WO2003077001A1 - Integrated platform for passive optical alignment of semiconductor device with optical fiber - Google Patents

Integrated platform for passive optical alignment of semiconductor device with optical fiber Download PDF

Info

Publication number
WO2003077001A1
WO2003077001A1 PCT/CN2003/000182 CN0300182W WO03077001A1 WO 2003077001 A1 WO2003077001 A1 WO 2003077001A1 CN 0300182 W CN0300182 W CN 0300182W WO 03077001 A1 WO03077001 A1 WO 03077001A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
fiber
platform
substrate
lens
Prior art date
Application number
PCT/CN2003/000182
Other languages
French (fr)
Inventor
Franklin F. K. Tong
Dennis K. W. Lam
Flora H. W. Ho
S. K. Lam
Original Assignee
The Hong Kong Applied Science Technology Research Instituted Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Hong Kong Applied Science Technology Research Instituted Co., Ltd. filed Critical The Hong Kong Applied Science Technology Research Instituted Co., Ltd.
Priority to JP2003575165A priority Critical patent/JP2006506657A/en
Priority to AU2003218599A priority patent/AU2003218599A1/en
Publication of WO2003077001A1 publication Critical patent/WO2003077001A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • G02B6/4231Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment with intermediate elements, e.g. rods and balls, between the elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/4232Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using the surface tension of fluid solder to align the elements, e.g. solder bump techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres

