WO2003046953A2 - Haltevorrichtung und verfahren zur wärmezufuhr oder wärmeabfuhr von einem substrat - Google Patents

Haltevorrichtung und verfahren zur wärmezufuhr oder wärmeabfuhr von einem substrat Download PDF

Info

Publication number
WO2003046953A2
WO2003046953A2 PCT/DE2002/003767 DE0203767W WO03046953A2 WO 2003046953 A2 WO2003046953 A2 WO 2003046953A2 DE 0203767 W DE0203767 W DE 0203767W WO 03046953 A2 WO03046953 A2 WO 03046953A2
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
holding element
substrate electrode
holding
holding device
Prior art date
Application number
PCT/DE2002/003767
Other languages
English (en)
French (fr)
Other versions
WO2003046953A3 (de
Inventor
Klaus Breitschwerdt
Franz Laermer
Andrea Schilp
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US10/495,648 priority Critical patent/US7149070B2/en
Priority to EP02781125A priority patent/EP1459354B1/de
Priority to JP2003548280A priority patent/JP4550420B2/ja
Priority to DE50207232T priority patent/DE50207232D1/de
Priority to KR1020047007351A priority patent/KR101006337B1/ko
Publication of WO2003046953A2 publication Critical patent/WO2003046953A2/de
Publication of WO2003046953A3 publication Critical patent/WO2003046953A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Definitions

  • Holding device in particular for fixing a semiconductor wafer in a plasma etching device, and method for supplying or removing heat from a substrate
  • the invention relates to holding devices, in particular for fixing a semiconductor wafer in a plasma etching device, and to a method for supplying or removing heat from the back of a substrate held in one vacuum chamber with one of these holding devices, according to the preamble of the independent claims.
  • FIG. 1 shows another holding device known from the prior art in the form of an electrostatic “chuck”. This embodiment is currently found in many plasma etching systems and is typical of the prior art.
  • the substrate electrode which is subjected to, for example, a high-frequency voltage, is clamped to a grounded base plate by ceramic insulators and a suitable clamping device, O-rings ensuring the vacuum tightness, so that the substrate to be etched can be exposed to a vacuum. It is further provided that the substrate electrode internally contains a refrigerant, for example deionized
  • a helium cushion ie there are suitably shaped gaps between the underside of the wafer and "Chuck” and provided between “Chuck” and the substrate electrode surface, which are filled with helium at a pressure of a few mbar up to a maximum of about 20 mbar.
  • mechanical clamping devices are also known in the prior art which press the wafer onto the substrate electrode and allow the back of the wafer to be acted upon with helium as the convection medium.
  • Mechanical clamping however, has considerable disadvantages and is increasingly being replaced by electrostatic “chucks” which, above all, ensure favorable flat wafer clamping.
  • the holding devices according to the invention and the method according to the invention for supplying or removing heat from the rear side of a substrate held in a vacuum chamber have the advantage over the prior art that this significantly improves the thermal coupling of the wafer to the chuck underneath "or the substrate electrode is reached, and that the supply or removal of heat from the back of the substrate takes place much more reliably, uniformly and effectively.
  • a further disadvantage of the construction outlined in FIG. 1 is that helium as a convection medium can only perform a comparatively limited heat dissipation, which can only be increased by a higher gas pressure.
  • the electrostatic holding forces of conventional electrostatic "chucks" set an upper limit of 10 mbar to 20 mbar.
  • the electrostatic holding forces that can be achieved with the electrostatic “chucks” that have been customary up to now are also insufficient because they are limited by the dielectric strength of the dielectrics used in the “chuck”.
  • the clamping voltages have so far been limited to the range between 1000 V and 2000 V.
  • EMC risks EMC - electromagnetic compatibility
  • the various holding devices according to the invention which on the one hand aim for improved and more uniform heat dissipation from the back of the substrate and a more uniform heat distribution in the vicinity of the etched substrate, and on the other hand an increase in the electrostatic clamping forces and a simplified fixing or solution serve the wafer of the holding device, can be combined with one another as desired.
  • FIG. 1 shows an electrostatic holding device known from the prior art
  • FIG. 2 shows a first exemplary embodiment of the invention with an electrostatic holding device modified compared to FIG. 1
  • FIG. 3 shows a second exemplary embodiment of the invention, only the area shown in broken lines in FIG. 2 being shown
  • FIG. 4 shows a third exemplary embodiment of the invention, the cooling of the back of a substrate held in the vacuum chamber being illustrated with the aid of a liquid convection medium.
  • embodiments 1 initially explains an electrostatic chuck known from the prior art, that is to say an electrostatic holding device for a substrate 12, for example a conventional silicon wafer. Under the substrate 12 there is a holding element 11 which fixes it, for example a shape electrostatic "Chuck" of a holding plate. The holding element 11 is further placed on a metallic substrate electrode 19, which is connected via ceramic insulators 18 to a base body or support body 17, which is also made of a metal. To ensure vacuum tightness, seals 21, for example rubber O-rings, are provided between the insulators 18 and the substrate electrode 19 or between the insulators 18 and the base body 17.
  • seals 21 for example rubber O-rings
  • FIG. 1 also shows that the base body 17 is connected to the substrate electrode 19 via a metallic holder 20, ceramic insulators 18 preferably also being provided between the holder 20 and the substrate electrode 19, so that the base body 17 as a whole is opposite the Substrate electrode 19 is electrically insulated.
  • a ceramic plate is placed on the substrate electrode 19 as a load body 10, which is shaped so that it has, for example, a circular opening in its center, which is larger than the substrate 12, and which is further by means of a projecting part 10 x or one "Nose" is designed such that its weight presses the holding element 11 onto the substrate electrode 19.
  • the load body 10 loads the holding element 11 without covering the substrate 12, so that it is accessible from above, for example, to plasma etching.
  • the base body 17 according to FIG. 1 is grounded, while the substrate electrode 19 is connected in a known manner with a high-voltage tion supply 15 is connected, via which it can be acted upon by a high-frequency power.
  • the substrate electrode 19 has insulated feedthroughs, for example ceramic feedthroughs, so that the holding element 11 can be acted upon by a DC voltage, for example an electrical voltage of 1000 V to 2000 V, via clamping voltage feeds 16.
  • the substrate electrode 19 is electrically insulated from this voltage, so that it is only present on the holding element 11 and there clamping or fixing of the substrate 12 on the holding element 11 via an electrostatic clamping or an electrostatic force induced by the clamping voltage feeders 16 causes.
  • the holding element 11 is also clamped against the substrate electrode 19 from its underside by an electrostatic force of the same type.
  • Holding element 11 can be supplied as a convection medium 30, gaseous helium, which can also penetrate into the area between holding element 11 and substrate 12 via channels 25 provided in holding element 11.
  • the convection medium 30 serves to dissipate heat from the area between the substrate electrode 19 and the holding element 11 and from the area between the holding element 11 and the back of the substrate 12.
  • the holding plate 11 preferably has a correspondingly structured holding surface on its top and bottom in a known manner 13 on.
  • FIG. 2 shows a first exemplary embodiment of the invention for a holding device 5, which is constructed similarly to the holding device according to FIG. 1, but in which, above all, the thermal “floating” of the core provided in FIG. ramischen load body around the substrate 12 was eliminated.
  • the load body 10 is firmly connected to the grounded base body 17 by means of an aluminum ring or an anodized ring or more generally a clamping device 22, preferably in the form of a clamping ring, and is thus pressed against the surface of the substrate electrode 19.
  • L5 electrode 19 are electrically insulated.
  • the fastening element 23 is a screw in the example explained, while the connecting element 24 is, for example, a sleeve, a rod or likewise a screw.
  • the use of a clamping ring as a clamping device 22 advantageously exercises one
  • the holding device 5 according to FIG. 2 5 achieves an improved thermal coupling of the load body 10 to the temperature of the substrate electrode 19, which leads to a significant improvement in the properties of a high-rate plasma etching process, for example in accordance with DE 42 41 045 Cl, especially in the edge region of the Substrate 12 0 leads.
  • an undesirable process drift between a hot and a cold system state is also avoided or reduced, which essentially results from heating of the load body 10, which, for example, continues to be designed as a ceramic plate, directly around the substrate 12 5.
  • a layer which compensates for unevenness in the surface and / or ensures a uniform heat dissipation which is as good as possible preferably a silicone fat layer or a fat layer made of a perfluorinated fat such as Krytox® fat or Fomblin ® fat, provided.
  • the desired clamping takes place via the grounded base body 17 and not via the substrate electrode 19 itself which is subjected to a high-frequency power, since in this case the high frequency has an effect on the clamping device 22, which would have negative effects on the plasma etching process and also on sputtering effects led.
  • the clamping ring 22, which is grounded via the base body 17, extends around the substrate 12 and is electrically conductive.
  • FIG. 3 shows the detail from FIG. 2 which is shown in dashed lines in FIG. 2, it being initially recognizable that the holding element 11 according to FIG. 2 preferably has a plurality, for example 6 to 8, of channels 25 which pass through it and which face the substrate electrode 19 Lead side of the holding element 11 to the side of the holding element 11 facing the substrate 12.
  • One supplied with the feed 14 can be fed via the channels 25
  • the holding element 11 has a holding surface 13 structured in a manner known per se, which in the exemplary embodiment according to FIG. 2 is initially made of a dielectric such as A1 2 0 3 is formed.
  • the structured holding surface 13 supports the underside of the substrate 12 in some areas by a dielectric material, while in other areas cavities 27 are formed which are delimited by recesses provided on the surface of the substrate 12 and in the holding element 11.
  • the cavities 27 are at least partially connected to the channels 25, so that the convection medium, for example helium, can penetrate them.
  • the convection medium for example helium
  • FIG. 3 shows that the clamping voltage feeds 16 extend into the vicinity of the surface of the holding element 11, and that there is a direct electrical voltage that causes the substrate 12 to be electrostatically fixed on the holding element 11.
  • the structure of the channels 25 and their formation and implementation through the holding body 11 is carried out, for example, as in the case of electrostatic “chucks” known from the prior art.
