WO2003079455A1 - Transistor a effet de champ a jonction laterale et son procede de fabrication - Google Patents

Transistor a effet de champ a jonction laterale et son procede de fabrication Download PDF

Info

Publication number
WO2003079455A1
WO2003079455A1 PCT/JP2002/012608 JP0212608W WO03079455A1 WO 2003079455 A1 WO2003079455 A1 WO 2003079455A1 JP 0212608 W JP0212608 W JP 0212608W WO 03079455 A1 WO03079455 A1 WO 03079455A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
layer
impurity
gate electrode
conductivity type
Prior art date
Application number
PCT/JP2002/012608
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Fujikawa
Shin Harada
Kenichi Hirotsu
Satoshi Hatsukawa
Takashi Hoshino
Hiroyuki Matsunami
Tsunenobu Kimoto
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to US10/496,040 priority Critical patent/US7049644B2/en
Priority to KR1020047014319A priority patent/KR100876487B1/ko
Priority to AU2002354162A priority patent/AU2002354162A1/en
Priority to EP02786001A priority patent/EP1487024A4/en
Priority to CA002465340A priority patent/CA2465340A1/en
Publication of WO2003079455A1 publication Critical patent/WO2003079455A1/ja
Priority to US11/402,701 priority patent/US7420232B2/en
Priority to US12/179,320 priority patent/US7671387B2/en
Priority to US12/552,212 priority patent/US7671388B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1058Channel region of field-effect devices of field-effect transistors with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate

Definitions

  • the present invention relates to a lateral junction field-effect transistor and a method of manufacturing the same.
  • the present invention relates to a lateral junction field-effect transistor, and more particularly, to a lateral junction field-effect structure capable of reducing on-resistance while maintaining good withstand voltage performance, and a method of manufacturing the same.
  • a lateral junction type field effect transistor (hereinafter referred to as a JFET (Junction Field Effect Transistor)) is configured by applying a reverse bias voltage from a gate electrode to a pn junction provided on a side of a channel region through which carriers pass.
  • the depletion layer from the ⁇ ⁇ junction is expanded to the channel region, and the operation such as switching is performed by controlling the conductance of the channel region.
  • the horizontal J FET means that the carrier moves parallel to the element surface in the channel region.
  • the carrier of the channel may be an electron ( ⁇ type) or a hole ( ⁇ type), but usually, in a JFET using SiC for the semiconductor substrate, the channel region is often an n-type impurity region.
  • the carrier of the channel is an electron, and thus the channel region will be described as an n-type impurity region.
  • the channel region may be a p-type impurity region.
  • FIG. 7 2 is a sectional view showing a conventional lateral JFET (U.S. Patent Registration No. 5, 264, 713 Junction Field- Effect Transistor Formed in Silicon Carbide) 0 n -type S i C p on the substrate 1 1 0 +
  • a type epitaxial layer 112 is disposed, and an n-type channel layer 114 is formed thereon.
  • an n + -type source region 111 is disposed on one side and a n + -type drain region 118 is disposed on both sides of the trench 124.
  • the source electrode 120 and the drain electrode 122 are disposed on the upper side.
  • a gate contact layer 130 is formed, on which a gate electrode (not shown) is provided. Have been.
  • a trench 124 having a depth extending through the source / drain regions 116 and 118 into the channel layer 114 is provided, and the bottom of the trench 124 and the first conductive type epitaxial layer 1 are provided.
  • a channel (C) is formed in the second conductive type epitaxial layer 114 between the first and second layers.
  • the value of the concentration of the ⁇ -type impurity in the epitaxial layer 1 12 is higher than the value of the ⁇ -type concentration in the epitaxial layer 1 14 including the channel. It is configured to expand toward channels. When the depletion layer blocks the channel, the current is not able to pass through the channel and the device is turned off. Therefore, it is possible to control whether or not the depletion layer blocks the channel region by adjusting the magnitude of the reverse bias voltage. As a result, for example, by controlling the reverse bias voltage between the gate and the source, it is possible to perform the on / off control of the current.
  • the gap between the top of the p + type epitaxial layer 112 and the bottom of the gate contact layer 130 is increased in anticipation of a reduction in on-resistance. Since the absolute value of the gate voltage required to turn off becomes large, there is a limit to increasing the interval and a limit to the decrease in on-resistance.
  • the interval in the case of the normally-off type, the interval must be smaller than the interval between the depletion layers spread by the diffusion potential at the junction between the channel layer 114 and the gate contact layer 130. Expansion is limited and low on-resistance There are limits below. Disclosure of the invention
  • An object of the present invention is to provide a lateral junction field effect transistor having a structure capable of reducing on-resistance while maintaining good withstand voltage performance.
  • a first semiconductor layer containing a first conductivity type impurity located on a semiconductor substrate A second semiconductor layer that is located on the first semiconductor layer and that has a second conductivity type impurity at a higher concentration than the impurity concentration of the first semiconductor layer; and a first conductivity type that is located on the second semiconductor layer.
  • Source containing impurities of the second conductivity type at a higher concentration than the impurity concentration of the layer And a lower surface extending between the source / drain region layer and the source / drain region layer in the third semiconductor layer, the impurity concentration of the second semiconductor layer being provided.
  • a lower surface extends to the fourth semiconductor layer between the first gate electrode layer containing a higher impurity concentration of the first conductivity type and the source / drain region layer in the fifth semiconductor layer.
  • a second gate electrode layer having substantially the same impurity concentration as the first gate electrode layer and having the same potential.
  • a step of forming a first semiconductor layer containing a first conductivity type impurity on a semiconductor substrate Forming a second semiconductor layer containing a second conductive type impurity having a higher concentration than the impurity concentration of the first semiconductor layer; and forming the first conductive type impurity on the second semiconductor layer.
  • Forming a third semiconductor layer including a third semiconductor layer including: introducing an impurity into a predetermined region of the third semiconductor layer so as to extend over the second semiconductor layer and the third semiconductor layer; Forming a first gate electrode layer containing a higher impurity concentration of the first conductivity type than the third half.
  • Forming a source Z drain region layer that extends and contains a second conductivity type impurity at a higher concentration than the impurity concentration of the second semiconductor layer and the fourth semiconductor layer.
  • the transistor structure is formed along the vertical direction, which is the stacking direction of each semiconductor layer on the semiconductor substrate.
  • the on-resistance of the device can be further reduced.
  • the second semiconductor layer, the third semiconductor layer, the fourth semiconductor layer, and the fifth semiconductor layer have substantially the same impurity concentration and thickness.
  • the distance between the uppermost part of the first semiconductor layer and the lowermost part of the first gate electrode is equal to the junction between the second semiconductor layer and the first gate electrode layer.
  • the distance between the uppermost part of the third semiconductor layer and the lowermost part of the second gate electrode layer is smaller than the distance between the depletion layers spread by the diffusion potential in the fourth semiconductor layer and the second gate electrode layer. It is smaller than the interval of the depletion layer that spreads due to the diffusion potential at the junction with.
  • the second semiconductor layer, the third semiconductor layer, and the first gate electrode layer have substantially the same structure between the third semiconductor layer and the fourth semiconductor layer. Equipped with one or more unit transistor structures. With this configuration, three or more unit transistors can be stacked in the lateral junction field effect transistor.
  • a fourth semiconductor layer located on the third semiconductor layer and containing a second conductivity type impurity, and a fourth semiconductor layer located on the fourth semiconductor layer and containing a first conductivity type impurity A fifth semiconductor layer, and a lower surface extending at a predetermined distance in the fifth semiconductor layer so as to extend to the second semiconductor layer; and an impurity concentration of the second semiconductor layer and the fourth semiconductor layer.
  • Source / drain with a higher concentration of impurities of the second conductivity type Between the drain region layer and the source / drain region layer in the third semiconductor layer, the lower surface is provided to extend to the second semiconductor layer, and has a higher impurity concentration than the second semiconductor layer.
  • a third semiconductor layer and the second gate electrode layer is placed on the fourth semiconductor layer It has substantially the same impurity concentration as gate electrode, and, and a second impurity implantation region of the first conductivity type having a same potential.
  • a step of forming a first semiconductor layer containing a first conductivity type impurity on a semiconductor substrate Forming a second semiconductor layer containing a second conductive type impurity at a higher concentration than the impurity concentration of the first semiconductor layer; and introducing an impurity into a predetermined region of the second semiconductor layer.
  • Forming a first conductivity type first impurity implantation region in the second semiconductor layer and forming a third semiconductor layer containing the first conductivity type impurity on the second semiconductor layer.
  • An impurity is introduced so as to extend over the second semiconductor layer and the third semiconductor layer.
  • first gate electrode layer containing a first conductivity type impurity concentration higher than the concentration
  • fourth semiconductor layer containing a second conductivity type impurity on the third semiconductor layer.
  • An impurity is introduced into a predetermined region of the fourth semiconductor layer, the first semiconductor type has substantially the same impurity concentration as the first gate electrode in the fourth semiconductor layer, and has the same potential;
  • Forming a second impurity-implanted region forming a fifth semiconductor layer containing an impurity of the first conductivity type on the fourth semiconductor layer, and forming a predetermined region of the fifth semiconductor layer.
  • a second gate electrode layer having an impurity concentration substantially equal to that of the first gate electrode layer and having the same potential as the first gate electrode layer.
  • An impurity is introduced into a predetermined region of the fifth semiconductor layer, and the lower surface is provided to extend to the second semiconductor layer; and the impurity concentration of the second semiconductor layer and the fourth semiconductor layer is provided.
  • the transistor structure is formed along the vertical direction, which is the stacking direction of each semiconductor layer on the semiconductor substrate.
  • the on-resistance of the device can be further reduced.
  • the second semiconductor layer, the third semiconductor layer, the fourth semiconductor layer, and the fifth semiconductor layer have substantially the same impurity concentration and thickness.
  • a distance between an uppermost portion of the first semiconductor layer and a lowermost portion of the first impurity implantation region is a diffusion potential at a junction between the second semiconductor layer and the first impurity implantation region.
  • the distance between the uppermost part of the first impurity injection region and the lowermost part of the first gate electrode layer is smaller than the distance between the depletion layers spread by the second semiconductor layer and the first gate electrode layer.
  • the distance between the uppermost part of the third semiconductor layer and the lowermost part of the second impurity-implanted region is smaller than twice the distance between the depletion layers spread by the diffusion potential at the junction with the fourth semiconductor layer.
  • the second semiconductor layer includes a plurality of first impurity implantation regions
  • the fourth semiconductor layer includes a plurality of second impurity implantation regions.
  • the second semiconductor layer, the third semiconductor layer, the first gut electrode layer, and the first impurity implantation region are substantially the same between the third semiconductor layer and the fourth semiconductor layer. It has one or more unit transistor structures. With this configuration, three or more unit transistors can be stacked in the lateral junction field-effect transistor.
  • a first semiconductor layer containing a first conductivity type impurity located on a semiconductor substrate A second semiconductor layer containing a second conductive type impurity having a higher concentration than the impurity concentration of the first semiconductor layer; and a first conductive type impurity positioned above the second semiconductor layer.
  • a fourth semiconductor layer located on the third semiconductor layer and containing a second conductivity type impurity, and a fourth semiconductor layer located on the fourth semiconductor layer and containing a first conductivity type impurity A fifth semiconductor layer, and a lower surface extending at a predetermined distance in the fifth semiconductor layer so as to extend to the second semiconductor layer; and an impurity concentration of the second semiconductor layer and the fourth semiconductor layer.
  • Source / drain with a higher concentration of impurities of the second conductivity type Between the source region and the source / drain region layer in the third semiconductor layer, such that the lower surface extends to the second semiconductor layer and the upper surface extends to the fourth semiconductor layer.
  • a step of forming a first semiconductor layer containing a first conductivity type impurity on a semiconductor substrate Forming a second semiconductor layer containing a second conductive type impurity at a higher concentration than the impurity concentration of the first semiconductor layer on the first semiconductor layer; and forming a first semiconductor layer on the second semiconductor layer.
  • Forming a third semiconductor layer containing a conductive type impurity Forming a fourth semiconductor layer containing a second conductive type impurity on the third semiconductor layer, and forming a predetermined region of the fourth semiconductor layer on the third semiconductor layer.
  • the lower surface extends to the second semiconductor layer, the upper surface extends to the fourth semiconductor layer, and the lower surface extends to the second semiconductor layer and the impurity concentration of the second semiconductor layer and the fourth semiconductor layer.
  • Forming a first gate electrode layer containing a first conductive type impurity concentration Forming a fifth semiconductor layer containing a first conductive type impurity on the fourth semiconductor layer; introducing an impurity into a predetermined region of the fifth semiconductor layer; Forming a second gate electrode layer provided so as to extend to the layer, having substantially the same impurity concentration as the first gate electrode layer, and having the same potential; On both sides of the second gate electrode layer, an impurity is introduced into a predetermined region of the fifth semiconductor layer so that a lower surface extends to the second semiconductor layer.
  • a source / drain region layer containing a second conductivity type impurity at a higher concentration than the impurity concentration of the fourth semiconductor layer.
  • the transistor structure is formed along the vertical direction, which is the stacking direction of each semiconductor layer on the semiconductor substrate.
  • the on-resistance of the device can be further reduced.
  • the second semiconductor layer, the third semiconductor layer, the fourth semiconductor layer, and the fifth semiconductor layer have substantially the same impurity concentration and thickness. With this configuration, the on-resistance of the lateral junction field-effect transistor can be minimized, and the breakdown voltage can be set to the maximum.
  • a distance between an uppermost portion of the first semiconductor layer and a lowermost portion of the first gate electrode layer is a diffusion potential at a junction between the second semiconductor layer and the first gate electrode layer.
  • the distance between the uppermost part of the first gate electrode layer and the lowermost part of the second gate electrode layer is smaller than the distance between the expanding depletion layers, and the distance between the fourth semiconductor layer and the first gate electrode layer is It is smaller than twice the space between the depletion layers spread by the diffusion potential at the junction.
  • a unit transistor structure having substantially the same structure as the third semiconductor layer, the fourth semiconductor layer, and the first gate electrode layer is provided between the fourth semiconductor layer and the fifth semiconductor layer. Provide one or more. With this configuration, it becomes possible to stack three or more unit transistors in the lateral junction field-effect transistor.
  • a first semiconductor layer containing a first conductivity type impurity located on a semiconductor substrate A second semiconductor layer containing a second conductive type impurity having a higher concentration than the impurity concentration of the first semiconductor layer; and a first conductive type impurity positioned above the second semiconductor layer.
  • a fourth semiconductor layer located on the third semiconductor layer and containing a second conductivity type impurity, and a fourth semiconductor layer located on the fourth semiconductor layer and containing a first conductivity type impurity A fifth semiconductor layer, and a lower surface extending at a predetermined distance in the fifth semiconductor layer so as to extend to the second semiconductor layer; and an impurity concentration of the second semiconductor layer and the fourth semiconductor layer.
  • Source / drain with a higher concentration of impurities of the second conductivity type Between the source region and the source / drain region layer in the third semiconductor layer, such that the lower surface extends to the second semiconductor layer and the upper surface extends to the fourth semiconductor layer.
  • a step of forming a first semiconductor layer containing a first conductivity type impurity on a semiconductor substrate Forming a second semiconductor layer on the first semiconductor layer, the second semiconductor layer containing a second conductive type impurity having a concentration higher than the impurity concentration of the first semiconductor layer; and forming a second semiconductor layer on the second semiconductor layer.
  • Forming a first gate electrode layer having a higher impurity concentration Forming a first impurity-implanted region of a first conductivity type in the second semiconductor layer by introducing an impurity into a predetermined region of the second semiconductor layer; Forming a fifth semiconductor layer containing a conductive type impurity, and introducing the impurity into a predetermined region of the fifth semiconductor layer so that the lower surface extends to the fourth semiconductor layer; A step of forming a second gate electrode layer of a first conductivity type having substantially the same impurity concentration as the gate electrode layer and having the same potential; introducing an impurity into a predetermined region of the fourth semiconductor layer; Forming, within the fourth semiconductor layer, a second impurity implantation region of the first conductivity type having substantially the same impurity concentration as the first gate electrode layer and having the same potential; On both sides of the electrode layer and the second gate electrode layer, the lower surface is the second half. Forming a source / drain region layer provided to extend to the body layer and containing a second conduct
  • the lateral junction-type field-effect transistor extends along the vertical direction, which is the stacking direction of each semiconductor layer on the semiconductor substrate. Therefore, the on-resistance of the device can be further reduced as compared with the conventional structure.
  • the second semiconductor layer, the third semiconductor layer, the fourth semiconductor layer, and the fifth semiconductor layer have substantially the same impurity concentration and thickness.
  • a distance between an uppermost portion of the first semiconductor layer and a lowermost portion of the first impurity implantation region is a junction between the second semiconductor layer and the first impurity implantation region.
  • the distance between the uppermost part of the first impurity implantation region and the lowermost part of the first gate electrode layer is smaller than the distance between the depletion layers spread by the diffusion potential in the second semiconductor layer and the first gate electrode layer.
  • the distance between the uppermost part of the first good electrode layer and the lowermost part of the second impurity implantation region is smaller than twice the distance between the depletion layers spread by the diffusion potential at the junction of the fourth semiconductor layer and the fourth semiconductor layer.
  • the distance between the uppermost portion of the second impurity-implanted region and the lowermost portion of the second goodt electrode layer is smaller than twice the distance between the depletion layers spread by the diffusion potential at the junction with the second impurity-implanted region. Is the fourth semiconductor layer and the second Less than twice the depletion layer spacing spread by the diffusion potential at the junction between the gate electrode layer.
  • the second semiconductor layer includes a plurality of first impurity implantation regions
  • the fourth semiconductor layer includes a plurality of second impurity implantation regions.
  • the third semiconductor layer, the fourth semiconductor layer, the first gate electrode layer, and the second impurity implantation are provided between the fourth semiconductor layer and the fifth semiconductor layer. It has one or more unit transistor structures that are almost the same as the region. With this configuration, three or more unit transistors can be stacked in the lateral junction field effect transistor.
  • a fourth semiconductor layer located on the third semiconductor layer and containing a second conductivity type impurity, and a fourth semiconductor layer located on the fourth semiconductor layer and containing a first conductivity type impurity A fifth semiconductor layer, and a lower surface extending at a predetermined distance in the fifth semiconductor layer so as to extend to the second semiconductor layer; and an impurity concentration of the second semiconductor layer and the fourth semiconductor layer.
  • Source / drain with a higher concentration of impurities of the second conductivity type Between the source region and the source Z drain region layer in the fifth semiconductor layer, the lower surface is provided to extend to the second semiconductor layer, and has a higher impurity concentration than the second semiconductor layer.
  • the first gate electrode layer including the impurity concentration of the first conductivity type and the source / drain region layer in the fifth semiconductor layer, the first and second source / drain region layers having a lower surface extending to the second semiconductor layer.
  • a second gate electrode layer of a first conductivity type, which is provided adjacent to the gate electrode layer, has substantially the same impurity concentration as the first gate electrode layer, and has the same potential.
  • a step of forming a first semiconductor layer containing a first conductivity type impurity on a semiconductor substrate Forming a second semiconductor layer containing a second conductive type impurity at a higher concentration than the impurity concentration of the first semiconductor layer on the first semiconductor layer; and forming a first semiconductor layer on the second semiconductor layer.
  • Forming a third semiconductor layer containing a conductive type impurity Forming a fourth semiconductor layer containing a second conductive type impurity on the third semiconductor layer, and forming a third semiconductor layer containing a second conductive type impurity on the fourth semiconductor layer.
  • a configuration is employed in which a plurality of lateral JFETs have pn junctions arranged vertically and gate electrode layers arranged horizontally.
  • the on-resistance of the device can be further reduced compared to the conventional structure.
  • the second semiconductor layer, the third semiconductor layer, the fourth semiconductor layer, and the fifth semiconductor layer have substantially the same impurity concentration and thickness.
  • depletion in which a distance between the first gate electrode layer and the second gate electrode layer is increased by a diffusion potential at a junction between the second semiconductor layer and the first gate electrode layer. It is smaller than twice the distance between the layers and the distance between the depletion layers spread by the diffusion potential at the junction between the fourth semiconductor layer and the first gate electrode layer. With this configuration, it becomes possible to realize a normally-off type lateral junction field-effect transistor.
  • the first gate electrode layer is provided between the first gate electrode layer and the second good electrode layer so that a lower surface extends to the second semiconductor layer. And has one impurity implantation region of the first conductivity type having substantially the same impurity concentration as and having the same potential. With this configuration, the number of channels increases and the on-resistance can be further reduced.
  • the distance between the first gate electrode layer and the impurity injection region and the distance between the impurity injection region and the second gate electrode layer are different from the second semiconductor layer. It is smaller than twice the distance between the depletion layers at the junction with the first good electrode layer and the depletion layer at the junction between the fourth semiconductor layer and the first gate electrode layer. . This structure This makes it possible to realize a normally-off type lateral junction field-effect transistor.
  • the impurity implantation regions are provided. With this configuration, the number of channels increases, and the on-resistance can be further reduced.
  • the distance between the impurity injection region closest to the first gate electrode layer and the first gate electrode layer, the distance between the impurity injection regions, and the second gate electrode is the distance between the depletion layers spread by the diffusion potential at the junction between the second semiconductor layer and the first good electrode layer.
  • the distance between the depletion layers spread by the diffusion potential at the junction between the fourth semiconductor layer and the first gate electrode layer is smaller than twice as large.
  • At least one structure substantially the same as that of the third semiconductor layer and the fourth semiconductor layer is provided between the fourth semiconductor layer and the fifth semiconductor layer.
  • a second semiconductor layer containing the first conductivity type impurity and a third semiconductor layer containing the second conductivity type impurity by introducing the conductivity type impurity; and forming the second semiconductor layer and the third semiconductor layer containing the third conductivity type impurity.
  • the impurity is provided so as to straddle the second semiconductor layer and the third semiconductor layer, and has a first conductivity type higher than an impurity concentration of the first semiconductor layer.
  • the impurities are introduced along the direction in which the second semiconductor layer and the third semiconductor layer are arranged, and the gate electrode layer is sandwiched therebetween.
  • each semiconductor layer provided on the semiconductor substrate is arranged along the adjacent lateral direction on the semiconductor substrate, so that the Since the transistor structure is formed along the planar direction, the on-resistance of the device can be further reduced as compared with the conventional structure.
  • the second semiconductor layer and the third semiconductor layer have substantially the same impurity concentration and thickness.
  • the distance between the gate electrode layer and a surface of the third semiconductor layer that is not in contact with the gate electrode layer is such that the diffusion at the junction between the third semiconductor layer and the gate electrode layer is Smaller than the space between the depletion layers, which spreads with the potential.
  • a second gate electrode layer of the first conductivity type having the following.
  • each semiconductor layer provided on the semiconductor substrate is arranged along the adjacent lateral direction on the semiconductor substrate, so that the semiconductor layer extends along the planar direction of the substrate. Since a transistor structure is formed, the on-resistance of the device can be further reduced as compared with the conventional structure.
  • the second semiconductor layer, the third semiconductor layer, the fourth semiconductor layer, and the fifth semiconductor layer have substantially the same impurity concentration and thickness.
  • the distance between the first gate electrode and a surface of the third semiconductor layer that is not in contact with the first good electrode layer is the third half.
  • a surface of the junction between the conductor layer and the first gate electrode layer, which is smaller than a depletion layer that spreads due to a diffusion potential, and a surface of the second gate electrode layer and the fifth semiconductor layer that is not in contact with the second gate electrode layer. Is smaller than the distance between the depletion layers spread by the diffusion potential at the junction between the fifth semiconductor layer and the second gate electrode layer.
  • the fourth semiconductor layer, the fifth semiconductor layer, and the second gate electrode layer have substantially the same structure between the third semiconductor layer and the fourth semiconductor layer. Equipped with one or more unit transistor structures. With this configuration, three or more unit transistors can be provided in the lateral junction field-effect transistor.
  • a first semiconductor layer containing a first conductivity type impurity located on a semiconductor substrate A second semiconductor layer containing a first conductivity type impurity, and a second semiconductor layer containing the second conductivity type impurity, located on the first semiconductor layer and adjacent to the second semiconductor layer.
  • each semiconductor layer provided on the semiconductor substrate is arranged along the adjacent lateral direction on the semiconductor substrate, so that the semiconductor layer extends along the planar direction of the substrate. Since a transistor structure is formed, the on-resistance of the device can be further reduced as compared with the conventional structure.
  • the second semiconductor layer, the third semiconductor layer, The impurity concentration and the film thickness of the fourth semiconductor layer are substantially the same.
  • the distance between the gate electrode layer and the fourth semiconductor layer is a depletion layer that is widened by a diffusion potential at a junction between the third semiconductor layer and the gate electrode layer. Less than the interval. With this configuration, it becomes possible to realize a normally-off type lateral junction field-effect transistor.
  • a unit transistor having substantially the same structure between the third semiconductor layer and the fourth semiconductor layer as the second semiconductor layer, the third semiconductor layer, and the gate electrode layer is provided.
  • a third semiconductor layer provided between the source / drain region layer and the source / drain region layer in the second semiconductor layer such that a side surface thereof extends to the third semiconductor layer.
  • First conductivity type higher than the impurity concentration of the layer A gate electrode layer containing an impurity concentration; and the third semiconductor layer sandwiched between the good electrode layer and a surface of the third semiconductor layer that is not in contact with the gate electrode layer.
  • a first conductivity type impurity implantation region having a concentration and the same potential.
  • J In a predetermined region in the semiconductor layer, the planar direction of the substrate Forming a second semiconductor layer containing the first conductivity type impurity and a third semiconductor layer containing the second conductivity type impurity by introducing the first conductivity type impurity at a predetermined interval along Introducing impurities into predetermined regions in the second semiconductor layer and the third semiconductor layer so as to extend over the second semiconductor layer and the third semiconductor layer; A gate electrode layer including a first conductive type impurity concentration higher than the impurity concentration of the third semiconductor layer; and the third semiconductor layer having substantially the same impurity concentration as the gate electrode layer; Forming a first conductivity type impurity-implanted region having a potential; and introducing impurities into predetermined regions of the second semiconductor layer and the third semiconductor layer, thereby forming the second semiconductor layer and the third semiconductor layer.
  • each semiconductor layer provided on the semiconductor substrate is arranged along the adjacent lateral direction on the semiconductor substrate, so that the Since the transistor structure is formed along the planar direction, the on-resistance of the device can be further reduced as compared with the conventional structure.
  • the second semiconductor layer and the third semiconductor layer have substantially the same impurity concentration and thickness.
  • a depletion layer in which the distance between the largest contact surfaces between the gate electrode layer and the impurity implantation region is increased by a diffusion potential at the junction between the third semiconductor layer and the gate electrode layer.
  • the distance between the impurity-implanted region and the surface of the third semiconductor layer that is not in contact with the gate electrode layer is smaller than twice the distance between the third semiconductor layer and the gate electrode layer. It is smaller than the space between the depletion layers spread by the diffusion potential.
  • the third semiconductor layer includes a plurality of impurity implantation regions. Be killed.
  • the third semiconductor layer includes a plurality of impurity implantation regions. Be killed.
  • the third semiconductor layer and the third semiconductor layer are provided at predetermined intervals in the layer.
  • one of the side surfaces is (3) a first gut electrode layer provided to extend to the semiconductor layer and having an impurity concentration of a first conductivity type higher than the impurity concentration of the first semiconductor layer; and the source / drain in the fourth semiconductor layer A second gate having one side surface extending between the region layers and extending to the fifth semiconductor layer, having substantially the same impurity concentration as the first gate electrode layer, and having the same potential.
  • the fifth semiconductor layer sandwiched between the second gate electrode layer and a surface of the fifth semiconductor layer that is not in contact with the second gate electrode layer has substantially the same impurity concentration as the first gate electrode layer.
  • a second impurity-implanted region of the first conductivity type having the same potential.
  • each semiconductor layer provided on the semiconductor substrate is disposed along the lateral direction adjacent to the semiconductor substrate, so that the semiconductor layer is disposed along the planar direction of the substrate. Forming a transistor structure Therefore, the on-resistance of the device can be further reduced as compared with the conventional structure.
  • the second semiconductor layer, the third semiconductor layer, the fourth semiconductor layer, and the fifth semiconductor layer have substantially the same impurity concentration and thickness.
  • the distance between the closest surfaces of the first gate electrode layer and the first impurity implantation region is equal to the junction between the third semiconductor layer and the first gate electrode layer.
  • the distance between the first impurity-implanted region and the surface of the third semiconductor layer that is not in contact with the first gate electrode layer is smaller than twice the distance between the depletion layers spread due to the diffusion potential of the third semiconductor layer.
  • the distance between the closest surfaces between the second gate electrode layer and the second impurity-implanted region is smaller than the distance between the depletion layers spread by the diffusion potential at the junction between the semiconductor layer and the first gate electrode layer.
  • the second impurity-implanted region which is smaller than twice the distance between the depletion layers spread by the diffusion potential at the junction between the fifth semiconductor layer and the second good electrode layer, and the second gate of the fifth semiconductor layer Between the electrode layer and the surface not in contact Interval is not smaller than the distance between the depletion layer expanding in the diffusion potential at the junction between the fifth semiconductor layer and the second gate electrode layer.
  • the third semiconductor layer includes a plurality of first impurity implantation regions
  • the fifth semiconductor layer includes a plurality of second impurity implantation regions.
  • the fourth semiconductor layer, the fifth semiconductor layer, the second gate electrode layer, and the second impurity implantation are provided between the third semiconductor layer and the fourth semiconductor layer. It has at least one unit transistor structure that is almost the same as the region. With this configuration, three or more unit transistors can be provided in the lateral junction field effect transistor.
  • a gate electrode layer provided so that one side surface of the third semiconductor layer extends to the third semiconductor layer, the gate electrode layer including a first conductive type impurity concentration higher than the impurity concentration of the third semiconductor layer; and
  • the third semiconductor layer sandwiched between the gate electrode layer and the gate electrode layer includes a first conductivity type impurity implantation region having substantially the same impurity concentration and the same potential as the gate electrode layer.
  • each semiconductor layer provided on the semiconductor substrate is arranged along the adjacent lateral direction on the semiconductor substrate, so that the semiconductor layer extends along the planar direction of the substrate. Since a transistor structure is formed, the on-resistance of the device can be further reduced as compared with the conventional structure.
  • the second semiconductor layer, the third semiconductor layer, and the fourth semiconductor layer have substantially the same impurity concentration and thickness.
  • the distance between the gate electrode layer and the impurity-implanted region is the distance between the depletion layers spread by a diffusion potential at the junction between the third semiconductor layer and the gate electrode layer.
  • the distance between the impurity-implanted region and the fourth semiconductor layer is smaller than twice, and is smaller than the distance between a depletion layer that spreads at a diffusion potential at the junction between the third semiconductor layer and the gate electrode layer.
  • the third semiconductor layer has a plurality of the impurity-implanted regions.
  • the impurity-implanted regions By providing a plurality of impurity-implanted regions in this way, it is possible to realize a normally-off type lateral junction transistor while increasing the total channel width and reducing the on-resistance.
  • the second semiconductor layer, the third semiconductor layer, the gate electrode layer, and the impurity implantation region are substantially the same between the third semiconductor layer and the fourth semiconductor layer. It has one or more unit transistor structures. With this configuration, three or more unit transistors can be provided in the lateral junction field effect transistor.
  • a second good electrode layer of the first conductivity type having the same potential In still another aspect of the method for manufacturing a lateral junction field effect transistor according to the present invention, a step of forming a first semiconductor layer containing a first conductivity type impurity on a semiconductor substrate, On the first semiconductor layer, a half containing a second conductivity type impurity is formed. Forming a conductive layer, and introducing the first conductivity type impurity into a predetermined region in the semiconductor layer at a predetermined interval along a plane direction of the substrate, thereby including the first conductivity type impurity.
  • the second of the first conductivity type having the same potential Forming a second electrode layer by introducing impurities into predetermined regions of the second semiconductor layer, the third semiconductor layer, and the fourth semiconductor layer.
  • the impurity concentration is higher than the impurity concentration of the third semiconductor layer.
  • each semiconductor layer provided on the semiconductor substrate is arranged along the adjacent lateral direction on the semiconductor substrate, so that the Since the transistor structure is formed along the planar direction, the on-resistance of the device can be further reduced as compared with the conventional structure.
  • the second semiconductor layer, the third semiconductor layer, and the fourth semiconductor layer have substantially the same impurity concentration and thickness.
  • the distance between the closest surfaces of the first ′ gate electrode layer and the second gate electrode layer is set at the junction between the third semiconductor layer and the first gate electrode layer. It is smaller than twice the space between the depletion layers spread by the diffusion potential. With this configuration, normally-off type lateral junction field-effect transistor Can be realized.
  • a sixth semiconductor layer containing a conductive type impurity, the second semiconductor layer, the third semiconductor layer, The fourth semiconductor layer, the fifth semiconductor layer, and the sixth semiconductor layer are provided at predetermined intervals and have a concentration higher than the impurity concentration of the third semiconductor layer and the fifth semiconductor layer.
  • the source / drain region layer containing impurities of the second conductivity type and the source / drain region layer in the second semiconductor layer one side surface extends to the third semiconductor layer.
  • the first gate electrode layer having a first conductive type impurity concentration higher than the impurity concentration of the third semiconductor layer and the source / drain region layer in the fourth semiconductor layer are provided at predetermined intervals and have a concentration higher than the impurity concentration of the third semiconductor layer and the fifth semiconductor layer.
  • One side surface is provided so as to extend to the third semiconductor layer, and the other side surface is provided so as to extend to the fifth semiconductor layer, and has substantially the same impurity concentration as the first gate electrode layer; And a second gate electrode of the first conductivity type having the same potential.
  • a third gate electrode layer of the first conductivity type having the same impurity concentration and the same potential.
  • each semiconductor layer provided on the semiconductor substrate is arranged along the adjacent lateral direction on the semiconductor substrate, so that the semiconductor layer extends along the planar direction of the substrate. Since a transistor structure is formed, the on-resistance of the device can be further reduced as compared with the conventional structure.
  • the second semiconductor layer, the third semiconductor layer, the fourth semiconductor layer, the fifth semiconductor layer, and the sixth semiconductor layer have substantially the same impurity concentration and thickness. It is. With this configuration, the on-resistance of the lateral junction field-effect transistor can be minimized, and the withstand voltage can be set to the maximum.
  • the distance between the closest surfaces of the first gate electrode layer and the second gate electrode layer is such that the diffusion at the junction between the third semiconductor layer and the first gate electrode layer is increased.
  • the distance between the nearest surfaces of the second gate electrode layer and the third gate electrode layer is smaller than twice the distance between the depletion layers spread by the potential, and the distance between the third semiconductor layer and the first gate electrode layer is It is smaller than twice the distance between the depletion layers spread by the diffusion potential at the junction.
  • a unit having substantially the same structure as the fourth semiconductor layer, the fifth semiconductor layer, and the second good electrode layer is provided between the fifth semiconductor layer and the sixth semiconductor layer. At least one transistor structure is provided. With this configuration, it is possible to provide three or more unit transistors in the lateral junction field effect transistor.
  • a second gate electrode layer provided so as to extend to the body layer, having substantially the same impurity concentration as the first gate electrode layer, and having the same potential; the first gate electrode layer and the second good
  • the third semiconductor layer sandwiched between the electrode layers includes a first conductivity type impurity doped region having substantially the same impurity concentration as the first gut electrode layer and having the same potential.
  • a first semiconductor layer containing a first conductivity type impurity when a first semiconductor layer containing a first conductivity type impurity is formed on a semiconductor substrate, (1) forming a semiconductor layer containing a second conductivity type impurity on the semiconductor layer; and forming a first conductivity type impurity in a predetermined region in the semiconductor layer at a predetermined interval along a plane direction of the substrate. Forming a second semiconductor layer containing impurities of the first conductivity type, a third semiconductor layer containing impurities of the second conductivity type, and a fourth semiconductor layer containing impurities of the first conductivity type.
  • the semiconductor device By introducing impurities into predetermined regions in the second semiconductor layer, the third semiconductor layer, and the fourth semiconductor layer, the semiconductor device is provided so as to straddle the second semiconductor layer and the third semiconductor layer,
  • the impurity concentration of the third semiconductor layer A first gate electrode layer having an impurity concentration of a first conductivity type higher than that of the first gate electrode layer, the first gate electrode layer being provided to extend over the third semiconductor layer and the fourth semiconductor layer, and having substantially the same impurity as the first gate electrode layer.
  • a first conductive type second gut electrode layer having a concentration and the same potential; and the third semiconductor layer sandwiched between the first gate electrode layer and the second gate electrode layer.
  • first conductivity type impurity-implanted region having substantially the same impurity concentration as the first gate electrode layer and having the same potential; and the second semiconductor layer, the third semiconductor layer, and By introducing an impurity into a predetermined region of the fourth semiconductor layer, the impurity is introduced along a direction in which the second semiconductor layer, the third semiconductor layer, and the fourth semiconductor layer are arranged, and the one gate is formed. Electrode layer, the second gate electrode layer and the impurity-implanted region. And forming a source / drain region layer containing a second conductivity type impurity at a higher concentration than the impurity concentration of the third semiconductor layer.