Definitions

  • the present invention relates to packaging opto-electronic components and, more particularly, to an integrated platform for facilitating the physical and optical coupling of light transmitting and receiving devices to optical fibers.
  • Optical fiber technology is well suited for communications applications because optical fibers have a wide transmission bandwidth and relatively low attenuation.
  • optical fiber interfaces to electronic and optical networks are expensive to manufacture because of the difficulty associated with mounting laser transmitting and receiving devices onto substrates and aligning them with separately mounted optical fibers. For this reason, optical fiber technology has been widely implemented in long haul communication systems where the interfaces are relatively few. Long haul communications systems are also relatively price insensitive.
  • the high cost of manufacturing fiber optic interfaces has been a barrier that has slowed the penetration of fiber optic technology into local metropolitan area communication systems and
  • An optical fiber is an extruded, typically glass, strand that has a central core for carrying light and a surrounding cladding that facilitates internal reflection of light back into the core. During use, light is transmitted into the core of one end of the optical fiber at an acceptable angle. The incident light then travels down the fiber core to the other end of the fiber.
  • a typical single mode optical fiber has a core diameter of approximately 9 microns while a multi-mode fiber has a core diameter of approximately 50 or 62.5 microns. Because of the small dimensions of optical fiber cores, ahgning optical fibers with laser transmitting and receiving devices, which have aperture si2es that vary from approximately 2 to 10 microns, is difficult. The problem is particularly acute when devices are aligned with single mode fibers because of their small core diameter.
  • passive alignment is performed by activating a light emitting device, bringing the optical fiber into position for mounting on the package, and selecting the location for mounting when the amount of light being coupled into the optical fiber (or photo-detector of the device) exceeds a given threshold.
  • passive alignment is performed based on the geometry of the components for assembly, without active use of a laser in the alignment process. Accordingly, passive alignment relies on placement accuracy and acceptable manufacturing tolerances to produce a reliable and repeatable assembly process.
  • Passive alignment based on a single integrated optical platform has been somewhat successful for multi-mode fiber coupling. This is because of the relatively large core diameter of multi-mode fibers. However, improved alignment techniques are required. In contrast, passive alignment of single mode fibers has been elusive. This is because of the tight tolerances and limitations required to optically couple a laser beam between the aperture of a laser transmitting or receiving device and the small core of a single mode fiber. The problem is exacerbated by the use of inexpensive though desirable materials for the platform, which may inherently have manufacturing tolerances that are difficult to control.
  • a typical method for mounting semiconductor devices onto optical platforms uses flip- chip bonding techniques, which are adapted from well-established technology from the electronics industry. Without modification, the tolerance offered by flip chip bonding of approximately 1 micron does not meet the required tolerance of 0.5 microns required for coupling an optical beam from a mounted device into a single-mode fiber.
  • a silicon platform (or package) has been used to mount a laser transmitting or receiving device and optical fibers.
  • the platform has included a flat, slanted reflective surface of silicon that directs a laser beam between the device and a fiber.
  • the fiber has been anchored on a v-shaped groove etched into the same silicon substrate so that the entire package is compact. This design is known as the silicon optical bench.
  • a v-groove has been used for fiber array attachment with a ve ⁇ ical cavity surface emi ⁇ ing laser (VCSEL) device attached on a separate quartz plate.
  • VCSEL ve ⁇ ical cavity surface emi ⁇ ing laser
  • the flat, slanted reflecting surface of these designs has several fundamental drawbacks, including: (i) the limited working distance defined as the distance between the device and the optical fiber; (ii) the failure to compensate the beam profile in the case of diode laser coupling; and (iii) high aggregate placement tolerances between the opto-electronic device and the fiber.
  • the working distance between the opto- electronics device and the optical fiber should be kept to a minimum commensurate with geometry and other practical construction considerations. For instance, the optimum distance can be achieved by direct butt coupling of the fiber with the active region of the semiconductor device resting on a particular platform. However, this coupling scheme may not always be possible, as it is often limited by physical constraints.
  • a single platform that reduces alignment tolerances through its integrated features. These features include a mirror to deflect a light beam from an attached source transmi ⁇ er toward an optical fiber, an integrated focusing lens between the mirror and the fiber with an effective demagnification image at the fiber, and a v-shaped groove structure for receiving the optical fiber in the same platform.
  • the platform may be manufactured inexpensively, such as by transfer/injection molding, grinding or polishing of glass and plastic material, depending on the particular application. The same principles may be applied where photo-detectors are used for receiving the light beam instead of transmi ⁇ ing the light beam.
  • the light beam may be produced by a laser, such as a vertical cavity surface emitting laser (VCSEL) or other laser.
  • the light beam may be a non-laser, such as a semiconductor optical amplifier (SOA) or any other beam.
  • SOA semiconductor optical amplifier
  • the mirror may be set to deflect the beam at a 45 degree angle, or any other suitable angle, toward the optical fiber core.
  • the flat mirror and lens may be replaced with an integrated concave mirror with a similar focusing and demagnification effect. Because of the relaxed tolerances resulting from the focusing and demagnification of the beam, the use of passive alignment techniques, such as flip-chip bonding, may be applied.
  • the platforms and mounting methods are suitable for both multi-mode and single-mode fiber.
  • the working distances between the platform and optical fiber are extended; 2) the beam profile is adjusted into symmetrical form by a focusing lens; and 3) the tolerances for passive alignment are relaxed in x and y dimensions as compared to conventional techniques.
  • the platform is a dielectric substrate made of glass, plastics such as polymethylmethacrylate (PMMA) or polycarbonate (PC), or other suitable materials.
  • a ve ⁇ ical cavity surface emitting laser (VCSEL) unit is mounted using flip-chip bonding to the substrate. Total reflection of the laser is realized on the surface of the angled sidewall of the substrate. The angle of the sidewall may chosen to deflect the beam at a ninety degree angle or any other convenient angle between 0 and 180 degrees.
  • VCSEL ve ⁇ ical cavity surface emitting laser
  • FIG. 1A is a three dimensional view of an integrated platform according to an embodiment of the present invention showing pads and interconnections for electrically and optically coupling a VCSEL device to an optical fiber via the platform.
  • FIG. IB shows a cross section of FIG. 1A which illustrates the propagation of a laser beam from a VCSEL device through the platform to an optical fiber through a focusing lens.
  • FIG. 1C shows a top view of the FIG. 1A embodiment.
  • FIG. ID is a three dimensional view of an integrated platform according to an embodiment of the present invention, showing the pads and interconnections.
  • FIG. IE is a three dimensional view of an integrated platform according to an embodiment using a one-piece integrated substrate having integral lenses.
  • FIG; IF is a three dimensional view of an integrated platform according to an embodiment using a one-piece integrated substrate.
  • FIG. 1 G shows the placements of the fibers onto the integrated platform via ferrules according to an embodiment of the present invention, where two platforms are glued together within a system.
  • FIG. 1H shows an integrated platform according to an embodiment of the present invention in which an arrayed wave guide is substituted for the lens-v-groove-fiber combination.
  • FIG. II depicts a three dimensional view of an integrated platform according to an embodiment of the present invention in which the fiber incorporates a reflective angled surface.
  • FIG. IL shows a cross section view of FIG. II taken through the fiber and the platform along the fiber.
  • FIG. 2A is a three dimensional view of an integrated platform according to an embodiment of the present invention which uses a curved reflecting surface for laser reflection and focusing.
  • FIG. 2B shows a cross sectional view of the FIG. 2A embodiment.
  • FIG. 2C shows a top view of the FIG. 2 A embodiment.
  • FIG. 3 is a three dimensional view of an integrated platform according to an embodiment of the present invention which is integrated onto a printed circuit board.
  • FIG. 4A depicts a three dimensional view of an integrated platform where the fiber array is normal to a beam generated by the emitting surface of, for example, a VCSEL device.
  • FIG. 4B shows the cross section view of the FIG.4A in a configuration where the component and fiber are both mounted to the substrate.
  • Fig. 5 depicts a method of forming an integrated platform according to an embodiment of the present invention.
  • a single platform that reduces alignment tolerances through its integrated features. These features include a 45-degree mirror to deflect a laser beam from a vertical cavity surface emi ⁇ ing laser (VCSEL) transmitter toward an optical fiber, a focusing lens between the mirror and the fiber with an effectiv demagnification image at the fiber, and a v-shaped groove structure for receiving the optical fiber in the same platform.
  • the platform may be manufactured inexpensively, such as by transfer /injection molding, grinding or polishing of glass and plastic material, depending on the pa ⁇ icular application. The same principles may be applied where photodetectors are used for receiving the laser instead of transmitting the laser.
  • FIG. 1A depicts a three dimensional view of an integrated platform according to an embodiment of the present invention showing pads and interconnections for electrically and optically coupling a light transmi ⁇ ing or receiving device 100, such as a VCSEL device, to an optical fiber 109 via the platform.
  • a dielectric substrate 103 is used to mount a laser transmi ⁇ ing or receiving device 100 and an optical fiber.
  • the substrate 103 may be made of glass or other suitable material such as a polymer.
  • the substrate 103 may be formed by transfer molding, injection molding or high precision grinding. When glass molding is used, pre-shaped glass may be pressed into a mold that is preheated. After few minutes, the pressure may be released and the substrate taken out.
  • temperatures there is a wide range of temperatures, depending on the glass transition temperature of the material used, that may be used during the molding process. For example, a temperature range of 650 degrees to 1300 degrees depending on the glass materials used is common. However, temperatures outside of this range are also possible. When polymers are used, injection molding processes may be used to form the substrate.
  • the substrate 103 includes a device mounting surface onto which electrical interconnections may be formed for mounting opto-elecrronic devices.
  • bonding pads 104 may be formed on the substrate 103 that are aligned with mating bonding pads on the device 100.
  • wiring may be formed on the device mounting surface or in the device mounting surface to couple the bonding contact pads to other devices on the substrate, such as the laser driver device 105 or other devices external to the substrate 103 via, for example, wire bonding.
  • a metal may be deposited onto the substrate 103 in predetermined locations. The deposition may be performed using any of several well known techniques for depositing metal onto a substrate.
  • the device 100 may comprise a semiconductor laser source such as a VCSEL device or VCSEL array.
  • the devices 100 and 105 may be mounted using solder balls 106.
  • the solder balls 106 may comprise a eutectic mixture of gold/tin solder balls which range in s ⁇ 2e from, for example, five to fifty microns.
  • the devices 100 and 105 may be interconnected and/or connected to devices off of the substrate by wire-bonding using, for example, pure gold. It will be understood that other materials may be used for forming solder balls and wire bonds.
  • the substrate 103 may include a fiber mounting portion that includes a fiber mounting surface that extends away from the device mounting surface.
  • the fiber mounting surface may include v-shaped grooves 107 for receiving optical fibers.
  • the v-shaped grooves 107 may be precisely formed as pan of the molding process. Alternatively, they may be machined into the fiber mounting surface.
  • the v-shaped grooves 107 provide a mechanism for precisely defining the mounting point for each optical fiber that is to be coupled to the device 100 on the substrate.
  • the substrate 103 also includes a reflective, slanted side wall beneath the device 100 and the device mounting surface.
  • the substrate 103 is translucent so that a laser emitted from (or coupled to) the device 100 passes through the substrate.
  • the device 100 includes a VCSEL
  • the laser beam is rransmi ⁇ ed from a laser on the device down through the substrate.
  • the slanted reflective side wall is angled to reflect the beam from the device 1 0 toward the v- shaped groove associated with the active VCSEL.