  • the dielectric A1 2 0 3 provided on the side of the holding element 11 facing the substrate 12 is made of a ferroelectric material or, preferably, a piezoelectric material 26 like a lead zirconium titanate ceramic (PZT ceramic), which now serves as a dielectric instead of Al 2 0 3 .
  • PZT ceramic lead zirconium titanate ceramic
  • the advantage here is that in a piezoelectric 26 or an alternatively usable ferroelectric, permanent dipoles already present anyway are aligned by the electrical field applied via the clamping voltage supply 16 or the electrical direct voltage applied above, and this is thus polarized so that the electrostatic clamping forces exerted on the substrate 12 are considerably greater than in the case of a dielectric such as A1 2 0 3 .
  • the polarization thus supports the external electrical field applied via the clamping voltage feeders 16 and increases the fixation of the substrate 12 on the holding element 11, so that a substantially higher holding force can now be exerted on the substrate 12 with the same electrical holding voltage.
  • the increased electrostatic holding force now also makes it possible to increase the pressure of the convection medium helium, and thus significantly improve the heat dissipation from the back of the substrate 12 to the substrate electrode 19.
  • a pressure of 50 mbar to 300 mbar in particular from 100 mbar to 200 mbar, is used, which leads to heat dissipation that is several orders of magnitude better.
  • the main advantage of a piezoelectric 26 or ferroelectric on the side of the holding element 11 facing the substrate 12 is therefore primarily not the increased holding force per se, but above all the higher pressure of the convection medium 30 in the region of the cavities 27 between the holding element 11 that is made possible as a result and the substrate 12.
  • piezoelectric or ferroelectric dielectrics means that the induced electrostatic holding forces do not disappear when the external electrical field is switched off or the applied electrical voltages are switched off, since existing, initially aligned dipoles at least largely do this even in the voltage-free state or fieldless condition. It is therefore no longer sufficient in the context of this exemplary embodiment to simply switch off the external field or the electrical voltage applied from the outside in order to remove the substrate 12 to be released from the holding element 11. Instead, when the substrate 12 is unloaded or detached from the holding element 11, a so-called “depolarization cycle” using an alternating voltage must be used, the amplitude of which, for example, is slowly reduced from an initial value to zero.
  • FIG. 4 explains a further exemplary embodiment, a liquid now serving as a convection medium 30 or more generally as a heat transport medium 30 between the substrate 12 and the holding element 11 and / or between the holding element 11 and the substrate electrode 19 instead of a gaseous convection medium 30 such as helium.
  • a gaseous convection medium 30 such as helium.
  • fluorocarbons ie perfluorinated long-chain alkanes or similar compounds, such as those sold by 3M under the designation FC77, FC84 or as so-called “performance fluids"("PF xyz ").
  • FC77, FC84 or performance fluids so-called "performance fluids"("PF xyz ").
  • performance fluids so-called "performance fluids"("PF xyz ").
  • fluorocarbons are highly pure, since practically no substances dissolve in them, are absolutely inert and have very high electrical breakdown field strengths.
  • thermal conductivity of fluorocarbons is excellent and their viscosity is low.
  • fluorine-based processes are generally used for high-rate etching in plasma etching systems, so that fluorocarbons do not interfere with the etching process carried out, even if they get into the etching chamber or vacuum chamber, and have no adverse effects on the etching process.
  • the exemplary embodiment explained with the aid of FIG. 4 is particularly suitable for a plasma etching method according to the type of DE 42 41 045 Cl in order to dissipate heat or, if desired, also to supply heat to or from the rear of the one held in a vacuum chamber To perform substrate 12, which is exposed to heat input from the front, for example.
  • FIG. 4 the exemplary embodiment explained with the aid of FIG. 4 is initially based on a holding device 5 according to FIG. 2, FIG. 3 or also FIG. 1 known from the prior art, but now instead of the gas Convection medium 30 helium, a liquid convection medium 30, preferably a fluorocarbon, is used.
  • a liquid convection medium 30, preferably a fluorocarbon is used instead of the gas Convection medium 30 helium.
  • the fluorocarbon selected for the temperature range occurring in each individual case for example the product FC77 from 3M, is fed to the substrate electrode 19 at the point at which helium is otherwise admitted.
  • a substrate electrode 19 is shown in FIG. 4, which has a feed 14 according to FIGS. 1 or 2, via which the liquid convection medium is fed to the top of the substrate electrode 19. Since the holding element 11 is located on the substrate electrode 19, it is formed between the substrate electrode and the holding element
  • the supplied liquid convection medium 30 penetrates the holding element 11, for example through the channels 25, and penetrates into the region of the cavities or recesses 27 which are located between the holding element 11 and the substrate 12.
  • a conventional mass flow controller 31 is first provided according to FIG. 4, to which the liquid convection medium 30 is supplied and which is connected to a control unit 36.
  • the control unit 36 controls the inflow of the liquid convection medium 30 via a conventional regulation and a setpoint / actual value comparison.
  • the mass flow controller 31 and a further provided, for example electrically controllable throttle valve 33 is opened by the control unit 36 to such an extent that at one
  • Pressure sensor 32 for example a conventional baratron, a desired pressure of the liquid convection medium 30 is measured or set on the back of the substrate 12, ie on the side of the substrate 12 facing the holding element 11. This hydrostatic pressure is planted under the substrate 12. Since vacuum conditions prevail under the substrate 12 before the mass flow controller 31 is opened, the liquid convection medium 30 thus fills the entire space between the substrate 12 and the holding element 11 and between the holding element 11 and the substrate electrode 19 instantaneously.
  • the liquid convection medium 30 is preferably conducted into the center of the substrate electrode 19 and / or the center of the substrate 12 and from there preferably collected again via a collecting trough 28 in the edge region of the substrate 12 and discharged via a discharge 29.
  • the collecting trough 28, as shown in FIG. 4 is preferably embedded in the area of the substrate electrode 19 as well as in the side of the holding element 11 facing the substrate 12. Overall, the liquid convection medium supplied via the feed 14 becomes in this way 30 collected again via the collecting trough 28 and sucked off via a vacuum pump, not shown.
  • the outflow of the liquid convection medium 30 preferably takes place via the electrically or manually adjustable throttle 33, via which a low flow of, for example, 0.1 ccm / min to 1 ccm / min is set once according to the desired pressure on the back of the substrate 12 ,
  • a low flow of, for example, 0.1 ccm / min to 1 ccm / min is set once according to the desired pressure on the back of the substrate 12
  • the liquid convection medium 30 flows from a storage tank, which is preferably under atmospheric pressure, via the mass flow controller 31 into the space between the substrate 12 and the substrate electrode 19, the control unit 36 ensuring that there by controlling the mass flow controller 31 there is always a desired hydrostatic pressure of, for example, 5 to 20 mbar.
  • the liquid convection medium 30 fills as far as possible all the spaces between the substrate 12 and the substrate electrode 19, and is finally sucked off again via the throttle valve 33, to which an optionally provided flow measuring device 34 connects, via which the amount of convection medium 30 flowing off can be determined is and can be transmitted to the control unit 36.
  • an evaporator device 35 for example an electric evaporator, is provided, which connects to the throttle valve 33 or the flow measuring device 34, and which evaporates the liquid convection medium 30 and supplies it in the gaseous state to the subsequent vacuum pump.
  • the control unit 36 preferably also serves to detect a malfunction, ie in the event that the substrate 12 is no longer clamped sufficiently on the holding element 11, which can occasionally occur during a process, this state is recognized by the control unit 36 thereupon the further supply of the liquid convection medium stops. Since in such a case the thermal contact between the substrate electrode 19 and the substrate 12 is lost anyway, the process carried out must be stopped in any case before there is thermal overheating and thus destruction of the silicon wafer used as the substrate 12.
  • a fluorocarbon as a liquid convection medium 30 is in itself harmless for a plasma etching process according to DE 42 41 045 Cl and does not harm the vacuum system used, nevertheless the amount of fluorocarbon entering the etching chamber should always be so small be kept as possible.
  • This goal is achieved in that the control unit 36 constantly compares the supplied amount of liquid convection medium 30 detected by the mass flow controller 31 with the outflowing amount of liquid convection medium 30 detected by the flow measuring device 34. If a discrepancy beyond certain tolerances occurs in this comparison, the further supply of the liquid convection medium 30 via the control unit 36 is stopped and the process is ended with an error avoidance.
  • the control unit 36 is used to immediately detect a leak in the event of deviations, in particular excesses, of this inflow value and to interrupt the process and the further supply of the convection medium 30.
  • a leak in the event of deviations, in particular excesses, of this inflow value is used to interrupt the process and the further supply of the convection medium 30.
  • the control unit 36 no longer has to take into account a permanent leak as a corresponding offset or safety reserve, as is the case with helium back cooling.
  • the above-mentioned increased dielectric strength of the holding device 5 which arises through the use of a liquid convection medium 30 also results from the fact that the dielectric breakdown essentially results from isolated, punctiform defects such as so-called pinholes, cavities, inclusions, cracks and trenches with locally reduced Dielectric strength that is present locally on the surface of the dielectric and, as the weakest points of an otherwise intact surface of the electrostatic holding element 11, determine the failure of the entire component. Therefore, although the Most of the surface of the electrostatic holding element 11 would tolerate higher electrical voltages or electric fields, which actually limits the applicable electrical voltage by a few point defects. Since, in the exemplary embodiment explained with the aid of FIG.
  • the entire electrostatic holding element 11 is embedded in operation in the liquid, dielectric convection medium 30 with a high dielectric strength and self-extinguishing properties, such point defects are healed by this. Overall, this effect also leads to significantly higher clamping forces and safer operation of the entire holding device 5 with respect to the risk of electric breakdowns.

