WO2003063576A2 - Arylsulfonamidobenzylic compounds - Google Patents

Arylsulfonamidobenzylic compounds Download PDF

Info

Publication number
WO2003063576A2
WO2003063576A2 PCT/US2003/003149 US0303149W WO03063576A2 WO 2003063576 A2 WO2003063576 A2 WO 2003063576A2 US 0303149 W US0303149 W US 0303149W WO 03063576 A2 WO03063576 A2 WO 03063576A2
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
phenyl
group
heteroalkyl
independently selected
Prior art date
Application number
PCT/US2003/003149
Other languages
French (fr)
Other versions
WO2003063576A3 (en
Inventor
Xian Yun Jiao
Frank Kayser
David J. Kopecky
Sharon Mckendry
Derek E. Piper
Andrew K. Shiau
Original Assignee
Tularik Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tularik Inc. filed Critical Tularik Inc.
Priority to EP03735124A priority Critical patent/EP1476423B1/en
Priority to CA002474433A priority patent/CA2474433A1/en
Priority to AU2003210811A priority patent/AU2003210811B2/en
Priority to JP2003563290A priority patent/JP4434744B2/en
Priority to DE60324104T priority patent/DE60324104D1/en
Publication of WO2003063576A2 publication Critical patent/WO2003063576A2/en
Publication of WO2003063576A3 publication Critical patent/WO2003063576A3/en
Priority to AU2008243261A priority patent/AU2008243261A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/32Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/33Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/15Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C311/21Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/26Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C317/32Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/32Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/33Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/333Radicals substituted by oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/32Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/33Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/335Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/42Radicals substituted by singly-bound nitrogen atoms having hetero atoms attached to the substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/61Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms not forming part of a nitro radical, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/12Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/14Radicals substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D257/04Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D277/24Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D277/28Radicals substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/30Hetero atoms other than halogen
    • C07D333/34Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • PROGRAM LISTING APPENDIX SUBMITTED ON A COMPACT DISK PROGRAM LISTING APPENDIX SUBMITTED ON A COMPACT DISK.
  • Cholesterol is used for the synthesis of bile acids in the liver, the manufacture and repair of cell membranes, and the synthesis of steroid hormones.
  • the average American consumes about 450 mg of cholesterol each day and produces an additional 500 to 1,000 mg in the liver and other tissues.
  • Another source is the 500 to 1,000 mg of biliary cholesterol that is secreted into the intestine daily; about 50 percent is reabsorbed (enterohe atic circulation).
  • Excess accumulation of cholesterol in the arterial walls can result in atherosclerosis, which is characterized by plaque formation. The plaques inhibit blood flow, promote clot formation and can ultimately cause heart attacks, stroke and claudication.
  • liver X receptors LXRs
  • LXRs were first identified as orphan members of the nuclear receptor superfamily whose ligands and functions were unknown.
  • Two LXR proteins ( ⁇ and ⁇ ) are l ⁇ iown to exist in mammals.
  • the expression of LXR ⁇ is restricted, with the highest levels being found in the liver, and lower levels found in kidney, intestine, spleen, and adrenals (see Willy, et al, Genes Dev. 9(9):1033-45 (1995)).
  • LXR ⁇ is rather ubiquitous, being found in nearly all tissues examined.
  • LXRs are activated by certain naturally occurring, oxidized derivatives of cholesterol, including 22(R)- hydroxycholesterol, 24(S)-hydroxycholesterol and 24,25 (S)-epoxycholesterol (see Lehmann, et al, J. Biol. Chem. 272(6):3137-3140 (1997)).
  • the expression pattern of LXRs and their oxysterol ligands provided the first hint that these receptors may play a role in cholesterol metabolism (see Janowski, et al, Nature 383:728-731 (1996)).
  • cholesterol metabolism in mammals occurs via conversion into steroid hormones or bile acids.
  • LXRs The role of LXRs in cholesterol homeostasis was first postulated to involve the pathway of bile acid synthesis, in which cholesterol 7 ⁇ -hydroxylase (CYP7A) operates in a rate-limiting manner. Support for this proposal was provided when additional experiments found that the CYP7A promoter contained a functional LXR response element that could be activated by RXR/LXR heterodimers in an oxysterol- and retinoid- dependent manner. Confirmation of LXR function as a transcriptional control point in cholesterol metabolism was made using knockout mice, particularly those lacking the oxysterol receptor LXR ⁇ (see Peet, et al, Cell 93:693-704 (1998)).
  • LXR ⁇ e.g., knockout or (-/-) mice
  • LXR ⁇ (-/-) mice did not induce transcription of the gene encoding CYP7A when fed diets containing additional cholesterol. This resulted in an accumulation of large amounts of cholesterol and impaired hepatic function in the livers of LXR ⁇ (-/-) mice.
  • LXR ⁇ is also believed to be involved in fatty acid synthesis. Accordingly, regulation of LXR ⁇ (e.g., use of LXR ⁇ agonist or antagonists) could provide treatment for a variety of lipid disorders including obesity and diabetes.
  • LXRs and particularly LXR ⁇ s to the delicate balance of cholesterol metabolism and fatty acid biosynthesis
  • modulators of LXRs which are useful as therapeutic agents or diagnostic agents for the treatment of disorders associated with bile acid and cholesterol metabolism, including cholesterol gallstones, atherosclerosis, lipid storage diseases, obesity, and diabetes.
  • the agents described herein are also useful for disease states associated with serum hypercholesterolemia, such as coronary heart disease.
  • the present invention provides compounds having the formula:
  • R 1 is selected from:
  • R n is selected from halogen, nitro, cyano, R 12 , OR 12 , SR 12 , NHR 12 , N(R 12 ) 2 , (C 4 - C 8 )cycloalkyl, (C 5 -C 8 )cycloalkenyl, COR 12 , CO 2 R 12 , CONHR 12 , CON(R 12 ) 2 , aryl, aryl(C C 4 )alkyl, heteroaryl and heteroary ⁇ C C ⁇ alkyl; wherein each R 12 is (C 1 -C 8 )alkyl, (C 3 - C 8 )alkenyl, (C -C 8 )alkynyl, (C 2 -C 8 )heteroalkyl, halo(C !
  • any alkyl portions of R 11 are optionally substituted with from one to three substituents independently selected from halogen, OR 13 , NHSO 2 R 14 and NHC(O)R 13 , and any aryl or heteroaryl portions of R u are optionally substituted with from one to five substituents independently selected from halogen, cyano, nitro, R 14 , OR 13 , SR 13 , N(R 13 ) 2 , NHSO 2 R 14 , NHC(O)R 13 , phenyl, phenyl(C 1 -C 8 )alkyl, and phenyl(C 2 -C 8 )heteroalkyl; wherein each R 13 is independently selected from H, (C 1 -C 8 )alkyl, (C 3 -C 8 )alkenyl, (C 3 -C 8 )al
  • each R 14 is independently selected from (C 1 -C 8 )alkyl, (C 3 -C 8 )alkenyl, (C 3 -C 8 )alkynyl, (C 2 -C 8 )heteroalkyl and halo(C ⁇ -C 8 )alkyl.
  • R ⁇ is combined with either X or Y to form a five- to six-membered monocyclic or fused bicyclic ring containing from 0 to 3 heteroatoms selected from N, O and S.
  • Each R 18 is independently selected from H, (C C 8 )alkyl, (C 2 -C 8 )heteroalkyl, halo(C 1 -C 8 )alkyl, aryl and heteroaryl.
  • the component X represents H, NH 2 , NHR 15 ,
  • R 15 is (C ⁇ -C 8 )alkyl, (C 3 -C 8 )alkenyl, (C 3 -C 8 )alkynyl, (C 2 - C 8 )heteroalkyl or halo(C 1 -C 8 )alkyl; and the component Y is fluoro(C 1 -C )alkyl.
  • R 2 is selected from H, (C 1 -C 8 )alkyl, (C 2 -
  • R 2 and R 4 are combined to form a five- to six-membered fused ring containing from 1 to 3 heteroatoms selected from N, O and S.
  • n is an integer of from 0 to 3, indicating the presence or absence of substituents on the phenyl ring core of formula I.
  • Each of the R 4 substituents is independently selected from halogen, cyano, nitro, R 17 , OR 17 , SR 17 , COR 17 , CO 2 R 17 , N(R 17 ) 2 and CON(R 17 ) 2 , wherein each R 17 is independently selected from H, (C 1 -C 8 )alkyl, (C 3 -
  • LXR in a cell by administering to or contacting the cell with a composition containing a compound of Formula I above.
  • the present invention provides methods for treating
  • LXR-responsive diseases by administering to a subject in need of such treatment a composition containing a compound of Formula I.
  • a composition containing a compound of Formula I are particularly useful for the treatment of pathology such as obesity, diabetes, hypercholesterolemia, atherosclerosis, and hyperlipoproteinemia.
  • the compound can be administered to the subject in combination with an additional anti-hypercholesterolemic agent, for example, bile acid sequestrants, nicotinic acid, fibric acid derivatives or HMG CoA reductase inhibitors.
  • the present compounds can exert their effects either systemically (the compounds permeate the relevant tissues, such as liver, upon entrance into the bloodstream) or locally (for example, by modulating LXR function of intestinal epithelial cells following oral administration, without necessitating the compounds' entrance into the bloodstream).
  • the compounds permeate the relevant tissues, such as liver, upon entrance into the bloodstream
  • locally for example, by modulating LXR function of intestinal epithelial cells following oral administration, without necessitating the compounds' entrance into the bloodstream.
  • some preferred compounds will be those with good systemic distribution, while, in other instances, preferred compounds will be those that can work locally on the intestinal track or on the skin without penetrating the bloodstream.
  • Certain compounds of the present invention are antiproliferative and can be used in compositions for treating diseases associated with abnormal cell proliferation (e.g., cancer).
  • diseases associated with an abnormally high level of cellular proliferation include restenosis, where vascular smooth muscle cells are involved, inflammatory disease states, where endothelial cells, inflammatory cells and glomerular cells are involved, myocardial infarction, where heart muscle cells are involved, glomerular nephritis, where kidney cells are involved, transplant rejection, where endothelial cells are involved, infectious diseases such as HIV infection and malaria, where certain immune cells and/or other infected cells are involved, and the like.
  • Infectious and parasitic agents per se e.g. bacteria, trypanosomes, fungi, etc
  • axe also subject to selective proliferative control using the subject compositions and compounds.
  • heteroatom is meant to include oxygen (O), nitrogen (N), sulfur (S) and silicon (Si).
  • alkyl by itself or as part of another substituent, means, unless otherwise stated, a straight or branched chain, or cyclic hydrocarbon radical, or combination thereof, which is fully saturated, having the number of carbon atoms designated (i.e. d-C 8 means one to eight carbons).
  • alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, cyclohexyl, (cyclohexyl)methyl, cyclopropylmethyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n- octyl and the like.
  • alkenyl by itself or as part of another substituent, means a straight or branched chain, or cyclic hydrocarbon radical, or combination thereof, which may be mono- or polyunsaturated, having the number of carbon atoms designated (i.e. C -C 8 means two to eight carbons) and one or more double bonds.
  • alkenyl groups include vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(l,4-pentadienyl) and higher homologs and isomers thereof.
  • alkynyl by itself or as part of another substituent, means a straight or branched chain hydrocarbon radical, or combination thereof, which may be mono- or polyunsaturated, having the number of carbon atoms designated (i.e. C -C 8 means two to eight carbons) and one or more triple bonds.
  • alkynyl groups include ethynyl, 1- and 3-propynyl, 3-butynyl and higher homologs and isomers thereof.
  • alkylene by itself or as part of another substituent means a divalent radical derived from alkyl, as exemplified by -CH 2 CH 2 CH 2 CH 2 -.
  • an alkyl (or alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred in the present invention.
  • a “lower alkyl” or “lower alkylene” is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms.
  • heteroalkyl by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain, or cyclic hydrocarbon radical, or combinations thereof, consisting of the stated number of carbon atoms and from one to three heteroatoms selected from the group consisting of O, N, Si and S, wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized.
  • the heteroatom(s) O, N and S may be placed at any interior position of the heteroalkyl group.
  • the heteroatom Si may be placed at any position of the heteroalkyl group, including the position at which the alkyl group is attached to the remainder of the molecule.
  • heteroalkylene by itself or as part of another substituent means a divalent radical derived from heteroalkyl, as exemplified by -CH -CH 2 -S-CH CH - and -CH 2 -S-CH 2 -CH 2 -NH-CH 2 -.
  • heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like). Still further, for alkylene and heteroalkylene linking groups, no orientation of the linking group is implied.
  • cycloalkyl and heterocycloalkyl represent, unless otherwise stated, cyclic versions of “alkyl” and “heteroalkyl”, respectively. Accordingly, a cycloalkyl group has the number of carbon atoms designated (i.e., C 3 -C 8 means three to eight carbons) and may also have one or two double bonds.
  • a heterocycloalkyl group consists of the number of carbon atoms designated and from one to three heteroatoms selected from the group consisting of O, N, Si and S, and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized.
  • heterocycloalkyl a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule.
  • cycloalkyl include cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like.
  • heterocycloalkyl examples include 1 -(1,2,5,6- tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3-mo ⁇ holinyl, tetrahydro furan-2-yl, tetrahydro furan-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1- piperazinyl, 2-piperazinyl, and the like.
  • halo and “halogen,” by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom.
  • haloalkyl are meant to include alkyl substituted with halogen atoms, which can be the same or different, in a number ranging from one to (2m' + 1), where m' is the total number of carbon atoms in the alkyl group.
  • halo(C 1 - C 4 )alkyl is mean to include trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3- bromopropyl, and the like.
  • haloalkyl includes monohaloalkyl (alkyl substituted with one halogen atom) and polyhaloalkyl (alkyl substituted with halogen atoms in a number ranging from two to (2m' + 1) halogen atoms, where m' is the total number of carbon atoms in the alkyl group).
  • perhaloalkyl means, unless otherwise stated, alkyl substituted with (2m' + 1) halogen atoms, where m' is the total number of carbon atoms in the alkyl group.
  • acyl refers to those groups derived from an organic acid by removal of the hydroxy portion of the acid. Accordingly, acyl is meant to include, for example, acetyl, propionyl, butyryl, decanoyl, pivaloyl, benzoyl and the like.
  • aryl means, unless otherwise stated, a polyunsaturated, typically aromatic, hydrocarbon substituent which can be a single ring or multiple rings (up to three rings) which are fused together or linked covalently.
  • aryl groups include phenyl, 1 -naphthyl, 2-naphthyl, 4-biphenyl and 1,2,3,4-tetrahydronaphthalene.
  • heteroaryl refers to aryl groups (or rings) that contain from zero to four heteroatoms selected from N, O, and S, wherein the nitrogen and sulfur atoms are optionally oxidized and the nitrogen heteroatom are optionally quaternized.
  • a heteroaryl group can be attached to the remainder of the molecule through a heteroatom.
  • heteroaryl groups include 1 -pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2- imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2- ⁇ henyl-4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4-pyrimidyl, 5- benzothiazolyl, purinyl, 2-benzimidazolyl, 5-indolyl, 1-isoquinolyl, 5-isoquinolyl, 2- quinoxalinyl, 5-quinoxalinyl, 3-quinolyl and 6-
  • aryl when used in combination with other terms (e.g. , aryloxy, arylthioxy, arylalkyl) includes both aryl and heteroaryl rings as defined above.
  • arylalkyl is meant to include those radicals in which an aryl group is attached to an alkyl group (e.g., benzyl, phenethyl, pyridylmethyl and the like) including those alkyl groups in which a carbon atom (e.g., a methylene group) has been replaced by, for example, an oxygen atom (e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(l- naphthyloxy)propyl, and the like).
  • alkyl group e.g., benzyl, phenethyl, pyridylmethyl and the like
  • an oxygen atom e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(l- naphthyl
  • R', R" and R'" each independently refer to hydrogen, unsubstituted (C 1 -C 8 )alkyl and heteroalkyl, unsubstituted aryl, aryl substituted with one to three halogens, unsubstituted alkyl, alkoxy or thioalkoxy groups, or aryl-(C 1 -C 4 )alkyl groups.
  • R' and R" are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6- or 7-membered ring.
  • -NR'R is meant to include 1-pyrrolidinyl and 4-mo ⁇ holinyl.
  • an alkyl or heteroalkyl group will have from zero to three substituents, with those groups having two or fewer substituents being preferred in the present invention. More preferably, an alkyl or heteroalkyl radical will be unsubstituted or monosubstituted. Most preferably, an alkyl or heteroalkyl radical will be unsubstituted. From the above discussion of substituents, one of skill in the art will understand that the term "alkyl" is meant to include groups such as trihaloalkyl (e.g. , -CF 3 and -CH 2 CF 3 ).
  • Preferred substituents for the alkyl and heteroalkyl radicals are selected from:
  • aryl group is 1,2,3,4-tetrahydronaphthalene, it may be substituted with a substituted or unsubstituted (C 3 -C 7 )spirocycloalkyl group.
  • the (C 3 -C 7 )spirocycloalkyl group may be substituted in the same manner as derined herein for "cycloalkyl".
  • an aryl or heteroaryl group will have from zero to three substituents, with those groups having two or fewer substituents being preferred in the present invention.
  • an aryl or heteroaryl group will be unsubstituted or monosubstituted. In another embodiment, an aryl or heteroaryl group will be unsubstituted.
  • Preferred substituents for aryl and heteroaryl groups are selected from: halogen, -OR', -OC(O)R', -NR'R", -SR', -R', -CN, -NO 2 , -CO 2 R', -CONR'R", -C(O)R', - OC(O)NR'R", -NR"C(O)R', -S(O)R', -SO 2 R', -SO 2 NR'R", -NR"SO 2 R, -N 3 , -CH(Ph) 2 , perfluoro(C ⁇ -C 4 )alkoxy and perfluoro(C ⁇ -C 4 )alkyl, where R' and R" are as defined
  • substituents are selected from: halogen, -OR', -OC(O)R', -NR'R", -R', -CN, -NO 2 , -CO 2 R', -CONR'R", -NR"C(O)R', -SO 2 R', -SO 2 NR'R", -NR"SO 2 R, perfluoro(C 1 -C )alkoxy and perfluoro(C 1 -C 4 )alkyl.
  • substituent -CO 2 H includes bioisosteric replacements therefor, such as:
  • Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -T-C(O)-(CH ) q -U-, wherein T and U are independently -NH-, -O-, -CH 2 - or a single bond, and q is an integer of from 0 to 2.
  • two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH ) r -B-, wherein A and B are independently -CH 2 -, -O-, -NH-, -S-, -S(O)-, -S(O) 2 -, -S(O) 2 NR'- or a single bond, and r is an integer of from 1 to 3.
  • One of the single bonds of the new ring so formed may optionally be replaced with a double bond.
  • two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -(CH ) S - X-(CH 2 )r, where s and t are independently integers of from 0 to 3, and X is -O-, -NR'-, -S-, - S(O)-, -S(O) 2 -, or -S(O) 2 NR'-.
  • the substituent R' in -NR'- and -S(O) 2 NR'- is selected from hydrogen or unsubstituted (C ⁇ -C 6 )alkyl.
  • salts are meant to include salts of the active compounds which are prepared with relatively nontoxic acids or bases, depending on the particular substituents found on the compounds described herein.
  • base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired base, either neat or in a suitable inert solvent.
  • pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amino, or magnesium salt, or a similar salt.
  • acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired acid, either neat or in a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include those derived from inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phosphorous acids and the like, as well as the salts derived from relatively nontoxic organic acids like acetic, propionic, isobutyric, oxalic, maleic, malonic, benzoic, succinic, suberic, fumaric, mandelic, phthalic, benzenesulfonic, p- tolylsulfonic, citric, tartaric, methanesulfonic, and the like.
  • inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phospho
  • salts of amino acids such as arginate and the like, and salts of organic acids like glucuronic or galactunoric acids and the like (see, for example, Berge et al. (1977) J. Pharm. Set.66: 1-19).
  • Certain specific compounds of the present invention contain both basic and acidic functionalities that allow the compounds to be converted into either base or acid addition salts.
  • the neutral forms of the compounds may be regenerated by contacting the salt with a base or acid and isolating the parent compound in the conventional manner.
  • the parent form of the compound differs from the various salt forms in certain physical properties, such as solubility in polar solvents, but otherwise the salts are equivalent to the parent form of the compound for the pu ⁇ oses of the present invention.
  • the present invention provides compounds which are in a prodrug form.
  • Prodrugs of the compounds described herein are those compounds that readily undergo chemical changes under physiological conditions to provide the compounds of the present invention.
  • prodrugs can be converted to the compounds of the present invention by chemical or biochemical methods in an ex vivo environment. For example, prodrugs can be slowly converted to the compounds of the present invention when placed in a transdermal patch reservoir with a suitable enzyme or chemical reagent.
  • Prodrugs are often useful because, in some situations, they may be easier to administer than the parent drug. They may, for instance, be bioavailable by oral administration whereas the parent drug is not.
  • the prodrug may also have improved solubility in pharmacological compositions over the parent drug.
  • prodrug derivatives are known in the art, such as those that rely on hydrolytic cleavage or oxidative activation of the prodrug.
  • An example, without limitation, of a prodrug would be a compound of the present invention which is administered as an ester (the "prodrug"), but then is metabolically hydrolyzed to the carboxylic acid, the active entity. Additional examples include peptidyl derivatives of a compound of the invention.
  • Certain compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are intended to be encompassed within the scope of the present invention. Certain compounds of the present invention may exist in multiple crystalline or amo ⁇ hous forms. In general, all physical forms are equivalent for the uses contemplated by the present invention and are intended to be within the scope of the present invention.
  • the compounds of the present invention may also contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute such compounds.
  • the compounds may be radiolabeled with radioactive isotopes, such as for example tritium ( 3 H), iodine-125 ( 125 I) or carbon-14 ( 14 C). All isotopic variations of the compounds of the present invention, whether radioactive or not, are intended to be encompassed within the scope of the present invention.
  • modulate refers to the ability of a compound to increase or decrease the function and/or expression of LXR, where LXR function may include transcription regulatory activity and/or protein-binding. Modulation may occur in vitro or in vivo. Modulation, as described herein, includes antagonism, agonism, partial antagonism and/or partial agonism of a function or characteristic associated with LXR, either directly or indirectly, and/or the upregulation or downregulation of LXR expression, either directly or indirectly.
  • Agonists are compounds that, e.g., bind to, stimulate, increase, open, activate, facilitate, enhance activation, activate, sensitize or upregulate signal transduction.
  • Antagonists are compounds that, e.g., bind to, partially or totally block stimulation, decrease, prevent, inhibit, delay activation, inactivate, desensitize, or downregulate signal transduction.
  • a modulator preferably inhibits LXR function and/or downregulates LXR expression. More preferably, a modulator inhibits or activates LXR function and/or downregulates or upregulates LXR expression. Most preferably, a modulator activates LXR function and/or upregulates LXR expression.
  • the ability of a compound to modulate LXR function can be demonstrated in a binding assay or a cell-based assay, e.g., a transient transfection assay.
  • diabetes refers to type I diabetes mellitus (juvenile onset diabetes, insulin dependent-diabetes mellitus or IDDM) or type II diabetes mellitus (non- insulin-dependent diabetes mellitus or NIDDM), preferably, NIDDM.
  • IDDM insulin dependent-diabetes mellitus
  • NIDDM non- insulin-dependent diabetes mellitus
  • LXR-mediated condition or disorder refers to a condition or disorder characterized by inappropriate, e.g., less than or greater than normal, LXR activity. Inappropriate LXR functional activity might arise as the result of LXR expression in cells which normally do not express LXR, decreased LXR expression (leading to, e.g., lipid and metabolic disorders and diseases) or increased LXR expression.
  • An LXR- mediated condition or disease may be completely or partially mediated by inappropriate LXR functional activity.
  • an LXR-mediated condition or disease is one in which modulation of LXR results in some effect on the underlying condition or disorder (e.g., an LXR agonist results in some improvement in patient well-being in at least some patients).
  • the term "LXR-responsive condition” or “LXR-responsive disorder” refers to a condition or disorder that responds favorably to modulation of LXR activity.
  • Favorable responses to LXR modulation include alleviation or abrogation of the disease and/or its attendant symptoms, inhibition of the disease, i.e., arrest or reduction of the development of the disease, or its clinical symptoms, and regression of the disease or its clinical symptoms.
  • An LXR-responsive condition or disease may be completely or partially responsive to LXR modulation.
  • An LXR-responsive condition or disorder may be associated with inappropriate, e.g., less than or greater than normal, LXR activity. Inappropriate LXR functional activity might arise as the result of LXR expression in cells which normally do not express LXR, decreased LXR expression (leading to, e.g., lipid and metabolic disorders and diseases) or increased LXR expression.
  • An LXR-responsive condition or disease may include an LXR-mediated condition or disease.
  • therapeutically effective amount refers to the amount of the subject compound that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician.
  • therapeutically effective amount includes that amount of a compound that, when administered, is sufficient to prevent development of, or alleviate to some extent, one or more of the symptoms of the condition or disorder being treated.
  • the therapeutically effective amount will vary depending on the compound, the disease and its severity and the age, weight, etc., of the mammal to be treated.
  • the present invention provides compositions, compounds and methods for modulating LXR function in a cell.
  • the compositions which are useful for this modulation will typically be those which contain an effective amount of an LXR-modulating compound.