  • the reflective side wall may present, for example, a 45 degree angle between the side wall and the mounting surface. Other angles between 0 and 90 degrees are possible depending on the geometry of the substrate, characteristics of any lenses provided in the substrate and the characteristics of the device 100. In general, the angle of the reflective side wall should be selected to provide maximum coupling of the laser beam between the optical fiber and the device 100.
  • the substrate 103 also includes a transmission face through which a laser beam from the device 100 or from an optical fiber travel.
  • a recess may be formed in the transmission face.
  • a lens mounting stage 108 may be formed with one or more focusing lenses in it.
  • the lens mounting stage 108 may be assembled within the recess of the substrate by, for example, adhering the mounting stage to the substrate within the recess.
  • an index-matching epoxy may be used for adhering the lens array 101 to the transmission face.
  • the lenses may be integrally formed in the transmission face of the substrate.
  • optical fibers 109 are ali ned at the image plane of each focusing lens. This may be performed using a guiding stopper.
  • the substrate shown in Fig. 1 A has the potential to extend the working distance between the reflective plane and the optical fibers and achieve high coupling efficiency with larger alignment tolerances. This is due in part to the demagnification afforded by the lens array 101.
  • FIG. IB shows a cross section of FIG. 1A which illustrates the propagation of a laser beam from a VCSEL device 100 through the platform 103 to an optical fiber through one of the focusing lenses in the lens array 101.
  • a laser beam is emitted from the VCSEL and travels through the substrate 103 toward the reflecting surface.
  • the reflecting surface reflects the beam toward the lens in the transmission face of the substrate 103.
  • the beam becomes wider as it Travels from the reflecting surface to the lens.
  • the lens focuses and concentrates the beam into a narrower profile that should be centered in the core of the end face of the optical fiber. This focusing extends the working distance and increases the coupling efficiency of coupling the beam into the fiber core.
  • FIG. 1C shows a top view of the FIG. 1A embodiment. It is apparent from Fig. 1C that the device 100 is positioned over the slanted, reflective surface and that the lens array 101 is positioned berween the ends of the optical fibers and the slanted, reflective surface. It is also apparent that there may be a gap berween the fiber ends and the lenses.
  • FIG. ID is a three dimensional view of an integrated platform according to an embodiment of the present invention, showing the pads and interconnections.
  • the slanted, reflective surface of the substrate 103 is formed as part of a surface opposite the device mounting surface. This design may be less rigid than that shown in Fig. 1A, where the slanted, reflective surface is formed within the substrate 103 by a cutout that extends to the device mounting surface.
  • Fig. ID also shows an embodiment in which the lens array is integrally formed into the transmission face of the substrate 103.
  • the surface metallization of the device mounting surface for the substrate shown in Fig. ID is slightly different than in Fig. 1 A and leverages wire bonding to external devices.
  • FIG. IE depicts a three dimensional view of an integrated platform according to an embodiment using a one-piece integrated substrate having integral lenses.
  • one substrate integrates a 45° mirror, micro-lenses formed in the transmission face of the substrate and v-shaped grooves formed in a fiber mounting surface, formed by transfer molding.
  • the 45° of the mirror refers to its angle relative to the device mounting surface.
  • a 45° angle produces a beam reflection of 90°, Any suitable beam reflection angle between 0 and 180 degrees may be used depending upon the implementation in order to redirect a beam between a fiber optic core and the light er tting or receiving device.
  • the molding material may be glass or other high-temp polymers.
  • This substrate can also function as a carrier for the laser driver and other electronics.
  • Layers of pure gold may then be deposited to produce the bonding contact pads 104, to which the semiconductor laser source 100 (VCSEL array) and the laser driver 105 devices are mounted using a eutectic mixture of gold/tin solder balls (20 ⁇ m diameter) 106. These components are then interconnected by wire-bonding using pure gold. Similar to FIG. 1A embodiment, the laser beams emi ⁇ ed from VCSELs are reflected by the 45° mirrors, then focused by the micro-lens into optical fibers sitting on the v- shaped grooves.
  • FIG. IF is a three dimensional view of an integrated platform according to an embodiment using a one-piece integrated substrate.
  • the substrate 103 includes a 45° reflective plane embedded inside the substrate.
  • This substrate has a stronger mechanical structure, thus the design constrains relative to the position of the 45° mirrors can be relaxed.
  • the sho ⁇ er the optical path from VCSEL to the lens the less the laser beam diverges before being collected by lens.
  • This substrate can also provide electrical paths from VCSELs to laser driver devices, eliminate the use of wire bonding, which in rum makes the whole package more robust.
  • FIG. 1 G shows the placements of the fibers onto the integrated platform via ferrules according to an embodiment of the present invention, where two platforms are glued together within a system.
  • a ferrule 109 is used for the alignment of the optical fibers.
  • the ferrules are designed to have a fining end to anchor on the curve surface of substrate 103.
  • the fibers are then placed through the ferrules at the image plane. This may be controlled by using guiding stopper 110.
  • the substrate 103 may be coupled to another packaging component, which may include an integrate circuit board.
  • the device 100 may be driven from other devices on the printed circuit board that are wire bonded to the device 100.
  • FIG. 1H shows an integrated platform according to an embodiment of the present invention in which an arrayed wave-guide is substituted for the lens-v-groove-fiber combination.
  • an arrayed waveguide is substituted for the lens-v-groove-fiber combination in the FIG 1 A embodiment.
  • a laser beam emanates from a VCSEL device, reflects off of the slanted surface and enters the wave-guides.
  • Each wave- guide in turn conveys the beam to the respective optical fiber.
  • the wave-guides may be monolithically integrated with the platform or may be separately manufactured and combined with the platform to form a hybrid structure.
  • FIG. II depicts a three dimensional view of an integrated platform according to an embodiment of the present invention.
  • the platform material must be transparent to permit transmission of a beam of light.
  • the material may be glass or plastic which is transparent. If necessary, the platform material may desirably be high-temperature resistant to allow subsequent manufacturing steps to be performed at high temperatures.
  • the platform 103 includes an upper surface with V-grooves and a lower surface for receiving a light emi ⁇ ing or receiving component.
  • the lower surface also may include metallization on the lower surface, including solder balls 106, for connecting to and mounting the light emitting or receiving component 100.
  • Fibers 112 may be mounted within the V-grooves on the platform and in this manner are aligned relative to the substrate. One end of the fiber is polished into a certain angle relative to the fiber and substrate and coated to provide a reflective surface at the fiber - surface interface.
  • the fiber 112 is positioned at a point along the V-groove so that a beam of light reflected from the reflective surface of the fiber with travel between the beam emitting or receiving device within the component 100, such as a VCSEL, and the fiber core.
  • the component 100 and fibers 112 are aligned based on the angle of the reflective surface relative to the fibers and or the platform, the platform geometry and the geometry of the VCSEL array with the associated windows of each VCSEL device.
  • the angle of the reflective surface of the fiber 112 may be any convenient value and may vary among different fibers 112 within the V-grooves if desired.
  • FIG. IL shows the cross section view of the FIG.
  • the beam traverses the translucent platform 103, the V-groove and penetrates an outer surface of the fiber 112. For this reason, the portion of the fiber that is in the path of the beam must have a translucent surface permitting entry of the light beam into the fiber 112.
  • the beam traverses the fiber, reflects off of the reflective surface and travels down the fiber core. After passing through the glass substrate and the fiber cladding, the light beams from VCSEL array are reflected by the angled fiber core, then propagate along the fiber array.
  • FIG. 2A depicts a three dimensional view of an integrated platform according to an embodiment of the present invention which introduces a curved reflecting surface for laser reflection and focusing.
  • the substrate comprises multiple curved surfaces 401 that each function as concave mirrors. Incident light from a VCSEL is reflected off of the curved surfaces 401 and focused on the image plane where multiple optical fibers are placed into v-shaped grooves.
  • the concave mirror replaces the reflecting plane and the focusing lens used in the embodiments of FIG. I . This simplifies the design into a more compact one.
  • a metal layer coating can be formed on this surface. This embodiment is capable of achieving high coupling efficiency with larger alignment tolerances and also allows for extending the working distance between the mirror and the fibers.
  • FIG. 2B shows a cross sectional view of the FIG. 2A embodiment.
  • a beam from a VCSEL is shown diverging as it travels toward the reflecting curved surfaces 401.
  • the beam is then reflected toward the optical fiber and focused so that upon hitting the optical fiber, the beam is concentrated and enters the fiber at the core center.
  • FIG. 2C shows a top view of the FIG. 2A embodiment which illustrates the two way transmission feature of embodiments of the present invention. It also illustrates the use of multiple transmitters.
  • FIG. 3 depicts a three dimensional view of an integrated platform according to an embodiment of the present invention which is integrated onto a printed circuit board.
  • the optical platform comprises a polymer substrate that has a curve surface for focusing a laser beam emission from the VCSEL device.
  • the semiconductor device is attached directly to an electronic printed circuit board or a platform with other electronic components through flip-chip bonding as an alternative to lead frame chip packages due to the high temperatures required for the solder bonding step.
  • the polymer substrate is designed to have guide pins 601 for the attachment to the electronic platform together with the corresponding metal coated curve surfaces and the fibers grooves. This design has application due to the ease of assembly in the widely developed PCB industry.
  • FIG. 4A depicts a three dimensional view of an integrated platform where the fiber array is normal to a beam generated by the emitting surface of, for example, a VCSEL device 100.
  • the VCSEL array may be flip-chip bonded onto a glass substrate 113 using solder balls 106.
  • the integration' platform 103 has an array of V-grooves positioned parallel to the beam when the component is aligned relative to the platform 103.
  • the platform 103 also includes a rectangular frame for receiving and mounting the glass substrate 113.
  • the VCSEL array can be optically aligned with the fiber array 112 passively. This may be accomplished by sizing the glass substrate to fit precisely within a rectangular cutout po ⁇ ion of the platform 103. Other techniques include pattern recognition if alignment marks are patterned on the glass substrate 113 and the platform 103, respectively.
  • FIG. 4B shows the cross section view of the FIG.4A in a configuration where the component 100 and fiber 112 are both mounted. Light beams from the VCSEL array of the component 100 pass through the glass substrate 113 and then go directly into the fiber array.
  • the fiber may be, but is not limited to lensed fiber.
  • the glass substrate 113 not only acts as an electrical and physical mounting surface for the component, it also acts as a fiber stopper.
  • the fiber stopper facilitates alignment of the fiber along the V-groove by allowing alignment through butting one end of the fiber against the surface of the glass substrate 113. In such manner, the distance between the component and fiber end can be well-controlled.
  • a beam of light emitted from the component 100 passes through the glass substrate 113 into one end of the fiber 112.
  • Fig. 5 depicts a method of manufacturing a platform according to an embodiment of the present invention. Referring to Fig. 5, in step 400, a mold form is generated. The mold form is used to produce the substrate by, for example, either transfer molding or injection molding in step 410.
  • step 420 the substrate is selectively coated with metal, pursuant to a masking procedure, to form bonding pads.
  • step 430 devices for laser transmitting and receiving are mounted onto the bonding pads using solder or flip chip mounting techniques.
  • step 440 other devices and components are wire bonded to the pads formed on the mounting surface of the substrate 103.
  • step 440 an underfill is then applied to protect the chip from oxidation and to provide mechanical support.
  • step 450 optical fibers are aligned into the v-shaped grooves on the fiber mounting surface. The fibers are then attached within the v-shaped grooves by, for example, adhering them.
  • the substrate may be packaged with other electronics, for example by attaching the substrate to an integrated circuit board.