Abstract

Es wird eine Haltevorrichtung (5) vorgeschlagen, wobei auf einer Substratelektrode (19) ein Halteelement (11) angeordnet ist, auf dem ein Substrat (12) elektrostatisch fixiert ist. In einer ersten Ausführungsform befindet sich ein Lastkörper (10) auf der Substratelektrode (19), der das Halteelement (11) auf diese presst, wobei der Lastkörper (10) über eine diesen auf die Substratelektrode (19) pressende Klemmeinrichtung (22, 23, 24) mit einem die Substratelektrode (19) tragenden Grundkörper (17) verbunden ist, und wobei der Lastkörper (10) und der Grundkörper (17) gegenüber der Substratelektrode (19) elektrisch isoliert sind. In einer zweiten Ausführungsform weist die dem Substrat (12) zugewandte Seite des Halteelementes (11) ein elektrisch isolierendes Ferroelektrikum oder Piezoelektrikum (26) auf. Eine dritte Ausführungsform sieht eine Einrichtung (30, 31, 32, 33, 34, 35, 36) vor, mit der ein flüssiges Konvektionsmedium (30) in einen von dem Halteelement (11) und dem Substrat (19) gebildeten Zwischenraum (27) zuführbar bzw. von dort wieder abführbar ist. Schliesslich wird ein Verfahren zur rückseitigen Zufuhr oder Abfuhr von Wärme eines von der Vorderseite mit Wärme beaufschlagten Substrates (12) vorgeschlagen, das von einer der vorgeschlagenen Haltevorrichtungen (5) gehalten ist.