  • an effective amount of an LXR-modulating compound is a concentration of the compound that will produce at 50 percent increase/decrease in LXR activity in a cell-based reporter gene assay, or a biochemical peptide-sensor assay such as the assays described in co- pending applications Ser. Nos. 08/975,614 (filed November 21, 1997) and 09/163,713 (filed September 30, 1998).
  • R 1 is selected from: la lb lc
  • R 11 is selected from halogen, nitro, cyano, R 12 , OR 12 , SR 12 , NHR 12 , N(R 12 ) 2 , (C 4 - C 8 )cycloalkyl, (C 5 -C 8 )cycloalkenyl, COR 12 , CO 2 R 12 , CONHR 12 , CON(R 12 ) 2 , aryl, aryl(C C 4 )alkyl, heteroaryl and heteroaryl(C ⁇ -C 4 )alkyl; wherein each R 12 is (C ⁇ -C 8 )alkyl, (C 3 - C 8 )alkenyl, (C 3 -C 8 )alkynyl, (C 2 -C 8 )heteroalkyl, halo(C 1 -C 8 )alkyl or two R 12 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring and any alkyl portions of R 11 are
  • R 11 is combined with either X or Y to form a five- to six-membered monocyclic or fused bicyclic ring containing from 0 to 3 heteroatoms selected from N, O and S. Additionally, when R 1 is a group of formula la, R 11 is other than (CrC ⁇ alkyl and halo(C ⁇ -C 3 )alkyl.
  • Each R is independently selected from the group consisting of H, (C ⁇ -
  • the component X represents H, NH , NHR 15 ,
  • R 15 is (C 1 -C 8 )alkyl, (C 3 -C 8 )alkenyl, (C 3 -C 8 )alkynyl, (C 2 -
  • Y is fluoro(Ci-C 4 )alkyl.
  • Y is CF .
  • R 2 is selected from H, (Ci-C 8 )alkyl, (C 2 - C 8 )heteroalkyl, (C 3 -C 8 )alkenyl, (C 3 -C 8 )alkynyl, (C 3 -C 8 )cycloalkyl and (C 4 -C 8 )cycloalkyl- alkyl, wherein any alkyl portions of R 2 are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and amino; and R 3 is selected from aryl and heteroaryl, the aryl or heteroaryl group being optionally substituted with from one to five substituents independently selected from halogen, cyano, nitro, R 16 , OR 16 , SR 16 , COR 16 , CO 2 R 16 , NHR 16 , N(R 16 ) 2 , CONHR 16 , CON(R 16 ) 2
  • R 2 and R 4 are combined to form a five- to six-membered fused ring containing from 1 to 3 heteroatoms selected from N, O and S.
  • n is an integer of from 0 to 3, indicating the presence or absence of substituents on the phenyl ring core of formula I.
  • R 4 substituents is independently selected from halogen, cyano, nitro, R 17 , OR 17 , SR 17 , COR 17 , CO 2 R 17 , N(R 17 ) 2 and CON(R I7 ) 2 , wherein each R 17 is independently selected from H, (C ⁇ -C 8 )alkyl, (C 3 - C 8 )alkenyl, (C -C 8 )alkynyl, (C -C 8 )heteroalkyl or halo(C 1 -C 8 )alkyl, or two R 17 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring.
  • pharmaceutically acceptable salts thereof are also provided.
  • R 1 is selected from
  • R is selected from
  • R 1 ' is selected from phenyl, pyridyl, pyridazinyl, imidazolyl, thiazolyl, oxazolyl, pyrrolyl, tetrazolyl, indolyl, benzimidazolyl, benzothienyl and benzothiazolyl, each of these R 11 groups being optionally substituted with from one to five substituents independently selected from halogen, cyano, nitro, (C 1 -C 8 )alkyl, (C 3 -C 8 )alkenyl, (C 3 -C 8 )alkynyl, (C 2 - C 8 )hetero alkyl, (C 1 -C 8 )haloalkyl, phenyl(C 1 -C 6 )alkyl and phenyl(C 2 -C 6 )heteroalkyl.
  • Y is CF 3 .
  • R 1 is a group of formula la in which
  • R 11 is phenyl, optionally substituted with from one to two substituents independently selected from the group consisting of halogen, cyano, nitro, (C 1 -C 8 )alkyl, (C 3 -C 8 )alkenyl, (C 3 - C 8 )alkynyl, (C 2 -C 8 )heteroalkyl, (C 1 -C 8 )haloalkyl, phenyl(C ⁇ -C 6 )alkyl and phenyl(C 2 -
  • R is preferably selected from H, (C 1 -C 8 )alkyl, (C 3 -C 8 )cycloalkyl and (C - C 8 )cycloalkyl-alkyl, wherein any alkyl portions of R 2 are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and ammo.
  • R is preferably selected from phenyl, pyridyl, thienyl and thiazolyl, optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R 16 , OR 16 , SR 16 , COR 16 , CO 2 R 16 , NHR 16 , N(R 16 ) 2 , CONHR 16 , CON(R 16 ) 2 , NHSO 2 R 16 , NHC(O)R 16 , phenyl, phenyl(d-C 8 )alkyl, and phenyl(C 2 - C 8 )heteroalkyl; wherein each R 16 is independently selected from (C ⁇ -C 8 )alkyl, (C 3 - C 8 )alkenyl, (C 3 -C 8 )alkynyl, (C 2 -C 8 )heteroalkyl and halo(C 1 -C 8 )alkyl, or two
  • R 1 is a group of formula la in which R 11 is pyrrolyl, optionally substituted with from one to two substituents independently selected from halogen, nitro, cyano, (C 1 -C 8 )alkyl, (C 3 -C 8 )alkenyl, (C 3 - C 8 )alkynyl, (C 2 -C 8 )heteroalkyl, (CrC 8 )haloalkyl, phenyl(d-C 6 )alkyl and phenyl(C 2 - C 6 )heteroalkyl.
  • Preferred members of the remaining groups R 2 , R 3 and R 4 are the same as have been described above for the embodiments in which R 11 is phenyl
  • R 11 is selected from phenyl, pyridyl, pyridazinyl, imidazolyl, thiazolyl, oxazolyl, pyrrolyl, tetrazolyl, indolyl, benzimidazolyl, benzothienyl and benzo thiazolyl, each of these R 11 groups being optionally substituted with from one to five substituents independently selected from halogen, cyano, nitro, (d-C 8 )alkyl, (C -C 8 )alkenyl, (C 3 -C 8 )alkynyl, (C - C 8 )heteroalkyl, (C ⁇ -C 8 )haloalkyl, phenyl(C ⁇ -C 6 )alkyl and phenyl(C 2 -C 6 )heteroalkyl.
  • Y is CF 3 .
  • R 1 is a group of formula lb in which
  • R 11 is phenyl, optionally substituted with from one to two substituents independently selected from the group consisting of halogen, cyano, nitro, (C ⁇ -C 8 )alkyl, (C 3 -C 8 )alkenyl, (C - C 8 )alkynyl, (C 2 -C 8 )heteroalkyl, (d-C 8 )haloalkyl, phenyl(C 1 -C 6 )alkyl and phenyl(C 2 -
  • R 2 is preferably selected from H, (d-C 8 )alkyl, (C 3 -C 8 )cycloalkyl and (C 4 - C 8 )cycloalkyl-alkyl, wherein any alkyl portions of R 2 are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and ammo.
  • R is preferably selected from phenyl, pyridyl, thienyl and thiazolyl, optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R 16 , OR 16 , SR 16 , COR 16 , CO 2 R 16 , NHR 16 , N(R 16 ) 2 , CONHR 16 , CON(R 16 ) 2 , NHSO 2 R 16 , NHC(O)R 16 , phenyl, phenyl(d-C 8 )alkyl, and phenyl(C 2 - C 8 )heteroalkyl; wherein each R 16 is independently selected from (C 1 -C 8 )alkyl, (C 3 - C 8 )alkenyl, (C 3 -C 8 )alkynyl, (C 2 -C 8 )heteroalkyl and halo(C 1 -C 8 )alkyl, or
  • R 1 is a group of formula lb in which R 11 is pyridyl, optionally substituted with from one to two substituents independently selected from halogen, cyano, nitro, (C 1 -C 8 )alkyl, (C 3 -C 8 )alkenyl, (C 3 - C 8 )alkynyl, (C -C 8 )heteroalkyl, (C 1 -C 8 )haloalkyl, phenyl(C ⁇ -C 6 )alkyl and phenyl(C 2 - C 6 )heteroalkyl.
  • R 1 is a group of formula lb in which R 11 is pyridazinyl or pyrrolyl, optionally substituted with from one to two substituents independently selected from halogen, cyano, nitro, (d-C 8 )alkyl, (C 3 - C 8 )alkenyl, (C 3 -C 8 )alkynyl, (C 2 -C 8 )heteroalkyl, (C 1 -C 8 )haloalkyl, phenyl(d-C 6 )alkyl and phenyl(C -C 6 )heteroalkyl.
  • Preferred members of the remaining groups R 2 , R 3 and R 4 are the same as have been described above for the embodiments in which R 11 is phenyl.
  • R 11 is selected from phenyl, pyrrolyl, pyridyl and pyridazinyl, each of these R 11 groups being optionally substituted with from one to five substituents independently selected from halogen, cyano, nitro, (d-C 8 )alkyl, (C 3 -C 8 )alkenyl, (C 3 -C 8 )alkynyl, (C 2 -C 8 )heteroalkyl, (d-C 8 )haloalkyl, phenyl(C ⁇ -C 6 )alkyl and phenyl(C 2 -C 6 )heteroalkyl.
  • Y is CF 3 .
  • R 1 is a group of formula lc in which
  • R 11 is phenyl, optionally substituted with from one to two substituents independently selected from the group consisting of halogen, cyano, nitro, (C 1 -C 8 )alkyl, (C -C 8 )alkenyl, (C - C 8 )alkynyl, (C 2 -C 8 )heteroalkyl, (C 1 -C 8 )haloalkyl, phenyl(d-C 6 )alkyl and phenyl(C - C 6 )heteroalkyl.
  • the remaining groups R 2 , R 3 and R 4 also have certain preferred members.
  • R is preferably selected from H, (C 1 -C 8 )alkyl, (C 3 -C 8 )cycloalkyl and (C 4 - C 8 )cycloalkyl-alkyl, wherein any alkyl portions of R 2 are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and amino.
  • R 3 is preferably selected from phenyl, pyridyl, thienyl and thiazolyl, optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R 16 , OR 16 , SR 16 , COR 16 , CO 2 R 16 , NHR 16 , N(R 16 ) 2 , CONHR 16 , CON(R 16 ) 2 , NHSO 2 R 16 , NHC(O)R 16 , phenyl, phenyl(d-C 8 )alkyl, and phenyl(C 2 - C 8 )heteroalkyl; wherein each R 16 is independently selected from (C ⁇ -C 8 )alkyl, (C 3 -
  • n is preferably 0, 1, or 2 and each R is preferably selected from halogen, (d-
  • the most preferred compounds of the present invention are those provided in the Examples below.
  • Some of the compounds of Formula I may exist as stereoisomers, and the invention includes all active stereoisomeric forms of these compounds.
  • optically active isomers such compounds may be obtained from corresponding optically active precursors using the procedures described above or by resolving racemic mixtures. The resolution may be carried out using various techniques such as chromatography, repeated recrystallization of derived asymmetric salts, or derivatization, which techniques are well known to those of ordinary skill in the art.
  • the compounds of the invention may be labeled in a variety of ways.
  • the compounds may contain radioactive isotopes such as, for example, 3 H (tritium) and ' C (carbon-14).
  • the compounds may be advantageously joined, covalently or noncovalently, directly or through a linker molecule, to a wide variety of other compounds, which may provide pro-drugs or function as carriers, labels, adjuvents, coactivators, stabilizers, etc. Such labeled and joined compounds are contemplated within the present invention.
  • compositions are provided in which a compound of formula I is combined with a pharmaceutically acceptable carrier or diluent.
  • a pharmaceutically acceptable carrier or diluent Particular compositions and methods for their use are provided in more detail below.
  • the present invention provides a method for modulating the action of an LXR receptor, preferably LXR ⁇ , in a cell. According to this method, the cell is contacted with a sufficient concentration of a composition containing a compound of formula I for either an agonistic or antagonistic effect to be detected.
  • the composition contains an amount of the compound which has been determined to provide a desired therapeutic or prophylactic effect for a given LXR-mediated condition.
  • the present invention provides methods for the treatment of pathology such as hypercholesterolemia, atherosclerosis, and hyperlipoproteinemia using pharmaceutical compositions containing compounds of the foregoing description of the general Formula I.
  • this aspect of the invention involves administering to a patient an effective formulation of one or more of the subject compositions.
  • the compound of Formula I can be administered in combination with other anti-hypercholesterolemic agents (e.g., a bile acid sequestrant, nicotinic acid, fibric acid derivatives or HMG CoA reductase inhibitors), or in combination with other agents that affect cholesterol or lipid metabolism.
  • anti-hypercholesterolemic agents e.g., a bile acid sequestrant, nicotinic acid, fibric acid derivatives or HMG CoA reductase inhibitors
  • Suitable organometal compounds are shown in Scheme 2.
  • a heterocycle for example, 1-alkylimidazole 2-1, can be lithiated with n-butyllithium in THF or diethylether to give derivative 2-2.
  • bromodifluoroacetate or iododifluoroacetate can be converted into zinc species 2-4 by heating in the presence of zinc powder.
  • An arylhalide or heteroarylhalide (2-5) can be converted to organomagnesium species 2-6 by reaction with magnesium in THF or diethylether or reaction with isopropylmagnesium bromide.
  • an alkyne can be lithiated with, for example, n-butyllithium in THF, or metalated with isopropylmagnesium bromide in THF.
  • an alkyl, aryl or heteroaryl halide can be coupled to ethynyltrimethylsilane via a Palladium mediated reaction to afford 3-4 (see, e.g., R. C. Larock; Comprehensive Organic Transformations, 2 nd ed., John Wiley & Sons, New York, pp. 596-599, (1999)). Subsequent treatment of 3-4 with, for example, potassium carbonate in anhydrous methanol gives alkyne 2-7.
  • Trimethylsilyl-ethynyl lithium is added to 1-3 and the adduct subsequently treated with tetrabutyl ammonium fluoride in THF to give ethynyl derivative 4-2.
  • This derivative can be reacted with an alkyl, aryl or heteroaryl halide using the procedure described by Bleicher et al. (1995) Synlett, 1115-1116 or a similar Palladium mediated coupling reaction (see, e.g., R. C. Larock; Comprehensive Organic Transformations, 2 nd ed., John Wiley & Sons, New York, pp. 596-599, (1999)) to afford 4-4.
  • a haloaniline (5-1) can be alkylated, acylated or arylated (general addition of R-group) to form 5-2.
  • 5-2 can be sulfonylated with, for example, an appropriate sulfonyl halide (5-3) to form 5-4.
  • Halo-substituted arylsulfonamide 5-4 can be converted to alcohol 5-7 upon treatment with t-butyllithium followed by ketone 5-5.
  • 5-2 can be converted to 5-6 upon treatment with t-butyllithium followed by ketone 5-5.
  • Alcohol 5-6 can be sulfonylated to form compounds of formula 5-7.
  • Ketoester 7-1 can be fluorinated with diethylaminosulfur trifluoride (DAST), as reviewed in Middleton (1975) J. Org. Chem. 40:574.
  • Acetic acid ester 7-3 can be fluorinated by treatment with a strong base, such as potassium hexamethyldisalazide, followed by addition of a suitable fluorinating agent, such as 7-4 (see, e.g., Differding et al. (1991) Tetrahedron Lett. 32:1779).
  • an aryl iodide or aryl bromide can be treated with ethyl bromodifluoroacetate (7-5) in the presence of copper metal to provide 7-6 (see, e.g., Eto et ⁇ l. (2000) Chem. Pharm. Bull. 48:982).
  • alcohols 5-7 can be alkylated in the presence of a base such as sodium hydride in a suitable solvent such as THF or DMF to give ethers 8-2 or deoxygenated to give 8-3 by using, e.g., triethylsilane and BF 3 OEt 2 .
  • Representative compounds and compositions were demonstrated to have pharmacological activity in in vitro and in vivo assays, e.g., they are capable of specifically modulating a cellular physiology to reduce an associated pathology or provide or enhance a prophylaxis.
  • Certain preferred compounds and compositions are capable of specifically regulating LXR. Compounds may be evaluated in vitro for their ability to activate LXR receptor function using biochemical assays (see co-pending applications Ser. Nos. 08/975,614 (filed November 21, 1997) and 09/163,713 (filed September 30, 1998)), or in cell-based assays such as that described in Lehmann, et al. ( J. Biol. Chem.
  • the compounds and compositions can be evaluated for their ability to increase or decrease gene expression modulated by LXR, using western-blot analysis.
  • Established animal models to evaluate hypocholesterolemic effects of the compounds are also known in the art.
  • compounds disclosed herein can lower cholesterol levels in hamsters fed a high-cholesterol diet, using a protocol similar to that described in Spady et al. (J. Clin. Invest. 1988, 81, 300), Evans et al. (J Lipid Res. 1994, 35, 1634), and Lin et al (J. Med. Chem. 1995, 38, 111).
  • LXR ⁇ animal models e.g.,
  • 16 LXR ⁇ (+/-) and (-/-) mice can be used for evaluation of the present compounds and compositions (see, for example, Peet, et al. Cell 1998, 93, 693-704).
  • LXR-modulating amount refers to that amount of a compound that is needed to produce a desired effect in any one of the cell-based assays, biochemical assays or animal models described above.
  • an LXR- modulating amount of a compound will be at least that amount which exhibits an EC 50 in a reporter-gene cell-based assay (relative to an untreated control).
  • the invention provides methods of using the subject compounds and compositions to treat disease or provide medicinal prophylaxis, to activate LXR receptor function in a cell, to reduce blood cholesterol concentration in a host, to slow down and/or reduce the abnormal cellular proliferation including the growth of tumors, etc. These methods generally involve contacting the cell or cells with or administering to a host an effective amoimt of the subject compounds or pharmaceutically acceptable compositions.
  • the compositions and compounds of the invention and the pharmaceutically acceptable salts thereof can be administered in any effective way such as via oral, parenteral or topical routes. Generally, the compounds are administered in dosages ranging from about 2 mg up to about 2,000 mg per day, although variations will necessarily occur depending on the disease target, the patient, and the route of administration.
  • Preferred dosages are administered orally in the range of about 0.05 mg/kg to about 20 mg/kg, more preferably in the range of about 0.05 mg/kg to about 2 mg/kg, most preferably in the range of about 0.05 mg/kg to about 0.2 mg per kg of body weight per day.
  • a pharmaceutically acceptable excipient such as sterile saline or other medium, water, gelatin, an oil, etc. to form pharmaceutically acceptable compositions.
  • the compositions and/or compounds may be administered alone or in combination with any convenient carrier, diluent, etc. and such administration may be provided in single or multiple dosages.
  • Useful carriers include solid, semi-solid or liquid media including water and non-toxic organic solvents.
  • the invention provides the subject compounds in the form of a pro-drug, which can be metabolically converted to the subject compound by the recipient host.
  • a pro-drug formulations are l ⁇ iown in the art.
  • the compositions may be provided in any convenient form including tablets, capsules, lozenges, troches, hard candies, powders, sprays, creams, suppositories, etc.
  • the compositions in pharmaceutically acceptable dosage units or in bulk, may be incorporated into a wide variety of containers.
  • dosage units may be included in a variety of containers including capsules, pills, etc.
  • compositions may be advantageously combined and/or used in combination with other hypocholesterolemic therapeutic or prophylactic agents, different from the subject compounds.
  • administration in conjunction with the subject compositions enhances the efficacy of such agents.
  • exemplary hypocholesterolemic and/or hypolipemic agents include: bile acid sequestrants such as quaternary amines (e.g.
  • the compounds and compositions also find use in a variety of in vitro and in vivo assays, including diagnostic assays. For example, various allotypic LDL receptor gene expression processes may be distinguished in sensitivity assays with the subject compounds and compositions, or panels thereof.
  • the invention provides the subject compounds and compositions comprising a detectable label, which may be spectroscopic (e.g. fluorescent), radioactive, etc.
  • 1H-NMR spectra were recorded on a Varian Gemini 400 MHz NMR spectrometer. Significant peaks are tabulated and typically include: number of protons, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br s, broad singlet) and coupling constant(s) in Hertz. Electron Ionization (El) mass spectra were recorded on a Hewlett Packard 5989A mass spectrometer. Mass spectrometry results are reported as the ratio of mass over charge, followed by the relative abundance of each ion (in parentheses).
  • Step D N-Methyl-N-[2-methyl-4-(2,2,2-trifluoro-l-hydroxy-l- ⁇ henethyl)]- benzenesulfonamide
  • Examples 2-4 were prepared from 2,2,2-trifluoro-l-(3-methyl-4- methylaminophenyl)-l-phenyl-ethanol as described in Example 1, Step D, using an appropriate sulfonylchloride.
  • Step A 2,2,2-Trifluoromethyl-l-(3-methyl-4-methylaminophenyl)-l-(3- trifluoromethyl-phenyl)-ethanol [0112] To a solution of 1.03 g (5.17 mmol) of N-methyl-4-bromo-2-methylaniline (Example 1, Step A) in 40 ml of THF at -78°C was added dropwise 9.4 ml (15.98 mmol) of a 1.7M solution of tert-BuLi in hexanes and the resultant mixture was stirred at -78°C for 30 min.
  • Step B N-Methyl-N- ⁇ 2-metliyl-4-[2,2,2-trifluoro- 1 -hydroxy- 1 -(3 -trifluoromethyl- phenyl)-ethyl]-phenyl ⁇ -benzenesulfonamide
  • the title compound was prepared from 2,2,2-trifluoromethyl-l-(3-methyl-4- methylaminophenyl)-l-(3-trifluoromethyl-phenyl)-ethanol (Step A) and benzenesulfonyl chloride using the procedure described in Example 1, Step D.
  • Example 9-12 The compounds of Examples 9-12 were prepared from N-methyl-4-bromo-2- methylaniline (Example 1, Step A) and tr ns- l,l,l-trifluoro-4-phenyl-3-buten-2-one (Aldrich
  • Example 13-15 were prepared from N-methyl-4-bromoaniline and 2,2,2-trifluoroacetophenone (Aldrich Chemical Co.) using methods similar to those of Example 5, Step A. Treatment of the resultant intermediate compounds with an appropriate sulfonyl chloride was carried out using methods described in Example 1, Step D.
  • Example 16-18 were prepared from N-methyl-4-bromoaniline and 2,2,2-trifluoro-3'-(trifluoromethyl)acetophenone (Aldrich Chemical Co.) using methods similar to those of Example 5, Step A. Treatment of the resultant intermediate compounds with an appropriate sulfonyl chloride was carried out using methods described in Example 1, Step D.
  • Step B N- ⁇ 4-[ 1 -(4-Chlorophenyl)-2,2,2-trifluoro- 1 -hydroxy-ethylj-phenyl ⁇ -N- methyl-benzenesulfonamide [0153] To a solution of 0.2g of N-methyl-N-(4-trifluoroacetyl-phenyl)-benzenesulfonamide in lOmL of THF were added 0.7mL of a IM solution 4-chlorophenyl magnesium bromide at - 78° C. The resulting mixture was stirred at -78° C for 4 hr.
  • Step A 1 -Methoxymethyl- 1 H-imidazole
  • Step B N-Methyl-N- ⁇ 4-[2,2,2-trifluoro-l-hydroxy-l-(l-methoxymethyl-lH-imidazol-
  • Example 24 was prepared from benzimidazole and N-methyl-N-(4-trifluoroacetyl- phenyl)-benzenesulfonamide (Example 22, Step A) following procedures described in Example 23.
  • Examples 25 - 28 were prepared from the appropriate heterocycle and N-methyl-N- (4-trifluoroacetyl-phenyl)-benzenesulfonamide (Example 22, Step A) following procedures described in Example 23, Step B.
  • the compound was prepared from N-methyl-N-(4-trifluoroacetyl-phenyl)- benzenesulfonamide (Example 22, Step A) and 3-(diethylamino)-propy-l-yne following the procedure described in Example 29.
  • Step A l-(4-Cyclopentylamino-phenyl)-2,2,2-trifluoro-ethanone
  • Step B 2-(4-Cyclopentylamino-phenyl)-l,l,l-trifluoro-4-phenyl-but-3-yn-2-ol
  • Step C 2,5-Dichloro-N-cyclopentyl-N-[4-(l-hydroxy-3-phenyl-l-trifluoromethyl- prop-2-ynyl)-phenyl]-benzenesulfonamide
  • Examples 35 and 36 were prepared from 2-(4-cyclopentylamino-phenyl)- 1,1,1- trifluoro-4-phenyl-but-3-yn-2-ol (described in Example 34, Step B) and an appropriate sulfonyl chloride using methodology as described in Example 34, Step C.
  • Example 35
  • Step A l-(4-Isopropylamino-phenyl)-2,2,2-trifluoro-ethanone
  • Step B 2-(4-Isopropylamino-phenyl)-l , 1 , 1 -trifluoro-4-phenyl-but-3-yn-2-ol
  • Step C 2,5-Dichloro-N-[4-(l-hydroxy-3-phenyl-l-trifluoromethyl-prop-2-ynyl)- phenyl] -N-isopropyl-b enzenesulfonamide [0192]
  • the title compound was prepared from 2-(4-isopropylamino-phenyl)-l,l,l-trifluoro- 4-phenyl-but-3-yn-2-ol using methods as described in Example 34, Step C.
  • Step A l-[4-(4-Fluorobenzylamino)-phenyl]-2,2,2-trifluoro-ethanone
  • Step B 2-[4-(4-Fluorobenzyl)amino)-phenyl] -1,1,1 -trifluoro-4-phenyl-but-3-yn-2-ol
  • Step C 2,5-Dichloro-N-(4-fluorobenzyl)-N-[4-(l-hydroxy-3-phenyl-l- trifluoromethyl-prop-2-ynyl)-phenyl]-benzenesulfonamide [0201]
  • the title compound was prepared as described in Example 34, Step C, starting with 2-[4-(4-Fluorobenzyl)amino)-phenyl]-l,l,l-trifluoro-4-phenyl-but-3-yn-2-ol.
  • Step A l-(4-Isobutylamino-phenyl)-2,2,2-trifluoro-ethanone
  • Step B 2-(4-Isobutylamino-phenyl)-l , 1, 1 -trifluoro-4-phenyl-but-3-yn-2-ol
  • Step C 2,5-Dichloro-N-[4-(l-hydroxy-3-phenyl-l-trifluoromethyl-prop-2-ynyl)- phenyl]-N-isobutyl-benzenesulfonamide
  • the title compound was prepared as described in Example 34, Step C, starting with 2-(4-isobutylamino-phenyl)-l,l,l-trifluoro-4-phenyl-but-3-yn-2-ol.
  • Examples 42 and 43 were prepared from 2-(4-isobutylamino-phenyl)- 1 ,1,1- trifluoro-4-phenyl-but-3-yn-2-ol and an appropriate sulfonyl chloride using methods as described in Example 34, Step C.
  • Step A 4-(4-Chlorophenyl)- 1 ,1,1 -trifluoro-2-(4-isobutylamino-phenyl)-but-3 -yn-2-ol
  • Step B 2,5-Dichloro-N- ⁇ 4-[3-(4-chloro-phenyl)-l-hydroxy-l-trifluoromethyl-prop-2- ynyl]-phenyl ⁇ -N-isobutyl-benzenesulfonamide
  • Example 45 and 46 were prepared from 4-(4-chlorophenyl)- 1,1,1 -trifluoro-2-(4- isobutylamino-phenyl)-but-3-yn-2-ol and an appropriate sulfonyl chloride using methods as described in Example 34, Step C.
  • Example 45
  • Step B l,l,l-Trifluoro-2-(4-isobutylamino-phenyl)-4-(4-methanesulfonyl-phenyl)- but-3-yn-2-ol
  • the title compound was prepared from l-(4-isobutylamino-phenyl)-2,2,2-trifluoro- ethanone (Example 41, Step A) as described in Example 34, Step B substituting l-ethynyl-4- methanesulfonyl-benzene for phenylacetylene.
  • Step C 2,5-Dichloro-N- ⁇ 4-[l-hydroxy-3-(4-methanesulfonyl-phenyl)-l- trifluoromethyl-prop-2-ynyl]-phenyl ⁇ -N-isobutyl-benzenesulfonamide
  • Example 48 and 49 were prepared from l,l,l-trifluoro-2-(4-isobutylamino-phenyl)- 4-(4-methanesulfonyl-phenyl)-but-3-yn-2-ol and an appropriate sulfonyl chloride using methods as described in Example 34, Step C.
  • Step B N-Isobutyl-N-(4-trifluoroacetyl-phenyl)-benzenesulfonamide
  • Examples 51 -68 were prepared as described in Example 50, substituting an appropriate acetylene compound for phenylacetylene.
  • the acetylene starting materials are either commercially available or can be synthesized according to methods described herein and referred to below.
  • N-(4-ethynyl-phenyl)-acetamide was prepared as follows:
  • N-(4-ethynyl-phenyl)-trifluoroacetamide was prepared in a manner similar to that described in Example 61.
  • 1H NMR (CDC1 3 ) ⁇ 3.11 (s, 1 H), 7.50-7.56 (m, 4 H), 8.00 (br s, 1 H).
  • Step B l-Ethyl-4-ethynyl-lH-pyrazole
  • Step B l-Isobutyl-4-ethynyl-lH-pyrazole
  • Step D N-(4- ⁇ 1 -[ 1 -(2-Ethoxyethyl)- lH-pyrrol-2-yl]-2,2,2-trifluoro-l -hydroxyethyl ⁇ - phenyl)-N-methyl-benzenesulfonamide [0315] To a solution of 75 mg (0.23 mmol) of N-(4-bromophenyl)-N-methyl- benzenesulfonamide in 4 mL of Et 2 O at -78 °C was added dropwise 285 ⁇ L (0.49 mmol) of a 1.7 M solution of tert-BuLi in pentane and the resultant mixture was stirred at -78 °C for 10 min.
  • N-benzyl-3-trifluoroacetylpyrrole was prepared using methods similar to those described in Example 78, Step A.
  • N-methoxyethyl-2-propionylpyrrole was prepared as follows: [0341] To a solution of 102 mg (0.61 mmol) of N-methoxyethyl-2-acetylpyrrole in 4.5 mL THF at -78 °C was added dropwise 670 ⁇ L (0.67 mmol) of a 1.0 M solution of LHMDS in THF and the resultant mixture was stirred for 30 min. After this time, 57 ⁇ L (0.92 mmol) of Mel was added dropwise and the mixture was stirred at -78 °C for 1.5 h, then was warmed to 0 °C and stirred for an additional 45 min.
  • reaction mixture was quenched by the addition of a saturated aqueous solution of ammonium chloride and extracted with EtOAc. The combined organic layers were dried over ⁇ a 2 SO , filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (pure hexanes grading to hexanes :EtO Ac, 88: 12) to give the title compound.
  • N-methoxyethyl-2-butyrylpyrrole was prepared as follows: [0346] To a solution of 150 mg (0.90 mmol) of N-methoxyethyl-2-acetylpyrrole in 6 mL THF at -78 °C was added dropwise 990 ⁇ L (0.99 mmol) of a 1.0 M solution of LHMDS in THF and the resultant mixture was stirred for 30 min. After this time, 108 ⁇ L (1.35 mmol) of Etl was added dropwise and the mixture was warmed to 0 °C and stirred for 2.5 h, then was further warmed to room temperature and stirred for an additional 2.5 h.
  • reaction mixture was cooled to 0 °C, quenched by the addition of a saturated aqueous solution of sodium bicarbonate, allowed to warm to room temperature, and extracted with EtOAc. The combined organic layers were dried over Na 2 SO 4 , filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexanes :EtO Ac, 4:1) to give the title compound.
  • Step B N-(4- ⁇ l-Hydroxy-l-[l-(2-methoxyethyl)-lH-pyrrol-2-yl]-methyl ⁇ -phenyl)-N- methyl-benzenesulfonamide
  • N-(4-bromophenyl)-N-methyl benzenesulfonamide Example 78, Step C
  • 5.94 mL (10.10 mmol) of a 1.7 M solution of tert-BuLi in pentane was stirred at -78 °C for 15 min.
  • reaction mixture was cooled to 0 °C, quenched by the addition of a saturated aqueous solution of sodium bicarbonate, allowed to warm to room temperature, and extracted with EtOAc. The combined organic layers were dried over Na SO 4 , filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexanes:EtOAc, 3:1) to give the title compound.