  • the semiconductor layers provided on the semiconductor substrate are arranged along the adjacent lateral direction on the semiconductor substrate. Along the plane Therefore, the on-resistance of the device can be further reduced as compared with the conventional structure.
  • the second semiconductor layer, the third semiconductor layer, and the fourth semiconductor layer have substantially the same impurity concentration and thickness.
  • the distance between the first gate electrode layer and the surface closest to the impurity-implanted region is a diffusion potential at a junction between the third semiconductor layer and the first gate electrode layer.
  • the distance between the impurity-implanted region and the nearest surface of the second gate electrode is smaller than twice the distance between the expanding depletion layers, and the distance between the closest surface of the second gate electrode and the junction between the third semiconductor layer and the first gate electrode layer Is smaller than twice the spacing of the depletion layer spreading at the diffusion potential at.
  • the third semiconductor layer has a plurality of the impurity-implanted regions.
  • the impurity-implanted regions By providing a plurality of impurity-implanted regions in this way, it is possible to realize a normally-off type lateral junction transistor while increasing the total channel width and reducing the on-resistance.
  • a sixth semiconductor layer containing a conductivity type impurity, the second semiconductor layer, the third semiconductor layer, The fourth semiconductor layer, the fifth semiconductor layer, and the sixth semiconductor layer are provided at predetermined intervals and have a concentration higher than the impurity concentration of the third semiconductor layer and the fifth semiconductor layer.
  • Second conductivity type impurity Between the source / drain region layer containing the substance and the source / drain region layer in the second semiconductor layer, one side surface of the source / drain region layer extending to the third semiconductor layer; (3) Between the first gate electrode layer containing the impurity concentration of the first conductivity type higher than the impurity concentration of the semiconductor layer and the source drain region layer in the fourth semiconductor layer, one side surface is The third semiconductor layer is provided so as to extend to the semiconductor layer and to have the other side surface extending to the fifth semiconductor layer, having substantially the same impurity concentration as the first good electrode layer, and having the same potential. 1) between the second gate electrode layer of conductivity type and the source / drain region layer in the sixth semiconductor layer, one side surface is provided so as to extend to the fifth semiconductor layer.
  • the same impurity concentration as the first gate electrode layer A third gate electrode layer of a first conductivity type having the same potential, and a third semiconductor layer sandwiched between the first gut electrode layer and the second gate electrode layer.
  • a first conductivity type first impurity implantation region having substantially the same impurity concentration as the gate electrode layer and having the same potential; and the fifth impurity region interposed between the second gate electrode and the third gate electrode layer.
  • the semiconductor layer includes a second impurity implantation region of a first conductivity type having substantially the same impurity concentration as the first gate electrode layer and having the same potential.
  • each semiconductor layer provided on the semiconductor substrate is arranged along the adjacent lateral direction on the semiconductor substrate, so that the semiconductor layer extends along the planar direction of the substrate. Since a transistor structure is formed, the on-resistance of the device can be further reduced as compared with the conventional structure.
  • the second semiconductor layer, the third semiconductor layer, the fourth semiconductor layer, the fifth semiconductor layer, and the sixth semiconductor layer have substantially the same impurity concentration and thickness. It is. With this configuration, the on-resistance of the lateral junction field-effect transistor can be minimized, and the withstand voltage can be set to the maximum.
  • the distance between the first gate electrode layer and a surface of the first impurity implantation region closest to each other is a diffusion at a junction between the third semiconductor layer and the first gate electrode layer. It is smaller than twice the distance between the depletion layers spread by the potential, and is closest to the first impurity implantation region and the second gate electrode layer. The distance between the surfaces is smaller than twice the distance between the depletion layers spread by the diffusion potential at the junction between the third semiconductor layer and the first gate electrode layer, and the second gate electrode layer and the second impurity implantation are performed.
  • the distance between the closest surfaces of the region is smaller than twice the distance between the depletion layers spread by the diffusion potential at the junction between the third semiconductor layer and the first gate electrode layer;
  • the distance between the surfaces of the third gate electrode layer closest to each other is smaller than twice the distance between the depletion layers spread by the diffusion potential at the junction between the third semiconductor layer and the first good electrode layer.
  • the third semiconductor layer includes a plurality of first impurity implantation regions
  • the fifth semiconductor layer includes a plurality of second impurity implantation regions.
  • the fourth semiconductor layer, the fifth semiconductor layer, the second gate electrode layer, and the second impurity implantation are provided between the fifth semiconductor layer and the sixth semiconductor layer. It has at least one unit transistor structure that is almost the same as the region. With this configuration, three or more unit transistors can be provided in the lateral junction field effect transistor.
  • FIG. 1 is a cross-sectional view illustrating a structure of a lateral junction field-effect transistor according to the first embodiment.
  • FIG. 2 is a first process sectional view illustrating the method for manufacturing the lateral junction field effect transistor in the first embodiment.
  • FIG. 3 is a second process sectional view illustrating the method for manufacturing the lateral junction field effect transistor in the first embodiment.
  • FIG. 4 shows a method of manufacturing the lateral junction field-effect transistor according to the first embodiment.
  • FIG. 8 is a sectional view showing a third step.
  • FIG. 5 is a fourth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the first embodiment.
  • FIG. 6 is a fifth process sectional view illustrating the method for manufacturing the lateral junction field effect transistor in the first embodiment.
  • FIG. 7 is a sixth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the first embodiment.
  • FIG. 8 is a cross-sectional view showing a structure of a lateral junction field-effect transistor according to the second embodiment.
  • FIG. 9 is a first step cross-sectional view illustrating the method for manufacturing the lateral junction field-effect transistor in the second embodiment.
  • FIG. 10 is a second process sectional view illustrating the method for manufacturing the lateral junction field effect transistor in the second embodiment.
  • FIG. 11 is a third process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the second embodiment.
  • FIG. 12 is a fourth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the second embodiment.
  • FIG. 13 is a fifth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the second embodiment.
  • FIG. 14 is a sixth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the second embodiment.
  • FIG. 15 is a seventh process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the second embodiment.
  • FIG. 16 is an eighth process sectional view illustrating the method of manufacturing the lateral junction field-effect transistor in the second embodiment.
  • FIG. 17 is a cross-sectional view showing the structure of the lateral junction field-effect transistor according to the third embodiment.
  • FIG. 18 is a first step cross-sectional view illustrating the method of manufacturing the lateral junction field-effect transistor in the third embodiment.
  • FIG. 19 is a second process sectional view illustrating the method of manufacturing the lateral junction field-effect transistor in the third embodiment.
  • FIG. 20 is a third process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the third embodiment.
  • FIG. 21 is a fourth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the third embodiment.
  • FIG. 22 is a fifth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the third embodiment.
  • FIG. 23 is a sixth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the third embodiment.
  • FIG. 24 is a first process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the third embodiment.
  • FIG. 25 is an eighth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the third embodiment.
  • FIG. 26 is a cross-sectional view showing the structure of the lateral junction field-effect transistor according to the fourth embodiment.
  • FIG. 27 is a first step cross-sectional view illustrating the method of manufacturing the lateral junction field-effect transistor in the fourth embodiment.
  • FIG. 28 is a second step cross-sectional view illustrating the method of manufacturing the lateral junction field-effect transistor in the fourth embodiment.
  • FIG. 29 is a third process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the fourth embodiment.
  • FIG. 30 is a fourth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the fourth embodiment.
  • FIG. 31 is a fifth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the fourth embodiment.
  • FIG. 32 is a sixth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the fourth embodiment.
  • FIG. 33 shows a method of manufacturing a lateral junction field-effect transistor according to the fourth embodiment.
  • FIG. 14 is a seventh process sectional view showing the method.
  • FIG. 34 is an eighth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the fourth embodiment.
  • FIG. 35 is a ninth step cross-sectional view illustrating the method of manufacturing the lateral junction field-effect transistor in the fourth embodiment.
  • FIG. 36 is a cross-sectional view showing a tenth step of the method for manufacturing the lateral junction field-effect transistor in the fourth embodiment.
  • FIG. 37 is a first step cross-sectional view showing the method of manufacturing the lateral junction field-effect transistor in the fourth embodiment.
  • FIG. 38 is a cross-sectional view showing a structure of a lateral junction field-effect transistor according to the fifth embodiment.
  • FIG. 39 is a sectional view taken along the line XXXIX—XXXIX in FIG.
  • FIG. 40 is a cross-sectional view showing a structure of another mode corresponding to the cross-sectional view taken along the line XXXIX-XXXIX in FIG.
  • FIG. 41 is a first step cross-sectional view illustrating the method of manufacturing the lateral junction field-effect transistor in the fifth embodiment.
  • FIG. 42 is a second step cross-sectional view showing the method of manufacturing the lateral junction field-effect transistor in the fifth embodiment.
  • FIG. 43 is a third process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the fifth embodiment.
  • FIG. 44 is a cross-sectional view showing a structure of the lateral junction field-effect transistor according to the sixth embodiment.
  • FIG. 45 is a cross-sectional view taken along line XLV—XLV in FIG.
  • FIG. 46 is a first step cross-sectional view showing the method of manufacturing the lateral junction field-effect transistor in the sixth embodiment.
  • FIG. 47 is a second process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the sixth embodiment.
  • FIG. 48 is a third process sectional view illustrating the method of manufacturing the structured junction field effect transistor in the sixth embodiment.
  • FIG. 49 is a fourth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the sixth embodiment.
  • FIG. 50 is a fifth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the sixth embodiment.
  • FIG. 51 is a cross-sectional view showing a structure of a lateral junction field-effect transistor according to the seventh embodiment.
  • FIG. 52 is a cross-sectional view taken along line LLI-LII in FIG.
  • FIG. 53 is a first process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the seventh embodiment.
  • FIG. 54 is a second process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the seventh embodiment.
  • FIG. 55 is a third process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the seventh embodiment.
  • FIG. 56 is a fourth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the seventh embodiment.
  • FIG. 57 is a fifth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the seventh embodiment.
  • FIG. 58 is a cross-sectional view showing the structure of the lateral junction field-effect transistor according to the eighth embodiment.
  • FIG. 59 is a cross-sectional view taken along line LIX—LIX in FIG.
  • FIG. 60 is a first step cross-sectional view showing the method of manufacturing the lateral junction field-effect transistor in the eighth embodiment.
  • FIG. 61 is a second process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the eighth embodiment.
  • FIG. 62 is a third process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the eighth embodiment.
  • FIG. 63 is a fourth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the eighth embodiment.
  • FIG. 64 shows a method of manufacturing a lateral junction field-effect transistor according to the eighth embodiment.
  • FIG. 13 is a fifth process sectional view showing the method.
  • FIG. 65 is a cross-sectional view showing the structure of the lateral junction field-effect transistor according to the ninth embodiment.
  • FIG. 66 is a cross-sectional view taken along line LXVI-LXVI in FIG.
  • FIG. 67 is a first step cross-sectional view showing the method of manufacturing the lateral junction field-effect transistor in the ninth embodiment.
  • FIG. 68 is a second process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the ninth embodiment.
  • FIG. 69 is a third step cross-sectional view showing the method of manufacturing the lateral junction field-effect transistor in the ninth embodiment.
  • FIG. 70 is a fourth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the ninth embodiment.
  • FIG. 71 is a fifth process sectional view illustrating the method of manufacturing the lateral junction field effect transistor in the ninth embodiment.
  • FIG. 72 is a cross-sectional view showing a structure of a lateral junction field-effect transistor in the background art.
  • a structural feature of the lateral junction field-effect transistor 100 according to the present embodiment is that a Pn junction and a gate electrode layer are arranged in the vertical direction.
  • the vertical direction means a direction along the depth direction of the substrate
  • the horizontal direction means a direction parallel to the main surface of the substrate.
  • This lateral junction field effect transistor 100 is a semiconductor substrate made of Si or the like.
  • a fifth semiconductor layer 15 that is located on the fourth semiconductor layer 14 and contains a p-type impurity.
  • the material of the first semiconductor layer 11 is S i C
  • the film thickness is about 3 ⁇ 4
  • the impurity concentration is about 1 ⁇ 10 16 cm ⁇ 3
  • impurity concentration 1 X 10 17 cm one 3 It provided about ⁇ 3 X 10 17 cm one 3.
  • a lower surface is provided at a predetermined interval in the fifth semiconductor layer 15 so as to extend to the second semiconductor layer 12.
  • the source Z drain region layers 6 and 8 containing a high concentration of n-type impurities are also provided.
  • the impurity concentration of the source / drain region layer 6, 8 is provided in order 1 X 1 0 19 cm one 3 ⁇ 1 X 10 2 ° cm- 3.
  • the lower surface extends to the second semiconductor layer 12 so as to extend over the second semiconductor layer 12 and the third semiconductor layer 13.
  • a first gate electrode layer 18A including a p-type impurity concentration higher than the impurity concentration of the second semiconductor layer 12.
  • the lower surface is provided between the source / drain region layers 6 and 8 in the fifth semiconductor layer 15 so that the lower surface extends to the fourth semiconductor layer 14 and has substantially the same impurity as the first gate electrode layer 18 A.
  • a second gate electrode layer 18B having a concentration and the same potential and containing a p-type impurity is provided.
  • the impurity concentration of the first gate electrode layer 18 A and the second gate electrode layer 18 B is set to about 3 XI 0 18 cm— 3 to: LX 10 2 ° cm— 3 .
  • an impurity region layer 4 including a P-type impurity concentration extending to the first semiconductor layer 11 is provided outside the source region layer 6. Not pure concentration of the impurity region layer 4 is provided about 3 X 10 18 cm one 3 ⁇ IX 10 2 ° cm one 3.
  • the distance (wl 1) force between the uppermost part of the first semiconductor layer 11 and the lowermost part of the first gate electrode 18 A is required.
  • the gap between the depletion layer that spreads due to the diffusion potential at the junction between the two semiconductor layers 12 and the one gate electrode layer 18A is provided to be smaller than the distance between the depletion layers. It is sufficient that the distance w 12 between the lowermost portion of B and the depletion layer that spreads due to the diffusion potential at the junction between the fourth semiconductor layer 14 and the second good electrode layer 18 B is set to be smaller. .
  • One semiconductor layer 11 is formed by epitaxial growth. Then, on the first semiconductor layer 1 1, about 0. 5 mu m thickness of approximately containing n-type impurity, about 3 X 10 17 cm_ 3 about higher than the impurity concentration first semiconductor layer 1 1
  • the second semiconductor layer 12 made of SiC is formed by epitaxy. Then, on the second semiconductor layer 1 2, about 0.
  • the third semiconductor layer 13 in which the impurity concentration of about 3 X 10 17 cm one 3 about S i C It is formed by epitaxy growth.
  • an oxide film 200 having a predetermined opening pattern is formed on third semiconductor layer 13 and, using this oxide film 200 as a mask, a p-type impurity is Introduced into the layer 13, the region extending between the second semiconductor layer 12 and the third semiconductor layer 13 has an impurity concentration higher than the impurity concentration of the second semiconductor layer 12 by 3 ⁇ 10 18 cm— 3 to A first gate electrode layer 18A containing a p-type impurity of about 1 ⁇ 10 2 ° cm— 3 is formed.
  • the p-type impurity is implanted at an implantation energy of about 700 kev and an implantation amount of about 3 ⁇ 10 14 cm— 2 , and an implantation energy of about 500 kev and an implantation amount of about 3 ⁇ 10 14 cm— 2 . Perform in two steps.
  • the thickness including the n-type impurity is about 0.5 ⁇ and the impurity concentration is about 3 ⁇ 10 17 cm on the third semiconductor layer 13.
  • a fourth semiconductor layer 14 of about 3. SiC is formed by epitaxy. Then, this on the fourth semiconductor layer 14, the degree of extent thickness of about 0. 5 / im containing p-type impurities, a fifth semiconductor layer in which the impurity concentration of about 3 X 10 17 cm one 3 about S i C Form 1 5.
  • an oxide film 201 having a predetermined opening pattern is formed on fifth semiconductor layer 15 and, using this oxide film 201 as a mask, p-type impurities are removed.
  • 5 is introduced into the semiconductor layer 1 5, a lower surface extends up to the fourth semiconductor layer 14, 3 about the same as the first gate electrode layer 18 a X 10 18 cm_ 3 ⁇ l X 10 20 cm one 3 about p
  • a second gate electrode layer 18B containing type impurities and having the same potential is formed.
  • the p-type impurity is implanted in the first stage at an implantation energy of approximately 700 keV and an implantation amount of about 3 ⁇ 10 14 cm— 2 , and in the second stage, an implantation energy of approximately 500 kev and an implantation amount of approximately 500 keV.
  • the third stage has an implantation energy of about 280 keV, the implantation amount is about 5 ⁇ 10 14 cm— 2 , the fourth stage has an implantation energy of about 140 keV, and the implantation amount is about 5 ⁇ 10 14 c m-2, the fifth stage implantation energy of about 70 ke V, injection volume of about 4 X 1 0 14 cm one 2, 6 stage implantation energy of about 30 kev, injection volume of about 3 X 10 14 cm- 2 6 Performed in stages.
  • oxide film 202 having a predetermined opening pattern is formed again on fifth semiconductor layer 15 and this oxide film 202 is masked. Then, on both sides of the first gate electrode layer 18 A and the second gate electrode layer 18 B, impurities are introduced into the fifth semiconductor layer 15, and the lower surface extends to the second semiconductor layer 12. 1 ⁇ 10 19 cm— 3 to 1 ⁇ 10 2 higher than the impurity concentration of the second semiconductor layer 12 and the fourth semiconductor layer 14.
  • the source Z drain region layers 6 and 8 containing n-type impurities of about cm- 3 are formed.
  • an oxide film 203 having a predetermined opening pattern is formed again on fifth semiconductor layer 15 and this oxide film 202 is masked. Then, in a region outside the source / drain region layer 6, an impurity is introduced into the fifth semiconductor layer 15 so that the lower surface extends to the first semiconductor layer 11, and 3 ⁇ 10 18 cm— 3 to An impurity region layer 4 containing a p-type impurity of about 1 ⁇ 10 2 ° cm- 3 is formed.
  • the lateral JFET having the above-described configuration and the manufacturing method thereof, a configuration in which a plurality of lateral JFETs are vertically stacked is employed, so that the on-resistance of the element is further reduced as compared with the conventional structure. It becomes possible.
  • the impurity concentration and the film thickness of the second semiconductor layer 12, the third semiconductor layer 13, the fourth semiconductor layer 14, and the fifth semiconductor layer 15 are set to substantially the same value.
  • the on-resistance of the horizontal JFET can be minimized, and the breakdown voltage can be set to the maximum.
  • a unit transformer having substantially the same structure as the second semiconductor layer 12, the third semiconductor layer 13, and the first gate electrode layer 18A is provided.
  • Structural features of the lateral junction field-effect transistor 200 in the present embodiment are similar to those of the lateral junction field-effect transistor 100 in that the ⁇ junction and the gate electrode layer are arranged in the vertical direction. It was made.
  • the lateral junction field-effect transistor 200 includes a first semiconductor layer 21 containing a p-type impurity located on a semiconductor substrate 2 made of Si or the like, and a first semiconductor layer 21 on the first semiconductor layer 21. 1 a second semiconductor layer 22 containing an n-type impurity at a higher concentration than the impurity concentration of the semiconductor layer 21; and a third semiconductor layer 2 3 A fourth semiconductor layer 24 located on the third semiconductor layer 23 and containing an n-type impurity; and a fifth semiconductor layer located on the fourth semiconductor layer 24 and containing a p-type impurity. 25 are provided.
  • the material of the first semiconductor layer 21 is S i C
  • the film thickness is about 3 ⁇ m to about 4 ⁇
  • the impurity concentration is about 1 ⁇ 10 16 cm— 3.
  • the third semi The material of the body layer 23, the fourth semiconductor layer 24, and the fifth semiconductor layer 25 is SiC
  • the film thickness is about 0.5 ⁇ m to 1.0 ⁇
  • the impurity concentration is 1 X 10. provided approximately 1 7 c m_ 3 ⁇ 3 X 1 0 1 7 cm one 3.
  • a lower surface is provided at a predetermined interval so as to extend to the second semiconductor layer 22.
  • the impurities in the second semiconductor layer 22 and the fourth semiconductor layer 24 are provided.
  • Source / drain region layers 6 and 8 containing an n-type impurity at a higher concentration than the concentration are provided.
  • the impurity concentration of the source Z drain region layer 6, 8 is provided in order 1 X 1 0 1 9 cm- 3 ⁇ 1 X 1 0 2 ° cm one 3.
  • the lower surface is provided between the source / drain region layers 6 and 8 in the third semiconductor layer 23 so as to extend to the second semiconductor layer 22.
  • a first gate electrode layer 28A containing a high p-type impurity concentration is provided.
  • a lower surface is provided between the source Z drain region layers 6 and 8 in the fifth semiconductor layer 25 so as to extend to the fourth semiconductor layer 24, and is substantially the same as the first gate electrode layer 28A.
  • a second gate electrode layer 28B having a p-type impurity having an impurity concentration and the same potential is provided.
  • the impurity concentration of the first gate electrode layer 28A and the second gate electrode layer 28B is set to about 3 ⁇ 10 18 cm— 3 to 1 ⁇ 10 2 ⁇ cm — 3 .
  • the second semiconductor layer 22 sandwiched between the first semiconductor layer 21 and the first gate electrode layer 28A has substantially the same impurity concentration as the first gate electrode layer 28A, and A p-type first impurity implantation region 29 A having the same potential is provided.
  • the fourth semiconductor layer 24 sandwiched between the third semiconductor layer 23 and the second good electrode layer 28B has substantially the same impurity concentration as the first gate electrode 28A, and has the same potential.
  • a p-type second impurity implantation region 29 B having the following structure is provided.
  • Type An impurity region layer 4 containing an impurity concentration is provided outside the source region layer 6, it extends to the first semiconductor layer 21! .
  • An impurity region layer 4 containing an impurity concentration is provided outside the source region layer 6, it extends to the first semiconductor layer 21! .
  • Not pure concentration of the impurity region layer 4 is provided about 3 X 10 18 cm- 3 ⁇ l X 10 20 cm one 3.
  • the distance w 21 between the uppermost portion of the first semiconductor layer 21 and the lowermost portion of the first impurity implantation region 29A must be equal to
  • the gap between the depletion layer spread by the diffusion potential at the junction between the semiconductor layer 22 and the first impurity implantation region 29A is provided to be smaller than the distance between the depletion layer and the top of the first impurity implantation region 29A and the first gate electrode layer. Spacing between the bottom of 28 A (w 22) 1S Provided to be smaller than twice the spacing of the depletion layer that spreads due to the diffusion potential at the junction between the second semiconductor layer 22 and the first gate electrode layer 28 A.
  • One semiconductor layer 21 is formed by epitaxial growth. Then, on the first semiconductor layer 2 1, n-type impurity having a thickness of about 0. 5 mu m approximately containing about impurity concentration higher than the first semiconductor layer 1 1 3 X 10 17 cm one 3
  • a second semiconductor layer 22 of about S i C is formed by epitaxy.
  • an oxide film 204a having a predetermined opening pattern is formed on second semiconductor layer 22, and using this oxide film 204a as a mask, p-type impurities are removed.
  • the first semiconductor region 22 is introduced into the second semiconductor layer 22 to form a first impurity implantation region 29A containing a p-type impurity of about 3 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 2 Q cm ⁇ 3 .
  • the implantation conditions for the p-type impurity are as follows. 0 kev, injection volume is about 7 X 10 13 cm- 2 .
  • an oxide film 204b having a predetermined opening pattern is formed on the third semiconductor layer 23, and a p-type impurity is introduced into the third semiconductor layer 23 using the oxide film 204b as a mask.
  • a p-type impurity of about 3 ⁇ 10 18 cm— 3 to 1 ⁇ 10 2 ° cm higher than the impurity concentration of the second semiconductor layer 22 is about 13.
  • the first gate electrode layer 28A containing is formed.
  • the implantation conditions of the ⁇ type impurity are an implantation energy of about 350 keV and an implantation amount of about 1 ⁇ 10 14 cm ⁇ 2 .
  • an oxide film 205a having a predetermined opening pattern is formed on the fourth semiconductor layer 24, and a p-type impurity is introduced into the fourth semiconductor layer 24 using the oxide film 205a as a mask. and, the fourth semiconductor layer 24, to form a second impurity implantation region 29 B containing 3 X 10 18 cm one 3 ⁇ 1 X 10 20 cm- 3 of about p-type impurity.
  • the implantation conditions of the p-type impurity at this time are an implantation energy of 270 kev and an implantation amount of about 7 ⁇ 10 13 cm ⁇ 2 .
  • a fifth semiconductor layer 25 is formed by epitaxial growth.
  • an oxide film 205b having a predetermined opening pattern is formed on fifth semiconductor layer 25, and a p-type impurity is 3 ⁇ 10 18 c higher than the impurity concentration of the second semiconductor layer 22 in a region that is introduced into the semiconductor layer 25 and straddles the fourth semiconductor layer 24 and the fifth semiconductor layer 25.
  • a second gate electrode layer 28B containing a p-type impurity of about m 3 to 1 ⁇ 10 2 ° cm- 3 is formed. In this case, the implantation of the p-type impurity is performed in the first stage at an implantation energy of about
  • an oxide film 206 having a predetermined opening pattern is formed again on the fifth semiconductor layer 15 and this oxide film 206 is masked.
  • impurities are introduced into the fifth semiconductor layer 15 on both sides of the first impurity implantation region 29A, the second impurity implantation region 29B, the first gate electrode layer 28A, and the second gate electrode layer 28B.
  • the lower surface extends up to the second semiconductor layer 22, ⁇ 1 X 10 19 cm one 3 higher than the impurity concentration of the second semiconductor layer 22 and the fourth semiconductor layer 24 1 X 10 20 cm one 3 Source / drain region layers 6 and 8 containing n-type impurities are formed.
  • an oxide film 207 having a predetermined opening pattern is formed again on fifth semiconductor layer 15, and this oxide film 207 is masked. Then, in a region outside the source / drain region layer 6, an impurity is introduced into the fifth semiconductor layer 15, and the lower surface extends to the first semiconductor layer 21, and 3 ⁇ 10 18 cm— 3 to 1 forming an impurity region layer 4 containing X 10 2 ° cm- 3 about p-type impurity. Then, although not shown, processes such as surface thermal oxidation and opening ⁇ Ni electrode formation, insulating layer formation (OCD etc.), contact hole opening ⁇ A1 wiring and pad formation, heat treatment, ohmic contact formation, etc. Through these steps, the lateral junction field-effect transistor 200 according to the present embodiment shown in FIG. 8 is completed.
  • a configuration in which a plurality of lateral JFETs are vertically stacked is employed. Can be lowered.
  • the second semiconductor layer 22, the third semiconductor layer 23, the fourth semiconductor layer 24, and the fifth semiconductor layer 25 By making the impurity concentration and film thickness of the same approximately the same value, the on-resistance of the lateral JFET can be minimized and the withstand voltage can be set to the maximum.
  • the third semiconductor layer 23 and the fourth semiconductor layer 24 By adopting a structure in which one or more unit transistor structures having almost the same structure as 9 A are further provided, the characteristics of the lateral JFET can be further improved.
  • the structural characteristics of the lateral junction field-effect transistor 300 in the present embodiment are similar to those of the lateral junction field-effect transistor 100 in that the pn junction and the gate electrode layer are arranged in the vertical direction. It was done.
  • the lateral junction field-effect transistor 300 includes a first semiconductor layer 31 containing a p-type impurity located on a semiconductor substrate 2 made of Si or the like, and a first semiconductor layer 31 on the first semiconductor layer 31.
  • a fourth semiconductor layer 34 located on the third semiconductor layer 33 and containing an n-type impurity; and a fifth semiconductor layer 3 located on the fourth semiconductor layer 34 and containing a p-type impurity.
  • a sixth semiconductor layer 36 located on the fifth semiconductor layer 35 and containing n-type impurities, and a seventh semiconductor layer located on this sixth semiconductor layer 36 and containing p-type impurities Layer 37 is provided.
  • the material of the first semiconductor layer 31 is S i C, and the film thickness is 3! Approximately 4 ⁇ , the impurity concentration is about 1 ⁇ 10 16 cm ⁇ 3 , and the second semiconductor layer 32, the third semiconductor layer 33, the fourth semiconductor layer 34, and the fifth semiconductor layer are provided. 35, the sixth semiconductor layer 36, and the seventh semiconductor layer 37 are made of SiC, the film thickness is about 0.5 ⁇ m to 1.0 ⁇ m, and the impurity concentration is 1 ⁇ 10 1 7 cm - 3 is provided about ⁇ 3 X 1 0 1 7 c m_ 3.
  • the lower surface of the seventh semiconductor layer 37 is spaced apart from the second semiconductor layer by a predetermined distance.
  • / Drain region layers 6 and 8 are provided.
  • the impurity concentration of the source / drain region layer 6, 8 is provided in order 1 X 1 0 1 9 cm one 3 ⁇ 1 X 1 0 2 ° cm one 3.
  • the lower surface extends to the second semiconductor layer 32 and the upper surface extends to the fourth semiconductor layer 34. Higher than the impurity concentration of the second semiconductor layer 32 and the fourth semiconductor layer 34!
  • a first gate electrode layer 38A including a type impurity concentration is provided.
  • a second gate electrode layer 38B having a p-type impurity concentration higher than the impurity concentration of the fourth semiconductor layer 34 and the sixth semiconductor layer 36 is provided.
  • a lower surface is provided between the source / drain region layers 6 and 8 in the seventh semiconductor layer 37 so that the lower surface extends to the sixth semiconductor layer, and the first gate electrode layer 38 A and the second gate electrode A third good electrode layer 38C having a p-type impurity having substantially the same impurity concentration as the layer 38B and having the same potential is provided.
  • the first gate electrode layer 3 8 A, the second gate electrode layer 3 8 B, and the impurity concentration of the third gate conductive electrode layer 3 8 C is 3 X 1 0 1 8 cm- 3 ⁇ 1 X 1 0 2 ° cm — About three .
  • an impurity region layer 4 including a p-type impurity concentration extending to the first semiconductor layer 31 is provided outside the source region layer 6.
  • the impurity concentration of the impurity region layer 4 is set to about 3 ⁇ 10 18 C m — 3 to 1 ⁇ 10 2 ° cm— 3 .
  • the distance (w 3 1) force between the uppermost portion of the first semiconductor layer 31 and the lowermost portion of the first gate electrode layer 38 A is required.
  • the gap between the depletion layer that spreads due to the diffusion potential at the junction between the second semiconductor layer 32 and the first gate electrode layer 38A is provided to be smaller than the distance between the uppermost portion of the first gate electrode layer 38A and the first gate electrode layer 38A.
  • a thickness of about 3 ⁇ 4 ⁇ containing p-type impurity, the impurity concentration is from 1 X 10 16 cm one 3 about S i C
  • the first semiconductor layer 31 is formed by epitaxial growth. Thereafter, on the first semiconductor layer 31, a thickness including an n-type impurity of about 0.5 ⁇ to about 1.0 ⁇ m and an impurity concentration higher than that of the first semiconductor layer 31 are 1 ⁇ 10 17 cm.
  • a second semiconductor layer 32 of about 3 to 3 ⁇ 10 17 cm— 3 of SiC is formed by epitaxy.
  • the thickness of about 0.5 ⁇ to about 1.0 m including the p-type impurity and the impurity concentration of about 1 ⁇ 10 17 cm— 3 to 3 ⁇ 10 17 cm— 3 A third semiconductor layer 33 made of i C is formed by epitaxy. Then, on the third semiconductor layer 33, the thickness of 0. 5 ⁇ 1 containing n-type impurity. 0 mu m approximately, not pure concentration is 1 X 10 17 cm one 3 ⁇ 3 X 10 17 cm one 3
  • a fourth semiconductor layer 34 of about S i C is formed by epitaxy.
  • an oxide film 208 having a predetermined opening pattern is formed on the fourth semiconductor layer 34, and the oxide film 208 is used as a mask to remove p-type impurities into the fourth semiconductor layer 34.
  • An impurity is introduced into a predetermined region of the semiconductor layer 34, the lower surface extends to the second semiconductor layer 32, the upper surface extends to the fourth semiconductor layer 34, and the second semiconductor layer 32 and the fourth
  • a first gate electrode layer 38A containing a p-type impurity of about 3 ⁇ 10 18 cm— 3 to 1 ⁇ 10 20 cm higher than the impurity concentration of the semiconductor layer 34 is formed.
  • oxide film 209 having a predetermined opening pattern is formed on sixth semiconductor layer 36, and p-type impurity is formed using oxide film 209 as a mask.
  • An impurity is introduced into a predetermined region of the sixth semiconductor layer 36, the lower surface extends to the fourth semiconductor layer 34, the upper surface extends to the sixth semiconductor layer 36, and the fourth semiconductor layer 34 and forming a second gate electrode layer 38 B including a sixth higher than the impurity concentration of the semiconductor layer 36 3 X 10 18 cm- 3 ⁇ l X 10 20 cm one 3 about p-type impurity.
  • a thickness including a p-type impurity of about 0.5 ⁇ -1.0 / im and an impurity concentration of 1 the X 10 17 cm one 3 ⁇ 3 X 10 17 cm- seventh semiconductor layer 37 made of approximately 3 S i C is formed by E Pitakishanore growth.
  • an oxide film 210 having a predetermined opening pattern is formed on seventh semiconductor layer 37, and p-type impurities are formed using oxide film 210 as a mask. Is introduced into a predetermined region of the seventh semiconductor layer 37, the lower surface extends to the sixth semiconductor layer 36, and is higher than the impurity concentration of the sixth semiconductor layer 36 by 3 ⁇ 10 18 cm— 3 to 1 ⁇ 10 A third gate electrode layer 38C containing a p-type impurity of about 2Qcm- 3 is formed.
  • oxide film 211 having a predetermined opening pattern is again formed on seventh semiconductor layer 37, and oxide film 211 is formed.
  • impurities are introduced into the seventh semiconductor layer 37 on both sides of the first gate electrode layer 38A, the second gate electrode layer 38B, and the third gate electrode layer 38C, and extends to the semiconductor layer 3 2 of the second semiconductor layer 32 and the fourth higher than the impurity concentration of the semiconductor layer 34 1 X 1 0 19 cm- 3 ⁇ 1 X 10 20 cm one 3 of about n-type impurity
  • the source / drain region layers 6 and 8 are formed.
  • oxide film 212 having a predetermined opening pattern is formed again on seventh semiconductor layer 37, and oxide film 211 is formed.
  • an impurity is introduced into the seventh semiconductor layer 37 in a region outside the source / drain region layer 6, the lower surface extends to the first semiconductor layer 31, and 3 ⁇ 10 18 cm— 3
  • An impurity region layer 4 containing a p-type impurity of about 1 ⁇ 10 2 ° cm— 3 is formed.
  • processes such as surface thermal oxidation, opening, Ni electrode formation, insulation layer formation (OCD, etc.), contact hole opening ⁇ A1 wiring ⁇ pad formation, heat treatment, ohmic contact formation, etc.
  • the lateral junction field-effect transistor 300 according to the present embodiment shown in FIG. 17 is completed.
  • the lateral JFET having the above-described configuration and the manufacturing method thereof, a configuration in which a plurality of lateral JFETs are vertically stacked is employed, so that the on-resistance of the element is further reduced as compared with the conventional structure. It becomes possible.
  • the second semiconductor layer '32, the third semiconductor layer 33, the fourth semiconductor layer 34, the fifth semiconductor layer 35, the sixth semiconductor layer 36, and the seventh semiconductor layer 3 By setting the impurity concentration and film thickness to approximately the same values as in 7, the on-resistance of the lateral JFET can be minimized and the breakdown voltage can be set to the maximum.
  • a unit transistor having substantially the same structure as the third semiconductor layer 33, the fourth semiconductor layer 34, and the first gate electrode layer 38A is provided between the fourth semiconductor layer 34 and the fifth semiconductor layer 35.
  • Structural features of the lateral junction field-effect transistor 400 in the present embodiment are similar to those of the lateral junction field-effect transistor 100 in that the pn junction and the gate electrode layer are arranged in the vertical direction. It was done.
  • the lateral junction field-effect transistor 400 includes a first semiconductor layer 41 containing a p-type impurity located on a semiconductor substrate 2 made of Si or the like, and a first semiconductor layer 41 located on the first semiconductor layer 41.
  • a seventh semiconductor layer 47 is provided.
  • the material of the first semiconductor layer 41 is SiC
  • the film thickness is about 3 m to 4 / m
  • the pure substance concentration is set to about 1 ⁇ 10 16 cm ⁇ 3
  • impurity concentration is provided about l X 10 17 cm- 3 ⁇ 3 X 10 17 c m_ 3.
  • the lower surface of the seventh semiconductor layer 47 is provided at a predetermined interval so as to extend to the second semiconductor layer 42.
  • Source / drain region layers 6 and 8 containing an n-type impurity at a higher concentration than the impurity concentration are provided.