Abstract

A platform for converting a signal between optical and electrical form and vice versa is provided. The platform includes a dielectric mount, a semiconductor light source and optical fibers. Some of these components are fabricated separately and then brought together in an integrated assembly together with a focusing lens. The platform permits the self-alignment of the optical fibers in a flip-chip vertical cavity surface emitting laser (VCSEL) array module package. The self-alignment of the optical fibers is achieved by the engineering of the geometrical dimensions of the platform. The techniques may be used to form large-scale integrated opto-electronic circuits and switching networks.

Description

INTEGRATED PLATFORM FOR PASSIVE OPTICAL ALIGNMENT OF SEMICONDUCTOR DEVICE WITH OPTICAL FIBER
FIELD OF THE INVENTION:
The present invention relates to packaging opto-electronic components and, more particularly, to an integrated platform for facilitating the physical and optical coupling of light transmitting and receiving devices to optical fibers.
BACKGROUND OF THE INVENTION:
Optical fiber technology is well suited for communications applications because optical fibers have a wide transmission bandwidth and relatively low attenuation. However, optical fiber interfaces to electronic and optical networks are expensive to manufacture because of the difficulty associated with mounting laser transmitting and receiving devices onto substrates and aligning them with separately mounted optical fibers. For this reason, optical fiber technology has been widely implemented in long haul communication systems where the interfaces are relatively few. Long haul communications systems are also relatively price insensitive. However, the high cost of manufacturing fiber optic interfaces has been a barrier that has slowed the penetration of fiber optic technology into local metropolitan area communication systems and
other markets.
To appreciate the coupling and alignment difficulties associated with coupling lasers to optical fibers, one must consider the geometry and dimensions of optical fibers, optical packages and laser transmitting and receiving devices. An optical fiber is an extruded, typically glass, strand that has a central core for carrying light and a surrounding cladding that facilitates internal reflection of light back into the core. During use, light is transmitted into the core of one end of the optical fiber at an acceptable angle. The incident light then travels down the fiber core to the other end of the fiber.
A typical single mode optical fiber has a core diameter of approximately 9 microns while a multi-mode fiber has a core diameter of approximately 50 or 62.5 microns. Because of the small dimensions of optical fiber cores, ahgning optical fibers with laser transmitting and receiving devices, which have aperture si2es that vary from approximately 2 to 10 microns, is difficult. The problem is particularly acute when devices are aligned with single mode fibers because of their small core diameter.
There are two techniques for aligning optical fibers and devices on a package or platform: passive alignment and active alignment. Active alignment is performed by activating a light emitting device, bringing the optical fiber into position for mounting on the package, and selecting the location for mounting when the amount of light being coupled into the optical fiber (or photo-detector of the device) exceeds a given threshold. By contrast, passive alignment is performed based on the geometry of the components for assembly, without active use of a laser in the alignment process. Accordingly, passive alignment relies on placement accuracy and acceptable manufacturing tolerances to produce a reliable and repeatable assembly process.
Passive alignment based on a single integrated optical platform has been somewhat successful for multi-mode fiber coupling. This is because of the relatively large core diameter of multi-mode fibers. However, improved alignment techniques are required. In contrast, passive alignment of single mode fibers has been elusive. This is because of the tight tolerances and limitations required to optically couple a laser beam between the aperture of a laser transmitting or receiving device and the small core of a single mode fiber. The problem is exacerbated by the use of inexpensive though desirable materials for the platform, which may inherently have manufacturing tolerances that are difficult to control.
A typical method for mounting semiconductor devices onto optical platforms uses flip- chip bonding techniques, which are adapted from well-established technology from the electronics industry. Without modification, the tolerance offered by flip chip bonding of approximately 1 micron does not meet the required tolerance of 0.5 microns required for coupling an optical beam from a mounted device into a single-mode fiber.
Conventionally, a silicon platform (or package) has been used to mount a laser transmitting or receiving device and optical fibers. The platform has included a flat, slanted reflective surface of silicon that directs a laser beam between the device and a fiber. The fiber has been anchored on a v-shaped groove etched into the same silicon substrate so that the entire package is compact. This design is known as the silicon optical bench. Recently, a v-groove has been used for fiber array attachment with a veπical cavity surface emiπing laser (VCSEL) device attached on a separate quartz plate. The flat, slanted reflecting surface of these designs has several fundamental drawbacks, including: (i) the limited working distance defined as the distance between the device and the optical fiber; (ii) the failure to compensate the beam profile in the case of diode laser coupling; and (iii) high aggregate placement tolerances between the opto-electronic device and the fiber. In order to achieve high coupling efficiency, the working distance between the opto- electronics device and the optical fiber should be kept to a minimum commensurate with geometry and other practical construction considerations. For instance, the optimum distance can be achieved by direct butt coupling of the fiber with the active region of the semiconductor device resting on a particular platform. However, this coupling scheme may not always be possible, as it is often limited by physical constraints. These issues greatly reduce or prohibit the use of this platform for the single-mode or multi-mode laser packaging using semiconductor diode lasers. Where the laser and fiber are mounted on separate platforms, active alignment is required. Silicon v-grooves for receiving optical fibers have been conventionally formed by chemically etching precise shapes in the crystalline structure of silicon. However, single crystal silicon is very expensive, compared to glass and plastics. Polymer molding technology has been used to design a waveguide having a lens system, a 45 degree reflection prism and ferrule bore. Other waveguides have used plastic injection molding to produce a complex optical multiplexer integrated with a filter block, a 45 degree reflection prism, a lens system and fiber ferrule core. However, these waveguides have not conventionally provided a sitting platform for a laser transmiπing or receiving device. Thus, active alignment has been needed to place and align the separately packaged device with the waveguide, which is labor intensive and costly. Still other modular platforms have been deployed that have several pieces requiring active alignment. Unlike the batch packaging processes that are efficiently used for some electronics chips, the packaging of opto-electronics components using active alignment techniques has to be done one-by-one. This adds to the cost of the assembly. To a lesser degree, the handling of many small mechanical components of hundreds of micrometers to a few millimeters in size and the sealing in a hermetic environment also adds to the cost of packaging. High cost has never been a major issue in long haul communications as these components are used and shared by many users. However, the emergence of the short reach metro/access markets, which is the next growth area in photonics, increases the need for low-cost packaging because these markets are extremely price-sensitive. The high-volume, low-cost demand must be met with significant improvement in manufacturing economics. The way to lower packaging cost is the use of more integration of photonic components in a single platform, passive alignment techniques, batch manufacturing, and the introduction of more automation in manufacturing. Accordingly, there is a need for a new technique for mounting and aligning light transmiπing and receiving devices with optical fibers that permits low-cost passive alignment techniques to be used. There is a further need for a single, integrated platform to be used for mounting laser transmitting and receiving devices and optical fibers. There is still a further need for a platform and mounting method that uses techniques to relax manufacturing tolerances and that allows the use of inexpensive materials for the mounting platform, such as plastic or glass.
SUMMARY OF THE INVENTION:
According to one embodiment of the invention, a single platform is provided that reduces alignment tolerances through its integrated features. These features include a mirror to deflect a light beam from an attached source transmiπer toward an optical fiber, an integrated focusing lens between the mirror and the fiber with an effective demagnification image at the fiber, and a v-shaped groove structure for receiving the optical fiber in the same platform. The platform may be manufactured inexpensively, such as by transfer/injection molding, grinding or polishing of glass and plastic material, depending on the particular application. The same principles may be applied where photo-detectors are used for receiving the light beam instead of transmiπing the light beam.
In general, the light beam may be produced by a laser, such as a vertical cavity surface emitting laser (VCSEL) or other laser. In addition, the light beam may be a non-laser, such as a semiconductor optical amplifier (SOA) or any other beam. The mirror may be set to deflect the beam at a 45 degree angle, or any other suitable angle, toward the optical fiber core.
According to another embodiment of the invention, the flat mirror and lens may be replaced with an integrated concave mirror with a similar focusing and demagnification effect. Because of the relaxed tolerances resulting from the focusing and demagnification of the beam, the use of passive alignment techniques, such as flip-chip bonding, may be applied. The platforms and mounting methods are suitable for both multi-mode and single-mode fiber.
According to the present invention, 1) the working distances between the platform and optical fiber are extended; 2) the beam profile is adjusted into symmetrical form by a focusing lens; and 3) the tolerances for passive alignment are relaxed in x and y dimensions as compared to conventional techniques. These features reduce the cost of manufacturing optical packages.
According to another embodiment of the present invention, the platform is a dielectric substrate made of glass, plastics such as polymethylmethacrylate (PMMA) or polycarbonate (PC), or other suitable materials. A veπical cavity surface emitting laser (VCSEL) unit is mounted using flip-chip bonding to the substrate. Total reflection of the laser is realized on the surface of the angled sidewall of the substrate. The angle of the sidewall may chosen to deflect the beam at a ninety degree angle or any other convenient angle between 0 and 180 degrees. Through the integrated lens of the platform, light is focused at the image plane, at which distance the optical fibers are placed in, for example, V-grooves or ferrules.
BRIEF DESCRIPTION OF THE DRAWINGS:
The following detailed description, given by way example and not intended to limit the invention solely to the embodiments described herein, will best be understood with reference to the accompanying drawings in which: FIG. 1A is a three dimensional view of an integrated platform according to an embodiment of the present invention showing pads and interconnections for electrically and optically coupling a VCSEL device to an optical fiber via the platform.
FIG. IB shows a cross section of FIG. 1A which illustrates the propagation of a laser beam from a VCSEL device through the platform to an optical fiber through a focusing lens. FIG. 1C shows a top view of the FIG. 1A embodiment.
FIG. ID is a three dimensional view of an integrated platform according to an embodiment of the present invention, showing the pads and interconnections.
FIG. IE is a three dimensional view of an integrated platform according to an embodiment using a one-piece integrated substrate having integral lenses. FIG; IF is a three dimensional view of an integrated platform according to an embodiment using a one-piece integrated substrate.
FIG. 1 G shows the placements of the fibers onto the integrated platform via ferrules according to an embodiment of the present invention, where two platforms are glued together within a system. FIG. 1H shows an integrated platform according to an embodiment of the present invention in which an arrayed wave guide is substituted for the lens-v-groove-fiber combination.
FIG. II depicts a three dimensional view of an integrated platform according to an embodiment of the present invention in which the fiber incorporates a reflective angled surface. FIG. IL shows a cross section view of FIG. II taken through the fiber and the platform along the fiber.
FIG. 2A is a three dimensional view of an integrated platform according to an embodiment of the present invention which uses a curved reflecting surface for laser reflection and focusing.
FIG. 2B shows a cross sectional view of the FIG. 2A embodiment.
FIG. 2C shows a top view of the FIG. 2 A embodiment.
FIG. 3 is a three dimensional view of an integrated platform according to an embodiment of the present invention which is integrated onto a printed circuit board. FIG. 4A depicts a three dimensional view of an integrated platform where the fiber array is normal to a beam generated by the emitting surface of, for example, a VCSEL device.
FIG. 4B shows the cross section view of the FIG.4A in a configuration where the component and fiber are both mounted to the substrate.
Fig. 5 depicts a method of forming an integrated platform according to an embodiment of the present invention.
DETAILED DESCRIPTION:
According to one embodiment of the invention, a single platform is provided that reduces alignment tolerances through its integrated features. These features include a 45-degree mirror to deflect a laser beam from a vertical cavity surface emiπing laser (VCSEL) transmitter toward an optical fiber, a focusing lens between the mirror and the fiber with an effectiv demagnification image at the fiber, and a v-shaped groove structure for receiving the optical fiber in the same platform. The platform may be manufactured inexpensively, such as by transfer /injection molding, grinding or polishing of glass and plastic material, depending on the paπicular application. The same principles may be applied where photodetectors are used for receiving the laser instead of transmitting the laser.
FIG. 1A depicts a three dimensional view of an integrated platform according to an embodiment of the present invention showing pads and interconnections for electrically and optically coupling a light transmiπing or receiving device 100, such as a VCSEL device, to an optical fiber 109 via the platform. Referring to FIG. 1A, a dielectric substrate 103, is used to mount a laser transmiπing or receiving device 100 and an optical fiber. The substrate 103 may be made of glass or other suitable material such as a polymer. The substrate 103 may be formed by transfer molding, injection molding or high precision grinding. When glass molding is used, pre-shaped glass may be pressed into a mold that is preheated. After few minutes, the pressure may be released and the substrate taken out. There is a wide range of temperatures, depending on the glass transition temperature of the material used, that may be used during the molding process. For example, a temperature range of 650 degrees to 1300 degrees depending on the glass materials used is common. However, temperatures outside of this range are also possible. When polymers are used, injection molding processes may be used to form the substrate.