Abstract

Arylsulfonamidobenzyl alcohols, amines and sulfonamides are provided which are useful in treating lipid disorders, metabolic diseases and cell-proliferative diseases.

Description

Arylsulfonamidobenzylic Compounds
CROSS-REFERENCES TO RELATED APPLICATIONS
[0001] This application claims the benefit of Provisional Application Ser. No.
60/353,497 filed January 30, 2002, and is related in subject matter to co-pending application
Ser. No. 10/ , filed on even date herewith, entitled "Heterocyclic
Arylsulfonamidobenzylic Compounds," the disclosures of which are incoφorated herein by reference.
STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
[0002] NOT APPLICABLE
REFERENCE TO A "SEQUENCE LISTING," A TABLE, OR A COMPUTER
PROGRAM LISTING APPENDIX SUBMITTED ON A COMPACT DISK.
[0003] NOT APPLICABLE
BACKGROUND OF THE INVENTION
[0004] Cholesterol is used for the synthesis of bile acids in the liver, the manufacture and repair of cell membranes, and the synthesis of steroid hormones. There are both exogenous and endogenous sources of cholesterol. The average American consumes about 450 mg of cholesterol each day and produces an additional 500 to 1,000 mg in the liver and other tissues. Another source is the 500 to 1,000 mg of biliary cholesterol that is secreted into the intestine daily; about 50 percent is reabsorbed (enterohe atic circulation). Excess accumulation of cholesterol in the arterial walls can result in atherosclerosis, which is characterized by plaque formation. The plaques inhibit blood flow, promote clot formation and can ultimately cause heart attacks, stroke and claudication. Development of therapeutic agents for the treatment of atherosclerosis and other diseases associated with cholesterol metabolism has been focused on achieving a more complete understanding of the biochemical pathways involved. Most recently, liver X receptors (LXRs) were identified as key components in cholesterol homeostasis.
[0005] The LXRs were first identified as orphan members of the nuclear receptor superfamily whose ligands and functions were unknown. Two LXR proteins (α and β) are lαiown to exist in mammals. The expression of LXRα is restricted, with the highest levels being found in the liver, and lower levels found in kidney, intestine, spleen, and adrenals (see Willy, et al, Genes Dev. 9(9):1033-45 (1995)). LXRβ is rather ubiquitous, being found in nearly all tissues examined. Recent studies on the LXRs indicate that they are activated by certain naturally occurring, oxidized derivatives of cholesterol, including 22(R)- hydroxycholesterol, 24(S)-hydroxycholesterol and 24,25 (S)-epoxycholesterol (see Lehmann, et al, J. Biol. Chem. 272(6):3137-3140 (1997)). The expression pattern of LXRs and their oxysterol ligands provided the first hint that these receptors may play a role in cholesterol metabolism (see Janowski, et al, Nature 383:728-731 (1996)). [0006] As noted above, cholesterol metabolism in mammals occurs via conversion into steroid hormones or bile acids. The role of LXRs in cholesterol homeostasis was first postulated to involve the pathway of bile acid synthesis, in which cholesterol 7α-hydroxylase (CYP7A) operates in a rate-limiting manner. Support for this proposal was provided when additional experiments found that the CYP7A promoter contained a functional LXR response element that could be activated by RXR/LXR heterodimers in an oxysterol- and retinoid- dependent manner. Confirmation of LXR function as a transcriptional control point in cholesterol metabolism was made using knockout mice, particularly those lacking the oxysterol receptor LXRα (see Peet, et al, Cell 93:693-704 (1998)).
[0007] Mice lacking the receptor LXRα (e.g., knockout or (-/-) mice) lost their ability to respond normally to increases in dietary cholesterol and were unable to tolerate any cholesterol in excess of that synthesized de novo. LXRα (-/-) mice did not induce transcription of the gene encoding CYP7A when fed diets containing additional cholesterol. This resulted in an accumulation of large amounts of cholesterol and impaired hepatic function in the livers of LXRα (-/-) mice. These results further established the role of LXRα as the essential regulatory component of cholesterol homeostasis. LXRα is also believed to be involved in fatty acid synthesis. Accordingly, regulation of LXRα (e.g., use of LXRα agonist or antagonists) could provide treatment for a variety of lipid disorders including obesity and diabetes.
[0008] In view of the importance of LXRs, and particularly LXRαs to the delicate balance of cholesterol metabolism and fatty acid biosynthesis, we describe modulators of LXRs which are useful as therapeutic agents or diagnostic agents for the treatment of disorders associated with bile acid and cholesterol metabolism, including cholesterol gallstones, atherosclerosis, lipid storage diseases, obesity, and diabetes. The agents described herein are also useful for disease states associated with serum hypercholesterolemia, such as coronary heart disease.
BRIEF SUMMARY OF THE INVENTION
[0009] In one aspect, the present invention provides compounds having the formula:
Figure imgf000004_0001
(I) wherein R1 is selected from:
Figure imgf000004_0002
(la) (lb) (lc)
Figure imgf000004_0003
(Id) wherein Rn is selected from halogen, nitro, cyano, R12, OR12, SR12, NHR12, N(R12)2, (C4- C8)cycloalkyl, (C5-C8)cycloalkenyl, COR12, CO2R12, CONHR12, CON(R12)2, aryl, aryl(C C4)alkyl, heteroaryl and heteroary^C C^alkyl; wherein each R12 is (C1-C8)alkyl, (C3- C8)alkenyl, (C -C8)alkynyl, (C2-C8)heteroalkyl, halo(C!-C8)alkyl or two R12 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring and any alkyl portions of R11 are optionally substituted with from one to three substituents independently selected from halogen, OR13, NHSO2R14 and NHC(O)R13, and any aryl or heteroaryl portions of Ru are optionally substituted with from one to five substituents independently selected from halogen, cyano, nitro, R14, OR13, SR13, N(R13)2, NHSO2R14, NHC(O)R13, phenyl, phenyl(C1-C8)alkyl, and phenyl(C2-C8)heteroalkyl; wherein each R13 is independently selected from H, (C1-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-Cs)heteroalkyl and halo(C!-C8)alkyl and each R14 is independently selected from (C1-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(Cι-C8)alkyl. Optionally, Rπ is combined with either X or Y to form a five- to six-membered monocyclic or fused bicyclic ring containing from 0 to 3 heteroatoms selected from N, O and S. [0010] Each R18 is independently selected from H, (C C8)alkyl, (C2-C8)heteroalkyl, halo(C1-C8)alkyl, aryl and heteroaryl.
[0011] In each of the R1 groups above, the component X represents H, NH2, NHR15,
NHSO2R15, OH or OR15, wherein R15 is (Cι-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2- C8)heteroalkyl or halo(C1-C8)alkyl; and the component Y is fluoro(C1-C )alkyl. [0012] Returning to formula I, R2 is selected from H, (C1-C8)alkyl, (C2-
C8)heteroalkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C3-C8)cycloalkyl and (C4-C8)cycloalkyl- alkyl, wherein any alkyl portions of R2 are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and amino; and R3 is selected from aryl and heteroaryl, the aryl or heteroaryl group being optionally substituted with from one to five substituents independently selected from halogen, cyano, nitro, R16, OR16, SR16, COR16, CO2R16, NHR16, N(R16)2, CONHR16, CON(R16)2, NHSO2R16, NHC(O)R16, phenyl, ρhenyl(CrC8)alkyl, and ρhenyl(C2-C8)heteroalkyl; wherein each R16 is independently selected from (C1-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(C1-C8)alkyl, or two R16 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring. Optionally, R2 and R4 are combined to form a five- to six-membered fused ring containing from 1 to 3 heteroatoms selected from N, O and S. [0013] The subscript n is an integer of from 0 to 3, indicating the presence or absence of substituents on the phenyl ring core of formula I. Each of the R4 substituents is independently selected from halogen, cyano, nitro, R17, OR17, SR17, COR17, CO2R17, N(R17)2 and CON(R17)2, wherein each R17 is independently selected from H, (C1-C8)alkyl, (C3-
17
C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl or halo(C1-C8)alkyl, or two R groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring. [0014] In addition to the compounds provided in formula I, pharmaceutically acceptable salts thereof are also provided. [0015] In yet another aspect, the present invention provides methods for modulating
LXR in a cell by administering to or contacting the cell with a composition containing a compound of Formula I above.
[0016] In still another aspect, the present invention provides methods for treating
LXR-responsive diseases by administering to a subject in need of such treatment a composition containing a compound of Formula I. These methods are particularly useful for the treatment of pathology such as obesity, diabetes, hypercholesterolemia, atherosclerosis, and hyperlipoproteinemia. In certain embodiments, the compound can be administered to the subject in combination with an additional anti-hypercholesterolemic agent, for example, bile acid sequestrants, nicotinic acid, fibric acid derivatives or HMG CoA reductase inhibitors. [0017] The present compounds can exert their effects either systemically (the compounds permeate the relevant tissues, such as liver, upon entrance into the bloodstream) or locally (for example, by modulating LXR function of intestinal epithelial cells following oral administration, without necessitating the compounds' entrance into the bloodstream). In some disease states, some preferred compounds will be those with good systemic distribution, while, in other instances, preferred compounds will be those that can work locally on the intestinal track or on the skin without penetrating the bloodstream.
[0018] Certain compounds of the present invention are antiproliferative and can be used in compositions for treating diseases associated with abnormal cell proliferation (e.g., cancer). Other diseases associated with an abnormally high level of cellular proliferation include restenosis, where vascular smooth muscle cells are involved, inflammatory disease states, where endothelial cells, inflammatory cells and glomerular cells are involved, myocardial infarction, where heart muscle cells are involved, glomerular nephritis, where kidney cells are involved, transplant rejection, where endothelial cells are involved, infectious diseases such as HIV infection and malaria, where certain immune cells and/or other infected cells are involved, and the like. Infectious and parasitic agents per se (e.g. bacteria, trypanosomes, fungi, etc) axe also subject to selective proliferative control using the subject compositions and compounds.
BRIEF DESCRIPTION OF THE DRAWINGS
[0019] Not applicable.
DETAILED DESCRIPTION OF THE INVENTION
Definitions
[0020] As used herein, the term "heteroatom" is meant to include oxygen (O), nitrogen (N), sulfur (S) and silicon (Si). [0021] The term "alkyl," by itself or as part of another substituent, means, unless otherwise stated, a straight or branched chain, or cyclic hydrocarbon radical, or combination thereof, which is fully saturated, having the number of carbon atoms designated (i.e. d-C8 means one to eight carbons). Examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, cyclohexyl, (cyclohexyl)methyl, cyclopropylmethyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n- octyl and the like.
[0022] The term "alkenyl", by itself or as part of another substituent, means a straight or branched chain, or cyclic hydrocarbon radical, or combination thereof, which may be mono- or polyunsaturated, having the number of carbon atoms designated (i.e. C -C8 means two to eight carbons) and one or more double bonds. Examples of alkenyl groups include vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(l,4-pentadienyl) and higher homologs and isomers thereof. [0023] The term "alkynyl", by itself or as part of another substituent, means a straight or branched chain hydrocarbon radical, or combination thereof, which may be mono- or polyunsaturated, having the number of carbon atoms designated (i.e. C -C8 means two to eight carbons) and one or more triple bonds. Examples of alkynyl groups include ethynyl, 1- and 3-propynyl, 3-butynyl and higher homologs and isomers thereof. [0024] The term "alkylene" by itself or as part of another substituent means a divalent radical derived from alkyl, as exemplified by -CH2CH2CH2CH2-. Typically, an alkyl (or alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred in the present invention. A "lower alkyl" or "lower alkylene" is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms. [0025] The tenns "alkoxy," "alkylamino" and "alkylthio" (or thioalkoxy) are used in their conventional sense, and refer to those alkyl groups attached to the remainder of the molecule via an oxygen atom, an amino group, or a sulfur atom, respectively. [0026] The term "heteroalkyl," by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain, or cyclic hydrocarbon radical, or combinations thereof, consisting of the stated number of carbon atoms and from one to three heteroatoms selected from the group consisting of O, N, Si and S, wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized. The heteroatom(s) O, N and S may be placed at any interior position of the heteroalkyl group. The heteroatom Si may be placed at any position of the heteroalkyl group, including the position at which the alkyl group is attached to the remainder of the molecule. Examples include -CH2-CH2-O-CH3, -CH2-CH2-NH-CH3, -CH2-CH2-N(CH3)-CH3, -CH2-S- CH2-CH3, -CH2-CH2,-S(O)-CH3, -CH2-CH2-S(O)2-CH3, -CH=CH-O-CH3, -Si(CH3)3, -CH2- CH=N-OCH3, and -CH=CH-N(CH3)-CH3. Up to two heteroatoms may be consecutive, such as, for example, -CH2-NH-OCH3 and -CH2-O-Si(CH3)3. [0027] Similarly, the term "heteroalkylene" by itself or as part of another substituent means a divalent radical derived from heteroalkyl, as exemplified by -CH -CH2-S-CH CH - and -CH2-S-CH2-CH2-NH-CH2-. For heteroalkylene groups, heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like). Still further, for alkylene and heteroalkylene linking groups, no orientation of the linking group is implied.
[0028] The terms "cycloalkyl" and "heterocycloalkyl", by themselves or in combination with other terms, represent, unless otherwise stated, cyclic versions of "alkyl" and "heteroalkyl", respectively. Accordingly, a cycloalkyl group has the number of carbon atoms designated (i.e., C3-C8 means three to eight carbons) and may also have one or two double bonds. A heterocycloalkyl group consists of the number of carbon atoms designated and from one to three heteroatoms selected from the group consisting of O, N, Si and S, and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized. Additionally, for heterocycloalkyl, a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule. Examples of cycloalkyl include cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like. Examples of heterocycloalkyl include 1 -(1,2,5,6- tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3-moφholinyl, tetrahydro furan-2-yl, tetrahydro furan-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1- piperazinyl, 2-piperazinyl, and the like. [0029] The terms "halo" and "halogen," by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom. Additionally, terms such as "haloalkyl," are meant to include alkyl substituted with halogen atoms, which can be the same or different, in a number ranging from one to (2m' + 1), where m' is the total number of carbon atoms in the alkyl group. For example, the term "halo(C1- C4)alkyl" is mean to include trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3- bromopropyl, and the like. Thus, the term "haloalkyl" includes monohaloalkyl (alkyl substituted with one halogen atom) and polyhaloalkyl (alkyl substituted with halogen atoms in a number ranging from two to (2m' + 1) halogen atoms, where m' is the total number of carbon atoms in the alkyl group). The term "perhaloalkyl" means, unless otherwise stated, alkyl substituted with (2m' + 1) halogen atoms, where m' is the total number of carbon atoms in the alkyl group. For example the term "perhalo(Cι-C4)alkyl" is meant to include trifluoromethyl, pentachloroethyl, l,l,l-trifluoro-2-bromo-2-chloroethyl and the like. [0030] The term "acyl" refers to those groups derived from an organic acid by removal of the hydroxy portion of the acid. Accordingly, acyl is meant to include, for example, acetyl, propionyl, butyryl, decanoyl, pivaloyl, benzoyl and the like. [0031] The term "aryl" means, unless otherwise stated, a polyunsaturated, typically aromatic, hydrocarbon substituent which can be a single ring or multiple rings (up to three rings) which are fused together or linked covalently. Non-limiting examples of aryl groups include phenyl, 1 -naphthyl, 2-naphthyl, 4-biphenyl and 1,2,3,4-tetrahydronaphthalene.
[0032] The term "heteroaryl" refers to aryl groups (or rings) that contain from zero to four heteroatoms selected from N, O, and S, wherein the nitrogen and sulfur atoms are optionally oxidized and the nitrogen heteroatom are optionally quaternized. A heteroaryl group can be attached to the remainder of the molecule through a heteroatom. Non- limiting examples of heteroaryl groups include 1 -pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2- imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-ρhenyl-4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4-pyrimidyl, 5- benzothiazolyl, purinyl, 2-benzimidazolyl, 5-indolyl, 1-isoquinolyl, 5-isoquinolyl, 2- quinoxalinyl, 5-quinoxalinyl, 3-quinolyl and 6-quinolyl.
[0033] For brevity, the term "aryl" when used in combination with other terms (e.g. , aryloxy, arylthioxy, arylalkyl) includes both aryl and heteroaryl rings as defined above. Thus, the term "arylalkyl" is meant to include those radicals in which an aryl group is attached to an alkyl group (e.g., benzyl, phenethyl, pyridylmethyl and the like) including those alkyl groups in which a carbon atom (e.g., a methylene group) has been replaced by, for example, an oxygen atom (e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(l- naphthyloxy)propyl, and the like).
[0034] Each of the above terms (e.g. , "alkyl," "heteroalkyl," "aryl" and "heteroaryl") is meant to include both substituted and unsubstituted forms of the indicated radical. Preferred substituents for each type of radical are provided below.
[0035] Substituents for the alkyl and heteroalkyl radicals (as well as those groups referred to as alkylene, alkenyl, heteroalkylene, hetero alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl and heterocycloalkenyl) can be a variety of groups selected from: -OR', =0, =NR', =N-OR', -NR'R", -SR', halogen, -SiR'R"R'", -OC(O)R', -C(O)R', -CO2R', -CONR'R", -OC(O)NR'R", -NR"C(O)R', -NR'-C(O)NR"R'", -NR'-SO2NR"R'", -NR"CO2R', -NH-C(NH2)=NH, -NR'C(NH2)=NH, -NH-C(NH2)=NR', -S(O)R', -SO2R', -SO2NR'R", -NR"SO2R, -CN and -NO2, in a number ranging from zero to three, with those groups having zero, one or two substituents being particularly preferred. R', R" and R'" each independently refer to hydrogen, unsubstituted (C1-C8)alkyl and heteroalkyl, unsubstituted aryl, aryl substituted with one to three halogens, unsubstituted alkyl, alkoxy or thioalkoxy groups, or aryl-(C1-C4)alkyl groups. When R' and R" are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6- or 7-membered ring. For example, -NR'R" is meant to include 1-pyrrolidinyl and 4-moφholinyl. Typically, an alkyl or heteroalkyl group will have from zero to three substituents, with those groups having two or fewer substituents being preferred in the present invention. More preferably, an alkyl or heteroalkyl radical will be unsubstituted or monosubstituted. Most preferably, an alkyl or heteroalkyl radical will be unsubstituted. From the above discussion of substituents, one of skill in the art will understand that the term "alkyl" is meant to include groups such as trihaloalkyl (e.g. , -CF3 and -CH2CF3).
[0036] Preferred substituents for the alkyl and heteroalkyl radicals are selected from:
-OR', =O, -NR'R", -SR', halogen, -SiR'R"R'", -OC(O)R', -C(O)R', -CO2R', -CONR'R", - OC(O)NR'R", -NR"C(O)R', -NR"CO2R', -NR'-SO2NR"R'", -S(O)R', -SO2R', -SO2NR'R", -NR"SO2R, -CN and -NO2, where R' and R" are as defined above. Further preferred substituents are selected from: -OR', =O, -NR'R", halogen, -OC(O)R', -CO2R', -CONR'R", - OC(O)NR'R", -NR"C(O)R', -NR"CO2R', -NR'-SO2NR"R'", -SO2R', -SO2NR'R", - NR"SO2R, -CN and -NO2.
[0037] Similarly, substituents for the aryl and heteroaryl groups are varied and selected from: halogen, -OR', -OC(O)R', -NR'R", -SR', -R', -CN, -NO2, -CO2R', -CONR'R", -C(O)R', -OC(O)NR'R", -NR"C(O)R', -NR"CO2R', -NR'-C(O)NR"R'", -NR'- SO2NR"R'", -NH-C(NH2)=NH, -NR'C(NH2)=NH, -NH-C(NH2)=NR', -S(O)R', -SO2R', -SO2NR'R", -NR"SO2R, -N3, -CH(Ph)2, perfluoro(Cι-C4)alkoxy and perfluoro(C1-C4)alkyl, in a number ranging from zero to the total number of open valences on the aromatic ring system; and where R', R" and R'" are independently selected from hydrogen, (C]-C8)alkyl and heteroalkyl, unsubstituted aryl and heteroaryl, (unsubstituted aryl)-(C1-C4)alkyl and
(unsubstituted aryl)oxy-(C -C4)alkyl. When the aryl group is 1,2,3,4-tetrahydronaphthalene, it may be substituted with a substituted or unsubstituted (C3-C7)spirocycloalkyl group. The (C3-C7)spirocycloalkyl group may be substituted in the same manner as derined herein for "cycloalkyl". Typically, an aryl or heteroaryl group will have from zero to three substituents, with those groups having two or fewer substituents being preferred in the present invention. In one embodiment of the invention, an aryl or heteroaryl group will be unsubstituted or monosubstituted. In another embodiment, an aryl or heteroaryl group will be unsubstituted. [0038] Preferred substituents for aryl and heteroaryl groups are selected from: halogen, -OR', -OC(O)R', -NR'R", -SR', -R', -CN, -NO2, -CO2R', -CONR'R", -C(O)R', - OC(O)NR'R", -NR"C(O)R', -S(O)R', -SO2R', -SO2NR'R", -NR"SO2R, -N3, -CH(Ph)2, perfluoro(Cι-C4)alkoxy and perfluoro(Cι-C4)alkyl, where R' and R" are as defined above. Further preferred substituents are selected from: halogen, -OR', -OC(O)R', -NR'R", -R', - CN, -NO2, -CO2R', -CONR'R", -NR"C(O)R', -SO2R', -SO2NR'R", -NR"SO2R, perfluoro(C1-C )alkoxy and perfluoro(C1-C4)alkyl.
[0039] It is to be understood that the substituent -CO2H, as used herein, includes bioisosteric replacements therefor, such as:
Figure imgf000011_0001
O
II P-OH ,
\ OH and the like. See, e.g., The Practice of Medicinal Chemistry; Wermuth, C.G., Ed.; Academic Press: New York, 1996; p. 203.
[0040] Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -T-C(O)-(CH )q-U-, wherein T and U are independently -NH-, -O-, -CH2- or a single bond, and q is an integer of from 0 to 2. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH )r-B-, wherein A and B are independently -CH2-, -O-, -NH-, -S-, -S(O)-, -S(O)2-, -S(O)2NR'- or a single bond, and r is an integer of from 1 to 3. One of the single bonds of the new ring so formed may optionally be replaced with a double bond. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -(CH )S- X-(CH2)r, where s and t are independently integers of from 0 to 3, and X is -O-, -NR'-, -S-, - S(O)-, -S(O)2-, or -S(O)2NR'-. The substituent R' in -NR'- and -S(O)2NR'- is selected from hydrogen or unsubstituted (Cι-C6)alkyl.
[0041] The term "pharmaceutically acceptable salts" is meant to include salts of the active compounds which are prepared with relatively nontoxic acids or bases, depending on the particular substituents found on the compounds described herein. When compounds of the present invention contain relatively acidic functionalities, base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired base, either neat or in a suitable inert solvent. Examples of pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amino, or magnesium salt, or a similar salt. When compounds of the present invention contain relatively basic functionalities, acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired acid, either neat or in a suitable inert solvent. Examples of pharmaceutically acceptable acid addition salts include those derived from inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phosphorous acids and the like, as well as the salts derived from relatively nontoxic organic acids like acetic, propionic, isobutyric, oxalic, maleic, malonic, benzoic, succinic, suberic, fumaric, mandelic, phthalic, benzenesulfonic, p- tolylsulfonic, citric, tartaric, methanesulfonic, and the like. Also included are salts of amino acids such as arginate and the like, and salts of organic acids like glucuronic or galactunoric acids and the like (see, for example, Berge et al. (1977) J. Pharm. Set.66: 1-19). Certain specific compounds of the present invention contain both basic and acidic functionalities that allow the compounds to be converted into either base or acid addition salts. [0042] The neutral forms of the compounds may be regenerated by contacting the salt with a base or acid and isolating the parent compound in the conventional manner. The parent form of the compound differs from the various salt forms in certain physical properties, such as solubility in polar solvents, but otherwise the salts are equivalent to the parent form of the compound for the puφoses of the present invention. [0043] In addition to salt forms, the present invention provides compounds which are in a prodrug form. Prodrugs of the compounds described herein are those compounds that readily undergo chemical changes under physiological conditions to provide the compounds of the present invention. Additionally, prodrugs can be converted to the compounds of the present invention by chemical or biochemical methods in an ex vivo environment. For example, prodrugs can be slowly converted to the compounds of the present invention when placed in a transdermal patch reservoir with a suitable enzyme or chemical reagent. Prodrugs are often useful because, in some situations, they may be easier to administer than the parent drug. They may, for instance, be bioavailable by oral administration whereas the parent drug is not. The prodrug may also have improved solubility in pharmacological compositions over the parent drug. A wide variety of prodrug derivatives are known in the art, such as those that rely on hydrolytic cleavage or oxidative activation of the prodrug. An example, without limitation, of a prodrug would be a compound of the present invention which is administered as an ester (the "prodrug"), but then is metabolically hydrolyzed to the carboxylic acid, the active entity. Additional examples include peptidyl derivatives of a compound of the invention. [0044] Certain compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are intended to be encompassed within the scope of the present invention. Certain compounds of the present invention may exist in multiple crystalline or amoφhous forms. In general, all physical forms are equivalent for the uses contemplated by the present invention and are intended to be within the scope of the present invention.
