WO2003076120A1 - Laser processing method - Google Patents

Laser processing method Download PDF

Info

Publication number
WO2003076120A1
WO2003076120A1 PCT/JP2003/002945 JP0302945W WO03076120A1 WO 2003076120 A1 WO2003076120 A1 WO 2003076120A1 JP 0302945 W JP0302945 W JP 0302945W WO 03076120 A1 WO03076120 A1 WO 03076120A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
region
workpiece
laser
modified region
Prior art date
Application number
PCT/JP2003/002945
Other languages
English (en)
French (fr)
Inventor
Fumitsugu Fukuyo
Kenshi Fukumitsu
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27800281&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2003076120(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP15192444.6A priority Critical patent/EP3020503B1/en
Priority to KR1020047014282A priority patent/KR100832941B1/ko
Priority to AU2003220851A priority patent/AU2003220851A1/en
Priority to EP03712675A priority patent/EP1498215B1/en
Priority to AT03712675T priority patent/ATE512751T1/de
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to JP2003574375A priority patent/JP4515096B2/ja
Priority to EP15192453.7A priority patent/EP3012061B1/en
Priority to EP19188428.7A priority patent/EP3683003B1/en
Priority to US10/507,392 priority patent/US8361883B2/en
Publication of WO2003076120A1 publication Critical patent/WO2003076120A1/ja
Priority to US13/614,042 priority patent/US8598015B2/en
Priority to US14/082,825 priority patent/US8802543B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/384Removing material by boring or cutting by boring of specially shaped holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/221Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by thermic methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • C03B33/074Glass products comprising an outer layer or surface coating of non-glass material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]

Definitions

  • the present invention relates to a laser processing method used for cutting an object to be processed which is configured by providing a laminated portion on a surface of a substrate.
  • a blade dicing method or a diamond scribe method is generally used to cut a workpiece having such a laminated structure.
  • the blade dicing method is a method of cutting a workpiece by using a diamond blade or the like.
  • the diamond scribe method uses a diamond point tool to provide a scribe line on the surface of the workpiece, press the knife edge against the back of the workpiece along the scribe line, and break the workpiece. Is the method.
  • the blade dicing method for example, when the object to be processed is for the above-described liquid crystal display device, a gap is provided between the glass substrate and another glass substrate. Asked it force s may enter the debris and lubrication wash water cut in.
  • scribe lines must be provided not only on the surface of the workpiece but also on the back surface. There is a risk that cutting failure may occur due to misalignment.
  • the present invention has been made in view of such circumstances, and a laser processing method capable of solving the above-described problems and cutting a workpiece having various laminated structures with high accuracy.
  • the purpose is to provide.
  • a laser processing method provides a laser beam by aligning a condensing point at least within a substrate of a workpiece having a substrate and a laminated portion provided on the surface of the substrate. Irradiate to form a modified region by multiphoton absorption at least inside the substrate, and this modified region cuts inward from the laser light incident surface of the object to be processed along a predetermined cutting line of the object to be processed.
  • the method includes a step of forming a starting region.
  • a cutting start region along a desired cutting line to be cut by the modified region formed by the phenomenon of multiphoton absorption inside the substrate of the processing target. Can be formed.
  • the distance from the surface of the substrate to the modified region in the cutting start region is adjusted to the position where the condensing point of the laser beam is aligned Can be controlled. Therefore, starting from the cutting starting point region formed inside the substrate, it is possible to divide and cut a workpiece formed by providing a laminated portion on the surface of the substrate with a relatively small force. A workpiece having a structure can be cut with high accuracy.
  • the layered portion provided on the surface of the substrate means a material deposited on the surface of the substrate, a material bonded to the surface of the substrate, or a material attached to the surface of the substrate. It does not matter whether it is a material or the same kind of material.
  • the laminated portion provided on the surface of the substrate includes those provided in close contact with the substrate and those provided with a gap from the substrate. Examples include a semiconductor operation layer formed by crystal growth on a substrate, another glass substrate bonded to a glass substrate, etc., and the laminated portion includes a plurality of layers of different materials formed.
  • the inside of the board is the laminated part Is also included on the surface of the substrate on which is provided.
  • the condensing point is a portion where the laser beam is condensed.
  • the cutting start region means a region that becomes a starting point of cutting when a workpiece is cut. Therefore, the cutting start region is a planned cutting portion where cutting is planned for the workpiece.
  • the cutting start region may be formed by continuously forming the modified region, or may be formed by intermittently forming the modified region.
  • the laser processing method provides a peak power at the condensing point by aligning the condensing point at least inside the substrate of the processing object having the substrate and the laminated portion provided on the surface of the substrate.
  • Laser irradiation is performed under conditions where the density is 1 X 10 8 (W / cm 2 ) or more and the pulse width is 1 s or less, and a modified region including a crack region is formed at least inside the substrate.
  • the method includes a step of forming a cutting start region within a predetermined distance from the laser light incident surface of the workpiece along the planned cutting line of the workpiece according to the quality region.
  • a phenomenon called optical damage due to multiphoton absorption occurs inside the substrate.
  • This optical damage induces thermal strain inside the substrate, and a crack region is formed inside the substrate.
  • the crack region is an example of the above-described modified region.
  • a target substrate for this laser processing method for example, there is a member containing glass.
  • the laser processing method includes a peak power density at a condensing point by aligning a condensing point at least inside the substrate of a workpiece having a substrate and a laminated portion provided on the surface of the substrate. Is irradiated with laser light under the condition of 1 X 10 8 (W / cm 2 ) or more and a pulse width of 1 s or less to form a modified region including at least a melt processing region inside the substrate.
  • the method includes a step of forming a cutting start region within a predetermined distance from the laser light incident surface of the workpiece along the planned cutting line of the workpiece according to the quality region.
  • the melting treatment area is an example of the above-described reforming area.
  • a substrate to be a target of this laser processing method for example, there is a member containing a semiconductor material.
  • the laser processing method includes a peak power density at a condensing point by aligning a condensing point at least inside the substrate of a workpiece having a substrate and a laminated portion provided on the surface of the substrate. Is irradiated with laser light under the condition of 1 X 10 8 (W / cm 2 ) or more and a pulse width of 1 ns or less, and includes at least a refractive index changing region which is a region where the refractive index has changed inside the substrate. A modified region is formed, and the modified region is provided with a step of forming a cutting start region along a predetermined cutting line of the workpiece by a predetermined distance inward from the laser light incident surface of the workpiece. And
  • the refractive index changing region is an example of the modified region described above.
  • An example of a substrate to be subjected to this laser processing method is a member containing glass.
  • the laser processing method irradiates a laser beam with a focusing point at least inside the substrate of the processing object having the substrate and a laminated portion provided on the surface of the substrate, and at least the substrate
  • a modified region is formed in the interior, and the modified region includes a step of forming a cutting start region within a predetermined distance from the laser light incident surface of the workpiece along the planned cutting line of the workpiece.
  • the modified region is a crack region in which a crack is generated inside the substrate, a melt-processed region in which the melt is processed in the substrate, and a region in which the refractive index is changed in the substrate. It may include at least one of the rate change regions.
  • the formation of the modified region may be caused by multiphoton absorption or may be caused by others.
  • the laser processing method irradiates a processing target having a substrate and a laminated portion provided on the surface of the substrate with a laser beam while aligning a condensing point inside the substrate.
  • a laser beam is irradiated with the focusing point inside the part, and a modified region is formed inside the substrate and inside the layered part respectively.
  • the modified region is a crack region where a crack is generated inside the substrate, a melt-processed region which is a melt-processed region inside the substrate, and a refraction where the refractive index is changed inside the substrate. It may include at least one of the rate change areas.
  • the cutting start region along the line to be cut is formed in the laminated portion as well as in the substrate, the workpiece can be divided and cut with a smaller force. It is possible to cut a workpiece having a laminated structure with high accuracy.
  • the formation of the modified region inside the substrate and the modified region inside the stacked portion may be performed simultaneously using different laser light sources, for example, or separately using the same laser light source. (In no particular order) And the formation of the modified region may be caused by multiphoton absorption, or may be caused by others.
  • the laser processing method irradiates a laser beam with a focusing point at least inside the substrate of the processing object having the substrate and a laminated portion provided on the surface of the substrate, and at least the substrate It is characterized in that the object to be processed is cut by forming a modified region along the line to be cut inside.
  • the modified region includes a crack region in which a crack is generated in the substrate, a melt-processed region in which the melt is processed in the substrate, and a region in which the refractive index is changed in the substrate. In some cases, it includes at least one of the refractive index changing regions.
  • the cracks along the line to be cut can naturally grow on the substrate and the laminated portion and be cut.
  • This laser processing method is effective, for example, when the laminated portion is thinner than the substrate.
  • the formation of the modified region may be due to multiphoton absorption or may be due to others.
  • the laser beam irradiated with the focusing point inside the substrate is irradiated from the back side of the substrate. According to this, even when the laminated portion provided on the surface of the substrate has a light shielding property or absorptivity of the laser beam, the cutting start region is formed by the modified region inside the substrate of the workpiece. Can be formed.
  • the laser processing method irradiates a laser beam with a converging point on the inside of the substrate to form a modified region by multiphoton absorption inside the substrate.
  • the surface of the substrate is formed.
  • the cutting starting region is formed inside the substrate before the lamination portion is provided on the surface of the substrate, but the modification by multiphoton absorption is provided. The formation of the region is local, and the laser beam is hardly absorbed on the surface of the substrate, so that the surface of the substrate does not melt.
  • the processing object can be formed by providing the laminated portion on the surface of the substrate.
  • the workpiece thus formed can be cut with a relatively small force starting from the cutting start area formed inside the substrate for the same reason as described above. It is possible to cut a workpiece having a laminated structure with high accuracy.
  • FIG. 1 is a plan view of an object to be processed during laser processing by the laser processing method according to the present embodiment.
  • FIG. 2 is a cross-sectional view taken along line ⁇ - ⁇ of the workpiece shown in FIG.
  • FIG. 3 is a plan view of an object to be processed after laser processing by the laser processing method according to the present embodiment.
  • FIG. 4 is a sectional view taken along line IV-IV of the workpiece shown in FIG.
  • FIG. 5 is a cross-sectional view taken along line V-V of the workpiece shown in FIG.
  • FIG. 6 is a plan view of a processing object cut by the laser processing method according to the present embodiment. '
  • FIG. 7 is a graph showing the relationship between the electric field strength and the crack spot size in the laser processing method according to the present embodiment.
  • FIG. 8 is a cross-sectional view of the object to be processed in the first step of the laser processing method according to the present embodiment.
  • FIG. 9 is a cross-sectional view of the object to be processed in the second step of the laser processing method according to the present embodiment.
  • FIG. 10 is a cross-sectional view of the object to be processed in the third step of the laser processing method according to the present embodiment.
  • FIG. 11 is a cross-sectional view of the object to be processed in the fourth step of the laser processing method according to the present embodiment.
  • FIG. 12 is a view showing a photograph of a cross section of a part of a silicon wafer cut by the laser processing method according to the present embodiment.
  • FIG. 13 is a graph showing the relationship between the wavelength of the laser beam and the transmittance inside the silicon substrate in the laser processing method according to the present embodiment.
  • FIG. 14 is a schematic configuration diagram of a laser processing apparatus according to the present embodiment.
  • FIG. 15 is a flowchart for explaining the laser processing method according to this embodiment. It is.
  • FIG. 16A is a diagram illustrating a case where a modified region is formed in the vicinity of the back surface of the substrate in the workpiece according to the first embodiment.
  • FIG. 16B is a diagram illustrating a case where a modified region is formed in the vicinity of the surface of the substrate in the workpiece according to the first embodiment.
  • FIG. 17A is a diagram illustrating a case where a modified region is formed in the vicinity of the back surface of the substrate in the workpiece according to the second embodiment.
  • FIG. 17B is a diagram showing a case where a modified region is formed near the surface of the substrate in the workpiece according to the second embodiment.
  • FIG. 18A is a diagram showing a case where a modified region is formed in the vicinity of the surface of the substrate and in the laminated portion in the workpiece according to the third embodiment.
  • FIG. 18B is a diagram illustrating a case where a modified region is formed in the vicinity of the back surface of the substrate in the workpiece according to the third embodiment.
  • FIG. 18 C is a diagram showing a case where a modified region is formed in the vicinity of the surface of the substrate in the workpiece according to the third embodiment.
  • FIG. 19 is a diagram illustrating a workpiece according to the fourth embodiment.
  • FIG. 20A is a diagram illustrating a case where a modified region is formed in the vicinity of the surface of the substrate and in the vicinity of the surface of the laminated portion in the workpiece according to the fifth embodiment.
  • FIG. 20B is a diagram illustrating a case where a modified region is formed in the vicinity of the back surface of the substrate and in the vicinity of the back surface of the stacked portion in the workpiece according to the fifth embodiment.
  • FIG. 21A is a diagram illustrating a case where a modified region is formed in the vicinity of the surface of the substrate and in the vicinity of the back surface of the stacked portion in the workpiece according to the fifth embodiment.
  • FIG. 21B is a diagram showing a case where a modified region is formed in the vicinity of the back surface of the substrate and in the vicinity of the surface of the laminated portion in the workpiece according to the fifth embodiment.
  • FIG. 22 is an enlarged cross-sectional view illustrating the main part of the workpiece according to the sixth embodiment.
  • the intensity of the laser beam is determined by the peak power density (W / cm 2 ) at the condensing point of the laser beam. For example, the intensity of the laser beam is large when the peak power density is 1 X 10 s (W / cm 2 ) or more. Photon absorption occurs.
  • the peak power density can be calculated by (Energy per pulse of laser beam at the focal point) ⁇ (Laser beam beam spot cross-sectional area X pulse width).
  • the intensity of the laser beam is determined by the electric field strength (WZ cm 2 ) at the condensing point of the laser beam.
  • FIGS. Fig. 1 is a plan view of the workpiece 1 during laser processing
  • Fig. 2 is a cross-sectional view along the II-II line of the workpiece 1 shown in Fig. 1
  • Fig. 3 is the workpiece after laser processing
  • Fig. 4 is a cross-sectional view taken along line IV-IV of workpiece 1 shown in Fig. 3
  • Fig. 5 is taken along line V-V of workpiece 1 shown in Fig. 3.
  • FIG. 6 is a plan view of the cut workpiece 1.
  • the surface 3 of the workpiece 1 has a desired cutting line 5 on which the workpiece 1 is to be cut.
  • the planned cutting line 5 is an imaginary line extending in a straight line (the actual cutting line 5 may be drawn as the planned cutting line 5 on the workpiece 1).
  • the modified region 7 is formed by irradiating the processing object 1 with the laser beam L by aligning the condensing point P inside the processing object 1 under the condition that multiphoton absorption occurs. .
  • the condensing point is a portion where the laser beam L is condensed.
  • the condensing point P is moved along the planned cutting line 5 by relatively moving the laser beam L along the planned cutting line 5 (that is, along the direction of arrow A).
  • the modified region 7 is formed only inside the workpiece 1 along the planned cutting line 5, and the modified starting region (scheduled portion) is formed by the modified region 7. 8 is formed.
  • the laser processing method according to the present embodiment does not form the modified region 7 by causing the processing object 1 to generate heat by causing the processing object 1 to absorb the laser beam L.
  • the modified region 7 is formed by transmitting the laser beam L through the workpiece 1 and generating multiphoton absorption inside the workpiece 1. Therefore, since the laser beam L is hardly absorbed by the surface 3 of the workpiece 1, the surface 3 of the workpiece 1 is not melted.
  • the workpiece 1 In the cutting of the workpiece 1, if there is a starting point at the part to be cut, the workpiece 1 is cracked from the starting point, so that the workpiece 1 can be cut with a relatively small force as shown in FIG. 6. Therefore, the workpiece 1 can be cut without causing unnecessary cracks on the surface 3 of the workpiece 1.
  • the following two types of cutting of workpieces starting from the cutting start region can be considered.
  • One is a case where, after the cutting start region is formed, an artificial force is applied to the processing target, so that the processing target is cracked starting from the cutting start region and the processing target is cut. This is, for example, cutting when the thickness of the workpiece is large.
  • Artificial force is applied when, for example, bending stress or shear stress is applied to the workpiece along the cutting start area of the workpiece, or thermal stress is generated by applying a temperature difference to the workpiece. It is to let you.
  • the other is that by forming the cutting start region, the workpiece is naturally cracked in the cross-sectional direction (thickness direction) of the workpiece from the cutting start region, resulting in the cutting of the workpiece.
  • the cutting start region is formed by one row of modified regions.
  • the thickness direction This is made possible by forming the cutting start region by the modified regions formed in a plurality of rows.
  • the portion corresponding to the portion where the cutting start region is formed without cracking ahead on the surface of the portion corresponding to the portion where the cutting starting region is not formed in the portion to be cut Since it is possible to cleave only, the cleaving can be controlled well. In recent years, since the thickness of workpieces such as silicon wafers tends to be thin, such a cleaving method with good controllability is very effective.
  • the modified regions formed by multiphoton absorption in this embodiment include the following (1) to (3).
  • the focal point The laser beam is irradiated under the conditions that the electric field intensity at 1 is 10 ⁇ 10 8 (W / cm 2 ) or more and the pulse width is 1 s or less.
  • the magnitude of this pulse width is a condition that allows a crack region to be formed only inside the workpiece without causing extra damage to the surface of the workpiece while causing multiphoton absorption. As a result, a phenomenon called optical damage due to multiphoton absorption occurs inside the workpiece.
  • the upper limit value of the electric field strength is, for example, 1 X 1 0 1 2 (W / cm 2 ).
  • the pulse width is preferably 1 ns to 200 ns, for example.
  • the present inventor obtained the relationship between the electric field strength and the crack size by experiment.
  • the experimental conditions are as follows.
  • Nono 0 pulse width 30 ns
  • Polarization characteristics linearly polarized light
  • FIG. 7 is a graph showing the results of the above experiment.
  • the horizontal axis is the peak power density. Since the laser beam is a pulsed laser beam, the electric field strength is expressed by the peak power density.
  • the vertical axis shows the size of cracks (crack spots) formed inside the workpiece by one pulse of laser light. Crack spots gather to form a crack area. The size of the crack spot is the size of the maximum length of the crack spot shape.
  • the data indicated by black circles in the graph is for the case where the magnification of the condenser lens (C) is 100 times and the numerical aperture (NA) is 0.80.
  • the data indicated by white circles in the graph is for the case where the magnification of the condenser lens (C) is 50 times and the numerical aperture (NA) is 0.55. From the peak power density of about 10 11 (W / cm 2 ), it can be seen that crack spots are generated inside the workpiece, and the crack spots increase as the peak power density increases.
  • the light L is irradiated to the workpiece 1 to form a crack region 9 along the planned cutting line.
  • the crack region 9 is a region including one or more cracks.
  • the crack starting point region is formed by the crack region 9. As shown in Fig. 9, the crack grows further starting from the crack area 9 (that is, starting from the cutting start area), and the crack reaches the front surface 3 and back surface 21 of the workpiece 1 as shown in Fig. 10 However, as shown in FIG. 11, the workpiece 1 is cut when the workpiece 1 is broken. Cracks that reach the front and back surfaces of the workpiece may grow naturally, or may grow when a force is applied to the workpiece.
  • the focusing point is set inside the workpiece (semiconductor material such as silicon).
  • the laser light is irradiated under the condition that the electric field intensity at the focal point is 1 ⁇ 10 8 (W / cm 2 ) or more and the pulse width is 1 ⁇ s or less.
  • the inside of the workpiece is locally heated by multiphoton absorption.
  • a melt processing region is formed inside the workpiece.
  • the melt treatment region is a region once re-solidified after melting, a region in a molten state, or a region re-solidified from a molten state, and can also be referred to as a phase-change region or a region in which the crystal structure has changed.
  • a melt-processed region can also be said to be a region in which one structure is changed to another in a single crystal structure, an amorphous structure, or a polycrystalline structure.
  • a region changed from a single crystal structure to an amorphous structure a region changed from a single crystal structure to a polycrystalline structure, or a region changed from a single crystal structure to a structure including an amorphous structure and a polycrystalline structure.
  • the melt processing region has, for example, an amorphous silicon structure.
  • the upper limit value of the electric field strength is, for example, 1 ⁇ 10 12 (W / cm 2 ).
  • the pulse width is preferably 1 ns to 200 ns, for example.
  • the inventor has confirmed through experiments that a melt-processed region is formed inside a silicon wafer.
  • the experimental conditions are as follows. -
  • Polarization characteristics linearly polarized light