The substrate 103 includes a device mounting surface onto which electrical interconnections may be formed for mounting opto-elecrronic devices. For example, bonding pads 104 may be formed on the substrate 103 that are aligned with mating bonding pads on the device 100. Similarly, wiring may be formed on the device mounting surface or in the device mounting surface to couple the bonding contact pads to other devices on the substrate, such as the laser driver device 105 or other devices external to the substrate 103 via, for example, wire bonding. In order to manufacture the bonding pads 104, a metal may be deposited onto the substrate 103 in predetermined locations. The deposition may be performed using any of several well known techniques for depositing metal onto a substrate. According to one embodiment, layers of pure gold are deposited on the substrate 103 to produce the bonding contact pads 104. The device 100 may comprise a semiconductor laser source such as a VCSEL device or VCSEL array. The devices 100 and 105 may be mounted using solder balls 106. According to one embodiment of the invention, the solder balls 106 may comprise a eutectic mixture of gold/tin solder balls which range in sϊ2e from, for example, five to fifty microns. The devices 100 and 105 may be interconnected and/or connected to devices off of the substrate by wire-bonding using, for example, pure gold. It will be understood that other materials may be used for forming solder balls and wire bonds.
The substrate 103 may include a fiber mounting portion that includes a fiber mounting surface that extends away from the device mounting surface. The fiber mounting surface may include v-shaped grooves 107 for receiving optical fibers. The v-shaped grooves 107 may be precisely formed as pan of the molding process. Alternatively, they may be machined into the fiber mounting surface. The v-shaped grooves 107 provide a mechanism for precisely defining the mounting point for each optical fiber that is to be coupled to the device 100 on the substrate.
The substrate 103 also includes a reflective, slanted side wall beneath the device 100 and the device mounting surface. The substrate 103 is translucent so that a laser emitted from (or coupled to) the device 100 passes through the substrate. When the device 100 includes a VCSEL, the laser beam is rransmiπed from a laser on the device down through the substrate. The slanted reflective side wall is angled to reflect the beam from the device 1 0 toward the v- shaped groove associated with the active VCSEL. The reflective side wall may present, for example, a 45 degree angle between the side wall and the mounting surface. Other angles between 0 and 90 degrees are possible depending on the geometry of the substrate, characteristics of any lenses provided in the substrate and the characteristics of the device 100. In general, the angle of the reflective side wall should be selected to provide maximum coupling of the laser beam between the optical fiber and the device 100.
The substrate 103 also includes a transmission face through which a laser beam from the device 100 or from an optical fiber travel. In the transmission face, a recess may be formed. A lens mounting stage 108 may be formed with one or more focusing lenses in it. The lens mounting stage 108 may be assembled within the recess of the substrate by, for example, adhering the mounting stage to the substrate within the recess. For adhering the lens array 101 to the transmission face, an index-matching epoxy may be used. Alternatively, the lenses may be integrally formed in the transmission face of the substrate.
In the v-shaped grooves 1 7, optical fibers 109 are ali ned at the image plane of each focusing lens. This may be performed using a guiding stopper. The substrate shown in Fig. 1 A has the potential to extend the working distance between the reflective plane and the optical fibers and achieve high coupling efficiency with larger alignment tolerances. This is due in part to the demagnification afforded by the lens array 101.
FIG. IB shows a cross section of FIG. 1A which illustrates the propagation of a laser beam from a VCSEL device 100 through the platform 103 to an optical fiber through one of the focusing lenses in the lens array 101. Referring to Fig. IB, a laser beam is emitted from the VCSEL and travels through the substrate 103 toward the reflecting surface. The reflecting surface reflects the beam toward the lens in the transmission face of the substrate 103. The beam becomes wider as it Travels from the reflecting surface to the lens. The lens focuses and concentrates the beam into a narrower profile that should be centered in the core of the end face of the optical fiber. This focusing extends the working distance and increases the coupling efficiency of coupling the beam into the fiber core.
FIG. 1C shows a top view of the FIG. 1A embodiment. It is apparent from Fig. 1C that the device 100 is positioned over the slanted, reflective surface and that the lens array 101 is positioned berween the ends of the optical fibers and the slanted, reflective surface. It is also apparent that there may be a gap berween the fiber ends and the lenses.
FIG. ID is a three dimensional view of an integrated platform according to an embodiment of the present invention, showing the pads and interconnections. Referring to FIG ID, the slanted, reflective surface of the substrate 103 is formed as part of a surface opposite the device mounting surface. This design may be less rigid than that shown in Fig. 1A, where the slanted, reflective surface is formed within the substrate 103 by a cutout that extends to the device mounting surface. Fig. ID also shows an embodiment in which the lens array is integrally formed into the transmission face of the substrate 103. In addition, the surface metallization of the device mounting surface for the substrate shown in Fig. ID is slightly different than in Fig. 1 A and leverages wire bonding to external devices.
FIG. IE depicts a three dimensional view of an integrated platform according to an embodiment using a one-piece integrated substrate having integral lenses. Referring to FIG. IE, one substrate integrates a 45° mirror, micro-lenses formed in the transmission face of the substrate and v-shaped grooves formed in a fiber mounting surface, formed by transfer molding. The 45° of the mirror refers to its angle relative to the device mounting surface. A 45° angle produces a beam reflection of 90°, Any suitable beam reflection angle between 0 and 180 degrees may be used depending upon the implementation in order to redirect a beam between a fiber optic core and the light er tting or receiving device.
The molding material may be glass or other high-temp polymers. This substrate can also function as a carrier for the laser driver and other electronics. Layers of pure gold may then be deposited to produce the bonding contact pads 104, to which the semiconductor laser source 100 (VCSEL array) and the laser driver 105 devices are mounted using a eutectic mixture of gold/tin solder balls (20 μm diameter) 106. These components are then interconnected by wire-bonding using pure gold. Similar to FIG. 1A embodiment, the laser beams emiπed from VCSELs are reflected by the 45° mirrors, then focused by the micro-lens into optical fibers sitting on the v- shaped grooves.
FIG. IF is a three dimensional view of an integrated platform according to an embodiment using a one-piece integrated substrate. Referring to FIG. IF, the substrate 103 includes a 45° reflective plane embedded inside the substrate. This substrate has a stronger mechanical structure, thus the design constrains relative to the position of the 45° mirrors can be relaxed. The closer the 45° mirror is to the lens, the shorter the optical path from VCSEL to the lens. The shoπer the optical path from VCSEL to the lens, the less the laser beam diverges before being collected by lens. This substrate can also provide electrical paths from VCSELs to laser driver devices, eliminate the use of wire bonding, which in rum makes the whole package more robust. FIG. 1 G shows the placements of the fibers onto the integrated platform via ferrules according to an embodiment of the present invention, where two platforms are glued together within a system. Referring to FIG. 1G, a ferrule 109 is used for the alignment of the optical fibers. The ferrules are designed to have a fining end to anchor on the curve surface of substrate 103. The fibers are then placed through the ferrules at the image plane. This may be controlled by using guiding stopper 110. Also in Fig. 1G, it is apparent that the substrate 103 may be coupled to another packaging component, which may include an integrate circuit board. The device 100 may be driven from other devices on the printed circuit board that are wire bonded to the device 100.
FIG. 1H shows an integrated platform according to an embodiment of the present invention in which an arrayed wave-guide is substituted for the lens-v-groove-fiber combination. Referring to FIG. 1H, an arrayed waveguide is substituted for the lens-v-groove-fiber combination in the FIG 1 A embodiment. According to this embodiment, a laser beam emanates from a VCSEL device, reflects off of the slanted surface and enters the wave-guides. Each wave- guide in turn conveys the beam to the respective optical fiber. The wave-guides may be monolithically integrated with the platform or may be separately manufactured and combined with the platform to form a hybrid structure.
FIG. II depicts a three dimensional view of an integrated platform according to an embodiment of the present invention. The platform material must be transparent to permit transmission of a beam of light. The material may be glass or plastic which is transparent. If necessary, the platform material may desirably be high-temperature resistant to allow subsequent manufacturing steps to be performed at high temperatures.
Referring to FIG. II, the platform 103 includes an upper surface with V-grooves and a lower surface for receiving a light emiπing or receiving component. The lower surface also may include metallization on the lower surface, including solder balls 106, for connecting to and mounting the light emitting or receiving component 100. Fibers 112 may be mounted within the V-grooves on the platform and in this manner are aligned relative to the substrate. One end of the fiber is polished into a certain angle relative to the fiber and substrate and coated to provide a reflective surface at the fiber - surface interface. The fiber 112 is positioned at a point along the V-groove so that a beam of light reflected from the reflective surface of the fiber with travel between the beam emitting or receiving device within the component 100, such as a VCSEL, and the fiber core. In other words, the component 100 and fibers 112 are aligned based on the angle of the reflective surface relative to the fibers and or the platform, the platform geometry and the geometry of the VCSEL array with the associated windows of each VCSEL device. The angle of the reflective surface of the fiber 112 may be any convenient value and may vary among different fibers 112 within the V-grooves if desired. FIG. IL shows the cross section view of the FIG. 11 embodiment in which the light path of a beam of light transmuted from the component 100 to the fiber 112 is shown. Referring to FIG. IL, the beam traverses the translucent platform 103, the V-groove and penetrates an outer surface of the fiber 112. For this reason, the portion of the fiber that is in the path of the beam must have a translucent surface permitting entry of the light beam into the fiber 112. Once in the fiber, the beam traverses the fiber, reflects off of the reflective surface and travels down the fiber core. After passing through the glass substrate and the fiber cladding, the light beams from VCSEL array are reflected by the angled fiber core, then propagate along the fiber array.
FIG. 2A depicts a three dimensional view of an integrated platform according to an embodiment of the present invention which introduces a curved reflecting surface for laser reflection and focusing. Referring to FIG. 2 A, the substrate comprises multiple curved surfaces 401 that each function as concave mirrors. Incident light from a VCSEL is reflected off of the curved surfaces 401 and focused on the image plane where multiple optical fibers are placed into v-shaped grooves. The concave mirror replaces the reflecting plane and the focusing lens used in the embodiments of FIG. I . This simplifies the design into a more compact one. In order to ensure maximum reflectivity from the curve surface, a metal layer coating can be formed on this surface. This embodiment is capable of achieving high coupling efficiency with larger alignment tolerances and also allows for extending the working distance between the mirror and the fibers.
FIG. 2B shows a cross sectional view of the FIG. 2A embodiment. Referring to FIG. 2B, a beam from a VCSEL is shown diverging as it travels toward the reflecting curved surfaces 401. The beam is then reflected toward the optical fiber and focused so that upon hitting the optical fiber, the beam is concentrated and enters the fiber at the core center.
FIG. 2C shows a top view of the FIG. 2A embodiment which illustrates the two way transmission feature of embodiments of the present invention. It also illustrates the use of multiple transmitters.
FIG. 3 depicts a three dimensional view of an integrated platform according to an embodiment of the present invention which is integrated onto a printed circuit board. Referring to FIG. 2A, the optical platform comprises a polymer substrate that has a curve surface for focusing a laser beam emission from the VCSEL device. In this embodiment, the semiconductor device is attached directly to an electronic printed circuit board or a platform with other electronic components through flip-chip bonding as an alternative to lead frame chip packages due to the high temperatures required for the solder bonding step. The polymer substrate is designed to have guide pins 601 for the attachment to the electronic platform together with the corresponding metal coated curve surfaces and the fibers grooves. This design has application due to the ease of assembly in the widely developed PCB industry. As for the mounting of the semiconductor laser device, an underfill is applied to fill the gap between the laser device and the submount in order to add mechanical strength and to minimize the oxidation of the semiconductor device, bonding pads and solder pumps. FIG. 4A depicts a three dimensional view of an integrated platform where the fiber array is normal to a beam generated by the emitting surface of, for example, a VCSEL device 100. The VCSEL array may be flip-chip bonded onto a glass substrate 113 using solder balls 106. The integration' platform 103 has an array of V-grooves positioned parallel to the beam when the component is aligned relative to the platform 103. The platform 103 also includes a rectangular frame for receiving and mounting the glass substrate 113. By controlling the dimensional tolerance of the integration platform and glass substrate 113, the VCSEL array can be optically aligned with the fiber array 112 passively. This may be accomplished by sizing the glass substrate to fit precisely within a rectangular cutout poπion of the platform 103. Other techniques include pattern recognition if alignment marks are patterned on the glass substrate 113 and the platform 103, respectively. FIG. 4B shows the cross section view of the FIG.4A in a configuration where the component 100 and fiber 112 are both mounted. Light beams from the VCSEL array of the component 100 pass through the glass substrate 113 and then go directly into the fiber array. The fiber may be, but is not limited to lensed fiber. The glass substrate 113 not only acts as an electrical and physical mounting surface for the component, it also acts as a fiber stopper. The fiber stopper facilitates alignment of the fiber along the V-groove by allowing alignment through butting one end of the fiber against the surface of the glass substrate 113. In such manner, the distance between the component and fiber end can be well-controlled. A beam of light emitted from the component 100 passes through the glass substrate 113 into one end of the fiber 112. Fig. 5 depicts a method of manufacturing a platform according to an embodiment of the present invention. Referring to Fig. 5, in step 400, a mold form is generated. The mold form is used to produce the substrate by, for example, either transfer molding or injection molding in step 410. In step 420, the substrate is selectively coated with metal, pursuant to a masking procedure, to form bonding pads. In step 430 devices for laser transmitting and receiving are mounted onto the bonding pads using solder or flip chip mounting techniques. In step 440, other devices and components are wire bonded to the pads formed on the mounting surface of the substrate 103. In step 440, an underfill is then applied to protect the chip from oxidation and to provide mechanical support. In step 450, optical fibers are aligned into the v-shaped grooves on the fiber mounting surface. The fibers are then attached within the v-shaped grooves by, for example, adhering them. In step 460, the substrate may be packaged with other electronics, for example by attaching the substrate to an integrated circuit board.
While specific embodiments of the present invention have been disclosed, it will be understood by those having ordinary skill in the an that changes may be made to those embodiments without departing from the spirit and scope of the invention.