[0045] Certain compounds of the present invention possess asymmetric carbon atoms
(optical centers) or double bonds; the racemates, diastereomers, geometric isomers and individual isomers are all intended to be encompassed within the scope of the present invention. [0046] The compounds of the present invention may also contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute such compounds. For example, the compounds may be radiolabeled with radioactive isotopes, such as for example tritium (3H), iodine-125 (125I) or carbon-14 (14C). All isotopic variations of the compounds of the present invention, whether radioactive or not, are intended to be encompassed within the scope of the present invention.
[0047] The terms "modulate", "modulation" and the like refer to the ability of a compound to increase or decrease the function and/or expression of LXR, where LXR function may include transcription regulatory activity and/or protein-binding. Modulation may occur in vitro or in vivo. Modulation, as described herein, includes antagonism, agonism, partial antagonism and/or partial agonism of a function or characteristic associated with LXR, either directly or indirectly, and/or the upregulation or downregulation of LXR expression, either directly or indirectly. Agonists are compounds that, e.g., bind to, stimulate, increase, open, activate, facilitate, enhance activation, activate, sensitize or upregulate signal transduction. Antagonists are compounds that, e.g., bind to, partially or totally block stimulation, decrease, prevent, inhibit, delay activation, inactivate, desensitize, or downregulate signal transduction. A modulator preferably inhibits LXR function and/or downregulates LXR expression. More preferably, a modulator inhibits or activates LXR function and/or downregulates or upregulates LXR expression. Most preferably, a modulator activates LXR function and/or upregulates LXR expression. The ability of a compound to modulate LXR function can be demonstrated in a binding assay or a cell-based assay, e.g., a transient transfection assay.
[0048] As used herein, "diabetes" refers to type I diabetes mellitus (juvenile onset diabetes, insulin dependent-diabetes mellitus or IDDM) or type II diabetes mellitus (non- insulin-dependent diabetes mellitus or NIDDM), preferably, NIDDM.
[0049] As used herein, the term "LXR-mediated condition or disorder" refers to a condition or disorder characterized by inappropriate, e.g., less than or greater than normal, LXR activity. Inappropriate LXR functional activity might arise as the result of LXR expression in cells which normally do not express LXR, decreased LXR expression (leading to, e.g., lipid and metabolic disorders and diseases) or increased LXR expression. An LXR- mediated condition or disease may be completely or partially mediated by inappropriate LXR functional activity. However, an LXR-mediated condition or disease is one in which modulation of LXR results in some effect on the underlying condition or disorder (e.g., an LXR agonist results in some improvement in patient well-being in at least some patients). [0050] As used herein, the term "LXR-responsive condition" or "LXR-responsive disorder" refers to a condition or disorder that responds favorably to modulation of LXR activity. Favorable responses to LXR modulation include alleviation or abrogation of the disease and/or its attendant symptoms, inhibition of the disease, i.e., arrest or reduction of the development of the disease, or its clinical symptoms, and regression of the disease or its clinical symptoms. An LXR-responsive condition or disease may be completely or partially responsive to LXR modulation. An LXR-responsive condition or disorder may be associated with inappropriate, e.g., less than or greater than normal, LXR activity. Inappropriate LXR functional activity might arise as the result of LXR expression in cells which normally do not express LXR, decreased LXR expression (leading to, e.g., lipid and metabolic disorders and diseases) or increased LXR expression. An LXR-responsive condition or disease may include an LXR-mediated condition or disease.
[0051] The term "therapeutically effective amount" refers to the amount of the subject compound that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician. The term "therapeutically effective amount" includes that amount of a compound that, when administered, is sufficient to prevent development of, or alleviate to some extent, one or more of the symptoms of the condition or disorder being treated. The therapeutically effective amount will vary depending on the compound, the disease and its severity and the age, weight, etc., of the mammal to be treated.
General
[0052] The present invention provides compositions, compounds and methods for modulating LXR function in a cell. The compositions which are useful for this modulation will typically be those which contain an effective amount of an LXR-modulating compound. In general, an effective amount of an LXR-modulating compound is a concentration of the compound that will produce at 50 percent increase/decrease in LXR activity in a cell-based reporter gene assay, or a biochemical peptide-sensor assay such as the assays described in co- pending applications Ser. Nos. 08/975,614 (filed November 21, 1997) and 09/163,713 (filed September 30, 1998).
Embodiments of the Invention
Compounds [0053] In one aspect, the present invention provides compounds having the formula:
Figure imgf000015_0001
(I) wherein R1 is selected from:
Figure imgf000016_0001
la lb lc
Figure imgf000016_0002
Id wherein R11 is selected from halogen, nitro, cyano, R12, OR12, SR12, NHR12, N(R12)2, (C4- C8)cycloalkyl, (C5-C8)cycloalkenyl, COR12, CO2R12, CONHR12, CON(R12)2, aryl, aryl(C C4)alkyl, heteroaryl and heteroaryl(Cι-C4)alkyl; wherein each R12 is (Cι-C8)alkyl, (C3- C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl, halo(C1-C8)alkyl or two R12 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring and any alkyl portions of R11 are optionally substituted with from one to three substituents independently selected from halogen, OR13, NHSO R14 and NHC(O)R13, and any aryl or heteroaryl portions of R11 are optionally substituted with from one to five substituents independently selected from halogen, cyano, nitro, R14, OR13, SR13, N(R13)2, NHSO2R14, NHC(O)R13, phenyl, phenyl(d-C8) alkyl, and phenyl(C2-C8)heteroalkyl; wherein each R13 is independently selected from H, (Cι-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(Cι-C8)alkyl and each R14 is independently selected from (Cι-C8)alkyl, (C3-C8)alkenyl, (C -C8)alkynyl, (C2-C8)heteroalkyl and halo(C1-C8)alkyl. Optionally, R11 is combined with either X or Y to form a five- to six-membered monocyclic or fused bicyclic ring containing from 0 to 3 heteroatoms selected from N, O and S. Additionally, when R1 is a group of formula la, R11 is other than (CrC^alkyl and halo(Cι-C3)alkyl.
1 o
[0054] Each R is independently selected from the group consisting of H, (C\-
C8)alkyl, (C2-C8)heteroalkyl, halo(Cι-C8)alkyl, aryl and heteroaryl. [0055] In each of the R1 groups above, the component X represents H, NH , NHR15,
NHSO2R15, OH or OR15, wherein R15 is (C1-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-
C8)heteroalkyl or halo(C!-C8)alkyl; and Y is fluoro(Ci-C4)alkyl. In particularly preferred embodiments, Y is CF .
[0056] Returning to formula I, R2 is selected from H, (Ci-C8)alkyl, (C2- C8)heteroalkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C3-C8)cycloalkyl and (C4-C8)cycloalkyl- alkyl, wherein any alkyl portions of R2 are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and amino; and R3 is selected from aryl and heteroaryl, the aryl or heteroaryl group being optionally substituted with from one to five substituents independently selected from halogen, cyano, nitro, R16, OR16, SR16, COR16, CO2R16, NHR16, N(R16)2, CONHR16, CON(R16)2, NHSO2R16, NHC(O)R16, phenyl, phenyl(C1-C8)alkyl, and phenyl(C2-C8)heteroalkyl; wherein each R16 is independently selected from (CrC8)alkyl, (C -C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(C1-C8)alkyl, or two R16 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring. Optionally, R2 and R4 are combined to form a five- to six-membered fused ring containing from 1 to 3 heteroatoms selected from N, O and S. [0057] The subscript n is an integer of from 0 to 3, indicating the presence or absence of substituents on the phenyl ring core of formula I. Each of the R4 substituents is independently selected from halogen, cyano, nitro, R17, OR17, SR17, COR17, CO2R17, N(R17)2 and CON(RI7)2, wherein each R17 is independently selected from H, (Cι-C8)alkyl, (C3- C8)alkenyl, (C -C8)alkynyl, (C -C8)heteroalkyl or halo(C1-C8)alkyl, or two R17 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring. [0058] In addition to the compounds provided in formula I, pharmaceutically acceptable salts thereof are also provided. [0059] In one group of preferred embodiments, R1 is selected from
Figure imgf000017_0001
(la) (lb) (lc) and X is OH. [0060] In another group of preferred embodiments, R is selected from
1
Figure imgf000017_0002
(la) (lb) (lc) and X is H.
[0061] Within each of these groups of preferred embodiments are several further preferred groups. Accordingly, in the discussion below, preferred embodiments are provided in which X is H or X is OH. [0062] hi one of these groups, R1 is
Figure imgf000017_0003
wherein R1 ' is selected from phenyl, pyridyl, pyridazinyl, imidazolyl, thiazolyl, oxazolyl, pyrrolyl, tetrazolyl, indolyl, benzimidazolyl, benzothienyl and benzothiazolyl, each of these R11 groups being optionally substituted with from one to five substituents independently selected from halogen, cyano, nitro, (C1-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2- C8)hetero alkyl, (C1-C8)haloalkyl, phenyl(C1-C6)alkyl and phenyl(C2-C6)heteroalkyl. In particularly preferred embodiments, Y is CF3.
[0063] In still further preferred embodiments, R1 is a group of formula la in which
R11 is phenyl, optionally substituted with from one to two substituents independently selected from the group consisting of halogen, cyano, nitro, (C1-C8)alkyl, (C3-C8)alkenyl, (C3- C8)alkynyl, (C2-C8)heteroalkyl, (C1-C8)haloalkyl, phenyl(Cι-C6)alkyl and phenyl(C2-
C6)heteroalkyl. The remaining groups R2, R3 and R4 also have certain preferred members. In particular, R is preferably selected from H, (C1-C8)alkyl, (C3-C8)cycloalkyl and (C - C8)cycloalkyl-alkyl, wherein any alkyl portions of R2 are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and ammo. R is preferably selected from phenyl, pyridyl, thienyl and thiazolyl, optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R16, OR16, SR16, COR16, CO2R16, NHR16, N(R16)2, CONHR16, CON(R16)2, NHSO2R16, NHC(O)R16, phenyl, phenyl(d-C8)alkyl, and phenyl(C2- C8)heteroalkyl; wherein each R16 is independently selected from (Cι-C8)alkyl, (C3- C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(C1-C8)alkyl, or two R16 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring. The subscript n is preferably 0, 1, or 2 and each R4 is preferably selected from halogen, (d- C8)alkyl and halo(C1-C8)alkyl. [0064] In another group of still further preferred embodiments, R1 is a group of formula la in which R11 is pyrrolyl, optionally substituted with from one to two substituents independently selected from halogen, nitro, cyano, (C1-C8)alkyl, (C3-C8)alkenyl, (C3- C8)alkynyl, (C2-C8)heteroalkyl, (CrC8)haloalkyl, phenyl(d-C6)alkyl and phenyl(C2- C6)heteroalkyl. Preferred members of the remaining groups R2, R3 and R4 are the same as have been described above for the embodiments in which R11 is phenyl. [0065] Another group of preferred embodiments are those compounds of formula I in which R1 is
Figure imgf000018_0001
wherein R11 is selected from phenyl, pyridyl, pyridazinyl, imidazolyl, thiazolyl, oxazolyl, pyrrolyl, tetrazolyl, indolyl, benzimidazolyl, benzothienyl and benzo thiazolyl, each of these R11 groups being optionally substituted with from one to five substituents independently selected from halogen, cyano, nitro, (d-C8)alkyl, (C -C8)alkenyl, (C3-C8)alkynyl, (C - C8)heteroalkyl, (Cι-C8)haloalkyl, phenyl(Cι-C6)alkyl and phenyl(C2-C6)heteroalkyl. In particularly preferred embodiments, Y is CF3.
[0066] hi still further preferred embodiments, R1 is a group of formula lb in which
R11 is phenyl, optionally substituted with from one to two substituents independently selected from the group consisting of halogen, cyano, nitro, (Cι-C8)alkyl, (C3-C8)alkenyl, (C - C8)alkynyl, (C2-C8)heteroalkyl, (d-C8)haloalkyl, phenyl(C1-C6)alkyl and phenyl(C2-
C6)heteroalkyl. The remaining groups R2, R3 and R4 also have certain preferred members. In particular, R2 is preferably selected from H, (d-C8)alkyl, (C3-C8)cycloalkyl and (C4- C8)cycloalkyl-alkyl, wherein any alkyl portions of R2 are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and ammo. R is preferably selected from phenyl, pyridyl, thienyl and thiazolyl, optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R16, OR16, SR16, COR16, CO2R16, NHR16, N(R16)2, CONHR16, CON(R16)2, NHSO2R16, NHC(O)R16, phenyl, phenyl(d-C8)alkyl, and phenyl(C2- C8)heteroalkyl; wherein each R16 is independently selected from (C1-C8)alkyl, (C3- C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(C1-C8)alkyl, or two R16 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring. The subscript n is preferably 0, 1, or 2 and each R4 is preferably selected from halogen, (d- C8)alkyl and halo(d-C8)alkyl. [0067] h another group of still further preferred embodiments, R1 is a group of formula lb in which R11 is pyridyl, optionally substituted with from one to two substituents independently selected from halogen, cyano, nitro, (C1-C8)alkyl, (C3-C8)alkenyl, (C3- C8)alkynyl, (C -C8)heteroalkyl, (C1-C8)haloalkyl, phenyl(Cι-C6)alkyl and phenyl(C2- C6)heteroalkyl. Preferred members of the remaining groups R2, R3 and R4 are the same as have been described above for the embodiments in which R11 is phenyl. [0068] In yet another group of still further preferred embodiments, R1 is a group of formula lb in which R11 is pyridazinyl or pyrrolyl, optionally substituted with from one to two substituents independently selected from halogen, cyano, nitro, (d-C8)alkyl, (C3- C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl, (C1-C8)haloalkyl, phenyl(d-C6)alkyl and phenyl(C -C6)heteroalkyl. Preferred members of the remaining groups R2, R3 and R4 are the same as have been described above for the embodiments in which R11 is phenyl. [0069] Still another group of preferred embodiments are those compounds of formula
I in which R1 is
Figure imgf000020_0001
wherein R11 is selected from phenyl, pyrrolyl, pyridyl and pyridazinyl, each of these R11 groups being optionally substituted with from one to five substituents independently selected from halogen, cyano, nitro, (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl, (d-C8)haloalkyl, phenyl(Cι-C6)alkyl and phenyl(C2-C6)heteroalkyl. In particularly preferred embodiments, Y is CF3.
[0070] In still further preferred embodiments, R1 is a group of formula lc in which
R11 is phenyl, optionally substituted with from one to two substituents independently selected from the group consisting of halogen, cyano, nitro, (C1-C8)alkyl, (C -C8)alkenyl, (C - C8)alkynyl, (C2-C8)heteroalkyl, (C1-C8)haloalkyl, phenyl(d-C6)alkyl and phenyl(C - C6)heteroalkyl. The remaining groups R2, R3 and R4 also have certain preferred members. In particular, R is preferably selected from H, (C1-C8)alkyl, (C3-C8)cycloalkyl and (C4- C8)cycloalkyl-alkyl, wherein any alkyl portions of R2 are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and amino. R3 is preferably selected from phenyl, pyridyl, thienyl and thiazolyl, optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R16, OR16, SR16, COR16, CO2R16, NHR16, N(R16)2, CONHR16, CON(R16)2, NHSO2R16, NHC(O)R16, phenyl, phenyl(d-C8)alkyl, and phenyl(C2- C8)heteroalkyl; wherein each R16 is independently selected from (Cι-C8)alkyl, (C3-
C8)alkenyl, (C -C8)alkynyl, (C -C8)heteroalkyl and halo(Cι-C8)alkyl, or two R groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring.
The subscript n is preferably 0, 1, or 2 and each R is preferably selected from halogen, (d-
C8)alkyl and halo(C1-C8)alkyl.
[0071] The most preferred compounds of the present invention are those provided in the Examples below. [0072] Some of the compounds of Formula I may exist as stereoisomers, and the invention includes all active stereoisomeric forms of these compounds. In the case of optically active isomers, such compounds may be obtained from corresponding optically active precursors using the procedures described above or by resolving racemic mixtures. The resolution may be carried out using various techniques such as chromatography, repeated recrystallization of derived asymmetric salts, or derivatization, which techniques are well known to those of ordinary skill in the art. [0073] The compounds of the invention may be labeled in a variety of ways. For example, the compounds may contain radioactive isotopes such as, for example, 3H (tritium) and ' C (carbon-14). Similarly, the compounds may be advantageously joined, covalently or noncovalently, directly or through a linker molecule, to a wide variety of other compounds, which may provide pro-drugs or function as carriers, labels, adjuvents, coactivators, stabilizers, etc. Such labeled and joined compounds are contemplated within the present invention.
[0074] hi another aspect of the invention, pharmaceutical compositions are provided in which a compound of formula I is combined with a pharmaceutically acceptable carrier or diluent. Particular compositions and methods for their use are provided in more detail below. [0075] In yet another aspect, the present invention provides a method for modulating the action of an LXR receptor, preferably LXRα, in a cell. According to this method, the cell is contacted with a sufficient concentration of a composition containing a compound of formula I for either an agonistic or antagonistic effect to be detected. In preferred embodiments, the composition contains an amount of the compound which has been determined to provide a desired therapeutic or prophylactic effect for a given LXR-mediated condition.
[0076] In still another aspect, the present invention provides methods for the treatment of pathology such as hypercholesterolemia, atherosclerosis, and hyperlipoproteinemia using pharmaceutical compositions containing compounds of the foregoing description of the general Formula I. Briefly, this aspect of the invention involves administering to a patient an effective formulation of one or more of the subject compositions. In other embodiments, the compound of Formula I can be administered in combination with other anti-hypercholesterolemic agents (e.g., a bile acid sequestrant, nicotinic acid, fibric acid derivatives or HMG CoA reductase inhibitors), or in combination with other agents that affect cholesterol or lipid metabolism.
Preparation of the Compounds [0077] Several methods for preparing the compounds of the present invention are illustrated in the following schemes and examples. Starting materials are made by known procedures or as illustrated. One of skill in the art will understand that similar methods can be used for the synthesis of the compounds. [0078] As shown in Scheme 1, compounds of the present invention can be prepared beginning with commercially available 1 ',1 ',1 ',4-tetrafluoroacetophenone (1-1). Treatment of 1-1 with an N-substituted arylsulfonamide (1-2) in the presence of a base such as potassium carbonate, cesium carbonate, or sodium hydride in a suitable solvent such as DMF or DMSO provides adduct 1-3. Treatment of 1-3 with organometal species 1-4 provides compounds of formula 1-5.
Scheme 1
Figure imgf000022_0001
[0079] Examples of suitable organometal compounds are shown in Scheme 2. As illustrated in Scheme 2, a heterocycle, for example, 1-alkylimidazole 2-1, can be lithiated with n-butyllithium in THF or diethylether to give derivative 2-2. Also, bromodifluoroacetate or iododifluoroacetate can be converted into zinc species 2-4 by heating in the presence of zinc powder. An arylhalide or heteroarylhalide (2-5) can be converted to organomagnesium species 2-6 by reaction with magnesium in THF or diethylether or reaction with isopropylmagnesium bromide. In addition, an alkyne can be lithiated with, for example, n-butyllithium in THF, or metalated with isopropylmagnesium bromide in THF. Scheme 2
Figure imgf000023_0001
2-1 2-2
Zn THF, reflux
1*-
EtOOC^ W EtOOC^Zn
2-3 2-4
Mg / THF
Ar-W 1 Ar— MgBr or 2-5 iPrMgBr 2-6
THF, -20°C
W = l, Br n-BuLi THF, -78°C R- Li
R- -H or or R- -MgBr iPrMgBr
2-7 THF, -20°C 2-8
[0080] The preparation of intermediate alkynes 2-7 is illustrated in Scheme 3. An alkyl, aryl or heteroaryl halide (3-1) can be coupled to 2-methyl-3-butyn-2-ol according to the procedure described in Bleicher et al. (1995) Synlett 1115-1116. Resulting alcohol 3-2, can be converted to alkyne 2-7 using a base such as sodium hydride in a suitable solvent such as toluene, according to the procedure described in Havens et al. (1985) J. Org. Chem., 50:1763-1765.
[0081] Alternatively an alkyl, aryl or heteroaryl halide can be coupled to ethynyltrimethylsilane via a Palladium mediated reaction to afford 3-4 (see, e.g., R. C. Larock; Comprehensive Organic Transformations, 2nd ed., John Wiley & Sons, New York, pp. 596-599, (1999)). Subsequent treatment of 3-4 with, for example, potassium carbonate in anhydrous methanol gives alkyne 2-7. Scheme 3
Figure imgf000024_0001
W = l, Br cat. NaH / toluene
R .= H
2-7
Pd(OAc)2 h3
R-W Si Me-, PP
R- -SiMe,
^ Et,N 3-1 3-4
W = l, Br K2CO3 / MeOH
R- -H
2-7
[0082] An alternative preparation of the compounds of the present invention is shown in Scheme 4.
Scheme 4
Figure imgf000024_0002
Trimethylsilyl-ethynyl lithium is added to 1-3 and the adduct subsequently treated with tetrabutyl ammonium fluoride in THF to give ethynyl derivative 4-2. This derivative can be reacted with an alkyl, aryl or heteroaryl halide using the procedure described by Bleicher et al. (1995) Synlett, 1115-1116 or a similar Palladium mediated coupling reaction (see, e.g., R. C. Larock; Comprehensive Organic Transformations, 2nd ed., John Wiley & Sons, New York, pp. 596-599, (1999)) to afford 4-4.
[0083] Another alternative synthesis of the compounds of the present invention is shown in Scheme 5. A haloaniline (5-1) can be alkylated, acylated or arylated (general addition of R-group) to form 5-2. 5-2 can be sulfonylated with, for example, an appropriate sulfonyl halide (5-3) to form 5-4. Halo-substituted arylsulfonamide 5-4 can be converted to alcohol 5-7 upon treatment with t-butyllithium followed by ketone 5-5. Alternatively, 5-2 can be converted to 5-6 upon treatment with t-butyllithium followed by ketone 5-5. Alcohol 5-6 can be sulfonylated to form compounds of formula 5-7.
Scheme 5
Figure imgf000025_0001
[0084] The synthesis of compounds possessing the general formula 6-4 is shown in
Scheme 6. Halo-substituted arylsulfonamide 5-4 can be converted into fluoroketone 6-3 upon treatment with t-butyllithium followed by addition of α,α-difluoroester 6-2. Subsequent treatment of 6-3 with CF3-TMS in the presence of tetrabutylammonium fluoride in THF (see, e.g., G. K. S. Prakash in Synthetic Fluorine Chemistry; G. A. Olah et al, Eds. John Wiley; New York, 1992; Chapter 10) provides compounds of formula 6-4. Scheme 6
Figure imgf000026_0001
[0085] Preparation of intermediate α,α-difluoroester 6-2 can be accomplished by a variety of methods, including the methods illustrated in Scheme 7. Ketoester 7-1 can be fluorinated with diethylaminosulfur trifluoride (DAST), as reviewed in Middleton (1975) J. Org. Chem. 40:574. Acetic acid ester 7-3 can be fluorinated by treatment with a strong base, such as potassium hexamethyldisalazide, followed by addition of a suitable fluorinating agent, such as 7-4 (see, e.g., Differding et al. (1991) Tetrahedron Lett. 32:1779). Alternatively, an aryl iodide or aryl bromide can be treated with ethyl bromodifluoroacetate (7-5) in the presence of copper metal to provide 7-6 (see, e.g., Eto et αl. (2000) Chem. Pharm. Bull. 48:982).
Scheme 7
Figure imgf000026_0002
7-5 7-6
X = Br, I [0086] As shown in Scheme 8, alcohols 5-7 can be alkylated in the presence of a base such as sodium hydride in a suitable solvent such as THF or DMF to give ethers 8-2 or deoxygenated to give 8-3 by using, e.g., triethylsilane and BF3OEt2.
Scheme 8
Figure imgf000027_0001
Analysis of compounds
[0087] Representative compounds and compositions were demonstrated to have pharmacological activity in in vitro and in vivo assays, e.g., they are capable of specifically modulating a cellular physiology to reduce an associated pathology or provide or enhance a prophylaxis. [0088] Certain preferred compounds and compositions are capable of specifically regulating LXR. Compounds may be evaluated in vitro for their ability to activate LXR receptor function using biochemical assays (see co-pending applications Ser. Nos. 08/975,614 (filed November 21, 1997) and 09/163,713 (filed September 30, 1998)), or in cell-based assays such as that described in Lehmann, et al. ( J. Biol. Chem. 1997, 272(6), 3137-3140). Alternatively, the compounds and compositions can be evaluated for their ability to increase or decrease gene expression modulated by LXR, using western-blot analysis. Established animal models to evaluate hypocholesterolemic effects of the compounds are also known in the art. For example, compounds disclosed herein can lower cholesterol levels in hamsters fed a high-cholesterol diet, using a protocol similar to that described in Spady et al. (J. Clin. Invest. 1988, 81, 300), Evans et al. (J Lipid Res. 1994, 35, 1634), and Lin et al (J. Med. Chem. 1995, 38, 111). Still further, LXRα animal models (e.g.,
16 LXRα (+/-) and (-/-) mice) can be used for evaluation of the present compounds and compositions (see, for example, Peet, et al. Cell 1998, 93, 693-704).