Description

Haltevorrichtung, insbesondere zum Fixieren eines Halblei- terwafers in einer Plasmaätzvorrichtung, und Verfahren zur Wärmezufuhr oder Wärmeabfuhr von einem Substrat
Die Erfindung betrifft Haltevorrichtungen, insbesondere zum Fixieren eines Halbleiterwafers in einer Plasmaätzvorrich- tung, sowie ein Verfahren zur Zufuhr oder Abfuhr von Wärme von der Rückseite eines mit einer dieser Haltevorrichtungen in einer Vakuumkammer gehaltenen Substrates, nach der Gattung der unabhängigen Ansprüche .
Stand der Technik
Beim anisotropen Hochratenätzen von Siliziumsubstraten, beispielsweise nach Art der DE 42 41 045 Cl, ist eine Kühlung des Substrates von dessen Rückseite aus erforderlich, da aus dem Plasma durch die Einwirkung von Strahlen, Elektronen und Ionen sowie auch durch eine entstehende Reaktionswärme auf der Waferoberflache in erheblichem Ausmaß Wärme in dieses eingetragen wird. Wird diese Wärme nicht kontrolliert abgeführt, überhitzt das Substrat und das Ätzergebnis ver- schlechtert sich erheblich.
Aus US 6,267,839 Bl, US 5,671,116, EP 840 434 A2 oder JP- 11330056 A sind sogenannte elektrostatische „Chucks" bekannt, d.h. Haltevorrichtungen, mit denen ein Halbleiterwa- fer, insbesondere ein Siliziumwafer, beispielsweise in einer Plasmaätzvorrichtung auf einer Substratelektrode elektrostatisch fixierbar ist. Eine weitere, aus dem Stand der Technik bekannte Haltevorrichtung in Form eines elektrostatischen „Chucks" zeigt Figur 1. Diese Ausführungsform ist derzeit in vielen Plasmaätzanlagen anzutreffen und typisch für den Stand der Technik.
Im Einzelnen ist dabei vorgesehen, dass die mit einer beispielsweise hochfrequenten Spannung beaufschlagte Substrat- elektrode vermöge Keramikisolatoren und einer geeigneten Klemmvorrichtung auf eine geerdete Bodenplatte geklemmt wird, wobei O-Ringe die Vakuumdichtigkeit sicherstellen, so dass das zu ätzende Substrat einem Vakuum ausgesetzt werden kann. Weiter ist vorgesehen, dass die Substratelektrode in- tern von einem Kältemittel, beispielsweise deionisiertem
Wasser, Methanol oder anderen Alkoholen, Fluorcarbonen oder Siliconen durchströmt wird. Auf der Substratelektrode selbst findet sich dann der „Chuck" für die elektrostatische Klemmung des darauf liegenden Wafers oder Substrates, der über übliche Hochspannungsdurchführungen mit Hochspannung versorgt wird, um die gewünschte Klemmkraft auf den darauf angeordneten Wafer auszuüben. Schließlich ist im Stand der Technik gemäß Figur 1 vorgesehen, dass die von dem Substrat nicht bedeckte Oberfläche des „Chucks" und der umgebenden Substratelekrodenoberflache durch eine auf die Substrat- elektrode aufgelegte Keramikplatte abgedeckt wird, um eine Einwirkung des darüber befindlichen bzw. erzeugten Plasmas auf die Metallflächen der Substratelektrode, was zu einem schädlichen Absputtern von Metall und einem unerwünschten Stromfluss ins Plasma führen könnte, auszuschließen.
Den Wärmefluss von der Unterseite des aufgelegten Wafers zu dem elektrostatischen „Chuck" bzw. der Substratelektrode gewährleistet schließlich ein Heliumpolster, d.h. es sind ge- eignet geformte Zwischenräume zwischen Waferunterseite und „Chuck" und zwischen „Chuck" und Substratelektrodenoberfläche vorgesehen, die mit Helium bei einem Druck von einigen mbar bis maximal etwa 20 mbar gefüllt sind.
Alternativ zur elektrostatischen Klemmung bzw. Fixierung eines Wafers sind im Stand der Technik auch mechanische Klemmvorrichtungen bekannt, die den Wafer auf die Substratelektrode drücken und die Beaufschlagung der Rückseite des Wafers mit Helium als Konvektionsmedium gestatten. Die mechanische Klemmung weist jedoch erhebliche Nachteile auf, und wird zunehmend von elektrostatischen „Chucks", die vor allem eine günstige flächige Waferklemmung gewährleisten, verdrängt.
Vorteile der Erfindung
Die erfindungsgemäßen Haltevorrichtungen und das erfindungs- gemäße Verfahren zur Zufuhr oder Abfuhr von Wärme von der Rückseite eines in einer Vakuumkammer gehaltenen Substrates haben gegenüber dem Stand der Technik den Vorteil, dass da- mit eine deutlich verbesserte thermische Ankopplung des Wafers an den darunter befindlichen „Chuck" bzw. die Substratelektrode erreicht wird, und dass die Zufuhr bzw. Abfuhr von Wärme von der Rückseite des Substrates wesentlich zuverlässiger, gleichmäßiger und effektiver erfolgt.
Insbesondere hat sich herausgestellt, dass gerade in Verbindung mit üblichen Plasmahochratenätzverfahren die Umgebung des Wafers und vor allem die Temperatur der gemäß Figur 1 aufgelegten keramischen Platte, die nicht direkt in Verbin- düng mit dem geätzten Wafer steht, eine wesentliche Rolle hinsichtlich des Prozessergebnisses spielt.
So führt die bisher eingesetzte, lediglich aufgelegte keramische Platte zu erheblichen Inhomogenitäten der Ätzung von der Mitte des Wafers zum Waferrand hin und insbesondere zu einer Ätzratenüberhöhung im Waferrandbereich, was einer unzureichenden und/oder ungleichmäßigen Wärmeabfuhr von der keramischen Platte, die aufgeheizt schädliche Effekte in ihrer Umgebung, d.h. auch im Waferrandbereich, entwickelt, an die Substratelektrode zugeschrieben wird. Diese Nachteile werden durch die erfindungsgemäßen Haltevorrichtungen überwunden.
Weiterhin ist bei der in Figur 1 skizzierten Konstruktion nachteilig, dass Helium als Konvektionsmedium nur eine vergleichsweise beschränkte Wärmeableitung leisten kann, die nur durch einen größeren Gasdruck steigerbar ist. Hier setzen jedoch die elektrostatischen Haltekräfte üblicher elektrostatischer „Chucks" eine Obergrenze von 10 mbar bis 20 mbar. Auch eine alternative mechanische Waferklemmung im Bereich des Waferrandes bietet keine befriedigende Lösung, da Drücke von mehr als 20 mbar dazu führen können, dass die Wafer unter der dadurch auf sie ausgeübten Kraft brechen. Diese Nachteile werden vor allem durch das in einer erfindungs- gemäßen Ausführungsform eingesetzte elektrisch isolierende Ferroelektrikum oder Piezoelektrikum überwunden, mit denen eine deutliche höhere elektrostatische Klemmkraft auf den Wafer ausübbar ist, und die so eine Erhöhung des Druckes des Konvektionsmediums, insbesondere Helium, auf mehr als 20 mbar erlauben.
Im Übrigen sind die mit bisher üblichen elektrostatischen „Chucks" erreichbaren elektrostatischen Haltekräfte auch deshalb ungenügend, weil sie durch die Durchschlagsfestig- keit der eingesetzten Dielektrika im „Chuck" limitiert werden. Insofern sind die Klemmspannungen bisher auf den Bereich zwischen 1000 V und 2000 V beschränkt. Bei höheren Spannungen nimmt sowohl das Durchschlagsrisiko erheblich zu als auch die Lebensdauer der eingesetzten Dielektrika ab. Mit dem Durchschlagsrisiko einher gehen zudem erhebliche EMV-Risiken (EMV - elektromagnetische Verträglichkeit) , über die Schäden in der Elektronik der Plasmaätzanlage drohen. Auch diese Problematik wird durch die erfindungsgemäße Haltevorrichtung deutlich entschärft.
Im Übrigen ist vorteilhaft, dass die verschiedenen erfindungsgemäßen Haltevorrichtungen, die einerseits auf eine verbesserte und vergleichmäßigtere Wärmeabfuhr von der Rückseite des Substrates und eine gleichmäßigere Wärmeverteilung in der Umgebung des geätzten Substrates abzielen, und die andererseits einer Erhöhung der elektrostatischen Klemmkräfte und einer vereinfachten Fixierung beziehungsweise Lösung des Wafers von der Haltevorrichtung dienen, beliebig miteinander kombinierbar sind.
Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den in den Unteransprüchen genannten Maßnahmen.
Zeichnung
Die Erfindung wird anhand der Zeichnungen und in der nachfolgenden Beschreibung näher erläutert. Es zeigt Figur 1 eine aus dem Stand der Technik bekannte elektrostatische Hal- tevorrichtung, Figur 2 ein erstes Ausführungsbeispiel der Erfindung mit einer gegenüber Figur 1 modifizierten elektrostatischen Haltevorrichtung, Figur 3 ein zweites Ausführungsbeispiel der Erfindung, wobei lediglich der in Figur 2 gestrichelt gekennzeichnete Bereich dargestellt ist, und Figur 4 ein drittes Ausführungsbeispiel der Erfindung, wobei die Kühlung der Rückseite eines in der Vakuumkammer gehaltenen Substrates mit Hilfe eines flüssigen Konvektionsmediums dargestellt ist.
Ausführungsbeispiele Die Figur 1 erläutert zunächst einen aus dem Stand der Technik bekannten elektrostatischen „Chuck", das heißt eine e- lektrostatische Haltevorrichtung für ein Substrat 12, beispielsweise einen üblichen Siliziumwafer . Unter dem Substrat 12 befindet sich ein dieses fixierendes Halteelement 11, beispielsweise ein in Form eines Haltetellers ausgeführter elektrostatischer „Chuck". Das Halteelement 11 ist weiter auf eine metallische Substratelektrode 19 aufgelegt, die ü- ber vorzugsweise keramische Isolatoren 18 mit einem Grund- körper oder Tragkδrper 17 verbunden ist, der ebenfalls aus einem Metall besteht. Zur Gewährleistung der Vakuumdichtigkeit sind zwischen den Isolatoren 18 und der Substratelektrode 19 bzw. zwischen den Isolatoren 18 und dem Grundkörper 17 Dichtungen 21, beispielsweise O-Ringe aus Gummi, vorgese- hen.
In Figur 1 ist weiter dargestellt, dass der Grundkörper 17 über einen metallischen Halter 20 mit der Substratelektrode 19 verbunden ist, wobei zwischen dem Halter 20 und der Sub- stratelektrode 19 ebenfalls vorzugsweise keramische Isolatoren 18 vorgesehen sind, so dass der Grundkörper 17 insgesamt gegenüber der Substratelektrode 19 elektrisch isoliert ist. Darüber hinaus ist auf die Substratelektrode 19 eine keramische Platte als Lastkörper 10 aufgelegt, der so geformt ist, dass er in seiner Mitte eine beispielsweise kreisförmige Öffnung aufweist, die größer als das Substrat 12 ist, und der weiter mittels eines überstehenden Teils 10 x oder einer „Nase" so ausgebildet ist, dass er das Halteelement 11 durch sein Gewicht auf die Substratelektrode 19 drückt . Auf diese Weise belastet der Lastkörper 10 das Halteelement 11 ohne das Substrat 12 abzudecken, so dass dieses von oben beispielsweise einer Plasmaätzung zugänglich ist.
Der Grundkörper 17 gemäß Figur 1 ist geerdet, während die Substratelektrode 19 in bekannter Weise mit einer Hochspan- nungsZuführung 15 verbunden ist, über die sie mit einer Hochfrequenzleistung beaufschlagbar ist . Daneben weist die Substratelektrode 19 dieser gegenüber isolierte Durchführungen, beispielsweise Keramikdurchführungen, auf, so dass über KlemmspannungsZuführungen 16 eine Beaufschlagung des Halteelementes 11 mit einer elektrischen Gleichspannung, beispielsweise einer elektrischen Spannung von 1000 V bis 2000 V, möglich ist. Die Substratelektrode 19 ist dabei gegenüber dieser Spannung elektrisch isoliert, so dass diese lediglich am Halteelement 11 anliegt und dort über eine e- lektrostatische Klemmung bzw. eine durch die über die KlemmspannungsZuführungen 16 induzierte elektrostatische Kraft eine Klemmung oder Fixierung des Substrats 12 auf dem Halteelement 11 bewirkt. Gleichzeitig wird das Halteelement 11 auch durch eine ebensolche elektrostatische Kraft von seiner Unterseite ausgehend gegen die Substratelektrode 19 geklemmt .
Schließlich ist in Figur 1 vorgesehen, dass über eine Zufüh- rung 14 der der Substratelektrode 19 zugewandten Seite des