Claims

CLAIMS:What is claimed is:
1. An optical platform comprising: a device mounting surface adapted to mount an optical device that transmits or receives a laser beam; a reflecting surface; a focusing lens for focusing the laser beam; and at least one fiber bed for positioning an optical fiber that conveys the laser beam; wherein the reflecting surface re-directs the laser beam between the lens and the device.
2. The optical platform according to claim 1, wherein the lens has a magnification of less than unity.
3. The optical platform according to claim 1, wherein the lens comprises a concave surface.
4. The optical platform according to claim 1, wherein the lens is integrally formed with the monolithic optical platform.
5. The optical platform according to claim 1, wherein the lens is attached to the monolithic platform.
6. The oprical platform according to claim 1, wherein the lens comprises a ball lens.
7. The optical platform according to claim 1, wherem the device mounting surface of the platform is adapted for receiving devices that are mounted using a flip-chip bonding technique.
8. The optical platform according to claim 1, wherein the device mounting surface is coated with metallic layers to serve as electrical connections and groundings to the device.
9. The optical platform according to claim 1, wherein the fiber bed is a v-shaped groove formed in a fiber mounting surface of the platform.
10. The optical platform according to claim 1, wherein the platform is made of polymer material fabricated through injection molding.
11. The optical platform according to claim 1, wherein the polymer material is PMMA.
12. The optical platform according to claim 1, wherein the platform is made of glass material fabricated through transfer molding.
13. An optical platform comprising: ' a device mounting surface adapted to mount optical devices that transmit or receive laser beams; a reflecting surface; an array of focusing lenses for focusing the laser beams; and an array of fiber beds for positioning optical fibers that convey the laser beams; wherein the reflecting surface re-directs the laser beams between the lens array and the devices.
14. The optical platform according to claim 13, wherein the reflecting surface re-directs the laser beams to the array of focusing lenses which focuses the beams into respective optical fibers.
15. An optical platform comprising: a device mounting surface adapted to mount optical devices that transmit or receive laser beams; concave reflecting surfaces; and an array of fiber beds for positioning optical fibers that convey the laser beams; wherein the concave reflecting surfaces re-direct and focus the laser beams between the optical fibers and the devices.
1 . An optical assembly comprising: an electronic board having electronic components attached including a semiconductor device having a VCSEL; a substrate having a curved, reflective surface that is used to deflect and focus emissions from the VCSEL to an optical fiber positioned in a fiber bed within the substrate; and guide pins in the substrate for attaching the substrate to the printed circuit board so that the VCSEL of the semiconductor device directs a laser beam off of the curved reflective surface into the optical fiber.
PCT/CN2003/000182 2002-03-14 2003-03-13 Integrated platform for passive optical alignment of semiconductor device with optical fiber WO2003077001A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003575165A JP2006506657A (en) 2002-03-14 2003-03-13 Integrated platform for active optical alignment of semiconductor devices with optical fibers
AU2003218599A AU2003218599A1 (en) 2002-03-14 2003-03-13 Integrated platform for passive optical alignment of semiconductor device with optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36388002P 2002-03-14 2002-03-14
US60/363,880 2002-03-14

Publications (1)

Publication Number Publication Date
WO2003077001A1 true WO2003077001A1 (en) 2003-09-18

Family

ID=27805295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000182 WO2003077001A1 (en) 2002-03-14 2003-03-13 Integrated platform for passive optical alignment of semiconductor device with optical fiber

Country Status (5)