  • FIG. 12 shows a cross-sectional photograph of a part of a silicon wafer cut by laser processing under the above conditions. is there. A melt processing region 13 is formed inside the silicon wafer 11. The size in the thickness direction of the melt processing region 13 formed under the above conditions is about 100 ⁇ m.
  • Fig. 13 is a graph showing the relationship between the wavelength of the laser beam and the transmittance inside the silicon substrate. However, the reflection components on the front side and back side of the silicon substrate are removed to show the transmittance only inside. The above relationship was shown for each of the silicon substrate thicknesses t of 50 uni, 100 / ini, 200 m, 500 m, and 1 000 ⁇ m.
  • the wavelength of the Nd: YAG laser when the thickness of the silicon substrate is 50 ⁇ or less, the laser beam is 80% or less inside the silicon substrate. It can be seen that it passes through. Since the thickness of the silicon wafer 1 1 shown in Fig. 1 2 is 3 5 0 ⁇ ⁇ , the melt-processed region 1 3 by multiphoton absorption is formed near the center of the silicon wafer, that is, 1 75 / im from the surface Is done. In this case, the transmittance is 90% or more when referring to a silicon wafer with a thickness of 200 ⁇ m. Therefore, the laser beam is hardly absorbed inside the silicon wafer 11 and most of it is transmitted. To do.
  • melt processing region 13 was formed inside the silicon wafer 11 (that is, the melt processing region was formed by normal heating with laser light). This means that the melt-processed region 13 was formed by multiphoton absorption.
  • the formation of the melt processing region by multiphoton absorption is, for example, “picosecond pulse laser” on pages 7 2 to 7 3 of the 6th Annual Meeting of the Japan Welding Society (September 6th, 2000) It is described in “Processing characteristics evaluation of silicon”.
  • Silicon wafers are cracked in the cross-sectional direction starting from the cutting start region formed by the melt processing region, and the cracks reach the front and back surfaces of the silicon wafer, resulting in cutting. Is done.
  • the cracks that reach the front and back surfaces of the silicon wafer may grow spontaneously, or they may grow when a force is applied to the silicon wafer.
  • the cracks grow from the state in which the melt processing region forming the cutting origin region is melted, and the cutting origin region In some cases, cracks grow when the solidification region that forms the melt resolidifies from a molten state.
  • the melting region is formed only inside the silicon wafer, and on the cut surface after cutting, the melting region is formed only inside as shown in FIG. If the cutting start area is formed in the object to be processed by the melt treatment area, it is difficult to generate unnecessary cracks that are off the cutting start area line during cleaving, so that cleaving control is easy.
  • the focusing point inside the object to be processed eg glass
  • the electric field at the focusing point Laser light is irradiated under conditions where the intensity is 1 ⁇ 10 8 (W / cm 2 ) or more and the pulse width is 1 ns or less.
  • the pulse width is made extremely short and multiphoton absorption occurs inside the workpiece, the energy due to multiphoton absorption is not converted into thermal energy, and the ionic valence changes inside the workpiece, Permanent structural changes such as crystallization or polarization orientation are induced to form a refractive index change region.
  • the upper limit value of the electric field strength is, for example, IX 10 12 (W / cm 2 ).
  • the pulse width is preferably 1 ns or less, and more preferably lps or less.
  • the formation of the refractive index change region by multiphoton absorption is, for example, “Femtosecond laser irradiation” on pages 105-111 of the 42nd Laser Thermal Processing Society of Japan Proceedings (January 1997). This is described in “Light-induced structure formation inside glass”.
  • the cases of (1) to (3) have been described as the modified regions formed by multiphoton absorption.
  • the cutting origin region is considered in consideration of the crystal structure of the wafer-like workpiece and its cleavage property. Is formed in the following manner, the workpiece can be cut with a smaller force and with high accuracy, starting from the cutting start region.
  • the cutting origin is in the direction along the (1 1 1) plane (first cleavage plane) or (1 10) plane (second cleavage plane). It is preferable to form a region.
  • a substrate made of a zinc-blende-type III-V group compound semiconductor such as Ga As, it is preferable to form the cutting origin region in the direction along the (1 1 0) plane.
  • the (0001) plane (C plane) is the main plane (1 120) plane (plane) or (1 100 ) It is preferable to form the cutting start region in a direction along the plane (M plane).
  • the above-described cutting origin region should be formed in a direction (for example, a direction along the (1 1 1) plane in a single crystal silicon substrate) or a direction perpendicular to the direction in which the cutting origin region should be formed. If the orientation flat is formed, the direction in which the cutting start region should be formed is based on the orientation flat. It is possible to easily and accurately form the cutting start region along the substrate.
  • a laser processing apparatus used in the laser processing method described above will be described with reference to FIG. ⁇ 14 is a schematic configuration diagram of the laser processing apparatus 100.
  • the laser processing apparatus 100 includes a laser light source 10 1 that generates the laser light L, and a laser light source control unit 1 0 that controls the laser light source 1 0 1 in order to adjust the output, pulse width, and the like of the laser light L. 2 and has the function of reflecting the laser beam L and the direction of the optical axis of the laser beam L
  • This movement of the condensing point P in the X (Y) axis direction moves the workpiece 1 to the X (Y) axis stage.
  • the condensing point P of the laser beam L can be aligned inside the workpiece 1.
  • the condensing point is located at a desired position such as the substrate of the workpiece 1 or a laminated portion on the substrate.
  • the laser light source 10 0 1 is an N d: YAG laser that generates pulsed laser light.
  • N d YV 0 4
  • monodentate N d: is a YLF laser or a titanium sapphire laser.
  • pulsed laser light is used for processing the workpiece 1 but multiphoton absorption is caused. If possible, continuous wave laser light may be used.
  • the laser processing apparatus 1 0 0 further includes an observation light source 1 1 7 that generates visible light to illuminate the workpiece 1 placed on the mounting table 1 0 7 with a visible light beam, and a dike mouth mirror 1 0. 3 and a beam splitter 1 19 for visible light arranged on the same optical axis as the condensing lens 10 5.
  • a dichroic mirror 10 3 is disposed between the beam splitter 1 1 9 and the condensing lens 1 0 5.
  • the beam splitter 1 1 9 has a function of reflecting about half of visible light and transmitting the other half, and is arranged to change the direction of the optical axis of visible light by 90 °.
  • the laser processing apparatus 100 further includes an image sensor 1 2 1 and an imaging lens arranged on the same optical axis as the beam splitter 1 1 9, the Dyke mouth mirror 10 3 and the condensing lens 1 0 5. 1 2 3 provided.
  • An example of the image sensor 1 2 1 is a CCD camera. The reflected light of the visible light that illuminates the surface 3 including the line to be cut 5 etc. passes through the condensing lens 1 0 5, the dichroic mirror 1 0 3, and the beam splitter 1 1 9, and the imaging lens 1 Imaged at 2 3 and imaged by image sensor 1 2 1 and used as imaging data.
  • the laser processing apparatus 100 further includes an imaging data processing unit 1 2 5 to which imaging data output from the imaging element 1 2 1 is input, and an overall control unit 1 2 7 that controls the entire laser processing apparatus 100. And a monitor 1 2 9.
  • the imaging data processing unit 1 2 5 calculates focus data for focusing the visible light generated by the observation light source 1 1 7 on the surface 3 of the workpiece 1 based on the imaging data. Based on this focus data, the stage control unit 1 15 controls the movement of the Z-axis stage 1 13 so that the focus of the visible light matches the surface 3 of the workpiece. Therefore, the imaging data processing unit 1 2 5 Functions as an autofocus unit.
  • the imaging data processing unit 1 25 calculates image data such as an enlarged image of the surface 3 based on the imaging data. This image data is sent to the overall control unit 1 27, where various processes are performed by the overall control unit and sent to the monitor 1 29. As a result, an enlarged image or the like is displayed on the monitor 1 29.
  • the overall control unit 1 2 7 receives data from the stage control unit 1 1 5 and image data from the imaging data processing unit 1 2 5. Based on these data, the laser light source control unit 1 0 2 The entire laser beam machining apparatus 100 is controlled by controlling the observation light source 1 1 7 and the stage controller 1 15. Therefore, the overall control unit 1 2 7 can function as a computer unit.
  • FIG. 15 is a flowchart for explaining the laser processing method according to this embodiment.
  • the workpiece 1 has a substrate and a laminated portion provided on the surface of the substrate. Further, the workpiece 1 is placed on the mounting table 10 7 of the laser processing apparatus 100 shown in FIG. 14 so that the back surface of the substrate is on the condensing lens 10 5 side. That is, the laser beam L is irradiated from the back side of the substrate that the workpiece 1 has.
  • the light absorption characteristics of the substrate of the workpiece 1 are measured using a spectrophotometer (not shown). Based on the measurement result, a laser light source 101 that generates a laser beam L having a wavelength transparent to the substrate of the workpiece 1 or a wavelength with little absorption is selected (S 1 0 1). Since this laser beam L is irradiated from the back side of the substrate, even if the laminated portion provided on the surface of the substrate has light shielding properties and absorptivity with respect to this laser beam. It will not interfere with laser processing.
  • the amount of movement of the workpiece 1 in the Z-axis direction is determined in consideration of the thickness and refractive index of the substrate of the workpiece 1 and the thickness and material of the laminated portion formed on the surface of the substrate. (S 1 0 3). This is because the laser beam L positioned on the back surface of the substrate of the workpiece 1 is aligned with the desired position inside the substrate of the workpiece 1 so that the focusing point P of the laser beam L is aligned. This is the amount of movement of the workpiece 1 in the Z-axis direction based on the condensing point P of the light L. This amount of movement is input to the overall control unit 1 27.
  • the workpiece 1 is placed on the mounting table 10 07 of the laser processing apparatus 100 so that the back surface of the substrate is on the condensing lens 10 5 side. Then, visible light is generated from the observation light source 1 17 to illuminate the back surface of the substrate of the workpiece 1 (S 1 0 5).
  • the rear surface including the illuminated planned cutting line 5 is imaged by the image sensor 1 2 1.
  • the planned cutting line 5 is a desired virtual line for cutting the workpiece 1.
  • the image data captured by the image sensor 1 2 1 is sent to the image data processor 1 2 5. Based on this imaging data, the imaging data processing unit 1 2 5 calculates focus data such that the visible light focus of the observation light source 1 1 7 is located on the back surface of the substrate of the workpiece 1 (S 1 0 7 ).
  • This focus data is sent to the stage controller 1 1 5.
  • the stage controller 1 15 moves the Z-axis stage 1 13 in the Z-axis direction based on the focus data (S 1 0 9). Thereby, the focal point of the visible light of the observation light source 1 17 is located on the back surface of the substrate of the workpiece 1.
  • the imaging data processing unit 1 2 5 calculates enlarged image data of the back surface of the substrate of the workpiece 1 including the cutting scheduled line 5 based on the imaging data.
  • the enlarged image data is sent to the monitor 1 29 via the overall control unit 1 27, and the enlarged image near the line 5 to be cut is displayed on the monitor 1 29.
  • step S 1 0 3 The movement amount data determined in advance in step S 1 0 3 is input to the overall control unit 1 27, and this movement amount data is sent to the stage control unit 1 15. Based on this movement amount data, the stage controller 1 1 5 places the workpiece 1 on the Z-axis stage 1 1 3 at a position where the focal point P of the laser beam L is inside the substrate of the workpiece 1. Move in the Z-axis direction (S 1 1 1).
  • a laser beam L is generated from the laser light source 101, and the laser beam L is irradiated on the cutting line 5 on the back surface of the substrate of the workpiece 1. Since the condensing point P of the laser beam L is located inside the substrate of the workpiece 1, the modified region is formed only inside the substrate of the workpiece 1. Then, along the planned cutting line 5, X axis stage 1 0 9 or Y-axis stage 1 1 1 is moved, and the cutting start area along the planned cutting line 5 is formed inside the workpiece 1 by the modified area formed along the planned cutting line 5 (S 1 1 3).
  • the laser beam L is irradiated from the back side of the substrate included in the workpiece 1 and is formed inside the substrate by multiphoton absorption.
  • the modified region it is possible to form a cutting start region along a desired cutting schedule line 5 where the workpiece 1 is to be cut.
  • the position of the modified region formed inside the substrate is determined based on the thickness of the laminated portion provided on the surface of the substrate, the material, etc. It is controlled by adjusting. Therefore, starting from the cutting start region formed inside the substrate, it is possible to divide and cut the workpiece 1 formed by providing the laminated portion on the surface of the substrate with a relatively small force.
  • the laser beam L is irradiated with the laser beam L by aligning the condensing point ⁇ with the laser light L having a wavelength that is transparent to the laminated portion of the workpiece 1 or a wavelength with little absorption, and the inside of the laminated portion.
  • a cutting start region along the planned cutting line 5 may be formed, and in this case, the workpiece 1 can be cut with a smaller force.
  • Fig. 16 ⁇ is a diagram showing the case where the modified region 7 is formed in the vicinity of the back surface of the substrate 15 in the workpiece 1 according to the first embodiment
  • Fig. 16B shows the workpiece to be processed according to the first embodiment
  • FIG. 5 is a diagram showing a case where a modified region 7 is formed in the vicinity of the surface of the substrate 15 in the object 1.
  • the workpieces 1 shown in Fig. 16 A and Fig. 16 B include those for next-generation high-speed / low-power consumption devices and those for next-generation devices.
  • Substrate for low power consumption devices 1 5 / 1st stack 1 7 a / 2nd stack 1 7 b are S i (5 0 0 ⁇ m) / S i 0 2 (l ⁇ m) / S i (3 ⁇ ).
  • the substrate 15 / first laminated part 17a / second laminated part 17b for next-generation devices are respectively S i (500 ⁇ ) / S r T i O a (several l OO nm) / G a A s (several l OO nm) (The value in parentheses indicates the thickness. As shown in Fig.
  • the modified region 7 is located in the vicinity of the back surface 21 of the workpiece 1” means that the modified region 7 constituting the cutting start region is the center position (thickness in the thickness direction of the workpiece 1). Means that it is biased toward the back 21 side. In other words, this means that the center position of the width of the modified region 7 in the thickness direction of the workpiece 1 is offset from the center position in the thickness direction of the workpiece 1 toward the back surface 21 side. This is not limited to the case where all portions of the modified region 7 are located on the back surface 21 side with respect to the center position in the thickness direction of the workpiece 1.
  • the modified region 7 is located in the vicinity of the surface 3 of the workpiece 1” means that the modified region 7 constituting the cutting start region is from the center position in the thickness direction of the workpiece 1 to the surface. It means that it is biased toward the 3 side. The same applies to the formation position of the modified region 7 on the substrate 15.
  • FIG. 17A is a diagram showing a case where the modified region 7 is formed in the vicinity of the back surface of the substrate 15 in the workpiece 1 according to the second embodiment
  • FIG. 17B is a workpiece to be processed according to the second embodiment
  • Stuff 1 is a diagram showing a case where a modified region 7 is formed in the vicinity of the surface of a substrate 15 in FIG.
  • the workpiece 1 shown in Fig. 17 A and Fig. 17 B is for blue LD ⁇ LED
  • the substrate 1 5 / stacked part 17 is A 1 2 0 3 (500 ⁇ ) / G a ⁇ etc.
  • Multilayered functional film (several 100 ⁇ m) with multiple layers of semiconductor crystals and multilayered functional film (several l OO nm) with multiple layers of A 1 2 0 3 (500 ⁇ ) / ⁇ ⁇ etc. (The number in parentheses indicates thickness).
  • FIG. 18A is a diagram illustrating a case where the modified region 7 is formed in the vicinity of the surface of the substrate 15 5 and the laminated portion 17 in the workpiece 1 according to the third embodiment
  • FIG. FIG. 18C is a diagram illustrating a case where the modified region 7 is formed in the vicinity of the back surface of the substrate 15 in the workpiece 1 according to Example 3.
  • FIG. 18C illustrates the substrate 15 in the workpiece 1 according to Example 3. It is a figure which shows the case where the modification area
  • the substrate 1 5 / stacked portion 17 has A 1 2 0 3 ( ⁇ ⁇ ⁇ , ⁇ ) / P b S e ( ⁇ ⁇ ⁇ ) and A 1 2 0 3 (500 ⁇ m
  • FIG. 19 is a diagram illustrating the workpiece 1 according to the fourth embodiment.
  • the object to be processed 1 shown in FIG. 19 is a multilayer glass', and on the glass substrate as the substrate 15, two glass substrates as the first laminated portion 17 a and the second laminated portion 17 b are placed. They are laminated together.
  • the modified region 7 in each glass substrate is formed on the back surface 21 side of the workpiece 1.
  • the knife edge 23 is pressed against the surface 3 of the workpiece 1 and the workpiece 1 is split and cut. In this way, when the thickness of the laminated part is thick or the hardness of the laminated part is high, if the cutting origin region is also formed inside the laminated part, the workpiece 1 is cut by dividing with a smaller force. Can do.
  • FIG. 2 O A to FIG. 21 B are views showing the workpiece 1 according to the fifth embodiment.
  • FIG. 20A is a diagram illustrating a case where the modified region 7 is formed in the vicinity of the surface of the substrate 15 and in the vicinity of the surface of the laminated portion 17 in the workpiece 1 according to Example 5, and
  • FIG. 10 is a diagram showing a case where a modified region 7 is formed in the vicinity of the back surface of the substrate 15 and in the vicinity of the back surface of the laminated portion 17 in the workpiece 1 according to the fifth embodiment.
  • FIG. 21A is a diagram showing a case where the modified region 7 is formed in the vicinity of the front surface of the substrate 15 and in the vicinity of the back surface of the laminated portion 17 in the processing target 1 according to the fifth embodiment.
  • 21 B is a diagram showing a case where the modified region 7 is formed in the vicinity of the back surface of the substrate 15 and in the vicinity of the front surface of the laminated portion 17 in the workpiece 1 according to Example 5.
  • FIG. 20A is a
  • the workpiece 1 shown in B is for a reflective liquid crystal display device.
  • the substrate 15 is a glass substrate (thickness 1.8 mm, outer diameter 8 inches) on which a common electrode is formed, and the laminated part 17 is an Si substrate (thickness 500 0) on which a TFT is formed. ⁇ 111, outer diameter 8 inches).
  • the substrate 15 and the laminated portion 17 are attached to each other by the adhesive 25 with a gap for liquid crystal.
  • a laser beam is irradiated from the back surface 2 1 side of the workpiece 1 to form the modified region 7 inside the laminated portion 17, and then the workpiece The modified region 7 is formed inside the substrate 15 by irradiating laser light from the back surface 21 of the substrate 1.
  • the laser light has a wavelength that is transparent to the substrate 15 and the laminated portion 17 or has a wavelength with little absorption.
  • the knife edge 2 3 is pressed against the back surface 2 1 of the workpiece 1 to break the workpiece 1 And cut.
  • the knife edge 23 is pressed against the surface 3 of the workpiece 1, and the workpiece 1 is split and cut.
  • a cutting start region is formed on the substrate 15 and the laminated portion 17 using laser light having a wavelength that is transparent to the substrate 15 and the laminated portion 17 or has a wavelength with little absorption.
  • the modified region 7 is formed inside the substrate 15 by irradiating the laser beam from the back surface 2 1 side of the workpiece 1 and then the workpiece.
  • Laser beam is irradiated from the surface 3 side of the object 1 to form a modified region 7 inside the laminated portion 17.
  • the substrate is first pressed against the back surface 2 1 of the workpiece 1 by pressing the knife edge 2 3. 1 5 Divide and cut, then press the knife edge 2 3 against the surface 3 of the workpiece 1 to break the laminated part 17 and cut.
  • the knife edge 2 3 is pressed against the surface 3 of the workpiece 1 to divide the substrate 15 and cut, and then the workpiece 2945
  • FIG. 22 is an enlarged cross-sectional view illustrating a main part of the workpiece 1 according to the sixth embodiment.
  • This workpiece 1 has a large number of chip forming regions F on a substrate 15 which is a silicon wafer, and a dicing line region D between adjacent chip forming regions F and F.
  • FIG. A cross section of a portion where the chip formation region F and the dicing line region D are continuous is shown. Note that the planned cutting line is set along the dicing line area D.
  • an interlayer insulating film (laminated portion) 31 is formed on the substrate 15, and a metal wiring layer is formed on the interlayer insulating film 31 in the chip formation region F of the substrate 15. 3 2 is provided. Further, an interlayer insulating film (laminated portion) 33 is formed on the substrate 15 so as to cover the interlayer insulating film 31 and the metal wiring layer 32. In the chip formation region F of the substrate 15, the interlayer insulating film A metal wiring layer 3 4 is provided on the film 33. The substrate 15 and the metal wiring layer 3 2 are electrically connected by a plug 35 that penetrates the interlayer insulating film 31. The metal wiring layer 3 2 and the metal wiring layer 3 4 are electrically connected by a plug 3 6 that penetrates the interlayer insulating film 33.
  • the workpiece 1 configured in this way is irradiated with laser light with the converging point aligned inside the substrate 15, and along the dicing line region D (that is, along the line to be cut) substrate 1
  • a modified region 7 is formed inside 5 and a cut starting region is formed by the modified region 7. Then, the workpiece 1 can be cut with high accuracy by pressing the knife edge 23 against the front surface 3 or the back surface 21 of the workpiece 1 along the cutting start region.
  • the insulating films 3 1 and 3 2 made of Si 0 2 , Si N, or the like are formed on the planned cutting line of the substrate 15 as a stacked portion. Even in such a case, the workpiece 1 can be cut with high precision.
  • the force for irradiating a processing target having a substrate and a laminated portion provided on the surface of the substrate with laser light to form a cutting start region is described.
  • a laminate may be provided on the surface of the substrate to form an object to be processed.
  • the cutting origin region is formed inside the substrate before providing the laminated portion on the surface of the substrate, but the formation of the modified region by multiphoton absorption is local, and the substrate Because the laser beam is hardly absorbed on the surface, the surface of the substrate does not melt. Therefore, similarly to the case where the modified region is not formed inside the substrate, the processing object can be formed by providing the laminated portion on the surface of the substrate. The workpiece formed in this way can be cut by dividing it with a relatively small force starting from the cutting start region formed inside the substrate for the same reason as in the above embodiment.
  • the processing object should be cut with the modified region formed by the phenomenon of multiphoton absorption inside the substrate having the processing object. It is possible to form a cutting start region along a desired cutting planned line. In addition, taking into account the thickness and material of the laminated part provided on the surface of the substrate, the distance from the surface of the substrate to the modified region in the cutting origin region is adjusted to the position where the laser light focusing point is aligned. Can be controlled. Therefore, it is possible to divide and cut a workpiece formed by providing a laminated portion on the surface of the substrate with a relatively small force, starting from the cutting start region formed inside the substrate.
  • the laser beam may be irradiated while aligning the condensing point inside the laminated part, and the cutting starting point region along the planned cutting line may also be formed inside the laminated part. Can be cut with a small force. As described above, it is possible to cut a processing object having various laminated structures with high accuracy.