Halteelements 11 als Konvektionsmedium 30 gasförmiges Helium zuführbar ist, das über in dem Halteelement 11 vorgesehene Kanäle 25 auch in den Bereich zwischen dem Halteelement 11 und dem Substrat 12 vordringen kann. Das Konvektionsmedium 30 dient der Wärmeabfuhr aus dem Bereich zwischen Substratelektrode 19 und Halteelement 11 und aus dem Bereich zwischen dem Halteelement 11 und der Rückseite des Substrates 12. Entsprechend weist der Halteteller 11 auf seiner Oberseite und Unterseite bevorzugt in bekannter Weise eine ent- sprechend strukturierte Haltefläche 13 auf.
Die Figur 2 zeigt ein erstes Ausführungsbeispiel der Erfindung für eine Haltevorrichtung 5, die ähnlich der Haltevorrichtung gemäß Figur 1 aufgebaut ist, bei der jedoch vor al- lern das thermische „Floaten" des in Figur 1 vorgesehenen ke- ramischen Lastkörpers um das Substrat 12 herum beseitigt wurde.
Im Einzelnen ist gemäß Figur 2 vorgesehen, dass mittels ei- 5 nes Aluminiumringes oder eines Eloxalringes oder allgemeiner einer bevorzugt in Form eines Klemmringes ausgeführten Klemmeinrichtung 22 der Lastkörper 10 mit dem geerdeten Grundkörper 17 fest verbunden und so gegen die Oberfläche der Substratelektrode 19 gepresst wird. Dabei ist die Klemm-
L0 einrichtung 22 und die Verbindung der Klemmeinrichtung 22 mit dem Grundkörper 17 über ein Befestigungselement 23 und ein Verbindungselement 24 so ausgeführt, dass der Lastkörper 10, der ohnehin aus einem Isolator wie Keramik oder Quarzglas besteht, und der Grundkörper 17 gegenüber der Sübstrat-
L5 elektrode 19 elektrisch isoliert sind. Das Befestigungselement 23 ist im erläuterten Beispiel eine Schraube, während das Verbindungselement 24 beispielsweise eine Hülse, ein Stab oder ebenfalls eine Schraube ist . Die Verwendung eines Klemmringes als Klemmeinrichtung 22 übt vorteilhaft eine
20 sehr gleichmäßige Klemmkraft auf den Lastkörper 10 aus, so dass die Gefahr eine Abscherens oder Spaltens ausgeschlossen wird.
Insgesamt wird durch die Haltevorrichtung 5 gemäß Figur 2 5 eine verbesserte thermische Ankoppelung des Lastkörpers 10 an die Temperatur der Substratelektrode 19 erreicht, was zu einer signifikanten Verbesserung der Eigenschaften eines Hochratenplasmaätzprozesses, beispielsweise nach Art der DE 42 41 045 Cl, vor allem im Randbereich des Substrates 12 0 führt. Daneben wird darüber auch ein unerwünschter Prozessdrift zwischen einem heißen und einem kalten Anlagezustand vermieden oder reduziert, der wesentlich von einem Aufheizen des Lastkörpers 10, der beispielsweise weiterhin als keramische Platte ausgeführt ist, unmittelbar um das Substrat 12 5 herum resultiert. In einer bevorzugten Ausführungsform des erläuterten Ausführungsbeispiels ist zwischen dem Lastkörper 10 und der Oberfläche der Substratelektrode 19 zusätzlich eine Oberflächenunebenheiten ausgleichende und/oder einen gleichmäßigen, möglichst guten Wärmeabfluss gewährleistende Schicht, vorzugsweise eine Silikonfettschicht oder eine Fettschicht aus einem perfluorierten Fett wie Krytox®-Fett oder Fomblin®- Fett, vorgesehen.
Generell ist wichtig, dass die gewünschte Klemmung über den geerdeten Grundkörper 17 und nicht über die mit einer hochfrequenten Leistung beaufschlagte Substratelektrode 19 selbst erfolgt, da in diesem Fall die Hochfrequenz auf die Klemmeinrichtung 22 einwirkte, was negative Auswirkungen auf den Plasmaätzprozess hätte und auch zu Absputtereffekten führte. Insofern ist es im Fall des erfindungsgemäßen Ausführungsbeispiels gemäß Figur 2 auch aus elektrischen Gründen vorteilhaft, dass der über den Grundkörper 17 geerdete Klemmring 22 um das Substrat 12 herum verläuft und elektrisch leitend ist .
Die Figur 3 zeigt den in Figur 2 gestrichelt gekennzeichneten Ausschnitt aus Figur 2, wobei zunächst erkennbar ist, dass das Halteelement 11 gemäß Figur 2 bevorzugt eine Mehrzahl, beispielsweise 6 bis 8, von dieses durchquerenden Kanälen 25 aufweist, die von der der Substratelektrode 19 zugewandten Seite des Halteelementes 11 bis zu der dem Substrat 12 zugewandten Seite des Halteelementes 11 führen. Ü- ber die Kanäle 25 kann ein mit der Zuführung 14 zugeführtes
Konvektionsmedium in den Bereich unterhalb des Substrates 12 gelangen. Weiter weist das Halteelement 11 auf seiner dem Substrat 12 zugewandten Seite eine in an sich bekannter Weise strukturierte Haltefläche 13 auf, die in dem Ausführungs- beispiel gemäß Figur 2 zunächst von einem Dielektrikum wie A1203 gebildet wird. Durch die strukturierte Haltefläche 13 wird die Unterseite des Substrates 12 bereichsweise von einem dielektrischen Material gestützt, während sich in anderen Bereichen Hohlräume 27 bilden, die von dem Substrat 12 und in dem Halteelement 11 auf seiner Oberfläche vorgesehenen Ausnehmungen begrenzt sind.
Die Hohlräume 27 stehen zumindest teilweise mit den Kanälen 25 in Verbindung, so dass das Konvektionsmedium, beispiels- weise Helium, in diese vordringen kann. Im Übrigen ist in
Figur 3 erkennbar, dass die KlemmspannungsZuführungen 16 bis in eine Umgebung der Oberfläche des Halteelementes 11 reichen, und dass dort eine elektrische Gleichspannung anliegt, die eine elektrostatische Fixierung des Substrates 12 auf dem Halteelement 11 bewirkt. Die Struktur der Kanäle 25 und ihre Ausbildung und Durchführung durch den Haltekörper 11 ist beispielsweise wie bei aus dem Stand der Technik bekannten elektrostatischen „Chucks" ausgeführt.
In einem zweiten Ausführungsbeispiel, das ebenfalls mit Hilfe der Figur 3 erläutert wird, ist alternativ zu dem vorstehenden Ausführungsbeispiel das auf der dem Substrat 12 zugewandten Seite des Halteelementes 11 vorgesehene Dielektrikum A1203 durch ein ferroelektrisches Material oder, bevorzugt, ein piezoelektrisches Material 26 wie eine Blei-Zirkonium- Titanat-Keramik (PZT-Keramik) ersetzt worden, das statt des Al203 nun als Dielektrikum dient. Der Vorteil ist dabei, dass in einem Piezoelektrikum 26 oder einem alternativ einsetzbaren Ferroelektrikum ohnehin bereits vorhandene perma- nente Dipole durch das über die KlemmspannungsZuführung 16 angelegte elektrische Feld bzw. die darüber angelegte elektrische Gleichspannung ausgerichtet, und dieses somit polarisiert wird, so dass die auf das Substrat 12 ausgeübten e- lektrostatischen Klemmkräfte erheblich größer sind als im Fall eines Dielektrikums wie A1203. Die Polarisation unterstützt somit das über die KlemmspannungsZuführungen 16 angelegte äußere elektrische Feld und bewirkt eine Verstärkung der Fixierung des Substrates 12 auf dem Halteelement 11, so dass bei einer gleichen elektrischen Haltespannung nun eine wesentlich höhere Haltekraft auf das Substrat 12 ausgeübt werden kann.
Die gesteigerte elektrostatische Haltekraft erlaubt in einer bevorzugten Weiterführung des Ausführungsbeispiels gemäß Figur 3 nun auch, den Druck des Konvektionsmediums Helium zu erhöhen, und somit die Wärmeabfuhr von der Rückseite des Substrates 12 hin zur Substratelektrode 19 deutlich zu verbessern. Insbesondere wird nun anstelle des ansonsten üb- liehen Druckes des zugeführten Heliums von 10 bis 20 mbar ein Druck von 50 mbar bis 300 mbar, insbesondere von 100 mbar bis 200 mbar eingesetzt, was zu einer um mehrere Größenordnungen bessere Wärmeableitung führt . Der wesentliche Vorteil eines Piezoelektrikums 26 oder Ferroelektrikums auf der dem Substrat 12 zugewandten Seite des Halteelements 11 ist somit in erster Linie nicht die gesteigerte Haltekraft an sich, sondern vor allem der dadurch ermöglichte höhere Druck des Konvektionsmediums 30 im Bereich der Hohlräume 27 zwischen dem Halteelement 11 und dem Substrat 12.
Im Übrigen sei noch erwähnt, dass durch die Verwendung von piezoelektrischen oder ferroelektrischen Dielektrika die induzierten elektrostatischen Haltekräfte mit dem Abschalten des äußeren elektrischen Feldes oder dem Ausschalten der an- gelegten elektrischen Spannungen nicht verschwinden, da vorhandene, zunächst ausgerichtete Dipole dies zumindest weitgehend auch im spannungslosen bzw. feldlosen Zustand bleiben. Daher genügt es im Rahmen dieses Ausführungsbeispiels nun nicht mehr, das äußere Feld oder die von Außen angelegte elektrische Spannung einfach abzuschalten, um das Substrat 12 von dem Halteelement 11 zu lösen. Vielmehr muss nun bei einem Ausladen oder Lösen des Substrates 12 von dem Halteelement 11 ein sogenannter „Depolarisationszyklus" unter Verwendung einer Wechselspannung eingesetzt werden, deren Amplitude beispielsweise langsam von einem Ausgangswert auf Null zurückgefahren wird. Dabei verschwindet die Ausrichtung der Dipolmomente weitgehend, d.h. diese liegen danach in einer chaotischen Richtungsverteilung vor. Dieses, an sich bekannte Verfahren ist üblich beim Entmagnetisieren von Mate- rialien und an dieser Stelle erforderlich, um das Substrat 12 ohne größere Kräfte auch wieder von dem Halteelement 11 trennen zu können. Weiter sei an dieser Stelle noch betont, dass durch die Verwendung eines Piezoelektrikums 26 als dielektrisches Material und den erläuterten Depolarisations- zyklus über den piezoelektrischen Effekt eine vorteilhafte Schwingungsbewegung (Dickenschwingung) in das Piezoelektri- kum 26 induziert wird, was zu einem weiter verbesserten Loslassen des Substrates 12 von dem Halteelement 11 und einem vereinfachten Überwinden vorhandener Adhäsionskräfte zwi- sehen benachbarten Oberflächen führt. Insbesondere verhalten sich mit positiver oder negativer Polarität beaufschlagte Zonen, wie in Figur 3 skizziert, jeweils gegensätzlich, d.h. sie kontrahieren oder expandieren, was das Trennen der Oberflächen wesentlich erleichtert. Zusammenfassend wird durch die Verwendung eines Piezoelektrikums 26 das sogenannte
„Declamping" wesentlich erleichtert, was bei üblichen elektrostatischen „Chucks" immer wieder zum Bruch „angeklebter" Wafer beim Ausladen führt.
Die Figur 4 erläutert ein weiteres Ausführungsbeispiel, wobei nun anstelle eines gasförmigen Konvektionsmediums 30 wie Helium eine Flüssigkeit als Konvektionsmedium 30 oder allgemeiner als Wärmetransportmedium 30 zwischen Substrat 12 und Halteelement 11 und/oder zwischen Halteelement 11 und Sub- stratelektrode 19 dient. Dabei nutzt man aus, dass Flüssig- keiten Wärme wesentlich besser leiten als Gase und selbst Helium signifikant überlegen sind. Andererseits scheiden sehr viele Flüssigkeiten zur Kühlung von Substraten in Plasmaätzanlagen aus, weil sie entweder das Substrat 12 oder die Anlage kontaminieren oder selbst in kleinsten Mengen einen schädlichen Einfluss auf den jeweils durchgeführten Ätzpro- zess ausüben. Eine Ausnahme bilden die Fluorcarbone, d.h. perfluorierte langkettige Alkane oder ähnliche Verbindungen, wie sie beispielsweise von der Firma 3M unter der Bezeich- nung FC77, FC84 oder auch als sogenannte „Performance Flu- ids" („PFxyz") vertrieben werden. Solche Fluorcarbone sind hochrein, da sich darin praktisch keine Stoffe lösen, absolut inert und weisen sehr hohe elektrische Durchschlagfeldstärken auf . Zudem ist das Wärmeleitvermögen von Fluorcarbo- nen ausgezeichnet und ihre Viskosität niedrig.