  • the impurity concentration of the source / drain region layer 6, 8 is provided about 1 X 10 19 cm one 3 ⁇ 1 X 10 2 ° cm one 3.
  • the third semiconductor layer 43 is provided between the source / drain region layers 6 and 8 such that the lower surface extends to the second semiconductor layer 42 and the upper surface extends to the fourth semiconductor layer 44.
  • a first gate electrode layer 48A having an impurity concentration higher than the impurity concentration of the second semiconductor layer 42, the fourth semiconductor layer 44, and the sixth semiconductor layer 46 is provided.
  • the lower surface is provided between the source / drain region layers 6 and 8 in the fifth semiconductor layer 45 so that the lower surface extends to the fourth semiconductor layer 44 and the upper surface extends to the sixth semiconductor layer 46.
  • a second gate electrode layer 48B having substantially the same impurity concentration as the first gate electrode layer 28A and containing a p-type impurity having the same potential is provided.
  • a lower surface is provided between the source / drain regions 6 and 8 in the seventh semiconductor layer 47 so as to extend to the sixth semiconductor layer 46, and the first gate electrode layer 48A and the second gate electrode layer
  • a P-type third gate electrode layer 48C having substantially the same impurity concentration as 48B and having the same potential is provided.
  • the first gate electrode layer 48 A, the second gate electrode layer 48 B, and the impurity concentration of the third gate electrode layer 48 C is provided to approximately 3 X 10 18 cm- 3 ⁇ l X 10 2 ° cm one 3.
  • the second semiconductor layer 42 sandwiched between the first semiconductor layer 41 and the first gate electrode layer 48A has a p-type having substantially the same impurity concentration as the first gate electrode layer 48A and having the same potential.
  • the first impurity implantation region 39 A of the mold is provided, and the fourth semiconductor layer 44 sandwiched between the first gate electrode layer 48 A and the second gate electrode layer 48 B has almost the same size as the first gate electrode layer 48 A.
  • P-type second resistor having the same impurity concentration and the same potential A pure material injection region 49 B is provided, and a first gate electrode layer 48 A and a sixth semiconductor layer 46 sandwiched between a second gate electrode layer 48 B and a third gate electrode layer 48 C are provided.
  • a p-type third impurity implantation region 49 C having substantially the same impurity concentration as the second gate electrode layer 48 B and having the same potential is provided.
  • FIG. 26 shows the case where one layer of the first impurity implantation region 49 A, the second impurity implantation region 49 B, and the third impurity implantation region 49 C is provided.
  • an impurity region layer 4 including a p-type impurity concentration extending to the first semiconductor layer 41 is provided outside the source region layer 6. Not pure concentration of the impurity region layer 4 is provided about 3 X 1 0 1 8 cm one 3 ⁇ 1 X 1 0 2 ° cm one 3.
  • the distance (w 4 1) force between the uppermost portion of the first semiconductor layer 41 and the lowermost portion of the first gate electrode layer 48 A is required.
  • the gap between the depletion layer that spreads due to the diffusion potential at the junction between the second semiconductor layer 42 and the first gate electrode layer 48A is provided to be smaller than the distance between the depletion layer and the top of the first gate electrode layer 48A.
  • the distance (w 42) force between the bottom of the gut electrode layer 48 B and the depletion layer spread by the diffusion potential at the junction between the fourth semiconductor layer 44 and the first gate electrode layer 48 A The distance may be set to be smaller than the sum of the distance and the distance between the depletion layers spread by the diffusion potential at the junction between the fourth semiconductor layer 44 and the second gate electrode layer 48B.
  • the distance (w 43) between the uppermost part of the first semiconductor layer 41 and the lowermost part of the first impurity-implanted region 49 A is (w 43).
  • the distance between the top of the first impurity injection region 49 mm and the bottom of the first gate electrode layer 48 A (w 44)
  • the uppermost portion of the first gate electrode layer 48 A is provided so as to be smaller than twice the distance between the depletion layers spread by the diffusion potential at the junction between the second semiconductor layer 42 and the first gate electrode layer 48 A.
  • the 1S fourth semiconductor layer and the second impurity-implanted region 49B are provided so as to be smaller than twice the distance between the depletion layers spread by the diffusion potential at the junction between the fourth impurity layer and the second impurity-implanted region 49B.
  • the distance (w 46) between the bottom of the second gate electrode layer 48 B and the force (w 46) is greater than twice the distance between the depletion layers spread by the diffusion potential at the junction between the fourth semiconductor layer 44 and the second good electrode layer 48 B. What is necessary is just to provide so that it may become small.
  • first impurity concentration consists 1 X 10 16 cm one 3 about S i C
  • One semiconductor layer 41 is formed by epitaxial growth. Thereafter, on the first semiconductor layer 41, a thickness of about 0.5 ⁇ to 1.0 ⁇ m containing an n-type impurity and an impurity concentration higher than that of the first semiconductor layer 41 by 1 ⁇ 10 17 cm—
  • a second semiconductor layer 42 of about 3 to 3 ⁇ 10 17 cm— 3 of SiC is formed by epitaxy.
  • the thickness including the p-type impurity is about 0.5 111 to 1.0 ⁇ , and the impurity concentration is about 1 ⁇ 10 17 cm— 3 to 3 ⁇ 10 17 cm— 3.
  • a third semiconductor layer 43 made of i C is formed by epitaxy. Then, on the third semiconductor layer 43, a thickness of 0.5 11! ⁇ 1. 0 mu m approximately, not pure concentration is formed by a fourth semi-conductive layer 44 consisting of 1 X 10 17 cm one 3 ⁇ 3 X 10 17 cm one 3 about S i C Epitakisharu growth.
  • an oxide film 21 3 having a predetermined opening pattern is formed on fourth semiconductor layer 44, and p-type impurities are formed using oxide film 21 3 as a mask.
  • the impurity is introduced into a predetermined region of the fourth semiconductor layer 44, the lower surface extends to the second semiconductor layer 42, the upper surface extends to the fourth semiconductor layer 44, and the second semiconductor layer 42 and A first gate electrode layer 48A containing a p-type impurity of about 3 ⁇ 10 18 cm— 3 to 1 ⁇ 10 20 cm higher than the impurity concentration of the fourth semiconductor layer 44 is formed.
  • a p-type impurity is introduced into the second semiconductor layer 42, and the impurity concentration is substantially the same as that of the first gate electrode layer 48A. It has, and has a same potential, the impurity concentration of 3 X 10 18 cm one 3 ⁇ 1 X 10 2 A first impurity implantation region 49 A of about 0 cm— 3 is formed.
  • a thickness including a P-type impurity of about 0.5 ⁇ m to 1.0 ⁇ on the fourth semiconductor layer 34 and an impurity concentration is reduced.
  • a sixth semiconductor layer 46 made of SiC is formed.
  • an oxide film 214 having a predetermined opening pattern is formed on sixth semiconductor layer 46, and p-type impurities are removed using oxide film 214 as a mask.
  • An impurity is introduced into a predetermined region of the sixth semiconductor layer 44, the lower surface extends to the fourth semiconductor layer 44, the upper surface extends to the sixth semiconductor layer 46, and the fourth semiconductor layer 44 and the sixth semiconductor
  • a second gate electrode layer 48B containing a p-type impurity of about 3 ⁇ 10 18 cm— 3 to 1 ⁇ 10 20 cm higher than the impurity concentration of the layer 46 is formed.
  • a p-type impurity is introduced into the fourth semiconductor layer 44, and the impurity concentration is substantially the same as that of the first gate electrode layer 48A. It has, and has a same potential, the impurity concentration to form a 3 X 10 18 cm- 3 ⁇ 1 X 10 2 0 cm one 3 about the second impurity implantation region 49 B.
  • the thickness including the P-type impurity is about 0.5 / m to l.
  • the 1 X 10 17 cm- 3 ⁇ 3 X 10 17 cm one 3 about the seventh semiconductor layer 47 made of S i C is formed by E epitaxial growth.
  • an oxide film 215 having a predetermined opening pattern is formed on the seventh semiconductor layer 37, and this oxide film 215 is used as a mask to form a p-type impurity.
  • An impurity is introduced into a predetermined region of the seventh semiconductor layer 37, the lower surface extends to the sixth semiconductor layer 46, and is higher than the impurity concentration of the sixth semiconductor layer 46 by 3 ⁇ 10 18 cm— 3 to 1 ⁇
  • a third gate electrode layer 48C containing a p-type impurity of about 10 2 ° cm- 3 is formed.
  • a p-type impurity is introduced into the sixth semiconductor layer 46, and the impurity concentration is substantially the same as that of the first gate electrode layer 48A.
  • the impurity concentration is substantially the same as that of the first gate electrode layer 48A.
  • an oxide film 216 having a predetermined opening pattern is formed again on the seventh semiconductor layer 375.
  • impurities are introduced into the seventh semiconductor layer 47, and the lower surface extends to the second semiconductor layer 42, and the second semiconductor layer 4 2 and the source / drain region layers 6, 8 containing n-type impurities of about 1 ⁇ 10 19 cm— 3 to 1 ⁇ 10 2 ° cm 3 higher than the impurity concentration of the fourth semiconductor layer 44.
  • an oxide film 2 17 having a predetermined opening pattern is formed again on the seventh semiconductor layer 37.
  • an impurity is introduced into the seventh semiconductor layer 47 in a region outside the source / drain region layer 6, the lower surface extends to the first semiconductor layer 41, and 3 X
  • An impurity region layer 4 containing a p-type impurity of about 10 18 cm— 3 to 1 ⁇ 10 2 ° cm— 3 is formed.
  • processes such as surface thermal oxidation, opening, ⁇ electrode formation, insulating layer formation (OCD, etc.), contact hole opening, A1 wiring, pad formation, heat treatment, ohmic contact formation, etc.
  • OCD insulating layer formation
  • the impurity implantation for forming the inter-gate connection region layer is performed.
  • the inter-gate connection region layer is used to electrically connect a plurality of gate electrode layers and impurity-implanted regions to have the same electric potential. It refers to a connection layer provided vertically through the region. Generally, this connection layer is provided so as not to reach the first semiconductor layer.
  • the fourth semiconductor layer 44 and the fifth semiconductor layer 45 the third semiconductor layer 43, the fourth semiconductor layer 44, the first gate electrode layer 48A, and the second impurity implantation region 49
  • the characteristics of the lateral JFET can be further improved.
  • Structural features of the lateral junction field effect transistor 500 in the present embodiment are such that a pri junction is arranged in a vertical direction and a gate electrode layer is arranged in a horizontal direction.
  • the lateral junction field-effect transistor 500 is provided with a first semiconductor layer 51 containing a p-type impurity located on a semiconductor substrate 2 made of Si or the like, and located on the first semiconductor layer 51, A second semiconductor layer 52 containing an n-type impurity at a higher concentration than the impurity concentration of the first semiconductor layer; and a third semiconductor layer 53 located above the second semiconductor layer 52 and containing a p-type impurity. A fourth semiconductor layer 54 located above the third semiconductor layer 53 and containing an n-type impurity; and a fifth semiconductor layer 5 located above the fourth semiconductor layer 54 and containing a p-type impurity. 5 is provided.
  • the material of the first semiconductor layer 51 is SiC, and the film thickness is 3 ⁇ !
  • the second semiconductor layer 52, the third semiconductor layer 53, the fourth semiconductor layer 54, and the fifth semiconductor layer are provided at about 4 im and an impurity concentration of about 1 ⁇ 10 16 cm— 3.
  • Layer 5 5 is S i C, thickness Is 0.5 ⁇ ! ⁇ 1. 0 mu m approximately, the impurity concentration is provided in the order 1 X 1 0 1 7 cm one 3 ⁇ 3 X 1 0 1 7 cm one 3.
  • the lower surface is provided at predetermined intervals in the fifth semiconductor layer 55 so as to extend to the second semiconductor layer 52, and the lower surface is determined based on the impurity concentration of the second semiconductor layer 52 and the fourth semiconductor layer 54.
  • Source / drain region layers 6 and 8 containing a high concentration of n-type impurities are also provided.
  • the impurity concentration of the source / drain region layer 6, 8 is provided in order 1 X 1 0 1 9 cm one 3 ⁇ 1 X 1 0 2 Q cm one 3.
  • the lower surface is provided between the source Z drain region layers 6 and 8 in the fifth semiconductor layer 55 so that the lower surface extends to the second semiconductor layer 52.
  • a first gut electrode layer 58A containing a high p-type impurity concentration is provided.
  • the first gate electrode layer 58 A is provided between the source / drain region layers 6 and 8 in the fifth semiconductor layer 55 for a predetermined time so that the lower surface extends to the second semiconductor layer 52.
  • a P-type second gate electrode layer 58 B having a substantially same impurity concentration as the first gate electrode layer 58 A and having the same potential is provided adjacently and laterally at an interval. It is provided.
  • a second gate electrode layer 58 B is provided between the source / drain region layers 6 and 8 in the fifth semiconductor layer 55 for a predetermined time so that the lower surface extends to the second semiconductor layer 52.
  • a p-type which is provided laterally adjacent to and separated by a distance, has substantially the same impurity concentration as the first gate electrode layer 58 A and the second gate electrode layer 58 B, and has the same potential.
  • a third gate electrode layer 58 C is provided.
  • a third gate electrode layer 58 C is provided between the source / drain region layers 6 and 8 in the fifth semiconductor layer 55 for a predetermined time so that the lower surface extends to the second semiconductor layer 52.
  • the first gate electrode layer 58A, the second gate electrode layer 58B, and the third gate electrode layer 58C having substantially the same impurity concentration as the first gate electrode layer 58A, the second gate electrode layer 58B,
  • a p-type fourth gate electrode layer 58D having the same potential is provided.
  • the impurity concentration of the first gate electrode layer 58 A, the second gate electrode layer 58 B, the third gate electrode layer 58 C, and the fourth gate electrode layer 58 D is 3 ⁇ 10 18 cm— 3.
  • the distance between the first gate electrode layer 58A and the second gate electrode layer 58B is (w51).
  • the distance between the depletion layers and the distance between the depletion layers spread by the diffusion potential at the junction between the fourth semiconductor layer 54 and the first gate electrode layer 58A may be smaller than twice. Note that the same applies to the distance between the second gate electrode layer 58B and the third gate electrode layer 58C and the distance between the third gate electrode layer 58C and the fourth gate electrode layer 58D.
  • a thickness of about 3 Atm ⁇ 4 ⁇ containing p-type impurity, the impurity concentration is the S i C of about 1 X 1 0 16 cm one 3
  • the first semiconductor layer 51 is formed by epitaxial growth. Thereafter, on the first semiconductor layer 51, a thickness of about 0.5 / zm to 1.0m including an n-type impurity and an impurity concentration of 1 ⁇ 10
  • a second semiconductor layer 52 made of SiC of about 17 cm— 3 to 3 ⁇ 10 17 cm— 3 is formed by epitaxy. Then, on the second semiconductor layer 52, the thickness of 0. 5 ⁇ 1 containing p-type impurity.
  • a third semiconductor layer 53 made of i is formed by epitaxy. Then, on the third semiconductor layer 3, the thickness of 0. 5 Myuiotaita ⁇ 1 containing n-type impurity. 0 about mu m, not pure concentration is 1 X 10 17 cm one 3 ⁇ 3 X 10 17 cm one
  • a fourth semiconductor layer 54 of about 3 SiC is formed by epitaxy. Then, on the fourth semiconductor layer 54, the thickness of 0. 5 ⁇ 1 containing P-type impurities. 0 ⁇ about, the impurity concentration 1 X 10 17 cm one 3 ⁇ 3 X 10 17 cm one 3 about S
  • a fifth semiconductor layer 55 made of i C is formed by epitaxial growth.
  • an oxide film having a predetermined opening pattern is formed on the fifth semiconductor layer 55 (not shown).
  • the lower surface is provided so as to extend to the second semiconductor layer 52, and the lower surface is higher than the impurity concentration of the second semiconductor layer 52.
  • the first gate electrode layer contains a p-type impurity of about 3 ⁇ 10 18 cm ⁇ 3 to l ⁇ 10 2 ° c nT 3 and is arranged at a predetermined interval from each other along the plane direction of the substrate 2.
  • 58A, a second gate electrode layer 58B, a third gate electrode layer 58C, and a fourth gate electrode layer 58D are formed.
  • an oxide film having a predetermined opening pattern is formed on the fifth semiconductor layer 55 (not shown), and using this oxide film as a mask, the first gate electrode layer 58A, The first gate electrode layer 58A, the second gate electrode layer 58B, and the second gate electrode layer 58B are arranged along the direction in which the second gate electrode layer 58B, the third gate electrode layer 58C, and the fourth gate electrode layer 58D are arranged.
  • 3 Impurity is introduced into a predetermined region in the fifth semiconductor layer 55 so as to sandwich the gate electrode layer 58C and the fourth gate electrode layer 58D from both sides, and the lower surface extends to the second semiconductor layer 52.
  • the impurity may be implanted in a plurality of times.
  • a method is also conceivable in which the epitaxial growth of the n-layer and the p-layer in the preceding process is stopped once, impurities are implanted, and then the epitaxial growth is restarted.
  • the formation of the source / drain region layer may be divided into several injections depending on the depth.
  • the impurity implantation for forming the source / drain region layer and the pure region layer may be performed even at the stage of performing the impurity implantation for forming the gate electrode layer and the impurity implantation region.
  • the pn junction is arranged in the vertical direction and the gate electrode layer is arranged in the lateral direction in the plural lateral JFETs. Since this configuration is adopted, the on-resistance of the device can be further reduced compared to the conventional structure. Further, by setting the impurity concentration and the film thickness of the second semiconductor layer 52, the third semiconductor layer 53, the fourth semiconductor layer 54, and the fifth semiconductor layer 55 to substantially the same value, the horizontal It enables the on-resistance of the JFET to be minimized and the breakdown voltage to be set to the maximum. '
  • the lower surface is provided between the first gate electrode layer 58 A and the second gate electrode layer 58 B for the purpose of increasing the number of channels.
  • a p-type impurity injection region 59 A having the same impurity concentration as the first gate electrode layer 58 A and having the same potential is provided so as to extend to the second semiconductor layer 52.
  • the lower surface is provided so as to extend to the second semiconductor layer 52, and the first gate electrode layer P-type impurity implantation region 59 B having substantially the same impurity concentration as 58 A and having the same potential, and between third gate electrode layer 58 C and fourth gate electrode layer 58 D
  • the lower surface is provided so as to extend to the second semiconductor layer 52, has substantially the same impurity concentration as the first gate electrode layer 58A, and It is also possible to employ a p-type impurity implantation region 5 9 provided C structure having a potential.
  • the distance (w 51) between the first gate electrode layer 58 A and the impurity implantation area 59 A and the impurity implantation area 59 A and the second gate electrode layer The distance between the depletion layer at the junction between the second semiconductor layer 52 and the first gate electrode layer 58 A and the depletion layer at the junction between the second semiconductor layer 52 and the first gate electrode layer 58 A, and the distance between the fourth semiconductor layer 54 and the first semiconductor layer 54.
  • the distance (w51) between the impurity injection region 59A closest to the first gate electrode layer 58A and the first gate electrode layer 58A, the impurity injection regions And the distance w 54 between the impurity implantation region 59 B closest to the second gate electrode layer 58 B and the second gate electrode layer 58 B The distance between the depletion layers spread by the diffusion potential at the junction between the second semiconductor layer 52 and the first gate electrode layer 58 A, and the distance between the fourth semiconductor layer 54 and the first gate electrode layer 58 A It is preferably smaller than twice the distance between the depletion layers spread by the diffusion potential at the junction.
  • the numbers of the gate electrode layers and the impurity-implanted regions can be appropriately changed according to the performance required for the horizontal JFET.
  • JFET characteristics can be further improved.
  • a structural feature of the lateral junction field-effect transistor 600 in the present embodiment is that a Pn junction and a gate electrode layer are arranged in the lateral direction.
  • This lateral junction field effect transistor 600 is located on the semiconductor substrate 2 made of Si or the like!
  • a third semiconductor layer 63 that is located adjacent to the second semiconductor layer 62 in the lateral direction and contains an n-type impurity, and on the first semiconductor layer 61 and beside the third semiconductor layer 63.
  • the material of the first semiconductor layer 61 is S i C
  • the thickness is about 3 ⁇ to 4 ⁇
  • the impurity concentration is about 1 ⁇ 10 16 cm ⁇ 3
  • the second semiconductor layer 61 is The material of the layer 62, the third semiconductor layer 63, the fourth semiconductor layer 64, the fifth semiconductor layer 65, the sixth semiconductor layer 66, and the seventh semiconductor layer 67 is SiC, and the film thickness is 0.5 ⁇ n! It is set to about 1.0 ⁇ m and the impurity concentration is about 1 ⁇ 10 17 cm— 3 to 3 ⁇ 10 17 cm— 3 .
  • the second The thickness of the semiconductor layer 62 to the seventh semiconductor layer 67 indicates the thickness in the depth direction of FIG. Second semiconductor layer 62, third semiconductor layer 63, fourth semiconductor layer 64, fifth semiconductor layer 6
  • ⁇ 6 are provided at predetermined intervals in the semiconductor layer 66 and the seventh semiconductor layer 67, and impurities in the third semiconductor layer 63, the fifth semiconductor layer 65, and the fifth semiconductor layer 65 are provided.
  • the impurity concentration of the source Z drain region layers 6 and 8 is set to about 1 ⁇ 10 19 cm ⁇ 3 to 1 ⁇ 10 2 t) cm— 3 .
  • One side surface is provided between the source Z drain region layers 6 and 8 in the second semiconductor layer 62 so as to extend to the third semiconductor layer 63.
  • First gate electrode layer 68A including a p-type impurity concentration higher than the concentration is provided.
  • one side surface is provided between the source / drain region layers 6 and 8 in the fourth semiconductor layer 64 so as to extend to the fifth semiconductor layer 65, and the first gate electrode layer A p-type second gate electrode layer 68 B having substantially the same impurity concentration as 68 A and having the same potential is provided.
  • one side surface is provided so as to extend to the seventh semiconductor layer 67, and the first gate electrode layer A p-type third gate electrode layer 68 C having substantially the same impurity concentration as 68 A and having the same potential is provided.
  • the first gate electrode layer 6 8 A, the second gate electrode layer 6 8 B, and the impurity concentration of the third gate conductive electrode layer 6 8 C is 3 X 1 0 1 8 cm- 3 ⁇ : LX 1 0 2 ° cm — About three .
  • the first good electrode 68 A and the surface of the third semiconductor layer 63 that are not in contact with the first gate electrode layer 68 A are required.
  • Interval (w 6 1) I The second gate electrode layer 68 is provided so as to be smaller than the interval between the depletion layers spread by the diffusion potential at the junction between the third semiconductor layer 63 and the first gate electrode layer 68 A.
  • the distance between B and the surface of the fifth semiconductor layer 65 that is not in contact with the second gate electrode layer 68 B (w 62)
  • the diffusion potential at the junction between the fifth semiconductor layer 65 and the second gate electrode layer 68 ⁇ Smaller than the space between the depletion layers It should just be provided so that.
  • the first semiconductor layer 61 which the impurity concentration is from 1 X 10 16 cm one 3 about S i C is formed by Epitakisharu growth.
  • a thickness of 1 ⁇ ! ⁇ 2 ⁇ approximately, formed by a semiconductor layer 6 OA the Epitaki interstitial growth the impurity concentration is from S i C of about 1 X 10 1 7 cm one 3 ⁇ 3 X 10 17 cm one 3 higher than the first semiconductor layer 6 1 I do.
  • p-type impurities are introduced into predetermined regions in semiconductor layer 6OA at predetermined intervals along the plane direction (depth direction) of substrate 2, thereby The thickness in the depth direction is 0.5 ⁇ ! ⁇ 1.
  • the impurity concentration of about 1 X 10 17 c m- 3 ⁇ 3 X 1 0 17 cm- 3, p -type second semiconductor layer 62, n-type third semiconductor layer 63, p-type fourth A semiconductor layer 64, an n-type fifth semiconductor layer 65, a p-type sixth semiconductor layer 66, and an n-type seventh semiconductor layer 67 are formed.
  • the second semiconductor layer 62, the third semiconductor layer 63, the fourth semiconductor layer 64, the fifth semiconductor layer 65, the sixth semiconductor layer 66, and the seventh semiconductor layer By introducing a P-type impurity into a predetermined region of the second semiconductor layer 62, a portion between the second semiconductor layer 62 and the third semiconductor layer 63, a portion between the fourth semiconductor layer 64 and the fifth semiconductor layer 65, Between the semiconductor layer 66 and the seventh semiconductor layer 67, the first gate electrode having an impurity concentration of about 3 ⁇ 10 18 cm— 3 to 1 ⁇ 10 2 ° cm— 3 is formed so as to extend over the respective regions.
  • a layer 68A, a second gate electrode layer 68B, and a third gate electrode layer 68C are formed.
  • the second semiconductor layer 62, the third semiconductor layer 63, the fourth semiconductor layer 64, the fifth semiconductor layer 65, the sixth semiconductor layer 66, and the seventh semiconductor layer By introducing an n-type impurity into a predetermined region of 67, the second semiconductor layer 62, the third semiconductor layer 63, the fourth semiconductor layer 64, the fifth semiconductor layer 65, the sixth semiconductor layer 66, and the like are formed.
  • the respective semiconductor layers provided on the semiconductor substrate 2 are arranged along the adjacent lateral direction on the semiconductor substrate 2 so that Since the transistor structure is formed along the line, the on-resistance of the device can be further reduced as compared with the conventional structure.
  • the second semiconductor layer 62, the third semiconductor layer 63, the fourth semiconductor layer 64, the fifth semiconductor layer 65, the sixth semiconductor layer 66, and the seventh semiconductor layer 67 By making the impurity concentration and film thickness almost the same, the on-resistance of the lateral JFET can be minimized and the withstand voltage can be set to the maximum.
  • the number of semiconductor layers and gate electrode layers can be determined by the performance required for a lateral JFET. For example, a structure in which three semiconductor layers are provided and two gate electrode layers are provided, or a semiconductor layer is provided It is possible to adopt a structure in which four layers and three gate electrode layers are provided.
  • FIG. 51 the structure of the lateral junction field-effect transistor 700 according to the seventh embodiment will be described with reference to FIGS. 51 and 52.
  • FIG. 51 the structure of the lateral junction field-effect transistor 700 according to the seventh embodiment will be described with reference to FIGS. 51 and 52.
  • Structural characteristics of the lateral junction field-effect transistor 700 in the present embodiment are similar to those of the lateral junction field-effect transistor 600 in that the pn junction and the gate electrode layer are arranged in the horizontal direction. It was done.
  • the lateral junction field-effect transistor 700 is a semiconductor substrate made of S ⁇ or the like.
  • a sixth semiconductor layer 76 and a seventh semiconductor layer 77 which is located on the first semiconductor layer 71 and adjacent to the sixth semiconductor layer 76 in the lateral direction and contains an n-type impurity are provided. I have.
  • the material of the first semiconductor layer 71 is SiC
  • the film thickness is about 3 / m to 4 / m
  • the impurity concentration is about 1 ⁇ 10 16 cm ⁇ 3
  • the second semiconductor layer 71 is The material of the layer 72, the third semiconductor layer 73, the fourth semiconductor layer 74, the fifth semiconductor layer 75, the sixth semiconductor layer 76, and the seventh semiconductor layer 77 are SiC, and the film thickness is 0. 5 ⁇ m ⁇ 1. 0 ⁇ m approximately, impurity concentration is provided in the order 1 X 1 0 1 7 cm one 3 ⁇ 3 X 1 0 1 7 cm one 3. Note that the thickness of the second semiconductor layer 72 to the seventh semiconductor layer 77 indicates the thickness in the depth direction of FIG.
  • source / drain region layers 6 and 8 containing an n-type impurity having a higher concentration than the impurity concentration of the third semiconductor layer 73, the fifth semiconductor layer 75, and the seventh semiconductor layer 77 are provided.
  • the impurity concentration of the source / drain region layer 6, 8 is provided in order 1 X 1 0 1 9 cm one 3 ⁇ 1 X 1 0 2 Q cm one 3.
  • a first gate electrode layer 78A including a p-type impurity concentration higher than the concentration is provided.
  • one side surface is provided so as to extend to the fifth semiconductor layer 75, and the first gate electrode layer 2nd p-type goo with almost the same impurity concentration as 78 A and the same potential A contact electrode layer 78 B is provided.
  • one side surface is provided between the source Z drain region layers 6 and 8 in the sixth semiconductor layer 76 so as to extend to the seventh semiconductor layer 77, and the first gate electrode layer A p-type third gate electrode layer 78 C having substantially the same impurity concentration as that of 78 A and having the same potential is provided.
  • the third semiconductor layer 73 sandwiched between the fourth semiconductor layer 74 and the first gate electrode layer 78 A has substantially the same impurity concentration as the first gate electrode layer 78 A, and has the same A p-type first impurity implantation region 79 A having an electric potential is provided.
  • the fifth semiconductor layer 75 sandwiched between the second good electrode layer 78 B and the surface of the fifth semiconductor layer 75 that is not in contact with the second good electrode layer 78 B has a first gate electrode layer.
  • a p-type second impurity implantation region 79 B having substantially the same impurity concentration as 78 A and having the same potential is provided.
  • the seventh semiconductor layer 77 sandwiched between the third gate electrode layer 78 C and the surface of the seventh semiconductor layer 77 that is not in contact with the third gate electrode layer 78 C includes a first gate electrode layer Has almost the same impurity concentration as 7 8 A and the same potential! )
  • Type third impurity implantation region 79 C is provided.
  • FIG. 51 shows a case in which the first impurity implantation region 79 A, the second impurity implantation region 79 B, and the third impurity implantation region 79 C are provided in one layer. From the viewpoint of realizing a normally-off type lateral junction transistor while widening the on-resistance and lowering the on-resistance, the first impurity implantation region 79 A, the second impurity implantation region 79 B, and the third impurity It is also possible to provide a plurality of injection regions 79 C each.
  • first gate electrode layer 78 A, the second gate electrode layer 78 B, the third gate electrode layer 78 C, the first impurity implantation region 79 A, the second impurity implantation region 79 B, and the The impurity concentration of the three impurity-implanted region 79 C is set to about 3 ⁇ 10 18 cm— 3 to 1 ⁇ 102 Q cm— 3 .
  • the distance (w 71) i between the closest surfaces between the first gate electrode layer 78 A and the first impurity implantation region 79 A is required.
  • the first impurity implantation region 79A is provided so as to be smaller than twice the interval between the depletion layers spread by the diffusion potential at the junction, and the surface of the third semiconductor layer 73 that is not in contact with the first gate electrode layer 78A.
  • (W72) is provided so as to be smaller than the distance between the depletion layers spread by the diffusion potential at the junction between the third semiconductor layer 73 and the first gate electrode layer 78A.
  • the distance between the surfaces closest to the second impurity-implanted region 79 B (w73) 1S More than twice the distance between the depletion layers spread by the diffusion potential at the junction between the fifth semiconductor layer 75 and the second gate electrode layer 78 B
  • the distance w 74 between the second impurity-implanted region 79 B and the surface of the fifth semiconductor layer 75 that is not in contact with the second gate electrode layer 78 B is also set to be smaller.
  • FIGS. FIG. 53 to FIG. 57 are cross-sectional views showing manufacturing steps in accordance with the cross-sectional structure shown in FIG.
  • a semiconductor substrate 2 made of Si or the like has a thickness 3! ⁇ 4 ⁇ about, the first semiconductor layer 71 which the impurity concentration is from 1 X 10 16 cm one 3 about S i C is formed by Epitakisharu growth.
  • a thickness of 1 ⁇ ! Including an n-type impurity is provided on first semiconductor layer 71.
  • ⁇ 2 mu m approximately, Epitaki Shall growing a semiconductor layer 7 OA which the impurity concentration is the first high 1 X 1 than the semiconductor layer 7 1 0 1 7 cm one 3 ⁇ 3 X 10 17 cm -3 of about S i C Formed by
  • Type impurity Ri by the introducing, the film thickness of each depth direction 0. 5 ⁇ 1. 0 ⁇ m or so, the impurity concentration 1 X 10 17 cm- 3 ⁇ 3 X 10 17 cm- 3 about P-type second semiconductor layer 72, n-type third semiconductor layer 73, p-type fourth semiconductor layer 74, n-type fifth semiconductor layer 75, p-type sixth semiconductor layer 76, and n-type seventh semiconductor layer Form 77.
  • the second semiconductor layer 72, the third semiconductor layer 73, and the fourth semiconductor layer By introducing a P-type impurity into predetermined regions in the body layer 74, the fifth semiconductor layer 75, the sixth semiconductor layer 76, and the seventh semiconductor layer 77, the second semiconductor layer 72 and the 3 Between the semiconductor layer 73, between the fourth semiconductor layer 74 and the fifth semiconductor layer 75, and between the sixth semiconductor layer 76 and the seventh semiconductor layer 77, spanning as an impurity concentration of 3 X 1 0 1 8 cm- 3 ⁇ 1 X 1 0 2 ° cm- 3 about the first Gut electrode layer 7 8 a, the second gate electrode layer 7 8 B, and the third A good electrode layer 78 C is formed.
  • An implantation region 79 A, a second impurity implantation region 79 B, and a third impurity implantation region 79 C are formed.
  • the first gate electrode layer 78 A, the second gate electrode layer 78 B, and the third gate electrode layer 78 C the first impurity implantation region 7 9 a, the second impurity-implanted region 7 9 B, and, sandwiched third impurity implantation region 7 9 C, higher than the third impurity concentration of the semiconductor layer 7 3, l X 1 0 1
  • the source / drain region layers 6 and 8 containing n-type impurities of about 9 cm— 3 to 1 ⁇ 10 2 ° cm— 3 are formed.
  • each semiconductor layer provided on the semiconductor substrate 2 is arranged along the adjacent lateral direction on the semiconductor substrate 2 so that the Since the transistor structure is formed along the planar direction, the on-resistance of the device is further reduced compared to the conventional structure. It becomes possible. Also, the second semiconductor layer 72, the third semiconductor layer 73, the fourth semiconductor layer 74, the fifth semiconductor layer 75, the sixth semiconductor layer 76, and the seventh semiconductor layer ⁇ 7 By making the impurity concentration and film thickness almost the same, the on-resistance of the lateral JFET can be minimized, and the breakdown voltage can be set to the maximum.
  • the number of semiconductor layers, gate electrode layers, and impurity implanted regions can be determined by the performance required for a lateral JFET. For example, three semiconductor layers and two gate electrode layers are required. It is possible to adopt a structure in which one impurity implantation region is provided, or a structure in which four semiconductor layers, two gate electrode layers, and two impurity implantation regions are provided.
  • Structural features of the lateral junction field-effect transistor 800 in the present embodiment are similar to those of the lateral junction field-effect transistor 600 in that the pn junction and the gate electrode layer are arranged in the horizontal direction. It was done.
  • the lateral junction field-effect transistor 800 has a first semiconductor layer 81 containing a p-type impurity located on a semiconductor substrate 2 made of Si or the like, and a first semiconductor layer 81 located on the first semiconductor layer 81. a second semiconductor layer 82 containing a p-type impurity, and a third semiconductor layer located on the first semiconductor layer 81 and adjacent to the second semiconductor layer 82 in a lateral direction and containing an n-type impurity. 83, a fourth semiconductor layer 84 that is located on the first semiconductor layer 81 and laterally adjacent to the third semiconductor layer 83 and contains a p-type impurity, and a first semiconductor layer 81.
  • a fifth semiconductor layer 85 which is positioned adjacent to the fourth semiconductor layer 84 in the lateral direction and contains an ⁇ -type impurity, and on the first semiconductor layer 81 and the fifth semiconductor layer
  • ⁇ -type impurities An eighth semiconductor layer (8 8) which is located on the first semiconductor layer 81 and in the lateral direction adjacent to the seventh semiconductor layer 87, and containing a ⁇ -type impurity. are provided.
  • the material of the first semiconductor layer 81 is SiC
  • the film thickness is about 3 m to 4 m
  • the pure concentration J3 ⁇ 4 is provided at about 1 ⁇ 10 16 cm— 3
  • the second semiconductor layer 82, the third semiconductor layer 83, the fourth semiconductor layer 84, the fifth semiconductor layer 85, and the sixth semiconductor layer are provided.
  • the material of the layer 86, the seventh semiconductor layer 87, and the eighth semiconductor layer 88 is SiC
  • the film thickness is about 0.5 ⁇ to 1.O / m
  • the impurity concentration is 1 ⁇ 1. 0 eclipsed set to about 1 7 cm one 3 ⁇ 3 X 1 0 1 7 cm one 3.
  • the thickness of the second semiconductor layer 82 to the eighth semiconductor layer 87 indicates the thickness toward the back in FIG.
  • Second semiconductor layer 82, third semiconductor layer 83, fourth semiconductor layer 84, fifth semiconductor layer 85, sixth semiconductor layer 86, seventh semiconductor layer 87, and eighth semiconductor layer 88 Provided at predetermined intervals in the inside, and contains an n-type impurity having a higher concentration than the impurity concentration of the third semiconductor layer 83, the fifth semiconductor layer 85, and the seventh semiconductor layer 87.