Description

明糸田書
レーザ加工方法
技術分野
本発明.は、 基板 ©表面に積層部が設けられて構成された加工対象物の切断に使 用されるレーザ加工方法に関する。
背景技術
近年、半導体デバイス用として A 1 2 0 3基板上に G a N等の半導体動作層を結 晶成長させたものや、 液晶表示装置用としてガラス基板上に他のガラス基板を貼 り合わせたもの等、 種々の積層構造を有する加工対象物を高精度に切断する技術 が求められている。
従来、 これらの積層構造を有する加工対象物の切断には、 ブレードダイシング 法やダイヤモンドスクライブ法が使用されるのが一般的である。
ブレードダイシング法とは、 ダイャモンドブレード等により加工対象物を切削 して切断する方法である。 一方、 ダイヤモンドスクライブ法とは、 ダイヤモンド ポイントツールにより加工対象物の表面にスクライブラインを設け、 このスクラ イブラインに沿うよう加工対象物の裏面にナイフエッジを押し当てて、 加工対象 物を割って切断する方法である。
発明の開示
しかしながら、 ブレードダイシング法にあっては、 例えば、 加工対象物が上述 した液晶表示装置用のものである場合、 ガラス基板と他のガラス基板との間に間 隙が設けられているため、 この間隙に削り屑や潤滑洗浄水が入り込んでしまうお それ力 sある。
また、 ダイヤモンドスクライブ法にあっては、 加工対象物が A 1 2 0 3基板等の 硬度の高い基板を有している場合や、 或いは、 加工対象物がガラス基板同士を貼 り合わせたものである場合等に、 加工対象物の表面だけでなく裏面にもスクライ ブラインを設けなければならず、 この表面と裏面とに設けられたス ンの位置ずれによって切断不良が生じるおそれがある。
そこで、 本発明は、 このような事情に鑑みてなされたものであり、 上述したよ うな問題を解決し、 種々の積層構造を有する加工対象物を高精度に切断すること のできるレーザ加工方法を提供することを目的とする。
上記目的を達成するために、 本発明に係るレーザ加工方法は、 基板と基板の表 面に設けられた積層部とを有する加工対象物の少なくとも基板の内部に集光点を 合わせてレーザ光を照射し、 少なくとも基板の内部に多光子吸収による改質領域 を形成し、 この改質領域によって、 加工対象物の切断予定ラインに沿って加工対 象物のレーザ光入射面から所定距離内側に切断起点領域を形成する工程を備える ことを特徴とする。
このレーザ加工方法によれば、 加工対象物が有する基板の内部に、 多光子吸収 という現象により形成される改質領域によって、 加工対象物を切断すべき所望の 切断予定ラインに沿った切断起点領域を形成することができる。 しかも、 基板の 表面に設けられている積層部の厚さや材質等を考慮して、 基板の表面から切断起 点領域における改質領域までの距離を、 レーザ光の集光点を合わせる位置を調節 することにより制御することができる。 したがって、 基板の内部に形成された切 断起点領域を起点として、 基板の表面に積層部が設けられて構成された加工対象 物を比較的小さな力で割って切断することができ、 種々の積層構造を有する加工 対象物を高精度に切断することが可能となる。
ここで、 基板の表面に設けられた積層部とは、 基板の表面に堆積されたもの、 基板の表面に貼り合わされたもの、 或いは基板の表面に取り付けられたもの等を いい、 基板に対し異種材料であるか同種材料であるかは問わない。 そして、 基板 の表面に設けられた積層部には、 基板に密着して設けられるものや、 基板と間隙 を取って設けられるもの等がある。 例としては、 基板上に結晶成長により形成さ れた半導体動作層や、 ガラス基板上に貼り合わされた他のガラス基板等があり、 積層部は異種材料を複数層形成したものも含む。 また、 基板の内部とは、 積層部 が設けられている基板の表面上をも含む意味である。 また、 集光点とは、 レーザ 光が集光した箇所のことである。 さらに、 切断起点領域とは、 加工対象物が切断 される際に切断の起点となる領域を意味する。 したがって、 切断起点領域は、 加 ェ対象物において切断が予定される切断予定部である。 そして、 切断起点領域は 、 改質領域が連続的に形成されることで形成される場合もあるし、 改質領域が断 続的に形成さ ることで形成される場合もある。
また、 本発明に係るレーザ加工方法は、 基板と基板の表面に設けられた積層部 とを有する加工対象物の少なく とも基板の内部に集光点を合わせて、 集光点にお けるピークパワー密度が 1 X 1 0 8 (W/ c m 2 ) 以上で且つパルス幅が 1 s以 下の条件でレーザ光を照射し、 少なくとも基板の内部にクラック領域を含む改質 領域を形成し、 この改質領域によって、 加工対象物の切断予定ラインに沿って加 ェ対象物のレーザ光入射面から所定距離内側に切断起点領域を形成する工程を備 えることを特徴とする。
この条件でレーザ光が照射されると、 基板の内部では多光子吸収による光学的 損傷という現象が発生する。 この光学的損傷により基板の内部に熱ひずみが誘起 され、 基板の内部にクラック領域が形成される。 クラック領域は上述した改質領 域の一例である。 このレーザ加工方法の対象となる基板としては、 例えばガラス を含む部材がある。
また、 本発明に係るレーザ加工方法は、 基板と基板の表面に設けられた積層部 とを有する加工対象物の少なくとも基板の内部に集光点を合わせて、 集光点にお けるピークパワー密度が 1 X 1 0 8 (W/ c m 2) 以上で且つパルス幅が 1 s以 下の条件でレーザ光を照射し、 少なくとも基板の内部に溶融処理領域を含む改質 領域を形成し、 この改質領域によって、 加工対象物の切断予定ラインに沿って加 ェ対象物のレーザ光入射面から所定距離内側に切断起点領域を形成する工程を備 えることを特徴とする。
この条件でレーザ光が照射されると、 基板の内部は多光子吸収によつて局所的 に加熱される。 この加熱により基板の内部に溶融処理領域が形成される。 溶融処 理領域は上述した改質領域の一例である。 このレーザ加工方法の対象となる基板 としては、 例えば半導体材料を含む部材がある。
また、 本発明に係るレーザ加工方法は、 基板と基板の表面に設けられた積層部 とを有する加工対象物の少なくとも基板の内部に集光点を合わせて、 集光点にお けるピークパワー密度が 1 X 1 0 8 (W/ c m 2) 以上で且つパルス幅が 1 n s以 下の条件でレーザ光を照射し、 少なくとも基板の内部に屈折率が変化した領域で ある屈折率変化領域を含む改質領域を形成し、 この改質領域によって、 加工対象 物の切断予定ラインに沿つて加ェ対象物のレーザ光入射面から所定距離内側に切 断起点領域を形成する工程を備えることを特徴とする。
この条件でレーザ光が照射されると、 基板の内部では多光子吸収が発生するが 、 パルス幅が極めて短いために、 多光子吸収によるエネルギーが熱エネルギーに 転化せず、 基板の内部には、 イオン価数変化、 結晶化又は分極配向等の永続的な 構造変化が誘起されて、 屈折率変化領域が形成される。 屈折率変化領域は上述し た改質領域の一例である。 このレーザ加工方法の対象となる基板としては、 例え ばガラスを含む部材がある。
また、 本発明に係るレーザ加工方法は、 基板と基板の表面に設けられた積層部 とを有する加工対象物の少なくとも基板の内部に集光点を合わせてレーザ光を照 射し、 少なくとも基板の内部に改質領域を形成し、 この改質領域によって、 加工 対象物の切断予定ラインに沿って加工対象物のレーザ光入射面から所定距離内側 に切断起点領域を形成する工程を備えることを特徴とする。 そして、 改質領域は 、 基板の内部においてクラックが発生した領域であるクラック領域、 基板の内部 において溶融処理した領域である溶融処理領域、 及ぴ基板の内部において屈折率 が変化した領域である屈折率変化領域のうちの少なくともいずれか 1つを含む場 合もある。
このレーザ加工方法によれば、 上述した本発明に係るレーザ加工方法と同様の 理由により、 種々の積層構造を有する加工対象物を高精度に切断することが可能 となる。 ただし、 改質領域の形成は、 多光子吸収が原因となる場合もあるし、 他 が原因となる場合もある。
また、 本発明に係るレーザ加工方法は、 基板と基板の表面に設けられた積層部 とを有する加工対象物に対し、 基板の内部に集光点を合わせてレーザ光を照射す ると共に、 積層部の内部に集光点を合わせてレーザ光を照射し、 基板の内部と積 層部の内部とにそれぞれ改質領域を形成し、 この改質領域によって、 加工対象物 の切断予定ラインに沿って加工対象物のレーザ光入射面から所定距離内側に切断 起点領域を形成する工程を備えることを特徴とする。 そして、 改質領域は、 基板 の内部においてクラックが発生した領域であるクラック領域、 基板の内部におい て溶融処理した領域である溶融処理領域、 及び基板の内部において屈折率が変化 した領域である屈折率変化領域のうちの少なくともいずれか 1つを含む場合もあ る。
このレーザ加工方法によれば、 基板の内部と共に積層部の内部にも切断予定ラ インに沿つた切断起点領域を形成するため、 加工対象物をより小さな力で割つて 切断することができ、 種々の積層構造を有する加工対象物を高精度に切断するこ とが可能となる。 なお、 基板の内部への改質領域の形成と積層部の内部への改質 領域との形成は、 例えば、 異なるレーザ光源を用いて同時に行ってもよいし、 同 じレーザ光源を用いて別々 (順不同) に行ってもよい。 そして、 改質領域の形成 は、 多光子吸収が原因となる場合もあるし、 他が原因となる場合もある。
また、 本発明に係るレーザ加工方法は、 基板と基板の表面に設けられた積層部 とを有する加工対象物の少なくとも基板の内部に集光点を合わせてレーザ光を照 射し、 少なくとも基板の内部に切断予定ラインに沿って改質領域を形成すること で、 加工対象物を切断することを特徴とする。 そして、 改質領域は、 基板の内部 においてクラックが発生した領域であるクラック領域、 基板の内部において溶融 処理した領域である溶融処理領域、 及び基板の内部において屈折率が変化した領 域である屈折率変化領域のうちの少なくともいずれか 1つを含む場合もある。 このレーザ加工方法によれば、 基板の内部に形成された改質領域を起点として 、 切断予定ラインに沿つた割れが自然に基板及び積層部に成長し切断することが できる。 このレーザ加工方法は、 例えば、 基板に比べて積層部が薄い場合等に有 効である。 ただし、 改質領域の形成は、 多光子吸収が原因となる場合もあるし、 他が原因となる場合もある。
上述した本発明に係るレーザ加工方法においては、 基板の内部に集光点が合わ されて照射されるレーザ光は、 基板の裏面側から照射されることが好ましい。 こ れによれば、 基板の表面に設けられた積層部がレーザ光の遮光性や吸収性を有す る場合であっても、 加工対象物の基板の内部に改質領域によって切断起点領域を 形成することができる。
また、 上記目的を達成するために、 本発明に係るレーザ加工方法は、 基板の内 部に集光点を合わせてレーザ光を照射し、 基板の内部に多光子吸収による改質領 域を形成し、 この改質領域によって、 基板の切断予定ラインに沿って基板のレー ザ光入射面から所定距離内側に切断起点領域を形成する工程と、 切断起点領域を 形成する工程後、 基板の表面に積層部を設ける工程とを備えることを特徴とする このレーザ加工方法によれば、 基板の表面に積層部を設ける前に、 基板の内部 に切断起点領域を形成するが、 多光子吸収による改質領域の形成は局所的なもの であって、 基板の表面ではレーザ光がほとんど吸収されないため、 基板の表面が 溶融するようなことはない。 よって、 基板の内部に改質領域が形成されていない 場合と同様に、 基板の表面に積層部を設けて加工対象物を形成することができる 。 このようにして形成された加工対象物は、 上記と同様の理由により、 基板の内 部に形成された切断起点領域を起点として比較的小さな力で割って切断すること ができ、 したがって、 種々の積層構造を有する加工対象物を高精度に切断するこ とが可能となる。 図面の簡単な説明
図 1は、 本実施形態に係るレーザ加工方法によるレーザ加工中の加工対象物の 平面図である。
図 2は、 図 1に示す加工対象物の ΙΙ—Π線に沿った断面図である。
図 3は、 本実施形態に係るレーザ加工方法によるレーザ加工後の加工対象物の 平面図である。
図 4は、 図 3に示す加工対象物の IV— IV線に沿った断面図である。
図 5は、 図 3に示す加工対象物の V—V線に沿った断面図である。
図 6は、 本実施形態に係るレーザ加工方法により切断された加工対象物の平面 図である。 '
図 7は、 本実施形態に係るレーザ加工方法における電界強度とクラックスポッ トの大きさとの関係を示すグラフである。
図 8は、 本実施形態に係るレーザ加工方法の第 1工程における加工対象物の断 面図である。
図 9は、 本実施形態に係るレーザ加工方法の第 2工程における加工対象物の断 面図である。
図 1 0は、 本実施形態に係るレーザ加工方法の第 3工程における加工対象物の 断面図である。
図 1 1は、 本実施形態に係るレーザ加工方法の第 4工程における加工対象物の 断面図である。
図 1 2は、 本実施形態に係るレーザ加工方法により切断されたシリ コンウェハ の一部における断面の写真を表した図である。
図 1 3は、 本実施形態に係るレーザ加工方法におけるレーザ光の波長とシリコ ン基板の内部の透過率との関係を示すグラフである。
図 1 4は、 本実施形態に係るレーザ加工装置の概略構成図である。
図 1 5は、 本実施形態に係るレーザ加工方法を説明するためのフローチャート である。
図 1 6 Aは、 実施例 1に係る加工対象物において基板の裏面近傍に改質領域を 形成した場合を示す図である。
図 1 6 Bは、 実施例 1に係る加工対象物において基板の表面近傍に改質領域を 形成した場合を示す図である。
図 1 7 Aは、 実施例 2に係る加工対象物において基板の裏面近傍に改質領域を 形成した場合を示す図である。
図 1 7 Bは、 実施例 2に係る加工対象物において基板の表面近傍に改質領域を 形成した場合を示す図である。
図 1 8 Aは、 実施例 3に係る加工対象物において基板の表面近傍と積層部とに 改質領域を形成した場合を示す図である。
図 1 8 Bは、 実施例 3に係る加工対象物において基板の裏面近傍に改質領域を 形成した場合を示す図である。
図 1 8 Cは、 実施例 3に係る加工対象物において基板の表面近傍に改質領域を 形成した場合を示す図である。
図 1 9は、 実施例 4に係る加工対象物を示す図である。
図 2 0 Aは、 実施例 5に係る加工対象物において基板の表面近傍と積層部の表 面近傍とに改質領域を形成した場合を示す図である。
図 2 0 Bは、 実施例 5に係る加工対象物において基板の裏面近傍と積層部の裏 面近傍とに改質領域を形成した場合を示す図である。
図 2 1 Aは、 実施例 5に係る加工対象物において基板の表面近傍と積層部の裏 面近傍とに改質領域を形成した場合を示す図である。
図 2 1 Bは、 実施例 5に係る加工対象物において基板の裏面近傍と積層部の表 面近傍とに改質領域を形成した場合を示す図である。
図 2 2は、 実施例 6に係る加工対象物の要部を示す拡大断面図である。
発明を実施するための最良の形態 以下、 図面と共に本発明の好適な実施形態について詳細に説明する。 本実施形 態に係るレーザ加工方法では、 加工対象物の内部に多光子吸収による改質領域を 形成する。 そこで、 このレーザ加工方法、 特に多光子吸収について最初に説明す る。
材料の吸収のバンドギヤップ E Gよりも光子のエネルギー h Vが小さいと光学 的に透明となる。 よって、 材料に吸収が生じる条件は h V > E Gである。 しかし 、 光学的に透明でも、 レーザ光の強度を非常に大きくすると n h V〉E Gの条件 ( n = 2 , 3 , 4 , . · · ) で材料に吸収が生じる。 この現象を多光子吸収とい う。 パルス波の場合、 レーザ光の強度はレーザ光の集光点のピークパワー密度 ( W/ c m2) で決まり、 例えばピークパワー密度が 1 X 1 0 s (W/ c m 2) 以上 の条件で多光子吸収が生じる。 ピークパワー密度は、 (集光点におけるレーザ光 の 1パルス当たりのエネルギー) ÷ (レーザ光のビームスポット断面積 Xパルス 幅) により求められる。 また、 連続波の場合、 レーザ光の強度はレーザ光の集光 点の電界強度 (WZ c m 2) で決まる。
このような多光子吸収を利用する本実施形態に係る I ^一ザ加工の原理について
、 図 1〜図 6を参照して説明する。 図 1はレーザ加工中の加工対象物 1の平面図 であり、 図 2は図 1に示す加工対象物 1の II一 II線に沿った断面図であり、 図 3 はレーザ加工後の加工対象物 1の平面図であり、 図 4は図 3に示す加工対象物 1 の IV—IV線に沿った断面図であり、 図 5は図 3に示す加工対象物 1の V— V線に 沿った断面図であり、 図 6は切断された加工対象物 1の平面図である。
図 1及び図 2に示すように、 加工対象物 1の表面 3には、 加工対象物 1を切断 すべき所望の切断予定ライン 5がある。 切断予定ライン 5は直線状に延びた仮想 線である (加工対象物 1に実際に線を引いて切断予定ライン 5としてもよい) 。 本実施形態に係るレーザ加工は、 多光子吸収が生じる条件で加工対象物 1の内部 に集光点 Pを合わせてレーザ光 Lを加工対象物 1に照射して改質領域 7を形成す る。 なお、 集光点とはレーザ光 Lが集光した箇所のことである。 レーザ光 Lを切断予定ライン 5に沿って (すなわち矢印 A方向に沿って) 相対 的に移動させることにより、 集光点 Pを切断予定ライン 5に沿って移動させる。 これにより、 図 3〜図 5に示すように改質領域 7が切断予定ライン 5に沿って加 ェ対象物 1の内部にのみ形成され、 この改質領域 7によって切断起点領域 (切断 予定部) 8が形成される。 本実施形態に係るレーザ加工方法は、 加工対象物 1が レーザ光 Lを吸収することにより加工対象物 1を発熱させて改質領域 7を形成す るのではない。 加工対象物 1にレーザ光 Lを透過させ加工対象物 1の内部に多光 子吸収を発生させて改質領域 7を形成している。 よって、 加工対象物 1の表面 3 ではレーザ光 Lがほとんど吸収されないので、 加工対象物 1の表面 3が溶融する ことはない。
加工対象物 1の切断において、 切断する箇所に起点があると加工対象物 1はそ の起点から割れるので、 図 6に示すように比較的小さな力で加工対象物 1を切断 することができる。 よって、 加工対象物 1の表面 3に不必要な割れを発生させる ことなく加工対象物 1の切断が可能となる。
なお、 切断起点領域を起点とした加工対象物の切断には、 次の 2通りが考えら れる。 1つは、 切断起点領域形成後、 加工対象物に人為的な力が印加されること により、 切断起点領域を起点として加工対象物が割れ、 '加工対象物が切断される 場合である。 これは、 例えば加工対象物の厚さが大きい場合の切断である。 人為 的な力が印加されるとは、 例えば、 加工対象物の切断起点領域に沿って加工対象 物に曲げ応力やせん断応力を加えたり、 加工対象物に温度差を与えることにより 熱応力を発生させたりすることである。 他の 1つは、 切断起点領域を形成するこ とにより、 切断起点領域を起点として加工対象物の断面方向 (厚さ方向) に向か つて自然に割れ、 結果的に加工対象物が切断される場合である。 これは、 例えば 加工対象物の厚さが小さい場合には、 1列の改質領域により切断起点領域が形成 されることで可能となり、 加工対象物の厚さが大きい場合には、 厚さ方向に複数 列形成された改質領域により切断起点領域が形成されることで可能となる。 なお 、 この自然に割れる場合も、 切断する箇所において、 切断起点領域が形成されて いない部位に対応する部分の表面上にまで割れが先走ることがなく、 切断起点領 域を形成した部位に対応する部分のみを割断することができるので、 割断を制御 よくすることができる。 近年、 シリコンウェハ等の加工対象物の厚さは薄くなる 傾向にあるので、 このような制御性のよい割断方法は大変有効である。
さて、 本実施形態において多光子吸収により形成される改質領域としては、 次 の (1 ) 〜 (3 ) がある。
( 1 ) 改質領域が 1つ又は複数のクラックを含むクラック領域の場合 加工対象物 (例えばガラスや L i T a 0 3からなる圧電材料) の内部に集光点 を合わせて、 集光点における電界強度が 1 X 1 0 8 (W/ c m 2) 以上で且つパル ス幅が 1 s以下の条件でレーザ光を照射する。 このパルス幅の大きさは、 多光 子吸収を生じさせつつ加工対象物の表面に余計なダメージを与えずに、 加工対象 物の内部にのみクラック領域を形成できる条件である。 これにより、 加工対象物 の内部には多光子吸収による光学的損傷という現象が発生する。 この光学的損傷 により加工対象物の内部に熱ひずみが誘起され、 これにより加工対象物の内部に クラック領域が形成される。 電界強度の上限値としては、 例えば 1 X 1 0 1 2 (W / c m 2 ) である。 パルス幅は例えば 1 n s〜 2 0 0 n sが好ましい。 なお、 多 光子吸収によるクラック領域の形成は、 例えば、 第 4 5回レーザ熱加工研究会論 文集 (1 9 9 8年. 1 2月) の第 2 3頁〜第 2 8頁の 「固体レーザー高調波によ るガラス基板の内部マーキング」 に記載されている。
本発明者は、 電界強度とクラックの大きさとの関係を実験により求めた。 実験 条件は次ぎの通りである。
(A) 加工対象物:パイレックス (登録商標) ガラス (厚さ 7 0 0 μ πι) ( Β ) レーザ
光源:半導体レーザ励起 N d : Y A Gレーザ
波長: 1 0 6 4 n m レーザ光スポッ ト断面積: 3· 14X 10— 8 cm2 発振形態: Qスィツチパルス
繰り返し周波数: 100 kH z
ノヽ0ルス幅: 30 n s
出力 :出力 < 1 m J/パルス
レーザ光品質: TEM00
偏光特性:直線偏光
(C) 集光用レンズ
レーザ光波長に対する透過率: 60パーセント
(D) 加工対象物が載置される載置台の移動速度: 1 0 OmmZ秒 なお、 レーザ光品質が TEM。。とは、 集光性が高くレーザ光の波長程度まで集 光可能を意味する。
図 7は上記実験の結果を示すグラフである。 横軸はピークパワー密度であり、 レーザ光がパルスレーザ光なので電界強度はピークパワー密度で表される。 縦軸 は 1パルスのレーザ光により加工対象物の内部に形成されたクラック部分 (クラ ックスポット) の大きさを示している。 クラックスポットが集まりクラック領域 となる。 クラックスポッ トの大きさは、 クラックスポッ トの形状のうち最大の長 さとなる部分の大きさである。 グラフ中の黒丸で示すデータは集光用レンズ (C ) の倍率が 1 00倍、 開口数 (NA) が 0. 80の場合である。 一方、 グラフ中 の白丸で示すデータは集光用レンズ (C) の倍率が 50倍、 開口数 (NA) が 0 . 55の場合である。 ピークパワー密度が 1011 (W/cm2) 程度から加工対 象物の内部にクラックスポットが発生し、 ピークパワー密度が大きくなるに従い クラックスポットも大きくなることが分かる。
次に、 本実施形態に係るレーザ加工において、 クラック領域形成による加ェ対 象物の切断のメカニズムについて図 8〜図 1 1を用いて説明する。 図 8に示すよ うに、 多光子吸収が生じる条件で加工対象物 1の内部に集光点 Pを合わせてレー 945
ザ光 Lを加工対象物 1に照射して切断予定ラインに沿って内部にクラック領域 9 を形成する。 クラック領域 9は 1つ又は複数のクラックを含む領域である。 この クラック領域 9によつて切断起点領域が形成される。 図 9に示すようにクラック 領域 9を起点として (すなわち、 切断起点領域を起点として) クラックがさらに 成長し、 図 1 0に示すようにクラックが加工対象物 1の表面 3と裏面 2 1に到達 し、 図 1 1に示すように加工対象物 1が割れることにより加工対象物 1が切断さ れる。 加工対象物の表面と裏面に到達するクラックは自然に成長する場合もある し、 加工対象物に力が印加されることにより成長する場合もある。
( 2 ) 改質領域が溶融処理領域の場合
加工対象物 (例えばシリコンのような半導体材料) の内部に集光点を合わせて
、 集光点における電界強度が 1 X 1 0 8 (W/ c m 2) 以上で且つパルス幅が 1 μ s以下の条件でレーザ光を照射する。 これにより加工対象物の内部は多光子吸収 によって局所的に加熱される。 この加熱により加工対象物の内部に溶融処理領域 が形成される。 溶融処理領域とは一旦溶融後再固化した領域や、 まさに溶融状態 の領域や、 溶融状態から再固化する状態の領域であり、 相変化した領域や結晶構 造が変化した領域ということもできる。 また、 溶融処理領域とは単結晶構造、 非 晶質構造、 多結晶構造において、 ある構造が別の構造に変化した領域ということ もできる。 つまり、 例えば、 単結晶構造から非晶質構造に変化した領域、 単結晶 構造から多結晶構造に変化した領域、 単結晶構造から非晶質構造及び多結晶構造 を含む構造に変化した領域を意味する。 加工対象物がシリコン単結晶構造の場合 、 溶融処理領域は例えば非晶質シリコン構造である。 電界強度の上限値としては 、 例えば 1 X 1 0 1 2 (W/ c m 2 ) である。 パルス幅は例えば 1 n s〜 2 0 0 n sが好ましい。
本発明者は、 シリコンウェハの内部で溶融処理領域が形成されることを実験に より確認した。 実験条件は次の通りである。 -
(A) 加工対象物:シリコンウェハ (厚さ 3 5 0 i m、 外径 4インチ) (B) レーザ
光源:半導体レーザ励起 Nd : Y AGレーザ
波長: 1064 nm
レーザ光スポッ ト断面積: 3. 14 X 10— 8 cm2
発振形態: Qスィツチパルス
繰り返し周波数: 1 00 kHz
パルス幅: 30 n s
出力: 20 J パルス
レーザ光品質: TEM00
偏光特性:直線偏光
(C) 集光用レンズ
倍率: 50倍
N. A. : 0. 55
レーザ光波長に対する透過率: 60パーセント
(D) 加工対象物が載置される載置台の移動速度: 10 OmmZ秒 図 1 2は、 上記条件でのレーザ加工により切断されたシリコンウェハの一部に おける断面の写真を表した図である。 シリコンウェハ 1 1の内部に溶融処理領域 13が形成されている。 なお、 上記条件により形成された溶融処理領域 1 3の厚 さ方向の大きさは 100 μ m程度である。
溶融処理領域 13が多光子吸収により形成されたことを説明する。 図 1 3は、 レーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。 た だし、 シリコン基板の表面側と裏面側それぞれの反射成分を除去し、 内部のみの 透過率を示している。 シリコン基板の厚さ tが 50 uni、 100 /ini, 200 m、 500 m, 1 000 μ mの各々について上記関係を示した。
例えば、 Nd : YAGレーザの波長である 1064 nmにおいて、 シリコン基 板の厚さが 50 Ο μπι以下の場合、 シリコン基板の内部ではレーザ光が 80%以 上透過することが分かる。 図 1 2に示すシリコンウェハ 1 1の厚さは 3 5 0 μ τη であるので、 多光子吸収による溶融処理領域 1 3はシリコンウェハの中心付近、 つまり表面から 1 7 5 /i mの部分に形成される。 この場合の透過率は、 厚さ 2 0 0 μ mのシリコンウェハを参考にすると、 9 0 %以上なので、 レーザ光がシリコ ンウェハ 1 1の内部で吸収されるのは僅かであり、 ほとんどが透過する。 このこ とは、 シリコンウェハ 1 1の内部でレーザ光が吸収されて、 溶融処理領域 1 3が シリコンウェハ 1 1の内部に形成 (つまりレーザ光による通常の加熱で溶融処理 領域が形成) されたものではなく、 溶融処理領域 1 3が多光子吸収により形成さ れたことを意味する。 多光子吸収による溶融処理領域の形成は、 例えば、 溶接学 会全国大会講演概要第 6 6集 (2 0 0 0年 4月) の第 7 2頁〜第 7 3頁の 「ピコ 秒パルスレーザによるシリコンの加工特性評価」 に記載されている。