Zudem werden zum Hochratenätzen in Plasmaätzanlagen in der Regel fluorbasierte Prozesse eingesetzt, so dass Fluorcarbone selbst dann, wenn sie in die Ätzkammer bzw. Vakuumkammer gelangen, in den durchgeführten Ätzprozess nicht eingreifen und keine nachteiligen Auswirkungen auf den Ätzprozess haben.
Insofern ist das mit Hilfe der Figur 4 erläuterte Ausfüh- rungsbeispiel besonders für ein Plasmaätzverfahren nach der Art der DE 42 41 045 Cl geeignet, um eine Wärmeabfuhr oder, falls gewünscht, auch eine Zufuhr von Wärme zu oder von der Rückseite des in einer Vakuumkammer gehaltenen Substrates 12 zu leisten, das beispielsweise einem Wärmeeintrag von dessen Vorderseite ausgesetzt ist.
Im Einzelnen geht das mit Hilfe der Figur 4 erläuterte Aus- führungsbeispiel zunächst von einer Haltevorrichtung 5 gemäß Figur 2, Figur 3 oder auch der aus dem Stand der Technik be- kannten Figur 1 aus, wobei nun jedoch an Stelle des gasför- migen Konvektionsmediums 30 Helium ein flüssiges Konvektionsmedium 30, vorzugsweise ein Fluorcarbon, eingesetzt wird.
Konkret wird das für den jeweils im Einzelfall auftretenden Temperaturbereich ausgewählte Fluorcarbon, beispielsweise das Produkt FC77 der Firma 3M, der Substratelektrode 19 an der Stelle zugeführt, an der ansonsten Helium eingelassen wird. Dazu ist in Figur 4 eine Substratelektrode 19 dargestellt, die eine Zuführung 14 gemäß den Figuren 1 oder 2 aufweist, über die der Oberseite der Substratelektrode 19 das flüssige Konvektionsmedium zugeführt wird. Da sich auf der Substratelektrode 19 das Halteelement 11 befindet, bildet sich zwischen der Substratelektrode und dem Halteelement
11 zunächst ein zweiter Zwischenraum 37 aus. Daneben durch- dringt das zugeführte flüssige Konvektionsmedium 30 das Halteelement 11, beispielsweise durch die Kanäle 25, und dringt in den Bereich der Hohlräume oder Ausnehmungen 27 vor, die sich zwischen Halteelement 11 und dem Substrat 12 befinden.
Zur Bereitstellung des flüssigen Konvektionsmediums ist gemäß Figur 4 zunächst ein üblicher Massenflussregler 31 vorgesehen, dem das flüssige Konvektionsmedium 30 zugeführt wird, und der mit einer Steuereinheit 36 in Verbindung steht. Die Steuereinheit 36 steuert den Zufluss des flüssi- gen Konvektionsmediums 30 über eine übliche Regelung und einen Sollwert/Istwert-Vergleich. Befindet sich ein Substrat
12 auf der Substratelektrode 19 bzw. auf dem Halteelement 11, wird der Massenflussregler 31 und ein weiter vorgesehenes, beispielsweise elektrisch steuerbares Drosselventil 33 von der Steuereinheit 36 so weit geöffnet, dass an einem
Drucksensor 32, beispielsweise einem üblichen Baratron, ein gewünschter Druck des flüssigen Konvektionsmediums 30 an der Rückseite des Substrates 12, d.h. der dem Halteelement 11 zugewandten Seite des Substrates 12, gemessen oder einge- stellt wird. Dieser hydrostatische Druck pflanzt sich unter dem Substrat 12 fort. Da vor dem Öffnen des Massenflussreg- lers 31 unter dem Substrat 12 Vakumbedingungen herrschen, füllt das flüssige Konvektionsmedium 30 somit den gesamten Raum zwischen Substrat 12 und Halteelement 11 und zwischen Halteelement 11 und Substratelektrode 19 augenblicklich aus.
Das flüssige Konvektionsmedium 30 wird bevorzugt in das Zentrum der Substratelektrode 19 und/oder das Zentrum des Substrates 12 geleitet und von dort bevorzugt über eine Sam- melrinne 28 im Randbereich des Substrates 12 wieder gesammelt und über eine Abführung 29 abgeführt. Die Sammelrinne 28 ist, wie in Figur 4 dargestellt, bevorzugt sowohl im Bereich der Substratelektrode 19 in diese eingelassen, als auch in die dem Substrat 12 zugewandten Seite des Halteele- mentes 11. Insgesamt wird auf diese Weise das über die Zuführung 14 zugeführte flüssige Konvektionsmedium 30 über die Sammelrinne 28 wieder gesammelt und über eine nicht dargestellte Vakuumpumpe abgesaugt. Da, wie ausgeführt, keine Kompatibilitätsprobleme zwischen einem Hochratenätzverfahren nach der Art der DE 42 41 045 Cl und einem Fluorcarbon als flüssigem Konvektionsmedium 30 bestehen, kann hierfür ein gewöhnlicher Bypass zu einem Anlagenpumpstand oder einer ohnehin für die Vakuumkammer vorgesehenen Turbomolekularpumpe eingesetzt werden.
Der Abfluss des flüssigen Konvektionsmediums 30 geschieht bevorzugt über die elektrisch oder auch manuell einstellbare Drossel 33, über die ein geringer Fluss von beispielsweise 0,1 ccm/min bis 1 ccm/min entsprechend dem gewünschten Druck an der Rückseite des Substrates 12 einmal fest eingestellt wird. Insofern genügt es auch, den Massenflussregler 31 im Zuflussbereich auf einen sehr kleinen Maximalfluss auszulegen, was das Problem von Flüssigkeitsübertritten in die Prozesskammer deutlich entschärft . Insgesamt fließt das flüssige Konvektionsmedium 30 aus einem Vorratstank, der bevorzugt unter Atmosphärendruck steht, ü- ber den Massenflussregler 31 in den Raum zwischen dem Substrat 12 und der Substratelektrode 19, wobei die Steuerein- heit 36 durch Ansteuern des Massenflussreglers 31 dafür sorgt, dass dort stets ein gewünschter hydrostatischer Druck von beispielsweise 5 bis 20 mbar vorherrscht. Weiter füllt das flüssige Konvektionsmedium 30 möglichst sämtliche Zwischenräume zwischen dem Substrat 12 und der Substratelektro- de 19 aus, und wird schließlich über das Drosselventil 33 wieder abgesaugt, an das sich eine optional vorgesehene Flussmesseinrichtung 34 anschließt, über die die abfließende Menge an Konvektionsmedium 30 bestimmbar ist und an die Steuereinheit 36 übermittelt werden kann.
In bevorzugter Ausgestaltung ist schließlich noch eine Verdampfereinrichtung 35, beispielsweise ein elektrischer Verdampfer, vorgesehen, die sich an das Drosselventil 33 bzw. die Flussmesseinrichtung 34 anschließt, und die das flüssige Konvektionsmedium 30 verdampft und in gasförmigem Zustand der sich daran anschließenden Vakuumpumpe zuführt .
Die Steuereinheit 36 dient bevorzugt auch dazu, eine Fehlfunktion zu erkennen, d.h. in dem Fall, dass das Substrat 12 nicht mehr ausreichend auf dem Halteelement 11 geklemmt ist, was gelegentlich während eines Prozesses vorkommen kann, wird dieser Zustand über die Steuereinheit 36 erkannt, die daraufhin die weitere Zufuhr des flüssigen Konvektionsmediums stoppt. Da in einem solchen Fall der Wärmekontakt zwi- sehen der Substratelektrode 19 und dem Substrat 12 ohnehin verloren ist, muss der durchgeführte Prozess in jedem Fall gestoppt werden, bevor es zu einer thermischen Überhitzung und damit zu einer Zerstörung des als Substrat 12 eingesetzten Siliziumwafers kommt. Zwar ist ein Fluorcarbon als flüssiges Konvektionsmedium 30, wie bereits ausgeführt, für einen Plasmaätzprozess nach der DE 42 41 045 Cl an sich unschädlich und schadet auch der eingesetzten Vakuumanlage nicht, trotzdem sollte die Menge an Fluorcarbon, die in die Ätzkammer eintritt, stets so gering wie möglich gehalten werden. Dieses Ziel wird dadurch erreicht, dass die Steuereinheit 36 die von dem Massenfluss- regler 31 detektierte zugeführte Menge an flüssigem Konvektionsmedium 30 ständig mit der von der Flussmesseinrichtung 34 detektierten abfließenden Menge an flüssigem Konvektionsmedium 30 vergleicht. Tritt bei diesem Vergleich eine über gewisse Toleranzen hinausgehende Diskrepanz auf, wird die weitere Zufuhr des flüssigen Konvektionsmediums 30 über die Steuereinheit 36 gestoppt und der Prozess mit einer Fehler- meidung beendet. Daneben ist dann vorgesehen, dass über eine Vakuumabsaugung die Zwischenräume 27, 37 zwischen dem Substrat 12 und der Substratelektrode 19 rasch geleert werden, so dass sich dort bei einem nachfolgenden Ausladen des nicht korrekt geklemmten Substrates 12 kein flüssiges Konvektions- medium 30 mehr befindet.
Alternativ zu einer Messung der abfließenden Menge an flüssigem Konvektionsmedium 30 ist es ebenso möglich, das Drosselventil 33 einmalig zu kalibrieren, und damit bei einer festen Position des Drosselventils 33 die Menge an über den Massenflussregler 31 zuzuführendem flüssigen Konvektionsmedium 30 zu bestimmen, die erforderlich ist, um den gewünschten hydrostatischen Druck als Funktion der Zeit aufzubauen. Dieser Wert oder diese Wertetabelle in der Form „Druck als Funktion des Flusses" wird daraufhin von der Steuereinheit
36 herangezogen, um bei Abweichungen, insbesondere Überhöhungen, dieses Zuflusswertes sofort ein Leck zu erkennen und den Prozess sowie die weitere Zufuhr des Konvektionsmediums 30 zu unterbrechen. Im Übrigen ist, anders als bei einer Verwendung von gasförmigem Helium als Konvektionsmedium, wo eine Leckage im Elektrodenbereich stets vorhanden ist, da sich Helium über eine elektrostatische Klemmung des Substrates 12 niemals vollständig abdichten lässt, eine Flüssig- keits-Leckage bei einem korrekt geklemmten Substrat 12 äußerst gering, so dass das Drosselventil 33 auf sehr kleine Werte eingestellt werden kann. Zudem muss nun von der Steuereinheit 36 auch kein permanentes Leck als entsprechender Offset oder Sicherheitsvorhalt mehr berücksichtigt werden, wie dies bei der Heliumrückseitenkühlung der Fall ist.
Schließlich ist selbstverständlich, dass die erläuterte Sicherheitseinrichtung, die zum Abschalten des Prozesses führt, in den ersten Sekunden nach dem Beladen des Substrates 12 deaktiviert werden muss, da in dieser Anfangsphase zunächst das flüssige Konvektionsmedium 30 in die vorhandenen Zwischenräume 27, 37 fließen und diese ausfüllen muss, bevor ein Abfluss über die Sammelrinne 28 stattfinden kann. Umgekehrt wird vor dem Ausladen des Substrates 12, das heißt bei abgeschalteter Zufuhr des Konvektionsmediums 30, nur noch ein Abfließen festgestellt, so dass die Vakuumpumpe den Bereich unterhalb des Substrates 12 evakuiert, bevor dieses schließlich trocken von dem Halteelement 11 abgehoben und ausgeladen werden kann.
Die erwähnte, sich durch Verwendung eines flüssigen Konvektionsmediums 30 einstellende gesteigerte elektrische Durchschlagsfestigkeit der Haltevorrichtung 5 resultiert weiter auch daraus, dass das Durchschlagen eines Dielektrikums im Wesentlichen von isolierten, punktuellen Defekten wie soge- nannten Pinholes, Hohlräumen, Einschlüssen, Rissen und Gräben mit lokal herabgesetzter Spannungsfestigkeit ausgeht, die lokal auf der Oberfläche des Dielektrikums vorhanden sind und als schwächste Punkte einer ansonsten intakten O- berfläche des elektrostatischen Halteelementes 11 das Versa- gen des gesamten Bauteils bestimmen. Daher wird, obwohl der größte Teil der Oberfläche des elektrostatischen Halteelementes 11 durchaus höhere elektrische Spannungen oder e- lektrische Felder tolerieren würde, die tatsächlich appli- zierbare elektrische Spannung durch einige wenige Punktde- fekte limitiert . Da bei dem mit Hilfe der Figur 4 erläuterten Ausführungsbeispiel das gesamte elektrostatische Halteelement 11 bei Betrieb in das flüssige, dielektrische Konvektionsmedium 30 mit hoher elektrischer Durchschlagsfestigkeit und selbstlöschenden Eigenschaften eingebettet ist, werden solche Punktdefekte durch dieses geheilt. Insgesamt führt auch dieser Effekt zu weiter deutlich höheren Klemmkräften und einem sichereren Betrieb der gesamten Haltevorrichtung 5 gegenüber dem Risiko elektrischer Durchschläge.