  • Source drain regions 6 and 8 are provided.
  • the impurity concentration of the source / drain region layer 6, 8 is provided in order 1 X 1 0 1 9 cm 3 ⁇ l X 1 0 2 Q c m_ 3.
  • One side surface is provided between the source Z drain region layers 6 and 8 in the second semiconductor layer 82 so as to extend to the third semiconductor layer 83.
  • a first gate electrode layer 88A including a p-type impurity concentration higher than the impurity concentration is provided.
  • a p-type second gate electrode layer 88 B having substantially the same impurity concentration as the first gate electrode layer 88 A and having the same potential is provided.
  • one side extends to the fifth semiconductor layer 85, and the other side extends to the seventh semiconductor layer 87. And has substantially the same impurity concentration and the same potential as the first good electrode layer 88 A; a p-type third gate electrode layer 88 C is provided. .
  • one side surface is provided between the source Z drain region layers 6 and 8 in the eighth semiconductor layer 88 so as to extend to the seventh semiconductor layer 87, and the first gate electrode layer 4th p-type gate with the same impurity concentration as 88 A and the same potential A contact electrode layer 88D is provided.
  • the first gate electrode layer 88 A, the second Gut electrode layer 88 B, the third gate electrode layer 88 C, and the impurity concentration of the fourth gate electrode layer 88 D is 3 X 10 18 cm one 3 ⁇ : LX 10 It provided about 2 ° cm one 3.
  • the distance between the closest surfaces of the first gate electrode layer 88A and the second gate electrode layer 88B (w8 1) third semiconductor layer
  • the second gate electrode layer 88B and the third gate electrode layer 88C are provided so as to be smaller than twice the distance between the depletion layers spread by the diffusion potential at the junction between the first gate electrode layer 88 and the first gate electrode layer 88C.
  • W8 2 Force Provided to be smaller than twice the distance between the depletion layers spread by the diffusion potential at the junction between the third semiconductor layer 83 and the first gate electrode layer 88A. Good.
  • One semiconductor layer 81 is formed by epitaxial growth.
  • this first semiconductor layer 81 On this first semiconductor layer 81, a thickness of 1 ⁇ ! ⁇ About 2 m, formed by high impurity concentration 1 X 10 1 7 cm -3 ⁇ 3 X 10 17 cm- 3 about Epitaki Shall growing a semiconductor layer 8 OA consisting S i C than the first semiconductor layer 8 1 I do.
  • a P-type impurity is introduced into a predetermined region in semiconductor layer 8 OA at a predetermined interval along a plane direction (depth direction) of substrate 2.
  • the p-type second semiconductor layer 82 has a thickness in the depth direction of about 0.5 ⁇ to about 1.0 ⁇ m and an impurity concentration of about 1 ⁇ 10 17 cm_ 3 to 3 ⁇ 10 17 cm— 3 , respectively.
  • the third semiconductor layer 84 and the fifth semiconductor layer 8 can be located between the second semiconductor layer 82 and the third semiconductor layer 83. 5, between the fifth semiconductor layer 85 and the seventh semiconductor layer 87, and between the seventh semiconductor layer 77 and the eighth semiconductor layer 78 so as to extend over the respective regions.
  • the first gate electrode layer 88A the second Higher than the impurity concentration of the third semiconductor layer 83, sandwiching the gate electrode layer 88 B and the third gate electrode layer 88 C, 1 ⁇ 10 19 cm ⁇ 3 to 1 ⁇ 10 2 0 cm one 3 about saw Sunodorein region layer comprising an n-type impurity 6, 8 to form.
  • the respective semiconductor layers provided on the semiconductor substrate 2 are arranged along the adjacent lateral direction on the semiconductor substrate 2, so that the semiconductor layers extend along the planar direction of the substrate. Since a transistor structure is formed, the on-resistance of the device can be further reduced as compared with the conventional structure. Further, the second semiconductor layer 82, the third semiconductor layer 83, the fourth semiconductor layer 84, the fifth semiconductor layer 85, the sixth semiconductor layer 86, the seventh semiconductor layer 87, the 8 By making the impurity concentration and film thickness of the semiconductor layer 8 This makes it possible to minimize the on-resistance and set the withstand voltage to the maximum.
  • the number of semiconductor layers and gate electrode layers can be determined by the performance required for a lateral JFET. For example, a structure in which three semiconductor layers are provided and two gate electrode layers are provided, or a semiconductor layer is provided It is possible to adopt a structure in which four layers and three gate electrode layers are provided.
  • each process of each semiconductor layer, each gate electrode layer, and the source / drain region layer is repeated plural times to form a device having a desired thickness.
  • FIG. 65 the structure of the lateral junction field effect transistor 900 according to the ninth embodiment will be described with reference to FIGS. 65 and 66.
  • FIG. 65 the structure of the lateral junction field effect transistor 900 according to the ninth embodiment will be described with reference to FIGS. 65 and 66.
  • Structural features of the lateral junction field-effect transistor 900 in the present embodiment are similar to those of the lateral junction field-effect transistor 600 in that the pn junction and the gate electrode layer are arranged in the horizontal direction. It was done.
  • This lateral junction field effect transistor 900 is a semiconductor substrate made of Si or the like.
  • a fourth semiconductor layer 94 that is located laterally adjacent to the layer 93 and that includes a p-type impurity, and that is on the first semiconductor layer 91 and that is laterally adjacent to the fourth semiconductor layer 94.
  • a sixth semiconductor layer 96 is provided.
  • the first material of the semiconductor layer 9 1 S i C, thickness 3 ⁇ ⁇ 4 ⁇ about, not pure concentration is provided approximately 1 X 1 0 1 6 cm- 3, the second semiconductor layer 9 2, Third semiconductor
  • the material of the layer 93, the fourth semiconductor layer 94, the fifth semiconductor layer 95, and the sixth semiconductor layer 96 is SiC, the film thickness is about 0.5 ⁇ to 1.0 ⁇ m, and impurities are present. concentration is provided in the order 1 X 1 0 1 7 cm one 3 ⁇ 3 X 1 0 1 7 c m_ 3.
  • the thickness of the second to sixth semiconductor layers 92 to 96 indicates the thickness in the depth direction of FIG.
  • the third semiconductor layer 92 is provided at a predetermined interval in the second semiconductor layer 92, the third semiconductor layer 93, the fourth semiconductor layer 94, the fifth semiconductor layer 95, and the sixth semiconductor layer 96.
  • Source Z drain region layers 6 and 8 containing n-type impurities having a higher concentration than the impurity concentration of the layer 93 and the fifth semiconductor layer 95 are provided.
  • the impurity concentration of the source / drain area layer 6, 8 is found provided approximately 1 X 1 0 1 9 cm- 3 ⁇ 1 X 1 0 2 ° cm- 3.
  • One side surface is provided between the source / drain region layers 6 and 8 in the second semiconductor layer 92 so as to extend to the third semiconductor layer 93.
  • a first gate electrode layer 98A including a p-type impurity concentration higher than the concentration is provided.
  • one side surface extends to the third semiconductor layer 93, and the other side surface extends to the fifth semiconductor layer 95.
  • a p-type second good electrode layer 98 B having substantially the same impurity concentration as the first gate electrode layer 98 A and having the same potential as the first gate electrode layer 98 A.
  • one side surface is provided so as to extend to the fifth semiconductor layer 95, and the first gate electrode layer A p-type third gate electrode layer 98 C having substantially the same impurity concentration as 98 A and having the same potential is provided.
  • the third semiconductor layer 98B sandwiched between the first gate electrode layer 98A and the second gate electrode layer 98B has substantially the same impurity concentration as the first gate electrode layer 98A. Further, a P-type first impurity implantation region 99 A having the same potential is provided. Further, the fifth semiconductor layer 95 sandwiched between the second gate electrode 98B and the third gate electrode layer 98C has substantially the same impurity concentration as the first gate electrode layer 98A, In addition, a p-type second impurity implantation region 99 B having the same potential is provided.
  • FIG. 65 shows a case where the first impurity implantation region 99 A and the second impurity implantation region 99 B are provided, the total channel width is increased and the ON resistance is reduced. In addition, from the viewpoint of realizing a normally-off type lateral junction transistor, it is also possible to provide a plurality of first impurity implantation regions 99 A and a plurality of second impurity implantation regions 99 B in the semiconductor layer. .
  • the impurities in the first gate electrode layer 98 A, the second gate electrode layer 98 B, the third gate electrode layer 98 C, the first impurity implantation region 99 A, and the second impurity implantation region 99 C are concentration is provided in the order 3 X 1 0 1 8 cm- 3 ⁇ 1 X 1 0 2 ° cm- 3.
  • the distance (w 91) between the closest surfaces of the first gate electrode layer 98 A and the first impurity implantation region 99 A is required.
  • the first impurity implantation region 99 A is provided so as to be smaller than twice the interval between the depletion layers spread by the diffusion potential at the junction between the third semiconductor layer 93 and the first gate electrode layer 98 A.
  • the distance (w 93) between the nearest surfaces of the second gate electrode layer 98 B and the second impurity-implanted region 99 B is provided so as to be smaller than twice the distance, and the third semiconductor layer 9
  • the gap between the depletion layer that spreads due to the diffusion potential at the junction between 3 and the first good electrode layer 98 A is smaller than twice the spacing between the depletion layers.
  • the distance (w 94) between the closest surfaces of the second impurity-implanted region 99 B and the third gate electrode layer 98 C is formed between the third semiconductor layer 93 and the first gate electrode layer 9 B. What is necessary is just to provide it so that it may become smaller than twice the interval of the depletion layer spread by the diffusion potential at the junction with 8 A.
  • a first semiconductor layer 91 made of i C is formed by epitaxy growth.
  • the semiconductor layer 9 OA which the impurity concentration is the S i C of about 1 X 10 1 7 cm- 3 ⁇ 3 X 10 17 cm- 3 is higher than the first semiconductor layer 9 1 Is formed by epitaxial growth.
  • a p-type impurity is introduced into a predetermined region in the semiconductor layer 9OA at a predetermined interval along the plane direction (depth direction) of the substrate 2.
  • the film thickness in the depth direction is 0.5 ⁇ ! ⁇ 1. ⁇
  • a layer 94, an n-type fifth semiconductor layer 95, and a P-type sixth semiconductor layer 96 are formed.
  • predetermined regions of the second semiconductor layer 92, the third semiconductor layer 93, the fourth semiconductor layer 94, the fifth semiconductor layer 95, and the sixth semiconductor layer 96 are formed.
  • the impurity concentration of 3 X 10 ls cm- 3 ⁇ 1 X 10 2 ° cm 3 about the first gate electrode layer 98 a, the second gate electrode layer 98 B and a third gate electrode layer 98 C are formed.
  • the third semiconductor layer 73 and the fifth semiconductor layer 75 substantially the same as the first gate electrode layer 98A, the second gate electrode layer 98B, and the third gate electrode layer 98C.
  • X 10 18 cm one 3 ⁇ 1 X 10 2 ° cm- 3 about impurity concentration example have you, and first impurity implantation region 99 a having a same potential, and to form a second impurity implantation region 9 9 B .
  • n is formed in a predetermined region of second semiconductor layer 92, third semiconductor layer 93, fourth semiconductor layer 94, fifth semiconductor layer 95, and sixth semiconductor layer 96.
  • the second semiconductor layer 92, the third semiconductor layer 93, the fourth semiconductor layer 94, the fifth semiconductor layer 95, and the sixth semiconductor layer 96 are arranged in the same direction.
  • the first gate electrode layer 98A, the second gate electrode layer 98B, the third gate electrode layer 98C, the third impurity implantation region 99A, and the second impurity implantation region 99B are sandwiched.
  • the semiconductor layers provided on the semiconductor substrate 2 are arranged along the lateral direction adjacent to the semiconductor substrate 2 so that Since the transistor structure is formed along the line, the on-resistance of the device can be further reduced as compared with the conventional structure. Further, the impurity concentration and the film thickness of the second semiconductor layer 92, the third semiconductor layer 93, the fourth semiconductor layer 94, the fifth semiconductor layer 95, and the sixth semiconductor layer 96 are described. By making the values approximately the same, it is possible to minimize the on-resistance of the lateral JFET and set the withstand voltage to the maximum.
  • the number of semiconductor layers, gate electrode layers, and impurity-implanted regions can be determined by the performance required for a lateral JFET. For example, three semiconductor layers and two gate electrode layers are required. It is possible to adopt a structure in which one impurity implantation region is provided, or a structure in which four semiconductor layers, two gate electrode layers, and two impurity implantation regions are provided.
  • a transistor structure is formed along a vertical direction that is a stacking direction of each semiconductor layer on a semiconductor substrate. Compared to the conventional structure, it becomes possible to further reduce the on-resistance of the device.
  • a lateral junction type electric field effect based on the present invention
  • a configuration in which pn junctions are arranged in a vertical direction and a gate electrode layer is arranged in a horizontal direction in a plurality of lateral JFETs is employed. It becomes possible to reduce the on-resistance of the element.
  • each semiconductor layer provided on the semiconductor substrate is arranged along an adjacent lateral direction on the semiconductor substrate.
  • the transistor structure is formed along the plane direction of the substrate, so that the on-resistance of the device can be further reduced as compared with the conventional structure.

Description

横型接合型電界効果トランジスタおよびその製造方法 技術分野
この発明は、 横型接合型電界効果トランジスタに関し、 より特定的には、 良 好な耐圧性能を維持したままオン抵抗を低減可能とする横型接合型電界効果ト 構造およびその製造方法に関する。 背景技術
横型接合型電界効果トランジスタ (以下、 J F E T (Junction Field Effect Transistor)と称する)は、 キャリアが通過するチャネル領域の側部に設けられ た p n接合に、 ゲート電極から逆バイアス電圧を印加することにより、 ρ η接 合からの空乏層をチャネル領域へ広げ、 チャネル領域のコンダクタンスを制御 してスイッチング等の動作を行う。 このうち、 横型 J F E Tは、 チャネル領域 においてキヤリァが素子表面に平行に移動するものをいう。
チャネルのキャリアは電子 (η型) でも正孔 (ρ型) でもよいが、 通常、 半 導体基板に S i Cを用いる J F E Tにおいては、 チャネル領域を n型不純物領 域とすることが多いため、 以後の説明では便宜上、 チャネルのキャリアは電子、 したがってチャネル領域は n型不純物領域として話を進めるが、 チャネル領域 を p型不純物領域とする場合もあることは言うまでもない。
図 7 2は、 従来の横型 J F E Tを示す断面図である (米国特許登録番号 5, 264, 713 Junction Field-Effect Transistor Formed in Silicon Carbide) 0 n型 S i C基板 1 1 0の上に p +型のェピタキシャル層 1 1 2が配置され、 その 上に n -型のチャネル層 1 1 4が形成されている。 チャネル層 1 1 4の上には、 トレンチ 1 2 4をはさんで、 一方に n +型のソース領域 1 1 ら 、 また他方には n +型のドレイン領域 1 1 8が配置され、 それぞれの上にソース電極 1 2 0と ド レイン電極 1 2 2とが配置されている。 S i C基板 1 1 0の裏面側には、 ゲー トコンタク ト層 1 3 0が形成され、 その上にゲート電極 (図示せず) が設けら れている。 ソース/ドレイン領域 1 1 6 , 1 1 8を通りチャネル層 1 1 4の中 にいたる深さを有する トレンチ 1 2 4が設けられ、 トレンチ 1 2 4の底部と第 1導電型のェピタキシャル層 1 1 2との間の、 第 2導電型のェピタキシャル層 1 1 4にはチャネル ( C ) が形成されている。
ェピタキシャル層 1 1 2における ρ型不純物の濃度の値は、 チャネルを含む ェピタキシャル層 1 1 4における η型の濃度の値よりも高く、 接合部への逆バ ィァス電圧の印加により空乏層がチャネルに向けて拡大する構成となっている。 空乏層がチャネルを塞いだとき、 電流がチャネルを通過することができないた め、 オフ状態となる。 このため、 逆バイアス電圧の大きさを加減することによ り、 空乏層がチャネル領域を遮断するか否か制御することが可能となる。 この 結果、 たとえば、 ゲート ■ ソース間の逆バイアス電圧を加減することにより、 電流のオンオフ制御を行なうことが可能となる。
ま 7こ、 I'heory of Semiconductor Superjunction Devices
(Jpn. J. Appl. Phys. Vol. 36 (1997) Part. 1, No. 10. Oct. 1997 pp. 6254-6262) には、 MO S型電界効果トランジスタのチャネル一ドレイン間を p型半導体層と n型 半導体層とを交互に積み重ねた構造 (重接合構造) として、 オフ状態でのドレ インへの電圧印加時の電圧分布を平行平板コンデンサに近づけることにより、 素子耐圧の向上とオン抵抗の増加抑制 Z低下とを両立することが可能であるこ とが理論的に述べられている。
しかしながら、 上記構成からなる横型 J F E Tにおいて、 さらなる特性の向 上の要求のひとつとして、 オン抵抗の低下が挙げられる。 特に、 ノーマリオフ 型タイプの横型 J F E Tにおいては、 オン抵抗の低下が強く望まれている。
し力 し、 図 7 2に示す構造において、 オン抵抗の低下を期待して、 p +型のェ ピタキシャル層 1 1 2の最上部とゲートコンタク ト層 1 3 0の最下部との間隔 を広げると、 オフするのに必要なゲート電圧の絶対値が大きくなるため、 その 間隔の拡大には限界があり、 オン抵抗の低下にも限界がある。
また、 ノーマリオフ型とする場合、 その間隔はチャネル層 1 1 4とゲートコ ンタク ト層 1 3 0との接合における拡散電位で広がる空乏層の間隔よりも小さ くする必要があるので、 自ずとその間隔の拡大には限界があり、 オン抵抗の低 下にも限界が生じる。 発明の開示
この発明の目的は、 良好な耐圧性能を維持したままオン抵抗を低減可能とす る構造を有する横型接合型電界効果トランジスタを提供することにある。
上記目的を達成するため、 この発明に基づいた横型接合型電界効果トランジ スタの 1つの局面においては、 半導体基板上に位置する第 1導電型不純物を含 む第 1半導体層と、 上記第 1半導体層の上に位置し、 上記第 1半導体層の不純 物濃度よりも高い濃度の第 2導電型不純物を含む第 2半導体層と、 上記第 2半 導体層の上に位置し、 第 1導電型不純物を含む第 3半導体層と、 上記第 3半導 体層の上に位置し、 第 2導電型不純物を含む第 4半導体層と、 上記第 4半導体 層の上に位置し、 第 1導電型不純物を含む第 5半導体層と、 上記第 5半導体層 中において所定の間隔を隔てて、 下面が上記第 2半導体層にまで延在するよう に設けられ、 上記第 2半導体層および上記第 4半導体層の不純物濃度よりも高 い濃度の第 2導電型の不純物を含むソース/ドレイン領域層と、 上記第 3半導 体層中の上記ソース/ドレイン領域層の間において、 下面が上記第 2半導体層 にまで延在するように設けられ、 上記第 2半導体層の不純物濃度よりも高い第 1導電型の不純物濃度を含む第 1ゲート電極層と、 上記第 5半導体層中の上記 ソース/ドレイン領域層の間において、 下面が上記第 4半導体層にまで延在す るように設けられ、 上記第 1ゲート電極層とほぼ同じ不純物濃度を有し、 つ、 同電位を有する第 2ゲート電極層とを備える。