なお、 シリコンウェハは、 溶融処理領域によって形成される切断起点領域を起 点として断面方向に向かって割れを発生させ、 その割れがシリコンウェハの表面 と裏面とに到達することにより、 結果的に切断される。 シリコンウェハの表面と 裏面に到達するこの割れは自然に成長する場合もあるし、 シリコンウェハに力が 印加されることにより成長する場合もある。 なお、 切断起点領域からシリコンゥ ハの表面と裏面とに割れが自然に成長する場合には、 切断起点領域を形成する 溶融処理領域が溶融している状態から割れが成長する場合と、 切断起点領域を形 成する溶融処理領域が溶融している状態から再固化する際に割れが成長する場合 とのいずれもある。 ただし、 どちらの場合も溶融処理領域はシリコンウェハの内 部のみに形成され、 切断後の切断面には、 図 1 2のように内部にのみ溶融処理領 域が形成されている。 加工対象物の内部に溶融処理領域によって切断起点領域を 形成すると、 割断時、 切断起点領域ラインから外れた不必要な割れが生じにくい ので、 割断制御が容易となる。
( 3 ) 改質領域が屈折率変化領域の場合
加工対象物 (例えばガラス) の内部に集光点を合わせて、 集光点における電界 強度が 1 X 108 (W/ c m2) 以上で且つパルス幅が 1 n s以下の条件でレーザ 光を照射する。 パルス幅を極めて短くして、 多光子吸収を加工対象物の内部に起 こさせると、 多光子吸収によるエネルギーが熱エネルギーに転化せずに、 加工対 象物の内部にはイオン価数変化、 結晶化又は分極配向等の永続的な構造変化が誘 起されて屈折率変化領域が形成される。 電界強度の上限値としては、 例えば I X 1012 (W/c m2) である。 パルス幅は例えば 1 n s以下が好ましく、 l p s 以下がさらに好ましい。 多光子吸収による屈折率変化領域の形成は、 例えば、 第 42回レーザ熱加工研究会論文集 (1997年. 1 1月) の第 1 05頁〜第 1 1 1頁の 「フェムト秒レーザー照射によるガラス内部への光誘起構造形成」 に記载 されている。
以上、 多光子吸収により形成される改質領域として (1) 〜 (3) の場合を説 明したが、 ウェハ状の加工対象物の結晶構造やその劈開性などを考慮して切断起 点領域を次のように形成すれば、 その切断起点領域を起点として、 より一層小さ な力で、 しかも精度良く加工対象物を切断することが可能になる。
すなわち、 シリコンなどのダイヤモンド構造の単結晶半導体からなる基板の場 合は、 (1 1 1) 面 (第 1劈開面) や (1 10) 面 (第 2劈開面) に沿った方向 に切断起点領域を形成するのが好ましい。 また、 Ga A sなどの閃亜鉛鉱型構造 の III一 V族化合物半導体からなる基板の場合は、 (1 1 0) 面に沿った方向に切 断起点領域を形成するのが好ましい。 さらに、 サファイア (A 1203) などの六 方晶系の結晶構造を有する基板の場合は、 (0001) 面 (C面) を主面として (1 120) 面 ( 面) 或いは (1 100) 面 (M面) に沿った方向に切断起点 領域を形成するのが好ましい。
なお、 上述した切断起点領域を形成すべき方向 (例えば、 単結晶シリコン基板 における (1 1 1) 面に沿った方向) 、 或いは切断起点領域を形成すべき方向に 直交する方向に沿って基板にオリエンテーションフラットを形成すれば、 そのォ リエンテーションフラットを基準とすることで、 切断起点領域を形成すべき方向 に沿った切断起点領域を容易且つ正確に基板に形成することが可能になる。 次に、 上述したレーザ加工方法に使用されるレーザ加工装置について、 図 1 4 を参照して説明する。 囪 1 4はレーザ加工装置 1 0 0の概略構成図である。 レーザ加工装置 1 0 0は、 レーザ光 Lを発生するレーザ光源 1 0 1と、 レーザ 光 Lの出力やパルス幅等を調節するためにレーザ光源 1 0 1を制御するレーザ光 源制御部 1 0 2と、 レーザ光 Lの反射機能を有しかつレーザ光 Lの光軸の向きを
9 0 ° 変えるように配置されたダイクロイツクミラー 1 0 3と、 ダイクロイツク ミラー 1 0 3で反射されたレーザ光 Lを集光する集光用レンズ 1 0 5と、 集光用 レンズ 1 0 5で集光されたレーザ光 Lが照射される加工対象物 1が載置される載 置台 1 0 7と、 載置台 1 0 7を X軸方向に移動させるための X軸ステージ 1 0 9 と、 載置台 1 0 7を X軸方向に直交する Y軸方向に移動させるための Y軸ステー ジ 1 1 1と、 载置台 1 0 7を X軸及ぴ Y軸方向に直交する Z軸方向に移動させる ための Z軸ステージ 1 1 3と、 これら 3つのステージ 1 0 9 , 1 1 1, 1 1 3の 移動を制御するステージ制御部 1 1 5とを備える。
この集光点 Pの X (Y) 軸方向の移動は、 加工対象物 1を X (Y) 軸ステージ
1 0 9 ( 1 1 1 ) により X (Y) 軸方向に移動させることにより行う。 Z軸方向 は、 加工対象物 1の表面 3と直交する方向なので、 加工対象物 1に入射するレー ザ光 Lの焦点深度の方向となる。 よって、 Z軸ステージ 1 1 3を Z軸方向に移動 させることにより、 加工対象物 1の内部にレーザ光 Lの集光点 Pを合わせること ができる。 これにより、 例えば、 加工対象物 1が多層構造を有しているような場 合に、 加工対象物 1の基板や或いは当該基板上の積層部等、 所望の位置に集光点
Pを合わせることができる。
レーザ光源 1 0 1はパルスレーザ光を発生する N d : Y A Gレーザである。 レ 一ザ光源 1◦ 1に用いることができるレーザとして、 この他、 N d : Y V 0 4レ 一ザ、 N d : Y L Fレーザやチタンサファイアレーザがある。 本実施形態では、 加工対象物 1の加工にパルスレーザ光を用いているが、 多光子吸収を起こさせる ことができるなら連続波レーザ光でもよい。
レーザ加工装置 1 0 0はさらに、 载置台 1 0 7に載置された加工対象物 1を可 視光線により照明するために可視光線を発生する観察用光源 1 1 7と、 ダイク口 イツクミラー 1 0 3及び集光用レンズ 1 0 5と同じ光軸上に配置された可視光用 のビ一ムスプリッタ 1 1 9とを備える。 ビームスプリッタ 1 1 9と集光用レンズ 1 0 5との間にダイクロイツクミラー 1 0 3が配置されている。 ビームスプリッ タ 1 1 9は、 可視光線の約半分を反射し残りの半分を透過する機能を有しかつ可 視光線の光軸の向きを 9 0 ° 変えるように配置されている。 観察用光源 1 1, 7か ら発生した可視光線はビームスプリッタ 1 1 9で約半分が反射され、 この反射さ れた可視光線がダイクロイツクミラー 1 0 3及ぴ集光用レンズ 1 0 5を透過し、 加工対象物 1の切断予定ライン 5等を含む表面 3を照明する。 なお、 加工対象物 1の裏面が集光用レンズ 1 0 5側となるよう加工対象物 1が载置台 1 0 7に載置 された場合は、 ここでいう 「表面」 力 S 「裏面」 となるのは勿論である。
レーザ加工装置 1 0 0はさらに、 ビームスプリツタ 1 1 9、 ダイク口イツクミ ラー 1 0 3及び集光用レンズ 1 0 5と同じ光軸上に配置された撮像素子 1 2 1及 ぴ結像レンズ 1 2 3を備える。 撮像素子 1 2 1としては例えば C C Dカメラがあ る。 切断予定ライン 5等を含む表面 3を照明した可視光線の反射光は、 集光用レ ンズ 1 0 5、 ダイクロイツクミラー 1 0 3、 ビームスプリ ッタ 1 1 9を透過し、 結像レンズ 1 2 3で結像されて撮像素子 1 2 1で撮像され、 撮像データとなる。 レーザ加工装置 1 0 0はさらに、 撮像素子 1 2 1から出力された撮像データが 入力される撮像データ処理部 1 2 5と、 レーザ加工装置 1 0 0全体を制御する全 体制御部 1 2 7と、 モニタ 1 2 9とを備える。 撮像データ処理部 1 2 5は、 撮像 データを基にして観察用光源 1 1 7で発生した可視光の焦点を加工対象物 1の表 面 3上に合わせるための焦点データを演算する。 この焦点データを基にしてステ ージ制御部 1 1 5が Z軸ステージ 1 1 3を移動制御することにより、 可視光の焦 点が加工対象物の表面 3に合うようにする。 よって、 撮像データ処理部 1 2 5は オートフォーカスユニットとして機能する。 また、 撮像データ処理部 1 2 5は、 撮像データを基にして表面 3の拡大画像等の画像データを演算する。 この画像デ ータは全体制御部 1 2 7に送られ、 全体制御部で各種処理がなされ、 モニタ 1 2 9に送られる。 これにより、 モニタ 1 2 9に拡大画像等が表示される。
全体制御部 1 2 7には、 ステージ制御部 1 1 5からのデータ、 撮像データ処理 部 1 2 5からの画像データ等が入力し、 これらのデータも基にしてレーザ光源制 御部 1 0 2、 観察用光源 1 1 7及ぴステージ制御部 1 1 5を制御することにより 、 レーザ加工装置 1 0 0全体を制御する。 よって、 全体制御部 1 2 7はコンビュ ータュニットとして機肯 gする。
次に、 本実施形態に係るレーザ加工方法について、 図 1 4及ぴ図 1 5を参照し て説明する。 図 1 5は、 本実施形態に係るレーザ加工方法を説明するためのフロ 一チャートである。 なお、 本実施形態において、 加工対象物 1は、 基板と当該基 板の表面に設けられた積層部とを有している。 また、 加工対象物 1は、 図 1 4に 示すレーザ加工装置 1 0 0の載置台 1 0 7に、 基板の裏面が集光用レンズ 1 0 5 側となるよう载置される。 すなわち、 レーザ光 Lは、 加工対象物 1が有している 基板の裏面側から照射される。
まず、 加工対象物 1の基板の光吸収特性を図示しない分光光度計等により測定 する。 この測定結果に基づいて、 加工対象物 1の基板に対して透明な波長又は吸 収の少ない波長のレーザ光 Lを発生するレーザ光源 1 0 1を選定する (S 1 0 1 )。 なお、 このレーザ光 Lは基板の裏面側から照射されることとなるため、基板の 表面に設けられた積層部がこのレーザ光に対し遮光性や吸収性を有している場合 であっても、 レーザ加工の妨げとなるようなことはない。
続いて、 加工対象物 1の基板の厚さや屈折率、 及び基板の表面に形成されてい る積層部の厚さや材質等を考慮して、 加工対象物 1の Z軸方向の移動量を決定す る (S 1 0 3 )。 これは、加工対象物 1が有している基板内部の所望の位置にレー ザ光 Lの集光点 Pを合わせるために、 加工対象物 1の基板の裏面に位置するレー ザ光 Lの集光点 Pを基準とした加工対象物 1の Z軸方向の移動量である。 この移 動量は全体制御部 1 2 7に入力される。
加工対象物 1をレーザ加工装置 1 0 0の载置台 1 0 7に基板の裏面が集光用レ ンズ 1 0 5側となるよう載置する。 そして、 観察用光源 1 1 7から可視光を発生 させて加工対象物 1の基板の裏面を照明する (S 1 0 5 )。照明された切断予定ラ イン 5を含む裏面を撮像素子 1 2 1により撮像する。 切断予定ライン 5は、 加工 対象物 1を切断すべき所望の仮想線である。 撮像素子 1 2 1により撮像された撮 像データは撮像データ処理部 1 2 5に送られる。 この撮像データに基づいて撮像 データ処理部 1 2 5は、 観察用光源 1 1 7の可視光の焦点が加工対象物 1の基板 の裏面に位置するような焦点データを演算する (S 1 0 7 )。
この焦点データはステージ制御部 1 1 5に送られる。 ステージ制御部 1 1 5は 、 この焦点データを基にして Z軸ステージ 1 1 3を Z軸方向の移動させる (S 1 0 9 )。 これにより、観察用光源 1 1 7の可視光の焦点が加工対象物 1の基板の裏 面に位置する。 なお、 撮像データ処理部 1 2 5は撮像データに基づいて、 切断予 定ライン 5を含む加工対象物 1の基板裏面の拡大画像データを演算する。 この拡 大画像データは全体制御部 1 2 7を介してモニタ 1 2 9に送られ、 これによりモ ユタ 1 2 9に切断予定ライン 5付近の拡大画像が表示される。
全体制御部 1 2 7には予めステップ S 1 0 3で決定された移動量データが入力 されており、 この移動量データがステージ制御部 1 1 5に送られる。 ステージ制 御部 1 1 5はこの移動量データに基づいて、 レーザ光 Lの集光点 Pが加工対象物 1の基板の内部となる位置に、 Z軸ステージ 1 1 3により加工対象物 1を Z軸方 向に移動させる (S 1 1 1 )。
続いて、 レーザ光源 1 0 1からレーザ光 Lを発生させて、 レーザ光 Lを加工対 象物 1の基板裏面の切断予定ライン 5に照射する。 レーザ光 Lの集光点 Pは加工 対象物 1の基板の内部に位置しているので、 改質領域は加工対象物 1の基板の内 部にのみ形成される。 そして、 切断予定ライン 5に沿うように X軸ステージ 1 0 9や Y軸ステージ 1 1 1を移動させて、 切断予定ライン 5に沿うよう形成された 改質領域によって切断予定ライン 5に沿う切断起点領域を加工対象物 1の内部に 形成する (S 1 1 3 )。
以上説明したように、 本実施形態に係るレーザ加工方法によれば、 加工対象物 1が有する基板の裏面側からレーザ光 Lを照射し、 当該基板の内部に、 多光子吸 収により形成される改質領域によって、 加工対象物 1を切断すべき所望の切断予 定ライン 5に沿った切断起点領域を形成することができる。 そして、 基板の内部 に形成された改質領域の位置は、 基板の表面に設けられている積層部の厚さゃ材 質等を考慮して、 レーザ光 Lの集光点 Ρを合わせる位置を調節することにより制 御されている。 したがって、 基板の内部に形成された切断起点領域を起点として 、 基板の表面に積層部が設けられて構成された加工対象物 1を比較的小さな力で 割って切断することができる。
なお、 加工対象物 1の積層部に対して透明な波長又は吸収の少ない波長のレー ザ光 Lにより、 積層部の内部に集光点 Ρを合わせてレーザ光 Lを照射し、 積層部 の内部にも切断予定ライン 5に沿った切断起点領域を形成してもよく、 この場合 、 加工対象物 1をより小さな力で割って切断することができる。
本実施形態に係るレーザ加工方法の実施例について、 図 1 6〜図 2 1を参照し て説明する。
[実施例 1 ]
図 1 6 Αは、 実施例 1に係る加工対象物 1において基板 1 5の裏面近傍に改質 領域 7を形成した場合を示す図であり、 図 1 6 Bは、 実施例 1に係る加工対象物 1において基板 1 5の表面近傍に改質領域 7を形成した場合を示す図である。 図 1 6 A及び図 1 6 Bに示す加工対象物 1としては、 次世代高速 ·低消費電力デバ イス用のものや次世代デバイス用のものがある。
次世代高速 *低消費電力デバイス用における基板 1 5 /第 1の積層部 1 7 a / 第 2の積層部 1 7 bは、 それぞれ S i ( 5 0 0 ^ m) / S i 0 2 ( l ^ m) / S i (3 μπι) である。 一方、 次世代デバイス用における基板 15/第 1の積層部 1 7 a /第 2の積層部 1 7 bは、 それぞれ S i (500 μπι) /S r T i Oa ( 数 l O O nm) /G a A s (数 l O O nm) である (括弧内の数値は厚さを示す 図 16 Aに示すように、 改質領域 7が加工対象物 1の裏面 21近傍に位置する 場合には、 改質領域 7でもって形成された切断起点領域に沿うよう加工対象物 1 の表面 3にナイフエッジ 23を押し当てて、 加工対象物 1を割って切断する。 こ れは、 ナイフエッジ 23の押し当てにより生じる曲げ応力のうち大きな引張応力 が改質領域 7に作用するため、 比較的小さな力で加工対象物 1を切断することが できるからである。 一方、 図 1 6 Bに示すように、 改質領域 7が加工対象物 1の 表面 3近傍に位置する場合には、 同様の理由から、 加工対象物 1の裏面 3にナイ フエッジ 23を押し当てて加工対象物 1を割って切断する。
なお、 「改質領域 7が加工対象物 1の裏面 21近傍に位置する」 とは、 切断起 点領域を構成する改質領域 7が、 加工対象物 1の厚さ方向における中心位置 (厚 さの半分の位置) から裏面 21側に偏倚して形成されていることを意味する。 つ まり、 加工対象物 1の厚さ方向における改質領域 7の幅の中心位置が、 加工対象 物 1の厚さ方向における中心位置から裏面 21側に偏倚して位置している場合を 意味し、 改質領域 7の全ての部分が加工対象物 1の厚さ方向における中心位置に 対して裏面 2 1側に位置している場合のみに限る意味ではない。 同様に、 「改質 領域 7が加工対象物 1の表面 3近傍に位置する」 とは、 切断起点領域を構成する 改質領域 7が、 加ェ対象物 1の厚さ方向における中心位置から表面 3側に偏倚し て形成されていることを意味する。 以上のことは、 基板 1 5に対する改質領域 7 の形成位置についても同様である。
[実施例 2]
図 1 7 Aは、 実施例 2に係る加工対象物 1において基板 1 5の裏面近傍に改質 領域 7を形成した場合を示す図であり、 図 1 7 Bは、 実施例 2に係る加工対象物 1において基板 15の表面近傍に改質領域 7を形成した場合を示す図である。 図 17 A及び図 1 7 Bに示す加工対象物 1は青色 LD · LED用のものであり、 基 板 1 5/積層部17としては、 A 1203 (500 μπι) /G a Ν等の半導体結晶 を複数層形成した積層機能膜 (数 100 η m) や、 A 1203 (500 ιη) /Ζ ηθ等の層を複数層形成した積層機能膜 (数 l O O nm) の場合がある (括弧内 の数値は厚さを示す) 。
実施例 1に係る加工対象物 1の場合と同様の理由から、 図 1 7 Aに示すように 、 改質領域 7が加工対象物 1の裏面 21近傍に位置する場合には、 加工対象物 1 の表面 3にナイフエッジ 23を押し当てて加工対象物 1を割って切断する。 一方 、 図 1 7 Bに示すように、 改質領域 7が加工対象物 1の表面 3近傍に位置する場 合には、 加工対象物 1の裏面 21にナイフエッジ 23を押し当てて加工対象物 1 を割って切断する。
[実施例 3]
図 1 8 Aは、 実施例 3に係る加工対象物 1において基板 1 5の表面近傍と積層 部 1 7とに改質領域 7を形成した場合を示す図であり、 図 1 8 Bは、 実施例 3に 係る加工対象物 1において基板 1 5の裏面近傍に改質領域 7を形成した場合を示 す図であり、 図 18 Cは、 実施例 3に係る加工対象物 1において基板 1 5の表面 近傍に改質領域 7を形成した場合を示す図である。 図 18 A〜図 18 Cに示す加 ェ対象物 1は赤外光検出デバイス用のものであり、 基板 1 5/積層部 1 7として は、 A 1203 (δ Ο Ο ,απι) /P b S e (Ι Ο μπι) や、 A 1203 ( 500 μ m
) /Hg C dT e (10 / m) の場合がある (括弧内の数値は厚さを示す) 。 実施例 1に係る加工対象物 1の場合と同様の理由から、 図 18 A及び図 1 8 C に示すように、 改質領域 7が加工対象物 1の表面 3近傍に位置する場合には、 加 ェ対象物 1の裏面 21にナイフエッジ 23を押し当てて加工対象物 1を割って切 断する。 一方、 図 1 8 Bに示すように、.改質領域 7が加工対象物 1の裏面 21近 傍に位置する場合には、 加工対象物 1の表面 3にナイフエッジ 23を押し当てて 加工対象物 1を割って切断する。
[実施例 4 ]
図 1 9は、 実施例 4に係る加工対象物 1を示す図である。 図 1 9に示す加工対 象物 1は多層ガラスであり'、 基板 1 5としてのガラス基板上に第 1の積層部 1 7 a及び第 2の積層部 1 7 bとしてのガラス基板 2枚を貼り合わせて積層させたも のである。 各ガラス基板における改質領域 7は、 加工対象物 1の裏面 2 1側に形 成されている。 この場合も、 実施例 1に係る加工対象物 1の場合と同様の理由か ら、 加工対象物 1の表面 3にナイフエッジ 2 3を押し当てて加工対象物 1を割つ て切断する。 このように積層部の厚さが厚い場合や積層部の硬度が高い場合には 、 積層部の内部にも切断起点領域を形成すれば、 加工対象物 1をより小さな力で 割って切断することができる。
[実施例 5 ]
図 2 O A〜図 2 1 Bは、 実施例 5に係る加工対象物 1を示す図である。 図 2 0 Aは、 実施例 5に係る加工対象物 1において基板 1 5の表面近傍と積層部 1 7の 表面近傍とに改質領域 7を形成した場合を示す図であり、 図 2 0 Bは、 実施例 5 に係る加工対象物 1において基板 1 5の裏面近傍と積層部 1 7の裏面近傍とに改 質領域 7を形成した場合を示す図である。 また、 図 2 1 Aは、 実施例 5に係る加 ェ対象物 1において基板 1 5の表面近傍と積層部 1 7の裏面近傍とに改質領域 7 を形成した場合を示す図であり、 図 2 1 Bは、 実施例 5に係る加工対象物 1にお いて基板 1 5の裏面近傍と積層部 1 7の表面近傍とに改質領域 7を形成した場合 を示す図である。
図 2 O A〜図 2 1 Bに示す加工対象物 1は反射型の液晶表示装置用のものであ る。 基板 1 5は、 共通電極が形成されたガラス基板 (厚さ 1 . 8 mm, 外径 8ィ ンチ) であり、 積層部 1 7は、 T F Tが形成された S i基板 (厚さ 5 0 0 ^ 111、 外径 8インチ) である。 基板 1 5と積層部 1 7とは、 液晶が入る間隙を設けて接 着剤 2 5により互いに貼り付けられている。 図 2 O A及び図 2 0 Bの場合は、 加工対象物 1の裏面 2 1側からレーザ光を照 射して、 積層部 1 7の内部に改質領域 7を形成し、 その後、 加工対象物 1の裏面 2 1側からレーザ光を照射して、 基板 1 5の内部に改質領域 7を形成している。 これは、 レーザ光が基板 1 5及ぴ積層部 1 7の両者に対して透明な波長又は吸収 の少ない波長を有しているからである。 そして、 実施例 1に係る加工対象物 1の 場合と同様の理由から、 図 2 O Aの場合には、 加工対象物 1の裏面 2 1にナイフ エッジ 2 3を押し当てて加工対象物 1を割って切断する。 一方、 図 2 0 Bの場合 には、 加工対象物 1の表面 3にナイフエッジ 2 3を押し当てて加工対象物 1を割 つて切断する。
このように、 基板 1 5及ぴ積層部 1 7の両者に対して透明な波長又は吸収の少 ない波長を有するレーザ光を用いて基板 1 5と積層部 1 7とに切断起点領域を形 成すれば、 従来のダイャモンドスクライブ法で行われる加工対象物 1の反転作業 を省くことができ、 反転作業時の加工対象物 1の破壌等を防止することができる 。 また、 基板 1 5と積層部 1 7とに形成される切断起点領域に位置ずれが生じる ことも防止することができ、 これにより精度の高い加工対象物 1の切断が可能と なる。 さらに、 従来のブレードダイシング法では必須である潤滑洗浄水が不要で あるため、 基板 1 5と積層部 1 7と間の間隙に潤滑洗浄水が入り込んでしまうと いうような問題もない。 '
図 2 1 A及ぴ図 2 1 Bの場合は、 加工対象物 1の裏面 2 1側からレーザ光を照 射して、 基板 1 5の内部に改質領域 7を形成し、 その後、 加工対象物 1の表面 3 側からレーザ光を照射して、 積層部 1 7の内部に改質領域 7を形成している。 そ して、 実施例 1に係る加工対象物 1の場合と同様の理由から、 図 2 1 Aの場合に は、 最初に加工対象物 1の裏面 2 1にナイフエッジ 2 3を押し当てて基板 1 5を 割って切断し、 次に加工対象物 1の表面 3にナイフエッジ 2 3を押し当てて積層 部 1 7を割って切断する。 一方'、 図 2 1 Bの場合には、 最初に加工対象物 1の表 面 3にナイフエッジ 2 3を押し当てて基板 1 5を割って切断し、 次に加工対象物 2945
1の裏面 2 1にナイフエッジ 2 3を押し当てて積層部 1 7を割って切断する。
[実施例 6 ]
図 2 2は、 実施例 6に係る加工対象物 1の要部を示す拡大断面図である。 この 加工対象物 1は、 シリコンウェハである基板 1 5上に多数のチップ形成領域 Fを 設け、 隣り合うチップ形成領域 F , F間をダイシングライン領域 Dとしたもので あり、 図 2 2は、 チップ形成領域 Fとダイシングライン領域 Dとが連続する部分 の断面を示している。 なお、 切断予定ラインは、 このダイシングライン領域 Dに 沿って設定される。
同図に示すように、 基板 1 5上には層間絶縁膜 (積層部) 3 1が形成されてお り、 基板 1 5のチップ形成領域 Fにおいては、 層間絶縁膜 3 1上に金属配線層 3 2が設けられている。 さらに、 基板 1 5上には、 層間絶縁膜 3 1及び金属配線層 3 2を覆うように層間絶縁膜 (積層部) 3 3が形成され、 基板 1 5のチップ形成 領域 Fにおいては、 層間絶縁膜 3 3上に金属配線層 3 4が設けられている。 そし て、 基板 1 5と金属配線層 3 2とは、 層間絶縁膜 3 1を貫通するプラグ 3 5によ り電気的に接続されている。 また、 金属配線層 3 2と金属配線層 3 4とは、 層間 絶縁膜 3 3を貫通するプラグ 3 6により電気的に接続されている。
このように構成された加工対象物 1に対して基板 1 5の内部に集光点を合わせ てレーザ光を照射し、 ダイシングライン領域 D沿って (すなわち、 切断予定ライ ンに沿って) 基板 1 5の内部に改質領域 7を形成し、 この改質領域 7によって切 断起点領域を形成する。 そして、 切断起点領域に沿って加工対象物 1の表面 3又 は裏面 2 1にナイフエッジ 2 3を押し当てることで、 加工対象物 1を高精度に切 断することができる。
以上の実施例 6に係る加工対象物 1のように、 基板 1 5の切断予定ライン上に 、 S i 0 2や S i N等からなる絶縁膜 3 1, 3 2が積層部として形成されている 場合にも、 加工対象物 1を高精度に切断することが可能である。
以上、 本発明の実施形態について詳細に説明したが、 本発明は上記実施形態に 限定されないことはいうまでもない。
上記実施形態では、 基板と当該基板の表面に設けられた積層部とを有する加工 対象物に対してレーザ光を照射し切断起点領域を形成する場合について説明した 力 本発明では、 基板に対してレーザ光を照射し切断起点領域を形成した後に、 基板の表面に積層部を設けて加工対象物を形成してもよい。
このレーザ加工方法によれば、 基板の表面に積層部を設ける前に、 基板の内部 に切断起点領域を形成するが、 多光子吸収による改質領域の形成は局所的なもの であって、 基板の表面ではレーザ光がほとんど吸収されないため、 基板の表面が 溶融するようなことはない。 よって、 基板の内部に改質領域が形成されていない 場合と同様に、 基板の表面に積層部を設けて加工対象物を形成することができる 。 このようにして形成された加工対象物は、 上記実施形態と同様の理由により、 基板の内部に形成された切断起点領域を起点として比較的小さな力で割って切断 することができる。
産業上の利用可能性
以上説明したように、 本発明に係るレーザ加工方法によれば、 加工対象物が有 する基板の内部に、 多光子吸収という現象により形成される改質領域でもって、 加工対象物を切断すべき所望の切断予定ラインに沿った切断起点領域を形成する ことができる。 しかも、 基板の表面に設けられている積層部の厚さや材質等を考 慮して、 基板の表面から切断起点領域における改質領域までの距離を、 レーザ光 の集光点を合わせる位置を調節することにより制御することができる。 したがつ て、 基板の内部に形成された切断起点領域を起点として、 基板の表面に積層部が 設けられて構成された加工対象物を比較的小さな力で割って切断することができ る。 なお、 積層部の内部に集光点を合わせてレーザ光を照射し、 積層部の内部に も上記切断予定ラインに沿った切断起点領域を形成してもよく、 この場合、 加工 対象物をより小さ 力で割って切断することができる。 以上により、 種々の積層 構造を有する加ェ対象物を高精度に切断することが可能となる。