Claims

Ansprüche
1. Haltevorrichtung, insbesondere zum Fixieren eines
Halbleiterwafers in einer Plasmaätzvorrichtung, mit einem auf einer Substratelektrode (19) angeordneten Halteelement (11) , auf dem ein Substrat (12) , insbesondere der Halblei- terwafer, elektrostatisch fixierbar ist, dadurch gekenn- zeichnet, dass ein auf der Substratelektrode (19) angeordneter Lastkörper (10) vorgesehen ist, der das Halteelement (11) auf die Substratelektrode (19) drückt, wobei der Last- körper (10) über eine den Lastkörper (10) auf die Substrat- elektrode (19) pressende Klemmeinrichtung (22, 23, 24) mit einem die Substratelektrode (19) tragenden Grundkörper (17) verbunden ist, und wobei der Lastkörper (10) und der Grundkörper (17) gegenüber der Substratelektrode (19) elektrisch isoliert sind.
2. Haltevorrichtung, insbesondere zum Fixieren eines
Halbleiterwafers in einer Plasmaätzvorrichtung, mit einem auf einer Substratelektrode (19) angeordneten Halteelement (11) , auf dem ein Substrat (12) , insbesondere der Halblei- terwafer, elektrostatisch fixierbar ist, dadurch gekenn- zeichnet, dass zumindest die dem Substrat (12) zugewandte
Seite des Halteelementes (11) zumindest oberflächlich ein e- lektrisch isolierendes Ferroelektrikum oder ein elektrisch isolierendes Piezoelektrikum (26) aufweist, über das mittels einer elektrisch induzierten Polarisation eine elektrostati- sehe Kraft von dem Halteelement (11) auf das Substrat (12) ausübbar ist .
3. Haltevorrichtung, insbesondere zum Fixieren eines Halbleiterwafers in einer Plasmaätzvorrichtung, mit einem auf einer Substratelektrode (19) angeordneten Halteelement (11) , auf dem ein Substrat (12) , insbesondere der Halblei- terwafer, elektrostatisch fixierbar ist, dadurch gekennzeichnet, dass eine Einrichtung (30, 31, 32, 33, 34, 35, 36) vorgesehen ist, mit der ein flüssiges Konvektionsmedium (30) über mindestens eine Zuführung (14) in einen von dem Halte- element (11) und dem darauf angeordneten Substrat (19) zumindest bereichsweise zwischen beiden gebildeten ersten Zwischenraum (27) zuführbar, und von dort über mindestens eine Abführung (29) wieder abführbar ist.
4. Haltevorrichtung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass das Halteelement (11) in Form eines Haltetellers ausgebildet ist, und zumindest auf seiner dem Sub- strat (12) zugewandten Seite ein Dielektrikum wie A1203, ein Ferroelektrikum, oder ein Piezoelektrikum (26) wie Blei- Zirkonat-Titanat-Keramik (PZT-Keramik) , insbesondere in Form einer entsprechenden Schicht oder Beschichtung, aufweist, das das Halteelement (11) elektrisch gegenüber dem Substrat (12) isoliert.
5. Haltevorrichtung nach Anspruch 2 oder 4, dadurch gekennzeichnet, dass elektrische Bauelemente vorgesehen sind, mit denen in dem Ferroelektrikum oder dem Piezoelektrikum (26) vorhandene permanente Dipole insbesondere zeitweilig derart ausrichtbar sind, das zumindest während der Zeitdauer des ausgerichteten Zustandes eine Fixierung oder Verstärkung der Fixierung des auf dem Halteelement (11) angeordneten Substrates (12) induziert wird, und/oder dass elektrische Bauelemente vorgesehen sind, mit denen in dem Ferroelektri- kum oder dem Piezoelektrikum (26) vorhandene permanente Dipole insbesondere zeitweilig derart in ihrer Ausrichtung einstellbar, veränderbar oder in einen im statistischen Mittel zumindest nahezu unausgerichteten Zustand überführbar sind, dass darüber zumindest während dieser Zeitdauer ein Loslösen eines auf dem Halteelement (11) angeordneten Substrates (12) von dem Halteelement (11) induziert oder erleichtert wird.
6. Haltevorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass ein auf der Substratelektrode (19) angeordneter Lastkörper (10) vorgesehen ist, der das Halteelement (11) auf die Substratelektrode (19) presst.
7. Haltevorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Lastkörper (10) über eine Klemmeinrichtung (22, 23, 24) mit einem die Substratelektrode (19) tragenden Grundkörper (17) verbunden ist, wobei die Klemmeinrichtung (22, 23, 24) den Lastkörper (10) auf die Substratelektrode (19) presst, und wobei der Lastkörper (10) und der Grundkörper (17) gegenüber der Substratelektrode (19) elektrisch i- soliert sind.
8. Haltevorrichtung nach mindestens einem der vorangehen- den Ansprüche, dadurch gekennzeichnet, dass der Lastkörper
(10) eine keramische, insbesondere im Wesentlichen ringförmige Platte oder Blende mit einer Öffnung ist, wobei die Öffnung derart dimensioniert und angeordnet ist, dass die dem Halteelement (11) abgewandte Oberfläche des Substrates (12) insbesondere vollständig zugänglich ist.
9. Haltevorrichtung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass Mittel vorgesehen sind, mit denen die Substratelektrode (19) mit einer insbesondere hochfrequenten Spannung beaufschlagbar ist.
10. Haltevorrichtung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Halteelement (11) mit mindestens einem mit einer Zuführung (14) für ein Konvektionsmedium, insbesondere das flüssige Konvektionsmedium (30) , verbundenen Kanal (25) oder gasdurchlässigen oder flüssigkeitsdurchlässigen Bereich versehen ist, mit dem der dem Substrat (12) zugewandten Oberfläche des Halteelementes (11) das Konvektionsmedium (30) , eine Flüssigkeit (30) wie ein Fluorcarbon oder ein perfluoriertes, langkettiges Alkan, oder ein Gas wie Helium, zuführbar ist.
11. Haltevorrichtung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die dem Substrat (12) zugewandte Oberfläche des Halteelementes (11) mit einer mindestens eine Ausnehmung (27) definierenden Strukturierung versehen ist, wobei die Ausnehmungen (27) mit mindestens einem der Kanäle (25) oder gasdurchlässigen oder flüssigkeitsdurchlässigen Bereiche in Verbindung stehen, und darüber mit dem Konvektionsmedium (30) beaufschlagbar sind.
12. Haltevorrichtung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Substrat- elektrode (19) von dem insbesondere plattenförmigen Grund- körper (17) über einen Isolator (18) , insbesondere einen o- der mehrere Keramikringe, elektrisch isoliert ist.
13. Haltevorrichtung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Klemmein- richtung (22, 23, 24) einen insbesondere metallischen Klemmring (22) aufweist, der über mindestens ein insbesondere metallisches Befestigungselement (23) und/oder mindestens ein insbesondere metallisches Verbindungselement (24) elektrisch leitend mit dem Grundkörper (17) verbunden ist.
14. Haltevorrichtung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Grundkörper (17) und/oder die Klemmeinrichtung (22, 23, 24) geerdet ist.
15. Haltevorrichtung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass Bauteile vorgesehen sind, mit denen zwischen dem Substrat (12) und dem Halteelement (11) und/oder zwischen dem Halteelement (11) und der Substratelektrode (19) eine Klemmspannung anlegbar ist, die die elektrostatische Fixierung des Substrates (12) auf dem Halteelement (11) bewirkt.
16. Haltevorrichtung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Klemmring (22) ein insbesondere oberflächlich eloxierter Aluminiumring ist .
17. Haltevorrichtung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Lastkörper (10) bereichsweise mit der Substratelektrode (19) in Kontakt ist und/oder dass zwischen dem Lastkörper (10) und der Substratelektrode (19) eine Oberflächenunebenheiten ausgleichende und/oder einen gleichmäßigen, möglichst guten Wärme- abfluss gewährleistende Schicht, insbesondere eine Silikon- fettschicht oder eien perfluorierte Fettschicht, vorgesehen ist .
18. Haltevorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Einrichtung (30, 31, 32, 33, 34, 35, 36) vorgesehen ist, mit der ein flüssiges oder gasförmiges Konvektionsmedium (30) über mindestens eine Zuführung (14) in einen von dem Halteelement (11) und dem darauf angeordneten Substrat (12) zumindest bereichsweise zwischen beiden gebildeten ersten Zwischenraum (27) zuführbar, und von dort über mindestens eine Abführung (29) wieder abführbar ist.
19. Haltevorrichtung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Einrichtung
(31, 32, 33, 34, 35, 36) ein insbesondere elektrisch einstellbares Drosselventil oder einen Massenflussregler (31) , einen Drucksensor (32) , eine elektronische Steuereinheit
(36) und eine Verdampfereinrichtung (35) , sowie gegebenenfalls ein insbesondere manuell einstellbares Drosselventil
(33) und/oder eine Flussmesseinrichtung (34) aufweist.
20. Haltevorrichtung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Substratelektrode (19) eine oder mehrere, insbesondere in ihrem Zentrum oder einer Umgebung ihres Zentrums sie durchquerende Zuführungen (14) aufweist, mit denen das Konvektionsmedium
(30) einem mit zumindest einem Teil der Kanäle (25) oder der gas- oder flüssigkeitsdurchlässigen Bereiche in Verbindung stehenden zweiten Zwischenraum (37) zwischen dem Halteelement (11) und der Substratelektrode (19) zuführbar ist, und dass die Substratelektrode (19) eine oder mehrere, insbesondere von dem Zentrum der Substratelektrode möglichst weit entfernte, sie durchquerende Abführungen (29) aufweist, mit denen das Konvektionsmedium (30) aus dem zweiten Zwischenraum (37) abführbar ist.
21. Haltevorrichtung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Abführung (29) im Bereich der dem Halteelement (11) zugewandten Oberfläche der Substratelektrode (19) mit einer insbesondere in die Substratelektrode (19) integrierten Sammelrinne (28) für das Konvektionsmedium (30) in Verbindung steht, und dass die Sammelrinne (28) zumindest mit einem Teil der Kanäle (25) o- der der gas- oder flüssigkeitsdurchlässigen Bereiche und/oder dem zweiten Zwischenraum (37) verbunden ist.
22. Haltevorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass mindestens einer der Kanäle (25) oder der gas- oder flüssigkeitsdurchlässigen Bereiche mindestens einen zwischen dem Substrat (12) und dem Hal- teelement (11) befindlichen ersten Zwischenraum (27) mit mindestens einem zwischen dem Halteelement (11) und der Substratelektrode (19) befindlichen zweiten Zwischenraum (37) verbindet .
23. Verfahren zur Zufuhr oder Abfuhr von Wärme von der
Rückseite eines in einer Vakummkammer gehaltenen Substrates (12) , wobei die Wärme insbesondere durch eine Plasmaätzung in die Vorderseite des Substrates (12) eingetragen wird, dadurch gekennzeichnet, dass das Substrat (12) mit einer Hal- tevorrichtung (5) nach einem der vorangehenden Ansprüche in der Vakuumkammer gehalten, und die Rückseite des Substrates (12) mit einem flüssigen Konvektionsmedium (30) , insbesondere einem Fluorcarbon, beaufschlagt wird.
PCT/DE2002/003767 2001-11-16 2002-10-04 Haltevorrichtung und verfahren zur wärmezufuhr oder wärmeabfuhr von einem substrat WO2003046953A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/495,648 US7149070B2 (en) 2001-11-16 2002-10-04 Holding device, in particular for fixing a semiconductor wafer in a plasma etching device, and method for supplying heat to or dissipating heat from a substrate
EP02781125A EP1459354B1 (de) 2001-11-16 2002-10-04 Haltevorrichtung und verfahren zur wärmezufuhr oder wärmeabfuhr von einem substrat
JP2003548280A JP4550420B2 (ja) 2001-11-16 2002-10-04 保持装置、特にプラズマエッチング装置内で半導体ウェーハを位置固定するための保持装置、および基板への熱供給または基板からの熱導出のための方法
DE50207232T DE50207232D1 (de) 2001-11-16 2002-10-04 Haltevorrichtung und verfahren zur wärmezufuhr oder wärmeabfuhr von einem substrat
KR1020047007351A KR101006337B1 (ko) 2001-11-16 2002-10-04 플라즈마 에칭 장치에 반도체 웨이퍼를 고정하기 위한 고정 장치 및 기판에 열을 공급하거나 또는 상기 기판으로부터 열을 방출하기 위한 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10156407A DE10156407A1 (de) 2001-11-16 2001-11-16 Haltevorrichtung, insbesondere zum Fixieren eines Halbleiterwafers in einer Plasmaätzvorrichtung, und Verfahren zur Wärmezufuhr oder Wärmeabfuhr von einem Substrat
DE10156407.4 2001-11-16

Publications (2)

Publication Number Publication Date
WO2003046953A2 true WO2003046953A2 (de) 2003-06-05
WO2003046953A3 WO2003046953A3 (de) 2004-07-15

Family

ID=7706034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/003767 WO2003046953A2 (de) 2001-11-16 2002-10-04 Haltevorrichtung und verfahren zur wärmezufuhr oder wärmeabfuhr von einem substrat

Country Status (6)

Country Link
US (1) US7149070B2 (de)
EP (2) EP1655764A3 (de)
JP (1) JP4550420B2 (de)
KR (1) KR101006337B1 (de)
DE (2) DE10156407A1 (de)
WO (1) WO2003046953A2 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10214620B4 (de) 2002-04-03 2010-02-04 Robert Bosch Gmbh Verfahren zur plasmalosen Gasphasenätzung eines Siliziumwafers und Vorrichtung zu deren Durchführung
US7320733B2 (en) * 2003-05-09 2008-01-22 Sukegawa Electric Co., Ltd. Electron bombardment heating apparatus and temperature controlling apparatus and control method thereof
US8741098B2 (en) * 2006-08-10 2014-06-03 Tokyo Electron Limited Table for use in plasma processing system and plasma processing system
JP5233093B2 (ja) * 2006-08-10 2013-07-10 東京エレクトロン株式会社 プラズマ処理装置用の載置台及びプラズマ処理装置
US7508494B2 (en) * 2006-12-22 2009-03-24 Asml Netherlands B.V. Lithographic apparatus and a subtrate table for exciting a shockwave in a substrate
FR2929758B1 (fr) * 2008-04-07 2011-02-11 Commissariat Energie Atomique Procede de transfert a l'aide d'un substrat ferroelectrique
US20100000684A1 (en) * 2008-07-03 2010-01-07 Jong Yong Choi Dry etching apparatus
US8449679B2 (en) 2008-08-15 2013-05-28 Lam Research Corporation Temperature controlled hot edge ring assembly
CN103107080B (zh) * 2013-01-11 2017-02-08 无锡华润上华半导体有限公司 一种解决深沟槽刻蚀工艺中圆片表面糊胶的刻蚀方法
JP5938716B2 (ja) * 2013-11-01 2016-06-22 パナソニックIpマネジメント株式会社 プラズマ処理装置及びプラズマ処理方法
US9101038B2 (en) 2013-12-20 2015-08-04 Lam Research Corporation Electrostatic chuck including declamping electrode and method of declamping
US10002782B2 (en) 2014-10-17 2018-06-19 Lam Research Corporation ESC assembly including an electrically conductive gasket for uniform RF power delivery therethrough
US20160223269A1 (en) 2015-02-04 2016-08-04 Outlast Technologies, LLC Thermal management films containing phase change materials
KR20190106119A (ko) * 2018-03-07 2019-09-18 어플라이드 머티어리얼스, 인코포레이티드 부분적으로 전극이 형성된 바이폴라 정전척
US10867829B2 (en) * 2018-07-17 2020-12-15 Applied Materials, Inc. Ceramic hybrid insulator plate
US11587809B2 (en) * 2020-09-30 2023-02-21 Advanced Semiconductor Engineering, Inc. Wafer supporting mechanism and method for wafer dicing
CN113035756A (zh) * 2021-03-24 2021-06-25 绍兴同芯成集成电路有限公司 一种利用玻璃载板进行超薄晶圆制程基板散热的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073716A (en) * 1990-05-10 1991-12-17 At&T Bell Laboratories Apparatus comprising an electrostatic wafer cassette
EP0511928A1 (de) * 1991-04-25 1992-11-04 International Business Machines Corporation Kühlsystem mit Flüssigkeitsfilmzwischenschicht zur Bearbeitung von Halbleiterscheiben
EP0669644A2 (de) * 1994-02-28 1995-08-30 Applied Materials, Inc. Elektrostatische Halteplatte
EP0755066A1 (de) * 1995-07-18 1997-01-22 Applied Materials, Inc. Elektrostatische Halteplatte
EP0777262A1 (de) * 1995-11-28 1997-06-04 Applied Materials, Inc. Waferheizanordnung
US5885423A (en) * 1996-03-29 1999-03-23 Lam Research Corporation Cammed nut for ceramics fastening
US5904776A (en) * 1996-04-26 1999-05-18 Applied Materials, Inc. Conduits for flow of heat transfer fluid to the surface of an electrostatic chuck
US5986875A (en) * 1994-01-31 1999-11-16 Applied Materials, Inc. Puncture resistant electrostatic chuck
JP2000031253A (ja) * 1998-07-10 2000-01-28 Komatsu Ltd 基板処理装置及び方法
WO2000070657A1 (en) * 1999-05-17 2000-11-23 Applied Materials, Inc. Chuck having pressurized zones of heat transfer gas
US20010005595A1 (en) * 1999-12-28 2001-06-28 Nikon Corporation Wafer chucks and the like including substrate-adhesion detection and adhesion correction
EP1114805A1 (de) * 1998-08-26 2001-07-11 Toshiba Ceramics Co., Ltd. Plasma resistentes element und plasmabearbeitungsgerät welches dieses benutzt