[0089] Accordingly, as used herein, the term "LXR-modulating amount" refers to that amount of a compound that is needed to produce a desired effect in any one of the cell-based assays, biochemical assays or animal models described above. Typically, an LXR- modulating amount of a compound will be at least that amount which exhibits an EC50 in a reporter-gene cell-based assay (relative to an untreated control).
Formulation and administration of compounds and pharmaceutical compositions
[0090] The invention provides methods of using the subject compounds and compositions to treat disease or provide medicinal prophylaxis, to activate LXR receptor function in a cell, to reduce blood cholesterol concentration in a host, to slow down and/or reduce the abnormal cellular proliferation including the growth of tumors, etc. These methods generally involve contacting the cell or cells with or administering to a host an effective amoimt of the subject compounds or pharmaceutically acceptable compositions. [0091] The compositions and compounds of the invention and the pharmaceutically acceptable salts thereof can be administered in any effective way such as via oral, parenteral or topical routes. Generally, the compounds are administered in dosages ranging from about 2 mg up to about 2,000 mg per day, although variations will necessarily occur depending on the disease target, the patient, and the route of administration. Preferred dosages are administered orally in the range of about 0.05 mg/kg to about 20 mg/kg, more preferably in the range of about 0.05 mg/kg to about 2 mg/kg, most preferably in the range of about 0.05 mg/kg to about 0.2 mg per kg of body weight per day. [0092] In one embodiment, the invention provides the subject compounds combined with a pharmaceutically acceptable excipient such as sterile saline or other medium, water, gelatin, an oil, etc. to form pharmaceutically acceptable compositions. The compositions and/or compounds may be administered alone or in combination with any convenient carrier, diluent, etc. and such administration may be provided in single or multiple dosages. Useful carriers include solid, semi-solid or liquid media including water and non-toxic organic solvents.
[0093] In another embodiment, the invention provides the subject compounds in the form of a pro-drug, which can be metabolically converted to the subject compound by the recipient host. A wide variety of pro-drug formulations are lαiown in the art. [0094] The compositions may be provided in any convenient form including tablets, capsules, lozenges, troches, hard candies, powders, sprays, creams, suppositories, etc. As such the compositions, in pharmaceutically acceptable dosage units or in bulk, may be incorporated into a wide variety of containers. For example, dosage units may be included in a variety of containers including capsules, pills, etc.
[0095] The compositions may be advantageously combined and/or used in combination with other hypocholesterolemic therapeutic or prophylactic agents, different from the subject compounds. In many instances, administration in conjunction with the subject compositions enhances the efficacy of such agents. Exemplary hypocholesterolemic and/or hypolipemic agents include: bile acid sequestrants such as quaternary amines (e.g. cholestyramine and colestipol); nicotinic acid and its derivatives; HMG-CoA reductase inhibitors such as mevastatin, pravastatin, and simvastatin; gemfibrozil and other fibric acids, such as clofibrate, fenofibrate, benzafibrate and cipofibrate; probucol; raloxifene and its derivatives; and mixtures thereof. [0096] The compounds and compositions also find use in a variety of in vitro and in vivo assays, including diagnostic assays. For example, various allotypic LDL receptor gene expression processes may be distinguished in sensitivity assays with the subject compounds and compositions, or panels thereof. In certain assays and in in vivo distribution studies, it is desirable to use labeled versions of the subject compounds and compositions, e.g. radioligand displacement assays. Accordingly, the invention provides the subject compounds and compositions comprising a detectable label, which may be spectroscopic (e.g. fluorescent), radioactive, etc.
[0097] The following examples are offered by way of illustration and not by way of limitation.
EXAMPLES
[0098] 1H-NMR spectra were recorded on a Varian Gemini 400 MHz NMR spectrometer. Significant peaks are tabulated and typically include: number of protons, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br s, broad singlet) and coupling constant(s) in Hertz. Electron Ionization (El) mass spectra were recorded on a Hewlett Packard 5989A mass spectrometer. Mass spectrometry results are reported as the ratio of mass over charge, followed by the relative abundance of each ion (in parentheses). Starting materials in the synthesis examples below are either available from commercial sources such as Aldrich Chemical Co., Milwaukee, Wisconsin, USA, or via literature procedures. Abbreviations used in the examples below have their accepted meanings in the chemical literature. For example, THF (tetrahydrofuran), Et2O (diethyl ether), MeOH (methanol), CH C12 (methylene chloride), LDA (lithium diisopropylamide), MeCN (acetonitrile), and DMAP (4-dimethyaminopyridine).
Example 1
Figure imgf000030_0001
[0099] N-Methyl-N-[2-methyl-4-(2,2,2-trifluoro-l-hydroxy-l-phenethyl)]- benzenesulfonamide
Step A. N-Methyl-4-bromo-2-methylaniline
[0100] To a solution of 2.03 g (10.91 mmol) of 4-bromo-2-methylaniline in 40 ml of DMF was added 2.07 g (14.98 mmol) of K2CO3 and 0.63 ml (10.12 mmol) of iodomethane, and the mixture was stirred at room temperature for 14 hours. After this time, the reaction mixture was quenched by the addition of a saturated aqueous solution of ammonium chloride and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO , filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexanes : EtOAc, 20 : 1) to give the title compound. 1H-NMR (CDC13) δ 2.18 (s, 3H), 2.90 (s, 3H), 3.60 (brs, IH), 6.49 (d, J=8.6 Hz, IH), 7.19 (s, IH), 7.29 (d, J=8.5 Hz, IH).
Step B. N-Methyl-N-(4-methoxybenzyl)-4-bromo-2-methylaniline
[0101] To a solution of 2.7 g (13.57 mmol) of N-methyl-4-bromo-2-methylaniline in 20 ml of DMF at room temperature was added 608 mg (15.2 mmol) of NaH and the mixture was stirred at room temperature for 0.5h. After this time, 2.05 ml (15.1 mmol) of 4- methoxybenzyl chloride was added and the reaction mixture was heated to 60 °C for 12 hours. After this time, the reaction mixture was allowed to cool to room temperature and was quenched by the addition of a saturated aqueous solution of ammonium chloride and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO , filtered and the filtrate was concentrated. The residue was purified by chromatography (silica, hexanes : EtOAc, 20 : 1) to give the title compound. 1H-NMR (CDC13) δ 2.41 (s, 3H), 2.58 (s, 3H), 3.84 (s, 3H), 3.98 (s, 2H), 6.89-6.94 (m, 3H), 7.26-7.36 (m, 4H).
Step C. 2,2,2-Trifluoro-l-(3-methyl-4-methylaminophenyl)-l-phenyl-ethanol
[0102] To a solution of 1.03 g (3.23 mmol) of N-(4-bromo-2-methylphenyl)-N-methyl- benzenesulfonamide in 30 ml THF at -78°C was added dropwise 3.9 ml (6.63 mmol) of a
1.7M solution of tert-BuLi in hexanes and the resultant mixture was stirred at-78°C for 0.5h. To this mixture was then added 0.66 ml ( 4.7 mmol) of 2,2,2-trifluoroacetophenone and the mixture stirred at -78 °C for an additional 0.5h. The reaction was quenched by the addition of a saturated aqueous solution of ammonium chloride, allowed to warm to room temperature, and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO4, filtered and the filtrate was concentrated. 253 mg (0.61 mmol) of this material and 3 ml of TFA was heated to 50°C for 4 hours. After this time, excess TFA was removed in vacuo, water was added and the mixture was neutralized by the addition of a saturated aqueous solution of NaHCO3. The mixture was extracted with EtOAc and combined organic layers were washed with brine, dried over MgSO4, filtered and the filtrate was concentrated. The residue was purified by chromatography (silica, hexanes : EtOAc, 3 : 1) to give the title compound. 1H-NMR (CDCI3) δ 2.12 (s, 3H), 2.92 (s, 3H), 6.57 (d, J=8.5 Hz, IH), 7.16 (s, IH), 7.16 (brs, IH), 7.37-7.41 (m, 3H), 7.54-7.56 (m, 2H). Mass Spectrum (CI+) m/e = 296.1 (M+l).
Step D. N-Methyl-N-[2-methyl-4-(2,2,2-trifluoro-l-hydroxy-l-ρhenethyl)]- benzenesulfonamide [0103] A mixture of 27 mg (0.09 mmol) of 2,2,2-trifluoro-l-(3-methyl-4- methylaminophenyi)-l-phenyl-ethanol and 15 μl (0.12 mmol) of benzenesulfonyl chloride in 0.2 ml of pyridine was heated to 70°C for 13 hours. After this time the reaction mixture was allowed to cool to room temperature, quenched by the addition of a saturated aqueous solution of ammonium chloride, and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO4, filtered and the filtrate was concentrated. The residue was purified by chromatography (silica, hexanes : EtOAc, 4 : 1) to give the title compound. 1H-NMR (CDC13) δ 2.39 (s, 3H), 3.14 (s, 3H), 6.62 (d, J=8.4 Hz, IH), 7.13-7.26 (m, IH), 7.39-7.42 (m, 4H), 7.50-7.56 (m, 4H), 7.62-7.65 (m, IH), 7.74 (d, J-8.5 Hz, 2H). Mass Spectrum (CI+) m/e = 458.0 (M+23).
[0104] The compounds of Examples 2-4 were prepared from 2,2,2-trifluoro-l-(3-methyl-4- methylaminophenyl)-l-phenyl-ethanol as described in Example 1, Step D, using an appropriate sulfonylchloride.
Example 2
Figure imgf000032_0001
[0105] 2,5-Dichloro-N-Methyl-N-[2-methyl-4-(2,2,2-trifluoro- 1 -hydroxy- 1 -phenethyl)]- benzenesulfonamide
[0106] 1H-NMR (CDC13) δ 2.33 (s, 3H), 3.39 (s, 3H), 6.84 (d, J=8.4Hz, IH), 7.14-7.25 (m, IH), 7.38-7.40 (m, 4H), 7.45-7.51 (m, 4H), 7.85 (s, IH). Mass Spectrum (CI+) m/e = 526.0 (M+23).
Example 3
Figure imgf000032_0002
[0107] 3 -Cyano-N-Methyl-N-[2-methyl-4-(2,2,2-trifluoro- 1 -hydroxy- 1 -phenethyl)] - benzenesulfonamide [0108] Ή-NMR (CDCI3) δ 2.37 (s, 3H), 3.18 (s, 3H), 6.58 (d, J=8.4Hz, IH), 7.16-7.27(m, IH), 7.40-7.44 (m, 3H), 7.50-7.52 (m, 3H), 7.67-7.71 (m, IH), 8.02 (s, IH). Mass Spectrum (CI-) m/e = 459.0 (M-l).
Example 4
Figure imgf000033_0001
[0109] 2,5-Dichlorothiophene-3-sulfonic acid-N-methyl-N-[2-methyl-4-(2,2,2-trifluoro-l- hydroxy- 1 -phenethyl)-phenyl] -amide
[0110] 1H-NMR (CDCI3) δ 2.39 (s, 3H), 3.29 (s, 3H), 6.88 (d, J=8.4 Hz, IH), 6.96 (s, IH), 7.28-7.50 (m, 7H). Mass Spectrum (CI+) m/e = 532.0 (M+23).
Example 5
Figure imgf000033_0002
[0111] N-Methyl-N- {2-methyl-4-[2,2,2-trifluoro- 1 -hydroxy- 1 -(3-trifluoromethyl-phenyl)- ethyl] -phenyl} -benzenesulfonamide
Step A. 2,2,2-Trifluoromethyl-l-(3-methyl-4-methylaminophenyl)-l-(3- trifluoromethyl-phenyl)-ethanol [0112] To a solution of 1.03 g (5.17 mmol) of N-methyl-4-bromo-2-methylaniline (Example 1, Step A) in 40 ml of THF at -78°C was added dropwise 9.4 ml (15.98 mmol) of a 1.7M solution of tert-BuLi in hexanes and the resultant mixture was stirred at -78°C for 30 min. To this mixture was then added 0.85 ml (4.98 mmol) of 3-(trifluoromethyl)-α,α,α- trifluoroacetophenone and the mixture was stirred at -78°C for a 1.5 h. The reaction was quenched by the addition of a saturated aqueous solution of ammonium chloride, allowed to warm to room temperature, and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO4, filtered and the filtrate was concentrated to give the title compound which was used without further purification.
Step B . N-Methyl-N- {2-metliyl-4-[2,2,2-trifluoro- 1 -hydroxy- 1 -(3 -trifluoromethyl- phenyl)-ethyl]-phenyl}-benzenesulfonamide [0113] The title compound was prepared from 2,2,2-trifluoromethyl-l-(3-methyl-4- methylaminophenyl)-l-(3-trifluoromethyl-phenyl)-ethanol (Step A) and benzenesulfonyl chloride using the procedure described in Example 1, Step D. 1H-NMR (CDC13) δ 2.41 (s, 3H), 3.15 (s, 3H), 6.64 (d, J=8.4 Hz, IH), 7.18 (brs, IH), 7.42 (brs, IH), 7.52-7.56 (m, 3H), 7.63-7.67 (m, 3H), 7.73 (d, J=8.5 Hz, 2H), 7.82 (s, IH). Mass Spectrum (CI+) m/e = 526.0 (M+23).
[0114] The compounds of Examples 6, 7 and 8 were prepared from 2,2,2-trifluoromethyl- l-(3-methyl-4-methylaminophenyl)-l-(3-trifluoromethyl-phenyl)-ethanol and an appropriate sulfonyl chloride using the methods described in Example 1, Step D.
Figure imgf000034_0001
[0115] 3-Cyano-N-methyl-N-{2-methyl-4-[2,2,2-trifluoro-l-hydroxy-l-(3-trifluoromethyl- phenyl)-ethyl]-phenyl}-benzenesulfonamide
[0116] 1H-NMR (CDCI3) δ 2.39 (s, 3H), 3.19 (s, 3H), 6.62 (d, J=8.4 Hz, IH), 7.23 (brs, IH), 7.45 (brs, IH), 7.52-7.56 (m, IH), 7.64-7.70 (m, 3H), 7.83 (s, IH), 7.91-7.93 (m, 2H), 7.99-8.02 (m, IH). Mass Spectrum (CI-) m/e = 527.2 (M-l).
Figure imgf000035_0001
[0117] 2,5-Dichloro-N-methyl-N-{2-methyl-4-[2,2,2-trifluoro-l-hydroxy-l-(3- trifluoromethyl-phenyl)-ethyl] -phenyl} -benzenesulfonamide
[0118] 1H-NMR (CDCI3) δ2.35 (s, 3H), 3.39 (s, 3H), 6.89 (d, J=8.4 Hz, IH), 7.18-7.22 (m, IH), 7.41 (brs, IH), 7.48-7.53 (m, 3H), 7.60-7.66 (m, 2H), 7.83-7.86 (m, 2H0. Mass Spectrum (CI+) m/e = 594.0 (M+23).
Figure imgf000035_0002
8
[0119] 2,5-Dichloro-thiophene-3-sulfonic acid-N-methyl-N-{2-methyl-4-[2,2,2-trifluoro-l- hydroxy-l-(3-trifluoromethyl-phenyl)-ethyl]-phenyl}-amide
[0120] 1H-NMR (CDCI3) δ 2.40 (s, 3H), 3.29 (s, 3H), 6.91 (d, J=8.4 Hz, IH), 6.96 (s, IH), 7.26-7.28 (m, IH), 7.44-7.54 (m, 2H), 7.65 (d, J=7.6 Hz, 2H), 7.81 (s, IH). Mass Spectrum
(CI+) m/e = 600.0 (M+23).
[0121] The compounds of Examples 9-12 were prepared from N-methyl-4-bromo-2- methylaniline (Example 1, Step A) and tr ns- l,l,l-trifluoro-4-phenyl-3-buten-2-one (Aldrich
Chemical Co.) as described in Example 5, Step A. Treatment of the resultant intermediate compotmds with an appropriate sulfonyl chloride was carried out using methods described in
Example 1, Step D.
Figure imgf000036_0001
[0122] N-[4-(l-Hydroxy-3-phenyl-l-trifluoromethyl-allyl)-2-methyl-phenyl]-N-methyl- benzenesulfonamide
[0123] 1H-NMR (CDC13) δ 2.44 (s, 3H), 3.15 (s, 3H), 6.65 (d, J=8.4 Hz, IH), 6.68 (d, J=16 Hz, IH), 6.91 (d, J=16 Hz, IH), 7.33-7.46 (m, 4H), 7.59-7.76 (m, 6H), 7.93-7.96 (m, 2H). Mass Spectrum (CI-) m e = 460.1 (M-l).
Figure imgf000036_0002
10
[0124] 3-Cyano-N-[4-(l-hydroxy-3-phenyl-l-trifluoromethyl-allyl)-2-methyl-phenyl]-N- methyl-benzenesulfonamide
[0125] 1H-NMR (CDC13) δ 2.43 (s, 3H), 3.20 (s, 3H), 6.63 (d, J=8.4 Hz, IH), 6.69 (d, J=16 Hz, IH), 6.92 (d, J=16 Hz, IH), 7.28-7.47 (m, 5H), 7.60 (s, IH), 7.69 (t, J=7.9 Hz, IH), 7.91- 7.95 (m, 2H), 8.06 (s, IH). Mass Spectrum (CI-) m/e = 485.1 (M-l).
Figure imgf000037_0001
11
[0126] 2,5-Dichloro-N-[4-(l-hydroxy-3-phenyl-l-trifluoromethyl-allyl)-2-methyl-phenyl]-
N-methyl-benzenesulfonamide
[0127] 1H-NMR (CDC13) δ 2.38 (s, 3H), 3.41 (s, 3H), 6.66 (d, J=16 Hz, IH), 6.88 (d, J=16
Hz, IH), 6.90 (d, J=8.4 Hz, IH), 7.34-7.39 (m, 4H), 7.43-7.55 (m, 5H), 7.87 (s, IH). Mass
Spectrum (CI-) m/e = 528.0 (M-l).
Figure imgf000037_0002
12
[0128] 2,5-Dichloro-thiophene-3-sulfonic acid [4-(l-hydroxy-3 -phenyl- 1-trifluoromethyl- allyl)-2-methyl-phenyl]-methyl-amide
[0129] 1H-NMR (CDC13) δ 2.44 (s, 3H), 3.30 (s, 3H), 6.69 (d, J=16.1 Hz, IH), 6.88-6.97 (m, 3H), 7.33-7.47 (m, 6H), 7.59 (s, IH). Mass Spectrum (CI-) m/e = 534.0 (M-l).
[0130] The compounds of Examples 13-15 were prepared from N-methyl-4-bromoaniline and 2,2,2-trifluoroacetophenone (Aldrich Chemical Co.) using methods similar to those of Example 5, Step A. Treatment of the resultant intermediate compounds with an appropriate sulfonyl chloride was carried out using methods described in Example 1, Step D. Example 13
Figure imgf000038_0001
13
[0131] 3 -Cyano-N-methyl-N-[4-(2,2,2-trifluoro- 1 -hydroxy- 1 -phenethyl)]- benzenesulfonamide
[0132] 1H-NMR (CDC13) δ 3.23 (s, 3H), 7.10 (d, J=8.4 Hz, 2H), 7.41-7.49 (m, 7H), 7.62 (t, J=7.8 Hz, IH), 7.76-7.88 (m, 3H). Mass Spectrum (CI-) m/e = 445.1 (M-l).
Example 14
Figure imgf000038_0002
14
[0133] 2,5-Dichloro-N-methyl-N-[4-(2,2,2-trifluoro-l-hydroxy-l-phenethyl)]- benzenesulfonamide
[0134] 1H-NMR (CDCI3) δ 3.42 (s, 3H), 7.23 (d, J=8.2 Hz, 2H), 7.37-7.46 (m, 9H), 7.88 (s,
IH). Mass Spectrum (CI-) m/e = 488.1 (M-l).
Example 15
Figure imgf000039_0001
15
[0135] 2,5-Dichlorothiophene-3-sulfonic acid methyl-[4-(2,2,2-trifluoro-l -hydroxy- 1- phenyl-ethyl)-phenyl] -amide
[0136] 1H-NMR (CDC13) δ 3.34 (s, 3H), 6.86 (s, IH), 7.23 (d, J=8.4 Hz, 2H), 7.39-7.51 (m, 7H). Mass Spectrum (CI-) m/e = 494.0 (M-l).
[0137] The compounds of Examples 16-18 were prepared from N-methyl-4-bromoaniline and 2,2,2-trifluoro-3'-(trifluoromethyl)acetophenone (Aldrich Chemical Co.) using methods similar to those of Example 5, Step A. Treatment of the resultant intermediate compounds with an appropriate sulfonyl chloride was carried out using methods described in Example 1, Step D.
Example 16
Figure imgf000039_0002
16
[0138] 3-Cyano-N-methyl-N-{4-[2,2,2-trifluoro-l-hydroxy-l-(3-trifluoromethyl-phenyl)- ethyl] } -benzenesulfonamide
[0139] 1H-NMR (CDC13) δ 3.23 (s, 3H), 7.14 (d, J=8.6 Hz, 2H), 7.15-7.88 (m, 10 H). Mass Spectrum (CI-) m/e = 513.2 (M-l).
Figure imgf000040_0001
17
[0140] 2,5-Dichloro-N-methyl-N- {4-[2,2,2-trifluoro- 1 -hydroxy- 1 -(3-trifluoromethyl- phenyl)-ethyl] } -benzenesulfonamide
[0141] 1H-NMR (CDC13) δ 3.43 (s, 3H), 7.27-7.29 (m, 2H), 7.41-7.92 (m, 9H). Mass Spectrum (CI-) m/e = 556.1 (M-l).
Figure imgf000040_0002
18
[0142] 2,5-Dichlorothiophene-3-sulfonic acid methyl-{4-[2,2,2-trifluoro-l-hydroxy-l-(3- trifluoromethyl-phenyl)-ethyl] -phenyl} -amide
[0143] 1H-NMR (CDC13) δ 3.34 (s, 3H), 6.89 (s, IH), 7.27-7.29 (m, 2H), 7.48-7.55 (m, 3H), 7.66 (d, J=7.7 Hz, 2H), 7.78 (s, IH). Mass Spectrum (CI-) m e = 562.1 (M-l). [0144] The compounds of Examples 19-21 were prepared from N-methyl-4-bromoaniline and tr ns- l,l,l-trifluoro-4-phenyl-3-buten-2-one (Aldrich Chemical Co.) using methods similar to those of Example 5, Step A. Treatment of the resultant intermediate compound with an appropriate sulfonyl chloride was carried out using methods described in Example 1, Step D. Example 19
Figure imgf000041_0001
19
[0145] 3-Cyano-N-[4-(l-hydroxy-3-phenyl-l-trifluoromethyl-allyl)-phenyl]-N-methyl- benzenesulfonamide
[0146] 1H-NMR (CDCI3) δ 3.24 (s, 3H), 6.71 (d, J=16 Hz, IH), 6.91 (d, J=16 Hz, IH), 7.15
(d, J=8.6 Hz, 2H), 7.34-7.47 (m, 5H), 7.61-7.65 (m, 3H), 7.74-7.76 (m, IH), 7.86-7.89 (m,
2H). Mass Spectrum (CI-) m/e = 471.2 (M-l).
Example 20
Figure imgf000041_0002
20
[0147] 2,5-Dichloro-N-[4-(l-hydroxy-3-phenyl-l-trifluoromethyl-allyl)-phenyl]-N-methyl- benzenesulfonamide
[0148] 1H-NMR (CDCI3) δ 3.44 (s, 3H), 6.68 (d, J=16.1 Hz, IH), 6.85 (d, J=16.1 Hz, IH), 7.27-7.44 (m, 9H), 7.61 (d, J=8.6 Hz, 2H), 7.91 (s, IH). Mass Spectrum (CI-) m/e = 514.1 (M-l).
Figure imgf000042_0001
21
[0149] 2,5-Dichlorothiophene-3-sulfonic acid [4-(l-hydroxy-3-phenyl-l-trifluoromethyl- allyl)-phenyl]-ιnethyl-amide
[0150] 1H-NMR (CDC13) δ 3.36 (s, 3H), 6.71 (d, J=16.2 Hz, IH), 6.87 (d, J=15.9 Hz, IH), 6.88 (s, IH), 7.28-7.45 (m, 7H), 7.65 (d, J=8.6 Hz, 2H). Mass Spectrum (CI-) m/e = 520.0 (M-l).
Example 22
Figure imgf000042_0002
22
[0151] N-{4-[l-(4-Chlorophenyl)-2,2,2-trifluoro-l-hydroxy-ethyl]-phenyl}-N-methyl- benzenesulfonamide
Step A. N-Methyl-N-(4-trifluoroacetyl-phenyl)-benzenesulfonamide
[0152] To a suspension of 0.26g of NaH 60% in mineral oil) in 5mL of DMF was slowly added a solution of 0.98g of N-methyl benzenesulfonamide in 4mL of DMF at 0° C. After the addition, the reaction mixture was allowed to warm to room temperature. After lh a solution of lg of l,l,l,4'-tetraflouroacetophenone in lmL of DMF was added and the reaction mixture was stirred at 60° C for 12h. The solvent was removed under reduced pressure, the residue was dissolved in AcOEt (80 mL) and washed with sat. NaHCO3 solution (2 x 20 mL) and brine (20 mL). The organic layer was dried over MgSO4, filtered and the filtrate was concentrated. The residue was purified by flash chromatography on silica (ethyl acetate / hexane = 1/1) to give the title compound. 1H-NMR (CDC13) δ 3.27 (s, 3 H), 7.37 (d, J = 6.0 Hz, 2 H), 7.48-7.63 (m, 5 H), 8.04 (d, J = 6 Hz, 2 H). Mass Spectrum (CI+) m/e = 344 (M+l).
Step B. N- {4-[ 1 -(4-Chlorophenyl)-2,2,2-trifluoro- 1 -hydroxy-ethylj-phenyl} -N- methyl-benzenesulfonamide [0153] To a solution of 0.2g of N-methyl-N-(4-trifluoroacetyl-phenyl)-benzenesulfonamide in lOmL of THF were added 0.7mL of a IM solution 4-chlorophenyl magnesium bromide at - 78° C. The resulting mixture was stirred at -78° C for 4 hr. After this time, the reaction mixture was quenched by the addition of a saturated aqueous solution of ammonium chloride and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO , filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexanes : EtOAc, 7 : 1) to give the title compound. 1H-NMR (CDCI3) δ 2.96 (br s, 1 H), 3.17 (s, 3 H), 7.10-7.59 (m, 13 H). Mass Spectrum (CI+) m/e = 456 (M+l).
Example 23
Figure imgf000043_0001
23 [0154] N-Methyl-N- {4-[2,2,2-trifluoro- 1 -hydroxy- 1 -(1 -methoxymethyl- 1 H-imidazol-2-yl)- ethyl]-phenyl}-benzenesulfonamide
Step A. 1 -Methoxymethyl- 1 H-imidazole
[0155] To a solution of 1.06 g of imidazole (15.56 mmol) in 20 ml of THF at 0°C was added 658 mg (16.45 mmol) of NaH (40% dispersion in oil) and the mixture was stirred at 0°C for 30 mins. After this time, 1.2 ml (15.7 mmol) of chloromethyl methyl ether were added and the mixture was allowed to warm to room temperature and stirred for 14 h. After this time the reaction was quenched by the addition of a saturated aqueous solution of ammonium chloride, allowed to warm to room temperature, and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO4, filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexanes : EtOAc, 1 : 1) to give the title compound. 1H-NMR (CDC13) δ 3.21 (s, 3H), 5.18 (s, 2H), 7.00 (d, J=19 Hz, 2H0, 7.54 (s, IH).
Step B. N-Methyl-N-{4-[2,2,2-trifluoro-l-hydroxy-l-(l-methoxymethyl-lH-imidazol-
2-yl)-ethyl] -phenyl} -benzenesulfonamide [0156] To a solution of 55 mg (0.49 mmol) of 1 -methoxymethyl- IH-imidazole in 5 ml of THF at -78 °C was added 0.20 ml (0.50 mmol) of a 2.5 M solution of n-butyllithium in hexanes and the resultant mixture was stirred at -78 °C for 30 mins. After this time, a solution of 160 mg (0.47 mmol) of N-methyl-N-(4-trifluoroacetyl-phenyl)- benzenesulfonamide (Example 22, Step A) in 2 ml of THF was added and the resultant mixture stirred at -78 °C for a further 2h, and then at room temperature for 14 h. After this time the reaction was quenched by the addition of a saturated aqueous solution of ammonium chloride and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO4, filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexanes : EtOAc, 4 : 1) to give the title compound. 1H-NMR (CDCI3) δ 3.09 (s, 3H), 3.19 (s, 3H), 4.90 (s, 2H), 5.16 (brs, IH), 7.07-7.16 (m, 4H), 7.42- 7.62 (m, 7H). Mass Spectrum (CI+) m/e = 456.1 (M+l).
[0157] Example 24 was prepared from benzimidazole and N-methyl-N-(4-trifluoroacetyl- phenyl)-benzenesulfonamide (Example 22, Step A) following procedures described in Example 23.
Example 24
Figure imgf000045_0001
24
[0158] N-Methyl-N- {4-[2,2,2-trifluoro- 1 -hydroxy- 1 -( 1 -methoxymethyl- 1 H-benzoimidazol- 2-yl)-ethyl]-phenyl} -benzenesulfonamide
[0159] 1H-NMR (CDC13) δ 3.12 (s, 3H), 3.19 (s, 3H), 5.10 (d, J=10.8 Hz, IH), 5.26 (d, J=10.9 Hz, IH), 7.15-7.17 (m, 2H), 7.36-7.59 (m, IH). Mass Spectrum (CI+) m/e = 506.0 (M+l).
[0160] Examples 25 - 28 were prepared from the appropriate heterocycle and N-methyl-N- (4-trifluoroacetyl-phenyl)-benzenesulfonamide (Example 22, Step A) following procedures described in Example 23, Step B.
Example 25
Figure imgf000045_0002
25 [0161] N-Methyl-N-{4-[2,2,2-trifluoro-l-hydroxy-l-(l-methyl-lH-imidazol-2-yl)-ethyl]- phenyl} -benzenesulfonamide
[0162] 1H-NMR (CDC13) δ 3.19 (s, 3H), 3.22 (s, 3H), 6.87 (s, IH), 6.98 (s, IH), 7.14 (d, J=8.6 Hz, 2H), 7.37 (d, J=8.5 Hz, 2H), 7.43-7.61 (m, 5H). Mass Spectrum (CI+) m/e = 426.0 (M+l). Example 26
Figure imgf000046_0001
26
[0163] N-Methyl-N- {4-[2,2,2-trifluoro- 1 -hydroxy- 1 -( 1 -methyl- 1 H-benzoimidazol-2-yl)- ethylj-phenyl} -benzenesulfonamide
[0164] 1H-NMR (CDCI3) δ 3.20 (s, 3H), 3.33 (s, 3H), 7.17-7.55 (m, 12H), 7.81 (d, J=7.5 Hz, IH). Mass Spectrum (CI+) m/e = 476.0 (M+l).
Example 27
Figure imgf000046_0002
27
[0165] N-Methyl-N- {4-[2,2,2-trifluoro- 1 -hydroxy- 1 -(1 -thiazol-2-yl)-ethyl]-phenyl} - benzenesulfonamide
[0166] 1H-NMR (CDCI3) δ 3.20 (s, 3H), 5.34 (brs, IH), 7.18 (d, J=8.6 Hz, 2H), 7.46-7.59 (m, 6H), 7.75 (d, J=8.5 Hz, 2H), 7.85 (d, J=3.2 Hz, IH). Mass Spectrum (CI+) m/e = 429.0 (M+l).
Example 28
Figure imgf000047_0001
28
[0167] N- {4- [ 1 -Benzyloxymethyl- 1 -H-tetrazol-5 -yl)-2,2,2-trifluoro- 1 -hydroxy-ethyl]- phenyl} -N-methyl-benzenesulfonamide
[0168] 1H-NMR (CDC13) δ 3.20 (s, 3H), 4.73 (s, 2H), 6.01 (s, 2H), 7.18-7.21 (m, 2H), 7.32-7.61 (m, 10H, 7.84 (d, J=8.7 Hz, 2H). Mass Spectrum (CI+) m/e = 534.1 (M+l).
Example 29
Figure imgf000047_0002
29
[0169] N-[4-(l-Hydroxy-3-phenyl-l-trifluoromethyl-prop-2-ynyl)-phenyl]-N-methyl- benzenesulfonamide
[0170] To a solution of 0.18 g of phenylacetylene (1.75 mmol) in 5 mL of THF was added dropwise 0.76 mL of n-BuLi (2.5M in hexane) at -78 °C. The color of the solution turned dark blue and the mixture was stirred at -78 °C for 30 min. Then 0.5g of N-methyl-N-(4- trifluoroacetyl-phenyl)-benzenesulfonamide (Example 22, Step A) in 5 ml of THF was added and the resultant mixture stirred at -78 °C for 2 h. After this time the reaction was quenched by the addition of a saturated aqueous solution of ammonium chloride and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO4, filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexanes : EtOAc, 7 : 3) to give the title compound. 1H NMR (CDC13) δ 3.19 (s, 3 H), 3.26 (br s, 1 H), 7.17 (d, J = 8.7 Hz, 2 H), 7.34-7.60 (m, 10 H), 7.74 (d, J = 8.7 Hz, 2 H). Mass Spectrum (CI+) m/e = 446.0 (M+l). Example 30
Figure imgf000048_0001
30
[0171] N-Methyl-N-[4-(4,4,4-trifluoro-l-hydroxy-l-trifluoromethyl-but-2-ynyl)-phenyl]- benzenesulfonamide
[0172] The compound was prepared from N-methyl-N-(4-trifluoroacetyl-phenyl)- benzenesulfonamide (Example 22, Step A) and 3,3,3-trifluoroprop-l-yne following the procedure described in Example 29. 1H NMR (CDC13) δ 3.19 (s, 3 H), 4.30 (br s, IH), 7.11- 7.63 (m, 9 H). Mass Spectrum (CI+) m/e = 438 (M+l).
Example 31
Figure imgf000048_0002
31
[0173] N-[4-(4-Diethylamino- 1 -hydroxy- 1 -trifluoromethyl-but-2-ynyl)-phenyl] -N-methyl- benzenesulfonamide [0174] The compound was prepared from N-methyl-N-(4-trifluoroacetyl-phenyl)- benzenesulfonamide (Example 22, Step A) and 3-(diethylamino)-propy-l-yne following the procedure described in Example 29. 1H NMR (CDC13) δ 1.09 (t, J = 7.1 Hz, 6 H), 2.59 (q, J = 7.1 Hz, 4 H), 3.17 (s, 3 H), 3.52 (s, 2 H), 5.34 (brs, 1 H), 7.13 (d, J = 8.5 HZ, 2 H), 7.41- 7.58 (m, 5 H), 7.66 (d, J = 8.5 Hz, 2 H). Mass Spectrum (CI+) m/e = 455 (M+l). Example 32
Figure imgf000049_0001
32
[0175] N-[4-(l-Hydroxy-5-methyl-l-trifluoromethyl-hex-2-ynyl)-phenyl]-N-methyl- benzenesulfonamide