Claims

請求の範囲
1 . 基板と前記基板の表面に設けられた積層部とを有する加工対象物の少なく とも前記基板の内部に集光点を合わせてレーザ光を照射し、 少なくとも前記基板 の内部に多光子吸収による改質領域を形成し、 この改質領域によって、 前記加工 対象物の切断予定ラインに沿って前記加工対象物のレーザ光入射面から所定距離 内側に切断起点領域を形成する工程を備えることを特徴とするレーザ加工方法。
2 . 基板と前記基板の表面に設けられた積層部とを有する加工対象物の少なく とも前記基板の内部に集光点を合わせて、 集光点におけるピークパワー密度が 1 X 1 0 8 (W/ c m 2) 以上で且つパルス幅が 1 β s以下の条件でレーザ光を照射 し、 少なくとも前記基板の内部にクラック領域を含む改質領域を形成し、 この改 質領域によって、 前記加工対象物の切断予定ラインに沿って前記加工対象物のレ 一ザ光入射面から所定距離内側に切断起点領域を形成する工程を備えることを特 徴とするレーザ加工方法。
3 . 基板と前記基板の表面に設けられた積層部とを有する加工対象物の少なく とも前記基板の内部に集光点を合わせて、 集光点におけるピークパワー密度が 1
X 1 0 8 (W/ c m 2 ) 以上で且つパルス幅が 1 μ s以下の条件でレーザ光を照射 し、 少なくとも前記基板の内部に溶融処理領域を含む改質領域を形成し、 この改 質領域によって、 前記加工対象物の切断予定ラインに沿って前記加工対象物のレ 一ザ光入射面から所定距離内側に切断起点領域を形成する工程を備えることを特 徴とするレーザ加工方法。
4 . 基板と前記基板の表面に設けられた積層部とを有する加工対象物の少なく とも前記基板の内部に集光点を合わせて、 集光点におけるピークパワー密度が 1 X 1 0 8 (W/ c m 2) 以上で且つパルス幅が 1 n s以下の条件でレーザ光を照射 し、 少なくとも前記基板の内部に屈折率が変化した領域である屈折率変化領域を 含む改質領域を形成し、 この改質領域によって、 前記加工対象物の切断予定ライ ンに沿つて前記加ェ対象物のレーザ光入射面から所定距離内側に切断起点領域を 形成する工程を備えることを特徴とするレーザ加工方法。
5 . 基板と前記基板の表面に設けられた積層部とを有する加工対象物の少なく とも前記基板の内部に集光点を合わせてレーザ光を照射し、 少なくとも前記基板 の内部に改質領域を形成し、 この改質領域によって、 前記加工対象物の切断予定 ラインに沿って前記加工対象物のレーザ光入射面から所定距離内側に切断起点領 域を形成する工程を備えることを特徴とするレーザ加工方法。
6 . 基板と前記基板の表面に設けられた積層部とを有する加工対象物に対し、 前記基板の内部に集光点を合わせてレーザ光を照射すると共に、 前記積層部の内 部に集光点を合わせてレーザ光を照射し、 前記基板の内部と前記積層部の内部と にそれぞれ改質領域を形成し、 この改質領域によって、 前記加工対象物の切断予 定ラインに沿って前記加工対象物のレーザ光入射面から所定距離内側に切断起点 領域を形成する工程を備えることを特徴とするレーザ加ェ方法。
7 . 基板と前記基板の表面に設けられた積層部とを有する加工対象物の少なく とも前記基板の内部に集光点を合わせてレーザ光を照射し、 少なくとも前記基板 の内部に切断予定ラインに沿って改質領域を形成することで、 前記加工対象物を 切断することを特徴とするレーザ加工方法。
8 . 前記改質領域は、 前記基板の内部においてクラックが発生した領域である クラック領域、 前記基板の内部において溶融処理した領域である溶融処理領域、 及び前記基板の内部において屈折率が変化した領域である屈折率変化領域のうち の少なくともいずれか 1つを含むことを特徴とする請求の範囲第 5項〜第 7項の いずれか 1項記載のレーザ加工方法。
9 . 前記基板の内部に集光点が合わされて照射されるレーザ光は、 前記基板の 裏面側から照射されることを特徴とする請求の範囲第 1項〜第 7項のいずれか 1 項記載のレーザ加工方法。
1 0 . 基板の内部に集光点を合わせてレーザ光を照射し、 前記基板の内部に多 光子吸収による改質領域を形成し、 この改質領域によって、 前記基板の切断予定 ラインに沿って前記基板のレーザ光入射面から所定距離内側に切断起点領域を形 成する工程と、
前記切断起点領域を形成する工程後、 前記基板の表面に積層部を設ける工程と を備えることを特徴とするレーザ加工方法。
PCT/JP2003/002945 2002-03-12 2003-03-12 Laser processing method WO2003076120A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US10/507,392 US8361883B2 (en) 2002-03-12 2003-03-12 Laser processing method
KR1020047014282A KR100832941B1 (ko) 2002-03-12 2003-03-12 레이저 가공 방법
AU2003220851A AU2003220851A1 (en) 2002-03-12 2003-03-12 Laser processing method
EP03712675A EP1498215B1 (en) 2002-03-12 2003-03-12 Laser processing method
AT03712675T ATE512751T1 (de) 2002-03-12 2003-03-12 Laserbearbeitungsverfahren
EP15192444.6A EP3020503B1 (en) 2002-03-12 2003-03-12 Laser processing method
JP2003574375A JP4515096B2 (ja) 2002-03-12 2003-03-12 レーザ加工方法
EP15192453.7A EP3012061B1 (en) 2002-03-12 2003-03-12 Laser processing method
EP19188428.7A EP3683003B1 (en) 2002-03-12 2003-03-12 Laser processing method
US13/614,042 US8598015B2 (en) 2002-03-12 2012-09-13 Laser processing method
US14/082,825 US8802543B2 (en) 2002-03-12 2013-11-18 Laser processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002067372 2002-03-12
JP2002-067372 2002-03-12

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10507392 A-371-Of-International 2003-03-12
US10/507,392 A-371-Of-International US8361883B2 (en) 2002-03-12 2003-03-12 Laser processing method
US13/614,042 Division US8598015B2 (en) 2002-03-12 2012-09-13 Laser processing method

Publications (1)

Publication Number Publication Date
WO2003076120A1 true WO2003076120A1 (en) 2003-09-18

Family

ID=27800281

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2003/002867 WO2003076119A1 (en) 2002-03-12 2003-03-11 Method of cutting processed object
PCT/JP2003/002945 WO2003076120A1 (en) 2002-03-12 2003-03-12 Laser processing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002867 WO2003076119A1 (en) 2002-03-12 2003-03-11 Method of cutting processed object

Country Status (11)

Country Link
US (7) US7749867B2 (ja)
EP (9) EP1498216B1 (ja)
JP (9) JP4606741B2 (ja)
KR (3) KR100749972B1 (ja)
CN (3) CN1328002C (ja)
AT (2) ATE493226T1 (ja)
AU (2) AU2003211581A1 (ja)
DE (1) DE60335538D1 (ja)
ES (3) ES2356817T3 (ja)
TW (2) TWI296218B (ja)
WO (2) WO2003076119A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150496A (ja) * 2003-11-18 2005-06-09 Toppan Printing Co Ltd 異方性透明固体材料、球状弾性表面波素子およびその製造方法
JP2005286218A (ja) * 2004-03-30 2005-10-13 Hamamatsu Photonics Kk レーザ加工方法及び加工対象物
JP2006140355A (ja) * 2004-11-12 2006-06-01 Hamamatsu Photonics Kk レーザ加工方法及び半導体チップ
JP2007045675A (ja) * 2005-08-11 2007-02-22 Disco Abrasive Syst Ltd 液晶デバイスウエーハのレーザー加工方法
JP2007062074A (ja) * 2005-08-30 2007-03-15 Seiko Epson Corp 表示パネル、表示パネルのレーザスクライブ方法及び電子機器
JP2007142114A (ja) * 2005-11-17 2007-06-07 Denso Corp レーザダイシング方法およびレーザダイシング装置
JP2007160766A (ja) * 2005-12-15 2007-06-28 Seiko Epson Corp 層状基板の分割方法
JP2007160920A (ja) * 2005-11-16 2007-06-28 Denso Corp ウェハおよびウェハの加工方法
EP1811550A1 (en) * 2004-11-12 2007-07-25 Hamamatsu Photonics K.K. Laser processing method
JP2007235008A (ja) * 2006-03-03 2007-09-13 Denso Corp ウェハの分断方法およびチップ
JP2007290304A (ja) * 2006-04-27 2007-11-08 Casio Comput Co Ltd 脆性シート材分断方法及びその装置
JP2007304297A (ja) * 2006-05-11 2007-11-22 Sony Corp 液晶表示装置の製造方法
JP2007304296A (ja) * 2006-05-11 2007-11-22 Sony Corp 液晶表示装置及びその製造方法、並びに映像表示装置
JP2010177277A (ja) * 2009-01-27 2010-08-12 Tokyo Seimitsu Co Ltd レーザーダイシング方法及びレーザーダイシング装置
WO2011013556A1 (ja) 2009-07-28 2011-02-03 浜松ホトニクス株式会社 加工対象物切断方法
WO2011013549A1 (ja) 2009-07-28 2011-02-03 浜松ホトニクス株式会社 加工対象物切断方法
JP2011189477A (ja) * 2010-03-16 2011-09-29 Disco Corp マイクロマシンデバイスの製造方法
JP2016149391A (ja) * 2015-02-10 2016-08-18 旭化成株式会社 窒化物半導体素子、窒化物半導体素子の移動方法及び半導体装置の製造方法
US9991671B2 (en) 2015-09-11 2018-06-05 Nichia Corporation Method for producing semiconductor laser element
JP2019064863A (ja) * 2017-09-29 2019-04-25 三星ダイヤモンド工業株式会社 スクライブ加工方法及びスクライブ加工装置
JP2020021875A (ja) * 2018-08-02 2020-02-06 株式会社ディスコ ウェーハの加工方法
WO2020049814A1 (ja) * 2018-09-04 2020-03-12 株式会社村田製作所 Memsデバイスの製造方法及びmemsデバイス