また、 この発明に基づいた横型接合型電界効果トランジスタの製造方法の 1 つの局面においては、 半導体基板上に、 第 1導電型不純物を含む第 1半導体層 を形成する工程と、 上記第 1半導体層の上に、 上記第 1半導体層の不純物濃度 よりも高い濃度の第 2導電型不純物を含む第 2半導体層を形成する工程と、 上 記第 2半導体層の上に、 第 1導電型不純物を含む第 3半導体層を形成する工程 と、 上記第 2半導体層と上記第 3半導体層とにまたがるように、 第 3半導体層 の所定領域に不純物を導入して、 上記第 2半導体層の不純物濃度よりも高い第 1導電型の不純物濃度を含む第 1ゲート電極層を形成する工程と、 上記第 3半 導体層の上に、 第 2導電型不純物を含む第 4半導体層を形成する工程と、 上記 第 4半導体層の上に、 第 1導電型不純物を含む第 5半導体層を形成する工程と、 上記第第 5半導体層の所定領域に不純物を導入して、 下面が上記第 4半導体層 にまで延在し、 上記第 1ゲート電極層とほぼ同じ不純物濃度を有し、 かつ、 同 電位を有する第 2ゲート電極層を形成する工程と、 上記第 1ゲート電極層およ ぴ上記第 2ゲート電極層の両側において、 上記第 5半導体層に不純物を導入し て、 下面が上記第 2半導体層にまで延在し、 上記第 2半導体層および上記第 4 半導体層の不純物濃度よりも高い濃度の第 2導電型の不純物を含むソース Zド レイン領域層を形成する工程とを備える。
上記構成からなる横型接合型電界効果トランジスタおよびその製造方法によ れば、 半導体基板上の各半導体層の積層方向である縦方向に沿ってトランジス タ構造を形成することになるため、 従来の構造に対して、 さらに素子のオン抵 抗を下げることが可能になる。
上記発明において好ましくは、 上記第 2半導体層と、 上記第 3半導体層と、 上記第 4半導体層と、 上記第 5半導体層との不純物濃度と膜厚さとがほぼ同じ である。 この構成により、 横型接合型電界効果トランジスタのオン抵抗を最小 にし、 耐圧値を最大に設定することが可能になる。
また、 上記発明においてさらに好ましくは、 上記第 1半導体層の最上部と上 記第 1ゲート電極の最下部との間の間隔が、 上記第 2半導体層と上記第 1ゲー ト電極層との接合における拡散電位で広がる空乏層の間隔よりも小さく、 上記 第 3半導体層の最上部と上記第 2ゲート電極層の最下部との間の間隔が、 上記 第 4半導体層と上記第 2ゲート電極層との接合における拡散電位で広がる空乏 層の間隔よりも小さい。 この構成により、 ノーマリオフ型の横型接合型電界効 果トランジスタを実現させることが可能になる。
また、 上記発明においてさらに好ましくは、 上記第 3半導体層と上記第 4半 導体層との間に、 上記第 2半導体層と上記第 3半導体層と上記第 1ゲート電極 層とほぼ同じ構造である単位トランジスタ構造を 1つまたは 2以上備える。 こ の構成により、 横型接合型電界効果トランジスタ内に単位トランジスタを 3以 上積層させることが可能になる。 上記目的を達成するため、 この発明に基づいた横型接合型電界効果トランジ スタの他の局面においては、 半導体基板上に位置する第 1導電型不純物を含む 第 1半導体層と、 上記第 1半導体層の上に位置し、 上記第 1半導体層の不純物 濃度よりも高い濃度の第 2導電型不純物を含む第 2半導体層と、 上記第 2半導 体層の上に位置し、 第 1導電型不純物を含む第 3半導体層と、 上記第 3半導体 層の上に位置し、 第 2導電型不純物を含む第 4半導体層と、 上記第 4半導体層 の上に位置し、 第 1導電型不純物を含む第 5半導体層と、 上記第 5半導体層中 において所定の間隔を隔てて、 下面が上記第 2半導体層にまで延在するように 設けられ、 上記第 2半導体層および第 4半導体層の不純物濃度よりも高い濃度 の第 2導電型の不純物を含むソース/ドレイン領域層と、 上記第 3半導体層中 の上記ソースノドレイン領域層の間において、 下面が上記第 2半導体層にまで 延在するように設けられ、 上記第 2半導体層の不純物濃度よりも高い第 1導電 型の不純物濃度を含む第 1ゲート電極層と、 上記第 5半導体層中の上記ソース /ドレイン領域層の間において、 下面が上記第 4半導体層にまで延在するよう に設けられ、 上記第 1ゲート電極層とほぼ同じ不純物濃度を有し、 かつ、 同電 位を有する第 2ゲート電極層と、 上記第 1半導体層と上記第 1ゲート電極層と に挟まれた上記第 2半導体層に、 上記第 1グート電極層とほぼ同じ不純物濃度 を有し、 かつ、 同電位を有する第 1導電型の第 1不純物注入領域と、 上記第 3 半導体層と上記第 2ゲート電極層とに挟まれた上記第 4半導体層に、 上記第 1 ゲート電極とほぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 1導電型の 第 2不純物注入領域とを備える。
また、 この発明に基づいた横型接合型電界効果トランジスタの製造方法の他 の局面においては、 半導体基板上に、 第 1導電型不純物を含む第 1半導体層を 形成する工程と、 上記第 1半導体層の上に、 上記第 1半導体層の不純物濃度よ りも高い濃度の第 2導電型不純物を含む第 2半導体層を形成する工程と、 上記 第 2半導体層の所定領域に不純物を導入して、 上記第 2半導体層内に第 1導電 型の第 1不純物注入領域を形成する工程と、 上記第 2半導体層の上に、 第 1導 電型不純物を含む第 3半導体層を形成する工程と、 上記第 2半導体層と上記第 3半導体層とにまたがるように不純物を導入して、 上記第 2半導体層の不純物 濃度よりも高い第 1導電型の不純物濃度を含む第 1ゲート電極層を形成するェ 程と、 上記第 3半導体層の上に、 第 2導電型不純物を含む第 4半導体層を形成 する工程と、 上記第 4半導体層の所定領域に不純物を導入して、 上記第 4半導 体層内に上記第 1ゲート電極とほぼ同じ不純物濃度を有し、 かつ、 同電位を有 する第 1導電型の第 2不純物注入領域を形成するェ禾呈と、 上記第 4半導体層の 上に、 第 1導電型不純物を含む第 5半導体層を形成する工程と、 上記第 5半導 体層の所定領域に不純物を導入して、 下面が上記第 4半導体層にまで延在する ように設けられ、 上記第 1ゲート電極層とほぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 2ゲート電極層を形成する工程と、 上記第 1グート電極層お よび上記第 2ゲート電極層の両側において、 上記第 5半導体層の所定領域に不 純物を導入して、 下面が上記第 2半導体層にまで延在するように設けられ、 上 記第 2半導体層および第 4半導体層の不純物濃度よりも高い濃度の第 2導電型 の不純物を含むソース Zドレイン領域層を形成する工程とを備える。
上記構成からなる横型接合型電界効果トランジスタおよびその製造方法によ れば、 半導体基板上の各半導体層の積層方向である縦方向に沿ってトランジス タ構造を形成することになるため、 従来の構造に対して、 さらに素子のオン抵 抗を下げることが可能になる。
上記発明において好ましくは、 上記第 2半導体層と、 上記第 3半 体層と、 上記第 4半導体層と、 上記第 5半導体層との不純物濃度と膜厚さとがほぼ同じ である。 この構成により、 横型接合型電界効果トランジスタのオン抵抗を最小 にし、 耐圧値を最大に設定することが可能になる。
上記発明において好ましくは、 上記第 1半導体層の最上部と上記第 1不純物 注入領域の最下部との間の間隔が、 上記第 2半導体層と上記第 1不純物注入領 域との接合における拡散電位で広がる空乏層の間隔よりも小さく、 上記第 1不 純物注入領域の最上部と上記第 1ゲート電極層の最下部との間の間隔が、 上記 第 2半導体層と上記第 1ゲート電極層との接合における拡散電位で広がる空乏 層の間隔の 2倍よりも小さく、 上記第 3半導体層の最上部と上記第 2不純物注 入領域の最下部との間の間隔が、 上記第 4半導体層と上記第 2不純物注入領域 との接合における拡散電位で広がる空乏層の間隔よりも小さく、 上記第 2不純 物注入領域の最上部と上記第 2ゲート電極層の最下部との間の間隔が、 上記第 4半導体層と上記第 2ゲート電極層との接合における拡散電位で広がる空乏層 の間隔の 2倍よりも小さい。 この構成により、 ノーマリオフ型の横型接合型電 界効果トランジスタを実現させることが可能になる。
また、 好ましくは、 上記第 2半導体層には、 上記第 1不純物注入領域が複数 層設けられ、 上記第 4半導体層には、 上記第 2不純物注入領域が複数層設けら れる。 このように、 不純物注入領域を複数層設けることにより、 第 2および第 4半導体層を最大限に利用して、 総チャネル幅を広く しオン抵抗を下げつつ、 かつ、 ノーマリオフ型の横型接合型トランジスタを実現させることが可能にな る。
上記発明において好ましくは、 上記第 3半導体層と上記第 4半導体層との間 に、 上記第 2半導体層と上記第 3半導体層と上記第 1グート電極層と上記第 1 不純物注入領域とほぼ同じ構造である単位トランジスタ構造を 1つまたは 2以 上備える。 この構成により、 横型接合型電界効果トランジスタ内に単位トラン ジスタを 3以上積層させることが可能になる。
上記目的を達成するため、 この発明に基づいた横型接合型電界効果トランジ スタの他の局面においては、 半導体基板上に位置する第 1導電型不純物を含む 第 1半導体層と、 上記第 1半導体層の上に位置し、 上記第 1半導体層の不純物 濃度よりも高い濃度の第 2導電型不純物を含む第 2半導体層と、 上記第 2半導 体層の上に位置し、 第 1導電型不純物を含む第 3半導体層と、 上記第 3半導体 層の上に位置し、 第 2導電型不純物を含む第 4半導体層と、 上記第 4半導体層 の上に位置し、 第 1導電型不純物を含む第 5半導体層と、 上記第 5半導体層中 において所定の間隔を隔てて、 下面が上記第 2半導体層にまで延在するように 設けられ、 上記第 2半導体層および第 4半導体層の不純物濃度よりも高い濃度 の第 2導電型の不純物を含むソース/ドレイン領域層と、 上記第 3半導体層中 の上記ソース/ドレイン領域層の間において、 下面が上記第 2半導体層にまで 延在し、 上面が上記第 4半導体層にまで延在するように設けられ、 上記第 2半 導体層および上記第 4半導体層の不純物濃度よりも高い第 1導電型の不純物濃 度を含む第 1ゲート電極層と、 上記第 5半導体層中の上記ソース/ドレイン領 域層の間において、 下面が上記第 4半導体層にまで延在するように設けられ、 上記第 1ゲート電極層とほぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 2グート電極層とを備える。
また、 この発明に基づいた横型接合型電界効果トランジスタの製造方法のさ らに他の局面においては、 半導体基板上に、 第 1導電型不純物を含む第 1半導 体層を形成する工程と、 上記第 1半導体層の上に、 上記第 1半導体層の不純物 濃度よりも高い濃度の第 2導電型不純物を含む第 2半導体層を形成する工程と、 上記第 2半導体層の上に、 第 1導電型不純物を含む第 3半導体層を形成するェ 程と、 上記第 3半導体層の上に、 第 2導電型不純物を含む第 4半導体層を形成 する工程と、 上記第 4半導体層の所定領域に不純物を導入し、 下面が上記第 2 半導体層にまで延在し、 .上面が上記第 4半導体層にまで延在し、 上記第 2半導 体層および上記第 4半導体層の不純物濃度よりも高い第 1導電型の不純物濃度 を含む第 1ゲート電極層を形成する工程と、 上記第 4半導体層の上に、 第 1導 電型不純物を含む第 5半導体層を形成する工程と、 上記第 5半導体層の所定領 域に不純物を導入し、 下面が上記第 4半導体層にまで延在するように設けられ、 上記第 1ゲート電極層とほぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 2ゲート電極層を形成する工程と、 上記第 1グート電極層および上記第 2ゲー ト電極層の両側において、 上記第 5半導体層の所定領域に不純物を導入して、 下面が上記第 2半導体層にまで延在するように設けられ、 上記第 2半導体層お よび第 4半導体層の不純物濃度よりも高い濃度の第 2導電型の不純物を含むソ ースノドレイン領域層とを備える。
上記構成からなる横型接合型電界効果トランジスタおよびその製造方法によ れば、 半導体基板上の各半導体層の積層方向である縦方向に沿ってトランジス タ構造を形成することになるため、 従来の構造に対して、 さらに素子のオン抵 抗を下げることが可能になる。
上記発明において好ましくは、 上記第 2半導体層と上記第 3半導体層と上記 第 4半導体層と、 上記第 5半導体層との不純物濃度と膜厚さとがほぼ同じであ る。 この構成により、 横型接合型電界効果トランジスタのオン抵抗を最小にし、 耐圧値を最大に設定することが可能になる。 上記発明において好ましくは、 上記第 1半導体層の最上部と上記第 1ゲート 電極層の最下部との間の間隔が、 上記第 2半導体層と上記第 1ゲート電極層と の接合における拡散電位で広がる空乏層の間隔よりも小さく、 上記第 1ゲート 電極層の最上部と上記第 2ゲート電極層の最下部との間の間隔が、 上記第 4半 導体層と上記第 1ゲート電極層との接合における拡散電位で広がる空乏層の間 隔の 2倍よりも小さい。 この構成により、 ノーマリオフ型の横型接合型電界効 果トランジスタを実現させることが可能になる。
上記発明において好ましくは、 上記第 4半導体層と上記第 5半導体層との間 に、 上記第 3半導体層と上記第 4半導体層と上記第 1ゲート電極層とほぼ同じ 構造である単位トランジスタ構造を 1つまたは 2以上備える。 この構成により、 横型接合型電界効果トランジスタ内に単位トランジスタを 3以上積層させるこ とが可能になる。
上記目的を達成するため、 この発明に基づいた横型接合型電界効果トランジ スタの他の局面においては、 半導体基板上に位置する第 1導電型不純物を含む 第 1半導体層と、 上記第 1半導体層の上に位置し、 上記第 1半導体層の不純物 濃度よりも高い濃度の第 2導電型不純物を含む第 2半導体層と、 上記第 2半導 体層の上に位置し、 第 1導電型不純物を含む第 3半導体層と、 上記第 3半導体 層の上に位置し、 第 2導電型不純物を含む第 4半導体層と、 上記第 4半導体層 の上に位置し、 第 1導電型不純物を含む第 5半導体層と、 上記第 5半導体層中 において所定の間隔を隔てて、 下面が上記第 2半導体層にまで延在するように 設けられ、 上記第 2半導体層および第 4半導体層の不純物濃度よりも高い濃度 の第 2導電型の不純物を含むソース/ドレイン領域層と、 上記第 3半導体層中 の上記ソース/ドレイン領域層の間において、 下面が上記第 2半導体層にまで 延在し、 上面が上記第 4半導体層にまで延在するように設けられ、 上記第 2半 導体層および上記第 4半導体層の不純物濃度よりも高い不純物濃度を含む第 1 ゲート電極層と、 上記第 5半導体層中の上記ソース Zドレイン領域の間におい て、 下面が上記第 4半導体層にまで延在するように設けられ、 上記第 1ゲート 電極層とほぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 1導電型の第 2 ゲート電極層と、 上記第 1半導体層と上記第 1ゲート電極層とに挟まれた上記 第 2半導体層に、 上記第 1ゲート電極層とほぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 1導電型の第 1不純物注入領域と、 上記第 1ゲート電極層と 上記第 2ゲート電極層とに挟まれた上記第 4半導体層に、 上記第 1ゲート電極 層とほぼ同じ不純物濃度を有し、 かつ同電位を有する第 1導電型の第 2不純物 注入領域とを備える。
また、 この発明に基づいた横型接合型電界効果トランジスタの製造方法のさ らに他の局面においては、 半導体基板の上に、 第 1導電型不純物を含む第 1半 導体層を形成する工程と、 上記第 1半導体層の上に、 上記第 1半導体層の不純 物濃度よりも高い濃度の第 2導電型不純物を含む第 2半導体層を形成する工程 と、 上記第 2半導体層の上に、 第 1導電型不純物を含む第 3半導体層を形成す る工程と、 上記第 3半導体層の上に、 第 2導電型不純物を含む第 4半導体層を 形成する工程と、 上記第 4半導体層の所定領域に不純物を導入して、 下面が上 記第 2半導体層にまで延在し、 上面が上記第 4半導体層にまで延在し、 、 上記 第 2半導体層および上記第 4半導体層の不純物濃度よりも高い不純物濃度を含 む第 1ゲート電極層を形成する工程と,、 上記第 2半導体層の所定領域に不純物 を導入して、 上記第 2半導体層内に第 1導電型の第 1不純物注入領域を形成す る工程と、 上記第 4半導体層の上に、 第 1導電型不純物を含む第 5半導体層を 形成する工程と、 上記第 5半導体層の所定領域に不純物を導入して、 下面が上 記第 4半導体層にまで延在するように設けられ、 上記第 1ゲート電極層とほぼ 同じ不純物濃度を有し、 かつ、 同電位を有する第 1導電型の第 2ゲート電極層 を形成する工程と、 上記第 4半導体層の所定領域に不純物を導入して、 上記第 4半導体層内に、 上記第 1ゲート電極層とほぼ同じ不純物濃度を有し、 かつ同 電位を有する第 1導電型の第 2不純物注入領域を形成する工程と、 上記第 1ゲ 一ト電極層および上記第 2ゲート電極層の両側において、 下面が上記第 2半導 体層にまで延在するように設けられ、 上記第 2半導体層および第 4半導体層の 不純物濃度よりも高い濃度の第 2導電型の不純物を含むソース/ドレイン領域 層を形成する工程とを備える。
上記構成からなる横型接合型電界効果トランジスタおよびその製造方法によ れば、 半導体基板上の各半導体層の積層方向である縦方向に沿って タ構造を形成することになるため、 従来の構造に対して、 さらに素子のオン抵 抗を下げることが可能になる。
上記発明において好ましくは、 上記第 2半導体層と、 上記第 3半導体層と、 上記第 4半導体層と、 上記第 5半導体層との不純物濃度と膜厚さとがほぼ同じ である。 この構成により、 横型接合型電界効果トランジスタのオン抵抗を最小 にし、 耐圧値を最大に設定することが可能になる。
また、 上記発明においてさらに好ましくは、 上記第 1半導体層の最上部と上 記第 1不純物注入領域の最下部との間の間隔が、 上記第 2半導体層と上記第 1 不純物注入領域との接合における拡散電位で広がる空乏層の間隔よりも小さく、 上記第 1不純物注入領域の最上部と上記第 1ゲート電極層の最下部との間隔が、 上記第 2半導体層と上記第 1ゲート電極層との接合における拡散電位で広がる 空乏層の間隔の 2倍よりも小さく、 上記第 1グート電極層の最上部と上記第 2 不純物注入領域の最下部との間の間隔が、 上記第 4半導体層と上記第 2不純物 注入領域との接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さく、 上記第 2不純物注入領域の最上部と上記第 2グート電極層の最下部との間の間 隔が、 上記第 4半導体層と上記第 2ゲート電極層との接合における拡散電位で 広がる空乏層の間隔の 2倍よりも小さい。 この構成により、 ノーマリオフ型の 横型接合型電界効果トランジスタを実現させることが可能になる。
また、 好ましくは、 上記第 2半導体層には、 上記第 1不純物注入領域が複数 層設けられ、 上記第 4半導体層には、 上記第 2不純物注入領域が複数層設けら れる。 このように、 不純物注入領域を複数層設けることにより、 第 2および第 4半導体層を最大限に利用して、 総チャネル幅を広く しオン抵抗を下げつつ、 かつ、 ノーマリオフ型の横型接合型トランジスタを実現させることが可能にな る。
また、 上記発明においてさらに好ましくは、 上記第 4半導体層と上記第 5半 導体層との間に、 上記第 3半導体層と上記第 4半導体層と上記第 1ゲート電極 層と上記第 2不純物注入領域とほぼ同じ構造である単位トランジスタ構造を 1 つまたは 2以上備える。 この構成により、 横型接合型電界効果トランジスタ内 に単位'トランジスタを 3以上積層させることが可能になる。 上記目的を達成するため、 この発明に基づいた横型接合型電界効果トランジ スタの他の局面においては、 半導体基板上に位置する第 1導電型不純物を含む 第 1半導体層と、 上記第 1半導体層の上に位置し、 上記第 1半導体層の不純物 濃度よりも高い濃度の第 2導電型不純物を含む第 2半導体層と、 上記第 2半導 体層の上に位置し、 第 1導電型不純物を含む第 3半導体層と、 上記第 3半導体 層の上に位置し、 第 2導電型不純物を含む第 4半導体層と、 上記第 4半導体層 の上に位置し、 第 1導電型不純物を含む第 5半導体層と、 上記第 5半導体層中 において所定の間隔を隔てて、 下面が上記第 2半導体層にまで延在するように 設けられ、 上記第 2半導体層および第 4半導体層の不純物濃度よりも高い濃度 の第 2導電型の不純物を含むソース/ドレイン領域層と、 上記第 5半導体層中 の上記ソース Zドレイン領域層の間において、 下面が上記第 2半導体層にまで 延在するように設けられ、 上記第 2半導体層の不純物濃度よりも高い第 1導電 型の不純物濃度を含む第 1ゲート電極層と、 上記第 5半導体層中の上記ソース /ドレイン領域層の間において、 下面が上記第 2半導体層にまで延在するよう に上記第 1ゲート電極層に隣接して設けられ、 上記第 1ゲート電極層とほぼ同 じ不純物濃度を有し、 かつ、 同電位を有する第 1導電型の第 2ゲート電極層と を備 る。
また、 この発明に基づいた横型接合型電界効果トランジスタの製造方法のさ らに他の局面においては、 半導体基板上に、 第 1導電型不純物を含む第 1半導 体層を形成する工程と、 上記第 1半導体層の上に、 上記第 1半導体層の不純物 濃度よりも高い濃度の第 2導電型不純物を含む第 2半導体層を形成する工程と、 上記第 2半導体層の上に、 第 1導電型不純物を含む第 3半導体層を形成するェ 程と、 上記第 3半導体層の上に、 第 2導電型不純物を含む第 4半導体層を形成 する工程と、 上記第 4半導体層の上に、 第 1導電型不純物を含む第 5半導体層 を形成する工程と、 上記第 5半導体層中の所定領域に不純物を導入することに より、 下面が上記第 2半導体層にまで延在するように設けられ、 上記第 2半導 体層の不純物濃度よりも高い第 1導電型の不純物濃度を含み、 上記基板の平面 方向に沿って互いに所定の間隔を隔てて配置される第 1グート電極層および第 2グート電極層を形成する工程と、 上記第 5半導体層中の所定領域に不純物を 導入することにより、 上記第 1ゲート電極層および上記第 2ゲート電極層の配 置方向に沿つて上記第 1ゲート電極層および上記第 2ゲート電極層を両側から 挟みこみ、 下面が上記第 2半導体層にまで延在するように設けられ、 上記第 2 半導体層および第 4半導体層の不純物濃度よりも高い濃度の第 2導電型の不純 物を含むソース/ドレイン領域層を形成する工程とを備える。
上記構成からなる横型接合型電界効果トランジスタおよびその製造方法によ れば、 複数の横型 J F E Tにおいて p n接合を縦方向に配置し、 ゲート電極層 を横方向に配置した構成が採用されているため、 従来の構造に対して、 さらに 素子のオン抵抗を下げることが可能になる。
上記発明において好ましくは、 上記第 2半導体層と、 上記第 3半導体層と、 上記第 4半導体層と、 上記第 5半導体層との不純物濃度と膜厚さとがほぼ同じ である。 この構成により、 横型接合型電界効果トランジスタのオン抵抗を最小 にし、 耐圧値を最大に設定することが可能になる。
また、 上記発明においてさらに好ましくは、 上記第 1ゲート電極層と上記第 2ゲート電極層との間の間隔が、 上記第 2半導体層と上記第 1ゲート電極層と の接合における拡散電位で広がる空乏層の間隔、 および上記第 4半導体層と上 記第 1ゲート電極層との接合における拡散電位で広がる空乏層の間隔の 2倍よ りも小さい。 この構成により、 ノーマリオフ型の横型接合型電界効果トランジ スタを実現させることが可能になる。
また、 上記発明においてさらに好ましくは、 上記第 1ゲート電極層と上記第 2グート電極層との間に、 下面が上記第 2半導体層にまで延在するように設け られ、 上記第 1ゲート電極層とほぼ同じ不純物濃度を有し、 かつ、 同電位を有 する第 1導電型の不純物注入領域を 1つ備える。 この構成によりチャネル数が 増加し、 さらにオン抵抗を下げることが可能になる。
また、 上記発明においてさらに好ましくは、 上記第 1ゲート電極層と上記不 純物注入領域との間の間隔および上記不純物注入領域と上記第 2ゲート電極層 との間隔が、 上記第 2半導体層と上記第 1グート電極層との接合における拡散 電位で広がる空乏層の間隔、 および上記第 4半導体層と上記第 1ゲート電極層 との接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さい。 この構 成により、 ノーマリオフ型の横型接合型電界効果トランジスタを実現させるこ とが可能になる。
また、 上記発明においてさらに好ましくは、 上記不純物注入領域が 2以上設 けられる。 この構成によりチャネル数が増加し、 さらにオン抵抗を下げること が可能になる。
また、 上記発明においてさらに好ましくは、 上記第 1ゲート電極層に最も近 接する上記不純物注入領域と上記第 1ゲート電極層との間の間隔、 上記不純物 注入領域同士の間隔、 および上記第 2ゲート電極層に最も近接する上記不純物 注入領域と上記第 2ゲート電極層との間の間隔が、 いずれも、 上記第 2半導体 層と上記第 1グート電極層との接合における拡散電位で広がる空乏層の間隔、 および上記第 4半導体層と上記第 1ゲート電極層との接合における拡散電位で 広がる空乏層の間隔の 2倍よりも小さい。 この構成により、 ノーマリオフ型の 横型接合型電界効果トランジスタを実現させることが可能になる。
また、 上記発明においてざらに好ましくは、 上記第 4半導体層と上記第 5半 導体層との間に、 上記第 3半導体層と上記第 4半導体層とほぼ同じ構造を 1つ 以上有する。 この構成により、 半導体基板上において隣接する横方向に沿って 配置される トランジスタ構造の数が増加し、 さらにオン抵抗を下げることが可 能になる。
上記目的を達成するため、 この発明に基づいた横型接合型電界効果トランジ スタの他の局面においては、 半導体基板上に位置する第 1導電型不純物を含む 第 1半導体層と、 上記第 1半導体層の上に位置し、 第 1導電型不純物を含む第 2半導体層と、 上記第 1半導体層の上に、 かつ、 上記第 2半導体層に隣接して 位置し、 第 2導電型不純物を含む第 3半導体層と、 上記第 2半導体層および上 記第 3半導体層中において所定の間隔を隔てて設けられ、 上記第 3半導体層の 不純物濃度よりも高い濃度の第 2導電型の不純物を含むソース/ドレイン領域 層と、 上記第 2半導体層中の上記ソースノドレイン領域層の間において、 その 一方の側面が上記第 3半導体層にまで延在するように設けられ、 上記上記第 1 半導体層の不純物濃度よりも高い第 1導電型の不純物濃度を含むゲート電極層 とを備える。 また、 この発明に基づいた横型接合型電界効果トランジスタの製造方法のさ らに他の局面においては、 半導体基板上に、 第 1導電型不純物を含む第 1半導 体層を形成する工程と、 上記第 1半導体層の上に、 第 2導電型不純物を含む半 導体層を形成する工程と、 上記半導体層中の所定領域に、 上記基板の平面方向 に沿って所定の間隔を隔てて第 1導電型不純物を導入することにより、 第 1導 電型不純物を含む第 2半導体層と第 2導電型不純物を含む第 3半導体層とを形 成する工程と、 上記第 2半導体層および上記第 3半導体層中の所定領域に不純 物を導入することにより、 上記第 2半導体層および上記第 3半導体層にまたが るように設けられ、 上記第 1半導体層の不純物濃度よりも高い第 1導電型の不 純物濃度を含むゲート電極層を形成する工程と、
上記第 2半導体層および上記第 3半導体層の所定領域に不純物を導入するこ とにより、 上記第 2半導体層および上記第 3半導体層が配置される方向に沿う とともに、 上記ゲート電極層を挟み込み、 上記第 3半導体層の不純物濃度より も高い濃度の第 2導電型の不純物を含むソース/ドレイン領域層を形成するェ 程とを備える。
上記構成からなる横型接合型電界効果トランジスタおよびその製造方法によ れば、 半導体基板上に設けられる各半導体層が、 半導体基板上において隣接す る横方向に沿って配置されることにより、 基板の平面方向に沿ってトランジス タ構造を形成することになるため、 従来の構造に対して、 さらに素子のオン抵 抗を下げることが可能になる。
上記発明において好ましくは、 上記第 2半導体層と、 上記第 3半導体層との 不純物濃度と膜厚さとがほぼ同じである。 この構成により、 横型接合型電界効 果トランジスタのオン抵抗を最小にし、 耐圧値を最大に設定することが可能に なる。
また、 上記発明においてさらに好ましくは、 上記ゲート電極層と、 上記第 3 半導体層の上記ゲート電極層と接しない面との間隔が、 上記第 3半導体層と上 記ゲート電極層との接合における拡散電位で拡がる空乏層の間隔よりも小さレ、。 この構成により、 ノーマリオフ型の横型接合型電界効果トランジスタを実現さ せることが可能になる。 上記目的を達成するため、 この発明に基づいた横型接合型電界効果トランジ スタの他の局面においては、 半導体基板上に位置する第 1導電型不純物を含む 第 1半導体層と、 上記第 1半導体層の上に位置し、 第 1導電型不純物を含む第 2半導体層と、 上記第 1半導体層の上に、 かつ、 上記第 2半導体層に隣接して 位置し、 第 2導電型不純物を含む第 3半導体層と、 上記第 1半導体層の上に、 かつ、 上記第 3半導体層に隣接して位置し、 第 1導電型不純物を含む第 4半導 体層と、 上己第 1半導体層の上に、 かつ、 上記第 4半導体層に隣接して位置し、 第 2導電型不純物を含む第 5半導体層と、 上記第 2半導体層、 上記第 3半導体 層、 上記第 4半導体層および上記第 5半導体層中において所定の間隔を隔てて 設けられ、 上記第 3半導体層および上記第 5半導体層の不純物濃度よりも高い 濃度の第 2導電型の不純物を含むソース/ドレイン領域層と、 上記第 2半導体 層中の上記ソース/ドレイン領域層の間において、 その一方の側面が上記第 3 半導体層にまで延在するように設けられ、 上記第 3半導体層の不純物濃度より も高い第 1導電型の不純物濃度を含む第 1グート電極層と、 上記第 4半導体層 中の上記ソース Zドレイン領域層の間において、 その一方の側面が上記第 5半 導体層にまで延在するように設けられ、 上記第 1ゲート電極層とほぼ同じ不純 物濃度を有し、 かつ、 同電位を有する第 1導電型の第 2ゲート電極層とを備え る。
上記構成からなる横型接合型電界効果トランジスタによれば、 半導体基板上 に設けられる各半導体層が、 半導体基板上において隣接する横方向に沿って配 置されることにより、 基板の平面方向に沿ってトランジスタ構造を形成するこ とになるため、 従来の構造に対して、 さらに素子のオン抵抗を下げることが可 能になる。
上記発明において好ましくは、 上記第 2半導体層と、 上記第 3半導体層と、 上記第 4半導体層と、 上記第 5半導体層との不純物濃度と膜厚さとがほぼ同じ である。 この構成により、 横型接合型電界効果トランジスタのオン抵抗を最小 にし、 耐圧値を最大に設定することが可能になる。
また、 上記発明においてさらに好ましくは、 上記第 1ゲート電極と、 上記第 3半導体層の上記第 1グート電極層と接しない面との間の間隔が、 上記第 3半 導体層と上記第 1ゲート電極層との接合における拡散電位で広がる空乏層の間 隔よりも小さく、 上記第 2ゲート電極層と上記第 5半導体層の上記第 2ゲート 電極層と接しない面との間隔が、 上記第 5半導体層と上記第 2ゲート電極層と の接合における拡散電位で広がる空乏層の間隔よりも小さい。 この構成により、 ノーマリオフ型の横型接合型電界効果トランジスタを実現させることが可能に なる。
また、 上記発明においてさらに好ましくは、 上記第 3半導体層と上記第 4半 導体層との間に、 上記第 4半導体層と上記第 5半導体層と上記第 2ゲート電極 層とほぼ同じ構造である単位トランジスタ構造を 1つ以上備える。 この構成に より、 横型接合型電界効果トランジスタ内に単位トランジスタを 3以上設ける ことが可能になる。
上記目的を達成するため、 この発明に基づいた横型接合型電界効果トランジ スタの他の局面においては、 半導体基板上に位置する第 1導電型不純物を含む 第 1半導体層と、 上記第 1半導体層の上に位置し、 第 1導電型不純物を含む第 2半導体層と、 上記第 1半導体層の上に、 かつ、 上記第 2半導体層に隣接して 位置し、 上記第 2導電型不純物を含む第 3半導体層と、 上記第 1半導体層の上 に、 かつ、 上記第 3半導体層に隣接して位置し、 第 1導電型不純物を含む第 4 半導体層と、 上記第 2半導体層、 上記第 3半導体層および上記第 4半導体層中 において所定の間隔を隔てて設けられ、 上記第 3半導体層の不純物濃度よりも 高い濃度の第 2導電型の不純物を含むソース/ドレイン領域層と、 上記第 2半 導体層中の上記ソース/ドレイン領域層の間において、 その一方の側面が上記 第 3半導体層にまで延在するように設けられ、 上記第 3半導体層の不純物濃度 よりも高い第 1導電型の不純物濃度を含むゲート電極層とを備える。
上記構成からなる横型接合型電界効果トランジスタによれば、 半導体基板上 に設けられる各半導体層が、 半導体基板上において隣接する横方向に沿って配 置されることにより、 基板の平面方向に沿ってトランジスタ構造を形成するこ とにな.るため、 従来の構造に対して、 さらに素子のオン抵抗を下げることが可 能になる。
上記発明において好ましくは、 上記第 2半導体層と、 上記第 3半導体層と、 上記第 4半導体層との不純物濃度と膜厚さとがほぼ同じである。 この構成によ り、 横型接合型電界効果トランジスタのオン抵抗を最小にし、 耐圧値を最大に 設定することが可能になる。
また、 上記発明においてさらに好ましくは、 上記ゲート電極層と上記第 4半 導体層との間の間隔が、 上記第 3半導体層と上記ゲート電極層との接合におけ る拡散電位で広がる空乏層の間隔よりも小さい。 この構成により、 ノーマリオ フ型の横型接合型電界効果トランジスタを実現させることが可能になる。
また、 上記発明においてさらに好ましくは、 上記第 3半導体層と上記第 4半 導体層との間に上記第 2半導体層と上記第 3半導体層と上記ゲート電極層とほ ぼ同じ構造である単位トランジスタ構造を 1つまたは 2以上備える。 この構成 により、 横型接合型電界効果トランジスタ内に単位トランジスタを 3以上設け ることが可能になる。
上記目的を達成するため、 この発明に基づいた横型接合型電界効果トランジ スタの他の局面においては、 半導体基板上に位置する第 1導電型不純物を含む 第 1半導体層と、 上記第 1半導体層の上に位置し、 第 1導電型不純物を含む第 2半導体層と、 上記第 1半導体層の上に、 かつ、 上記第 2半導体層に隣接して 位置し、 第 2導電型不純物を含む第 3半導体層と、 上記第 2半導体層および上 記第 3半導体層中において所定の間隔を隔てて設けられ、 上記第 3半導体層の 不純物濃度よりも高い濃度の第 2導電型の不純物を含むソース/ドレイン領域 層と、 上記第 2半導体層中の上記ソースノドレイン領域層の間において、 その —方の側面が上記第 3半導体層にまで延在するように設けられ、 上記第 3半導 体層の不純物濃度よりも高い第 1導電型の不純物濃度を含むゲ一ト電極層と、 上記グート電極層と上記第 3半導体層の上記ゲート電極層と接しない面とに挟 まれた上記第 3半導体層に、 上記ゲート電極層とほぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 1導電型の不純物注入領域とを備える。
また、 この発明に基づいた横型接合型電界効果トランジスタの製造方法のさ らに他の局面においては、 半導体基板上に、 第 1導電型不純物を含む第 1半導 体層を形成する工程と、 上記第 1半導体層の上に、 第 2導電型不純物を含む半 導体層を形成する J:程と、 上記半導体層中の所定領域に、 上記基板の平面方向 に沿って所定の間隔を隔てて第 1導電型不純物を導入することにより、 第 1導 電型不純物を含む第 2半導体層と第 2導電型不純物を含む第 3半導体層とを形 成する工程と、 上記第 2半導体層およぴ上記第 3半導体層中の所定領域に不純 物を導入することにより、 上記第 2半導体層および上記第 3半導体層にまたが るように設けられ、 上記第 3半導体層の不純物濃度よりも高い第 1導電型の不 純物濃度を含むゲート電極層と、 上記第 3半導体層の中に、 上記ゲート電極層 とほぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 1導電型の不純物注入 領域とを形成する工程と、 上記第 2半導体層およぴ上記第 3半導体層の所定領 域に不純物を導入することにより、 上記第 2半導体層および上記第 3半導体層 が配置される方向に沿うとともに、 上記ゲート電極層および不純物注入領域を 挟み込み、 上記第 3半導体層の不純物濃度よりも高い濃度の第 2導電型の不純 物を含むソース/ドレイン領域層を形成する工程とを備える。
上記構成からなる横型接合型電界効果トランジスタおよびその製造方法によ れば、 半導体基板上に設けられる各半導体層が、 半導体基板上において隣接す る横方向に沿って配置されることにより、 基板の平面方向に沿ってトランジス タ構造を形成することになるため、 従来の構造に対して、 さらに素子のオン抵 抗を下げることが可能になる。
上記発明において好ましくは、 上記第 2半導体層と、 上記第 3半導体層との 不純物濃度と膜厚さとがほぼ同じである。 この構成により、 横型接合型電界効 果トランジスタのオン抵抗を最小にし、 耐圧値を最大に設定することが可能に なる。
また、 上記発明においてさらに好ましくは、 上記ゲート電極層と上記不純物 注入領域との最も大きく接する面同士の間隔が、 上記第 3半導体層と上記ゲー ト電極層との接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さく、 上記不純物注入領域と、 上記第 3半導体層の上記ゲート電極層と接しない面と の間の間隔が、 上記第 3半導体層と上記ゲート電極層との接合における拡散電 位で広がる空乏層の間隔よりも小さい。 この構成により、 ノーマリオフ型の横 型接合型電界効果トランジスタを実現させることが可能になる。
また、 好ましくは、 上記第 3半導体層には、 上記不純物注入領域が複数層設 けられる。 このように、 不純物注入領域を複数層設けることにより、 総チヤネ ル幅を広く しオン抵抗を下げつつ、 かつ、 ノーマリオフ型の横型接合型トラン ジスタを実現させることが可能になる。
上記目的を達成するため、 この発明に基づいた横型接合型電界効果トランジ スタの他の局面においては、 半導体基板上に位置する第 1導電型不純物を含む 第 1半導体層と、 上記第 1半導体層の上に位置し、 第 1導電型不純物を含む第 2半導体層と、 上記第 1半導体層の上に、 かつ、 上記第 2半導体層に隣接して 位置し、 第 2導電型不純物を含む第 3半導体層と、 上記第 1半導体層の上に、 かつ、 上記第 3半導体層に隣接して位置し、 第 1導電型不純物を含む第 4半導 体層と、 上記第 1半導体層の上に、 かつ上記第 4半導体層に隣接して位置し、 第 2導電型不純物を含む第 5半導体層と、 上記第 2半導体層、 上記第 3半導体 層、 上記第 4半導体層および上記第 5半導体層中において所定の間隔を隔てて 設けられ、 上記第 3半導体層および上記第 5半導体層の不純物濃度よりも高い 濃度の第 2導電型の不純物を含むソース/ドレイン領域層と、 上記第 2半導体 層中の上記ソース/ドレイン領域層の間において、 その一方の側面が上記第 3 半導体層にまで延在するように設けられ、 上記第 半導体層の不純物濃度より も高い第 1導電型の不純物濃度を含む第 1グート電極層と、 上記第 4半導体層 中の上記ソース/ドレイン領域層の間においてその一方の側面が上記第 5半導 体層にまで延在するように設けられ、 上記第 1ゲート電極層とほぼ同じ不純物 濃度を有し、 かつ同電位を有する第 2ゲート電極層と、 上記第 4半導体層と上 記第 1ゲート電極層とに挟まれた上記第 3半導体層に、 上記第 1ゲート電極層 とほぼ同じ不純物濃度を有し、 かつ同電位を有する第 1導電型の第 1不純物注 入領域と、 上記第 2ゲート電極層と、 上記第 5半導体層の上記第 2ゲート電極 層と接しない面とに挟まれた上記第 5半導体層に、 上記第 1ゲート電極層とほ ぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 1導電型の第 2不純物注入 領域とを備える。