[0176] The compound was prepared from N-methyl-N-(4-trifluoroacetyl-phenyl)- benzenesulfonamide (Example 22, Step A) and 4-methyl-pent-l-yne following the procedure described in Example 29. 1H NMR (CDCI3) δ 1.01 (d, J = 6.6 Hz, 6 H), 1.90 (sept, J = 6.6 Hz, 1 H), 2.21 (d, J = 7.7 Hz, 2 H), 3.17 (s, 3 H), 3.24 (br s, 1 H), 7.12-7.68 (m, 9 H). Mass Spectrum (CI+) m/e = 426 (M+l).
Figure imgf000049_0002
33
[0177] 2,5-Dichloro-N-[4-(l-hydroxy-3-phenyl-l-trifluoromethyl-prop-2-ynyl)-phenyl]-N- methyl-benzenesulfonamide
Step A. N-Methyl-N-(4-trifluoroacetyl-phenyl)-benzenesulfonamide
[0178] The title compound was prepared from l,l,l,4'-tetrafluoroacetophenone and 2,5- dichloro-N-methyl-benzenesulfonamide using methods similar to those described in Example 22 Step A. 1H NMR (400 MHz, CDC13) δ 3.48 (s, 3 H), 7.41-8.05 (m, 7 H). Step B. 2,5-Dichloro-N-[4-(l-hydroxy-3-phenyl-l-trifluoromethyl-prop-2-ynyl)- phenyl] -N-methyl-b enzenesulfonamide [0179] The title compound was prepared from N-methyl-N-(4-trifluoroacetyl-phenyl)- benzenesulfonamide using methods as described in Example 29. 1H NMR (400 MHz, CDC13) δ = 3.21 (brs, 1 H), 3.43 (s, 3 H), 7.3 (d, J = 8.8 Hz, 2 H), 7.34-7.53 (m, 7 H), 7.75 (d, J = 8.8 Hz, 2 H), 7.91 (s, 1 H). Mass Spectrum (CI+) m/e = 516 (M+l).
Figure imgf000050_0001
34 [0180] N-Cyclopentyl-2,5-dichloro-N-[4-(l -hydroxy-3 -phenyl- 1 -trifluoromethyl-prop-2- ynyl)-phenyl] -benzenesulfonamide
Step A. l-(4-Cyclopentylamino-phenyl)-2,2,2-trifluoro-ethanone
[0181] To a mixture of 3.94 g of 2,2,2,4'-tetrafluoroacetophenone (20.5 mmol) and 3.35 ml triethylamine (24.0 mmol) in 40 ml of acetonitrile at 0 °C were added 5.9 ml of cyclopentylamine (59.8 mmol). The reaction was allowed to warm to room temperature and then heated to reflux for 14 h. After this time the reaction mixture was cooled to room temperature, concentrated and partitioned between water and EtOAc. The organic layer was dried over MgSO4, filtered and the filtrate was concentrated. The residue was purified by chromatography on silica (hexanes : EtOAc, 4 : 1) to give the title compound. l H-NMR
(CDCI3) δ 1.53-1.57 (m, 2H), 1.69-1.78 (m, 4H), 2.08-2.13 (m, 2H), 3.88-3.95 (m, IH), 4.63 (brs, IH), 6.60 (d, J=8.9 Hz, 2H), 7.92 (d, J=8.9 Hz, 2H). Mass Spectrum (CI+) m/e = 258.1 (M+l).
Step B. 2-(4-Cyclopentylamino-phenyl)-l,l,l-trifluoro-4-phenyl-but-3-yn-2-ol
[0182] To a solution of 0.4 ml of phenylacetylene (3.6 mmol in 10 ml of THF at -78 °C was added 1.9 ml (4.75 mmol) of a 2.5 M solution of n-butyllithium in hexanes. The color of the solution turned dark blue and the reaction mixture was stirred at -78°C for 30 min. After this time, a solution of 450 mg of l-(4-cyclopentylammo-phenyl)-2,2,2-trifluoro-ethanone (1.75 mmol) in 2 ml of THF was added and the resultant mixture stirred at -78 °C for 1.5 h before being allowed to warm to room temperature and stirred for a further 14h. After this time, the reaction was quenched by the addition of a saturated aqueous solution of ammonium chloride and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO , filtered and the filtrate was concentrated. The residue was purified by chromatography on silica (hexanes : EtOAc, 3 : 1) to give the title compound. 1H-NMR (CDC13) δ 1.48-1.56 (m, 2H), 1.68-1.76 (m, 4H), 2.03-2.14 (m, 2H), 3.76-3.85 (m, IH), 6.65 (d, J=8.6 Hz, 2H), 7.36-7.82 (m, 10H). Mass Spectrum (CI+) m/e = 360.1 (M+l).
Step C. 2,5-Dichloro-N-cyclopentyl-N-[4-(l-hydroxy-3-phenyl-l-trifluoromethyl- prop-2-ynyl)-phenyl]-benzenesulfonamide [0183] A mixture of 53 mg of 2-(4-cyclopentylamino-phenyl)- 1,1,1 -trifluoro-4-phenyl-but- 3-yn-2-ol (0.15 mmol) and 44 mg of 2,5-dichlorobenzenesulfonyl chloride (0.18 mmol) in 0.2 ml of pyridine was heated to 70°C for 14 hours. After this time the reaction mixture was allowed to cool to room temperature, quenched by the addition of a saturated aqueous solution of ammonium chloride, and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO4, filtered and the filtrate was concentrated. The residue was purified by chromatography on silica (hexanes : EtOAc, 4 : 1) to give the title compound. 1H-NMR (CDCI3) δ 1.36-1.58 (m, 6H), 1.97-2.07 (m, 2H), 4.73-4.78 (m, IH), 7.18 (d, J=8.4 Hz, 2H), 7.37-7.55 (m, 7H), 7.76 (d, J=8.4 Hz, 2H), 7.84 (d, J=2.4 Hz, IH). Mass Spectrum (CI+) m/e = 590.0 (M+23). [0184] Examples 35 and 36 were prepared from 2-(4-cyclopentylamino-phenyl)- 1,1,1- trifluoro-4-phenyl-but-3-yn-2-ol (described in Example 34, Step B) and an appropriate sulfonyl chloride using methodology as described in Example 34, Step C. Example 35
Figure imgf000052_0001
35
[0185] 2,5-Dichloro-thiophene-3-sulfonic acid N-cyclopentyl[4-(l-hydroxy-3-phenyl-l- trifluoromethyl-prop-2-ynyl)-phenyl]-amide
[0186] 1H-NMR (CDC13) δ 1.27-1.53 (m, 6H), 1.93-1.96 (m, 2H), 3.38 (brs, IH), 4.61-4.68
(m, IH), 6.95 (s, IH), 7.20 (d, J=8.2 Hz, 2H), 7.37-7.44 (m, 3H), 7.55 (m, 2H), 7.83 (d, J=8.3
Hz, 2H). Mass Spectrum (CI+) m/e = 596.0(M+23).
Example 36
Figure imgf000052_0002
36
[0187] 3-Cyano-N-cyclopentyl-N-[4-(l -hydroxy-3 -phenyl- 1 -trifluoromethyl-prop-2-ynyl)- phenyl] -benzenesulfonamide
[0188] 1H-NMR (CDCI3) δ 1.25-1.36 (m, 2H), 1.48-1.52 (m, 4H), 1.86-1.88 (m, 2H), 4.23
(brs, IH), 4.54-4.60 (m, IH), 7.08 (d, J=8.6 Hz, 2H), 7.36-7.42 (m, 3H), 7.52-7.64 (m, 3H),
7.82-7.87 (m, 3H), 7.92-7.95 (m, IH), 8.06 (s, IH). Mass Spectrum (CI+) m e = 547.1
(M+23).
Figure imgf000053_0001
37
[0189] 2,5-Dichloro-N-[4-(l-hydroxy-3-phenyl-l-trifluoromethyl-prop-2-ynyl)-phenyl]-N- isopropyl-benzenesulfonamide
Step A. l-(4-Isopropylamino-phenyl)-2,2,2-trifluoro-ethanone
[0190] The title compound was prepared as described in Example 34, Step A, substituting isopropylamine for cyclopentylamine. 1H-NMR (CDC13) δ 1.29 (d, J=6.3 Hz, 6H), 3.76-3.80 (m, IH), 4.48 (brs, IH), 6.58 (d, J=8.6 Hz, 2H), 7.93 (d, J=8.9 Hz, 2H). Mass Spectrum (CI+) m/e = 232 (M+l).
Step B. 2-(4-Isopropylamino-phenyl)-l , 1 , 1 -trifluoro-4-phenyl-but-3-yn-2-ol
[0191] The title compound was prepared as described in Example 34, Step B. Η-NMR (CDC13) δ 1.25 (d, J=6.3 Hz, 6H), 3.36 (brs, IH), 3.66-3.70 (m, IH), 6.63 (d, J=8.6 Hz, 2H), 7.28-7.64 (m, 7H). Mass Spectrum (CI+) m/e = 334.1 (M+l).
Step C. 2,5-Dichloro-N-[4-(l-hydroxy-3-phenyl-l-trifluoromethyl-prop-2-ynyl)- phenyl] -N-isopropyl-b enzenesulfonamide [0192] The title compound was prepared from 2-(4-isopropylamino-phenyl)-l,l,l-trifluoro- 4-phenyl-but-3-yn-2-ol using methods as described in Example 34, Step C. 'H-NMR (CDCI3) δ 1.20 (m, 6H), 4.73-4.78 (m, IH), 7.18 (d, J=8.6 Hz, 2H), 7.38-7.55 (m, 7H), 7.78 (d, J=8.4 Hz, 2H), 7.86 (d, J=2.4 Hz, IH). Mass Spectrum (CI+) m/e = 564.0 (M+23). [0193] Examples 38 and 39 were prepared from 2-(4-isopropylamino-phenyl)- 1,1,1 - trifluoiO-4-phenyl-but-3-yn-2-ol and appropriate sulfonyl chlorides using methods as described in Example 34, Step C. Example 38
Figure imgf000054_0001
38
[0194] 2,5-Dichloro-thiophene-3-sulfonic acid N-[4-(l-hydroxy-3-phenyl-l- trifluoromethyl-prop-2-ynyl)-phenyl]-N-isopropyl-amide
[0195] 1H-NMR (CDC13) δ 1.16-1.18 (m, 6H), 4.68-4.73 (m, IH), 6.96 (s, IH), 7.20-7.22
(m, 2H), 7.39-7.44 (m, 3H), 7.54-7.57 (m, 2H), 7.84 (d, J=8.4 Hz, 2H). Mass Spectrum (CI+) m/e = 569.9 (M+23).
Example 39
Figure imgf000054_0002
39
[0196] 3-Cyano-N- [4-( 1 -hydroxy-3 -phenyl- 1 -trifluoromethyl-prop-2-ynyl)-phenyl] -N- isopropyl-benzenesulfonamide
[0197] 1H-NMR (CDCI3) δ 1.09 - 1.12 (m, 6H), 4.62 - 4.67 (m, IH), 7.09 - 7.11 (m, 2H), 7.37 - 7.44 (m, 3H), 7.54 - 7.65 (m, 3H), 7.83 - 7.86 (m, 3H), 7.94 - 7.97 (m, IH), 8.06 - 8.07 (m, IH). Mass Spectrum (CI+) m/e = 521.0 (M+23).
Figure imgf000055_0001
40
[0198] 2,5-DichloiO-N-(4-fluorobenzyl)-N-[4-(l -hydroxy-3 -phenyl- 1 -trifluoromethyl-prop- 2-ynyl)-phenyl] -benzenesulfonamide
Step A. l-[4-(4-Fluorobenzylamino)-phenyl]-2,2,2-trifluoro-ethanone
[0199] The title compound was prepared as described in Example 34, Step A, substituting 4-fluorobenzylamine for cyclopentylamine. 1H-NMR (CDC13) δ 4.45 (s, 2H), 4.99 (br s, IH), 6.63-6.67 (m, 2H), 7.07-7.09 (m, 2H), 7.31-7.35 (m, 2H), 7.93 (d, J=8.1 Hz, 2H). Mass Spectrum (CI+) m/e = 298.1 (M+l).
Step B . 2-[4-(4-Fluorobenzyl)amino)-phenyl] -1,1,1 -trifluoro-4-phenyl-but-3-yn-2-ol
[0200] The title compound was prepared as described in Example 34, Step B, starting with l-[4-(4-Fluorobenzylamino)-phenyl]-2,2,2-trifluoro-ethanone and was used without further purification. Mass Spectrum (CI+) m/e = 400.1 (M+l).
Step C. 2,5-Dichloro-N-(4-fluorobenzyl)-N-[4-(l-hydroxy-3-phenyl-l- trifluoromethyl-prop-2-ynyl)-phenyl]-benzenesulfonamide [0201] The title compound was prepared as described in Example 34, Step C, starting with 2-[4-(4-Fluorobenzyl)amino)-phenyl]-l,l,l-trifluoro-4-phenyl-but-3-yn-2-ol. 1H-NMR (CDCI3) δ 4.98-5.08 (m, 2H), 6.98 (t, J=8.6 Hz, 2H), 7.14 (d, J=8.6 Hz, 2H), 7.23-7.26 (m, 2H), 7.34-7.52 (m, 7H), 7.67 (d, J=8.5 Hz, 2H), 7.86 (d, J=2.4 Hz, IH). Mass Spectrum (CI+) m/e = 630.0 (M+23).
Figure imgf000056_0001
41
[0202] 2,5-Dichloro-N-[4-(l-hydroxy-3-phenyl-l-trifluoromethyl-prop-2-ynyl)-phenyl]-N- isobutyl-benzenesulfonamide
Step A. l-(4-Isobutylamino-phenyl)-2,2,2-trifluoro-ethanone
[0203] The title compound was prepared as described in Example 34, Step A, substituting isobutylamine for cyclopentylamine. 1H NMR (CDC13) δ 1.0 (d, J = 6.7 Hz, 6 H), 1.92 (tsept, J = 6.7, 6.7 Hz, 1 H), 3.05 (dd, J = 6.7, 5.8 Hz, 2 H), 4.69 (br s, 1 H), 6.58 (d, J = 9.1 Hz, 2 H), 7.90 (d, J = 9.1 Hz, 2 H). Mass Spectrum (CI+) m/e = 246 (M+l).
Step B. 2-(4-Isobutylamino-phenyl)-l , 1, 1 -trifluoro-4-phenyl-but-3-yn-2-ol
[0204] The title compound was prepared as described in Example 34, Step B, starting with l-(4-isobutylamino-ρhenyl)-2,2,2-trifluoro-ethanone. 1H NMR (CDC13) δ 0.99 (d, J = 6.7 Hz, 6 H), 1.92 (tsept, J = 6.7, 6.0 Hz, 1 H), 2.96 (d, J = 6.0 Hz, 2 H), 3.03 ( br s, 1 H), 3.90 (br s, 1 H), 6.61 (d, J = 8.8 Hz, 2 H), 7.34-7.55 (m, 5 H), 7.58 (d, J = 8.8 Hz, 2 H). Mass Spectrum (CI+) m/e = 348 (M+l).
Step C. 2,5-Dichloro-N-[4-(l-hydroxy-3-phenyl-l-trifluoromethyl-prop-2-ynyl)- phenyl]-N-isobutyl-benzenesulfonamide [0205] The title compound was prepared as described in Example 34, Step C, starting with 2-(4-isobutylamino-phenyl)-l,l,l-trifluoro-4-phenyl-but-3-yn-2-ol. 1H NMR (CDC13) δ 0.96 (m, 6 H), 1.67 (m, 1 H), 3.19 (br s, 1 H), 3.68 (d, J = 7.3 Hz,2 H), 7.31 (d, J = 8.5 Hz, 2 H), 7.34-7.52 (m, 7 H), 7.73 (d, J = 8.5 Hz, 2 H), 7.80 (d, J = 2.4 Hz, 1 H). Mass Spectrum (CI+) m/e = 578 (M+23). [0206] Examples 42 and 43 were prepared from 2-(4-isobutylamino-phenyl)- 1 ,1,1- trifluoro-4-phenyl-but-3-yn-2-ol and an appropriate sulfonyl chloride using methods as described in Example 34, Step C.
Example 42
Figure imgf000057_0001
42
[0207] 3-Cyano-N-[4-(l-hydroxy-3-phenyl-l-trifluoromethyl-prop-2-ynyl)-phenyl]-N- isobutyl-benzenesulfonamide
[0208] 1H NMR (CDC13) δ, 0.93 (m, 6 H), 1.61 (m, 1 H), 3.36 (m, 2 H), 3.42 (br s, 1 H), 7.11 (d, J = 8.0 Hz, 2 H), 7.35-7.73 (m, 7 H), 7.78 (d, J = 8.0 Hz, 2 H), 7.83 (dd, J = 7.7, 1.1 Hz, 1 H), 7.89 (s, 1 H). Mass Spectrum (CI+) m/e = 535 (M+23).
Figure imgf000057_0002
43 [0209] 2,5-Dichloro-thiophene-3-sulfonic acid N-isobutyl[4-(l-hydroxy-3-phenyl-l- trifluoromethyl-prop-2-ynyl)-phenyl]-amide
[0210] 1H NMR (CDCI3) δ 0.93 (m, 6 H), 1.65 (m, 1 H), 3.27 (br s, 1 H), 3.52 (d, J = 7.4 Hz, 2 H), 6.84 (s, 1 H), 7.27 (d, J = 8.5 Hz, 2 H), 7.35-7.54 (m, 5 H), 7.80 (d, J = 8.5 Hz, 2 H). Mass Spectrum (CI+) m e = 584 (M+23).
Figure imgf000058_0001
44
[0211] 2,5-Dichloro-N-{4-[3-(4-chloro-phenyl)-l-hydroxy-l-trifluoromethyl-prop-2-ynyl]- phenyl} -N-isobutyl-benzenesulfonamide
Step A. 4-(4-Chlorophenyl)- 1 ,1,1 -trifluoro-2-(4-isobutylamino-phenyl)-but-3 -yn-2-ol
[0212] The title compound was prepared from l-(4-isobutylamino-phenyl)-2,2,2-trifluoro- ethanone (Example 41, Step A) as described in Example 34, Step B and substituting 4- chlorophenylacetylene for phenylacetylene. 1H NMR (400 MHz, CDC13) δ 0.98 (m, 6 H), 1.90 (m, 1 H), 2.96 (brs, 1 H), 2.96 (m, 2 H), 3.92 (br s, 1 H), 6.59-7.56 (m, 8 H). Mass Spectrum (CI+) m/e = 382 (M+l).
Step B. 2,5-Dichloro-N-{4-[3-(4-chloro-phenyl)-l-hydroxy-l-trifluoromethyl-prop-2- ynyl]-phenyl} -N-isobutyl-benzenesulfonamide
[0213] The title compound was prepared using methods as described in Example 34, Step
C. 1H NMR (400 MHz, CDC13) δ 0.96 (m, 6 H), 1.67 (m, 1 H), 3.51 ( br s, 1 H), 3.67 (m, 2
H), 7.30-7.45 (m, 8 H), 7.71 (d, J = 8.8 Hz, 2 H), 7.80 (d, J = 2.4 Hz, 1 H). Mass Spectrum
(CI+) m/e = 592 (M+l). [0214] Example 45 and 46 were prepared from 4-(4-chlorophenyl)- 1,1,1 -trifluoro-2-(4- isobutylamino-phenyl)-but-3-yn-2-ol and an appropriate sulfonyl chloride using methods as described in Example 34, Step C. Example 45
Figure imgf000059_0001
45
[0215] 3-Cyano-N-{4-[3-(4-chloro-phenyl)-l-hydroxy-l-trifluoromethyl-prop-2-ynyl]- phenyl}-N-isobutyl-benzenesulfonamide
[0216] 1H NMR (400 MHz, CDC13) δ 0.931 (m, 6 H), 1.619 (m, 1 H), 3.347 (br s, 1 H),
3.357 (m, 2 H), 7.109 (d, J = 8.7 Hz, 2 H), 7.342-7.865 (m, 10 H). Mass Spectrum (CI+) m/e
= 547 (M+l).
Example 46
Figure imgf000059_0002
46
[0217] 2,5-Dichlorothiophene-3-sulfonic acid {4-[3-(4-chloro-phenyl)-l-hydroxy-l- trifluoromethyl-prop-2-ynyl] -phenyl} -isobutyl-amide
[0218] 1H NMR (CDCI3) δ 0.94 (m, 6 H), 1.65 (m, 1 H), 3.15 (s, 1 H), 3.52 (m 2 H), 6.84
(s, 1 H), 7.20-7.47 (m, 6 H), 7.78 (d, J = 8.4 Hz, 2 H). Mass Spectrum (CI+) m/e = 598
(M+23). Example 47
Figure imgf000060_0001
47
[0219] 2,5-Dichloro-N-{4-[l-hydroxy-3-(4-methanesulfonyl-phenyl)-l-trifluoromethyl- prop-2-ynyl]-phenyl}-N-isobutyl-benzenesulfonamide.
Step A. l-Ethynyl-4-methanesulfonyl-benzene
[0220] 2-Methyl-3-butyn-2-ol was coupled to l-bromo-4-methanesulfonyl-benzene according to the procedure described by Bleicher et al. (1995) Synlett 1115-1116. The product was converted to l-ethynyl-4-methanesulfonyl-benzene according to the procedure described by Havens et al. (1985) J. Org. Chem. 50:1763-1765.
[0221] 1H NMR (CDC13) δ 3.06 (s, 3 H), 3.29 (s, 1 H), 7.67 (d, j = 8.1 Hz, 2 H), 7.91 (d, J = 8.1 Hz, 2 H).
Step B. l,l,l-Trifluoro-2-(4-isobutylamino-phenyl)-4-(4-methanesulfonyl-phenyl)- but-3-yn-2-ol [0222] The title compound was prepared from l-(4-isobutylamino-phenyl)-2,2,2-trifluoro- ethanone (Example 41, Step A) as described in Example 34, Step B substituting l-ethynyl-4- methanesulfonyl-benzene for phenylacetylene. [0223] 1H NMR (CDC13) δ 0.99 (d, j = 6.6 Hz, 6 H), 1.90 (m, 1 H), 2.96 (m, 2 H), 3.01 (s, 1 H), 3.07 (s, 3 H), 3.94 (br s, 1 H), 6.62 (d, J = 8.7 Hz, 2 H), 7.54 (d, j = 8.7 Hz, 2 H), 7.71 (d, J = 8.4 Hz, 2 H), 7.94 (d, J = 8.4 Hz, 2 H). Mass Spectrum (CI+) m/e = 426 (M+l).
Step C. 2,5-Dichloro-N-{4-[l-hydroxy-3-(4-methanesulfonyl-phenyl)-l- trifluoromethyl-prop-2-ynyl]-phenyl}-N-isobutyl-benzenesulfonamide
[0224] The title compound was prepared as described in Example 34, Step C. [0225] 1H NMR (CDCI3) δ 0.95 (m, 6 H), 1.66 (m, 1 H), 3.06 (s, 3 H), 3.55 (br s, 1 H), 3.67 (m, 2 H), 7.32 (d, J = 8.7 Hz, 2 H), 7.37-7.42 (m, 2 H), 7.66-7.72 (m, 4 H), 7.80 (d, J = 2.2 Hz, 1 H), 7.93 (d, J = 8.7 Hz, 2 H). Mass Spectrum (CI+) m/e = 652 (M+l 8). [0226] Example 48 and 49 were prepared from l,l,l-trifluoro-2-(4-isobutylamino-phenyl)- 4-(4-methanesulfonyl-phenyl)-but-3-yn-2-ol and an appropriate sulfonyl chloride using methods as described in Example 34, Step C.
Example 48
Figure imgf000061_0001
48 [0227] 3 -Cyano-N- {4- [ 1 -hydroxy-3 -(4-methanesulfonyl-phenyl)- 1 -trifluoromethyl-prop-2- ynyl] -phenyl} -N-isobutyl-benzenesulfonamide
[0228] 1H NMR (CDCI3) δ 0.93 (m, 6 H), 1.62 (m, 1 H), 3.07 (s, 3 H), 3.36 (m, 2 H), 3.45 (s, 1 H), 7.13 (d, J = 8.6 Hz, 2 H), 7.59-7.86 (m, 8 H), 7.95 (d, J = 8.6 Hz, 2 H). Mass Spectrum (CI+) m e = 613 (M+23).
Figure imgf000061_0002
49
[0229] 2,5-Dichlorothiophene-3-sulfonic acid {4-[l-hydroxy-3-(4-methanesulfonyl- phenyl)-l-trifluoromethyl-prop-2-ynyl]-phenyl}-isobutyl-amide [0230] 1H NMR (CDCI3) δ 0.93 ( , 6 H), 1.64 (m, 1 H), 3.06 (s, 3 H), 3.51 (m, 2 H), 4.80 (br s, 1 H), 6.84 (s, 1 H), 7.28 (d, J = 8.7 Hz, 2 H), 7.65 (d, J = 8.5 Hz, 2 H), 7.79 (d, J = 8.5 Hz, 2 H), 7.93 (d, J = 8.7 Hz, 2 H). Mass Spectrum (CI+) m/e = 640 (M+l).
Figure imgf000062_0001
50
[0231] N-[4-(l-Hydroxy-3-phenyl-l-trifluoromethyl-prop-2-ynyl)-phenyl]-N-isobutyl- benzenesulfonamide
Step A. N-Isobutyl-benzenesulfonamide
[0232] To a solution of 4.14 g of isobutylamine (56.6 mmol) and 2.86 g of triethylamine (28.3 mmol) in 40 mL of CH2C12 was slowly added 5.0 g of benzenesulfonyl chloride (28.3 mmol) at 0°C. The resulting mixture was stirred at 0°C for 30 min and then at rt for 1 hr. 150 mL of CH2C12 were added, and the organic layer was washed with saturated aqueous solution of NH4C1 and brine (30 x 2 mL), dried over MgSO4,filtered, and the filtrate was concentrated to give the title compound. 1H NMR (CDCI3) δ 0.87 (d, J = 6.6 Hz, 6 H), 1.71 (tsept, J = 6.7, 6.5 Hz, 1 H), 2.76 (dd, J = 6.5, 6.7 Hz, 2 H), 4.61 (t, J = 6.5 Hz, 1 H), 7.49-7.88 (m, 5 H). Mass Spectrum (CI+) m/e = 214 (M+l).
Step B. N-Isobutyl-N-(4-trifluoroacetyl-phenyl)-benzenesulfonamide
[0233] The title compound was prepared from N-Isobutyl-benzenesulfonamide and 1 , 1 , 1 ,4- tetrafluoroacetophenone as described in Example 34, Step A. 1H NMR (CDCI3) δ 0.91 (d, J = 6.7 Hz, 6 H), 1.60 (tsept, J = 7.4, 6.7 Hz, 1 H), 3.38 (d, J = 7.4 Hz, 2 H), 7.29 (d, J = 8.5 Hz, 2 H), 7.45-7.87 (m, 5 H), 8.03 (d, J = 8.5 Hz, 2 H). Mass Spectrum (CI+) m/e = 387 (M+l). Step C. N-[4-(l-Hydroxy-3-phenyl-l-trifluoromethyl-prop-2-ynyl)-phenyl]-N- isobutyl-benzenesulfonamide [0234] The title compound was prepared from N-isobutyl-N-(4-trifluoroacetyl-phenyl)- benzenesulfonamide as described in Example 29. [0235] 1H NMR (CDC13) δ 0.92 (m, 6 H), 1.59 (m, 1 H), 3.22 (brs. 1 H), 3.33 (m, 2 H), 7.12 (d, J = 8.5 Hz, 2 H), 7.35-7.58 (m, 10 H), 7.746 (d, J = 8.5 Hz, 2 H). Mass Spectrum (CI+) m/e = 487 (M+23).
[0236] Examples 51 -68 were prepared as described in Example 50, substituting an appropriate acetylene compound for phenylacetylene. The acetylene starting materials are either commercially available or can be synthesized according to methods described herein and referred to below.
Example 51
Figure imgf000063_0001
51 [0237] N-[4-(l-Hydroxy-2-pyridin-3-yl-l-trifluoromethyl-prop-2-ynyl)-phenyl]-N- isobutyl-benzenesulfonamide
[0238] 1H NMR (400 MHz, CDC13) δ, 0.91 (m, 6 H), 1.58 (m, 1 H), 3.32 (m, 2 H), 6.03 (br s, 1 H), 7.10 (d, J = 8.6 Hz, 2 H), 7.30-7.74 (m, 8 H), 7.77 (d, J = 8.6 Hz, 2 H), 8.54 (d, J = 4,8 Hz, 1 H). Mass Spectrum (CI+) m/e = 489 (M+l).
Example 52
Figure imgf000064_0001
52
[0239] N-[4-(l-Hydroxy-3-pyridin-3-yl-l-trifluoromethyl-prop-2-ynyl)-phenyl]-N- isobutyl-benzenesulfonamide
[0240] 1H NMR (400 MHz, CDC13) δ 0.91 (m, 6 H),1.59 (m, 1 H), 3.33 (m, 2 H), 7.12 (d, J
= 8.7 Hz, 2 H), 7.35 (dd, J = 8.0, 5.1 Hz, 1 H), 7.42-7.58 (m, 6 H), 7.77 (d, J = 8.7 Hz, 2 H),
7.85 (m, 1 H), 8.52 (dd, J = 5.1, 2.6, Hz, 1 H), 8.88 (d, J = 1.4 Hz, 1 H). Mass Spectrum
(CI+) m/e = 489 (M+l).
Example 53
Figure imgf000064_0002
53
[0241] N-[4-(l-Hydroxy-3-pyrimidin-5-yl-l-trifluoromethyl-prop-2-ynyl)-phenyl]-N- isobutyl-benzenesulfonamide
[0242] 1H NMR (400 MHz, CDC13) δ, 0.91 (m, 6 H), 1.58 (m, 1 H), 3.33 (m, 2 H), 5.73 (br s, 1 H), 7.14 (d, J = 8.5 Hz, 2 H), 7.43-7.59 (m, 5 H), 7.73 (d, J = 8.5 Hz, 2 H), 8.89 (s, 2 H),
9.16 (s, 1 H). Mass Spectrum (CI+) m/e = 490 (M+l).
[0243] The starting material, 5-ethynyl-pyrimidine was prepared following procedures similar to those described in Example 47, step A. 1H NMR (CDC13) δ 3.41 (s, IH), 8.81 (s,
2H), 9.16 (s, IH).
Figure imgf000065_0001
54
[0244] N-[4-(l-Hydroxy-3-(4-methoxy-phenyl)-l-trifluoromethyl-prop-2-ynyl)-phenyl]-N- isobutyl-benzenesulfonamide
[0245] 1H NMR (400 MHz, CDC13) δ, 0,92 (m, 6 H), 1.58 (m, 1 H), 3.12 (m, 2 H), 3.33 (m,
2 H), 3.84 (s, 3 H), 6.89 (d, J = 8.9 Hz, 2 H), 7.11 (d, J = 8.7 Hz, 2 H), 7.43-7.57 (m, 7 H),
7.74 (d, J = 8.7 Hz, 2 H). Mass Spectrum (CI+) m/e = 518 (M+l).
Figure imgf000065_0002
55
[0246] N-[4-(l-Hydroxy-3-(3-trifluoromethyl-phenyl)-l-trifluoromethyl-prop-2-ynyl)- phenyl]-N-isobutyl-benzenesulfonamide
[0247] 1H NMR (400 MHz, CDC13) δ 0.92 (m, 6 H), 1.59 (m, 1 H), 3.19 (br s, 1 H), 3.33 (m, 2 H), 7.14 (d, J = 8.7, 2 H), 7.34-7.88 (m, 11 H). Mass Spectrum (CI+) m/e = 556 (M+l). [0248] The starting material, l-ethynyl-3-trifluoromethyl-benzene was prepared following procedures similar to those described in Example 47, step A. 1H NMR (CDC13) δ 3.17 (s, 1 H), 7.47 (m, 1 H), 7.61 (m, IH), 7.67 (m, IH), 7.77 (s, IH). Example 56
Figure imgf000066_0001
56
[0249] N-[4-(l-Hydroxy-3-(4-trifluoromethyl-phenyl)-l-trifluoromethyl-prop-2-ynyl)- phenyl]-N-isobutyl-benzenesulfonamide
[0250] 1H NMR (400 MHz, CDC13) δ 0.92 (m, 6 H), 1.59 (m, 1 H), 3.25 (br s, 1 H), 3.33
(m, 2 H), 7.13 (d, J = 8.6, 2 H), 7.45-7.57 (m, 5 H), 7.64 (s, 4 H), 7.73 (d, J = 8.6 Hz, 2 H).
Mass Spectrum (CI+) m/e = 578 (M+23).
Example 57
Figure imgf000066_0002
57
[0251] N-[4-(l-Hydroxy-3-(2,4-difluoro-phenyl)-l-trifluoromethyl-prop-2-ynyl)-phenyl]- N-isobutyl-benzenesulfonamide
[0252] 1H NMR (400 MHz, CDCI3) δ 0.91 (m, 6 H), 1.59 (m, 1 H), 3.22 (br s, 1 H), 3.33 (m, 2 H), 6.90 (m, 2 H), 7.12 (d, J = 8.0, 2 H), 7.43-7.57 (m, 6 H), 7.73 (d, J = 8.0 Hz, 2 H). Mass Spectrum (CI+) m/e = 524 (M+23). Example 58
Figure imgf000067_0001
58
[0253] N-[4-(3 -Bipheny 1 - 1 -hydroxy- 1 -trifluoromethyl-prop-2-ynyl)-phenyl] -N-isobutyl- benzenesulfonamide
[0254] 1H NMR (400 MHz, CDC13) δ, 0.92 (m, 6 H), 1.60 (m, 1 H), 3.12 (br s, 1 H), 3.33 (m, 2 H), 7.13 (d, J = 8.7 Hz, 2 H), 7.39-7.77 (m, 16 H). Mass Spectrum (CI+) m/e = 564 (M+l).
[0255] The starting material, 3-ethynyl-biphenyl, was prepared following procedures similar to those described in Example 47, step A. 1H NMR (CDC13) δ 3.12 (s, 1 H), 7.36- 7.51 (m, 5 H), 7.58-7.62 (m, 3H), 7.75 (m, IH).
Example 59
Figure imgf000067_0002
59 [0256] N-[4-(l-Hydroxy-3-(4-tolyl)-l-trifluoromethyl-prop-2-ynyl)-phenyl]-N-isobutyl- benzenesulfonamide
[0257] 1H NMR (400 MHz, CDC13) δ 0.90 (d, J = 6.3 Hz, 6 H), 1.55 (m, 1 H), 2.50 (s, 3 H), 3.26 (br s, 1 H), 3.31 (d, J= 7.0 Hz, 2 H), 7.09 (d, J = 8.2 Hz, 2 H), 7.41-7.60 (m, 9 H), 7.91 (d, J = 8.2 Hz, 2 H). Mass Spectrum (CI+) m/e = 566 (M+l).
Figure imgf000068_0001
60
[0258] N-[4-(l-Hydroxy-3-(4-pentyl-phenyl)-l-trifluoromethyl-prop-2-ynyl)-phenyl]-N- isobutyl-benzenesulfonamide
[0259] 1H NMR (400 MHz, CDC13) δ 0.91 (m, 9 H), 1.32 (m, 4 H), 1.61 (m, 3 H), 2.62 (t, J
= 7.4 Hz, 2 H), 3.26 (s, 1 H), 3.33 (m, 2 H), 7.11 (d, J = 8.7 Hz, 2 H), 7.18 (d, J = 8.0 Hz, 2
H), 7.43 - 7.57 (m, 7 H), 7.74 (d, J = 8.7 HZ, 2 H). Mass Spectrum (CI+) m/e = 558 (M+l).
Example 61
Figure imgf000068_0002
61
[0260] N-[4-(3-(4-Acetamido-phenyl)-l-hydroxy-l-trifluoromethyl-prop-2-ynyl)-phenyl]-
N-isobutyl-b enzenesulfonamide
[0261] 1H NMR (400 MHz, CDC13) δ 0.90 (m, 6 H), 1.58 (m, 1 H), 2.16 (s, 3 H), 3.32 (m 2 H), 4.55 (br s, 1 H), 7.10 (d, J = 8.7 Hz, 2 H), 7.37-7.58 (m, 9 H), 7.62 (br s, 1 H), 7.74 (d, J =
8.7 Hz, 2 H). Mass Spectrum (CI+) m/e = 545 (M+l).
[0262] The starting material, N-(4-ethynyl-phenyl)-acetamide was prepared as follows:
[0263] To a solution of 1 g of 4-ethynyl-aniline (8.5 mmol) and 0.5 mL of pyridine in 5 mL of CH2C12 was added 0.95 mL (10.1 mmol) of acetic anhydride. The reaction mixture was stirred for 2 h at rt, quenched by the addition of a saturated aqueous solution of ammonium chloride, and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO4, filtered and the filtrate was concentrated. The residue was purified by chromatography on silica (hexanes: EtOAc, 4:1) to give the title compound. [0264] 1H NMR (CDC13) δ 2.18 (s, 3 H), 3.04 (s, 1 H), 7.45-7.49 (m, 5 H).
Figure imgf000069_0001
62
[0265] N-[4-(l-Hydroxy-3-(4-trifluoroacetamido-phenyl)-l-trifluoromethyl-prop-2-ynyl)- phenyl]-N-isobutyl-benzenesulfonamide
[0266] 1H NMR (400 MHz, CDC13) δ 0.91 (m, 6 H), 1.58 (m, 1 H), 3.32 (m, 2 H), 3.39 (br s, 1 H), 7.12 (d, J = 8.5 Hz, 2 H), 7.43-7.67 (m, 9 H), 7.77 (d, J = 8.5 Hz, 2 H), 8.18 (s, 1 H). Mass Spectrum (CI+) m/e = 621 (M+23).
[0267] The starting material, N-(4-ethynyl-phenyl)-trifluoroacetamide was prepared in a manner similar to that described in Example 61. 1H NMR (CDC13) δ 3.11 (s, 1 H), 7.50-7.56 (m, 4 H), 8.00 (br s, 1 H).
Example 63
Figure imgf000069_0002
63
[0268] N-[4-(l-Hydroxy-3-(4-methanesulfonamido-phenyl)-l-trifluoromethyl-prop-2- ynyl)-phenyl]-N-isobutyl-benzenesulfonarnide [0269] 1H NMR (400 MHz, CDC13) δ, 0.91 (m, 6 H), 1.59 (m, 1 H), 2.05 ( br s, 1 H), 3.06 (s, 3 H), 3.33 (m, 2 H), 6.79 (s, 1 H), 7.12 (d, J = 8.5 Hz, 2 H), 7.21 (d, J = 8.4 Hz, 2 H), 7.39- 7.59 (m, 7 H), 7.73 (d, J = 8.5 Hz, 2 H). Mass Spectrum (CI+) m/e = 581 (M+l). [0270] The starting material, N-(4-ethynyl-phenyl)-methylsulfonamide was prepared in a manner similar to that described in Example 61. 1H NMR (CDC13) δ 3.04 (s, 3 H), 3.41 (s, 1 H), 6.91 (s, 1 H), 7.18 (d, J = 8.6 Hz, 2 H), 7.48 9d, J = 8.6 Hz, 2 H).
Figure imgf000070_0001
64 [0271] N-[4-(l-Hydroxy-3-(3-methanesulfonyl-phenyl)-l-trifluoromethyl-prop-2-ynyl)- phenyl]-N-isobutyl-benzenesulfonamide
[0272] 1H NMR (CDCI3) δ 0.91 (m, 6 H), 1.58 (m, 1 H), 3.07 (s, 3 H), 3.32 (m, 2 H), 3.78 (s, 1 H), 7.13 (d, J = 8.7 Hz, 2 H), 7.45 (m, 2 H), 7.57 (m, 4 H), 7.72 (d, J = 8.7 Hz, 2 H), 7.77 (m, 1 H), 7.95 (m, 1 H), 8.07 (m, 1 H). Mass Spectrum (CI+) m/e = 566 (M+l). [0273] The starting material, (3-ethynyl-phenyl) methyl sulfone was prepared using methods similar to those described in Example 47, step A. 1H NMR (CDCI3) δ 3.05 (s, 3 H), 3.21 (s, 1 H), 7.54 (dd, J = 7.8, 7.8 Hz, 1 H), 7.73 (d, J = 7.8 Hz, 1 H), 7.91 (d, J = 7.8 Hz, 1 H), 8.05 (s, 1 H).
Example 65
Figure imgf000071_0001
65
[0274] N- {4-[3 -( 1 -Ethyl- lH-pyrazol-4-yl) 1 -hydroxy- 1 -trifluoromethyl-prop-2-ynyl] - phenyl} -N-isobutyl-benzenesulfonamide
[0275] 1H NMR (CDC13) δ, 0.91 (m, 6 H), 1.50 (t, J = 7.3 Hz, 3 H), 1.58 (m. 1 H), 3.32(m, 2 H), 3.57 (s, 1 H), 4.18 (q, J = 7.3 Hz, 2 H), 7.10 (d, J = 8.6 Hz, 2 H), 7.43-7.64 (m, 7 H), 7.72 (d, J = 8.6 Hz, 2 H). Mass Spectrum (CI+) m/e = 506 (M+l).
Preparation of l-Ethyl-4-ethynyl-lH-pyrazole Step A. l-Ethyl-4-iodo-lH-pyrazole
[0276] To a solution of 5 g of 4-iodopyrazole (25.8 mmol) in 20 mL of DMF at 0°C was added 1.24 g (31 mmol) of NaΗ (60%> dispersion in oil) and the mixture was stirred at 0°C for 30 min. After this time, 3.1 mL (38.8 mmol) of iodoethane were added and the mixture was allowed to warm to room temperature and stirred for 14 h. After this time the reaction was quenched by the addition of a saturated aqueous solution of ammonium chloride, allowed to warm to room temperature, and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO , filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexanes: EtOAc, 9:1) to give the title compound.
[0277] 1H-NMR (CDCI3) δ 1.46 (t, 3Η, J=7.4 Hz), 4.2 (q, 2H, J=7.4 Hz), 7.43 (s, IH), 7.49 (s, IH).