Families Citing this family (223)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659300B2 (ja) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップの製造方法
US7749867B2 (en) * 2002-03-12 2010-07-06 Hamamatsu Photonics K.K. Method of cutting processed object
TWI326626B (en) 2002-03-12 2010-07-01 Hamamatsu Photonics Kk Laser processing method
ES2377521T3 (es) 2002-03-12 2012-03-28 Hamamatsu Photonics K.K. Método para dividir un sustrato
TWI520269B (zh) 2002-12-03 2016-02-01 Hamamatsu Photonics Kk Cutting method of semiconductor substrate
FR2852250B1 (fr) * 2003-03-11 2009-07-24 Jean Luc Jouvin Fourreau de protection pour canule, un ensemble d'injection comportant un tel fourreau et aiguille equipee d'un tel fourreau
US8685838B2 (en) 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method
TWI401326B (zh) * 2003-06-06 2013-07-11 Hitachi Chemical Co Ltd 切割背膠一體型黏著片
JP2005032903A (ja) 2003-07-10 2005-02-03 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
US7605344B2 (en) * 2003-07-18 2009-10-20 Hamamatsu Photonics K.K. Laser beam machining method, laser beam machining apparatus, and laser beam machining product
JP4563097B2 (ja) 2003-09-10 2010-10-13 浜松ホトニクス株式会社 半導体基板の切断方法
JP2005101413A (ja) * 2003-09-26 2005-04-14 Disco Abrasive Syst Ltd 薄板状被加工物の分割方法及び装置
JP4175636B2 (ja) * 2003-10-31 2008-11-05 株式会社日本製鋼所 ガラスの切断方法
JP4598407B2 (ja) * 2004-01-09 2010-12-15 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4601965B2 (ja) * 2004-01-09 2010-12-22 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4509578B2 (ja) 2004-01-09 2010-07-21 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP2005268752A (ja) 2004-02-19 2005-09-29 Canon Inc レーザ割断方法、被割断部材および半導体素子チップ
US7718510B2 (en) * 2004-03-30 2010-05-18 Hamamatsu Photonics K.K. Laser processing method and semiconductor chip
JP5138219B2 (ja) 2004-03-30 2013-02-06 浜松ホトニクス株式会社 レーザ加工方法
US7491288B2 (en) * 2004-06-07 2009-02-17 Fujitsu Limited Method of cutting laminate with laser and laminate
JP4938998B2 (ja) * 2004-06-07 2012-05-23 富士通株式会社 基板及び積層体の切断方法、並びに積層体の製造方法
JP2006040949A (ja) * 2004-07-22 2006-02-09 Advanced Lcd Technologies Development Center Co Ltd レーザー結晶化装置及びレーザー結晶化方法
CN100548564C (zh) * 2004-08-06 2009-10-14 浜松光子学株式会社 激光加工方法及半导体装置
KR100628276B1 (ko) * 2004-11-05 2006-09-27 엘지.필립스 엘시디 주식회사 스크라이브 장비 및 이를 구비한 기판의 절단장치 및이것을 이용한 기판의 절단방법
JP2006173428A (ja) * 2004-12-17 2006-06-29 Seiko Epson Corp 基板加工方法及び素子製造方法
JP4809632B2 (ja) * 2005-06-01 2011-11-09 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP4776994B2 (ja) * 2005-07-04 2011-09-21 浜松ホトニクス株式会社 加工対象物切断方法
JP4762653B2 (ja) * 2005-09-16 2011-08-31 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP2007095952A (ja) * 2005-09-28 2007-04-12 Tokyo Seimitsu Co Ltd レーザーダイシング装置及びレーザーダイシング方法
US7723718B1 (en) * 2005-10-11 2010-05-25 SemiLEDs Optoelectronics Co., Ltd. Epitaxial structure for metal devices
WO2007055010A1 (ja) 2005-11-10 2007-05-18 Renesas Technology Corp. 半導体装置の製造方法および半導体装置
JP2007165850A (ja) * 2005-11-16 2007-06-28 Denso Corp ウェハおよびウェハの分断方法
JP4923874B2 (ja) * 2005-11-16 2012-04-25 株式会社デンソー 半導体ウェハ
JP2007142001A (ja) * 2005-11-16 2007-06-07 Denso Corp レーザ加工装置およびレーザ加工方法
US7838331B2 (en) * 2005-11-16 2010-11-23 Denso Corporation Method for dicing semiconductor substrate
JP4830740B2 (ja) * 2005-11-16 2011-12-07 株式会社デンソー 半導体チップの製造方法
US20070111480A1 (en) * 2005-11-16 2007-05-17 Denso Corporation Wafer product and processing method therefor
US7662668B2 (en) * 2005-11-16 2010-02-16 Denso Corporation Method for separating a semiconductor substrate into a plurality of chips along with a cutting line on the semiconductor substrate
JP2007165851A (ja) * 2005-11-16 2007-06-28 Denso Corp ダイシングシートフレーム
KR100858983B1 (ko) * 2005-11-16 2008-09-17 가부시키가이샤 덴소 반도체 장치 및 반도체 기판 다이싱 방법
JP4907965B2 (ja) * 2005-11-25 2012-04-04 浜松ホトニクス株式会社 レーザ加工方法
JP2007165706A (ja) * 2005-12-15 2007-06-28 Renesas Technology Corp 半導体集積回路装置の製造方法
JP4804911B2 (ja) * 2005-12-22 2011-11-02 浜松ホトニクス株式会社 レーザ加工装置
JP4907984B2 (ja) 2005-12-27 2012-04-04 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップ
US7960202B2 (en) * 2006-01-18 2011-06-14 Hamamatsu Photonics K.K. Photodiode array having semiconductor substrate and crystal fused regions and method for making thereof
GB2434767A (en) * 2006-02-02 2007-08-08 Xsil Technology Ltd Laser machining
US20070181545A1 (en) * 2006-02-06 2007-08-09 Boyette James E Method and apparatus for controlling sample position during material removal or addition
JP4322881B2 (ja) 2006-03-14 2009-09-02 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
US20070298529A1 (en) * 2006-05-31 2007-12-27 Toyoda Gosei, Co., Ltd. Semiconductor light-emitting device and method for separating semiconductor light-emitting devices
JP4480728B2 (ja) * 2006-06-09 2010-06-16 パナソニック株式会社 Memsマイクの製造方法
JP5183892B2 (ja) 2006-07-03 2013-04-17 浜松ホトニクス株式会社 レーザ加工方法
ES2428826T3 (es) * 2006-07-03 2013-11-11 Hamamatsu Photonics K.K. Procedimiento de procesamiento por láser y chip
US8188404B2 (en) * 2006-09-19 2012-05-29 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
JP4954653B2 (ja) 2006-09-19 2012-06-20 浜松ホトニクス株式会社 レーザ加工方法
JP5101073B2 (ja) * 2006-10-02 2012-12-19 浜松ホトニクス株式会社 レーザ加工装置
JP4964554B2 (ja) * 2006-10-03 2012-07-04 浜松ホトニクス株式会社 レーザ加工方法
JP5132911B2 (ja) * 2006-10-03 2013-01-30 浜松ホトニクス株式会社 レーザ加工方法
KR101428824B1 (ko) * 2006-10-04 2014-08-11 하마마츠 포토닉스 가부시키가이샤 레이저 가공방법
US7892891B2 (en) * 2006-10-11 2011-02-22 SemiLEDs Optoelectronics Co., Ltd. Die separation
GB0622232D0 (en) * 2006-11-08 2006-12-20 Rumsby Philip T Method and apparatus for laser beam alignment for solar panel scribing
KR20080075398A (ko) * 2007-02-12 2008-08-18 주식회사 토비스 대형 티에프티-엘씨디 패널의 커팅방법
DE202007004412U1 (de) * 2007-03-22 2008-07-24 STABILA Messgeräte Gustav Ullrich GmbH Wasserwaage
US20080232419A1 (en) * 2007-03-22 2008-09-25 Seiko Epson Corporation Laser array chip, laser module, manufacturing method for manufacturing laser module, manufacturing method for manufacturing laser light source, laser light source, illumination device, monitor, and projector
JP5336054B2 (ja) * 2007-07-18 2013-11-06 浜松ホトニクス株式会社 加工情報供給装置を備える加工情報供給システム
JP2009049390A (ja) * 2007-07-25 2009-03-05 Rohm Co Ltd 窒化物半導体素子およびその製造方法
JP2009032970A (ja) * 2007-07-27 2009-02-12 Rohm Co Ltd 窒化物半導体素子の製造方法
WO2009020033A1 (ja) * 2007-08-03 2009-02-12 Nichia Corporation 半導体発光素子及びその製造方法
JP4402708B2 (ja) 2007-08-03 2010-01-20 浜松ホトニクス株式会社 レーザ加工方法、レーザ加工装置及びその製造方法
JP2009044600A (ja) * 2007-08-10 2009-02-26 Panasonic Corp マイクロホン装置およびその製造方法
JP5225639B2 (ja) * 2007-09-06 2013-07-03 浜松ホトニクス株式会社 半導体レーザ素子の製造方法
JP5449665B2 (ja) * 2007-10-30 2014-03-19 浜松ホトニクス株式会社 レーザ加工方法
US20100247836A1 (en) * 2007-11-07 2010-09-30 Claus Peter Kluge Method for the laser ablation of brittle components
JP5054496B2 (ja) * 2007-11-30 2012-10-24 浜松ホトニクス株式会社 加工対象物切断方法
JP5134928B2 (ja) * 2007-11-30 2013-01-30 浜松ホトニクス株式会社 加工対象物研削方法
JP2010021398A (ja) * 2008-07-11 2010-01-28 Disco Abrasive Syst Ltd ウェーハの処理方法
KR100993088B1 (ko) * 2008-07-22 2010-11-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
JP5692969B2 (ja) 2008-09-01 2015-04-01 浜松ホトニクス株式会社 収差補正方法、この収差補正方法を用いたレーザ加工方法、この収差補正方法を用いたレーザ照射方法、収差補正装置、及び、収差補正プログラム
US8051679B2 (en) * 2008-09-29 2011-11-08 Corning Incorporated Laser separation of glass sheets
TWI419203B (zh) * 2008-10-16 2013-12-11 Sumco Corp 具吸附槽之固態攝影元件用磊晶基板、半導體裝置、背照式固態攝影元件及其製造方法
JP5254761B2 (ja) 2008-11-28 2013-08-07 浜松ホトニクス株式会社 レーザ加工装置
JP5241527B2 (ja) 2009-01-09 2013-07-17 浜松ホトニクス株式会社 レーザ加工装置
JP5241525B2 (ja) 2009-01-09 2013-07-17 浜松ホトニクス株式会社 レーザ加工装置
WO2010090111A1 (ja) 2009-02-09 2010-08-12 浜松ホトニクス株式会社 加工対象物切断方法
US8347651B2 (en) * 2009-02-19 2013-01-08 Corning Incorporated Method of separating strengthened glass
BR122019015544B1 (pt) 2009-02-25 2020-12-22 Nichia Corporation método para fabricar um elemento semicondutor, e, elemento semicondutor
US9035216B2 (en) 2009-04-07 2015-05-19 Hamamatsu Photonics K.K. Method and device for controlling interior fractures by controlling the laser pulse width
JP5491761B2 (ja) 2009-04-20 2014-05-14 浜松ホトニクス株式会社 レーザ加工装置
JP2010274328A (ja) * 2009-04-30 2010-12-09 Mitsuboshi Diamond Industrial Co Ltd レーザ加工方法及びレーザ加工装置
JP5258671B2 (ja) * 2009-05-28 2013-08-07 三菱化学株式会社 窒化物系半導体素子の製造方法
EP2465634B1 (en) 2009-08-11 2021-11-10 Hamamatsu Photonics K.K. Laser machining device and laser machining method
JP5379604B2 (ja) 2009-08-21 2013-12-25 浜松ホトニクス株式会社 レーザ加工方法及びチップ
US8932510B2 (en) 2009-08-28 2015-01-13 Corning Incorporated Methods for laser cutting glass substrates
JP2011060848A (ja) * 2009-09-07 2011-03-24 Nitto Denko Corp 熱硬化型ダイボンドフィルム、ダイシング・ダイボンドフィルム、及び、半導体装置
JP5446631B2 (ja) * 2009-09-10 2014-03-19 アイシン精機株式会社 レーザ加工方法及びレーザ加工装置
US8946590B2 (en) 2009-11-30 2015-02-03 Corning Incorporated Methods for laser scribing and separating glass substrates
US20110127242A1 (en) * 2009-11-30 2011-06-02 Xinghua Li Methods for laser scribing and separating glass substrates
US20130256286A1 (en) * 2009-12-07 2013-10-03 Ipg Microsystems Llc Laser processing using an astigmatic elongated beam spot and using ultrashort pulses and/or longer wavelengths
JP2011142297A (ja) * 2009-12-08 2011-07-21 Hitachi Via Mechanics Ltd 薄膜太陽電池製造方法及びレーザスクライブ装置
JP5056839B2 (ja) 2009-12-25 2012-10-24 三星ダイヤモンド工業株式会社 被加工物の加工方法および被加工物の分割方法
JP5558129B2 (ja) * 2010-02-05 2014-07-23 株式会社ディスコ 光デバイスウエーハの加工方法
JP2011165766A (ja) * 2010-02-05 2011-08-25 Disco Abrasive Syst Ltd 光デバイスウエーハの加工方法
JP5558128B2 (ja) * 2010-02-05 2014-07-23 株式会社ディスコ 光デバイスウエーハの加工方法
DE102010009015A1 (de) * 2010-02-24 2011-08-25 OSRAM Opto Semiconductors GmbH, 93055 Verfahren zum Herstellen einer Mehrzahl von optoelektronischen Halbleiterchips
US8951889B2 (en) * 2010-04-16 2015-02-10 Qmc Co., Ltd. Laser processing method and laser processing apparatus
KR100984719B1 (ko) * 2010-04-16 2010-10-01 유병소 레이저 가공장치
US8950217B2 (en) 2010-05-14 2015-02-10 Hamamatsu Photonics K.K. Method of cutting object to be processed, method of cutting strengthened glass sheet and method of manufacturing strengthened glass member
JP5670647B2 (ja) 2010-05-14 2015-02-18 浜松ホトニクス株式会社 加工対象物切断方法
JP2012000636A (ja) 2010-06-16 2012-01-05 Showa Denko Kk レーザ加工方法
KR20130031377A (ko) * 2010-07-12 2013-03-28 필레이저 유에스에이 엘엘시 레이저 필라멘테이션에 의한 재료 가공 방법
JP5559623B2 (ja) * 2010-07-15 2014-07-23 株式会社ディスコ 分割方法
JP5104919B2 (ja) * 2010-07-23 2012-12-19 三星ダイヤモンド工業株式会社 レーザー加工装置、被加工物の加工方法および被加工物の分割方法
JP5104920B2 (ja) * 2010-07-23 2012-12-19 三星ダイヤモンド工業株式会社 レーザー加工装置、被加工物の加工方法および被加工物の分割方法
JP5599675B2 (ja) * 2010-08-16 2014-10-01 株式会社ディスコ Ledデバイスチップの製造方法
TWI513670B (zh) 2010-08-31 2015-12-21 Corning Inc 分離強化玻璃基板之方法
US8722516B2 (en) 2010-09-28 2014-05-13 Hamamatsu Photonics K.K. Laser processing method and method for manufacturing light-emitting device
TWI469842B (zh) * 2010-09-30 2015-01-21 Mitsuboshi Diamond Ind Co Ltd 雷射加工裝置、被加工物之加工方法及被加工物之分割方法
JP2012079936A (ja) 2010-10-01 2012-04-19 Nitto Denko Corp ダイシング・ダイボンドフィルム、及び、半導体装置の製造方法
KR101259580B1 (ko) * 2010-10-15 2013-04-30 한국과학기술원 펄스 레이저의 분산 조절을 이용한 레이저 가공장치 및 가공방법
JP2012089721A (ja) * 2010-10-21 2012-05-10 Toshiba Corp 半導体装置の製造方法、半導体装置
JP5608521B2 (ja) * 2010-11-26 2014-10-15 新光電気工業株式会社 半導体ウエハの分割方法と半導体チップ及び半導体装置
EP2471627B1 (de) * 2010-12-29 2014-01-08 W. Blösch AG Verfahren zur Herstellung von mechanischen Werkstücken aus einer Platte aus monokristallinem Silizium
CN104647840B (zh) 2011-05-13 2017-06-06 日本电气硝子株式会社 层叠体、层叠体的切断方法和层叠体的加工方法、以及脆性板状物的切断装置和切断方法
JP2013012559A (ja) * 2011-06-29 2013-01-17 Nichia Chem Ind Ltd 発光素子の製造方法
RU2469433C1 (ru) * 2011-07-13 2012-12-10 Юрий Георгиевич Шретер Способ лазерного отделения эпитаксиальной пленки или слоя эпитаксиальной пленки от ростовой подложки эпитаксиальной полупроводниковой структуры (варианты)
TWI409886B (zh) * 2011-08-05 2013-09-21 Powertech Technology Inc 防止晶粒破裂之晶粒拾取方法與裝置
CN102324450A (zh) * 2011-09-09 2012-01-18 上海蓝光科技有限公司 GaN基发光二极管芯片及其制备方法
CN102290505B (zh) * 2011-09-09 2014-04-30 上海蓝光科技有限公司 GaN基发光二极管芯片及其制造方法
JP5894754B2 (ja) * 2011-09-16 2016-03-30 浜松ホトニクス株式会社 レーザ加工方法
KR101293595B1 (ko) * 2011-11-07 2013-08-13 디에이치케이솔루션(주) 웨이퍼 다이싱 방법 및 그에 의해 제조되는 소자
US8624348B2 (en) 2011-11-11 2014-01-07 Invensas Corporation Chips with high fracture toughness through a metal ring
JP2013126682A (ja) * 2011-11-18 2013-06-27 Hamamatsu Photonics Kk レーザ加工方法
US8677783B2 (en) * 2011-11-28 2014-03-25 Corning Incorporated Method for low energy separation of a glass ribbon
JP5385999B2 (ja) * 2012-02-20 2014-01-08 株式会社レーザーシステム レーザ加工方法
JP2013188785A (ja) * 2012-03-15 2013-09-26 Mitsuboshi Diamond Industrial Co Ltd 被加工物の加工方法および分割方法
TW201343296A (zh) * 2012-03-16 2013-11-01 Ipg Microsystems Llc 使一工件中具有延伸深度虛飾之雷射切割系統及方法
JP5902529B2 (ja) * 2012-03-28 2016-04-13 株式会社ディスコ レーザ加工方法
JP2013237097A (ja) * 2012-05-17 2013-11-28 Disco Corp 改質層形成方法
US9938180B2 (en) * 2012-06-05 2018-04-10 Corning Incorporated Methods of cutting glass using a laser
CN102749746B (zh) * 2012-06-21 2015-02-18 深圳市华星光电技术有限公司 液晶基板切割装置及液晶基板切割方法
CN103537805B (zh) * 2012-07-17 2016-05-25 大族激光科技产业集团股份有限公司 晶圆片激光切割方法及晶圆片加工方法
CN102751400B (zh) * 2012-07-18 2016-02-10 合肥彩虹蓝光科技有限公司 一种含金属背镀的半导体原件的切割方法
JP5965239B2 (ja) * 2012-07-31 2016-08-03 三星ダイヤモンド工業株式会社 貼り合わせ基板の加工方法並びに加工装置
WO2014022681A1 (en) 2012-08-01 2014-02-06 Gentex Corporation Assembly with laser induced channel edge and method thereof
JP6053381B2 (ja) * 2012-08-06 2016-12-27 株式会社ディスコ ウェーハの分割方法
KR101358672B1 (ko) * 2012-08-13 2014-02-11 한국과학기술원 극초단 펄스 레이저를 이용한 투명시편 절단방법 및 다이싱 장치
US9610653B2 (en) 2012-09-21 2017-04-04 Electro Scientific Industries, Inc. Method and apparatus for separation of workpieces and articles produced thereby
JP2014096526A (ja) * 2012-11-12 2014-05-22 Disco Abrasive Syst Ltd ウエーハの加工方法
WO2014079478A1 (en) 2012-11-20 2014-05-30 Light In Light Srl High speed laser processing of transparent materials
EP2754524B1 (de) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie
EP2781296B1 (de) 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Vorrichtung und verfahren zum ausschneiden von konturen aus flächigen substraten mittels laser
KR101857336B1 (ko) 2013-04-04 2018-05-11 엘피케이에프 레이저 앤드 일렉트로닉스 악티엔게젤샤프트 기판을 분리시키기 위한 방법 및 장치
WO2015008189A2 (en) 2013-07-18 2015-01-22 Koninklijke Philips N.V. Dicing a wafer of light emitting devices
US20150034613A1 (en) * 2013-08-02 2015-02-05 Rofin-Sinar Technologies Inc. System for performing laser filamentation within transparent materials
US9640714B2 (en) 2013-08-29 2017-05-02 Nichia Corporation Method for manufacturing light emitting element
DE102014013107A1 (de) 2013-10-08 2015-04-09 Siltectra Gmbh Neuartiges Waferherstellungsverfahren
DE102013016693A1 (de) * 2013-10-08 2015-04-09 Siltectra Gmbh Herstellungsverfahren für Festkörperelemente mittels Laserbehandlung und temperaturinduzierten Spannungen
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9517963B2 (en) 2013-12-17 2016-12-13 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US20150165560A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Laser processing of slots and holes
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US9209082B2 (en) 2014-01-03 2015-12-08 International Business Machines Corporation Methods of localized hardening of dicing channel by applying localized heat in wafer kerf
WO2015162445A1 (fr) 2014-04-25 2015-10-29 Arcelormittal Investigación Y Desarrollo Sl Procede et dispositif de preparation de toles d'acier aluminiees destinees a etre soudees puis durcies sous presse; flan soude correspondant
US9636783B2 (en) 2014-04-30 2017-05-02 International Business Machines Corporation Method and apparatus for laser dicing of wafers
KR20150130835A (ko) * 2014-05-14 2015-11-24 주식회사 이오테크닉스 금속층이 형성된 반도체 웨이퍼를 절단하는 레이저 가공 방법 및 레이저 가공 장치
CN106414352B (zh) * 2014-05-29 2020-07-07 Agc株式会社 光学玻璃及玻璃基板的切断方法
US9165832B1 (en) * 2014-06-30 2015-10-20 Applied Materials, Inc. Method of die singulation using laser ablation and induction of internal defects with a laser
EP3166895B1 (en) 2014-07-08 2021-11-24 Corning Incorporated Methods and apparatuses for laser processing materials
TWI614914B (zh) 2014-07-11 2018-02-11 晶元光電股份有限公司 發光元件及其製造方法
EP3552753A3 (en) * 2014-07-14 2019-12-11 Corning Incorporated System for and method of processing transparent materials using laser beam focal lines adjustable in length and diameter
WO2016010949A1 (en) 2014-07-14 2016-01-21 Corning Incorporated Method and system for forming perforations
JP6788571B2 (ja) 2014-07-14 2020-11-25 コーニング インコーポレイテッド 界面ブロック、そのような界面ブロックを使用する、ある波長範囲内で透過する基板を切断するためのシステムおよび方法
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
CN111430511A (zh) * 2014-07-25 2020-07-17 晶元光电股份有限公司 发光元件及其制造方法
US9859162B2 (en) 2014-09-11 2018-01-02 Alta Devices, Inc. Perforation of films for separation
US10074565B2 (en) * 2014-10-13 2018-09-11 Evana Technologies, Uab Method of laser processing for substrate cleaving or dicing through forming “spike-like” shaped damage structures
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
EP3708548A1 (en) 2015-01-12 2020-09-16 Corning Incorporated Laser cutting of thermally tempered substrates using the multiphoton absorption method
JP6395632B2 (ja) * 2015-02-09 2018-09-26 株式会社ディスコ ウエーハの生成方法
JP6395633B2 (ja) * 2015-02-09 2018-09-26 株式会社ディスコ ウエーハの生成方法
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
JP2018516215A (ja) 2015-03-27 2018-06-21 コーニング インコーポレイテッド 気体透過性窓、および、その製造方法
DE102015004603A1 (de) 2015-04-09 2016-10-13 Siltectra Gmbh Kombiniertes Waferherstellungsverfahren mit Laserbehandlung und temperaturinduzierten Spannungen
US9985839B2 (en) * 2015-07-08 2018-05-29 Fedex Corporate Services, Inc. Systems, apparatus, and methods of event monitoring for an event candidate within a wireless node network based upon sighting events, sporadic events, and benchmark checkpoint events
EP3319911B1 (en) 2015-07-10 2023-04-19 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
JP6498553B2 (ja) * 2015-07-17 2019-04-10 株式会社ディスコ レーザー加工装置
US20170197868A1 (en) * 2016-01-08 2017-07-13 Apple Inc. Laser Processing of Electronic Device Structures
US10518358B1 (en) 2016-01-28 2019-12-31 AdlOptica Optical Systems GmbH Multi-focus optics
KR102300061B1 (ko) * 2016-03-22 2021-09-09 실텍트라 게엠베하 분리될 고형체의 결합된 레이저 처리 방법
WO2017192835A1 (en) 2016-05-06 2017-11-09 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US10410883B2 (en) 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
CN109803934A (zh) 2016-07-29 2019-05-24 康宁股份有限公司 用于激光处理的装置和方法
WO2018044843A1 (en) 2016-08-30 2018-03-08 Corning Incorporated Laser processing of transparent materials
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
EP3848333A1 (en) 2016-10-24 2021-07-14 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
EP3551373A1 (de) 2016-12-12 2019-10-16 Siltectra GmbH Verfahren zum dünnen von mit bauteilen versehenen festkörperschichten
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
JP6821259B2 (ja) * 2017-04-17 2021-01-27 株式会社ディスコ 被加工物の加工方法
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
KR101987192B1 (ko) * 2017-06-14 2019-09-30 주식회사 이오테크닉스 가공물 절단 장치
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
KR20200049800A (ko) * 2017-08-25 2020-05-08 코닝 인코포레이티드 어포컬 빔 조정 조립체를 사용하여 투명 가공물을 레이저 가공하는 장치 및 방법
DE102017121679A1 (de) * 2017-09-19 2019-03-21 Osram Opto Semiconductors Gmbh Verfahren zum Vereinzeln von Halbleiterbauteilen und Halbleiterbauteil
US11289621B2 (en) 2017-11-29 2022-03-29 Nichia Corporation Method for producing semiconductor light emitting element
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
CN108788488A (zh) * 2018-06-12 2018-11-13 华丰源(成都)新能源科技有限公司 一种激光切割装置及其控制方法
DE102018115205A1 (de) * 2018-06-25 2020-01-02 Vishay Electronic Gmbh Verfahren zur Herstellung einer Vielzahl von Widerstandsbaueinheiten
US10589445B1 (en) * 2018-10-29 2020-03-17 Semivation, LLC Method of cleaving a single crystal substrate parallel to its active planar surface and method of using the cleaved daughter substrate
EP3670062A1 (en) * 2018-12-20 2020-06-24 Thales Dis France SA Method for cutting an ink sticker in a multilayer structure and method for printing the ink sticker onto a substrate
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
US20220020705A1 (en) * 2020-07-20 2022-01-20 Western Digital Technologies, Inc. Semiconductor wafer thinned by stealth lasing
US11377758B2 (en) 2020-11-23 2022-07-05 Stephen C. Baer Cleaving thin wafers from crystals
JP2022102471A (ja) * 2020-12-25 2022-07-07 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
CN114512412B (zh) * 2022-04-20 2022-07-12 苏州科阳半导体有限公司 一种声表面波滤波器晶圆封装方法及芯片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111800A (ja) * 1990-08-31 1992-04-13 Nippon Sekiei Glass Kk 石英ガラス材料の切断加工方法
US5211805A (en) * 1990-12-19 1993-05-18 Rangaswamy Srinivasan Cutting of organic solids by continuous wave ultraviolet irradiation
JPH10305420A (ja) * 1997-03-04 1998-11-17 Ngk Insulators Ltd 酸化物単結晶からなる母材の加工方法、機能性デバイスの製造方法
WO2002022301A1 (fr) * 2000-09-13 2002-03-21 Hamamatsu Photonics K.K. Procede et dispositif d'usinage par rayonnement laser