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156321A (ja) * 1986-12-20 1988-06-29 Fujitsu Ltd プラズマ処理装置
US5203401A (en) * 1990-06-29 1993-04-20 Digital Equipment Corporation Wet micro-channel wafer chuck and cooling method
JPH04206948A (ja) * 1990-11-30 1992-07-28 Kyocera Corp 静電チャック
DE4241045C1 (de) * 1992-12-05 1994-05-26 Bosch Gmbh Robert Verfahren zum anisotropen Ätzen von Silicium
JP3058530B2 (ja) * 1993-02-20 2000-07-04 東京エレクトロン株式会社 プラズマ処理装置
KR960006956B1 (ko) * 1993-02-06 1996-05-25 현대전자산업주식회사 이시알(ecr) 장비
JPH06283594A (ja) * 1993-03-24 1994-10-07 Tokyo Electron Ltd 静電チャック
JPH06349938A (ja) 1993-06-11 1994-12-22 Tokyo Electron Ltd 真空処理装置
JPH07147273A (ja) * 1993-11-24 1995-06-06 Tokyo Electron Ltd エッチング処理方法
US5885469B1 (en) * 1996-11-05 2000-08-08 Applied Materials Inc Topographical structure of an electrostatic chuck and method of fabricating same
JPH07235588A (ja) * 1994-02-24 1995-09-05 Hitachi Ltd ウエハチャック及びそれを用いたプローブ検査方法
JPH07273174A (ja) 1994-03-29 1995-10-20 Matsushita Electric Ind Co Ltd 基板固定方法および基板固定装置
US5671116A (en) * 1995-03-10 1997-09-23 Lam Research Corporation Multilayered electrostatic chuck and method of manufacture thereof
US5835334A (en) * 1996-09-30 1998-11-10 Lam Research Variable high temperature chuck for high density plasma chemical vapor deposition
US5748436A (en) * 1996-10-02 1998-05-05 Advanced Ceramics Corporation Ceramic electrostatic chuck and method
JPH1154482A (ja) * 1997-08-05 1999-02-26 Hitachi Ltd 半導体装置の製造方法および装置ならびにワークの処理方法
US6063198A (en) * 1998-01-21 2000-05-16 Applied Materials, Inc. High pressure release device for semiconductor fabricating equipment
JPH11265879A (ja) 1998-03-17 1999-09-28 Matsushita Electric Ind Co Ltd 真空処理装置
US6129808A (en) * 1998-03-31 2000-10-10 Lam Research Corporation Low contamination high density plasma etch chambers and methods for making the same
JPH11330056A (ja) * 1998-05-21 1999-11-30 Hitachi Ltd 電極のクリーニング方法
JP3980187B2 (ja) * 1998-07-24 2007-09-26 日本碍子株式会社 半導体保持装置、その製造方法およびその使用方法
US6267839B1 (en) * 1999-01-12 2001-07-31 Applied Materials, Inc. Electrostatic chuck with improved RF power distribution
JP2000299371A (ja) * 1999-04-12 2000-10-24 Taiheiyo Cement Corp 静電チャックデバイス
US6162336A (en) * 1999-07-12 2000-12-19 Chartered Semiconductor Manufacturing Ltd. Clamping ring design to reduce wafer sticking problem in metal deposition
JP2001189374A (ja) * 1999-12-28 2001-07-10 Nikon Corp 基板処理装置及び荷電粒子線露光装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073716A (en) * 1990-05-10 1991-12-17 At&T Bell Laboratories Apparatus comprising an electrostatic wafer cassette
EP0511928A1 (de) * 1991-04-25 1992-11-04 International Business Machines Corporation Kühlsystem mit Flüssigkeitsfilmzwischenschicht zur Bearbeitung von Halbleiterscheiben
US5986875A (en) * 1994-01-31 1999-11-16 Applied Materials, Inc. Puncture resistant electrostatic chuck
EP0669644A2 (de) * 1994-02-28 1995-08-30 Applied Materials, Inc. Elektrostatische Halteplatte
EP0755066A1 (de) * 1995-07-18 1997-01-22 Applied Materials, Inc. Elektrostatische Halteplatte
EP0777262A1 (de) * 1995-11-28 1997-06-04 Applied Materials, Inc. Waferheizanordnung
US5885423A (en) * 1996-03-29 1999-03-23 Lam Research Corporation Cammed nut for ceramics fastening
US5904776A (en) * 1996-04-26 1999-05-18 Applied Materials, Inc. Conduits for flow of heat transfer fluid to the surface of an electrostatic chuck
JP2000031253A (ja) * 1998-07-10 2000-01-28 Komatsu Ltd 基板処理装置及び方法
EP1114805A1 (de) * 1998-08-26 2001-07-11 Toshiba Ceramics Co., Ltd. Plasma resistentes element und plasmabearbeitungsgerät welches dieses benutzt
WO2000070657A1 (en) * 1999-05-17 2000-11-23 Applied Materials, Inc. Chuck having pressurized zones of heat transfer gas
US20010005595A1 (en) * 1999-12-28 2001-06-28 Nikon Corporation Wafer chucks and the like including substrate-adhesion detection and adhesion correction

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 03, 28. April 1995 (1995-04-28) -& JP 06 349938 A (TOKYO ELECTRON LTD), 22. Dezember 1994 (1994-12-22) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 01, 31. Januar 1996 (1996-01-31) -& JP 07 235588 A (HITACHI LTD), 5. September 1995 (1995-09-05) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 14, 22. Dezember 1999 (1999-12-22) -& JP 11 265879 A (MATSUSHITA ELECTRIC IND CO LTD), 28. September 1999 (1999-09-28) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 04, 31. August 2000 (2000-08-31) -& JP 2000 031253 A (KOMATSU LTD), 28. Januar 2000 (2000-01-28) *

Also Published As

Publication number Publication date
US7149070B2 (en) 2006-12-12
JP4550420B2 (ja) 2010-09-22
WO2003046953A3 (de) 2004-07-15
EP1655764A2 (de) 2006-05-10
US20050083634A1 (en) 2005-04-21
JP2005512310A (ja) 2005-04-28
KR20040053310A (ko) 2004-06-23
DE50207232D1 (de) 2006-07-27
DE10156407A1 (de) 2003-06-05
EP1459354A2 (de) 2004-09-22
EP1459354B1 (de) 2006-06-14
KR101006337B1 (ko) 2011-01-10
EP1655764A3 (de) 2012-03-28

Similar Documents

Publication Publication Date Title
EP1459354B1 (de) Haltevorrichtung und verfahren zur wärmezufuhr oder wärmeabfuhr von einem substrat
EP1604384B1 (de) Anlage zur bearbeitung eines substrats
DE69631523T2 (de) Mehrschichtiger elektrostatischer substrathalter und verfahren zu seiner herstellung
AT506622B1 (de) Vorrichtung und verfahren zum aufbringen und/oder ablösen eines wafers auf einen/von einem träger
DE69530801T2 (de) Montageelement und methode zum klemmen eines flachen, dünnen und leitfähigen werkstückes
DE60037885T2 (de) Methode zur elektrostatischen Anziehung und Verarbeitung eines isolierneden Glassubstrates
DE102014200869B4 (de) Integrierter Kondensator und Verfahren zum Herstellen desselben und dessen Verwendung
US9887117B2 (en) Electrostatic chuck and semiconductor-liquid crystal manufacturing apparatus
EP3312871A1 (de) Aufnahmeeinrichtung zur aufnahme eines substratstapels
US11817339B2 (en) Electrostatic chuck device and method for manufacturing same
DE10296932T5 (de) Plasmabehandlungeinrichtung und Plasmabehandlungsverfahren
DE102017101334A1 (de) Wärmeschutz für kammertür und damit hergestellte vorrichtungen
DE112014003838T5 (de) Verfahren zur Herstellung einer Halbleitervorrichtung
EP1387392B1 (de) Elektrostatischer Greifer
KR20020016492A (ko) 고속 반도체회로의 고수율 플라즈마가공을 행하는플라즈마처리장치 및 방법
WO2018024743A1 (en) Use of an electric field for detaching a piezoelectric layer from a donor substrate
DE10214620B4 (de) Verfahren zur plasmalosen Gasphasenätzung eines Siliziumwafers und Vorrichtung zu deren Durchführung
WO2003008323A2 (de) Hebe- und stützvorrichtung
US8052364B2 (en) Coupling member and plasma processing apparatus
KR20030082473A (ko) 정전 흡착 스테이지 및 기판 처리 장치
DE10235814B3 (de) Verfahren zur lösbaren Montage eines zu prozessierenden Halbleitersubstrats auf einem Trägerwafer
DE10339997B4 (de) Träger für einen Wafer, Verfahren zum Herstellen eines Trägers und Verfahren zum Handhaben eines Wafers
KR20060077667A (ko) 반도체 웨이퍼의 정전척
DE2709107A1 (de) Verfahren zum einebnen mikroskopischer rauhigkeiten in der oberflaeche eines festkoerpersubstrates
WO2020216612A1 (de) Elektromechanischer aktor mit keramischer isolierung und verfahren zu dessen herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002781125

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047007351

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003548280

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002781125

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10495648

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002781125

Country of ref document: EP