Step B. l-Ethyl-4-ethynyl-lH-pyrazole [0278] The title compound was prepared following methods similar to those described in Example 47, Step A. 1H-NMR (CDC13) δ 1.46 (t, 3H, J=7.4 Hz), 2.99 (s, IH), 4.13 (q, 2H, J=7.4 Hz), 7.54 (s, IH), 7.59 (s, IH). Example 66
Figure imgf000072_0001
66
[0279] N- {4-[3-( 1 -Isobutyl- 1 H-pyrazol-4-yl) 1 -hydroxy- 1 -trifluoromethyl-prop-2-ynyl] - phenyl} -N-isobutyl-benzenesulfonamide
[0280] The title compound was prepared following methods described in Example 65. Preparation of starting materials is provided below. 1H NMR (CDCI3) δ 0.91 (m, 12 H),1.58 (m, 1 H), 2.21 (m, 1 H), 3.32 (m, 2 H), 3.71 (s, 1 H), 3.90 (d, J = 7.2 Hz, 2 H), 7.10 (d, J = 8.6 Hz, 2 H), 7.43-7.58 (m, 6 H), 7.64 (s, 1 H), 7.72 (d, J = 8.6 Hz, 2 H). Mass Spectrum (CI+) m/e = 534 (M+l).
Preparation of l-Isobutyl-4-ethynyl-lH-pyrazole Step A. l-Isobutyl-4-iodo-lH-pyrazole
[0281] The title compound was prepared using methods similar to those described in Example 65. 1H-NMR (CDCI3) δ 0.89 (d, 6H, J=6.8 Hz), 2.17 (m, IH), 3.91 (d, 2H, J=6.8Hz), 7.39 (s, IH), 7.50 (s, IH).
Step B. l-Isobutyl-4-ethynyl-lH-pyrazole
[0282] The title compound was prepared using methods similar to those described in Example 65. 1H-NMR (CDCI3) δ 0.90 (d, 6H, J=7.2 Hz), 2.19 (m, IH), 3.01 (s, IH), 3.88 (d, 2H, J=7.2Hz), 7.51 (s, IH), 7.61 (s, IH).
Figure imgf000073_0001
67
[0283] N-[4-(3-Cyclohex- 1 -enyl- 1 -hydroxy- 1 -trifluoromethyl-prop-2-ynyl)-phenyl]-N- isobutyl-benzenesulfonamide
[0284] 1H NMR (400 MHz, CDC13) δ 0.90 (m, 6 H), 1.63 (m, 5 H), 2.14 (m, 4 H), 3.22 (s,
1 H), 3.31 (m, 2 H), 6.28 (m, 1 H), 7.08 (d, J = 8.7 Hz, 2 H), 7.42-7.58 (m, 5 H), 7.67 (d, J =
8.7 Hz, 2 H). Mass Spectrum (CI+) m/e = 492 (M+l).
Example 68
Figure imgf000073_0002
68
[0285] N-[4-(l-Hydroxy-4-phenyl-l-trifluoromethyl-but-2-ynyl)-phenyl]-N-isobutyl- benzenesulfonamide
[0286] 1H NMR (400 MHz, CDC13) δ 0.91 (m, 6 H), 1.58 (m, 1 H), 3.32 (m, 2 H), 3.76 (s, 2 H), 7.08 (d, J = 8.7 Hz, 2 H), 7.27-7.58 (m, 10 H), 7.68 (d, J = 8.7 Hz, 2 H). Mass Spectrum (CI+) m/e = 502 (M+l). Example 69
Figure imgf000074_0001
[0287] N-[4-(l-Hydroxy-4,4-dimethyl-l-trifluoromethyl-pent-2-ynyl)-phenyl]-N-isobutyl- benzenesulfonamide
[0288] 1H NMR (400 MHz, CDC13) δ 0.91 (m, 6 H), 1.30 (s, 9 H), 1.58 (m, 1 H), 2.84 (br s, 1 H), 3.32 (m, 2 H), 6.90 (m, 2 H), 7.08 (d, J = 8.4, 2 H), 7.43-7.58 (m, 5 H), 7.65 (d, J =
8.4 Hz, 2 H). Mass Spectrum (CI+) m/e = 490 (M+23).
Example 70
Figure imgf000074_0002
[0289] N-[4-(l-Hydroxy-4-methanesulfonylamino-l-trifluoromethyl-but-2-ynyl)-phenyl]- N-isobutyl-benzenesulfonamide
[0290] 1H NMR (400 MHz, CDC13) δ, 0.89 (m, 6 H), 1.55 (m, 1 H), 3.04 (s, 3 H), 3.32 (m, 2 H), 4.05 (m, 2 H), 4.37 (br s, 1 H), 5.26 (br s, 1 H), 7.09 (d, J = 8.7 Hz, 2 H), 7.44-7.60 (m, 5 H), 7.64 (d, J = 8.7 Hz, 2 H). Mass Spectrum (CI+) m/e = 519 (M+l).
Figure imgf000075_0001
71
[0291] 4-[4-(Benzenesulfonyl-isobutyl-amino)-phenyl]-5,5,5-trifluoro-4-hydroxy-pent-2- ynoic acid tert-butyl ester
[0292] 1H NMR (400 MHz, CDC13) δ 0.90 (m, 6 H), 1.52 (s, 9 H), 1.54 (m, 1 H), 3.31 (m, 2 H), 3.81 (d, J = 4.7 Hz, 1 H), 7.11 (d, J = 8.6 Hz, 2 H), 7.43-7.59 (m, 5 H), 7.65 (d, J = 8.6 Hz, 2 H). Mass Spectrum (CI+) m/e = 534 (M+23).
Figure imgf000075_0002
72
[0293] 4-[4-(Benzenesulfonyl-isobutyl-amino)-ρhenyl]-5,5,5-trifluoro-4-hydroxy-pent-2- ynoic acid
[0294] To a solution of 0.56 g (1.1 mmol) of 4-[4-(benzenesulfonyl-isobutyl-amino)- phenyl]-5,5,5-trifluoro-4-hydroxy-pent-2-ynoic acid tert-butyl ester (Example 71) in 15 mL of CH C12 was added 0.3 mL of trifluoroacetic acid. The mixture was stirred at room temperature for 24 h. After this time the solvent was evaporated, and the residue was purified by chromatography (silica, hexanes:EtOAc, 1:1) to give the title compound.
[0295] 1H NMR (400 MHz, DMSO) δ 0.84 (d, J = 6.6 Hz, 6 H), 1.41 (m, 1 H), 3.36 (d, J = 7.3 Hz, 2 H), 7.23 (d, J = 8.1 Hz, 2 H), 7.54-7.72 (m, 7 H), 8.36 (s, 1 H). Mass Spectrum
(CI+) m/e = 410 (M-45).
Figure imgf000076_0001
73
[0296] 4-[4-(Benzenesulfonyl-isobutyl-amino)-phenyl]-5,5,5-trifluoro-4-hydroxy-pent-2- ynoic acid methylamide
[0297] 0.2 g of 4-[4-(benzenesulfonyl-isobutyl-amino)-phenyl]-5,5,5-trifluoro-4-hydroxy- pent-2-ynoic acid (see Example 69; 0.439 mmol) and 0.26 mL of methylamine (2M in THF) were combined in 3 mL of CH2C12 at rt. 0.1 g of l-[3-(dimethylamino)propyl]-3- ethylcarbodiimide hydrochloride (0.527 mmol) was added. The resulting mixture was stirred at rt for 16h. After addition of 80 mL of CH2C12 the resulting solution was washed with an aqueous solution of citric acid, a saturated aqueous solution of sodium bicarbonate and brine. The organic layers were dried over MgSO4, filtered and the filtrate was concentrated. The residue was purified by chromatography on silica(EtOAc : hexanes, 1 : 1) to give the title compound. 1H NMR (400 MHz, CDC13) δ 0.90 (m, 6 H), 1.56 (m, 1 H), 2.91 (d, J = 5.0 Hz, 3 H), 3.31 (m, 2 H), 3.72 (br s, 1 H), 6.26 (d, 5.0 Hz, 1 H), 7.11 (d, J = 8.7 Hz, 2 H), 7.44- 7.60 (m, 5 H), 7.64 (d, J = 8.7 Hz, 2 H). Mass Spectrum (CI+) m/e = 486 (M+l 8).
Example 74
Figure imgf000076_0002
[0298] N-[4-(l -Hydroxy- 1 -trifluoromethyl-3 -trimethylsilanyl-prop-2-ynyl)-phenyl]-N- isobutyl-benzenesulfonamide [0299] 1H NMR (CDCI3) δ 0.25 (s, 9 H), 0.91 (m, 6 H), 1.58 (m, 1 H), 3.06 (s, 1 H), 3.32(m, 2 H), 7.09 (d, J = 8.6 Hz, 2 H), 7.42-7.56 (m, 5 H), 7.65 (d, J = 8.6 Hz, 2 H). Mass Spectrum (CI+) m/e = 506 (M+23).
Figure imgf000077_0001
75
[0300] N-[4-(l-Hydroxy-l-trifluoromethyl-prop-2-ynyl)-phenyl]-N-isobutyl- benzenesulfonamide
[0301] To a solution of 0.25 g (0.51 mmol) of N-[4-(l -hydroxy- 1 -trifluoromethyl- 3- trimethylsilanyl-prop-2-ynyl)-phenyl]-N-isobutyl-benzenesulfonamide (Example 74) in 6 mL of CH2C12 was added 0.4 mL of a 1 M solution of tetrabutylammonium fluoride in THF. The mixture was stirred at room temperature for 1 hour. CH2C12 (60 mL) was added and the solution was washed with saturated aqueous NH4Cl-solution (20 mL) and brine (15 mL).
The organic layer was dried over Na2SO4, filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel, (hexane:EtOAc, 7:3) to give the title compound.
[0302] 1H NMR (CDCI3) δ 0.91 (d, J = 6.6 Hz, 6 H), 1.58 (m, 1 H), 2.84 (s, 1 H), 3.10 (s, 1
H), 3.32 (d, J = 7.4 Hz, 2 H), 7.11 (d, J = 8.5 Hz, 2 H), 7.43-7.57 (m, 5 H), 7.68 (d, J = 8.5
Hz, 2 H). Mass Spectrum (CI+) m/e = 434 (M+23).
Example 76
Figure imgf000078_0001
76
[0303] N- [4-( 1 -Hydroxy- 3 -naphthalen- 1 -yl- 1 -trifluoromethyl-prop-2-ynyl)-phenyl] -N- isobutyl-benzenesulfonamide
[0304] 80.6 mg (0.39 mmol) 2-Bromonaphthalene, 21 mg palladium on carbon (10%> Pd), 74.1 mg (0.39 mmol) copper (I) iodide, and 135 mg (0.98 mmol) K2CO3 were combined 2 mL of DME and 2 mL of water and the resulting mixture was stirred at room temperature for 30 min. A solution of 80 mg (0.2 mmol) of N-[4-(l-hydroxy-l-trifluoromethyl-prop-2-ynyl)- phenyl] -N-isobutyl-benzenesulfonamide (Example 75) in 1 mL of DME was added and the reaction mixture was stirred at 65 °C overnight. The catalyst was removed by filtration over a pad of celite. The filtrate was washed with a saturated aqueous solution of ammonium chloride and brine. The organic layers were dried over Na2SO , filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexanes: EtOAc = 9 : 1 ) to give the title compound.
[0305] 1H NMR (CDC13) δ 0.92 (m, 6 H), 1.60 (m, 1 H), 3.22 (s, 1 H), 3.34 (m, 2 H), 7.14 (d, J = 8.5 Hz, 2 H), 7.44-7.59 (m, 8 H), 7.78 (d, J = 8.5 Hz, 2 H), 7.83-7.86 (m, 3 H), 8.08 (s, 1 H). Mass Spectrum (CI+) m/e = 538 (M+l).
Example 77
Figure imgf000079_0001
77
[0306] N-[4-(l-Hydroxy-3-(4-methanesulfonyl-phenyl)-l-trifluoromethyl-prop-2-ynyl)- phenyl]-N-isobutyl-benzenesulfonamide
[0307] The title compound was prepared using methods as described in Example 76. [0308] 1H NMR (CDC13) δ 0.91 (m, 6 H), 1.59 (m, 1 H), 3.07 (s, 3 H), 3.33 (m, 2 H), 3.49 (s, 1 H), 7.14 (d, J = 8.7 Hz, 2 H), 7.43-7.73 (m, 9 H), 7.94 (d, J = 8.7 Hz, 2 H). Mass Spectrum (CI+) m/e = 588 (M+23).
Example 78
Figure imgf000079_0002
78
[0309] N-(4- { 1 -[ l-(2-Ethoxyethyl)- lH-pyrrol-2-yl]-2,2,2-trifluoro- 1 -hydroxyethyl} - phenyl)-N-methyl-benzenesulfonamide
Step A. N-Ethoxyethyl-2-trifluoroacetylpyrrole
[0310] To a suspension of 268 mg (6.70 mmol) of NaH (60% dispersion in oil) in 20 mL DMF at 0 °C was added 1.01 g (6.19 mmol) of 2-(trifluoroacteyl)pyrrole and the mixture was stirred at 0 °C for 1 h. After this time, 765 μL (6.51 mmol) of 2-bromoethyl ethyl ether was added and the mixture was warmed to 60 °C and stirred for 16 h. After this time, the reaction mixture was allowed to cool to room temperature, quenched by the addition of a saturated aqueous solution of ammonium chloride, and extracted with EtOAc. The organic layer was washed with water and brine, dried over Na2SO4, filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (pure hexanes grading to hexanes:EtOAc, 97:3) to give the title compound.
[0311] 1H-NMR (CDC13) δ 7.19 (s, IH), 6.25-6.30 (m, IH), 4.52 (t, J=5.1 Hz, IH), 3.69 (t, J=5.4 Hz, 2H), 3.42 (q, J=7.0 Hz, 2H), 1.13 (t, J=7.0 Hz, 3H). Mass Spectrum (ESI) m/e = 190 (M-45).
Step B. 4-Bromo-N-methylaniline
[0312] The title compound was prepared in a manner similar to that described in Example 1, Step A. 1H-NMR (DMSO) δ 2.64 (s, 3H), 5.82 (brs, IH), 6.46-6.49 (m, 2H), 7.18-7.21 (m, 2H).
Step C. N-(4-Bromophenyl)-N-methyl-benzenesulfonamide
[0313] A solution of 0.61 g (3.3 mmol) of 4-bromo-N-methylaniline and 0.5 mL (3.92 mmol) of benzenesulfonyl chloride in 5 mL of pyridine was stirred for 12 h at rt. After that time the pyridine was removed by azeotropic distillation with heptane. The residue was purified by chromatography on silica (hexanes: EtOAc, 9:1) to give the title compound. [0314] 1H NMR (DMSO) δ 3.12 (s, 3 H), 7.04-7.08 (m, 2 H), 7.50-7.62 (m, 6 H), 7.69-7.74 (m, 1 H).
Step D. N-(4- { 1 -[ 1 -(2-Ethoxyethyl)- lH-pyrrol-2-yl]-2,2,2-trifluoro-l -hydroxyethyl} - phenyl)-N-methyl-benzenesulfonamide [0315] To a solution of 75 mg (0.23 mmol) of N-(4-bromophenyl)-N-methyl- benzenesulfonamide in 4 mL of Et2O at -78 °C was added dropwise 285 μL (0.49 mmol) of a 1.7 M solution of tert-BuLi in pentane and the resultant mixture was stirred at -78 °C for 10 min. To this mixture was then added a solution of 81 mg (0.34 mmol) of N-emoxyethyl-2- trifluoroacetylpyrrole in 3 mL THF and the mixture was allowed to gradually warm to room temperature over an 18 h period. The reaction mixture was quenched by the addition of a saturated aqueous solution of ammonium chloride and extracted with EtOAc. The combined organic layers were dried over Νa2SO , filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexanes:EtOAc, 4:1) to give the title compound.
[0316] 1H-NMR (CDC13) δ 7.49-7.60 (m, 3H), 7.42 (t, J=7.4 Hz, 2H), 7.32 (d, J=8.5 Hz, 2H), 7.06 (d, J=8.7 Hz, 2H), 6.67 (dd, J=2.7 Hz, 1.7 Hz, IH), 6.45-6.50 (m, IH), 6.20 (t, J=3.3 Hz, IH), 5.82 (s, IH), 3.76-3.85 (m, IH), 3.55-3.65 (m, 2H), 3.43-3.52 (m, 2H), 3.29- 3.38 (m, IH), 3.17 (s, 3H), 1.15 (t, J=7.0 Hz, 3H). Mass Spectrum (ESI) m/e = 505.1 (M+23). [0317] The following examples were prepared from N-(4-bromophenyl)-N-methyl- benzenesulfonamide as described in Example 78. The required ketones are prepared as described in Example 78, Step A, or alternative procedures will described.
Example 79
Figure imgf000081_0001
79
[0318] N-(4- { 1 -[ 1 -(2-Methoxyethyl)- lH-pyrrol-2-yl]-2,2,2-trifluoro- 1 -hydroxyethyl} - phenyl)-N-methyl-benzenesulfonamide [0319] 1H-NMR (CDCI3) δ 3.16 (s, 3H), 3.26 (s, 3H), 3.42-3.62 (m, 4H), 6.18 (m, IH),
6.46 (m, IH), 6.69 (m, IH), 7.04-7.56 (m, 9H). Mass Spectrum (CI+) m/e = 491.1 (M+l).
[0320] The starting material, N-methoxyethyl-2-trifluoroacetylpyrrole, was prepared in a manner similar to that described in Example 78, Step A.
[0321] 1H-NMR (CDCI3) δ 1.25 (s, 3H), 3.64 (t, J=5.1 Hz, 2H), 4.52 (t, J=5.0 Hz, 2H), 6.25 (m, IH), 7.17 (m, IH), 7.25 (m, IH). Mass Spectrum (CI+) m/e = mass ion not observed. Example 80
Figure imgf000082_0001
80
[0322] N-(4- { 1 -[ 1 -(3-methylbutyl)-lH-pyrrol-2-yl]-2,2,2-trifluoro-l -hydroxyethyl} - phenyl) -N-methyl-b enzenesulfonamide
[0323] Mass Spectrum (CI+) m/e = 481.1 (M+l).
[0324] The starting material, N-(3-methylbutyl)-2-trifluoroacetylpyrrole, was prepared using methods similar to those described in Example 78, Step A.
[0325] 1H-NMR (CDCI3) δ 0.94-0.98 (m, 6 H), 1.64 (m, 3 H), 4.35 (m, 2 H), 6.27 (m, 1 H), 7.10 (m, l H), 7.24 (m, 1 H).
Figure imgf000082_0002
81
[0326] N-(4- { 1 -[ 1 -(3-Methylbutyl)- lH-pyrrol-3-yl]-2,2,2-trifluoro- 1 -hydroxyethyl} - phenyl)-N-methyl-benzenesulfonamide
[0327] 1H-NMR (CDCI3) δ 0.96 (d, J=6.5 Hz, 6H), 1.57-1.71 (m, 3H), 2.78 (brs, IH), 3.20 (s, 3H), 3.87 (m, 2H), 6.09 (m, IH), 6.63 (m, IH), 6.70 (m, IH), 7.10 (m, 2H), 7.44-7.61 (m, 7H). Mass Spectrum (CI+) m/e = 503.1 (M+23). [0328] The starting material, N-(3-methylbutyl)-3-trifluoroacetylpyrrole was prepared using methods as described in Example 78, Step A.
[0329] 1H-NMR (CDC13) δ 0.98 (d, J=6.6 Hz, 6H), 1.58-1.62 (m, IH), 1.70-1.76 (m, 2H), 3.97 (m, 2H), 6.70 (m, IH), 6.76 (m, IH), 7.50 (m, IH). Mass Spectrum (CI+) m/e = 234.1 (M+l).
Example 82
Figure imgf000083_0001
82
[0330] N-(4- { 1 -[ 1 -Benzyl- lH-ρyrrol-3-yl]-2,2,2-trifluoro- 1 -hydroxyethyl} -phenyl)-N- methyl-benzenesulfonamide
[0331] 1H-NMR (CDCI3) δ 2.86 (brs, IH), 3.20 (s, 3H), 5.06 (s, 2H), 6.17 (m, IH), 6.68
(m, IH), 6.78 (m, IH), 7.10-7.16 (m, 4H), 7.34-7.56 (m, 10H). Mass Spectrum (CI+) m/e =
523.1 (M+23).
[0332] The starting material, N-benzyl-3-trifluoroacetylpyrrole was prepared using methods similar to those described in Example 78, Step A.
[0333] 1H-NMR (CDCI3) δ 5.14 (s, 2H), 6.72-6.80 (m, 2H), 7.19-7.21 (m, 2H), 7.37-7.43
(m, 3H), 7.56 (m, IH). Mass Spectrum (CI+) m/e = 254.1 (M+l).
Example 83
Figure imgf000084_0001
83
[0334] N-(4- { 1 -Hydroxy- 1 -[ 1 -(2-methoxyethyl)- lH-pyrrol-2-yl]-ethyl} -phenyl)-N-methyl- benzenesulfonamide
[0335] 1H-NMR (CDC13) δ 6.99 (dd, J=4.0 Hz, 1.7 Hz, IH), 6.93 (t, J=2.0 Hz, IH), 6.12 (dd, J=4.0 Hz, 2.61 Hz, IH), 4.50 (t, J=5.2 Hz, 2H), 3.65 (t, J=5.2 Hz, 2H), 3.28 (s, 3H), 2.42 (s, 3H). Mass Spectrum (ESI) m/e = 136.1 (M-31).
[0336] The starting material, N-methoxyethyl-2-acetylpyrrole, was prepared using methods similar to those described in Example 78, Step A.
[0337] 1H-NMR (CDCI3) δ 6.99 (dd, J=4.0 Hz, 1.7 Hz, IH), 6.93 (t, J=2.0 Hz, IH), 6.12 (dd, J=4.0 Hz, 2.6 Hz, IH), 4.50 (t, J=5.2 Hz, 2H), 3.65 (t, J=5.2 Hz, 2H), 3.28 (s, 3H), 2.42 (s, 3H). Mass Spectrum (ESI) m/e = 136.1 (M-31).
Example 84
Figure imgf000084_0002
84
[0338] N-(4- { 1 -Hydroxy- 1 -[ 1 -(2-methoxyethyl)- lH-pyrrol-2-yl]-propyl} -phenyl)-N- methyl-benzenesulfonamide [0339] 1H-NMR (CDCI3) δ 7.48-7.59 (m, 3H), 7.41 (t, J=7.5 Hz, 2H), 7.19 (d, J=8.6 Hz, 2H), 6.99 (d, J=8.6 Hz, 2H), 6.62 (dd, J=2.7 Hz, 1.9 Hz, IH), 6.30 (dd, J=3.6 Hz, 1.8 Hz, IH), 6.15 (t, J=3.2 Hz, IH), 3.94 (s, IH), 3.77-3.86 (m, IH), 3.59-3.67 (m, IH), 3.33-3.45 (m, 2H), 3.27 (s, 3H), 3.16 (s, 3H), 2.21-2.31 (m, IH), 2.01-2.11 (m, IH), 0.80 (t, J=7.4 Hz, 3H). Mass Spectrum (ESI) m/e = 451.1 (M+23).
[0340] The starting material, N-methoxyethyl-2-propionylpyrrole was prepared as follows: [0341] To a solution of 102 mg (0.61 mmol) of N-methoxyethyl-2-acetylpyrrole in 4.5 mL THF at -78 °C was added dropwise 670 μL (0.67 mmol) of a 1.0 M solution of LHMDS in THF and the resultant mixture was stirred for 30 min. After this time, 57 μL (0.92 mmol) of Mel was added dropwise and the mixture was stirred at -78 °C for 1.5 h, then was warmed to 0 °C and stirred for an additional 45 min. After this time, the reaction mixture was quenched by the addition of a saturated aqueous solution of ammonium chloride and extracted with EtOAc. The combined organic layers were dried over Νa2SO , filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (pure hexanes grading to hexanes :EtO Ac, 88: 12) to give the title compound.
[0342] 1H-NMR (CDC13) δ 7.00 (dd, J=4.0 Hz, 1.7 Hz, IH), 6.92 (t, J=2.1 Hz, IH), 6.13 (dd, J=4.1 Hz, 2.5 Hz, IH), 4.50 (t, J=5.1 Hz, 2H), 3.65 (t, J=5.2 Hz, 2H), 3.29 (s, 3H), 2.81 (q, J=7.4 Hz, 2H), 1.17 (t, J=7.4 Hz, 3H). Mass Spectrum (ESI) m/e = 150.1 (M-31).
Example 85
Figure imgf000085_0001
85
[0343] N-(4- { 1 -Hydroxy- 1 -[ 1 -(2-methoxyethyl)- lH-pyrrol-2-yl]-butyl} -phenyl)-N-methyl- benzenesulfonamide
[0344] 1Η-NMR (CDCI3) δ 7.39-7.61 (m, 5Η), 7.19 (d, J=8.6 Hz, 2H), 6.99 (d, J=8.5 Hz, 2H), 6.60-6.63 (m, IH), 6.39-6.42 (m, IH), 6.15 (t, J=3.1 Hz, IH), 3.98 (s, IH), 3.75-3.85 (m, IH), 3.58-3.67 (m, IH), 3.31-3.44 (m, 2H), 3.26 (s, 3H), 3.16 (s, 3H), 1.95-2.22 (m, 2H), 1.39-1.56 (m, IH), 0.90-1.05 (m, IH), 0.87 (t, J=7.2 Hz, 3H). Mass Spectrum (ESI) m/e = 465.2 (M+23).
[0345] The starting material, N-methoxyethyl-2-butyrylpyrrole, was prepared as follows: [0346] To a solution of 150 mg (0.90 mmol) of N-methoxyethyl-2-acetylpyrrole in 6 mL THF at -78 °C was added dropwise 990 μL (0.99 mmol) of a 1.0 M solution of LHMDS in THF and the resultant mixture was stirred for 30 min. After this time, 108 μL (1.35 mmol) of Etl was added dropwise and the mixture was warmed to 0 °C and stirred for 2.5 h, then was further warmed to room temperature and stirred for an additional 2.5 h. After this time, 43 μL (0.54 mmol) of Etl was added and the mixture was stirred for an additional 1 h. The reaction mixture was quenched by the addition of a saturated aqueous solution of ammonium chloride and extracted with EtOAc. The combined organic layers were dried over Νa2SO4, filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (pure hexanes grading to hexanes:EtOAc, 9:1) to give the title compound. [0347] 1H-NMR (CDCI3) δ 7.00 (dd, J=4.0 Hz, 1.6 Hz, IH), 6.92 (t, J=2.0 Hz, IH), 6.13 (dd, J=4.0 Hz, 2.5 Hz, IH), 4.50 (t, J=5.1 Hz, 2H), 3.65 (t, J=5.1 Hz, 2H), 3.29 (s, 3H), 2.75 (t, J=7.3 Hz, 2H), 1.67-1.78 (m, 2H), 0.97 (t, J=7.4 Hz, 3H). Mass Spectrum (ESI) m/e = 164.1 (M-31).
Example 86
Figure imgf000086_0001
86
[0348] N-(4- { 1 -[ 1 -(2-Methoxyethyl)- lH-pyrrol-2-yl]-2,2,2-trifluoro- 1 -methoxyethyl} - phenyl)-N-methyl-benzenesulfonamide
[0349] To a suspension of 3.8 mg of NaH (0.10 mmol) in 3 mL of DMF at 0 °C was added 32 mg ofN-(4-{l-[l-(2-methoxyethyl)-lH-pyrrol-2-yl]-2,2,2-trifluoro-l-hydroxyethyl}- phenyl)-N-methyl-benzenesulfonamide (Example 79, 0.068 mmol) and the reaction mixture was stirred at 0 °C for 35 min. 6 μL of iodomethane (0.089 mmol) was added and the reaction mixture allowed to warm to room temperature and stirred for 2.5 h. The reaction was quenched by the addition of a saturated aqueous solution of ammonium chloride and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO4, filtered and the filtrate was concentrated. The residue was purified by chromatography (silica, hexanes: EtOAc, 9:1) to give the title compound. [0350] 1H-NMR (CDC13) δ 3.10-3.13 (m, 2H), 3.19 (s, 3H), 3.23 (s, 3H), 3.39 (s, 3H), 3.63-3.67 (m, 2H), 6.21-6.22 (m, IH), 6.56 (s\m, IH), 6.69 (m, IH), 6.89 (m, 2H), 7.28-7.59 (m, 7H). Mass Spectrum (CI+) m/e = 505.1 (M+l).
Example 87
Figure imgf000087_0001
87
[0351] N-(4-{l-[l-Benzyl-lH-pyrrol-2-yl]-2,2,2-trifluoro-l-methoxyethyl}-phenyl)-N- methyl-benzenesulfonamide
[0352] The title compound was prepared in a manner similar to that described in Example 86.
[0353] 1H-NMR (CDCI3) δ 3.12 (s, 3H), 3.23 (s, 3H), 3.24 (s, 3H), 4.50 and 4.56 (AB, 2H, J = 14.8 Hz), 6.18 (m, IH), 6.55-6.60 (m, 2H), 6.86 (m, 2H), 7.00 (m, 2H), 7.18-7.52 (m, 10H). Mass Spectrum (CI+) m/e = 515 (M+l). Example 88
Figure imgf000088_0001
88
[0354] N-(4- { 1 -[ 1 -(2-Ethoxyethyl)- lH-pyrrol-2-yl]-2,2,2-trifluoroethyl} -phenyl)-N- methyl-benzenesulfonamide
[0355] To a solution of 32 mg (0.07 mmol) of N-(4-{l-[l-(2-ethoxyethyl)-lH-pyrrol-2-yl]- 2,2,2-trifluoro-l -hydroxyethyl} -phenyl)-N-methyl-benzenesulfonamide (Example 78) in 2 mL of CΗ C1 at 0 °C were added 1.05 mL (6.57 mmol) of triethylsilane followed by 167 μL (1.32 mmol) of boron trifluoride diethyl etherate dropwise. The mixture was warmed to room temperature and stirred for 1.75 h. After this time, the reaction mixture was cooled to 0 °C, quenched by the addition of a saturated aqueous solution of sodium bicarbonate, allowed to warm to room temperature, and extracted with EtOAc. The combined organic layers were dried over Na2SO4, filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexanes :EtO Ac, 4:1) to give the title compound. [0356] 1H-NMR (CDC13) δ 7.50-7.61 (m, 3H), 7.41-7.49 (m, 2H), 7.22-7.28 (m, 2H), 7.07 (d, J=8.3 Hz, 2H), 6.66 (s, IH), 6.32 (s, IH), 6.18 (t, J=3.2 Hz, IH), 5.06 (q, Jc-F=9.2 Hz, IH), 3.79-3.83 (m, 2H), 3.31-3.57 (m, 4H), 3.14 (s, 3H), 1.13 (t, J=7.0 Hz, 3H). Mass Spectrum (ESI) m/e = 489.1 (M+23).
Example 89
Figure imgf000089_0001
89
[0357] N-(4- { 1 -[ 1 -(2-Methoxyethyl)- lH-pyrrol-2-yl]-2,2,2-trifluoroethyl} -phenyl)-N- methyl-benzenesulfonamide
[0358] The title compound was prepared from N-(4-{l-[l-(2-methoxyethyl)-lH-pyrrol-2- yl] -2,2,2-trifluoro- 1 -hydroxyethyl} -phenyl)-N-methyl-benzenesulfonamide (Example 79) following the procedure described in Example 88.
[0359] 1H-NMR (CDC13) δ 7.51-7.59 (m, 3H), 7.43 (t, J=7.7 Hz, 2H), 7.27 (d, J=8.6 Hz,
2H), 7.08 (d, J=8.4 Hz, 2H), 6.66 (dd, J=2.6 Hz, 2.0 Hz, IH), 6.32 (s, IH), 6.17 (t, J=3.1 Hz,
IH), 4.95 (q, JC-F=9.2 HZ, IH), 3.82-3.86 (m, 2H), 3.37-3.47 (m, 2H), 3.24 (s, 3H), 3.15 (s,
3H). Mass Spectrum (ESI) m/e = 475.1 (M+23).
Example 90
Figure imgf000089_0002
90
[0360] N-(4-{l-[l-(2-Methoxyethyl)-lH-pyrrol-2-yl]-ethyl}-phenyl)-N-methyl- benzenesulfonamide [0361] The title compound was prepared from N-(4-{l-hydroxy-l-[l-(2-methoxyethyl)- lH-pyrrol-2-yl] -ethyl} -phenyl)-N-methyl-benzenesulfonamide (Example 83) following the procedure described in Example 88.
[0362] 1H-NMR (CDC13) δ 7.51-7.60 (m, 3H), 7.43 (t, J=7.8 Hz, 2H), 7.04 (d, J=8.4 Hz, 2H), 6.98 (d, J=8.5 Hz, 2H), 6.65 (s, IH), 6.13 (t, J=3.4 Hz, IH), 6.10-6.13 (m, IH), 4.06- 4.13 (m, IH), 3.68-3.82 (m, 2H), 3.27 (t, J=5.9 Hz, 2H), 3.21 (s, 3H), 3.13 (s, 3H), 1.57 (t, J=7.2 Hz, 3H). Mass Spectrum (ESI) m/e = 421.1 (M+23).
Example 91
Figure imgf000090_0001
91
[0363] N-(4- { 1 -[ 1 -(2-Methoxyethyl)- lH-pyrrol-2-yl]-propyl} -phenyl)-N-methyl- benzenesulfonamide
[0364] The title compound was prepared from N-(4- {1 -hydroxy- 1-[1 -(2 -methoxyethyl)- lH-pyrrol-2-yl]-propyl}-phenyl)-N-methyl-benzenesulfonamide (Example 84) following the procedure described in Example 88.
[0365] 1H-NMR (CDCI3) δ 7.00 (dd, J=4.0 Hz, 1.7 Hz, IH), 6.92 (t, J=2.1 Hz, IH), 6.13 (dd, J=4.1 Hz, 2.5 Hz, IH), 4.50 (t, J=5.1 Hz, 2H), 3.65 (t, J=5.2 Hz, 2H), 3.29 (s, 3H), 2.81 (q, J=7.4 Hz, 2H), 1.17 (t, J=7.4 Hz, 3H). Mass Spectrum (ESI) m/e = 150.1 (M-31).
Example 92
Figure imgf000091_0001
92
[0366] N-(4-{l-[l-(2-Methoxyethyl)-lH-pyrrol-2-yl]-butyl}-phenyl)-N-methyl- benzenesulfonamide
[0367] The title compound was prepared from N-(4- { 1 -hydroxy- 1 -[ 1 -(2-methoxyethyl)- lH-pyrrol-2-yl]-butyl}-phenyl)-N-methyl-benzenesulfonamide (Example 85) following the procedure described in Example 88.
[0368] 1H-NMR (CDC13) δ 7.50-7.61 (m, 3H), 7.40-7.47 (m, 2H), 7.05 (d, J=8.5 Hz, 2H),
6.97 (d, J=8.4 Hz, 2H), 6.62 (t, J=2.2 Hz, IH), 6.10-6.17 (m, 2H), 3.71-3.92 (m, 3H), 3.25 (t,
J=6.2 Hz, 2H), 3.21 (s, 3H), 3.13 (s, 3H), 1.96-2.07 (m, IH), 1.74-1.86 (m, IH), 1.21-1.42
(m, 2H), 0.91 (t, J=7.3 Hz, 3H). Mass Spectrum (ESI) m/e = 449 (M+23).
Example 93
Figure imgf000091_0002
93
[0369] N-(4-{l-Hydroxy-l-[l-(2-methoxyethyl)-lH-ρyrrol-2-yl]-methyl}-phenyl)-N- methyl-benzenesulfonamide Step A. N-Methoxyethylpyrrole-2-carboxaldehyde
[0370] To a suspension of 450 mg (11.25 mmol) of ΝaH (60% dispersion in mineral oil) in 30 mL DMF at 0 °C was added 990 mg (10.41 mmol) of pyrrole-2-carboxaldehyde and the mixture was stirred at 0 °C for 1.5 h. After this time, 1.03 mL (10.96 mmol) of 2- bromomethyl methyl ether was added and the mixture was warmed to 50 °C and stirred for 2.75 h. The reaction mixture was allowed to cool to room temperature, quenched by the addition of a saturated aqueous solution of ammonium chloride, and extracted with EtOAc. The organic layer was washed with water and brine, dried over Νa2SO , filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexanes :EtO Ac, 9:1) to give the title compound.
[0371] 1H-NMR (CDC13) δ 9.53 (d, J=1.0 Hz, IH), 7.03 (s, IH), 6.95 (dd, J=4.0 Hz, 1.7 Hz, IH), 6.23 (dd, J=4.0 Hz, 2.5 Hz, IH), 4.50 (t, J=5.1 Hz, 2H), 3.66 (t, J=5.1 Hz, 2H), 3.29 (s, 3H). Mass Spectrum (ESI) m/e = 122 (M-31).
Step B. N-(4-{l-Hydroxy-l-[l-(2-methoxyethyl)-lH-pyrrol-2-yl]-methyl}-phenyl)-N- methyl-benzenesulfonamide [0372] To a solution of 1.49 g (4.59 mmol) of N-(4-bromophenyl)-N-methyl benzenesulfonamide (Example 78, Step C) in 37.5 mL THF at -78 °C was added dropwise 5.94 mL (10.10 mmol) of a 1.7 M solution of tert-BuLi in pentane and the resultant mixture was stirred at -78 °C for 15 min. To this mixture was then added a solution of 1.01 g (6.59 mmol) of N- methoxyethylpyrrole-2-carboxaldehyde in 6 mL THF and the mixture was allowed to gradually warm to -30 °C over a 4 h period. After this time, the reaction mixture was quenched by the addition of a saturated aqueous solution of ammonium chloride and extracted with EtOAc. The combined organic layers were dried over Νa SO4, filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexanes:EtOAc, 13:7) to give the title compound.
[0373] 1H-NMR (CDCI3) δ 7.52-7.64 (m, 3H), 7.45 (t, J=7.6 Hz, 2H), 7.38 (d, J=8.3 Hz, 2H), 7.06 (d, J=8.3 Hz, 2H), 6.70 (s, IH), 6.09 (t, J=2.6 Hz, IH), 5.85 (s, IH), 5.65 (t, J=1.6 Hz, IH), 4.03-4.21 (m, 3H), 3.60-3.71 (m, 2H), 3.35 (s, 3H), 3.19 (s, 3H). Mass Spectrum (ESI) m/e = 423.1 (M+23). Example 94
Figure imgf000093_0001
94
[0374] N-(4- { 1 -[ 1 -(2-methoxyethyl)- lH-pyrrol-2-yl] -methyl} -phenyl)-N-methyl- benzenesulfonamide
[0375] To a solution of 16 mg (0.04 mmol) of N-(4-{l-hydroxy-l-[l-(2-methoxyethyl)-lH- pyrro 1-2 -yl] -methyl} -phenyl)-N-methyl-benzenesulfonamide (Example 93) in 1.5 mL CH C12 at 0 °C were added 620 μL (3.88 mmol) of triethylsilane followed by 100 μL (0.79 mmol) of boron trifluoride diethyl etherate dropwise. The mixture was warmed to room temperature and stirred for 2.5 h. After this time, the reaction mixture was cooled to 0 °C, quenched by the addition of a saturated aqueous solution of sodium bicarbonate, allowed to warm to room temperature, and extracted with EtOAc. The combined organic layers were dried over Na SO4, filtered and the filtrate was concentrated. The residue was purified by chromatography on silica gel (hexanes:EtOAc, 3:1) to give the title compound. [0376] 1H-NMR (CDC13) δ 7.52-7.60 (m, 3H), 7.45 (t, J=7.7 Hz, 2H), 7.09 (d, J=8.4 Hz, 2H), 7.00 (d, J=8.4 Hz, 2H), 6.68 (t, J=2.0 Hz, IH), 6.10 (t, J=3.1 Hz, IH), 5.85 (s, IH), 3.95 (s, 2H), 3.88 (t, J=5.8 Hz, 2H), 3.45 (t, J=5.8 Hz, 2H), 3.27 (s, 3H), 3.16 (s, 3H). Mass Spectrum (ESI) m/e = 407.1 (M+23).