上記構成からなる横型接合型電界効果トランジスタによれば、 半導体基板上 に設けられる各半導体層が、 半導体基板上において隣接する横方向に沿って配 置されることにより、 基板の平面方向に沿ってトランジスタ構造を形成するこ とになるため、 従来の構造に対して、 さらに素子のオン抵抗を下げることが可 能になる。
上記発明において好ましくは、 上記第 2半導体層と、 上記第 3半導体層と、 上記第 4半導体層と、 上記第 5半導体層との不純物濃度と膜厚さとがほぼ同じ である。 この構成により、 横型接合型電界効果トランジスタのオン抵抗を最小 にし、 耐圧値を最大に設定することが可能になる。
また、 上記発明においてさらに好ましくは、 上記第 1ゲート電極層と上記第 1不純物注入領域との最も近接する面同士の間隔が、 上記第 3半導体層と上記 第 1ゲ一ト電極層との接合における拡散電位で広がる空乏層の間隔の 2倍より も小さく、 上記第 1不純物注入領域と、 上記第 3半導体層の上記第 1ゲート電 極層と接しない面との間の間隔が、 上記第 3半導体層と上記第 1ゲート電極層 との接合における拡散電位で広がる空乏層の間隔よりも小さく、 上記第 2ゲー ト電極層と上記第 2不純物注入領域との最も近接する面同士の間隔が、 上記第 5半導体層と上記第 2グート電極層との接合における拡散電位で広がる空乏層 の間隔の 2倍よりも小さく、 上記第 2不純物注入領域と、 上記第 5半導体層の 上記第 2ゲート電極層と接しない面との間の間隔が、 上記第 5半導体層と上記 第 2ゲート電極層との接合における拡散電位で広がる空乏層の間隔よりも小さ い。 この構成により、 ノーマリオフ型の横型接合型電界効果トランジスタを実 現させることが可能になる。
また、 好ましくは、 上記第 3半導体層には、 上記第 1不純物注入領域が複数 層設けられ、 上記第 5半導体層には、 上記第 2不純物注入領域が複数層設けら れる。 このように、 不純物注入領域を複数層設けることにより、 総チャネル幅 を広く しオン抵抗を下げつつ、 かつ、 ノーマリオフ型の横型接合型トランジス タを実現させることが可能になる。
また、 上記発明においてさらに好ましくは、 上記第 3半導体層と上記第 4半 導体層との間に、 上記第 4半導体層と上記第 5半導体層と上記第 2ゲート電極 層と上記第 2不純物注入領域とほぼ同じ構造である単位トランジスタ構造を 1 つ以上備える。 この構成により、 横型接合型電界効果トランジスタ内に単位ト ランジスタを 3以上設けることが可能になる。 上記目的を達成するため、 この発明に基づいた横型接合型電界効果 スタの他の局面においては、 半導体基板上に位置する第 1導電型不純物を含む 第 1半導体層と、 上記第 1半導体層の上に位置し、 第 1導電型不純物を含む第 2半導体層と、 上記第 1半導体層の上に、 かつ、 上記第 2半導体層に隣接して 位置し、 第 2導電型不純物を含む第 3半導体層と、 上記第 1半導体層の上に、 つ、 上記第 3半導体層に隣接して位置し、 第 1導電型不純物を含む第 4半導 体層と、 上記第 2半導体層、 上記第 3半導体層および上記第 4半導体層中にお いて所定の間隔を隔てて設けられ、 上記第 3半導体層の不純物濃度よりも高い 濃度の第 2導電型の不純物を含むソース/ドレイン領域層と、 上記第 2半導体 層中の上記ソース/ドレイン領域層の間において、 その一方の側面が上記第 3 半導体層にまで延在するように設けられ、 上記第 3半導体層の不純物濃度より も高い第 1導電型の不純物濃度を含むゲート電極層と、 上記第 4半導体層と上 記ゲート電極層とに挟まれた上記第 3半導体層に、 上記ゲート電極層とほぼ同 じ不純物濃度を有し、 かつ同電位を有する第 1導電型の不純物注入領域とを備 える。
上記構成からなる横型接合型電界効果トランジスタによれば、 半導体基板上 に設けられる各半導体層が、 半導体基板上において隣接する横方向に沿って配 置されることにより、 基板の平面方向に沿ってトランジスタ構造を形成するこ とになるため、 従来の構造に対して、 さらに素子のオン抵抗を下げることが可 能になる。
上記発明において好ましくは、 上記第 2半導体層と、 上記第 3半導体層と、 上記第 4半導体層の不純物濃度と膜厚さとがほぼ同じである。 この構成により、 横型接合型電界効果トランジスタのオン抵抗を最小にし、 耐圧値を最大に設定 することが可能になる。
また、 上記発明においてさらに好ましくは、 上記ゲート電極層と上記不純物 注入領域との間の間隔が、 上記第 3半導体層と上記ゲート電極層との接合にお ける拡散電位で広がる空乏層の間隔の 2倍よりも小さく、 上記不純物注入領域 と上記第 4半導体層との間の間隔が、 上記第 3半導体層と上記ゲート電極層と の接合における拡散電位で広がる空乏層の間隔よりも小さい。 この構成により、 ノーマリオフ型の横型接合型電界効果トランジスタを実現させることが可能に なる。
また、 好ましくは、 上記第 3半導体層には、 上記不純物注入領域が複数層設 けられる。 このように、 不純物注入領域を複数層設けることにより、 総チヤネ ル幅を広く しオン抵抗を下げつつ、 かつ、 ノーマリオフ型の横型接合型トラン ジスタを実現させることが可能になる。
また、 上記発明においてさらに好ましくは、 上記第 3半導体層と上記第 4半 導体層との間に、 上記第 2半導体層と上記第 3半導体層と上記ゲート電極層と 上記不純物注入領域とほぼ同じ構造である単位トランジスタ構造を 1つまたは 2以上備える。 この構成により、 横型接合型電界効果トランジスタ内に単位ト ランジスタを 3以上設けることが可能になる。
上記目的を達成するため、 この発明に基づいた横型接合型電界効果トランジ スタの他の局面においては、 半導体基板上に位置する第 1導電型不純物を含む 第 1半導体層と、 上記第 1半導体層の上に位置し、 第 1導電型不純物を含む第 2半導体層と、 上記第 1半導体層の上に、 かつ、 上記第 2半導体層に隣接して 位置し、 第 2導電型不純物を含む第 3半導体層と、 上記第 1半導体層の上に、 かつ、 上記第 3半導体層に隣接して位置し、 第 1導電型不純物を含む第 4半導 体層と、 上記第 2半導体層、 上記第 3半導体層および上記第 4半導体層中にお いて所定の間隔を隔てて設けられ、 上記第 3半導体層の不純物濃度よりも高い 濃度の第 2導電型の不純物を含むソース Zドレイン領域層と、 上記第 2半導体 層中の上記ソース/ドレイン領域層の間において、 その一方の側面が上記第 3 半導体層にまで延在するように設けられ、 上記第 3半導体層の不純物濃度より も高い第 1導電型の不純物濃度を含む第 1ゲート電極層と、 上記第 4半導体層 中の上記ソース/ドレイン領域層の間において、 その一方の側面が上記第 3半 導体層にまで延在するように設けられ、 上記第 1ゲート電極層とほぼ同じ不純 物濃度を有し、 かつ同電位を有する第 1導電型の第 2グート電極層とを備える。 また、 この発明に基づいた横型接合型電界効果トランジスタの製造方法のさ らに他の局面においては、 半導体基板上に、 第 1導電型不純物を含む第 1半導 体層を形成する工程と、 上記第 1半導体層の上に、 第 2導電型不純物を含む半 導体層を形成する工程と、 上記半導体層中の所定領域に、 上記基板の平面方向 に沿って所定の間隔を隔てて第 1導電型不純物を導入することにより、 第 1導 電型不純物を含む第 2半導体層、 第 2導電型不純物を含む第 3半導体層、 およ び、 第 1導電型不純物を含む第 4半導体層を形成する工程と、 上記第 2半導体 層、 上記第 3半導体層、 および、 上記第 4半導体層中の所定領域に不純物を導 入することにより、 上記第 2半導体層および上記第 3半導体層にまたがるよう に設けられ、 上記第 3半導体層の不純物濃度よりも高い第 1導電型の不純物濃 度を含む第 1グート電極層と、 上記第 3半導体層および上記第 4半導体層にま たがるように設けられ、 上記第 1グート電極層とほぼ同じ不純物濃度を有し、 かつ同電位を有する第 1導電型の第 2ゲート電極層とを形成する工程と、 上記 第 2半導体層、 上記第 3半導体層、 および、 上記第 4半導体層の所定領域に不 純物を導入することにより、 上記第 2半導体層、 上記第 3半導体層、 および、 上記第 4半導体層が配置される方向に沿うとともに、 上記 1ゲート電極層およ び上記第 2グート電極層を挟み込み、 上記第 3半導体層の不純物濃度よりも高 い濃度の第 2導電型の不純物を含むソース ドレイン領域層を形成する工程と を備 る。
上記構成からなる横型接合型電界効果トランジスタおよびその製造方法によ れば、 半導体基板上に設けられる各半導体層が、 半導体基板上において隣接す る横方向に沿って配置されることにより、 基板の平面方向に沿ってトランジス タ構造を形成することになるため、 従来の構造に対して、 さらに素子のオン抵 抗を下げることが可能になる。
上記発明において好ましくは、 上記第 2半導体層と、 上記第 3半導体層と、 上記第 4半導体層との不純物濃度と膜厚さとがほぼ同じである。 この構成によ り、 横型接合型電界効果トランジスタのオン抵抗を最小にし、 耐圧値を最大に 設定することが可能になる。
また、 上記発明においてさらに好ましくは、 上記第 1'ゲート電極層と、 上記 第 2ゲート電極層の最も近接する面同士の間隔が、 上記第 3半導体層と上記第 1ゲート電極層との接合における拡散電位で広がる空乏層の間隔の 2倍よりも 小さい。 この構成により、 ノーマリオフ型の横型接合型電界効果トランジスタ を実現させることが可能になる。
上記目的を達成するため、 この発明に基づいた横型接合型電界効果トランジ スタの他の局面においては、 半導体基板上に位置する第 1導電型不純物を含む 第 1半導体層と、 上記第 1半導体層の上に位置し、 第 1導電型不純物を含む第 2半導体層と、 上記第 1半導体層の上に、 かつ、 上記第 2半導体層に隣接して 位置し、 第 2導電型不純物を含む第 3半導体層と、 上記第 1半導体層の上に、 かつ上記第 3半導体層に隣接して位置し、 第 1導電型不純物を含む第 4半導体 層と、 上記第 1半導体層の上に、 かつ上記第 4半導体層に隣接して位置し、 第 2導電型不純物を含む第 5半導体層と、 上記第 1半導体層の上に、 かつ、 上記 第 5半導体層に隣接して位置し、 第 1導電型不純物を含む第 6半導体層と、 上 記第 2半導体層、 上記第 3半導体層、 上記第 4半導体層、 上記第 5半導体層お よび上記第 6半導体層中において所定の間隔を隔てて設けられ、 上記第 3半導 体層および上記第 5半導体層の不純物濃度よりも高い濃度の第 2導電型の不純 物を含むソースダドレイン領域層と、 上記第 2半導体層中の上記ソース/ドレ イン領域層の間において、 その一方の側面が上記第 3半導体層にまで延在する ように設けられ、 上記第 3半導体層の不純物濃度よりも高い第 1導電型の不純 物濃度を含む第 1ゲート電極層と、 上記第 4半導体層中の上記ソース/ドレイ ン領域層の間においてその一方の側面が上記第 3半導体層にまで延在し、 他方 の側面が上記第 5半導体層にまで延在するように設けられ、 上記第 1ゲート電 極層とほぼ同じ不純物濃度を有し、 かつ同電位を有する第 1導電型の第 2ゲー ト電極層と、 上記第 6半導体層の上記ソース/ドレイン領域層の間においてそ の一方の側面が上記第 5半導体層にまで延在するように設けられ、 上記第 1ゲ ート電極層とほぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 1導電型の 第 3ゲート電極層とを備える。
上記構成からなる横型接合型電界効果トランジスタによれば、 半導体基板上 に設けられる各半導体層が、 半導体基板上において隣接する横方向に沿って配 置されることにより、 基板の平面方向に沿ってトランジスタ構造を形成するこ とになるため、 従来の構造に対して、 さらに素子のオン抵抗を下げることが可 能になる。 上記発明において好ましくは、 上記第 2半導体層と、 上記第 3半導体層と、 上記第 4半導体層と、 上記第 5半導体層と、 上記第 6半導体層との不純物濃度 と膜厚さとがほぼ同じである。 この構成により、 横型接合型電界効果トランジ スタのオン抵抗を最小にし、 耐圧値を最大に設定することが可能になる。
また、 上記発明においてさらに好ましくは、 上記第 1ゲート電極層と、 上記 第 2ゲート電極層の最も近接する面同士の間隔が、 上記第 3半導体層と上記第 1ゲート電極層との接合における拡散電位で広がる空乏層の間隔の 2倍よりも 小さく、 上記第 2ゲート電極層と上記第 3ゲート電極層の最も近接する面同士 の間隔が、 上記第 3半導体層と上記第 1ゲート電極層との接合における拡散電 位で広がる空乏層の間隔の 2倍よりも小さい。 この構成により、 ノーマリオフ 型の横型接合型電界効果トランジスタを実現させることが可能になる。
また、 上記発明においてさらに好ましくは、 上記第 5半導体層と上記第 6半 導体層との間に、 上記第 4半導体層と上記 5半導体層と上記第 2グート電極層 とほぼ同じ構造である単位トランジスタ構造を 1つ以上備える。 この構成によ り、 横型接合型電界効果トランジスタ内に単位トランジスタを 3以上設けるこ とが可能になる。
上記目的を達成するため、 この発明に基づいた横型接合型電界効果トランジ スタの他の局面においては、 半導体基板上に位置する第 1導電型不純物を含む 第 1半導体層と、 上記第 1半導体層上に位置し、 第 1導電型不純物を含む第 2 半導体層と、 上記第 1半導体層の上に、 かつ、 上記第 2半導体層に隣接して位 置し、 第 2導電型不純物を含む第 3半導体層と、 上記第 1半導体層の上に、 か つ、 上記第 3半導体層に隣接して位置し、 第 1導電型不純物を含む第 4半導体 層と、 上記第 2半導体層、 上記第 3半導体層および上記第 4半導体層中におい て所定の間隔を隔てて設けられ、 上記第 3半導体層の不純物濃度よりも高い濃 度の第 2導電型の不純物を含むソース/ドレイン領域層と、 上記第 2半導体層 中の上記ソース/ドレイン領域層の間において、 その一方の側面が上記第 3半 導体層にまで延在するように設けられ、 上記第 3半導体層の不純物濃度よりも 高い第 1導電型の不純物濃度を含む第 1ゲート電極層と、 上記第 4半導体層中 の上記ソース/ドレイン領域層の間において、 その一方の側面が上記第 3半導 体層にまで延在するように設けられ、 上記第 1ゲート電極層とほぼ同じ不純物 濃度を有し、 かつ同電位を有する第 2ゲート電極層と、 上記第 1ゲート電極層 と上記第 2グート電極層とに挟まれた上記第 3半導体層に、 上記第 1グート電 極層とほぼ同じ不純物濃度を有し、 かつ同電位を有する第 1導電型の不純物注 入領域とを備える。
また、 この発明に基づいた横型接合型電界効果トランジスタの製造方法のさ らに他の局面においては、 半導体基板上に、 第 1導電型不純物を含む第 1半導 体層を形成すると、 上記第 1半導体層の上に、 第 2導電型不純物を含む半導体 層を形成する工程と、 上記半導体層中の所定領域に、 上記基板の平面方向に沿 つて所定の間隔を隔てて第 1導電型不純物を導入することにより、 第 1導電型 不純物を含む第 2半導体層、 第 2導電型不純物を含む第 3半導体層、 および、 第 1導電型不純物を含む第 4半導体層を形成する工程と、 上記第 2半導体層、 上記第 3半導体層、 および、 上記第 4半導体層中の所定領域に不純物を導入す ることにより、 上記第 2半導体層および上記第 3半導体層にまたがるように設 けられ、 上記第 3半導体層の不純物濃度よりも高い第 1導電型の不純物濃度を 含む第 1ゲート電極層と、 上記第 3半導体層および上記第 4半導体層にまたが るように設けられ、 上記第 1ゲート電極層とほぼ同じ不純物濃度を有し、 かつ 同電位を有する第.1導電型の第 2グート電極層と、 上記第 1ゲ一ト電極層およ び上記第 2ゲート電極層に挟まれた上記第 3半導体層に、 上記第 1ゲート電極 層とほぼ同じ不純物濃度を有し、 かつ同電位を有する第 1導電型の不純物注入 領域とを形成する工程と、 上記第 2半導体層、 上記第 3半導体層、 および、 上 記第 4半導体層の所定領域に不純物を導入することにより、 上記第 2半導体層、 上記第 3半導体層、 および、 上記第 4半導体層が配置される方向に沿うととも に、 上記 1ゲート電極層、 上記第 2ゲート電極層および不純物注入領域を挟み 込み、 上記第 3半導体層の不純物濃度よりも高い濃度の第 2導電型の不純物を 含むソース/ドレイン領域層を形成する工程とを備える。
上記構成からなる横型接合型電界効果トランジスタおよびその製造方法によ れば、 半導体基板上に設けられる各半導体層が、 半導体基板上において隣接す る横方向に沿って配置されることにより、 基板の平面方向に沿って タ構造を形成することになるため、 従来の構造に対して、 さらに素子のオン抵 抗を下げることが可能になる。
上記発明において好ましくは、 上記第 2半導体層と上記第 3半導体層と上記 第 4半導体層との不純物濃度と膜厚さとがほぼ同じである。 この構成により、 横型接合型電界効果トランジスタのオン抵抗を最小にし、 耐圧値を最大に設定 することが可能になる。
また、 上記発明においてさらに好ましくは、 上記第 1ゲート電極層と、 上記 不純物注入領域の最も近接する面同士の間隔が、 上記第 3半導体層と上記第 1 ゲート電極層との接合における拡散電位で広がる空乏層の間隔の 2倍よりも小 さく、 上記不純物注入領域と、 上記第 2ゲート電極の最も近接する面同士の間 隔が、 上記第 3半導体層と上記第 1ゲート電極層との接合における拡散電位で 広がる空乏層の間隔の 2倍よりも小さい。 この構成により、 ノーマリオフ型の 横型接合型電界効果トランジスタを実現させることが可能になる。
また、 好ましくは、 上記第 3半導体層には、 上記不純物注入領域が複数層設 けられる。 このように、 不純物注入領域を複数層設けることにより、 総チヤネ ル幅を広く しオン抵抗を下げつつ、 かつ、 ノーマリオフ型の横型接合型トラン ジスタを実現させることが可能になる。
上記目的を達成するため、 この発明に基づいた横型接合型電界効果トランジ スタの他の局面においては、 半導体基板上に位置する第 1導電型不純物を含む 第 1半導体層と、 上記第 1半導体層の上に位置し、 第 1導電型不純物を含む第 2半導体層と、 上記第 1半導体層の上に、 かつ、 上記第 2半導体層に隣接して 位置し、 第 2導電型不純物を含む第 3半導体層と、 上記第 1半導体層の上にか つ上記第 3半導体層に隣接して位置し、 第 1導電型不純物を含む第 4半導体層 と、 上記第 1半導体層の上に、 かつ、 上記第 4半導体層に隣接して位置し、 第 2導電型不純物を含む第 5半導体層と、 上記第 1半導体層の上に、 かつ、 上記 第 5半導体層に隣接して位置し、 第 1導電型不純物を含む第 6半導体層と、 上 記第 2半導体層、 上記第 3半導体層、 上記第 4半導体層、 上記第 5半導体層お よび上記第 6半導体層中において所定の間隔を隔てて設けられ、 上記第 3半導 体層および上記第 5半導体層の不純物濃度よりも高い濃度の第 2導電型の不純 物を含むソース/ドレイン領域層と、 上記第 2半導体層中の上記ソース/ドレ イン領域層の間において、 その一方の側面が上記第 3半導体層にまで延在する ように設けられ、 上記第 3半導体層の不純物濃度よりも高い第 1導電型の不純 物濃度を含む第 1ゲート電極層と、 上記第 4半導体層中の上記ソース ドレイ ン領域層の間において、 その一方の側面が上記第 3半導体層にまで延在し、 他 方の側面が上記第 5半導体層にまで延在するように設けられ、 上記第 1グート 電極層とほぼ同じ不純物濃度を有し、 かつ同電位を有する第 1導電型の第 2ゲ 一ト電極層と、 上記第 6半導体層中の上記ソース/ドレイン領域層の間におい て、 その一方の側面が上記第 5半導体層にまで延在するように設けられ、 上記 第 1ゲート電極層とほぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 1導 電型の第 3ゲート電極層と、 上記第 1グート電極層と上記第 2ゲート電極層と に挟まれた上記第 3半導体層に、 上記第 1ゲート電極層とほぼ同じ不純物濃度 を有し、 かつ、 同電位を有する第 1導電型の第 1不純物注入領域と、 上記第 2 ゲート電極と上記第 3ゲート電極層とに挟まれた上記第 5半導体層に、 上記第 1ゲート電極層とほぼ同じ不純物濃度を有し、 かつ同電位を有する第 1導電型 の第 2不純物注入領域とを備える。
上記構成からなる横型接合型電界効果トランジスタによれば、 半導体基板上 に設けられる各半導体層が、 半導体基板上において隣接する横方向に沿って配 置されることにより、 基板の平面方向に沿ってトランジスタ構造を形成するこ とになるため、 従来の構造に対して、 さらに素子のオン抵抗を下げることが可 能になる。
上記発明において好ましくは、 上記第 2半導体層と、 上記第 3半導体層と、 上記第 4半導体層と、 上記第 5半導体層と、 上記第 6半導体層との不純物濃度 と膜厚さとがほぼ同じである。 この構成により、 横型接合型電界効果トランジ スタのオン抵抗を最小にし、 耐圧値を最大に設定することが可能になる。
また、 上記発明においてさらに好ましくは、 上記第 1ゲート電極層と、 上記 第 1不純物注入領域の最も近接する面同士の間隔が、 上記第 3半導体層と上記 第 1ゲート電極層との接合における拡散電位で広がる空乏層の間隔の 2倍より も小さく、 上記第 1不純物注入領域と、 上記第 2ゲート電極層の最も近接する 面同士の間隔が、 上記第 3半導体層と上記第 1ゲート電極層との接合における 拡散電位で広がる空乏層の間隔の 2倍よりも小さく、 上記第 2ゲート電極層と、 上記第 2不純物注入領域の最も近接する面同士の間隔が、 上記第 3半導体層と 上記第 1ゲート電極層との接合における拡散電位で広がる空乏層の間隔の 2倍 よりも小さく、 上記第 2不純物注入領域と、 上記第 3ゲート電極層の最も近接 する面同士の間隔が、 上記第 3半導体層と上記第 1グート電極層との接合にお ける拡散電位で広がる空乏層の間隔の 2倍よりも小さい。 この構成により、 ノ 一マリオフ型の横型接合型電界効果トランジスタを実現させることが可能にな る。
また、 好ましくは、 上記第 3半導体層には、 上記第 1不純物注入領域が複数 層設けられる、 上記第 5半導体層には、 上記第 2不純物注入領域が複数層設け られる。 このように、 不純物注入領域を複数層設けることにより、 第 2および 第 4半導体層を最大限に利用して、 総チャネル幅を広くしオン抵抗を下げつつ、 かつ、 ノーマリオフ型の横型接合型トランジスタを実現させることが可能にな る。
また、 上記発明においてさらに好ましくは、 上記第 5半導体層と上記第 6半 導体層との間に、 上記第 4半導体層と上記第 5半導体層と上記第 2ゲート電極 層と上記第 2不純物注入領域とほぼ同じ構造である単位トランジスタ構造を 1 つ以上備える。 この構成により、 横型接合型電界効果トランジスタ内に単位ト ランジスタを 3以上設けることが可能になる。 図面の簡単な説明
図 1は、 実施の形態 1における横型接合型電界効果トランジスタの構造を示 す断面図である。
図 2は、 実施の形態 1における横型接合型電界効果トランジスタの製造方法 を示す第 1工程断面図である。
図 3は、 実施の形態 1における横型接合型電界効果トランジスタの製造方法 を示す第 2工程断面図である。
図 4は、 実施の形態 1における横型接合型電界効果トランジスタの製造方法 を示す第 3工程断面図である。
図 5は、 実施の形態 1における横型接合型電界効果トランジスタの製造方法 を示す第 4工程断面図である。
図 6は、 実施の形態 1における横型接合型電界効果トランジスタの製造方法 を示す第 5工程断面図である。
図 7は、 実施の形態 1における横型接合型電界効果トランジスタの製造方法 を示す第 6工程断面図である。
図 8は、 実施の形態 2における横型接合型電界効果トランジスタの構造を示 す断面図である。
図 9は、 実施の形態 2における横型接合型電界効果トランジスタの製造方法 を示す第 1工程断面図である。
図 1 0は、 実施の形態 2における横型接合型電界効果トランジスタの製造方 法を示す第 2工程断面図である。
図 1 1は、 実施の形態 2における横型接合型電界効果トランジスタの製造方 法を示す第 3工程断面図である。
図 1 2は、 実施の形態 2における横型接合型電界効果トランジスタの製造方 法を示す第 4工程断面図である。
図 1 3は、 実施の形態 2における横型接合型電界効果トランジスタの製造方 法を示す第 5工程断面図である。
図 1 4は、 実施の形態 2における横型接合型電界効果トランジスタの製造方 法を示す第 6工程断面図である。
図 1 5は、 実施の形態 2における横型接合型電界効果トランジスタの製造方 法を示す第 7工程断面図である。
図 1 6は、 実施の形態 2における横型接合型電界効果トランジスタの製造方 法を示す第 8工程断面図である。
図 1 7は、 実施の形態 3における横型接合型電界効果トランジスタの構造を 示す断面図である。
図 1 8は、 実施の形態 3における横型接合型電界効果トランジスタの製造方 法を示す第 1工程断面図である。 図 1 9は、 実施の形態 3における横型接合型電界効果トランジスタの製造方 法を示す第 2工程断面図である。
図 2 0は、 実施の形態 3における横型接合型電界効果トランジスタの製造方 法を示す第 3工程断面図である。
図 2 1は、 実施の形態 3における横型接合型電界効果トランジスタの製造方 法を示す第 4工程断面図である。
図 2 2は、 実施の形態 3における横型接合型電界効果トランジスタの製造方 法を示す第 5工程断面図である。
図 2 3は、 実施の形態 3における横型接合型電界効果トランジスタの製造方 法を示す第 6工程断面図である。
図 2 4は、 実施の形態 3における横型接合型電界効果トランジスタの製造方 法を示す第 Ί工程断面図である。
図 2 5は、 実施の形態 3における横型接合型電界効果トランジスタの製造方 法を示す第 8工程断面図である。
図 2 6は、 実施の形態 4における横型接合型電界効果トランジスタの構造を 示す断面図である。
図 2 7は、 実施の形態 4における横型接合型電界効果トランジスタの製造方 法を示す第 1工程断面図である。
図 2 8は、 実施の形態 4における横型接合型電界効果トランジスタの製造方 法を示す第 2工程断面図である。
図 2 9は、 実施の形態 4における横型接合型電界効果トランジスタの製造方 法を示す第 3工程断面図である。
図 3 0は、 実施の形態 4における横型接合型電界効果トランジスタの製造方 法を示す第 4工程断面図である。
図 3 1は、 実施の形態 4における横型接合型電界効果トランジスタの製造方 法を示す第 5工程断面図である。
図 3 2は、 実施の形態 4における横型接合型電界効果トランジスタの製造方 法を示す第 6工程断面図である。
図 3 3は、 実施の形態 4における横型接合型電界効果トランジスタの製造方 法を示す第 7工程断面図である。
図 34は、 実施の形態 4における横型接合型電界効果トランジスタの製造方 法を示す第 8工程断面図である。
図 35は、 実施の形態 4における横型接合型電界効果トランジスタの製造方 法を示す第 9工程断面図である。
図 36は、 実施の形態 4における横型接合型電界効果トランジスタの製造方 法を示す第 10工程断面図である。
図 37は、 実施の形態 4における横型接合型電界効果トランジスタの製造方 法を示す第 1 1工程断面図である。
図 38は、 実施の形態 5における横型接合型電界効果トランジスタの構造を 示す断面図である。
図 39は、 図 38中 XXX I X— XXX I X線矢視断面図である。
図 40は、 図 38中 XXX I X-XXX I X線矢視断面図に対応する他の形 態の構造を示す断面図である。
図 41は、 実施の形態 5における横型接合型電界効果トランジスタの製造方 法を示す第 1工程断面図である。
図 42は、 実施の形態 5における横型接合型電界効果トランジスタの製造方 法を示す第 2工程断面図である。
図 43は、 実施の形態 5における横型接合型電界効果トランジスタの製造方 法を示す第 3工程断面図である。
図 44は、 実施の形態 6における横型接合型電界効果トランジスタの構造を 示す断面図である。
図 45は、 図 44中 XLV— XLV線矢視断面図である。
図 46は、 実施の形態 6における横型接合型電界効果トランジスタの製造方 法を示す第 1工程断面図である。
図 47は、 実施の形態 6における横型接合型電界効果トランジスタの製造方 法を示す第 2工程断面図である。
図 48は、 実施の形態 6における構型接合型電界効果トランジスタの製造方 法を示す第 3工程断面図である。 図 4 9は、 実施.の形態 6における横型接合型電界効果トランジスタの製造方 法を示す第 4工程断面図である。
図 5 0は、 実施の形態 6における横型接合型電界効果トランジスタの製造方 法を示す第 5工程断面図である。
図 5 1は、 実施の形態 7における横型接合型電界効果トランジスタの構造を 示す断面図である。
図 5 2は、 図 5 1中 L I I一 L I I線矢視断面図である。
図 5 3は、 実施の形態 7における横型接合型電界効果トランジスタの製造方 法を示す第 1工程断面図である。
図 5 4は、 実施の形態 7における横型接合型電界効果トランジスタの製造方 法を示す第 2工程断面図である。
図 5 5は、 実施の形態 7における横型接合型電界効果トランジスタの製造方 法を示す第 3工程断面図である。
図 5 6は、 実施の形態 7における横型接合型電界効果トランジスタの製造方 法を示す第 4工程断面図である。
図 5 7は、 実施の形態 7における横型接合型電界効果トランジスタの製造方 法を示す第 5工程断面図である。
図 5 8は、 実施の形態 8における横型接合型電界効果トランジスタの構造を 示す断面図である。
図 5 9は、 図 5 8中 L I X— L I X線矢視断面図である。
図 6 0は、 実施の形態 8における横型接合型電界効果トランジスタの製造方 法を示す第 1工程断面図である。
図 6 1は、 実施の形態 8における横型接合型電界効果トランジスタの製造方 法を示す第 2工程断面図である。
図 6 2は、 実施の形態 8における横型接合型電界効果トランジスタの製造方 法を示す第 3工程断面図である。
図 6 3は、 実施の形態 8における横型接合型電界効果トランジスタの製造方 法を示す第 4工程断面図である。
図 6 4は、 実施の形態 8における横型接合型電界効果トランジスタの製造方 法を示す第 5工程断面図である。
図 6 5は、 実施の形態 9における横型接合型電界効果トランジスタの構造を 示す断面図である。
図 6 6は、 図 6 5中 L X V I — L X V I線矢視断面図である。
図 6 7は、 実施の形態 9における横型接合型電界効果トランジスタの製造方 法を示す第 1工程断面図である。
図 6 8は、 実施の形態 9における横型接合型電界効果トランジスタの製造方 法を示す第 2工程断面図である。
図 6 9は、 実施の形態 9における横型接合型電界効果トランジスタの製造方 法を示す第 3工程断面図である。
図 7 0は、 実施の形態 9における横型接合型電界効果トランジスタの製造方 法を示す第 4工程断面図である。
図 7 1は、 実施の形態 9における横型接合型電界効果トランジスタの製造方 法を示す第 5工程断面図である。
図 7 2は、 背景の技術における横型接合型電界効果トランジスタの構造を示 す断面図である。 発明を実施するための最良の形態
以下、 本発明に基づいた各実施の形態における横型接合型電界効果トランジ スタの構造およびその製造方法について、 図を参照しながら説明する。
(実施の形態 1 )
(横型接合型電界効果トランジスタ 1 0 0の構造)
以下、 実施の形態 1における横型接合型電界効果トランジスタ 1 0 0の構造 について、 図 1を参照して説明する。
本実施の形態における横型接合型電界効果トランジスタ 1 0 0の構造的特徴 は、 P n接合およぴゲート電極層を縦方向に配置するようにしたものである。 ここで、 本明細書中において、 縦方向とは基板の深さ方向に沿った方向を意味 し、 横方向とは基板の主面に並行な方向を意味する。
この横型接合型電界効果トランジスタ 1 0 0は、 S i等からなる半導体基板 2の上に位置する p型不純物を含む第 1半導体層 1 1と、 この第 1半導体層 1 1の上に、 第 1半導体層 1 1の不純物濃度よりも高い濃度の n型不純物を含む 第 2半導体層 1 2と、 この第 2半導体層 1 2の上に位置し、 p型不純物を含む 第 3半導体層と 1 3、 この第 3半導体層 1 3の上に位置し、 n型不純物を含む 第 4半導体層 14と、 この第 4半導体層 14の上に位置し、 p型不純物を含む 第 5半導体層 1 5とが設けられている。
ここで、 第 1半導体層 1 1の材質は S i C、 膜厚は 3 μπα〜4 程度、 不 純物濃度は 1 X 1016 cm— 3程度に設けられ、 第 2半導体層 12、 第 3半導体 層 1 3、 第 4半導体層 14、 および、 第 5半導体層 1 5の材質は S i C、 膜厚 は 0. 5 μπι〜1. 0 μιη程度、 不純物濃度は 1 X 1017 cm一3〜 3 X 1017 cm一3程度に設けられる。
第 5半導体層 1 5の中において所定の間隔を隔てて、 下面が第 2半導体層 1 2にまで延在するように設けられ、 第 2半導体層 1 2および第 4半導体層 14 の不純物濃度よりも高い濃度の n型の不純物を含むソース Zドレイン領域層 6, 8が設けられる。 ソース/ドレイン領域層 6, 8の不純物濃度は 1 X 1 019 c m一3〜 1 X 102° cm— 3程度に設けられる。
第 3半導体層 1 3中のソース/ドレイン領域層 6, 8の間には、 第 2半導体 層 1 2および第 3半導体層 1 3にまたがるように、 下面が第 2半導体層 1 2に まで延在するように設けられ、 第 2半導体層 1 2の不純物濃度よりも高い p型 の不純物濃度を含む第 1ゲート電極層 18 Aが設けられている。
第 5半導体層 1 5中のソース/ドレイン領域層 6, 8の間には、 下面が第 4 半導体層 14にまで延在するように設けられ、 第 1ゲート電極層 1 8 Aとほぼ 同じ不純物濃度を有し、 かつ、 同電位を有する p型の不純物を含む第 2ゲート 電極層 1 8 Bが設けられている。 第 1ゲート電極層 1 8 Aおよび第 2ゲート電 極層 1 8 Bの不純物濃度は 3 X I 018 cm— 3〜: L X 102 ° c m— 3程度に設けら れる。
なお、 ソース領域層 6の外側には、 第 1半導体層 1 1にまで延在する P型の 不純物濃度を含む不純物領域層 4が設けられている。 この不純物領域層 4の不 純物濃度は 3 X 1018 cm一3〜 I X 102 ° c m一3程度に設けられる。 なお、 ノーマリオフ型の横型接合型電界効果トランジスタを実現させるため には、 第 1半導体層 1 1の最上部と第 1ゲート電極 1 8 Aの最下部との間の間 隔 (w l 1) 力 第 2半導体層 1 2と 1ゲート電極層 1 8Aとの接合における 拡散電位で広がる空乏層の間隔よりも小さくなるように設け、 第 3半導体層 1 3の最上部と上記第 2ゲート電極層 1 8 Bの最下部との間の間隔 w 1 2が、 第 4半導体層 14と第 2グート電極層 1 8 Bとの接合における拡散電位で広がる 空乏層の間隔よりも小さくなるように設ければ良い。
(横型接合型電界効果トランジスタ 100の製造方法)
次に、 上記構成からなる横型接合型電界効果トランジスタ 1 00の製造方法 について、 図 2〜図 7を参照して説明する。
図 2を参照して、 S i等からなる半導体基板 2上に、 p型不純物を含む厚さ 3 μπι〜4 m程度、 不純物濃度が 1 X 1016 cm_3程度の S i C力 らなる第 1半導体層 1 1をェピタキシャル成長により形成する。 その後、 この第 1半導 体層 1 1の上に、 n型不純物を含む厚さ約 0. 5 μ m程度、 不純物濃度が第 1 半導体層 1 1よりも高い約 3 X 1017 cm_3程度の S i Cからなる第 2半導体 層 1 2をェピタキシャル成長により形成する。 その後、 第 2半導体層 1 2の上 に、 P型不純物を含む厚さ約 0. 5 m程度、 不純物濃度が約 3 X 1017 c m一 3程度の S i Cからなる第 3半導体層 13をェピタキシャノレ成長により形成する。 次に、 図 3を参照して、 第 3半導体層 13の上に、 所定の開口パターンを有 する酸化膜 200を形成し、 この酸化膜 200をマスクにして、 p型の不純物 を第 3半導体層 1 3に導入して、 第 2半導体層 1 2と第 3半導体層 1 3とにま たがる領域に、 第 2半導体層 1 2の不純物濃度よりも高い 3 X 1018 cm— 3〜 1 X 102°cm— 3程度の p型不純物を含む第 1ゲート電極層 18Aを形成する。 なお、 この時の、 p型の不純物の注入は、 注入エネルギ約 700 k e v、 注入 量約 3 X 1014 c m— 2、 および、 注入エネルギ約 500 k e v、 注入量約 3 X 1014 cm— 2の 2段階に分けて行なう。
次に、 図 4を参照して、 酸化膜 200を除去した後、 第 3半導体層 1 3の上 に、 n型不純物を含む厚さ 0. 5 μπι程度、 不純物濃度が約 3 X 1017 cm— 3 程度の. S i Cからなる第 4半導体層 14をェピタキシャル成長により形成する。 その後、 この第 4半導体層 14の上に、 p型不純物を含む厚さ約 0. 5 /i m程 度、 不純物濃度が約 3 X 1017 cm一3程度の S i Cからなる第 5半導体層 1 5 を形成する。
次に、 図 5を参照して、 第 5半導体層 1 5の上に、 所定の開口パターンを有 する酸化膜 20 1を形成し、 この酸化膜 201をマスクにして、 p型の不純物 を第 5半導体層 1 5に導入して、 下面が第 4半導体層 14にまで延在し、 第 1 ゲート電極層 18 Aとほぼ同じ 3 X 1018 cm_3〜l X 1020 cm一3程度の p 型不純物を含み、 かつ、 同電位を有する第 2ゲート電極層 1 8 Bを形成する。 なお、 この時の、 p型の不純物の注入は、 第 1段階が注入エネルギ約 700 k e V、 注入量約 3 X 101 4 c m— 2、 第 2段階が注入エネルギ約 500 k e v、 注入量約 3xl 01 4 c m— 2、 第 3段階が注入エネルギ約 280 k e V、 注入量約 5 X 1014 c m— 2、 第 4段階が注入エネルギ約 140 k e V、 注入量約 5 X 1 014 c m-2, 第 5段階が注入エネルギ約 70 k e V、 注入量約 4 X 1 014 c m 一2、 第 6段階が注入エネルギ約 30 k e v、 注入量約 3 X 1014 cm— 2の第 6 段階に分けて行なう。
次に、 図 6を参照して、 酸化膜 201を除去した後、 再び、 第 5半導体層 1 5の上に、 所定の開口パターンを有する酸化膜 202を形成し、 この酸化膜 2 02をマスクにして、 第 1ゲート電極層 1 8 Aおよび第 2ゲート電極層 1 8 B の両側において、 第 5半導体層 1 5に不純物を導入して、 下面が第 2半導体層 1 2にまで延在し、 第 2半導体層 1 2および前記第 4半導体層 14の不純物濃 度よりも高い 1 X 1019cm— 3〜1 X 102。 cm— 3程度の n型の不純物を含む ソース Zドレイン領域層 6, 8を形成する。