Family Cites Families (265)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3448510A (en) * 1966-05-20 1969-06-10 Western Electric Co Methods and apparatus for separating articles initially in a compact array,and composite assemblies so formed
US3629545A (en) * 1967-12-19 1971-12-21 Western Electric Co Laser substrate parting
GB1246481A (en) 1968-03-29 1971-09-15 Pilkington Brothers Ltd Improvements in or relating to the cutting of glass
US3613974A (en) 1969-03-10 1971-10-19 Saint Gobain Apparatus for cutting glass
JPS4812599B1 (ja) * 1969-07-09 1973-04-21
US3610871A (en) * 1970-02-19 1971-10-05 Western Electric Co Initiation of a controlled fracture
US3626141A (en) * 1970-04-30 1971-12-07 Quantronix Corp Laser scribing apparatus
US3824678A (en) * 1970-08-31 1974-07-23 North American Rockwell Process for laser scribing beam lead semiconductor wafers
US3909582A (en) * 1971-07-19 1975-09-30 American Can Co Method of forming a line of weakness in a multilayer laminate
US3790744A (en) * 1971-07-19 1974-02-05 American Can Co Method of forming a line of weakness in a multilayer laminate
US3790051A (en) * 1971-09-07 1974-02-05 Radiant Energy Systems Semiconductor wafer fracturing technique employing a pressure controlled roller
US3970819A (en) * 1974-11-25 1976-07-20 International Business Machines Corporation Backside laser dicing system
US4092518A (en) * 1976-12-07 1978-05-30 Laser Technique S.A. Method of decorating a transparent plastics material article by means of a laser beam
US4242152A (en) * 1979-05-14 1980-12-30 National Semiconductor Corporation Method for adjusting the focus and power of a trimming laser
JPS6041478B2 (ja) * 1979-09-10 1985-09-17 富士通株式会社 半導体レ−ザ素子の製造方法
US4336439A (en) * 1980-10-02 1982-06-22 Coherent, Inc. Method and apparatus for laser scribing and cutting
JPS5854648A (ja) * 1981-09-28 1983-03-31 Nippon Kogaku Kk <Nikon> 位置合わせ装置
US4475027A (en) * 1981-11-17 1984-10-02 Allied Corporation Optical beam homogenizer
WO1984002296A1 (en) 1982-12-17 1984-06-21 Inoue Japax Res Laser machining apparatus
US4546231A (en) 1983-11-14 1985-10-08 Group Ii Manufacturing Ltd. Creation of a parting zone in a crystal structure
JPS59130438A (ja) * 1983-11-28 1984-07-27 Hitachi Ltd 板状物の分離法
US4650619A (en) * 1983-12-29 1987-03-17 Toshiba Ceramics Co., Ltd. Method of machining a ceramic member
JPS60144985A (ja) * 1983-12-30 1985-07-31 Fujitsu Ltd 半導体発光素子の製造方法
US4562333A (en) * 1984-09-04 1985-12-31 General Electric Company Stress assisted cutting of high temperature embrittled materials
JPH0746353B2 (ja) * 1984-10-19 1995-05-17 セイコーエプソン株式会社 日本語文章入力装置
JPS61229487A (ja) * 1985-04-03 1986-10-13 Sasaki Glass Kk レ−ザビ−ムによるガラス切断方法
JPS6240986A (ja) * 1985-08-20 1987-02-21 Fuji Electric Corp Res & Dev Ltd レ−ザ−加工方法
AU584563B2 (en) * 1986-01-31 1989-05-25 Ciba-Geigy Ag Laser marking of ceramic materials, glazes, glass ceramics and glasses
US4691093A (en) 1986-04-22 1987-09-01 United Technologies Corporation Twin spot laser welding
FR2605310B1 (fr) * 1986-10-16 1992-04-30 Comp Generale Electricite Procede de renforcement de pieces ceramiques par traitement au laser
US4815854A (en) * 1987-01-19 1989-03-28 Nec Corporation Method of alignment between mask and semiconductor wafer
US4981525A (en) * 1988-02-19 1991-01-01 Sanyo Electric Co., Ltd. Photovoltaic device
JPH0256987A (ja) * 1988-02-23 1990-02-26 Mitsubishi Electric Corp 混成集積回路の実装方法
JPH01133701U (ja) * 1988-03-07 1989-09-12
JP2680039B2 (ja) 1988-06-08 1997-11-19 株式会社日立製作所 光情報記録再生方法及び記録再生装置
JP2507665B2 (ja) * 1989-05-09 1996-06-12 株式会社東芝 電子管用金属円筒部材の製造方法
JP2891264B2 (ja) * 1990-02-09 1999-05-17 ローム 株式会社 半導体装置の製造方法
US5132505A (en) * 1990-03-21 1992-07-21 U.S. Philips Corporation Method of cleaving a brittle plate and device for carrying out the method
JPH03276662A (ja) * 1990-03-26 1991-12-06 Nippon Steel Corp ウエハ割断法
JPH04167985A (ja) * 1990-10-31 1992-06-16 Nagasaki Pref Gov ウェハの割断方法
FR2669427B1 (fr) * 1990-11-16 1993-01-22 Thomson Csf Dispositif de controle d'alignement de deux voies optiques et systeme de designation laser equipe d'un tel dispositif de controle.
JP2992088B2 (ja) * 1990-12-26 1999-12-20 東レ・ダウコーニング・シリコーン株式会社 シリコーンゴム組成物
JPH0639572A (ja) * 1991-01-11 1994-02-15 Souei Tsusho Kk ウェハ割断装置
IL97479A (en) 1991-03-08 1994-01-25 Shafir Aaron Laser beam heating method and apparatus
JPH04300084A (ja) * 1991-03-28 1992-10-23 Toshiba Corp レーザ加工機
US5171249A (en) 1991-04-04 1992-12-15 Ethicon, Inc. Endoscopic multiple ligating clip applier
JP3213338B2 (ja) * 1991-05-15 2001-10-02 株式会社リコー 薄膜半導体装置の製法
US5230184A (en) * 1991-07-05 1993-07-27 Motorola, Inc. Distributed polishing head
US5762744A (en) 1991-12-27 1998-06-09 Rohm Co., Ltd. Method of producing a semiconductor device using an expand tape
GB2263195B (en) * 1992-01-08 1996-03-20 Murata Manufacturing Co Component supply method
RU2024441C1 (ru) * 1992-04-02 1994-12-15 Владимир Степанович Кондратенко Способ резки неметаллических материалов
US5254149A (en) * 1992-04-06 1993-10-19 Ford Motor Company Process for determining the quality of temper of a glass sheet using a laser beam
JP3088193B2 (ja) * 1992-06-05 2000-09-18 三菱電機株式会社 Loc構造を有する半導体装置の製造方法並びにこれに使用するリードフレーム
GB9216643D0 (en) * 1992-08-05 1992-09-16 Univ Loughborough Automatic operations on materials
AU5872994A (en) 1992-12-18 1994-07-19 Firebird Traders Ltd. Process and apparatus for etching an image within a solid article
JP2720744B2 (ja) 1992-12-28 1998-03-04 三菱電機株式会社 レーザ加工機
US5382770A (en) * 1993-01-14 1995-01-17 Reliant Laser Corporation Mirror-based laser-processing system with visual tracking and position control of a moving laser spot
US5637244A (en) * 1993-05-13 1997-06-10 Podarok International, Inc. Method and apparatus for creating an image by a pulsed laser beam inside a transparent material
WO1994029069A1 (fr) * 1993-06-04 1994-12-22 Seiko Epson Corporation Appareil et procede d'usinage au laser, et panneau a cristaux liquides
US5580473A (en) * 1993-06-21 1996-12-03 Sanyo Electric Co. Ltd. Methods of removing semiconductor film with energy beams
GB2281129B (en) * 1993-08-19 1997-04-09 United Distillers Plc Method of marking a body of glass
US5376793A (en) 1993-09-15 1994-12-27 Stress Photonics, Inc. Forced-diffusion thermal imaging apparatus and method
DE4404141A1 (de) * 1994-02-09 1995-08-10 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur Laserstrahlformung, insbesondere bei der Laserstrahl-Oberflächenbearbeitung
JP3162255B2 (ja) * 1994-02-24 2001-04-25 三菱電機株式会社 レーザ加工方法及びその装置
US5656186A (en) * 1994-04-08 1997-08-12 The Regents Of The University Of Michigan Method for controlling configuration of laser induced breakdown and ablation
US5622540A (en) * 1994-09-19 1997-04-22 Corning Incorporated Method for breaking a glass sheet
US5776220A (en) * 1994-09-19 1998-07-07 Corning Incorporated Method and apparatus for breaking brittle materials
JP3374880B2 (ja) 1994-10-26 2003-02-10 三菱電機株式会社 半導体装置の製造方法、及び半導体装置
JP3535241B2 (ja) * 1994-11-18 2004-06-07 株式会社半導体エネルギー研究所 半導体デバイス及びその作製方法
US5543365A (en) * 1994-12-02 1996-08-06 Texas Instruments Incorporated Wafer scribe technique using laser by forming polysilicon
US5841543A (en) * 1995-03-09 1998-11-24 Texas Instruments Incorporated Method and apparatus for verifying the presence of a material applied to a substrate
US5786560A (en) * 1995-03-31 1998-07-28 Panasonic Technologies, Inc. 3-dimensional micromachining with femtosecond laser pulses
KR970008386A (ko) 1995-07-07 1997-02-24 하라 세이지 기판의 할단(割斷)방법 및 그 할단장치
JPH0929472A (ja) * 1995-07-14 1997-02-04 Hitachi Ltd 割断方法、割断装置及びチップ材料
JP3923526B2 (ja) * 1995-08-31 2007-06-06 コーニング インコーポレイテッド 壊れやすい材料の分断方法および装置
US6057525A (en) * 1995-09-05 2000-05-02 United States Enrichment Corporation Method and apparatus for precision laser micromachining
US5641416A (en) * 1995-10-25 1997-06-24 Micron Display Technology, Inc. Method for particulate-free energy beam cutting of a wafer of die assemblies
US5662698A (en) * 1995-12-06 1997-09-02 Ventritex, Inc. Nonshunting endocardial defibrillation lead
KR0171947B1 (ko) 1995-12-08 1999-03-20 김주용 반도체소자 제조를 위한 노광 방법 및 그를 이용한 노광장치
MY118036A (en) * 1996-01-22 2004-08-30 Lintec Corp Wafer dicing/bonding sheet and process for producing semiconductor device
JP3660741B2 (ja) * 1996-03-22 2005-06-15 株式会社日立製作所 電子回路装置の製造方法
EP1016634B1 (en) 1996-03-25 2003-06-04 Nippon Sheet Glass Co., Ltd. A laser processing method for a glass substrate, and a microlens array obtained thereby
JPH09298339A (ja) * 1996-04-30 1997-11-18 Rohm Co Ltd 半導体レーザの製法
DK109197A (da) * 1996-09-30 1998-03-31 Force Instituttet Fremgangsmåde til bearbejdning af et materiale ved hjælp af en laserstråle
JPH10128567A (ja) * 1996-10-30 1998-05-19 Nec Kansai Ltd レーザ割断方法
DE19646332C2 (de) 1996-11-09 2000-08-10 Fraunhofer Ges Forschung Verfahren zur Veränderung des optischen Verhaltens an der Oberfläche und/oder innerhalb eines Werkstückes mittels eines Lasers
US6312800B1 (en) * 1997-02-10 2001-11-06 Lintec Corporation Pressure sensitive adhesive sheet for producing a chip
US6529362B2 (en) * 1997-03-06 2003-03-04 Applied Materials Inc. Monocrystalline ceramic electrostatic chuck
US5976392A (en) * 1997-03-07 1999-11-02 Yageo Corporation Method for fabrication of thin film resistor
US6156030A (en) * 1997-06-04 2000-12-05 Y-Beam Technologies, Inc. Method and apparatus for high precision variable rate material removal and modification
BE1011208A4 (fr) 1997-06-11 1999-06-01 Cuvelier Georges Procede de decalottage de pieces en verre.
DE19728766C1 (de) * 1997-07-07 1998-12-17 Schott Rohrglas Gmbh Verwendung eines Verfahrens zur Herstellung einer Sollbruchstelle bei einem Glaskörper
US6294439B1 (en) 1997-07-23 2001-09-25 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
JP3498895B2 (ja) * 1997-09-25 2004-02-23 シャープ株式会社 基板の切断方法および表示パネルの製造方法
JP3231708B2 (ja) * 1997-09-26 2001-11-26 住友重機械工業株式会社 透明材料のマーキング方法
JP3292294B2 (ja) * 1997-11-07 2002-06-17 住友重機械工業株式会社 レーザを用いたマーキング方法及びマーキング装置
JP3449201B2 (ja) * 1997-11-28 2003-09-22 日亜化学工業株式会社 窒化物半導体素子の製造方法
JP3532100B2 (ja) * 1997-12-03 2004-05-31 日本碍子株式会社 レーザ割断方法
JP3604550B2 (ja) * 1997-12-16 2004-12-22 日亜化学工業株式会社 窒化物半導体素子の製造方法
US6641662B2 (en) * 1998-02-17 2003-11-04 The Trustees Of Columbia University In The City Of New York Method for fabricating ultra thin single-crystal metal oxide wave retarder plates and waveguide polarization mode converter using the same
US6057180A (en) 1998-06-05 2000-05-02 Electro Scientific Industries, Inc. Method of severing electrically conductive links with ultraviolet laser output
JP3152206B2 (ja) 1998-06-19 2001-04-03 日本電気株式会社 オートフォーカス装置及びオートフォーカス方法
JP2000015467A (ja) 1998-07-01 2000-01-18 Shin Meiwa Ind Co Ltd 光による被加工材の加工方法および加工装置
US6181728B1 (en) * 1998-07-02 2001-01-30 General Scanning, Inc. Controlling laser polarization
JP3784543B2 (ja) 1998-07-29 2006-06-14 Ntn株式会社 パターン修正装置および修正方法
JP3156776B2 (ja) * 1998-08-03 2001-04-16 日本電気株式会社 レーザ照射方法
US6407360B1 (en) 1998-08-26 2002-06-18 Samsung Electronics, Co., Ltd. Laser cutting apparatus and method
US6402004B1 (en) * 1998-09-16 2002-06-11 Hoya Corporation Cutting method for plate glass mother material
JP3605651B2 (ja) 1998-09-30 2004-12-22 日立化成工業株式会社 半導体装置の製造方法
JP2000124537A (ja) * 1998-10-21 2000-04-28 Sharp Corp 半導体レーザチップの製造方法とその方法に用いられる製造装置
US6413839B1 (en) 1998-10-23 2002-07-02 Emcore Corporation Semiconductor device separation using a patterned laser projection
US6172329B1 (en) * 1998-11-23 2001-01-09 Minnesota Mining And Manufacturing Company Ablated laser feature shape reproduction control
JP3178524B2 (ja) * 1998-11-26 2001-06-18 住友重機械工業株式会社 レーザマーキング方法と装置及びマーキングされた部材
KR100338983B1 (ko) * 1998-11-30 2002-07-18 윤종용 웨이퍼분리도구및이를이용하는웨이퍼분리방법
US6259058B1 (en) * 1998-12-01 2001-07-10 Accudyne Display And Semiconductor Systems, Inc. Apparatus for separating non-metallic substrates
US6252197B1 (en) * 1998-12-01 2001-06-26 Accudyne Display And Semiconductor Systems, Inc. Method and apparatus for separating non-metallic substrates utilizing a supplemental mechanical force applicator
US6211488B1 (en) * 1998-12-01 2001-04-03 Accudyne Display And Semiconductor Systems, Inc. Method and apparatus for separating non-metallic substrates utilizing a laser initiated scribe
US6420678B1 (en) * 1998-12-01 2002-07-16 Brian L. Hoekstra Method for separating non-metallic substrates
JP2000195828A (ja) 1998-12-25 2000-07-14 Denso Corp ウエハの切断分離方法およびウエハの切断分離装置
US6127005A (en) * 1999-01-08 2000-10-03 Rutgers University Method of thermally glazing an article
JP2000219528A (ja) 1999-01-18 2000-08-08 Samsung Sdi Co Ltd ガラス基板の切断方法及びその装置
EP1022778A1 (en) 1999-01-22 2000-07-26 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
JP3569147B2 (ja) 1999-01-26 2004-09-22 松下電器産業株式会社 基板の切断方法
JP2000210785A (ja) 1999-01-26 2000-08-02 Mitsubishi Heavy Ind Ltd 複数ビ―ムレ―ザ加工装置
JP4040819B2 (ja) 1999-02-03 2008-01-30 株式会社東芝 ウェーハの分割方法及び半導体装置の製造方法
KR100452661B1 (ko) 1999-02-03 2004-10-14 가부시끼가이샤 도시바 웨이퍼의 분할 방법 및 반도체 장치의 제조 방법
JP4119028B2 (ja) 1999-02-19 2008-07-16 小池酸素工業株式会社 レーザーピアシング方法
JP2000237885A (ja) 1999-02-19 2000-09-05 Koike Sanso Kogyo Co Ltd レーザー切断方法
US6208020B1 (en) 1999-02-24 2001-03-27 Matsushita Electronics Corporation Leadframe for use in manufacturing a resin-molded semiconductor device
JP3426154B2 (ja) 1999-02-26 2003-07-14 科学技術振興事業団 グレーティング付き光導波路の製造方法
JP2000247671A (ja) 1999-03-04 2000-09-12 Takatori Corp ガラスの分断方法
TW445545B (en) * 1999-03-10 2001-07-11 Mitsubishi Electric Corp Laser heat treatment method, laser heat treatment apparatus and semiconductor device
JP3648399B2 (ja) 1999-03-18 2005-05-18 株式会社東芝 半導体装置
JP2000323441A (ja) 1999-05-10 2000-11-24 Hitachi Cable Ltd セラミックス基板上に形成した光導波回路チップの切断方法
US6285002B1 (en) * 1999-05-10 2001-09-04 Bryan Kok Ann Ngoi Three dimensional micro machining with a modulated ultra-short laser pulse
US6562698B2 (en) * 1999-06-08 2003-05-13 Kulicke & Soffa Investments, Inc. Dual laser cutting of wafers
US6420245B1 (en) 1999-06-08 2002-07-16 Kulicke & Soffa Investments, Inc. Method for singulating semiconductor wafers
JP2000349107A (ja) 1999-06-09 2000-12-15 Nitto Denko Corp 半導体封止チップモジュールの製造方法及びその固定シート
US6229113B1 (en) 1999-07-19 2001-05-08 United Technologies Corporation Method and apparatus for producing a laser drilled hole in a structure
US6344402B1 (en) * 1999-07-28 2002-02-05 Disco Corporation Method of dicing workpiece
TW404871B (en) 1999-08-02 2000-09-11 Lg Electronics Inc Device and method for machining transparent medium by laser
JP2001047264A (ja) 1999-08-04 2001-02-20 Seiko Epson Corp 電気光学装置およびその製造方法ならびに電子機器
KR100578309B1 (ko) 1999-08-13 2006-05-11 삼성전자주식회사 레이저 커팅 장치 및 이를 이용한 유리 기판 커팅 방법
JP2001064029A (ja) 1999-08-27 2001-03-13 Toyo Commun Equip Co Ltd 多層ガラス基板及び、その切断方法
JP4493127B2 (ja) 1999-09-10 2010-06-30 シャープ株式会社 窒化物半導体チップの製造方法
US6229114B1 (en) * 1999-09-30 2001-05-08 Xerox Corporation Precision laser cutting of adhesive members
US6359254B1 (en) 1999-09-30 2002-03-19 United Technologies Corporation Method for producing shaped hole in a structure
JP3932743B2 (ja) 1999-11-08 2007-06-20 株式会社デンソー 圧接型半導体装置の製造方法
JP4180206B2 (ja) 1999-11-12 2008-11-12 リンテック株式会社 半導体装置の製造方法
US6489588B1 (en) * 1999-11-24 2002-12-03 Applied Photonics, Inc. Method and apparatus for separating non-metallic materials
US6612035B2 (en) * 2000-01-05 2003-09-02 Patrick H. Brown Drywall cutting tool
JP2001196282A (ja) 2000-01-13 2001-07-19 Hitachi Ltd 半導体装置及びその製造方法
JP2001250798A (ja) 2000-03-06 2001-09-14 Sony Corp ケガキ線で材料を分割する方法及び装置
DE10015702A1 (de) 2000-03-29 2001-10-18 Vitro Laser Gmbh Verfahren zum Einbringen wenigstens einer Innengravur in einen flachen Körper und Vorrichtung zum Durchführen des Verfahrens
US6407363B2 (en) * 2000-03-30 2002-06-18 Electro Scientific Industries, Inc. Laser system and method for single press micromachining of multilayer workpieces
JP2001284292A (ja) * 2000-03-31 2001-10-12 Toyoda Gosei Co Ltd 半導体ウエハーのチップ分割方法
WO2001080308A2 (fr) 2000-04-14 2001-10-25 S.O.I.Tec Silicon On Insulator Technologies Procede pour la decoupe d'au moins une couche mince dans un substrat ou lingot, notamment en materiau(x) semi-conducteur(s)
US6333486B1 (en) 2000-04-25 2001-12-25 Igor Troitski Method and laser system for creation of laser-induced damages to produce high quality images
AU2001261402A1 (en) * 2000-05-11 2001-11-20 Ptg Precision Technology Center Limited Llc System for cutting brittle materials
JP4697823B2 (ja) 2000-05-16 2011-06-08 株式会社ディスコ 脆性基板の分割方法
TW443581U (en) 2000-05-20 2001-06-23 Chipmos Technologies Inc Wafer-sized semiconductor package structure
JP2001339638A (ja) 2000-05-26 2001-12-07 Hamamatsu Photonics Kk ストリークカメラ装置
JP2001345252A (ja) 2000-05-30 2001-12-14 Hyper Photon Systens Inc レーザ切断機
JP3650000B2 (ja) 2000-07-04 2005-05-18 三洋電機株式会社 窒化物系半導体レーザ素子および窒化物半導体レーザ装置の製造方法
JP3906653B2 (ja) 2000-07-18 2007-04-18 ソニー株式会社 画像表示装置及びその製造方法
US6376797B1 (en) 2000-07-26 2002-04-23 Ase Americas, Inc. Laser cutting of semiconductor materials
JP2002047025A (ja) 2000-07-31 2002-02-12 Seiko Epson Corp 基板の切断方法、およびこれを用いた電気光学装置の製造方法とこれに用いるレーザ切断装置および電気光学装置と電子機器
JP2002050589A (ja) 2000-08-03 2002-02-15 Sony Corp 半導体ウェーハの延伸分離方法及び装置
US6726631B2 (en) * 2000-08-08 2004-04-27 Ge Parallel Designs, Inc. Frequency and amplitude apodization of transducers
US6325855B1 (en) * 2000-08-09 2001-12-04 Itt Manufacturing Enterprises, Inc. Gas collector for epitaxial reactors
JP3626442B2 (ja) 2000-09-13 2005-03-09 浜松ホトニクス株式会社 レーザ加工方法
JP4762458B2 (ja) 2000-09-13 2011-08-31 浜松ホトニクス株式会社 レーザ加工装置
JP3722731B2 (ja) 2000-09-13 2005-11-30 浜松ホトニクス株式会社 レーザ加工方法
JP2003039184A (ja) 2000-09-13 2003-02-12 Hamamatsu Photonics Kk レーザ加工方法
JP4837320B2 (ja) 2000-09-13 2011-12-14 浜松ホトニクス株式会社 加工対象物切断方法
JP2002192371A (ja) 2000-09-13 2002-07-10 Hamamatsu Photonics Kk レーザ加工方法及びレーザ加工装置
JP3761567B2 (ja) 2000-09-13 2006-03-29 浜松ホトニクス株式会社 レーザ加工方法
JP3751970B2 (ja) 2000-09-13 2006-03-08 浜松ホトニクス株式会社 レーザ加工装置
JP4964376B2 (ja) 2000-09-13 2012-06-27 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
JP2003001458A (ja) 2000-09-13 2003-01-08 Hamamatsu Photonics Kk レーザ加工方法
JP3761565B2 (ja) 2000-09-13 2006-03-29 浜松ホトニクス株式会社 レーザ加工方法
JP3408805B2 (ja) 2000-09-13 2003-05-19 浜松ホトニクス株式会社 切断起点領域形成方法及び加工対象物切断方法
JP3660294B2 (ja) 2000-10-26 2005-06-15 株式会社東芝 半導体装置の製造方法
JP3332910B2 (ja) 2000-11-15 2002-10-07 エヌイーシーマシナリー株式会社 ウェハシートのエキスパンダ
JP2002158276A (ja) 2000-11-20 2002-05-31 Hitachi Chem Co Ltd ウエハ貼着用粘着シートおよび半導体装置
US6875379B2 (en) 2000-12-29 2005-04-05 Amkor Technology, Inc. Tool and method for forming an integrated optical circuit
JP2002226796A (ja) 2001-01-29 2002-08-14 Hitachi Chem Co Ltd ウェハ貼着用粘着シート及び半導体装置
TW521310B (en) 2001-02-08 2003-02-21 Toshiba Corp Laser processing method and apparatus
US6770544B2 (en) * 2001-02-21 2004-08-03 Nec Machinery Corporation Substrate cutting method
SG160191A1 (en) * 2001-02-28 2010-04-29 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
TW473896B (en) 2001-03-20 2002-01-21 Chipmos Technologies Inc A manufacturing process of semiconductor devices
WO2002082540A1 (fr) 2001-03-30 2002-10-17 Fujitsu Limited Dispositif a semi-conducteurs, son procede de fabrication et substrat semi-conducteur connexe
KR100701013B1 (ko) * 2001-05-21 2007-03-29 삼성전자주식회사 레이저 빔을 이용한 비금속 기판의 절단방법 및 장치
JP2003017790A (ja) 2001-07-03 2003-01-17 Matsushita Electric Ind Co Ltd 窒化物系半導体素子及び製造方法
JP2003046177A (ja) 2001-07-31 2003-02-14 Matsushita Electric Ind Co Ltd 半導体レーザの製造方法
JP2003154517A (ja) 2001-11-21 2003-05-27 Seiko Epson Corp 脆性材料の割断加工方法およびその装置、並びに電子部品の製造方法
US6608370B1 (en) * 2002-01-28 2003-08-19 Motorola, Inc. Semiconductor wafer having a thin die and tethers and methods of making the same
US6908784B1 (en) * 2002-03-06 2005-06-21 Micron Technology, Inc. Method for fabricating encapsulated semiconductor components
US7749867B2 (en) * 2002-03-12 2010-07-06 Hamamatsu Photonics K.K. Method of cutting processed object
JP3935186B2 (ja) 2002-03-12 2007-06-20 浜松ホトニクス株式会社 半導体基板の切断方法
JP2006135355A (ja) 2002-03-12 2006-05-25 Hamamatsu Photonics Kk 半導体基板の切断方法
ES2377521T3 (es) * 2002-03-12 2012-03-28 Hamamatsu Photonics K.K. Método para dividir un sustrato
JP2003338636A (ja) 2002-03-12 2003-11-28 Hamamatsu Photonics Kk 発光素子の製造方法、発光ダイオード、及び半導体レーザ素子
JP3670267B2 (ja) 2002-03-12 2005-07-13 浜松ホトニクス株式会社 レーザ加工方法
WO2003076118A1 (fr) 2002-03-12 2003-09-18 Hamamatsu Photonics K.K. Substrat semi-conducteur, puce a semi-conducteur et procede de fabrication d'un dispositif a semi-conducteur
JP4509720B2 (ja) 2002-03-12 2010-07-21 浜松ホトニクス株式会社 レーザ加工方法
JP2003338468A (ja) 2002-03-12 2003-11-28 Hamamatsu Photonics Kk 発光素子の製造方法、発光ダイオード、及び半導体レーザ素子
JP4358502B2 (ja) 2002-03-12 2009-11-04 浜松ホトニクス株式会社 半導体基板の切断方法
TWI326626B (en) 2002-03-12 2010-07-01 Hamamatsu Photonics Kk Laser processing method
DE10213272A1 (de) * 2002-03-25 2003-10-23 Evotec Ag Vorrichtung und Verfahren zur Leitungsankopplung an fluidische Mikrosysteme
US6744009B1 (en) * 2002-04-02 2004-06-01 Seagate Technology Llc Combined laser-scribing and laser-breaking for shaping of brittle substrates
US6787732B1 (en) 2002-04-02 2004-09-07 Seagate Technology Llc Method for laser-scribing brittle substrates and apparatus therefor
TWI520269B (zh) 2002-12-03 2016-02-01 Hamamatsu Photonics Kk Cutting method of semiconductor substrate
JP3683580B2 (ja) * 2002-12-05 2005-08-17 浜松ホトニクス株式会社 レーザ加工装置
JP2004188422A (ja) 2002-12-06 2004-07-08 Hamamatsu Photonics Kk レーザ加工装置及びレーザ加工方法
JP4334864B2 (ja) * 2002-12-27 2009-09-30 日本電波工業株式会社 薄板水晶ウェハ及び水晶振動子の製造方法
JP4188847B2 (ja) 2003-01-14 2008-12-03 富士フイルム株式会社 分析素子用カートリッジ
US7341007B2 (en) 2003-03-05 2008-03-11 Joel Vatsky Balancing damper
FR2852250B1 (fr) * 2003-03-11 2009-07-24 Jean Luc Jouvin Fourreau de protection pour canule, un ensemble d'injection comportant un tel fourreau et aiguille equipee d'un tel fourreau
US8685838B2 (en) * 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method
GB2404280B (en) * 2003-07-03 2006-09-27 Xsil Technology Ltd Die bonding
US7605344B2 (en) * 2003-07-18 2009-10-20 Hamamatsu Photonics K.K. Laser beam machining method, laser beam machining apparatus, and laser beam machining product
JP4563097B2 (ja) 2003-09-10 2010-10-13 浜松ホトニクス株式会社 半導体基板の切断方法
JP2005086175A (ja) 2003-09-11 2005-03-31 Hamamatsu Photonics Kk 半導体薄膜の製造方法、半導体薄膜、半導体薄膜チップ、電子管、及び光検出素子
JP4300084B2 (ja) 2003-09-19 2009-07-22 株式会社リコー 画像形成装置
CN100461561C (zh) * 2004-01-07 2009-02-11 浜松光子学株式会社 半导体发光元件及其制造方法
JP4598407B2 (ja) 2004-01-09 2010-12-15 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4509578B2 (ja) 2004-01-09 2010-07-21 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4601965B2 (ja) * 2004-01-09 2010-12-22 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4536407B2 (ja) 2004-03-30 2010-09-01 浜松ホトニクス株式会社 レーザ加工方法及び加工対象物
JP5138219B2 (ja) 2004-03-30 2013-02-06 浜松ホトニクス株式会社 レーザ加工方法
US7718510B2 (en) * 2004-03-30 2010-05-18 Hamamatsu Photonics K.K. Laser processing method and semiconductor chip
US20110002792A1 (en) * 2004-04-09 2011-01-06 Bartos Ronald P Controller for a motor and a method of controlling the motor
JP4733934B2 (ja) 2004-06-22 2011-07-27 株式会社ディスコ ウエーハの加工方法
JP4634089B2 (ja) * 2004-07-30 2011-02-16 浜松ホトニクス株式会社 レーザ加工方法
CN100548564C (zh) * 2004-08-06 2009-10-14 浜松光子学株式会社 激光加工方法及半导体装置
WO2006039938A1 (en) * 2004-10-12 2006-04-20 Honeywell International Inc. Electrically assisted turbocharger
JP4754801B2 (ja) 2004-10-13 2011-08-24 浜松ホトニクス株式会社 レーザ加工方法
JP4781661B2 (ja) * 2004-11-12 2011-09-28 浜松ホトニクス株式会社 レーザ加工方法
JP4917257B2 (ja) * 2004-11-12 2012-04-18 浜松ホトニクス株式会社 レーザ加工方法
JP4198123B2 (ja) * 2005-03-22 2008-12-17 浜松ホトニクス株式会社 レーザ加工方法
JP4776994B2 (ja) * 2005-07-04 2011-09-21 浜松ホトニクス株式会社 加工対象物切断方法
JP4749799B2 (ja) * 2005-08-12 2011-08-17 浜松ホトニクス株式会社 レーザ加工方法
JP4762653B2 (ja) 2005-09-16 2011-08-31 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4237745B2 (ja) 2005-11-18 2009-03-11 浜松ホトニクス株式会社 レーザ加工方法
JP4907965B2 (ja) * 2005-11-25 2012-04-04 浜松ホトニクス株式会社 レーザ加工方法
JP4804911B2 (ja) 2005-12-22 2011-11-02 浜松ホトニクス株式会社 レーザ加工装置
JP4907984B2 (ja) 2005-12-27 2012-04-04 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップ
ES2428826T3 (es) * 2006-07-03 2013-11-11 Hamamatsu Photonics K.K. Procedimiento de procesamiento por láser y chip
JP5183892B2 (ja) * 2006-07-03 2013-04-17 浜松ホトニクス株式会社 レーザ加工方法
JP4954653B2 (ja) * 2006-09-19 2012-06-20 浜松ホトニクス株式会社 レーザ加工方法
US8188404B2 (en) 2006-09-19 2012-05-29 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
JP5101073B2 (ja) 2006-10-02 2012-12-19 浜松ホトニクス株式会社 レーザ加工装置
JP4964554B2 (ja) * 2006-10-03 2012-07-04 浜松ホトニクス株式会社 レーザ加工方法
JP5132911B2 (ja) 2006-10-03 2013-01-30 浜松ホトニクス株式会社 レーザ加工方法
KR101428824B1 (ko) * 2006-10-04 2014-08-11 하마마츠 포토닉스 가부시키가이샤 레이저 가공방법
JP5336054B2 (ja) 2007-07-18 2013-11-06 浜松ホトニクス株式会社 加工情報供給装置を備える加工情報供給システム
JP4402708B2 (ja) * 2007-08-03 2010-01-20 浜松ホトニクス株式会社 レーザ加工方法、レーザ加工装置及びその製造方法
JP5225639B2 (ja) 2007-09-06 2013-07-03 浜松ホトニクス株式会社 半導体レーザ素子の製造方法
JP5342772B2 (ja) * 2007-10-12 2013-11-13 浜松ホトニクス株式会社 加工対象物切断方法
JP5449665B2 (ja) 2007-10-30 2014-03-19 浜松ホトニクス株式会社 レーザ加工方法
JP5134928B2 (ja) 2007-11-30 2013-01-30 浜松ホトニクス株式会社 加工対象物研削方法
JP5054496B2 (ja) 2007-11-30 2012-10-24 浜松ホトニクス株式会社 加工対象物切断方法
JP5097639B2 (ja) * 2008-08-01 2012-12-12 ルネサスエレクトロニクス株式会社 リードフレーム及び半導体装置
JP5241525B2 (ja) 2009-01-09 2013-07-17 浜松ホトニクス株式会社 レーザ加工装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111800A (ja) * 1990-08-31 1992-04-13 Nippon Sekiei Glass Kk 石英ガラス材料の切断加工方法
US5211805A (en) * 1990-12-19 1993-05-18 Rangaswamy Srinivasan Cutting of organic solids by continuous wave ultraviolet irradiation
JPH10305420A (ja) * 1997-03-04 1998-11-17 Ngk Insulators Ltd 酸化物単結晶からなる母材の加工方法、機能性デバイスの製造方法
WO2002022301A1 (fr) * 2000-09-13 2002-03-21 Hamamatsu Photonics K.K. Procede et dispositif d'usinage par rayonnement laser