Claims

WHAT IS CLAIMED IS:
A compound having the formula:
Figure imgf000094_0001
wherein
R1 is a member selected from the group consisting of
Figure imgf000094_0002
Figure imgf000094_0003
wherein
R11 is a member selected from the group consisting of halogen, nitro, cyano, R12, OR12, SR12, NHR12, N(R12)2, (C4-C8)cycloalkyl, (C5- C8)cycloalkenyl, COR12, CO2R12, CONHR12, CON(R12)2, aryl, aryl(C C4)alkyl, heteroaryl and heteroaryl(C1-C4)alkyl; wherein each R12 is (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl,
1 halo(C!-C8)alkyl or two R groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring and any alkyl portions of R11 are optionally substituted with from one to three substituents independently selected from the group consisting of halogen, OR13, NHSO2R14 and NHC(O)R13, and any aryl or heteroaryl portions of R11 are optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R14, OR13, SR13, N(R13)2, NHSO2R14, NHC(O)R13, phenyl, phenyl(C1-C8)alkyl, and phenyl(C2- C8)heteroalkyl; wherein each R13 is independently selected from H, (C1-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(C!-C8)alkyl and each R14 is independently selected from (C\- C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(Cι-C8)alkyl; or optionally, R1 ] is combined with X or Y to form a five- to six-membered moncyclic or fused bicyclic ring containing from 0 to 3 heteroatoms selected from the group consisting of N, O and S; each R18 is independently selected from the group consisting of H, (Ci- C8)alkyl, (C2-C8)heteroalkyl, halo(Cι-C8)alkyl, aryl and heteroaryl; X is a member selected from the group consisting of H, NH2, NHR15, NHSO2R15, OH and OR15, wherein R15 is (C1-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C -C8)heteroalkyl or halo(C1-C8)alkyl, or is combined with R11 as described above; Y is fluoro(C1-C )alkyl, or is combined with R11 as described above; with the proviso that when R11 is attached to the carbon atom bearing X, then R11 is other than R12; R2 is a member selected from the group consisting of H, (C1-C8)alkyl, (C2- C8)heteroalkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C3-C8)cycloalkyl and (C4- C8)cycloalkyl-alkyl, wherein any alkyl portions of R2 are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and amino, or optionally R2 is combined ' with R4 to form a five- to six-membered fused ring containing from 1 to 3 heteroatoms selected from the group consisting of N, O and S; R is a member selected from the group consisting of aryl and heteroaryl, said aryl or heteroaryl group being optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R16, OR16, SR16, COR16, CO2R16, NHR16, N(R16)2, CONHR16, CON(R16)2, NHSO2R16, NHC(O)R16, phenyl, phenyl(Cι-C8)alkyl, and phenyl(C2-C8)heteroalkyl; wherein each R16 is independently selected from (Cι-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(Ci- C8)alkyl, or two R16 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring; the subscript n is an integer of from 0 to 3 ; and each R4 is independently selected from the group consisting of halogen, cyano, nitro, R17, OR17, SR17, COR17, CO2R17, N(R17)2 and CON(R17)2, wherein each R17 is independently selected from H, (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(C!-C8)alkyl, or two R17 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring; and pharmaceutically acceptable salts thereof.
2. A compound of claim 1, wherein X is OH.
3. A compound of claim 1, wherein X is OH, and R1 is a member selected from the group consiting of
Figure imgf000096_0001
4. A compound of claim 1, wherein X is H, and R is a member selected from the group consiting of
Figure imgf000096_0002
A compound of claim 1, wherein X is OH, and R is
Figure imgf000096_0003
wherein R11 is a member selected from the group consisting of phenyl, pyridyl, pyridazinyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, tetrazolyl, indolyl, benzimidazolyl, benzothienyl and benzothiazolyl, each of said R11 groups being optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, (C\- C8)alkyl, (C2-C8)heteroalkyl, (C1-C8)haloalkyl, phenyl(d-C6)alkyl and phenyl(C2- C6)heteroalkyl.
6. A compound of claim 5, wherein R11 is phenyl, optionally substituted with from one to two substituents independently selected from the group consisting of halogen, cyano, nitro, (Cι-C8)alkyl, (C2-C8)heteroalkyl, (C1-C8)haloalkyl, phenyl(d-C6)alkyl and phenyl(C2-C6)heteroalkyl.
7. A compound of claim 6, wherein R2 is selected from the group consisting of H, (C1-C8)alkyl, (C3-C8)cycloalkyl and (C4-C8)cycloalkyl-alkyl, wherein any alkyl portions of R2 are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and amino.
8. A compound of claim 7, wherein R3 is a member selected from the group consisting of phenyl, pyridyl, thienyl and thiazolyl, optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R16, OR16, SR16, COR16, CO2R16, NHR16, N(R16)2, CONHR16, CON(R16)2, NHSO2R16, NHC(O)R16, phenyl, phenyl(C i -C8)alkyl, and phenyl(C2-C8)heteroalkyl; wherein each R16 is independently selected from (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C -C8)heteroalkyl and halo(C1-C8)alkyl, or two R16 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring.
9. A compound of claim 8, wherein the subscript n is an integer of from 0 to 2, and each R4 is independently selected from the group consisting of halogen, (d- C8)alkyl and halo(d-C8)alkyl.
10. A compound of claim 5, wherein R11 is pyrrolyl, optionally substituted with from one to two substituents independently selected from the group consisting of halogen, cyano, nitro, (d-C8)alkyl, (C2-C8)heteroalkyl, (C1-C8)haloalkyl, phenyl(d-C6)alkyl and phenyl(C2-C6)heteroalkyl.
11. A compound of claim 10, wherein R2 is selected from the group consisting of H, (C1-C8)alkyl, (C3-C8)cycloalkyl and (C4-C8)cycloalkyl-alkyl, wherein any alkyl portions of R are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and amino.
12. A compound of claim 11, wherein R3 is a member selected from the group consisting of phenyl, pyridyl, thienyl and thiazolyl, optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R16, OR16, SR16, COR16, CO2R16, NHR16, N(R16)2, CONHR16, CON(R16)2, NHSO2R16, NHC(O)R16, phenyl, phenyl(C1-C8)alkyl, and phenyl(C2-C8)heteroalkyl; wherein each R16 is independently selected from (C1-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(C1-C8)alkyl, or two R16 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring.
13. A compound of claim 12, wherein the subscript n is an integer of from 0 to 2, and each R4 is independently selected from the group consisting of halogen, (d- C8)alkyl and halo(d-C8)alkyl.
14. A compound of claim 1, wherein X is OH and R1 has the formula:
Figure imgf000098_0001
wherein R11 is a member selected from the group consisting of phenyl, pyridyl, pyridazinyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, tetrazolyl, indolyl, benzimidazolyl, benzothienyl and benzothiazolyl, each of said R11 groups being optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, (d- C8)alkyl, (C2-C8)heteroalkyl, (C i -C8)haloalkyl, phenyl(C i -C6)alkyl and phenyl(C2- C6)heteroalkyl.
15. A compound of claim 14, wherein R11 is phenyl, optionally substituted with from one to two substituents independently selected from the group consisting of halogen, (C1-C8)alkyl, (C2-C8)heteroalkyl, (Cι-C8)haloalkyl, phenyl(C1-C6)alkyl and phenyl(C2-C )heteroalkyl.
16. A compound of claim 15, wherein R2 is selected from the group consisting of H, (C1-C8)alkyl, (C3-C8)cycloalkyl and (C4-C8)cycloalkyl-alkyl, wherein any alkyl portions of R are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and amino.
17. A compound of claim 16, wherein R3 is a member selected from the group consisting of phenyl, pyridyl, thienyl and thiazolyl, optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R16, OR16, SR16, COR16, CO2R16, NHR16, N(R16)2, CONHR16, CON(R16)2, NHSO2R16, NHC(O)R16, phenyl, phenyl(Cι-C8)alkyl, and phenyl(C2-C8)heteroalkyl; wherein each R16 is independently selected from (d-C8)alkyl, (C -C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(d-C8)alkyl, or two R16 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring.
18. A compound of claim 17, wherein the subscript n is an integer of from 0 to 2, and each R4 is independently selected from the group consisting of halogen, (d- C8)alkyl and halo(C1-C8)alkyl.
19. A compound of claim 14, wherein R11 is pyridyl, optionally substituted with from one to two substituents independently selected from the group consisting of halogen, cyano, nitro, (C1-C8)alkyl, (C2-C8)heteroalkyl, (Cι-C8)haloalkyl, phenyl(Cι-C6)alkyl and phenyl(C -C6)heteroalkyl.
20. A compound of claim 19, wherein R is selected from the group consisting of H, (C1-C8)alkyl, (C3-C8)cycloalkyl and (C4-C8)cycloalkyl-alkyl, wherein any alkyl portions of R2 are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and amino.
21. A compound of claim 20, wherein R is a member selected from the group consisting of phenyl, pyridyl, thienyl and thiazolyl, optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R16, OR16, SR16, COR16, CO2R16, NHR16, N(R16)2, CONHR16, CON(R16)2, NHSO2R16, NHC(O)R16, phenyl, phenyl(d-C8)alkyl, and phenyl(C2-C8)heteroalkyl; wherein each R16 is independently selected from (C1-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(Cι-C8)alkyl, or two R groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring.
22. A compound of claim 21 , wherein the subscript n is an integer of from 0 to 2, and each R4 is independently selected from the group consisting of halogen, (Cj- C8)alkyl and halo(C1-C8)alkyl.
23. A compound of claim 14, wherein R11 is pyridazinyl or pyrrolyl, optionally substituted with from one to two substituents independently selected from the group consisting of halogen, cyano, nitro, (C1-C8)alkyl, (C2-C8)heteroalkyl, (d-C8)haloalkyl, phenyl(Cι-C6)alkyl and phenyl(C2-C6)heteroalkyl.
24. A compound of claim 1, wherein X is OH and R1 has the formula:
Figure imgf000099_0001
wherein R11 is a member selected from the group consisting of phenyl, pyridyl, pyrrolyl and pyridazinyl, each of said R11 groups being optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, (d- C8)alkyl, (C2-C8)heteroalkyl, (C C8)haloalkyl, phenyl(d-C6)alkyl and phenyl(C2- C6)heteroalkyl.
25. A compound of claim 24, wherein R1 ' is phenyl, optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, (Cι-C8)alkyl, (C2-C8)heteroalkyl, (d-C8)haloalkyl, phenyl(C1-C6)alkyl and phenyl(C -C6)heteroalkyl.
26. A compound of claim 25, wherein R2 is selected from the group consisting of H, (d-C8)alkyl, (C3-C8)cycloalkyl and (C -C8)cycloalkyl-alkyl, wherein any alkyl portions of R2 are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and amino.
27. A compound of claim 26, wherein R3 is a member selected from the group consisting of phenyl, pyridyl, thienyl and thiazolyl, optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R16, OR16, SR16, COR16, CO2R16, NHR16, N(R16)2, CONHR16, CON(RI6)2, NHSO2R16, NHC(O)R16, phenyl, phenyl(d-C8)alkyl, and phenyl(C2-C8)heteroalkyl; wherein each R16 is independently selected from (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(C1-C8)alkyl, or two R16 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring.
28. A compound of claim 27, wherein the subscript n is an integer of from 0 to 2, and each R4 is independently selected from the group consisting of halogen, (Ci- C8)alkyl and halo(Cι-C8)alkyl.
29. A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound having the formula:
Figure imgf000100_0001
wherein R1 is a member selected from the group consisting of
Figure imgf000101_0001
Figure imgf000101_0002
wherein
R . 11 is a member selected from the group consisting of halogen, nitro, cyano, R12, OR12, SR12, NHR12, N(R12)2, (C4-C8)cycloalkyl, (C5- C8)cycloalkenyl, COR12, CO2R12, CONHR12, CON(R12)2, aryl, aryl(d- C4)alkyl, heteroaryl and heteroaryl(d-C4)alkyl; wherein each R12 is (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl, halo(d-C8)alkyl or two R12 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring and any alkyl portions of R11 are optionally substituted with from one to three substituents independently selected from the group consisting of halogen, OR13, NHSO2R14 and NHC(O)R13, and any aryl or heteroaryl portions of R11 are optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R14, OR13, SR13, N(R13)2, NHSO2R14, NHC(O)R13, phenyl, phenyl(C1-C8)alkyl, and phenyl(C2- C8)heteroalkyl; wherein each R13 is independently selected from H, (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(d-C8)alkyl and each R14 is independently selected from (d- C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(Cι-C8)alkyl; or optionally, R11 is combined with X or Y to form a five- to six-membered moncyclic or fused bicyclic ring containing from 0 to 3 heteroatoms selected from the group consisting of N, O and S; each R , 18 is independently selected from the group consisting of H, (Cj-
C8)alkyl, (C2-C8)heteroalkyl, halo(Cι-C8)alkyl, aryl and heteroaryl; X is a member selected from the group consisting of H, NH2, NHR15, NHSO2R15, OH and OR15, wherein R15 is (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl or halo(d-C8)alkyl, or is combined with R11 as described above; Y is fluoro(C1-C )alkyl, or is combined with R11 as described above; with the proviso that when R11 is attached to the carbon atom bearing X, then R11 is other than R12; R2 is a member selected from the group consisting of H, (C1-C8)alkyl, (C2- C8)heteroalkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C3-C8)cycloalkyl and (C4- C8)cycloalkyl-alkyl, wherein any alkyl portions of R2 are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and amino, or optionally R2 is combined with R4 to form a five- to six-membered fused ring containing from 1 to 3 heteroatoms selected from the group consisting of N, O and S; R3 is a member selected from the group consisting of aryl and heteroaryl, said aryl or heteroaryl group being optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R16, OR16, SR16, COR16, CO2R16, NHR16, N(R16)2, CONHR16, CON(R16)2, NHSO2R16, NHC(O)R16, phenyl, phenyl(d-C8)alkyl, and phenyl(C2-C8)heteroalkyl; wherein each R16 is independently selected from (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(d- C8)alkyl, or two R16 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring; the subscript n is an integer of from 0 to 3; and each R4 is independently selected from the group consisting of halogen, cyano, nitro, R17, OR17, SR17, COR17, CO2R17, N(R17)2 and CON(R17)2, wherein each R17 is independently selected from H, (C1-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(Cι-C8)alkyl, or two R17 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring; and pharmaceutically acceptable salts thereof.
30. A pharmaceutical composition of claim 29, wherein said compound is a compound of any of claims 2-28.
31. A method of modulating LXR function in a cell, said method comprising contacting said cell with an LXR-modulating amount of a compound of the formula:
Figure imgf000103_0001
wherein
R is a member selected from the group consisting of
1
Figure imgf000103_0002
Figure imgf000103_0003
wherein
R l is a member selected from the group consisting of halogen, nitro, cyano, R12, OR12, SR12, NHR12, N(R12)2, (C4-C8)cycloalkyl, (C5- C8)cycloalkenyl, COR12, CO2R12, CONHR12, CON(R12)2, aryl, aryl(Cι- C4)alkyl, heteroaryl and heteroary^d-C^alkyl; wherein each R is (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl, halo(d-C8)alkyl or two R12 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring and any alkyl portions of R11 are optionally substituted with from one to three substituents independently selected from the group consisting of halogen, OR13, NHSO2R14 and NHC(O)R13, and any aryl or heteroaryl portions of R11 are optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R14, OR13, SR13, N(R13)2, NHSO2R14, NHC(O)R13, phenyl, phenyl(d-C8)alkyl, and phenyl(C2- C8)heteroalkyl; wherein each R13 is independently selected from H, (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(d-C8)alkyl and each R14 is independently selected from (Ci- C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(d-C8)alkyl; or optionally, R11 is combined with X or Y to form a five- to six-membered moncyclic or fused bicyclic ring containing from 0 to 3 heteroatoms selected from the group consisting of N, O and S; each R18 is independently selected from the group consisting of H, (d- C8)alkyl, (C2-C8)heteroalkyl, halo(d-C8)alkyl, aryl and heteroaryl; X is a member selected from the group consisting of H, NH , NHR15, NHSO2R15, OH and OR15, wherein R15 is (Cι-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl or halo(C1-C8)alkyl, or is combined with R11 as described above; Y is fluoro(C1-C4)alkyl, or is combined with R11 as described above; with the proviso that when R11 is attached to the carbon atom bearing X, then R11 is other than R12; R2 is a member selected from the group consisting of H, (Cι-C8)alkyl, (C2- C8)heteroalkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C3-C8)cycloalkyl and (C4- C8)cycloalkyl-alkyl, wherein any alkyl portions of R are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and amino, or optionally R2 is combined with R4 to form a five- to six-membered fused ring containing from 1 to 3 heteroatoms selected from the group consisting of N, O and S; R is a member selected from the group consisting of aryl and heteroaryl, said aryl or heteroaryl group being optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R16, OR16, SR16, COR16, CO2R16, NHR16, N(R16)2, CONHR16, CON(R16)2, NHSO2R16, NHC(O)R16, phenyl, phenyl(Cι-C8)alkyl, and phenyl(C2-C8)heteroalkyl; wherein each R16 is independently selected from (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(Cι- C8)alkyl, or two R16 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring; the subscript n is an integer of from 0 to 3; and each R4 is independently selected from the group consisting of halogen, cyano, nitro, R17, OR17, SR17, COR17, CO2R17, N(R17)2 and CON(R17)2, wherein each R17 is independently selected from H, (Cι-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(Cι-C8)alkyl, or two R17 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring; and pharmaceutically acceptable salts thereof.
32. A method of treating obesity, diabetes, hypercholesterolemia, atherosclerosis or hyperlipoproteinemia, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of the formula:
Figure imgf000105_0001
wherein
R1 is a member selected from the group consisting of
Figure imgf000105_0002
Figure imgf000105_0003
wherein
R11 is a member selected from the group consisting of halogen, nitro, cyano, R12, OR12, SR12, NHR12, N(R12)2, (C4-C8)cycloalkyl, (C5- C8)cycloalkenyl, COR12, CO2R12, CONHR12, CON(R12)2, aryl, aryl(d- C4)alkyl, heteroaryl and heteroaryl(Cι-C4)alkyl; wherein each R12 is (Cι-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl, halo(d-C8)alkyl or two R groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring and any alkyl portions of R11 are optionally substituted with from one to three substituents independently selected from the group consisting of halogen, OR13, NHSO2R14 and NHC(O)R13, and any aryl or heteroaryl portions of R11 are optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R14, OR13, SR13, N(R13)2, NHSO2R14, NHC(O)R13, phenyl, phenyl(d-C8)alkyl, and phenyl(C2- C8)heteroalkyl; wherein each R is independently selected from H, (Cι-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(Cι-C8)alkyl and each R14 is independently selected from (Ci- C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(d-C8)alkyl; or optionally, R1 ' is combined with X or Y to form a five- to six-membered moncyclic or fused bicyclic ring containing from 0 to 3 heteroatoms selected from the group consisting of N, O and S; each R is independently selected from the group consisting of H, (d- C8)alkyl, (C -C8)heteroalkyl, halo(C1-C8)alkyl, aryl and heteroaryl; X is a member selected from the group consisting of H, NH2, NHR15, NHSO2R15, OH and OR15, wherein R15 is (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl or halo(C1-C8)alkyl, or is combined with R11 as described above; Y is fluoro(C1-C4)alkyl, or is combined with R11 as described above; with the proviso that when R11 is attached to the carbon atom bearing X, then R11 is other than R12; R2 is a member selected from the group consisting of H, (d-C8)alkyl, (C2- C8)heteroalkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C3-C8)cycloalkyl and (C4- C8)cycloalkyl- alkyl, wherein any alkyl portions of R2 are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and amino, or optionally R2 is combined with R to form a five- to six-membered fused ring containing from 1 to 3 heteroatoms selected from the group consisting of N, O and S; R is a member selected from the group consisting of aryl and heteroaryl, said aryl or heteroaryl group being optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R16, OR16, SR16, COR16, CO2R16, NHR16, N(R16)2, CONHR16, CON(R16)2, NHSO2R16, NHC(O)R16, phenyl, phenyl(d-C8)alkyl, and phenyl(C -C8)heteroalkyl; wherein each R16 is independently selected from (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(d- C8)alkyl, or two R16 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring; the subscript n is an integer of from 0 to 3; and each R4 is independently selected from the group consisting of halogen, cyano, nitro, R17, OR17, SR17, COR17, CO2R17, N(R17)2 and CON(R17)2, wherein each R17 is independently selected from H, (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(Cι-C8)alkyl, or two R17 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring; or a pharmaceutically acceptable salt thereof.
33. A method of treating an LXR-mediated condition in a subject, said method comprising administering to said subject an LXR-modulating amount of a compound of the formula:
Figure imgf000107_0001
wherein
R1 is a member selected from the group consisting of
Figure imgf000107_0002
Figure imgf000107_0003
wherein
R , π is a member selected from the group consisting of halogen, nitro, cyano, R12, OR12, SR12, NHR12, N(R12)2, (C -C8)cycloalkyl, (C5- C8)cycloalkenyl, COR12, CO2R12, CONHR12, CON(R12)2, aryl, aryl(d- C )alkyl, heteroaryl and heteroaryl(C1-C4)alkyl; wherein each R12 is (Cι-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl, halo(Ci-C8)alkyl or two R12 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring and any alkyl portions of R11 are optionally substituted with from one to three substituents independently selected from the group consisting of halogen, OR13, NHSO2R14 and NHC(O)R13, and any aryl or heteroaryl portions of R11 are optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R14, OR13, SR13, N(R13)2, NHSO2R14, NHC(O)R13, phenyl, phenyl(d-C8)alkyl, and phenyl(C2-
1 ^ C8)heteroalkyl; wherein each R is independently selected from H, (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(d-C8)alkyl and each R14 is independently selected from (d- C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(d-C8)alkyl; or optionally, R11 is combined with X or Y to form a five- to six-membered moncyclic or fused bicyclic ring containing from 0 to 3 heteroatoms selected from the group consisting of N, O and S; each R18 is independently selected from the group consisting of H, (d- C8)alkyl, (C2-C8)heteroalkyl, halo(C1-C8)alkyl, aryl and heteroaryl; X is a member selected from the group consisting of H, NH , NHR15, NHSO2R15, OH and OR15, wherein R15 is (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl or halo(C1-C8)alkyl, or is combined with R11 as described above; Y is fluoro(d-C4)alkyl, or is combined with R11 as described above; with the proviso that when R11 is attached to the carbon atom bearing X, then R11 is other than R12; R2 is a member selected from the group consisting of H, (d-C8)alkyl, (C2- C8)heteroalkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C3-C8)cycloalkyl and (C4- C8)cycloalkyl-alkyl, wherein any alkyl portions of R2 are optionally substituted with from one to three substituents independently selected from halogen, nitro, cyano, hydroxy, oxo and amino, or optionally R is combined with R4 to form a five- to six-membered fused ring containing from 1 to 3 heteroatoms selected from the group consisting of N, O and S; R is a member selected from the group consisting of aryl and heteroaryl, said aryl or heteroaryl group being optionally substituted with from one to five substituents independently selected from the group consisting of halogen, cyano, nitro, R16, OR16, SR16, COR16, CO2R16, NHR16, N(R16)2, CONHR16, CON(R16)2, NHSO2R16, NHC(O)R16, phenyl, phenyl(d-C8)alkyl, and phenyl(C2-C8)heteroalkyl; wherein each R16 is independently selected from (d -C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(Cι - C8)alkyl, or two R groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring; the subscript n is an integer of from 0 to 3; and each R4 is independently selected from the group consisting of halogen, cyano, nitro, R17, OR17, SR17, COR17, CO2R17, N(R17)2 and CON(R17)2, wherein each R17 is independently selected from H, (d-C8)alkyl, (C3-C8)alkenyl, (C3-C8)alkynyl, (C2-C8)heteroalkyl and halo(C1-C8)alkyl, or two R17 groups attached to the same nitrogen atom are combined to form a five- to eight-membered ring; or a pharmaceutically acceptable salt thereof.
34. A method in accordance with claim 33, wherein said condition is selected from the group consisting of obesity, diabetes, hypercholesterolemia, atherosclerosis and hyperlipoproteinemia.
35. A method in accordance with claim 34, wherein said compound is administered in combination with an anti-hypercholesterolemic agent.
36. A method in accordance with claim 33, wherein said compound is an LXR agonist.
PCT/US2003/003149 2002-01-30 2003-01-29 Arylsulfonamidobenzylic compounds WO2003063576A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP03735124A EP1476423B1 (en) 2002-01-30 2003-01-29 Arylsulfonamidobenzylic compounds
CA002474433A CA2474433A1 (en) 2002-01-30 2003-01-29 Arylsulfonamidobenzylic compounds
AU2003210811A AU2003210811B2 (en) 2002-01-30 2003-01-29 Arylsulfonamidobenzylic compounds
JP2003563290A JP4434744B2 (en) 2002-01-30 2003-01-29 Arylsulfonamidobenzyl compounds
DE60324104T DE60324104D1 (en) 2002-01-30 2003-01-29 Arylsulfonamidobenzylverbindungen
AU2008243261A AU2008243261A1 (en) 2002-01-30 2008-11-14 Arylsulfonamidobenzylic compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35349702P 2002-01-30 2002-01-30
US60/353,497 2002-01-30

Publications (2)

Publication Number Publication Date
WO2003063576A2 true WO2003063576A2 (en) 2003-08-07
WO2003063576A3 WO2003063576A3 (en) 2003-12-31

Family

ID=27663218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/003149 WO2003063576A2 (en) 2002-01-30 2003-01-29 Arylsulfonamidobenzylic compounds

Country Status (9)

Country Link
US (2) US7071358B2 (en)
EP (1) EP1476423B1 (en)
JP (1) JP4434744B2 (en)
AT (1) ATE411279T1 (en)
AU (2) AU2003210811B2 (en)
CA (1) CA2474433A1 (en)
DE (1) DE60324104D1 (en)
ES (1) ES2314212T3 (en)
WO (1) WO2003063576A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005016277A2 (en) * 2003-08-12 2005-02-24 Amgen Inc. Arylsulfonamidobenzylic compounds
WO2004089308A3 (en) * 2003-04-04 2005-09-22 Merck & Co Inc Di-aryl substituted pyrrole modulators of metabotropic glutamate receptor-5
WO2007013929A1 (en) * 2005-07-22 2007-02-01 Amgen Inc. Aniline sulfonamide derivatives and their uses
WO2008155081A2 (en) * 2007-06-18 2008-12-24 Syngenta Participations Ag Substituted aromatic heterocyclic compounds as fungicides
US7741317B2 (en) 2005-10-21 2010-06-22 Bristol-Myers Squibb Company LXR modulators
US7790745B2 (en) 2005-10-21 2010-09-07 Bristol-Myers Squibb Company Tetrahydroisoquinoline LXR Modulators
US7923573B2 (en) 2004-10-27 2011-04-12 Daiichi Sankyo Company, Limited Benzene compound having 2 or more substituents

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4434744B2 (en) * 2002-01-30 2010-03-17 アムジェン インコーポレイテッド Arylsulfonamidobenzyl compounds
JP4434745B2 (en) * 2002-01-30 2010-03-17 アムジェン インコーポレイテッド Heterocyclic arylsulfonamidobenzyl compounds
CA2522080A1 (en) * 2003-04-14 2004-10-28 The Institutes For Pharmaceutical Discovery, Llc N- (((((1,3-thiazol-2-yl) amino) carbonyl) phenyl) sulfonyl) phenylalanine derivatives and related compounds for the treatment of diabetes
WO2006050097A1 (en) * 2004-10-28 2006-05-11 The Institutes For Pharmaceutical Discovery, Llc Substituted phenylalkanoic acids
WO2006071451A2 (en) * 2004-12-03 2006-07-06 The Regents Of The University Of California Compounds that prevent macrophage apoptosis and uses thereof
WO2014085453A2 (en) * 2012-11-29 2014-06-05 The Scripps Research Institute Small molecule lxr inverse agonists

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316503B1 (en) * 1999-03-15 2001-11-13 Tularik Inc. LXR modulators

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281466A (en) 1963-12-04 1966-10-25 Herbert C Stecker Anilide-connected salicylanilide condensation products of fluoroacetone
US3405177A (en) * 1963-12-11 1968-10-08 Allied Chem Hexahalohydroxyisopropyl-aromatic amines
US3495177A (en) * 1964-11-04 1970-02-10 Us Air Force Voice signal processing system for multichannel ssb transmitter
ES442992A1 (en) 1974-12-02 1977-08-01 Scherico Ltd Para-polyfluoroisopropyl-anilino-2-oxazoline compounds, pharmaceutical compositions and method of treating hypertension
CH623044A5 (en) 1974-12-02 1981-05-15 Scherico Ltd Process for the preparation of novel anilino-2-oxazolines
US4251659A (en) 1977-12-22 1981-02-17 E. I. Du Pont De Nemours And Company Polyfluorohydroxyisopropyl-heterocyclic compounds
US4107303A (en) 1976-06-24 1978-08-15 E. I. Du Pont De Nemours And Company Antihypertensive hexafluorohydroxyisopropyl benzazepines and benzazocines
US4218448A (en) 1976-06-24 1980-08-19 E. I. Du Pont De Nemours And Company Antihypertensive polyfluorohydroxyisopropyl bicyclic and tricyclic carbostyrils
US4251534A (en) 1977-12-22 1981-02-17 E. I. Du Pont De Nemours And Company Antihypertensive polyfluorohydroxyisopropyl bicyclic and tricyclic carbostyrils
US4230635A (en) 1978-08-15 1980-10-28 Schering Corporation Substituted 4'-polyhaloisopropylsulfonanilides
DE2839462A1 (en) 1978-09-11 1980-03-27 Basf Ag AROYL UREAS
US4267193A (en) 1979-05-04 1981-05-12 Schering Corporation N-substituted-4-(polyfluoro-2-hydroxy-2-propyl)anilines and compounds related thereto
US4199597A (en) 1979-05-04 1980-04-22 Schering Corporation Omega-(4-polyfluoro-2-hydroxy-2-propyl)-2,3,6-substituted-phenoxy and phenylthio)alkanoic acids and compounds related thereto
IE860511L (en) 1985-03-01 1986-09-01 Alfa Farmaceutici Spa "Benzoyl urea derivatives having anti-tumor activity"
US6030991A (en) 1993-05-20 2000-02-29 Texas Biotechnology Corp. Benzenesulfonamides and the use thereof to modulate the activity of endothelin
EP1195372A1 (en) 1994-04-18 2002-04-10 Mitsubishi Pharma Corporation N-heterocyclic substituted benzamide derivatives with antihypertensive activity
GB9408185D0 (en) 1994-04-25 1994-06-15 Fujisawa Pharmaceutical Co New benzamide derivatives, processes for the preparation thereof and pharmaceutical composition comprising the same
US5883106A (en) 1994-10-18 1999-03-16 Pfizer Inc. 5-lipoxygenase inhibitors
AU1328197A (en) 1995-12-01 1997-06-19 Synaptic Pharmaceutical Corporation Aryl sulfonamide and sulfamide derivatives and uses thereof
US6174905B1 (en) 1996-09-30 2001-01-16 Mitsui Chemicals, Inc. Cell differentiation inducer
TR200101905T2 (en) 1997-04-28 2002-06-21 Texas Biotechnology Corporation Sulfanoamides used in the treatment of endothelin related diseases.
TW515786B (en) 1997-11-25 2003-01-01 Nihon Nohyaku Co Ltd Phthalic acid diamide derivatives, agricultural and horticultural insecticides, and a method for application of the insecticides
JP2001523712A (en) 1997-11-25 2001-11-27 ワーナー−ランバート・カンパニー Benzenesulfonamide inhibitors of PDE-IV and their therapeutic use
US6191170B1 (en) 1998-01-13 2001-02-20 Tularik Inc. Benzenesulfonamides and benzamides as therapeutic agents
US6242493B1 (en) 1998-03-13 2001-06-05 Merck Frosst Canada & Co. Carboxylic acids and acylsulfonamides, compositions containing such compounds and methods of treatment
US6197798B1 (en) 1998-07-21 2001-03-06 Novartis Ag Amino-benzocycloalkane derivatives
HUP0103884A3 (en) 1998-09-23 2002-11-28 Tularik Inc South San Francisc Arylsulfonanilide urea-derivatives, pharmaceutical compositions containing them and their use
US6201013B1 (en) 1998-12-09 2001-03-13 American Home Products Corporation Heterocyclic carboxamide-containing thiourea inhibitors of herpes viruses containing a substituted phenylenediamine group
US6906069B1 (en) 1999-01-08 2005-06-14 Amgen Inc. LXR modulators
MXPA01007957A (en) * 1999-02-04 2002-07-30 Millennium Pharm Inc G-protein coupled heptahelical receptor binding compounds and methods of use thereof.
US6167830B1 (en) * 1999-12-06 2001-01-02 Don T. Pilger Boat trim tabs
JP4434745B2 (en) 2002-01-30 2010-03-17 アムジェン インコーポレイテッド Heterocyclic arylsulfonamidobenzyl compounds
JP4434744B2 (en) 2002-01-30 2010-03-17 アムジェン インコーポレイテッド Arylsulfonamidobenzyl compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316503B1 (en) * 1999-03-15 2001-11-13 Tularik Inc. LXR modulators

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1476423A2 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004089308A3 (en) * 2003-04-04 2005-09-22 Merck & Co Inc Di-aryl substituted pyrrole modulators of metabotropic glutamate receptor-5
US7393959B2 (en) 2003-04-04 2008-07-01 Merck & Co. Inc. Di-aryl substituted pyrrole modulators of metabotropic glutamate receptor-5
WO2005016277A2 (en) * 2003-08-12 2005-02-24 Amgen Inc. Arylsulfonamidobenzylic compounds
WO2005016277A3 (en) * 2003-08-12 2005-06-30 Amgen Inc Arylsulfonamidobenzylic compounds
US7923573B2 (en) 2004-10-27 2011-04-12 Daiichi Sankyo Company, Limited Benzene compound having 2 or more substituents
WO2007013929A1 (en) * 2005-07-22 2007-02-01 Amgen Inc. Aniline sulfonamide derivatives and their uses
US8076376B2 (en) 2005-07-22 2011-12-13 Powers Jay P Aniline sulfonamide derivatives and their uses
US7741317B2 (en) 2005-10-21 2010-06-22 Bristol-Myers Squibb Company LXR modulators
US7790745B2 (en) 2005-10-21 2010-09-07 Bristol-Myers Squibb Company Tetrahydroisoquinoline LXR Modulators
WO2008155081A2 (en) * 2007-06-18 2008-12-24 Syngenta Participations Ag Substituted aromatic heterocyclic compounds as fungicides
WO2008155081A3 (en) * 2007-06-18 2009-05-07 Syngenta Participations Ag Substituted aromatic heterocyclic compounds as fungicides

Also Published As

Publication number Publication date
ES2314212T3 (en) 2009-03-16
ATE411279T1 (en) 2008-10-15
EP1476423B1 (en) 2008-10-15
AU2008243261A1 (en) 2008-12-04
US7326812B2 (en) 2008-02-05
JP4434744B2 (en) 2010-03-17
CA2474433A1 (en) 2003-08-07
US20060122239A1 (en) 2006-06-08
WO2003063576A3 (en) 2003-12-31
US20030229093A1 (en) 2003-12-11
US7071358B2 (en) 2006-07-04
JP2005516042A (en) 2005-06-02
AU2003210811B2 (en) 2008-08-14
DE60324104D1 (en) 2008-11-27
EP1476423A2 (en) 2004-11-17
EP1476423A4 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
US7326812B2 (en) Arylsulfonamidobenzylic compounds
US7473703B2 (en) Heterocyclic arylsulfonamidobenzylic compounds
EP3224245B1 (en) Necrosis inhibitors
TWI242005B (en) Ortho, ortho-substituted nitrogen-containing bisaryl compounds, processes for their preparation, their use as medicaments, and pharmaceutical preparations comprising them
CA2972366C (en) Necrosis inhibitors
EP1161233A2 (en) Lxr modulators
AU2003210811A1 (en) Arylsulfonamidobenzylic compounds
AU2003208952A1 (en) Heterocyclic arylsulfonamidobenzylic compounds
BG100350A (en) Phenyl heterocycles as cox-2 inhibitors
KR20050025189A (en) Chemical compounds
WO2001060818A1 (en) Lxr modulators
JPH09501650A (en) Imidazole derivatives as therapeutic agents
EP3478677B1 (en) 1h-pyrazol-1-yl-thiazoles as inhibitors of lactate dehydrogenase and methods of use thereof
US20060264424A1 (en) Arylsulfonamidobenzylic compounds
JP4486254B2 (en) 2,5-substituted benzenesulfonylureas and -thioureas, their preparation, their use and pharmaceutical formulations containing them

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2474433

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003563290

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003210811

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2003735124

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003735124

Country of ref document: EP