次に、 図 7を参照して、 酸化膜 202を除去した後、 再び、 第 5半導体層 1 5の上に、 所定の開口パターンを有する酸化膜 203を形成し、 この酸化膜 2 02をマスクにして、 ソースノドレイン領域層 6の外側の領域において、 第 5 半導体層 1 5に不純物を導入して、 下面が第 1半導体層 1 1にまで延在し、 3 X 1018 cm— 3〜1 X 102° cm— 3程度の p型の不純物を含む不純物領域層 4 を形成する。 その後、 図示していないが、 表面熱酸化 '開口 · N i電極形成、 絶縁層形成 (OC.D等) 、 コンタク トホール開口 · A 1配線■パッド形成、 熱 処理、 ォーミックコンタク ト形成等の工程を経ることにより、 図 1に示す本実 施の形態における横型接合型電界効果トランジスタ 1 0 0'が完成する。
(作用効果)
以上、 上記構成からなる横型 J F E Tおよびその製造方法によれば、 複数の 横型 J F E Tが、 縦方向に積層された構成が採用されているため、 従来の構造 に対して、 さらに素子のオン抵抗を下げることが可能になる。 また、 第 2半導 体層 1 2と、 第 3半導体層 1 3と、 第 4半導体層 1 4と、 第 5半導体層 1 5と の不純物濃度および膜厚さを略同じ値にすることにより、 横型 J F E Tのオン 抵抗を最小にし、 耐圧値を最大に設定することを可能としている。
なお、 第 3半導体層 1 3と第 4半導体層 1 4との間に、 第 2半導体層 1 2と 第 3半導体層 1 3と第 1ゲート電極層 1 8 Aとほぼ同じ構造である単位トラン ジスタ構造を 1つまたは 2以上さらに設ける構造を採用することにより、 横型 J F E Tの特性をより向上させることが可能になる。
(実施の形態 2 )
(横型接合型電界効果トランジスタ 2 0 0の構造)
以下、 実施の形態 2における横型接合型電界効果トランジスタ 2 0 0の構造 について、 図 8を参照して説明する。
本実施の形態における横型接合型電界効果トランジスタ 2 0 0の構造的特徴 は、 上記横型接合型電界効果トランジスタ 1 0 0と同様に、 ρ η接合およびゲ 一ト電極層を縦方向に配置するようにしたものである。
この横型接合型電界効果トランジスタ 2 0 0は、 S i等からなる半導体基板 2の上に位置する p型不純物を含む第 1半導体層 2 1と、 この第 1半導体層 2 1の上に、 第 1半導体層 2 1の不純物濃度よりも高い濃度の n型不純物を含む 第 2半導体層 2 2と、 この第 2半導体層 2 2の上に位置し、 p型不純物を含む 第 3半導体層 2 3と、 この第 3半導体層 2 3の上に位置し、 n型不純物を含む 第 4半導体層 2 4と、 この第 4半導体層 2 4の上に位置し、 p型不純物を含む 第 5半導体層 2 5とが設けられている。
ここで、 第 1半導体層 2 1の材質は S i C、 膜厚は 3 i mから 4 μ πι程度、 不純物濃度は 1 X 1 0 1 6 c m— 3程度に設けられ、 第 2半導体層 2 2、 第 3半導 体層 2 3、 第 4半導体層 2 4、 および、 第 5半導体層 2 5の材質は S i C、 膜 厚は 0 . 5 ^ m〜l . 0 μ ιη程度、 不純物濃度は 1 X 1 0 1 7 c m_ 3〜3 X 1 0 1 7 c m一 3程度に設けられる。
第 5半導体層 2 5中において所定の間隔を隔てて、 下面が上記第 2半導体層. 2 2にまで延在するように設けられ、 第 2半導体層 2 2および第 4半導体層 2 4の不純物濃度よりも高い濃度の n型の不純物を含むソース/ドレイン領域層 6, 8が設けられる。 ソース Zドレイン領域層 6, 8の不純物濃度は 1 X 1 0 1 9 c m— 3〜1 X 1 0 2 ° c m一 3程度に設けられる。
第 3半導体層 2 3中のソース/ドレイン領域層 6, 8の間には、 下面が第 2 半導体層 2 2にまで延在するように設けられ、 第 2半導体層 2 2の不純物濃度 よりも高い p型の不純物濃度を含む第 1ゲート電極層 2 8 Aが設けられている。 第 5半導体層 2 5中のソース Zドレイン領域層 6 , 8の間には、 下面が第 4 半導体層 2 4にまで延在するように設けられ、 第 1ゲート電極層 2 8 Aとほぼ 同じ不純物濃度を有し、 かつ、 同電位を有する p型の不純物を含む第 2ゲート 電極層 2 8 Bが設けられている。 第 1ゲート電極層 2 8 Aおよび第 2ゲート電 極層 2 8 Bの不純物濃度は 3 X 1 0 1 8 c m— 3〜1 X 1 0 2 α c m_ 3程度に設けら れる。
また、 第 1半導体層 2 1と第 1ゲート電極層 2 8 Aとに挾まれた第 2半導体 層 2 2には、 第 1ゲート電極層 2 8 Aとほぼ同じ不純物濃度を有し、 かつ、 同 電位を有する p型の第 1不純物注入領域 2 9 Aが設けられている。 さらに、 第 3半導体層 2 3と第 2グート電極層 2 8 Bとに挟まれた第 4半導体層 2 4に、 第 1ゲート電極 2 8 Aとほぼ同じ不純物濃度を有し、 かつ、 同電位を有する p 型の第 2不純物注入領域 2 9 Bが設けられている。 なお、 図 8においては、 第 1不純物注入領域 2 9 Aおよび第 2不純物注入領域 2 9 Bを一層設ける場合を 図示しているが、 総チャネル幅を広く しオン抵抗を下げつつ、 かつ、 ノーマリ オフ型の横型接合型トランジスタを実現させる観点から、 半導体層内に第 1不 純物注入領域 2 9 Aおよび第 2不純物注入領域 2 9 Bをそれぞれ複数層設ける ことも可能である。
なお、 ソース領域層 6の外側には、 第 1半導体層 2 1にまで延在する!)型の 不純物濃度を含む不純物領域層 4が設けられている。 この不純物領域層 4の不 純物濃度は 3 X 1018cm—3〜l X 1020 c m一3程度に設けられる。
なお、 ノーマリオフ型の横型接合型電界効果トランジスタを実現させるため には、 第 1半導体層 2 1の最上部と第 1不純物注入領域 29 Aの最下部との間 の間隔 w 2 1が、 第 2半導体層 22と第 1不純物注入領域 29 Aとの接合にお ける拡散電位で広がる空乏層の間隔よりも小さくなるように設け、 第 1不純物 注入領域 29 Aの最上部と上記第 1ゲート電極層 28 Aの最下部との間の間隔 (w 22) 1S 第 2半導体層 22と第 1ゲート電極層 28 Aとの接合における 拡散電位で広がる空乏層の間隔の 2倍よりも小さくなるように設け、 第 3半導 体層 2 3の最上部と第 2不純物注入領域 29 Bの最下部との間の間隔 (w 2 3) ί 第 4半導体層 24と第 2不純物注入領域 29 Βとの接合における拡散 電位で広がる空乏層の間隔よりも小さくなるように設け、 第 2不純物注入領域 29 Βの最上部と第 2ゲート電極層 28 Βの最下部との間の間隔 (w24) 力 第 4半導体層 24と第 2ゲート電極層 28 Bとの接合における拡散電位で広が る空乏層の間隔の 2倍よりも小さくなるように設ければ良い。
(横型接合型電界効果トランジスタ 200の製造方法)
次に、 上記構成からなる横型接合型電界効果トランジスタ 200の製造方法 について、 図 9〜図 16を参照して説明する。
図 9を参照して、 S i等からなる半導体基板 2上に、 p型不純物を含む厚さ 3 μπα〜4 μπι程度、 不純物濃度が 1 X 1016 cm一3程度の S i Cからなる第 1半導体層 21をェピタキシャル成長により形成する。 その後、 この第 1半導 体層 2 1の上に、 n型不純物を含む厚さ約 0. 5 μ m程度、 不純物濃度が第 1 半導体層 1 1よりも高い約 3 X 1017 cm一3程度の S i Cからなる第 2半導体 層 22をェピタキシャル成長により形成する。
次に、 図 1 0を参照して、 第 2半導体層 22の上に、 所定の開口パターンを 有する酸化膜 204 aを形成し、 この酸化膜 204 aをマスクにして、 p型の 不純物を第 2半導体層 22に導入して、 第 2半導体層 22内に、 3 X 1018 c m一3〜 1 X 102Q cm— 3程度の p型不純物を含む第 1不純物注入領域 29 Aを 形成する。 なお、 この時の、 p型の不純物の注入条件は、 注入エネルギ約 27 0 k e v、 注入量約 7 X 1013 cm— 2程度である。
その後、 図 1 1を参照して、 酸化膜 204 aを除去した後、 第 2半導体層 2 2の上に、 p型不純物を含む厚さ約 0. 5 μ m程度、 不純物濃度が約 3 X 1 01 7 cm一3程度の S i Cからなる第 3半導体層 23をェピタキシャル成長により形 成する。
次に、 第 3半導体層 23の上に、 所定の開口パターンを有する酸化膜 204 bを形成し、 この酸化膜 204 bをマスクにして、 p型の不純物を第 3半導体 層 23に導入して、 第 2半導体層 22と第 3半導体層 23とにまたがる領域に、 第 2半導体層 22の不純物濃度よりも高い 3 X 1018 cm— 3〜1 X 102° c m 一3程度の p型不純物を含む第 1ゲート電極層 28 Aを形成する。 なお、 この時 の、 ρ型の不純物の注入条件は、 注入エネルギ約 3 50 k e V , 注入量約 1 X 1014 cm— 2程度である。
次に、 図 1 2を参照して、 酸化膜 204 bを除去した後、 第 3半導体層 23 の上に、 n型不純物を含む厚さ約 0. 5 πι程度、 不純物濃度が第 1半導体層 1 1よりも高い 3 X 1017cm一3程度の S i Cからなる第 4半導体層 24を形 成する。
その後、 第 4半導体層 24の上に、 所定の開口パターンを有する酸化膜 20 5 aを形成し、 この酸化膜 205 aをマスクにして、 p型の不純物を第 4半導 体層 24に導入して、 第 4半導体層 24内に、 3 X 1018 cm一3〜 1 X 1020 cm— 3程度の p型不純物を含む第 2不純物注入領域 29 Bを形成する。 なお、 - この時の、 p型の不純物の注入条件は、 注入エネルギ 270 k e v、 注入量 7 X 1013 cm— 2程度である。
次に、 図 1 3を参照して、 第 4半導体層 24の上に、 p型不純物を含む厚さ 約 0. 5 μπι程度、 不純物濃度が約 3 X 1017 cm一3程度の S i Cからなる第 5半導体層 25をェピタキシャル成長により形成する。
次に、 図 14を参照して、 第 5半導体層 25の上に、 所定の開口パターンを 有する酸化膜 205 bを形成し、 この酸化膜 205 bをマスクにして、 p型の 不純物を第 5半導体層 25に導入して、 第 4半導体層 24と第 5半導体層 25 とにまたがる領域に、 第 2半導体層 22の不純物濃度よりも高い 3 X 1018 c m一3〜 1 X 102° c m— 3程度の p型不純物を含む第 2ゲート電極層 28 Bを形 成する。 なお、 この時の、 p型の不純物の注入は、 第 1段階が注入エネルギ約
350 k e V、 注入量約 l X 1014 cm— 2、 第 2段階が注入エネルギ約 250 k e V、 注入量約 2 X 1014 cm— 2、 第 3段階が注入エネルギ約 140 k e v、 注入量約 5 X 1014 Cm_2、 第 4段階が注入エネルギ約 70 k e v、 注入量約 4 X 1014 cm— 2、 第 5段階が注入エネルギ約 30 k e V、 注入量約 3 X 101
4 cm_2の第 5段階に分けて行なう。
次に、 図 1 5を参照して、 酸化膜 205を除去した後、 再び、 第 5半導体層 1 5の上に、 所定の開口パターンを有する酸化膜 206を形成し、 この酸化膜 206をマスクにして、 第 1不純物注入領域 29 A、 第 2不純物注入領域 29 B、 第 1ゲート電極層 28 A、 および、 第 2ゲート電極層 28 Bの両側におい て、 第 5半導体層 1 5に不純物を導入して、 下面が第 2半導体層 22にまで延 在し、 第 2半導体層 22および前記第 4半導体層 24の不純物濃度よりも高い 1 X 1019 cm一3〜 1 X 1020 cm一3程度の n型の不純物を含むソース/ドレ イン領域層 6, 8を形成する。
次に、 図 1 6を参照して、 酸化膜 206を除去した後、 再び、 第 5半導体層 1 5の上に、 所定の開口パターンを有する酸化膜 207を形成し、 この酸化膜 207をマスクにして、 ソース/ドレイン領域層 6の外側の領域において、 第 5半導体層 1 5に不純物を導入して、 下面が第 1半導体層 21にまで延在し、 3 X 1018cm— 3〜1 X 102° c m— 3程度の p型の不純物を含む不純物領域層 4を形成する。 その後、 図示していないが、 表面熱酸化 '開口 ■ N i電極形成、 絶縁層形成 (OCD等) 、 コンタク トホール開口 ■ A 1配線 ·パッド形成、 熱 処理、 ォーミツタコンタク ト形成等の工程を経ることにより、 図 8に示す本実 施の形態における横型接合型電界効果トランジスタ 200が完成する。
(作用効果)
以上、 上記構成からなる横型 J FETおよびその製造方法によれば、 複数の 横型 J FETが、 縦方向に積層された構成が採用されているため、 従来の構造 に対して、 さらに素子のオン抵抗を下げることが可能になる。 また、 第 2半導 体層 22と、 第 3半導体層 23と、 第 4半導体層 24と、 第 5半導体層 25と の不純物濃度および膜厚さを略同じ値にすることにより、 横型 J F E Tのオン 抵抗を最小にし、 耐圧値を最大に設定することを可能としている。
なお、 第 3半導体層 2 3と第 4半導体層 2 4との間に、 第 2半導体層 2 2と 第 3半導体層 2 3と第 1ゲート電極層 2 8 Aと第 1不純物注入領城 2 9 Aとほ ぼ同じ構造である単位トランジスタ構造を 1つまたは 2以上さらに設ける構造 を採用することにより、 横型 J F E Tの特性をより向上させることが可能にな る。
(実施の形態 3 )
(横型接合型電界効果トランジスタ 3 0 0の構造)
以下、 実施の形態 3における横型接合型電界効果トランジスタ 3 0 0の構造 について、 図 1 7を参照して説明する。
本実施の形態における横型接合型電界効果トランジスタ 3 0 0の構造的特徴 は、 上記横型接合型電界効果トランジスタ 1 0 0と同様に、 p n接合およびゲ 一ト電極層を縦方向に配置するようにしたものである。
この横型接合型電界効果トランジスタ 3 0 0は、 S i等からなる半導体基板 2上に位置する p型不純物を含む第 1半導体層 3 1 と、 この第 1半導体層 3 1 の上に、 第 1半導体層 3 1の不純物濃度よりも高い濃度の n型不純物を含む第 2半導体層 3 2と、 この第 2半導体層 3 2の上に位置し、 p型不純物を含む第 3半導体層 3 3と、 この第 3半導体層 3 3の上に位置し、 n型不純物を含む第 4半導体層 3 4と、 この第 4半導体層 3 4の上に位置し、 p型不純物を含む第 5半導体層 3 5と、 この第 5半導体層 3 5の上に位置し、 n型不純物を含む第 6半導体層 3 6と、 この第 6半導体層 3 6の上に位置し、 p型不純物を含む第 7半導体層 3 7とが設けられている。
ここで、 第 1半導体層 3 1の材質は S i C、 膜厚は 3 !〜 4 μ πι程度、 不 純物濃度は 1 X 1 0 1 6 c m— 3程度に設けられ、 第 2半導体層 3 2、 第 3半導体 層 3 3、 第 4半導体層 3 4、 第 5半導体層 3 5、 第 6半導体層 3 6、 および、 第 7半導体層 3 7の材質は S i C、 膜厚は 0 . 5 μ m〜 1 . 0 μ m程度、 不純 物濃度は 1 X 1 0 1 7 c m - 3〜 3 X 1 0 1 7 c m_ 3程度に設けられる。
第 7半導体層 3 7中において所定の間隔を隔てて、 下面が上記第 2半導体層 3 2にまで延在するように設けられ、 上記第 2半導体層 3 2、 第 4半導体層 3 4、 および第 6半導体層 3 6の不純物濃度よりも高い濃度の n型の不純物を含 むソース/ドレイン領域層 6 , 8が設けられる。 ソース/ドレイン領域層 6 , 8の不純物濃度は 1 X 1 0 1 9 c m一3〜 1 X 1 0 2 ° c m一3程度に設けられる。 第 3半導体層 3 3中のソース/ドレイン領域層 6 , 8の間には、 下面が第 2 半導体層 3 2にまで延在し、 上面が第 4半導体層 3 4にまで延在するように設 けられ、 第 2半導体層 3 2および第 4半導体層 3 4の不純物濃度よりも高い!) 型の不純物濃度を含む第 1ゲート電極層 3 8 Aが設けられている。
第 5半導体層 3 5中のソース/ドレイン領域層 6 , 8の間には、 下面が第 4 半導体層 3 4にまで延在し、 上面が第 6半導体層 3 6にまで延在するように設 けられ、 第 4半導体層 3 4および第 6半導体層 3 6の不純物濃度よりも高い p 型の不純物濃度を含む第 2ゲート電極層 3 8 Bが設けられている。
第 7半導体層 3 7中のソース/ドレイン領域層 6, 8の間には、 下面が第 6 半導体層にまで延在するように設けられ、 第 1ゲート電極層 3 8 Aおよび第 2 ゲート電極層 3 8 Bとほぼ同じ不純物濃度を有し、 かつ、 同電位を有する p型 の不純物を含む第 3グート電極層と 3 8 Cが設けられている。
第 1ゲート電極層 3 8 A、 第 2ゲート電極層 3 8 B、 および、 第 3ゲート電 極層 3 8 Cの不純物濃度は 3 X 1 0 1 8 c m— 3〜1 X 1 0 2 ° c m— 3程度に設けら れる。
なお、 ソース領域層 6の外側には、 第 1半導体層 3 1にまで延在する p型の 不純物濃度を含む不純物領域層 4が設けられている。 この不純物領域層 4の不 純物濃度は 3 X 1 0 1 8 C m_ 3〜l X 1 0 2 ° c m— 3程度に設けられる。
なお、 ノーマリオフ型の横型接合型電界効果トランジスタを実現させるため には、 第 1半導体層 3 1の最上部と第 1ゲート電極層 3 8 Aの最下部との間の 間隔 (w 3 1 ) 力 第 2半導体層 3 2と第 1ゲート電極層 3 8 Aとの接合にお ける拡散電位で広がる空乏層の間隔よりも小さくなるように設け、 第 1ゲート 電極層 3 8 Aの最上部と第 2ゲート電極層 3 8 Bの最下部との間の間隔 (w 3 2 ) 第 4半導体層 3 4と第 1ゲート電極層 3 8 Aとの接合における拡散電 位で広がる空乏層の間隔の 2倍よりも小さくなるように設ければ良い。 (横型接合型電界効果トランジスタ 300の製造方法)
次に、 上記構成からなる横型接合型電界効果トランジスタ 300の製造方法 について、 図 18〜図 25を参照して説明する。
図 1 8を参照して、 S i等からなる半導体基板 2上に、 p型不純物を含む厚 さ 3 μπι〜4 ιη程度、 不純物濃度が 1 X 1016 cm一3程度の S i Cからなる 第 1半導体層 3 1をェピタキシャル成長により形成する。 その後、 この第 1半 導体層 3 1の上に、 n型不純物を含む厚さ 0, 5 μιη〜1. 0 μ m程度、 不純 物濃度が第 1半導体層 31よりも高い 1 X 1017 cm -3〜 3 X 1017 c m— 3程 度の S i Cからなる第 2半導体層 32をェピタキシャル成長により形成する。 その後、 第 2半導体層 32の上に、 p型不純物を含む厚さ 0. 5 μπι〜1. 0 m程度、 不純物濃度が 1 X 1017 cm— 3〜 3 X 1017 cm— 3程度の S i Cか らなる第 3半導体層 33をェピタキシャル成長により形成する。 その後、 第 3 半導体層 33の上に、 n型不純物を含む厚さ 0. 5 μιη〜1. 0 μ m程度、 不 純物濃度が 1 X 1017 c m一3〜 3 X 1017 cm一3程度の S i Cからなる第 4半 導体層 34をェピタキシャル成長により形成する。
次に、 図 1 9を参照して、 第 4半導体層 34の上に、 所定の開口パターンを 有する酸化膜 208を形成し、 この酸化膜 208をマスクにして、 p型の不純 物を第 4半導体層 34の所定領域に不純物を導入し、 下面が第 2半導体層 3 2 にまで延在し、 上面が第 4半導体層 34にまで延在し、 第 2半導体層 3 2およ び第 4半導体層 34の不純物濃度よりも高い 3 X 1018 cm— 3〜1 X 1 020 c m一3程度の p型不純物を含む第 1ゲート電極層 38 Aを形成する。
次に、 図 20を参照して、 第 4半導体層 34の上に、 p型不純物を含む厚さ 0. 5 μπι〜1. 0 μπι程度、 不純物濃度が 1 X 1017cm一3〜 3 X 1017 c m一3程度の S i Cからなる第 5半導体層 35を形成する。 その後、 第 5半導体 層 35の上に、 n型不純物を含む厚さ 0. 5 μ m〜 1. 0 μ m程度、 不純物濃 度が 1 X 1017 cm一3〜 3 X 1017 cm一3程度の S i Cからなる第 6半導体層 36をェピタキシャル成長により形成する。
次に、 図 21を参照して、 第 6半導体層 36の上に、 所定の開口パターンを 有する酸化膜 209を形成し、 この酸化膜 209をマスクにして、 p型の不純 物を第 6半導体層 36の所定領域に不純物を導入し、 下面が第 4半導体層 34 にまで延在し、 上面が第 6半導体層 36にまで延在し、 第 4半導体層 34およ び第 6半導体層 36の不純物濃度よりも高い 3 X 1018 cm-3〜l X 1020 c m一3程度の p型不純物を含む第 2ゲート電極層 38 Bを形成する。
次に、 図 22を参照して、 酸化膜 209を除去した後、 第 6半導体層 36の 上に、 p型不純物を含む厚さ 0. 5 μπι〜1. 0 /i m程度、 不純物濃度が 1 X 1017 c m一3〜 3 X 1017 cm— 3程度の S i Cからなる第 7半導体層 37をェ ピタキシャノレ成長により形成する。
次に、 図 23を参照して、 第 7半導体層 3 7の上に、 所定の開口パターンを 有する酸化膜 2 10を形成し、 この酸化膜 2 1 0をマスクにして、 p型の不純 物を第 7半導体層 37の所定領域に不純物を導入し、 下面が第 6半導体層 36 にまで延在し、 第 6半導体層 36の不純物濃度よりも高い 3 X 1018 cm— 3〜 1 X 102Q cm— 3程度の p型不純物を含む第 3ゲート電極層 38Cを形成する。 次に、 図 24を参照して、 酸化膜 21 0を除去した後、 再び、 第 7半導体層 37の上に、 所定の開口パターンを有する酸化膜 2 1 1を形成し、 この酸化膜 21 1をマスクにして、 第 1ゲート電極層 38A、 第 2ゲート電極層 38 B、 および、 第 3ゲート電極層 38 Cの両側において、 第 7半導体層 3 7に不純物 を導入して、 下面が第 2半導体層 3 2にまで延在し、 第 2半導体層 32および 前記第 4半導体層 34の不純物濃度よりも高い 1 X 1 019 cm— 3〜1 X 1020 cm一3程度の n型の不純物を含むソース/ドレイン領域層 6, 8を形成する。 次に、 図 25を参照して、 酸化膜 21 1を除去した後、 再び、 第 7半導体層 37の上に、 所定の開口パターンを有する酸化膜 2 1 2を形成し、 この酸化膜 2 1 2をマスクにして、 ソース/ドレイン領域層 6の外側の領域において、 第 7半導体層 37に不純物を導入して、 下面が第 1半導体層 31にまで延在し、 3 X 1018cm— 3〜1 X 102 ° c m— 3程度の p型の不純物を含む不純物領域層 4を形成する。 その後、 図示していないが、 表面熱酸化 '開口 · N i電極形成、 絶縁層形成 (OCD等) 、 コンタク トホール開口 ■ A 1配線■パッド形成、 熱 処理、 ォーミックコンタク ト形成等の工程を経ることにより、 図 1 7に示す本 実施の形態における横型接合型電界効果トランジスタ 300が完成する。 (作用効果)
以上、 上記構成からなる横型 J F E Tおよびその製造方法によれば、 複数の 横型 J F E Tが、 縦方向に積層された構成が採用されているため、 従来の構造 に対して、 さらに素子のオン抵抗を下げることが可能になる。 また、 第 2半導 体層' 3 2と、 第 3半導体層 3 3と、 第 4半導体層 3 4と、 第 5半導体層 3 5と、 第 6半導体層 3 6と、 第 7半導体層 3 7との不純物濃度および膜厚さを略同じ 値にすることにより、 横型 J F E Tのオン抵抗を最小にし、 耐圧値を最大に設 定することを可能としている。
なお、 第 4半導体層 3 4と第 5半導体層 3 5との間に、 第 3半導体層 3 3と 第 4半導体層 3 4と第 1ゲート電極層 3 8 Aとほぼ同じ構造である単位トラン ジスタ構造を 1つまたは 2以上さらに設ける構造を採用することにより、 横型 J F E Tの特性をより向上させることが可能になる。
(実施の形態 4 )
(横型接合型電界効果トランジスタ 4 0 0の構造)
以下、 実施の形態 4における横型接合型電界効果トランジスタ 4 0 0の構造 について、 図 2 6を参照して説明する。
本実施の形態における横型接合型電界効果トランジスタ 4 0◦の構造的特徴 は、 上記横型接合型電界効果トランジスタ 1 0 0と同様に、 p n接合およびゲ 一ト電極層を縦方向に配置するようにしたものである。
この横型接合型電界効果トランジスタ 4 0 0は、 S i等からなる半導体基板 2の上に位置する p型不純物を含む第 1半導体層 4 1と、 この第 1半導体層 4 1の上に位置し、 第 1半導体層 4 1の不純物濃度よりも高い濃度の n型不純物 を含む第 2半導体層 4 2と、 この第 2半導体層 4 2の上に位置し、 p型不純物 を含む第 3半導体層 4 3と、 この第 3半導体層 4 3の上に位置し、 n型不純物 を含む第 4半導体層 4 4と、 この第 4半導体層 4 4の上に位置し、 p型不純物 を含む第 5半導体層 4 5と、 この第 5半導体層 4 5の上に位置し、 n型不純物 を含む第 6半導体層 4 6と、 この第 6半導体層 4 6の上に位置し、 p型不純物 を含む第 7半導体層 4 7とが設けられている。
ここで、 第 1半導体層 4 1の材質は S i C、 膜厚は 3 m〜4 / m程度、 不 純物濃度は 1 X 1016 cm— 3程度に設けられ、 第 2半導体層 42、 第 3半導体 層 43、 第 4半導体層 44、 第 5半導体層 45、 第 6半導体層 46、 および、 第 7半導体層 47の材質は S i C、 膜厚は 0. 5 μιη〜1. 0 μ m程度、 不純 物濃度は l X 1017cm— 3〜3 X 1017 c m_3程度に設けられる。
第 7半導体層 47において所定の間隔を隔てて、 下面が第 2半導体層 42に まで延在するように設けられ、 第 2半導体層 42、 第 4半導体層 44、 および、 第 6半導体層 46の不純物濃度よりも高い濃度の n型の不純物を含むソース/ ドレイン領域層 6, 8が設けられる。 ソース/ドレイン領域層 6, 8の不純物 濃度は 1 X 1019 cm一3〜 1 X 102° cm一3程度に設けられる。
第 3半導体層 43中のソース/ドレイン領域層 6, 8の間には、 下面が第 2 半導体層 42にまで延在し、 上面が上記第 4半導体層 44にまで延在するよう に設けられ、 第 2半導体層 42、 上記第 4半導体層 44、 および、 第 6半導体 層 46の不純物濃度よりも高い不純物濃度を含む第 1ゲート電極層 48 Aが設 けられている。
第 5半導体層 45中のソース/ドレイン領域層 6, 8の間には、 下面が第 4 半導体層 44にまで延在し、 上面が上記第 6半導体層 46にまで延在するよう に設けられ、 第 1ゲート電極層 28 Aとほぼ同じ不純物濃度を有し、 かつ、 同 電位を有する p型の不純物を含む第 2ゲート電極層 48 Bが設けられている。 第 7半導体層 47中のソース/ドレイン領域 6, 8の間において、 下面が第 6半導体層 46にまで延在するように設けられ、 第 1ゲート電極層 48 Aおよ び第 2ゲート電極層 48 Bとほぼ同じ不純物濃度を有し、 かつ、 同電位を有す る P型の第 3ゲート電極層 48 Cが設けられている。 第 1ゲート電極層 48 A、 第 2ゲート電極層 48 B、 および、 第 3ゲート電極層 48 Cの不純物濃度は 3 X 1018 cm—3〜l X 102° cm一3程度に設けられる。
また、 第 1半導体層 41と第 1ゲート電極層 48Aとに挟まれた第 2半導体 層 42に、 第 1ゲート電極層 48 Aとほぼ同じ不純物濃度を有し、 かつ、 同電 位を有する p型の第 1不純物注入領域 3 9 Aが設けられ、 第 1ゲート電極層 4 8Aと第 2ゲート電極層 48 Bとに挟まれた第 4半導体層 44に、 第 1ゲート 電極層 48 Aとほぼ同じ不純物濃度を有し、 かつ同電位を有する P型の第 2不 純物注入領域 4 9 Bが設けられ、 第 2ゲート電極層 4 8 Bと第 3ゲート電極層 4 8 Cとに挟まれた第 6半導体層 4 6に、 第 1ゲート電極層 4 8 Aおよび第 2 ゲート電極層 4 8 Bとほぼ同じ不純物濃度を有し、 かつ同電位を有する p型の 第 3不純物注入領域 4 9 Cが設けられている。 なお、 図 2 6においては、 第 1 不純物注入領域 4 9 A、 第 2不純物注入領域 4 9 B、 および、 第 3不純物注入 領域 4 9 Cを一層設ける場合を図示しているが、 総チャネル幅を広く しオン抵 抗を下げつつ、 かつ、 ノーマリオフ型の横型接合型トランジスタを実現させる' 観点から、 半導体層内に第 1不純物注入領域 4 9 A、 第 2不純物注入領域 4 9 B、 および、 第 3不純物注入領域 4 9 Cをそれぞれ複数層設けることも可能で ある。
なお、 ソース領域層 6の外側には、 第 1半導体層 4 1にまで延在する p型の 不純物濃度を含む不純物領域層 4が設けられている。 この不純物領域層 4の不 純物濃度は 3 X 1 0 1 8 c m一3〜 1 X 1 0 2 ° c m一3程度に設けられる。
なお、 ノーマリオフ型の横型接合型電界効果トランジスタを実現させるため には、 第 1半導体層 4 1の最上部と第 1ゲート電極層 4 8 Aの最下部との間の 間隔 (w 4 1 ) 力 第 2半導体層 4 2と第 1ゲート電極層 4 8 Aとの接合にお ける拡散電位で広がる空乏層の間隔よりも小さくなるように設け、 第 1ゲート 電極層 4 8 Aの最上部と第 2グート電極層 4 8 Bの最下部との間の間隔 (w 4 2 ) 力 S、 第 4半導体層 4 4と第 1ゲート電極層 4 8 Aとの接合における拡散電 位で広がる空乏層の間隔と、 第 4半導体層 4 4と第 2ゲート電極層 4 8 Bとの 接合における拡散電位で広がる空乏層の間隔との和よりも小さくなるように設 ければ良い。
さらに好ましくは、 第 1半導体層 4 1の最上部と第 1不純物注入領域 4 9 A の最下部との間の間隔 (w 4 3 ) 第 2半導体層 4 2と第 1不純物注入領域 4 9 Αとの接合における拡散電位で広がる空乏層の間隔よりも小さく、 第 1不 純物注入領域 4 9 Αの最上部と第 1ゲート電極層 4 8 Aの最下部との間隔 (w 4 4 ) 力 第 2半導体層 4 2と第 1ゲート電極層 4 8 Aとの接合における拡散 電位で広がる空乏層の間隔の 2倍よりも小さくなるように設け、 第 1ゲート電 極層 4 8 Aの最上部と第 2不純物注入領域 4 9 Bの最下部との間の間隔 (w 4 5) 1S 第 4半導体層と第 2不純物注入領域 49 Bとの接合における拡散電位 で広がる空乏層の間隔の 2倍よりも小さくなるように設け、 第 2不純物注入領 域 49 Bの最上部と第 2ゲート電極層 48 Bの最下部との間の間隔 (w 46 ) 力 第 4半導体層 44と第 2グート電極層 48 Bとの接合における拡散電位で 広がる空乏層の間隔の 2倍よりも小さくなるように設ければ良い。
(横型接合型電界効果トランジスタ 400の製造方法)
次に、 上記構成からなる横型接合型電界効果トランジスタ 400の製造方法 について、 図 27〜図 37を参照して説明する。
図 27を参照して、 S i等からなる半導体基板 2上に、 p型不純物を含む厚 さ 3 111〜4 111程度、 不純物濃度が 1 X 1016 c m一3程度の S i Cからなる 第 1半導体層 4 1をェピタキシャル成長により形成する。 その後、 この第 1半 導体層 41の上に、 n型不純物を含む厚さ 0. 5 μπι〜1. 0 μ m程度、 不純 物濃度が第 1半導体層 41よりも高い 1 X 1017 cm— 3〜 3 X 1017 cm— 3程 度の S i Cからなる第 2半導体層 42をェピタキシャル成長により形成する。 その後、 第 2半導体層 42の上に、 p型不純物を含む厚さ 0. 5 111〜1. 0 μιη程度、 不純物濃度が 1 X 1017 cm— 3〜 3 X 1017 cm— 3程度の S i Cか らなる第 3半導体層 43をェピタキシャル成長により形成する。 その後、 第 3 半導体層 43の上に、 n型不純物を含む厚さ 0. 5 11!〜 1. 0 μ m程度、 不 純物濃度が 1 X 1017 cm一3〜 3 X 1017 cm一3程度の S i Cからなる第 4半 導体層 44をェピタキシャル成長により形成する。
次に、 図 28を参照して、 第 4半導体層 44の上に、 所定の開口パターンを 有する酸化膜 2 1 3を形成し、 この酸化膜 2 1 3をマスクにして、 p型の不純 物を第 4半導体層 44の所定領域に不純物を導入し、 下面が第 2半導体層 42 にまで延在し、 上面が第 4半導体層 44にまで延在し、.第 2半導体層 42およ び第 4半導体層 44の不純物濃度よりも高い 3 X 1018 cm— 3〜1 X 1020 c m一3程度の p型不純物を含む第 1ゲート電極層 48 Aを形成する。
次に、 図 29を参照して、 引続き酸化膜 2 1 3をマスクにして、 p型の不純 物を第 2半導体層 42内に導入し、 第 1ゲート電極層 48 Aとほぼ同じ不純物 濃度を有し、 かつ同電位を有する、 不純物濃度が 3 X 1018 cm一3〜 1 X 102 0 c m— 3程度の第 1不純物注入領域 49 Aを形成する。
次に、 図 30を参照して、 酸化膜 21 2を除去した後、 第 4半導体層 34の 上に、 P型不純物を含む厚さ 0. 5 ^m〜l. 0 ηι程度、 不純物濃度が 1 X 1017 cm一3〜 3 X 1017 cm一3程度の S i Cからなる第 5半導体層 45を形 成する。 その後、 第 5半導体層 45の上に、 n型不純物を含む厚さ 0. 5 μ m 〜1. 0 m程度、 不純物濃度が 1 X 1017 c m-3〜3 X 1017 cm— 3程度の S i Cからなる第 6半導体層 46を形成する。
次に、 図 3 1を参照して、 第 6半導体層 46の上に、 所定の開口パターンを 有する酸化膜 214を形成し、 この酸化膜 2 14をマスクにして、 p型の不純 物を第 6半導体層 44の所定領域に不純物を導入し、 下面が第 4半導体層 44 にまで延在し、 上面が第 6半導体層 46にまで延在し、 第 4半導体層 44およ び第 6半導体層 46の不純物濃度より.も高い 3 X 1018cm— 3〜1 X 1020 c m一3程度の p型不純物を含む第 2ゲート電極層 48 Bを形成する。
次に、 図 3 2を参照して、 引続き酸化膜 2 14をマスクにして、 p型の不純 物を第 4半導体層 44内に導入し、 第 1ゲート電極層 48 Aとほぼ同じ不純物 濃度を有し、 かつ同電位を有する、 不純物濃度が 3 X 1018 cm— 3〜1 X 102 0 c m一3程度の第 2不純物注入領域 49 Bを形成する。
次に、 図 3 3を参照して、 酸化膜 214を除去した後、 第 6半導体層 46の 上に、 P型不純物を含む厚さ 0. 5 / m〜l. 0 μπ程度、 不純物濃度が 1 X 1017cm-3~3 X 1017 cm一3程度の S i Cからなる第 7半導体層 47をェ ピタキシャル成長により形成する。
次に、 図 34を参照して、 第 7半導体層 3 7の上に、 所定の開口パターンを 有する酸化膜 2 1 5を形成し、 この酸化膜 2 1 5をマスクにして、 p型の不純 物を第 7半導体層 37の所定領域に不純物を導入し、 下面が第 6半導体層 46 にまで延在し、 第 6半導体層 46の不純物濃度よりも高い 3 X 1018 cm— 3〜 1 X 102 ° cm— 3程度の p型不純物を含む第 3ゲート電極層 48 Cを形成する。 次に、 図 3 5を参照して、 引続き酸化膜 2 1 5をマスクにして、 p型の不純 物を第 6半導体層 46内に導入し、 第 1ゲート電極層 48 Aとほぼ同じ不純物 濃度を有し、 かつ同電位を有する、 不純物濃度が 3 X 1018 cm一3〜 1 X 10 0 c m_ 3程度の第 3不純物注入領域 4 9 Cを形成する。
次に、 図 3 6を参照して、 酸化膜 2 1 5を除去した後、 再び、 第 7半導体層 3 7の上に、 所定の開口パターンを有する酸化膜 2 1 6を形成し、 この酸化膜 2 1 6をマスクにして、 第 1ゲート電極層 4 8 A、 第 2ゲート電極層 4 8 B、 第 3ゲート電極層 4 8 C、 第 1不純物注入領域 4 9 A、 第 2不純物注入領域 4 9 B、 および、 第 3不純物注入領域 4 9 Cの両側において、 第 7半導体層 4 7 に不純物を導入して、 下面が第 2半導体層 4 2にまで延在し、 第 2半導体層 4 2および前記第 4半導体層 4 4の不純物濃度よりも高い 1 X 1 0 1 9 c m— 3〜1 X 1 0 2 ° c m 3程度の n型の不純物を含むソース/ドレイン領域層 6 , 8を形 成する。
次に、 図 3 7を参照して、 酸化膜 2 1 6を除去した後、 再び、 第 7半導体層 3 7の上に、 所定の開口パターンを有する酸化膜 2 1 7を形成し、 この酸化膜 2 1 7をマスクにして、 ソース/ドレイン領域層 6の外側の領域において、 第 7半導体層 4 7に不純物を導入して、 下面が第 1半導体層 4 1にまで延在し、 3 X 1 0 1 8 c m— 3〜1 X 1 0 2 ° c m— 3程度の p型の不純物を含む不純物領域層 4を形成する。 その後、 図示していないが、 表面熱酸化 '開口 · Ν ί電極形成、 絶縁層形成 (O C D等) 、 コンタク トホール開口 · A 1配線■パッド形成、 熱 処理、 ォーミックコンタク ト形成等の工程を経ることにより、 図 2 6に示す本 実施の形態における横型接合型電界効果トランジスタ 4 0 0が完成する。
なお.、 上記実施の形態 1〜4において、 図示していないが、 ゲート間接続領 域層の形成は、 その深さによっては、 複数回に分けてイオン注入を行なう必要 がある。 この場合、 ゲート電極層および不純物注入領域の形成のためのイオン 注入を行なう段階でも、 ゲート間接続領域層の形成のための不純物注入を行な ラ。
なお、 ゲート間接続領域層とは、 複数のゲート電極層および不純物注入領域 を電気的に接続し、 同一の電位とするためのもので、 デバイスの端などに、 ゲ 一ト電極層および不純物注入領域を縦に貫いて設けられる接続層のことをいい、 一般にこの接続層は、 第 1半導体層には達しないように設けられる。
(作用効果) 以上、 上記構成からなる横型 J F E Tおよびその製造方法によれば、 複数の 横型 J F E Tが、 縦方向に積層された構成が採用されているため、 従来の構造 に対して、 さらに素子のオン抵抗を下げることが可能になる。 また、 第 2半導 体層 4 2と、 第 3半導体層 4 3と、 第 4半導体層 4 4と、 第 5半導体層 4 5と、 第 6半導体層 4 6と、 第 7半導体層 4 7との不純物濃度および膜厚さを略同じ 値にすることにより、 横型 J F E Tのオン抵抗を最小にし、 耐圧値を最大に設 定することを可能としている。
なお、 第 4半導体層 4 4と第 5半導体層 4 5との間に、 第 3半導体層 4 3と 第 4半導体層 4 4と第 1ゲート電極層 4 8 Aと第 2不純物注入領域 4 9 Bとほ ぼ同じ構造である単位トランジスタ構造を 1つまたは 2以上さらに設ける構造 を採用することにより、 横型 J F E Tの特性をより向上させることが可能にな る。