Country Link
US (1) US7289701B2 (en)
JP (1) JP2006506657A (en)
CN (1) CN100368842C (en)
AU (1) AU2003218599A1 (en)
WO (1) WO2003077001A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2397393A (en) * 2002-12-12 2004-07-21 Agilent Technologies Inc Optical element with internally reflecting surface and lens connecting to waveguide
WO2015175992A1 (en) * 2014-05-15 2015-11-19 Tyco Electronics Corporation Optoelectronics structures
US10033464B2 (en) 2013-05-28 2018-07-24 Stmicroelectronics S.R.L. Optoelectronic device having improved optical coupling
CN108614330A (en) * 2016-12-13 2018-10-02 峰川光电股份有限公司 Method for manufacturing active optical cable
EP3893035A4 (en) * 2017-12-05 2022-09-07 Lipac Co., Ltd. Connector plug and active optical cable assembly using same

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7343058B2 (en) * 2003-04-22 2008-03-11 Intel Corporation Efficient light coupler from off-chip to on-chip waveguides
US7136552B2 (en) * 2003-06-19 2006-11-14 Emcore Corporation TO-packaged optic-fiber receiving interface and method
US7011455B2 (en) * 2003-06-19 2006-03-14 Emcore Corporation Opto-electronic TO-package and method for laser
US6892010B2 (en) * 2003-09-09 2005-05-10 Emcore Corporation Photodetector/optical fiber apparatus with enhanced optical coupling efficiency and method for forming the same
US7895234B2 (en) * 2003-09-22 2011-02-22 Rockwell Automation Technologies, Inc. Systems and methods for sharing portal configurations
GB0329629D0 (en) * 2003-12-22 2004-01-28 Blazephotonics Ltd A light source
US20050201668A1 (en) * 2004-03-11 2005-09-15 Avi Neta Method of connecting an optical element at a slope
US7306378B2 (en) * 2004-05-06 2007-12-11 Intel Corporation Method and apparatus providing an electrical-optical coupler
JP2005321560A (en) * 2004-05-07 2005-11-17 Fuji Xerox Co Ltd Polymer optical waveguide module with light receiving/emitting element
JP2006011210A (en) * 2004-06-29 2006-01-12 Fuji Xerox Co Ltd Polymer optical waveguide module with light emitting element and light receiving element for use in monitor
US7391937B2 (en) * 2004-10-22 2008-06-24 Lockheed Martin Corporation Compact transition in layered optical fiber
CH697142A5 (en) * 2004-11-03 2008-05-15 Huber+Suhner Ag Fiber lens array and lens array for such a fiber-lens arrangement.
US7454105B2 (en) * 2004-11-22 2008-11-18 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Passive alignment using elastic averaging in optoelectronics applications
CN100373132C (en) * 2004-11-25 2008-03-05 电子科技大学 Omnibearing self-aligning method for detector-optical fiber coupling
US7782921B2 (en) * 2005-03-28 2010-08-24 Intel Corporation Integrated optical detector in semiconductor reflector
US20060245694A1 (en) * 2005-04-04 2006-11-02 Wenzong Chen Multifiber MT-type connector and ferrule comprising v-groove lens array and method of manufacture
JP2007033698A (en) * 2005-07-25 2007-02-08 Fuji Xerox Co Ltd Submount for mounting optical component, and optical transmission and reception module
JP4882644B2 (en) * 2006-08-10 2012-02-22 パナソニック電工株式会社 Photoelectric conversion device
CN101523264A (en) * 2006-08-10 2009-09-02 松下电工株式会社 Photoelectric converter
FR2906896B1 (en) * 2006-10-04 2009-01-23 Commissariat Energie Atomique IMPROVED COUPLING DEVICE BETWEEN AN OPTICAL FIBER AND AN INTEGRATED OPTICAL GUIDE ON A SUBSTRATE.
US7556440B2 (en) * 2006-12-22 2009-07-07 Lightwire Inc. Dual-lensed unitary optical receiver assembly
JP2008158440A (en) * 2006-12-26 2008-07-10 Toshiba Corp Photoelectric wiring board and method of manufacturing photoelectric wiring apparatus
KR100871252B1 (en) * 2007-01-19 2008-11-28 삼성전자주식회사 Photoelectronic wired flexible printed circuit board using optical fiber
WO2008137432A2 (en) * 2007-05-01 2008-11-13 Dyyno Sharing of information and formatting information for transmission over a communication network
WO2010106995A1 (en) * 2009-03-17 2010-09-23 日本電気株式会社 Light waveguide device and method for manufacturing same
WO2011031142A1 (en) * 2009-09-08 2011-03-17 Vereniging Voor Christelijk Hoger Onderwijs, Weleuschappelijk Onderzoek En Patientenzorg Optical fiber, method of preparation thereof and device
US20110206379A1 (en) * 2010-02-25 2011-08-25 International Business Machines Corporation Opto-electronic module with improved low power, high speed electrical signal integrity
JP2011248312A (en) * 2010-04-26 2011-12-08 Nippon Electric Glass Co Ltd Optical element and optical device having the same
US8265436B2 (en) 2010-05-12 2012-09-11 Industrial Technology Research Institute Bonding system for optical alignment
JP5702596B2 (en) * 2010-10-28 2015-04-15 株式会社エンプラス Lens array and optical module having the same
US9057850B2 (en) * 2011-03-24 2015-06-16 Centera Photonics Inc. Optoelectronic module
CN102200612A (en) * 2011-04-27 2011-09-28 中国科学院微电子研究所 Optical-fibre-embedded glass plate and manufacturing method thereof
TWI463204B (en) * 2011-11-18 2014-12-01 Universal Microelectronics Co Ltd Optical engine assembly and manufacturing method thereof
US9213152B2 (en) 2012-01-09 2015-12-15 Cisco Technology Inc. Releasable fiber connector for opto-electronic assemblies
US9261652B2 (en) 2012-01-17 2016-02-16 Cisco Technology, Inc. Optical components including bonding slots for adhesion stability
US8867870B2 (en) 2012-02-05 2014-10-21 Mellanox Technologies Ltd. Optical module fabricated on folded printed circuit board
US8750660B2 (en) * 2012-02-09 2014-06-10 Mellanox Technologies Ltd. Integrated optical interconnect
US9036956B2 (en) 2012-02-17 2015-05-19 Haynes and Boone, LLP Method of fabricating a polymer waveguide
US9417408B2 (en) * 2012-03-02 2016-08-16 Tyco Electronics Corporation Modularized interposer
TWI578051B (en) * 2013-03-07 2017-04-11 鴻海精密工業股份有限公司 Optical connector
US8871570B2 (en) 2012-03-14 2014-10-28 Mellanox Technologies Ltd. Method of fabricating integrated optoelectronic interconnects with side mounted transducer
JP5956815B2 (en) * 2012-04-20 2016-07-27 日本航空電子工業株式会社 Optical module substrate and optical module
US8888380B2 (en) * 2012-04-24 2014-11-18 Sae Magnetics (H.K.) Ltd. Optoelectronic assembly and active optical cable using same
US20130287336A1 (en) * 2012-04-26 2013-10-31 Shih-Yuan Wang Optical switch
TWI561881B (en) * 2012-04-27 2016-12-11 Hon Hai Prec Ind Co Ltd Fiber optical transceiver
US8870467B2 (en) 2012-05-06 2014-10-28 Mellanox Technologies Ltd. Optical interface and splitter with micro-lens array
US8690455B2 (en) 2012-05-06 2014-04-08 Mellanox Technologies Ltd. Planar optical interface and splitter
US8750657B2 (en) 2012-11-15 2014-06-10 Mellanox Technologies Ltd. Flip-chip optical interface with micro-lens array
US9323014B2 (en) * 2012-05-28 2016-04-26 Mellanox Technologies Ltd. High-speed optical module with flexible printed circuit board
US20130330033A1 (en) * 2012-06-12 2013-12-12 Futurewei Technologies, Inc. Tsv substrate with mirror and its application in high-speed optoelectronic packaging
CN104641273A (en) * 2012-07-26 2015-05-20 惠普发展公司,有限责任合伙企业 Optical engine
JP5282988B2 (en) * 2012-09-21 2013-09-04 株式会社フジクラ Optical connector
US9490148B2 (en) 2012-09-27 2016-11-08 Taiwan Semiconductor Manufacturing Company, Ltd. Adhesion promoter apparatus and method
US10698165B2 (en) * 2013-03-15 2020-06-30 Te Connectivity Corporation Multi-fiber ferrule connector
CN204009138U (en) * 2014-01-16 2014-12-10 中兴通讯股份有限公司 A kind of Light Coupled Device and optical coupling unit
US9417411B2 (en) 2014-02-21 2016-08-16 Aurrion, Inc. Optical and thermal interface for photonic integrated circuits
US9377596B2 (en) * 2014-07-22 2016-06-28 Unimicron Technology Corp. Optical-electro circuit board, optical component and manufacturing method thereof
TWI521248B (en) 2014-08-07 2016-02-11 光興國際股份有限公司 Optical transceiver
US9423581B2 (en) 2014-08-22 2016-08-23 Laxense Inc. Parallel optical system with integrated monitoring photodetectors
JP6494216B2 (en) * 2014-08-27 2019-04-03 株式会社エンプラス Optical receptacle and optical module
US10162114B2 (en) * 2015-01-08 2018-12-25 Corning Incorporated Reflective optical coherence tomography probe
US9939598B2 (en) * 2015-01-16 2018-04-10 Us Conec, Ltd. Fiber optic connector assembly, apparatus for forming a transceiver interface, and ferrule
US9891385B2 (en) * 2015-02-12 2018-02-13 Source Photonics (Chengdu) Co., Ltd. Integrated lens with multiple optical structures and vent hole
CN106249361B (en) * 2015-06-05 2019-06-28 胡迪群 Embedded fiber module
WO2017039681A1 (en) * 2015-09-04 2017-03-09 Ccs Technology, Inc. Fiber coupling device for coupling of at last one optical fiber
CN108885321A (en) * 2016-01-28 2018-11-23 申泰公司 Optical transceiver
JP6667307B2 (en) * 2016-02-04 2020-03-18 古河電気工業株式会社 Optical coupling structure between optical fiber and semiconductor laser
US10345542B2 (en) * 2016-06-28 2019-07-09 Mellanox Technologies, Ltd. Opto-mechanical coupler
US10088639B2 (en) * 2016-06-28 2018-10-02 Mellanox Technologies, Ltd. Opto-mechanical coupler
JP6933794B2 (en) * 2016-12-01 2021-09-08 富士通株式会社 Optical module and manufacturing method of optical module
US10168495B1 (en) * 2017-06-28 2019-01-01 Kyocera Corporation Optical waveguide and optical circuit board
US10914901B2 (en) * 2017-10-17 2021-02-09 International Business Machines Corporation Lateral mounting of optoelectronic chips on organic substrate
JP7021833B2 (en) * 2018-05-17 2022-02-17 三菱電機株式会社 Laser device
CN109037082B (en) * 2018-07-19 2021-01-22 通富微电子股份有限公司 Package structure and method for forming the same
US10788632B2 (en) * 2019-01-29 2020-09-29 Google Llc Device and method for coupling laser to a photonic integrated circuit
CN114424100A (en) * 2019-09-20 2022-04-29 瑞士电子显微技术研究和开发中心股份有限公司 Micro-optical interconnection component and preparation method thereof
CN113835165B (en) * 2020-06-24 2022-11-25 华为技术有限公司 Light emitting component, chip, optical module and optical communication equipment
CN112558241B (en) * 2020-12-07 2023-03-24 深圳创维-Rgb电子有限公司 Active optical fiber line with continuously adjustable light spot radius
CN112505853A (en) * 2020-12-11 2021-03-16 江苏奥雷光电有限公司 DC-50 Mbps compatible low-speed signal transmission photoelectric module design method
CN112615675B (en) * 2020-12-14 2022-07-29 中航光电科技股份有限公司 Parallel wireless optical module capable of emitting light perpendicular to bottom surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0404053A2 (en) * 1989-06-19 1990-12-27 Fujitsu Limited Photo-semiconductor module
US5168537A (en) * 1991-06-28 1992-12-01 Digital Equipment Corporation Method and apparatus for coupling light between an optoelectronic device and a waveguide
US5515468A (en) * 1993-02-23 1996-05-07 The Whitaker Corporation Light bending devices
FR2730823A1 (en) * 1995-02-21 1996-08-23 Boisrobert Christian Collimation assembly control method
US6081638A (en) * 1998-07-20 2000-06-27 Honeywell Inc. Fiber optic header with integrated power monitor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336508A (en) * 1989-07-04 1991-02-18 Fujitsu Ltd Transmission and reception module for wavelength multiplex light
DE4416563C1 (en) * 1994-05-11 1995-07-20 Ant Nachrichtentech Coupler for connecting opto-electronic device to waveguide
US5432877A (en) * 1994-06-03 1995-07-11 Photonic Integration Research, Inc. Integrated optical circuit having a waveguide end of lens geometry, and method for making same
US5537507A (en) * 1994-09-28 1996-07-16 Advanced Ceramics Corporation Coated flash evaporator heater
US5911022A (en) * 1994-09-29 1999-06-08 Siemens Aktiengesellschaft Optical coupling arrangement
US5511140A (en) * 1994-10-13 1996-04-23 International Business Machines Corporation Molded plastic optical fiber-optoelectronic converter subassembly
EP0804323B1 (en) * 1995-01-18 1998-11-04 Robert Bosch Gmbh Arrangement for converting optical into electrical signals and process for producing it
US6086263A (en) * 1996-06-13 2000-07-11 3M Innovative Properties Company Active device receptacle
US5781682A (en) * 1996-02-01 1998-07-14 International Business Machines Corporation Low-cost packaging for parallel optical computer link
US6572935B1 (en) * 1999-03-13 2003-06-03 The Regents Of The University Of California Optically transparent, scratch-resistant, diamond-like carbon coatings
DE19932430C2 (en) * 1999-07-12 2002-03-14 Harting Elektrooptische Bauteile Gmbh & Co Kg Opto-electronic assembly and component for this assembly
US6786651B2 (en) * 2001-03-22 2004-09-07 Primarion, Inc. Optical interconnect structure, system and transceiver including the structure, and method of forming the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0404053A2 (en) * 1989-06-19 1990-12-27 Fujitsu Limited Photo-semiconductor module
US5168537A (en) * 1991-06-28 1992-12-01 Digital Equipment Corporation Method and apparatus for coupling light between an optoelectronic device and a waveguide
US5515468A (en) * 1993-02-23 1996-05-07 The Whitaker Corporation Light bending devices
FR2730823A1 (en) * 1995-02-21 1996-08-23 Boisrobert Christian Collimation assembly control method
US6081638A (en) * 1998-07-20 2000-06-27 Honeywell Inc. Fiber optic header with integrated power monitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2397393A (en) * 2002-12-12 2004-07-21 Agilent Technologies Inc Optical element with internally reflecting surface and lens connecting to waveguide
US6921214B2 (en) 2002-12-12 2005-07-26 Agilent Technologies, Inc. Optical apparatus and method for coupling output light from a light source to an optical waveguide
GB2397393B (en) * 2002-12-12 2007-05-16 Agilent Technologies Inc Optical apparatus and method
US10033464B2 (en) 2013-05-28 2018-07-24 Stmicroelectronics S.R.L. Optoelectronic device having improved optical coupling
US10382137B2 (en) 2013-05-28 2019-08-13 Stmicroelectronics S.R.L. Optoelectronic device having improved optical coupling
WO2015175992A1 (en) * 2014-05-15 2015-11-19 Tyco Electronics Corporation Optoelectronics structures
US9335494B2 (en) 2014-05-15 2016-05-10 Tyco Electronics Corporation Optoelectronics structures
CN108614330A (en) * 2016-12-13 2018-10-02 峰川光电股份有限公司 Method for manufacturing active optical cable
EP3893035A4 (en) * 2017-12-05 2022-09-07 Lipac Co., Ltd. Connector plug and active optical cable assembly using same