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KATSUYOSHI MIDORIKAWA, December 1998, DAI 45 KAI LASER NETSUKAKO KENKYUKAI RONBUNSHU, ISBN: 4-947684-21-6, article "Femto-byo laser no genjo to kako oyo", XP002969943 *
KEN'ICHI HAYASHI, October 1998, DAI 45 KAI LASER NETSUKAKO KENKYUKAI RONBUNSHU, ISBN: 4-947684-21-6, article "Kotai laser kochoha ni yoru glass kiban no naibu marking", XP002969946 *
KIYOTAKA MIURA, KAZUYUKI HIRAO, 11 November 1997, DAI 42 KAI LASER NETSUKAKO KENKYUKAI RONBUNSHU, ISBN: 4-947684-15-1, article "Femto-byo laser shosha nu yoru glass naibu eno hikari yuki kozo keisei", pages: 107 - 109, XP002969945 *
TOKOKAZU SANO ET AL., 13 March 2000, JAPAN WELDING SOCIETY ZENKOKU TAIKAI KOEN GAIYO, article "Pico-byo pulse laser ni yoru silicon no kako tokusei hyoka - Tan-pulse.Tanhacho laser ni yoru denshi zairyo no seimitsu bisaikako (Dai 1 ho)", pages: 72 - 73, XP002969944 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569097B2 (ja) * 2003-11-18 2010-10-27 凸版印刷株式会社 球状弾性表面波素子およびその製造方法
JP2005150496A (ja) * 2003-11-18 2005-06-09 Toppan Printing Co Ltd 異方性透明固体材料、球状弾性表面波素子およびその製造方法
JP2005286218A (ja) * 2004-03-30 2005-10-13 Hamamatsu Photonics Kk レーザ加工方法及び加工対象物
EP1742252A4 (en) * 2004-03-30 2009-01-14 Hamamatsu Photonics Kk LASER PROCESSING METHOD AND OBJECT TO BE PROCESSED
JP4536407B2 (ja) * 2004-03-30 2010-09-01 浜松ホトニクス株式会社 レーザ加工方法及び加工対象物
EP1811550A4 (en) * 2004-11-12 2009-09-23 Hamamatsu Photonics Kk LASER PROCESSING PROCESS
US7939430B2 (en) 2004-11-12 2011-05-10 Hamamatsu Photonics K.K. Laser processing method
US7902636B2 (en) 2004-11-12 2011-03-08 Hamamatsu Photonics K.K. Semiconductor chip including a substrate and multilayer part
EP1811550A1 (en) * 2004-11-12 2007-07-25 Hamamatsu Photonics K.K. Laser processing method
JP2006140355A (ja) * 2004-11-12 2006-06-01 Hamamatsu Photonics Kk レーザ加工方法及び半導体チップ
TWI380867B (zh) * 2004-11-12 2013-01-01 Hamamatsu Photonics Kk Laser processing methods and semiconductor wafers
US8143141B2 (en) 2004-11-12 2012-03-27 Hamamatsu Photonics K.K. Laser beam machining method and semiconductor chip
JP2007045675A (ja) * 2005-08-11 2007-02-22 Disco Abrasive Syst Ltd 液晶デバイスウエーハのレーザー加工方法
JP4742751B2 (ja) * 2005-08-30 2011-08-10 セイコーエプソン株式会社 表示パネル、表示パネルのレーザスクライブ方法及び電子機器
JP2007062074A (ja) * 2005-08-30 2007-03-15 Seiko Epson Corp 表示パネル、表示パネルのレーザスクライブ方法及び電子機器
JP2007160920A (ja) * 2005-11-16 2007-06-28 Denso Corp ウェハおよびウェハの加工方法
JP4736738B2 (ja) * 2005-11-17 2011-07-27 株式会社デンソー レーザダイシング方法およびレーザダイシング装置
JP2007142114A (ja) * 2005-11-17 2007-06-07 Denso Corp レーザダイシング方法およびレーザダイシング装置
JP4655915B2 (ja) * 2005-12-15 2011-03-23 セイコーエプソン株式会社 層状基板の分割方法
JP2007160766A (ja) * 2005-12-15 2007-06-28 Seiko Epson Corp 層状基板の分割方法
JP2007235008A (ja) * 2006-03-03 2007-09-13 Denso Corp ウェハの分断方法およびチップ
JP2007290304A (ja) * 2006-04-27 2007-11-08 Casio Comput Co Ltd 脆性シート材分断方法及びその装置
JP2007304296A (ja) * 2006-05-11 2007-11-22 Sony Corp 液晶表示装置及びその製造方法、並びに映像表示装置
JP2007304297A (ja) * 2006-05-11 2007-11-22 Sony Corp 液晶表示装置の製造方法
JP2010177277A (ja) * 2009-01-27 2010-08-12 Tokyo Seimitsu Co Ltd レーザーダイシング方法及びレーザーダイシング装置
US9302410B2 (en) 2009-07-28 2016-04-05 Hamamatsu Photonics K.K. Method for cutting object to be processed
US10315403B2 (en) 2009-07-28 2019-06-11 Hamamatsu Photonics K.K. Method for cutting object to be processed
KR20120037365A (ko) 2009-07-28 2012-04-19 하마마츠 포토닉스 가부시키가이샤 가공 대상물 절단 방법
WO2011013556A1 (ja) 2009-07-28 2011-02-03 浜松ホトニクス株式会社 加工対象物切断方法
US8890026B2 (en) 2009-07-28 2014-11-18 Hamamatsu Photonics K.K. Method for cutting processing target
WO2011013549A1 (ja) 2009-07-28 2011-02-03 浜松ホトニクス株式会社 加工対象物切断方法
JP2011189477A (ja) * 2010-03-16 2011-09-29 Disco Corp マイクロマシンデバイスの製造方法
JP2016149391A (ja) * 2015-02-10 2016-08-18 旭化成株式会社 窒化物半導体素子、窒化物半導体素子の移動方法及び半導体装置の製造方法
US9991671B2 (en) 2015-09-11 2018-06-05 Nichia Corporation Method for producing semiconductor laser element
JP2019064863A (ja) * 2017-09-29 2019-04-25 三星ダイヤモンド工業株式会社 スクライブ加工方法及びスクライブ加工装置
JP2020021875A (ja) * 2018-08-02 2020-02-06 株式会社ディスコ ウェーハの加工方法
JP7086474B2 (ja) 2018-08-02 2022-06-20 株式会社ディスコ ウェーハの加工方法
WO2020049814A1 (ja) * 2018-09-04 2020-03-12 株式会社村田製作所 Memsデバイスの製造方法及びmemsデバイス
JPWO2020049814A1 (ja) * 2018-09-04 2021-08-12 株式会社村田製作所 Memsデバイスの製造方法及びmemsデバイス
JP7047922B2 (ja) 2018-09-04 2022-04-05 株式会社村田製作所 Memsデバイスの製造方法及びmemsデバイス
US11597648B2 (en) 2018-09-04 2023-03-07 Murata Manufacturing Co., Ltd. MEMS device manufacturing method and mems device

Also Published As

Publication number Publication date
JP2013016867A (ja) 2013-01-24
EP2199008A2 (en) 2010-06-23
JP4846880B2 (ja) 2011-12-28
CN1642688A (zh) 2005-07-20
EP3012061A1 (en) 2016-04-27
JP2012206172A (ja) 2012-10-25
JP2014068031A (ja) 2014-04-17
EP2199009A3 (en) 2013-10-02
AU2003220851A1 (en) 2003-09-22
EP1498216A1 (en) 2005-01-19
EP1498215A1 (en) 2005-01-19
EP1498215A4 (en) 2009-07-01
KR20040093139A (ko) 2004-11-04
JP4970628B1 (ja) 2012-07-11
TW200304858A (en) 2003-10-16
JP2011206851A (ja) 2011-10-20
EP1498216B1 (en) 2010-12-29
US8361883B2 (en) 2013-01-29
JP5545777B2 (ja) 2014-07-09
US8673745B2 (en) 2014-03-18
CN1642687A (zh) 2005-07-20
ES2356817T3 (es) 2011-04-13
EP3683003B1 (en) 2023-08-23
JP2012138598A (ja) 2012-07-19
JP4886015B2 (ja) 2012-02-29
US20140080288A1 (en) 2014-03-20
US20060011593A1 (en) 2006-01-19
US8183131B2 (en) 2012-05-22
EP2272618B1 (en) 2015-10-07
ATE493226T1 (de) 2011-01-15
EP2216128A3 (en) 2013-10-02
ES2364244T3 (es) 2011-08-29
EP1498215B1 (en) 2011-06-15
EP2216128B1 (en) 2016-01-27
JPWO2003076120A1 (ja) 2005-07-07
US20120205358A1 (en) 2012-08-16
EP2199008A3 (en) 2013-10-02
KR100832941B1 (ko) 2008-05-27
EP2272618A3 (en) 2013-10-09
JP2011142329A (ja) 2011-07-21
JP4515096B2 (ja) 2010-07-28
DE60335538D1 (de) 2011-02-10
US20050202596A1 (en) 2005-09-15
TWI270431B (en) 2007-01-11
US20130252402A1 (en) 2013-09-26
AU2003211581A1 (en) 2003-09-22
JP5778239B2 (ja) 2015-09-16
JP5557766B2 (ja) 2014-07-23
EP3683003A1 (en) 2020-07-22
KR100866171B1 (ko) 2008-10-30
JPWO2003076119A1 (ja) 2005-07-07
CN1328002C (zh) 2007-07-25
US8802543B2 (en) 2014-08-12
US20130344686A1 (en) 2013-12-26
EP3012061B1 (en) 2019-04-24
KR20070114398A (ko) 2007-12-03
EP3020503B1 (en) 2019-11-06
TW200304857A (en) 2003-10-16
EP2216128A2 (en) 2010-08-11
US8551865B2 (en) 2013-10-08
ATE512751T1 (de) 2011-07-15
JP5689449B2 (ja) 2015-03-25
WO2003076119A1 (en) 2003-09-18
EP2199008B1 (en) 2016-01-13
US8598015B2 (en) 2013-12-03
CN101412154A (zh) 2009-04-22
EP1498216A4 (en) 2009-07-01
TWI296218B (en) 2008-05-01
EP2199009B1 (en) 2015-09-23
KR100749972B1 (ko) 2007-08-16
EP2199009A2 (en) 2010-06-23
CN101412154B (zh) 2012-02-01
ES2762406T3 (es) 2020-05-25
JP2009296008A (ja) 2009-12-17
EP3020503A1 (en) 2016-05-18
CN100448593C (zh) 2009-01-07
JP4606741B2 (ja) 2011-01-05
EP2272618A2 (en) 2011-01-12
US7749867B2 (en) 2010-07-06
KR20040099323A (ko) 2004-11-26
US20100015783A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP4515096B2 (ja) レーザ加工方法
JP3935189B2 (ja) レーザ加工方法
JP4463796B2 (ja) レーザ加工方法
JP3670267B2 (ja) レーザ加工方法
WO2004080643A1 (ja) レーザ加工方法
JP4527098B2 (ja) レーザ加工方法
WO2003076118A1 (fr) Substrat semi-conducteur, puce a semi-conducteur et procede de fabrication d&#39;un dispositif a semi-conducteur
WO2004082006A1 (ja) レーザ加工方法
JP4409840B2 (ja) 加工対象物切断方法
JP4509720B2 (ja) レーザ加工方法
JP4167094B2 (ja) レーザ加工方法
JP3869850B2 (ja) レーザ加工方法
WO2004080642A1 (ja) レーザ加工方法
JP4146863B2 (ja) 半導体基板の切断方法
JP2004268103A (ja) レーザ加工方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003574375

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047014282

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038058642

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003712675

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047014282

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003712675

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10507392

Country of ref document: US