utilizing a device-independent operating program
US8396524B2 (en) 2006-09-27 2013-03-12 Covidien Lp Medical sensor and technique for using the same
US8420405B2 (en) 2006-09-25 2013-04-16 Covidien Lp Carbon dioxide detector having borosilicate substrate
US8431088B2 (en) 2006-09-25 2013-04-30 Covidien Lp Carbon dioxide detector having borosilicate substrate
US8449834B2 (en) 2006-09-25 2013-05-28 Covidien Lp Carbon dioxide detector having borosilicate substrate

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766837B2 (en) * 2004-03-03 2011-09-07 新日鉄マテリアルズ株式会社 Method for removing boron from silicon
JP4516937B2 (en) * 2006-06-06 2010-08-04 新日本製鐵株式会社 Immersion nozzle preheating device and continuous casting method.
KR100723302B1 (en) * 2006-10-25 2007-05-31 지엠티 엔 티 주식회사 Tundish and ladle flux for the basic liner system
KR101333431B1 (en) * 2009-05-27 2013-11-26 신닛테츠스미킨 카부시키카이샤 Method for continuously casting steel, and refractory used in continuous casting of steel
KR101246495B1 (en) * 2010-03-30 2013-03-25 현대제철 주식회사 Ladle of steel making
CN101982257B (en) * 2010-10-15 2014-04-23 河南通宇冶材集团有限公司 Specific crystallizer casting powder for sulphur free-cutting steel
KR101639754B1 (en) * 2014-11-21 2016-07-22 주식회사 포스코 Submerged entry nozzle for continuous casting, Continuous casting method using same and Method for manufacturing submerged entry nozzle
KR101825132B1 (en) * 2016-04-29 2018-02-02 주식회사 포스코 Casting flux and the manufacturing method using the same
CN109277558B (en) * 2018-10-24 2020-08-07 芜湖新兴铸管有限责任公司 Anti-caking submerged nozzle and anti-caking construction method
JP7239810B2 (en) * 2019-01-30 2023-03-15 品川リフラクトリーズ株式会社 Continuous casting method for mold powder and high Mn steel
JP6871525B2 (en) * 2020-06-12 2021-05-12 品川リフラクトリーズ株式会社 Mold powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208250A (en) * 1992-01-31 1993-08-20 Shinagawa Refract Co Ltd Casting mold additive for continuous casting of steel
JPH10258343A (en) * 1997-03-13 1998-09-29 Nippon Steel Metal Prod Co Ltd Hollow granular mold flux for continuous casting
JP2000169136A (en) * 1998-12-07 2000-06-20 Shinagawa Refract Co Ltd Synthetic calcium silicate and mold powder for continuous casting of steel using the same
JP2001113345A (en) * 1999-10-19 2001-04-24 Shinagawa Refract Co Ltd Continuous casting method for steel
JP2001205402A (en) * 2000-01-28 2001-07-31 Sumitomo Metal Ind Ltd Mold powder for continuous casting

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871698A (en) * 1987-11-09 1989-10-03 Vesuvius Crucible Company Carbon bonded refractory bodies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208250A (en) * 1992-01-31 1993-08-20 Shinagawa Refract Co Ltd Casting mold additive for continuous casting of steel
JPH10258343A (en) * 1997-03-13 1998-09-29 Nippon Steel Metal Prod Co Ltd Hollow granular mold flux for continuous casting
JP2000169136A (en) * 1998-12-07 2000-06-20 Shinagawa Refract Co Ltd Synthetic calcium silicate and mold powder for continuous casting of steel using the same
JP2001113345A (en) * 1999-10-19 2001-04-24 Shinagawa Refract Co Ltd Continuous casting method for steel
JP2001205402A (en) * 2000-01-28 2001-07-31 Sumitomo Metal Ind Ltd Mold powder for continuous casting

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7992561B2 (en) 2006-09-25 2011-08-09 Nellcor Puritan Bennett Llc Carbon dioxide-sensing airway products and technique for using the same
US8128574B2 (en) 2006-09-25 2012-03-06 Nellcor Puritan Bennett Llc Carbon dioxide-sensing airway products and technique for using the same
US8420405B2 (en) 2006-09-25 2013-04-16 Covidien Lp Carbon dioxide detector having borosilicate substrate
US8431088B2 (en) 2006-09-25 2013-04-30 Covidien Lp Carbon dioxide detector having borosilicate substrate
US8449834B2 (en) 2006-09-25 2013-05-28 Covidien Lp Carbon dioxide detector having borosilicate substrate
US8454526B2 (en) 2006-09-25 2013-06-04 Covidien Lp Carbon dioxide-sensing airway products and technique for using the same
US8396524B2 (en) 2006-09-27 2013-03-12 Covidien Lp Medical sensor and technique for using the same
US8234357B2 (en) 2007-10-01 2012-07-31 Endress + Hauser Process Solutions Ag Method for servicing field devices of process automation technology utilizing a device-independent operating program

Also Published As

Publication number Publication date
CA2454946A1 (en) 2003-06-05
AU2002222564A1 (en) 2003-06-10
KR20040079407A (en) 2004-09-14
EP1449603A1 (en) 2004-08-25
TW590823B (en) 2004-06-11
US20040159419A1 (en) 2004-08-19
CN1589187A (en) 2005-03-02
JP2001353561A (en) 2001-12-25

Similar Documents

Publication Publication Date Title
WO2003045608A1 (en) Method for continuous casting of steel
AU764954B2 (en) Molding powder for continuous casting of steel and method for continuous casting of steel
US5366535A (en) Basic tundish covering compound
JPH0839214A (en) Nozzle for continuous casting
US5505348A (en) Molten steel pouring nozzle
JPH0478392B2 (en)
US5244130A (en) Molten steel pouring nozzle
JP4223262B2 (en) Mold powder for continuous casting of steel
JP3722405B2 (en) Steel continuous casting method
EP0588218B1 (en) Molten steel pouring nozzle
JP3610885B2 (en) Mold powder and continuous casting method
JP4315847B2 (en) Dipping nozzle for continuous casting with good adhesion
JP3717049B2 (en) Mold powder for continuous casting of steel and continuous casting method of steel
JPH0428462A (en) Immersion nozzle for continuous casting and production thereof
JP7216310B2 (en) mold powder
JPH0494851A (en) Nozzle for continuous casting
JP2673077B2 (en) Mold additive for continuous casting of steel and continuous casting method
KR950008603B1 (en) Composition of refractories
JPH0620622B2 (en) Nozzle for continuous casting
JPH08103865A (en) Pouring nozzle of molten metal
JP2005270986A (en) Immersion nozzle for continuous casting, excellent in erosion resistance
JP2021126679A (en) Continuous casting nozzle
JPH07102436B2 (en) Nozzle for continuous casting containing calcium zirconate
JPH08268768A (en) Monolithic refractory material for casting
JPH08215812A (en) Nozzle for continuous casting of molten steel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10484388

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2454946

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001274842

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002222564

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020047007511

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20018238440

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001274842

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001274842

Country of ref document: EP