Also Published As

Publication number Publication date
CN1735826A (en) 2006-02-15
US7289701B2 (en) 2007-10-30
AU2003218599A1 (en) 2003-09-22
US20040017977A1 (en) 2004-01-29
JP2006506657A (en) 2006-02-23
CN100368842C (en) 2008-02-13

Similar Documents

Publication Publication Date Title
US7289701B2 (en) Integrated platform for passive optical alignment of semiconductor device with optical fiber
US10466433B2 (en) Optical module including silicon photonics chip and coupler chip
CN110554459B (en) Method of manufacturing a device for adiabatic coupling, corresponding device and system
US8827572B2 (en) Side coupling optical fiber assembly and fabrication method thereof
US5940564A (en) Device for coupling a light source or receiver to an optical waveguide
US7092603B2 (en) Optical bridge for chip-to-board interconnection and methods of fabrication
US7352924B2 (en) Micro-optical device
US7218806B2 (en) Multi-wavelength optical transceiver module, and multiplexer/demultiplexer using thin film filter
US20120099820A1 (en) Two dimensional optical connector
EP2426537A2 (en) Optical coupler module having optical waveguide structure
US20110075965A1 (en) Channeled Substrates For Integrated Optical Devices Employing Optical Fibers
US20020048436A1 (en) Optical transmitter/receiver apparatus, method for fabricating the same and optical semiconductor module
JP2001021775A (en) Optical device
US20070133928A1 (en) Canted-fiber duplex optical assembly
EP3423879B1 (en) Optical coupling assembly
US7430375B2 (en) Optical transceiver
US20050084217A1 (en) Optical module capable of transmitting optical signal in bi-directional with single fiber
US6631228B2 (en) Adhesive-free bonding method of fiber attachment for polymer optical waveguide on polymer substrate
Palen Low cost optical interconnects
JP2004233687A (en) Optical waveguide substrate and optical module
Dautartas et al. Hybrid optical packaging, challenges and opportunities
US20200400901A1 (en) Interposer
KR100398045B1 (en) Module for transmitting and receiving an optic signal
US20210341688A1 (en) Systems and methods for coupling light
WO2022190351A1 (en) Optical connection structure, package structure, optical module, and method for manufacturing package structure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003575165

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038083949

Country of ref document: CN

122 Ep: pct application non-entry in european phase