(実施の形態 5 )
(横型接合型電界効果トランジスタ 5 0 0の構造)
以下、 実施の形態 5における横型接合型電界効果トランジスタ 5 0 0の構造 について、 図 3 8から図 4 0を参照して説明する。
本実施の形態における横型接合型電界効果トランジスタ 5 0 0の構造的特徴 は、 p ri接合を縦方向に配置し、 ゲート電極層を横方向に配置するようにした ものである。
この横型接合型電界効果トランジスタ 5 0 0は、 S i等からなる半導体基板 2上に位置する p型不純物を含む第 1半導体層 5 1と、 この第 1半導体層 5 1 の上に位置し、 第 1半導体層の不純物濃度よりも高い濃度の n型不純物を含む 第 2半導体層 5 2と、 この第 2半導体層 5 2の上に位置し、 p型不純物を含む 第 3半導体層 5 3と、 この第 3半導体層 5 3の上に位置し、 n型不純物を含む 第 4半導体層 5 4と、 この第 4半導体層 5 4の上に位置し、 p型不純物を含む 第 5半導体層 5 5とが設けられている。 . ここで、 第 1半導体層 5 1の材質は S i C、 膜厚は 3 μ η!〜 4 i m程度、 不 純物濃度は 1 X 1 0 1 6 c m— 3程度に設けられ、 第 2半導体層 5 2、 第 3半導体 層 5 3、 第 4半導体層 5 4、 および、 第 5半導体層 5 5の材質は S i C、 膜厚 は 0 . 5 μ η!〜 1 . 0 μ m程度、 不純物濃度は 1 X 1 0 1 7 c m一3〜 3 X 1 0 1 7 c m一3程度に設けられる。
第 5半導体層 5 5中において所定の間隔を隔てて、 下面が第 2半導体層 5 2 にまで延在するように設けられ、 第 2半導体層 5 2および第 4半導体層 5 4の 不純物濃度よりも高い濃度の n型の不純物を含むソース/ドレイン領域層 6, 8が設けられる。 ソース/ドレイン領域層 6 , 8の不純物濃度は 1 X 1 0 1 9 c m一3〜 1 X 1 0 2 Q c m一3程度に設けられる。
第 5半導体層 5 5中のソース Zドレイン領域層 6, 8の間には、 下面が第 2 半導体層 5 2にまで延在するように設けられ、 第 2半導体層 5 2の不純物濃度 よりも高い p型の不純物濃度を含む第 1グート電極層 5 8 Aが設けられている。 また、 第 5半導体層 5 5中のソース/ドレイン領域層 6, 8の間には、 下面 が第 2半導体層 5 2にまで延在するように第 1ゲート電極層 5 8 Aに所定の間 隔を隔てて隣接して横方向に設けられ、 第 1ゲート電極層 5 8 Aとほぼ同じ不 純物濃度を有し、 かつ、 同電位を有する P型の第 2ゲート電極層 5 8 Bが設け られている。
また、 第 5半導体層 5 5中のソース/ドレイン領域層 6, 8の間には、 下面 が第 2半導体層 5 2にまで延在するように第 2ゲート電極層 5 8 Bに所定の間 隔を隔てて隣接して横方向に設けられ、 第 1ゲート電極層 5 8 Aおよび第 2ゲ ート電極層 5 8 Bとほぼ同じ不純物濃度を有し、 かつ、 同電位を有する p型の 第 3ゲート電極層 5 8 Cが設けられている。
また、 第 5半導体層 5 5中のソース/ドレイン領域層 6 , 8の間には、 下面 が第 2半導体層 5 2にまで延在するように第 3ゲート電極層 5 8 Cに所定の間 隔を隔てて隣接して横方向に設けられ、 第 1ゲート電極層 5 8 A、 第 2ゲート 電極層 5 8 B、 および、 第 3ゲート電極層 5 8 Cとほぼ同じ不純物濃度を有し、 かつ、 同電位を有する p型の第 4ゲート電極層 5 8 Dが設けられている。
第 1ゲート電極層 5 8 A、 第 2ゲート電極層 5 8 B、 第 3ゲート電極層 5 8 C、 および、 第 4ゲート電極層 5 8 Dの不純物濃度は 3 X 1 0 1 8 c m— 3〜1 X 1 0 2 ° c m—3程度に設けられる。
なお、 ノーマリオフ型の横型接合型電界効果トランジスタを実現させるため には、 第 1ゲート電極層 58 Aと第 2ゲート電極層 58 Bとの間の間隔 (w 5 1) 1 第 2半導体層 52と第 1ゲート電極層 58Aとの接合における拡散電 位で広がる空乏層の間隔、 および第 4半導体層 54と第 1ゲート電極層 58 A との接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さくなるよう に設ければ良い。 なお、 第 2ゲート電極層 58 Bと第 3ゲート電極層 58 Cと の間の間隔、 第 3ゲート電極層 58 Cと第 4ゲート電極層 58Dとの間の間隔 も同様である。
(横型接合型電界効果トランジスタ 500の製造方法)
次に、 上記構成からなる横型接合型電界効果トランジスタ 500の製造方法 について、 図 41〜図 43を参照して説明する。
図 41を参照して、 S i等からなる半導体基板 2上に、 p型不純物を含む厚 さ 3 Atm〜4 μιη程度、 不純物濃度が 1 X 1 016 c m一3程度の S i Cからなる 第 1半導体層 5 1をェピタキシャル成長により形成する。 その後、 この第 1半 導体層 5 1の上に、 n型不純物を含む厚さ 0. 5 /zm〜l. 0 m程度、 不純 物濃度が第: L半導体層 5 1よりも高い 1 X 1017 cm— 3〜 3 X 1017 cm— 3程 度の S i Cからなる第 2半導体層 5 2をェピタキシャル成長により形成する。 その後、 第 2半導体層 52の上に、 p型不純物を含む厚さ 0. 5 μιη〜1. 0 μιη程度、 不純物濃度が 1 X 1017 cm一3〜 3 X 1017 cm一3程度の S i らなる第 3半導体層 5 3をェピタキシャル成長により形成する。 その後、 第 3 半導体層 5 3の上に、 n型不純物を含む厚さ 0. 5 μιη〜1. 0 μ m程度、 不 純物濃度が 1 X 1017 cm一3〜 3 X 1017 cm一3程度の S i Cからなる第 4半 導体層 54をェピタキシャル成長により形成する。 その後、 第 4半導体層 54 の上に、 P型不純物を含む厚さ 0. 5 μπα〜1. 0 μιη程度、 不純物濃度が 1 X 1017 cm一3〜 3 X 1017 cm一3程度の S i Cからなる第 5半導体層 55を ェピタキシャル成長により形成する。
次に、 図 42を参照して、 第 5半導体層 5 5の上に、 所定の開口パターンを 有する酸化膜を形成し (図示省略) 、 この酸化膜をマスクにして、 第 5半導体 層 55中の所定領域に不純物を導入することにより、 下面が前記第 2半導体層 52にまで延在するように設けられ、 第 2半導体層 52の不純物濃度よりも高 い 3 X 1018 cm-3〜l X 102 ° c nT3程度の p型不純物を含み、 基板 2の平 面方向に沿って互いに所定の間隔を隔てて配置される、 第 1ゲート電極層 58 A、 第 2ゲート電極層 58 B、 第 3ゲート電極層 58 C、 および、 第 4ゲート 電極層 58 Dを形成する。
次に、 図 43を参照して、 第 5半導体層 55の上に、 所定の開口パターンを 有する酸化膜を形成し (図示省略) 、 この酸化膜をマスクにして、 第 1ゲート 電極層 58A、 第 2ゲート電極層 58 B、 第 3ゲート電極層 58 C、 および、 第 4ゲート電極層 58 Dの配置方向に沿って第 1ゲート電極層 58 A、 第 2ゲ ート電極層 58 B、 第 3ゲート電極層 58 C、 および、 第 4ゲート電極層 58 Dを両側から挟みこむように、 第 5半導体層 5 5中の所定領域に不純物を導入 して、 下面が第 2半導体層 52にまで延在し、 第 2半導体層 5 2および前記第 4半導体層 54の不純物濃度よりも高い 1 X 1019 cm_3〜l X 102°cm— 3 程度の n型の不純物を含むソース/ドレイン領域層 6, 8を形成する。 その後、 図示していないが、 表面熱酸化■ 開口 · N i電極形成、 絶縁層形成 (OCD 等) 、 コンタク トホール開口 ■ A 1配線■パッド形成、 熱処理、 ォーミックコ ンタク ト形成等の工程を経ることにより、 図 38に示す本実施の形態における 横型接合型電界効果トランジスタ 500が完成する。
なお、 上記実施の形態 1〜5においては、 上記ゲート電極層、 不純物注入領 域は、 その厚みによっては、 不純物の注入を複数回に分けて行なう場合が考え られる。 また、 この場合には、 その前工程の n層、 p層のェピタキシャル成長 を一度停止して不純物の注入を行ない、 その後ェピタキシャル成長を再開する 方法も考えられる。
また、 ソース/ドレイン領域層の形成は、 その深さによっては、 複数回の注 入に分けて行なうことも考えられる。 この場合、 ゲート電極層および不純物注 入領域の形成のための不純物注入を行なう段階でも、 ソース/ドレイン領域層 および 純物領域層の形成のための不純物注入を行なう場合が考えられる。
(作用効果)
以上、 上記構成からなる横型 J FETおよびその製造方法によれば、 複数の 横型 J FETにおいて p n接合を縦方向に配置し、 ゲート電極層を横方向に配 置した構成が採用されているため、 従来の構造に対して、 さらに素子のオン抵 抗を下げることが可能になる。 また、 第 2半導体層 5 2と、 第 3半導体層 5 3 と、 第 4半導体層 5 4と、 第 5半導体層 5 5との不純物濃度および膜厚さを略 同じ値にすることにより、 横型 J F E Tのオン抵抗を最小にし、 耐圧値を最大 に設定することを可能としている。 '
なお、 図 4 0に示すように、 さらにオン抵抗を下げるため、 チャネル数を增 加させる目的から、 第 1ゲート電極層 5 8 Aと第 2ゲート電極層 5 8 Bとの間 に、 下面が第 2半導体層 5 2にまで延在するように設けられ、 第 1ゲート電極 層 5 8 Aとほぼ同じ不純物濃度を有し、 かつ、 同電位を有する p型の不純物注 入領域 5 9 Aを設け、 同様に、 第 2ゲート電極層 5 8 Bと第 3ゲート電極層 5 8 Cとの間に、 下面が第 2半導体層 5 2にまで延在するように設けられ、 第 1 ゲート電極層 5 8 Aとほぼ同じ不純物濃度を有し、 かつ、 同電位を有する p型 の不純物注入領域 5 9 B、 および、 第 3ゲート電極層 5 8 Cと第 4ゲート電極 層 5 8 Dとの間に、 下面が第 2半導体層 5 2にまで延在するように設けられ、 第 1ゲート電極層 5 8 Aとほぼ同じ不純物濃度を有し、 かつ、 同電位を有する p型の不純物注入領域 5 9 Cを設ける構造を採用することも可能である。
また、 図 4 0に示す構造において、 第 1ゲート電極層 5 8 Aと不純物注入領 域 5 9 Aとの間の間隔 (w 5 1 ) および不純物注入領域 5 9 Aと第 2ゲート電 極層 5 8 Bとの間隔 (w 5 2 ) ヽ 第 2半導体層 5 2と第 1ゲート電極層 5 8 Aとの接合における拡散電位で広がる空乏層の間隔、 および第 4半導体層 5 4 と第 1ゲート電極層 5 8 Aとの接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さくなるように設けることで、 ノーマリオフ型の横型接合型電界 効果トランジスタを実現させることが可能になる。
また、 より好ましくは、 第 1ゲート電極層 5 8 Aに最も近接する上記不純物 注入領域 5 9 Aと第 1ゲート電極層 5 8 Aとの間の間隔 (w 5 1 ) 、 不純物注 入領域同士の間隔 (w 5 3 ) 、 および第 2ゲート電極層 5 8 Bに最も近接する 不純物注入領域 5 9 Bと第 2ゲート電極層 5 8 Bとの間の間隔 w 5 4が、 いず れも、 第 2半導体層 5 2と第 1ゲート電極層 5 8 Aとの接合における拡散電位 で広がる空乏層の間隔、 および第 4半導体層 5 4と第 1ゲート電極層 5 8 Aと の接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さいことが好ま しい。
なお、 ゲート電極層および不純物注入領域が設けられる数量については、 横 型 J F E Tに要求される性能に応じて、 適宜変更が可能である。
なお、 第 4半導体層 5 4と第 5半導体層 5 5との間に、 第 3半導体層 5 3と 第 4半導体層 5 4とほぼ同じ構造を 1つ以上有する構造を採用することにより、 横型 J F E Tの特性をより向上させることが可能になる。
(実施の形態 6 )
(横型接合型電界効果トランジスタ 6 0 0の構造)
以下、 実施の形態 6における横型接合型電界効果トランジスタ 6 0 0の構造 について、 図 4 4および図 4 5を参照して説明する。
本実施の形態における横型接合型電界効果トランジスタ 6 0 0の構造的特徴 は、 P n接合およぴゲート電極層を横方向に配置するようにしたものである。 この横型接合型電界効果トランジスタ 6 0 0は、 S i等からなる半導体基板 上 2に位置する!)型不純物を含む第 1半導体層 6 1と、 この第 1半導体層 6 1 の上に位置し、 p型不純物を含む第 2半導体層 6 2と、 第 1半導体層 6 1の上 に、 かつ、 第 2半導体層 6 2の横方向に隣接して位置し、 n型不純物を含む第 3半導体層 6 3と、 第 1半導体層 6 1の上に、 かつ、 第 3半導体層 6 3の横方 向に隣接して位置し、 p型不純物を含む第 4半導体層 6 4と、 第 1半導体層 6 1の上に、 かつ、 第 4半導体層 6 4の横方向に隣接して位置し、 n型不純物を 含む第 5半導体層 6 5と、 第 1半導体層 6 1の上に、 かつ、 第 5半導体層 6 5 の横方向に隣接して位置し、 p型不純物を含む第 6半導体層 6 6と、 第 1半導 体層 6 1の上に、 かつ、 第 6半導体層 6 6の横方向に隣接して位置し、 n型不 純物を含む第 7半導体層 6 7とが設けられている。
ここで、 第 1半導体層 6 1の材質は S i C、 膜厚は 3 μ πι〜4 μ χη程度、 不 純物濃度は 1 X 1 0 1 6 c m— 3程度に設けられ、 第 2半導体層 6 2、 第 3半導体 層 6 3、 第 4半導体層 6 4、 第 5半導体層 6 5、 第 6半導体層 6 6、 および、 第 7半導体層 6 7の材質は S i C、 膜厚は 0 . 5 μ n!〜 1 . 0 μ m程度、 不純 物濃度は 1 X 1 0 1 7 c m— 3〜3 X 1 0 1 7 c m—3程度に設けられる。 なお、 第 2 半導体層 6 2〜第 7半導体層 6 7の膜厚は、 図 4 4の奥行き方向の厚みを示す。 第 2半導体層 6 2、 第 3半導体層 6 3、 第 4半導体層 6 4、 第 5半導体層 6
5、 箄 6半導体層 6 6および第 7半導体層 6 7中において所定の間隔を隔てて 設けられ、 第 3半導体層 6 3、 第 5半導体層 6 5、 および、 第 5半導体層 6 5 の不純物濃度よりも高い濃度の n型の不純物を含むソース/ドレイン領域層 6 ,
8が設けられる。 ソース Zドレイン領域層 6 , 8の不純物濃度は 1 X 1 0 1 9 c m一3〜 1 X 1 0 2 t) c m— 3程度に設けられる。
第 2半導体層 6 2中のソース Zドレイン領域層 6, 8の間には、 その一方の 側面が第 3半導体層 6 3にまで延在するように設けられ、 第 3半導体層 6 3の 不純物濃度よりも高い p型の不純物濃度を含む第 1ゲート電極層 6 8 Aが設け られている。
また、 第 4半導体層 6 4中のソース/ドレイン領域層 6, 8の間には、 その 一方の側面が第 5半導体層 6 5にまで延在するように設けられ、 第 1ゲート電 極層 6 8 Aとほぼ同じ不純物濃度を有し、 かつ、 同電位を有する p型の第 2ゲ ート電極層 6 8 Bが設けられている。
また、 第 6半導体層 6 6中のソース/ドレイン領域層 6, 8の間には、 その 一方の側面が第 7半導体層 6 7にまで延在するように設けられ、 第 1ゲート電 極層 6 8 Aとほぼ同じ不純物濃度を有し、 かつ、 同電位を有する p型の第 3ゲ 一ト電極層 6 8 Cが設けられている。
第 1ゲート電極層 6 8 A、 第 2ゲート電極層 6 8 B、 および、 第 3ゲート電 極層 6 8 Cの不純物濃度は 3 X 1 0 1 8 c m—3〜: L X 1 0 2 ° c m— 3程度に設けら れる。
なお、 ノーマリオフ型の横型接合型電界効果トランジスタを実現させるため には、 第 1グート電極 6 8 Aと、 第 3半導体層 6 3の第 1ゲート電極層 6 8 A と接しない面との間の間隔 (w 6 1 ) I 第 3半導体層 6 3と第 1ゲート電極 層 6 8 Aとの接合における拡散電位で広がる空乏層の間隔よりも小さくなるよ うに設けられ、 第 2ゲート電極層 6 8 Bと第 5半導体層 6 5の第 2ゲート電極 層 6 8 Bと接しない面との間隔 (w 6 2 ) 第 5半導体層 6 5と第 2ゲート 電極層 6 8 Βとの接合における拡散電位で広がる空乏層の間隔よりも小さくな るように設ければ良い。
(横型接合型電界効果トランジスタ 600の製造方法)
次に、 上記構成からなる横型接合型電界効果トランジスタ 600の製造方法 について、 図 46〜図 50を参照して説明する。
図 46を参照して、 S i等からなる半導体基板 2上に、 p型不純物を含む厚 さ 3 !〜 4 μιη程度、 不純物濃度が 1 X 1016 cm一3程度の S i Cからなる 第 1半導体層 61をェピタキシャル成長により形成する。
次に、 図 47を参照して、 この第 1半導体層 6 1の上に、 n型不純物を含む 厚さ 1 π!〜 2 μιη程度、 不純物濃度が第 1半導体層 6 1よりも高い 1 X 101 7 cm一3〜 3 X 1017 cm一3程度の S i Cからなる半導体層 6 OAをェピタキ シャル成長により形成する。
次に、 図 48を参照して、 半導体層 6 OA中の所定領域に、 基板 2の平面方 向 (奥行き方向) に沿って所定の間隔を隔てて p型不純物を導入することによ り、 それぞれ奥行き方向の膜厚さが 0. 5 μπ!〜 1. O zm程度、 不純物濃度 が 1 X 1017 c m-3〜3 X 1 017 c m— 3程度の、 p型第 2半導体層 62、 n型 第 3半導体層 63、 p型第 4半導体層 64、 n型第 5半導体層 65、 p型第 6 半導体層 66、 および、 n型第 7半導体層 67を形成する。
次に、 図 49を参照して、 第 2半導体層 6 2、 第 3半導体層 63、 第 4半導 体層 64、 第 5半導体層 6 5、 第 6半導体層 66、 および、 第 7半導体層 6 7 中の所定領域に P型の不純物を導入することにより、 第 2半導体層 62と第 3 半導体層 6 3との間、 第 4半導体層 64と第 5半導体層 65との間、 第 6半導 体層 66と第 7半導体層 6 7との間において、 それぞれの領域をまたがるよう に、 不純物濃度が 3 X 1018 cm— 3〜1 X 102° cm— 3程度の第 1ゲート電極 層 68 A、 第 2ゲート電極層 68 B、 および、 第 3ゲート電極層 68 Cを形成 する。
次に、 図 50を参照して、 第 2半導体層 6 2、 第 3半導体層 63、 第 4半導 体層 64、 第 5半導体層 6 5、 第 6半導体層 66、 および、 第 7半導体層 6 7 中の所定領域に n型の不純物を導入することにより、 第 2半導体層 62、 第 3 半導体層 6 3、 第 4半導体層 64、 第 5半導体層 65、 第 6半導体層 66、 お よび、 第 7半導体層 6 7が配置される方向に沿うとともに、 第 1ゲート電極層 6 8 A、 第 2ゲート電極層 6 8 B、 および、 第 3ゲート電極層 6 8 Cを挟み込 み、 第 3半導体層 6 3の不純物濃度よりも高い、 1 X 1 0 1 9 c m— 3〜1 X 1 0 2 0 c m— 3程度の n型の不純物を含むソース/ドレイン領域層 6, 8を形成する。 その後、 図示していないが、 表面熱酸化■ 開口 ■ N i電極形成、 絶縁層形成 (O C D等) 、 コンタク トホール開口 ■ A 1配線 .パッド形成、 熱処理、 ォー ミックコンタク ト形成等の工程を経ることにより、 図 4 4に示す本実施の形態 における横型接合型電界効果トランジスタ 6 0 0が完成する。
(作用効果)
以上、 上記構成からなる横型 J F E Tおよびその製造方法によれば、 半導体 基板 2上に設けられる各半導体層が、 半導体基板 2上において隣接する横方向 に沿って配置されることにより、 基板の平面方向に沿ってトランジスタ構造を 形成することになるため、 従来の構造に対して、 さらに素子のオン抵抗を下げ ることが可能になる。 また、 第 2半導体層 6 2と、 第 3半導体層 6 3と、 第 4 半導体層 6 4と、 第 5半導体層 6 5と、 第 6半導体層 6 6と、 第 7半導体層 6 7との不純物濃度および膜厚さを略同じ値にすることにより、 横型 J F E Tの オン抵抗を最小にし、 耐圧値を最大に設定することを可能としている。
なお、 半導体層およびゲート電極層を設ける数量については、 横型 J F E T に要求される性能によって決定されることができ、 たとえば、 半導体層を 3層、 ゲート電極層を 2層設ける構造や、 半導体層を 4層、 ゲート電極層を 3層設け る構造の採用が可能である。
(実施の形態 7 )
(横型接合型電界効果トランジスタ 7 0 0の構造)
以下、 実施の形態 7における横型接合型電界効果トランジスタ 7 0 0の構造 について、 図 5 1および図 5 2を参照して説明する。
本実施の形態における横型接合型電界効果トランジスタ 7 0 0の構造的特徴 は、 上記横型接合型電界効果トランジスタ 6 0 0と同様に、 p n接合およびゲ 一ト電極層を横方向に配置するようにしたものである。
この横型接合型電界効果トランジスタ 7 0 0は、 S ί等からなる半導体基板 2上に位置する p型不純物を含む第 1半導体層 7 1と、 この第 1半導体層 7 1 の上に位置し、 p型不純物を含む第 2半導体層 7 2と、 第 1半導体層 7 1の上 に、 かつ、 第 2半導体層 7 2の横方向に隣接して位置し、 n型不純物を含む第 3半導体層 7 3と、 第 1半導体層 7 1の上に、 かつ、 第 3半導体層 7 3の横方 向に隣接して位置し、 p型不純物を含む第 4半導体層 7 4と、 第 1半導体層 7 1の上に、 かつ第 4半導体層 7 4の横方向隣接して位置し、 n型不純物を含む 第 5半導体層 7 5と、 第 1半導体層 7 1の上に、 かつ、 第 5半導体層 7 5の横 方向に隣接して位置し、 p型不純物を含む第 6半導体層 7 6と、 第 1半導体層 7 1の上に、 かつ第 6半導体層 7 6の横方向に隣接して位置し、 n型不純物を 含む第 7半導体層 7 7とが設けられている。
ここで、 第 1半導体層 7 1の材質は S i C、 膜厚は 3 / m〜4 / m程度、 不 純物濃度は 1 X 1 0 1 6 c m— 3程度に設けられ、 第 2半導体層 7 2、 第 3半導体 層 7 3、 第 4半導体層 7 4、 第 5半導体層 7 5、 第 6半導体層 7 6、 および、 第 7半導体層 7 7の材質は S i C、 膜厚は 0 . 5 μ m〜 1 . 0 μ m程度、 不純 物濃度は 1 X 1 0 1 7 c m一3〜 3 X 1 0 1 7 c m一3程度に設けられる。 なお、 第 2 半導体層 7 2〜第 7半導体層 7 7の膜厚は、 図 5 1の奥行き方向の厚みを示す。 第 2半導体層 7 2、 第 3半導体層 7 3、 第 4半導体層 7 4、 第 5半導体層 7 5、 第 6半導体層 7 6および第 7半導体層 7 7中において所定の間隔を隔てて 設けられ、 第 3半導体層 7 3、 第 5半導体層 7 5、 および、 第 7半導体層 7 7 の不純物濃度よりも高い濃度の n型の不純物を含むソース/ドレイン領域層 6, 8が設けられる。 ソース/ドレイン領域層 6, 8の不純物濃度は 1 X 1 0 1 9 c m一3〜 1 X 1 0 2 Q c m一3程度に設けられる。
第 2半導体層 7 2中のソース/ドレイン領域層 6, 8の間には、 その一方の 側面が第 3半導体層 7 3にまで延在するように設けられ、 第 3半導体層 7 3の 不純物濃度よりも高い p型の不純物濃度を含む第 1ゲート電極層 7 8 Aが設け られている。
また、 第 4半導体層 7 4中のソース/ドレイン領域層 6 , 8の間には、 その 一方の側面が第 5半導体層 7 5にまで延在するように設けられ、 第 1ゲート電 極層 7 8 Aとほぼ同じ不純物濃度を有し、 かつ同電位を有する p型の第 2グー ト電極層 7 8 Bが設けられている。
また、 第 6半導体層 7 6中のソース Zドレイン領域層 6, 8の間には、 その 一方の側面が第 7半導体層 7 7にまで延在するように設けられ、 第 1ゲート電 極層 7 8 Aとほぼ同じ不純物濃度を有し、 かつ同電位を有する p型の第 3ゲー ト電極層 7 8 Cが設けられている。
また、 第 4半導体層 7 4と第 1ゲート電極層 7 8 Aとに挟まれた第 3半導体 層 7 3には、 第 1ゲート電極層 7 8 Aとほぼ同じ不純物濃度を有し、 かつ同電 位を有する p型の第 1不純物注入領域 7 9 Aが設けられている。
また、 第 2グート電極層 7 8 Bと、 第 5半導体層 7 5の第 2グート電極層 7 8 Bと接しない面とに挟まれた第 5半導体層 7 5には、 第 1ゲート電極層 7 8 Aとほぼ同じ不純物濃度を有し、 かつ、 同電位を有する p型の第 2不純物注入 領域 7 9 Bが設けられている。
また、 第 3ゲート電極層 7 8 Cと、 第 7半導体層 7 7の第 3ゲート電極層 7 8 Cと接しない面とに挟まれた第 7半導体層 7 7には、 第 1ゲート電極層 7 8 Aとほぼ同じ不純物濃度を有し、 かつ、 同電位を有する!)型の第 3不純物注入 領域 7 9 Cが設けられている。
なお、 図 5 1においては、 第 1不純物注入領域 7 9 A、 第 2不純物注入領域 7 9 B、 および、 第 3不純物注入領域 7 9 Cを一層設ける場合を図示している 力 総チャネル幅を広く しオン抵抗を下げつつ、 かつ、 ノーマリオフ型の横型 接合型トランジスタを実現させる観点から、 半導体層内に第 1不純物注入領域 7 9 A、 第 2不純物注入領域 7 9 B、 および、 第 3不純物注入領域 7 9 Cをそ れぞれ複数層設けることも可能である。
なお、 第 1ゲート電極層 7 8 A、 第 2ゲート電極層 7 8 B、 第 3ゲート電極 層 7 8 C、 第 1不純物注入領域 7 9 A、 第 2不純物注入領域 7 9 B、 および、 第 3不純物注入領域 7 9 Cの不純物濃度は 3 X 1 0 1 8 c m— 3〜1 X 1 0 2 Q c m — 3程度に設けられる。
なお、 ノーマリオフ型の横型接合型電界効果トランジスタを実現させるため には、 第 1ゲート電極層 7 8 Aと第 1不純物注入領域 7 9 Aとの最も近接する 面同士の間隔 (w 7 1 ) i 第 3半導体層 7 3と第 1ゲート電極層 7 8 Aとの 接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さくなるように設 けられ、 第 1不純物注入領域 79 Aと、 第 3半導体層 73の第 1ゲート電極層 78 Aと接しない面との間の間隔 (w72) 第 3半導体層 73と第 1ゲー ト電極層 78 Aとの接合における拡散電位で広がる空乏層の間隔よりも小さく なるように設けられ、 第 2ゲート電極層 78 Bと第 2不純物注入領域 79 Bと の最も近接する面同士の間隔 (w73) 1S 第 5半導体層 75と第 2ゲート電 極層 78 Bとの接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さ くなるように設けられ、 第 2不純物注入領域 79 Bと、 第 5半導体層 75の第 2ゲート電極層 78 Bと接しない面との間の間隔 w 74力 第 5半導体層 75 と第 2グート電極層 78 Bとの接合における拡散電位で広がる空乏層の間隔よ りも小さくなるように設ければ良い。
(横型接合型電界効果トランジスタ 700の製造方法)
次に、 上記構成からなる横型接合型電界効果トランジスタ 700の製造方法 について、 図 5 3〜図 57を参照して説明する。 なお、 図 53〜図 5 7は図 5 1に示す断面構造にしたがった製造工程を示す断面図である。
図 53を参照して、 S i等からなる半導体基板 2上に、 p型不純物を含む厚 さ 3 !〜 4 μπι程度、 不純物濃度が 1 X 1016 c m一3程度の S i Cからなる 第 1半導体層 71をェピタキシャル成長により形成する。
次に、 図 54を参照して、 この第 1半導体層 7 1の上に、 n型不純物を含む 厚さ 1 μ π!〜 2 μ m程度、 不純物濃度が第 1半導体層 7 1よりも高い 1 X 1 01 7 cm一3〜 3 X 1017 cm-3程度の S i Cからなる半導体層 7 OAをェピタキ シャル成長により形成する。
次に、 図 55を参照して、 半導体層 7 OA中の所定領域に、 基板 2の平面方 向 (奥行き方向) に沿って所定の間隔を隔てて!)型不純物を導入することによ り、 それぞれ奥行き方向の膜厚さが 0. 5 μπι〜1. 0 μ m程度、 不純物濃度 が 1 X 1017cm— 3〜3 X 1017 cm— 3程度の、 p型第 2半導体層 72、 n型 第 3半導体層 73、 p型第 4半導体層 74、 n型第 5半導体層 75、 p型第 6 半導体層 76、 および、 n型第 7半導体層 77を形成する。
次に、 図 56を参照して、 第 2半導体層 72、 第 3半導体層 73、 第 4半導 体層 7 4、 第 5半導体層 7 5、 第 6半導体層 7 6、 および、 第 7半導体層 7 7 中の所定領域に P型の不純物を導入することにより、 第 2半導体層 7 2と第 3 半導体層 7 3との間、 第 4半導体層 7 4と第 5半導体層 7 5との間、 第 6半導 体層 7 6と第 7半導体層 7 7との間において、 それぞれの領域をまたがるよう に、 不純物濃度が 3 X 1 0 1 8 c m— 3〜1 X 1 0 2 ° c m— 3程度の第 1グート電極 層 7 8 A、 第 2ゲート電極層 7 8 B、 および、 第 3グート電極層 7 8 Cを形成 する。 また、 同時に、 第 3半導体層 7 3、 第 5半導体層 7 5、 および、 第 7半 導体層 7 7の中に、 第 1ゲート電極層 7 8 A、 第 2ゲート電極層 7 8 B、 およ び、 第 3ゲート電極層 7 8 Cとほぼ同じ 3 X 1 0 1 8 c m一3〜 1 X 1 0 2 ° c m一 3 程度不純物濃度えお有し、 かつ、 同電位を有する第 1不純物注入領域 7 9 A、 第 2不純物注入領域 7 9 B、 および、 第 3不純物注入領域 7 9 Cを形成する。 次に、 図 5 7を参照して、 第 2半導体層 7 2、 第 3半導体層 7 3、 第 4半導 体層 7 4、 第 5半導体層 7 5、 第 6半導体層 7 6、 および、 第 7半導体層 7 7 中の所定領域に n型の不純物を導入することにより、 第 2半導体層 7 2、 第 3 半導体層 7 3、 第 4半導体層 7 4、 第 5半導体層 7 5、 第 6半導体層 7 6、 お よび、 第 7半導体層 7 7が配置される方向に沿うとともに、 第 1ゲート電極層 7 8 A、 第 2ゲート電極層 7 8 B、 第 3ゲート電極層 7 8 C、 第 1不純物注入 領域 7 9 A、 第 2不純物注入領域 7 9 B、 および、 第 3不純物注入領域 7 9 C を挟み込み、 第 3半導体層 7 3の不純物濃度よりも高い、 l X 1 0 1 9 c m— 3〜 1 X 1 0 2 ° c m— 3程度の n型の不純物を含むソース/ドレイン領域層 6, 8を 形成する。 その後、 図示していないが、 表面熱酸化,開口 · N i電極形成、 絶 縁層形成 (O C D等) 、 ンタク トホール開口 ■ A 1配線 ·パッド形成、 熱処 理、 ォーミックコンタク ト形成等の工程を経ることにより、 図 5 1に示す本実 施の形態における横型接合型電界効果トランジスタ 7 0 0が完成する。
(作用効果)
以上、 上記構成からなる横型 J F E Tおよびその製造方法によれば、 半導体 基板 2上に設けられる各半導体層が、 半導体基板 2上において隣接する横方向 に沿つ.て配置されることにより、 基板の平面方向に沿ってトランジスタ構造を 形成することになるため、 従来の構造に対して、 さらに素子のオン抵抗を下げ ることが可能になる。 また、 第 2半導体層 7 2と、 第 3半導体層 7 3と、 第 4 半導体層 7 4と、 第 5半導体層 7 5と、 第 6半導体層 7 6と、 第 7半導体層 Ί 7との不純物濃度および膜厚さを略同じ値にすることにより、 横型 J F E Tの オン抵抗を最小にし、 耐圧値を最大に設定することを可能としている。
なお、 半導体層、 ゲート電極層、 および不純物注入領域を設ける数量につい ては、 横型 J F E Tに要求される性能によって決定されることができ、 たとえ ば、 半導体層を 3層、 ゲート電極層を 2層、 不純物注入領域を 1層設ける構造 や、 半導体層を 4層、 ゲート電極層を 2層、 不純物注入領域を 2層設ける構造 の採用が可能である。
(実施の形態 8 )
以下、 実施の形態 8における横型接合型電界効果トランジスタ 8 0 0の構造 について、 図 5 8および図 5 9を参照して説明する。
本実施の形態における横型接合型電界効果トランジスタ 8 0 0の構造的特徴 は、 上記横型接合型電界効果トランジスタ 6 0 0と同様に、 p n接合およびゲ 一ト電極層を横方向に配置するようにしたものである。
この横型接合型電界効果トランジスタ 8 0 0は、 S i等からなる半導体基板 2上に位置する p型不純物を含む第 1半導体層 8 1と、 この第 1半導体層 8 1 の上に位置し、 p型不純物を含む第 2半導体層 8 2と、 第 1半導体層 8 1の上 に、 かつ、 第 2半導体層 8 2の横方向に隣接して位置し、 n型不純物を含む第 3半導体層 8 3と、 第 1半導体層 8 1の上に、 かつ第 3半導体層 8 3の横方向 に隣接して位置し、 p型不純物を含む第 4半導体層 8 4と、 第 1半導体層 8 1 の上に、 かつ第 4半導体層 8 4の横方向に隣接して位置し、 η型不純物を含む 第 5半導体層 8 5と、 第 1半導体層 8 1の上に、 かつ、 第 5半導体層 8 5の横 方向に隣接して位置し、 ρ型不純物を含む第 6半導体層と、 第 1半導体層 8 1 の上に、 かつ第 6半導体層 8 6の横方向に隣接して位置し、 η型不純物を含む 第 7半導体層 8 7と、 第 1半導体層 8 1の上に、 かつ、 第 7半導体層 8 7の横 方向に隣接して位置し、 ρ型不純物を含む第 8半導体層 (8 8 ) とが設けられ ている。
ここで、 第 1半導体層 8 1の材質は S i C、 膜厚は 3 m〜 4 m程度、 不 純物濃 J¾は 1 X 1 0 1 6 c m— 3程度に設けられ、 第 2半導体層 8 2、 第 3半導体 層 8 3、 第 4半導体層 8 4、 第 5半導体層 8 5、 第 6半導体層 8 6、 、 第 7半 導体層 8 7、 および、 第 8半導体層 8 8の材質は S i C、 膜厚は 0 . 5 μ πι〜 1 . O / m程度、 不純物濃度は 1 X 1 0 1 7 c m一3〜 3 X 1 0 1 7 c m一3程度に設 けられる。 なお、 第 2半導体層 8 2〜第 8半導体層 8 7の膜厚は、 図 5 8の奥 行き方向の厚みを示す。
第 2半導体層 8 2、 第 3半導体層 8 3、 第 4半導体層 8 4、 第 5半導体層 8 5、 第 6半導体層 8 6、 第 7半導体層 8 7、 および、 第 8半導体層 8 8中にお いて所定の間隔を隔てて設けられ、 第 3半導体層 8 3、 第 5半導体層 8 5、 お よび、 第 7半導体層 8 7の不純物濃度よりも高い濃度の n型の不純物を含むソ ースノドレイン領域層 6 , 8が設けられる。 ソース/ドレイン領域層 6, 8の 不純物濃度は 1 X 1 0 1 9 c m 3〜l X 1 0 2 Q c m_ 3程度に設けられる。
第 2半導体層 8 2中のソース Zドレイン領域層 6, 8の間には、 その一方の 側面が上記第 3半導体層 8 3にまで延在するように設けられ、 第 3半導体層 8 3の不純物濃度よりも高い p型の不純物濃度を含む第 1ゲート電極層 8 8 Aが 設けられている。
また、 第 4半導体層 8 4中のソース/ドレイン領域層 6, 8の間には、 その 一方の側面が第 3半導体層 8 3にまで延在し、 他方の側面が第 5半導体層 8 5 にまで延在するように設けられ、 第 1ゲート電極層 8 8 Aとほぼ同じ不純物濃 度を有し、 かつ同電位を有する p型の第 2ゲート電極層 8 8 Bが設けられてい る。
また、 第 6半導体層 8 6中のソース/ドレイン領域層 6 , 8の間には、 その 一方の側面が第 5半導体層 8 5にまで延在し、 他方の側面が第 7半導体層 8 7 にまで延在するように設けられ、 第 1グート電極層 8 8 Aとほぼ同じ不純物濃 度を有し、 かつ同電位を有する; p型の第 3ゲート電極層 8 8 Cが設けられてい る。
また、 第 8半導体層 8 8中のソース Zドレイン領域層 6, 8の間には、 その 一方の側面が第 7半導体層 8 7にまで延在するように設けられ、 第 1ゲート電 極層 8 8 Aとほぼ同じ不純物濃度を有し、 かつ、 同電位を有する p型の第 4ゲ 一ト電極層 88 Dが設けられている。
なお、 第 1ゲート電極層 88 A、 第 2グート電極層 88 B、 第 3ゲート電極 層 88 C、 および、 第 4ゲート電極層 88 Dの不純物濃度は 3 X 1018 cm一3 〜: L X 102° cm一3程度に設けられる。
なお、 ノーマリオフ型の横型接合型電界効果トランジスタを実現させるため には、 第 1ゲート電極層 88 Aと、 第 2ゲート電極層 88 Bの最も近接する面 同士の間隔 (w8 1) 第 3半導体層 83と第 1ゲート電極層 8 8 Αとの接 合における拡散電位で広がる空乏層の間隔の 2倍よりも小さくなるように設け られ、 第 2ゲート電極層 88 Bと第 3ゲート電極層 88 Cの最も近接する面同 士の間隔 (w8 2) 力 第 3半導体層 83と第 1ゲート電極層 88 Aとの接合 における拡散電位で広がる空乏層の間隔の 2倍よりも小さくなるように設けれ ば良い。
(横型接合型電界効果トランジスタ 800の製造方法)
次に、 上記構成からなる横型接合型電界効果トランジスタ 800の製造方法 について、 図 60〜図 64を参照して説明する。
図 60を参照して、 S i等からなる半導体基板 2上に、 p型不純物を含む厚 さ 3 μιη〜4 μιη程度、 不純物濃度が 1 X 1016 cm— 3程度の S i Cからなる 第 1半導体層 81をェピタキシャル成長により形成する。
次に、 図 6 1を参照して、 この第 1半導体層 8 1の上に、 n型不純物を含む 厚さ 1 μ π!〜 2 m程度、 不純物濃度が第 1半導体層 8 1よりも高い 1 X 101 7 c m-3〜3 X 1017 cm— 3程度の S i Cからなる半導体層 8 OAをェピタキ シャル成長により形成する。
次に、 図 6 2を参照して、 半導体層 8 OA中の所定領域に、 基板 2の平面方 向 (奥行き方向) に沿って所定の間隔を隔てて P型不純物を導入することによ り、 それぞれ奥行き方向の膜厚さが 0. 5 μιη〜1. 0 μ m程度、 不純物濃度 が 1 X 1017 c m_3〜 3 X 1017 c m— 3程度の、 p型第 2半導体層 82、 n型 第 3半導体層 8 3、 p型第 4半導体層 84、 n型第 5半導体層 85、 p型第 6 半導体層 86、 n型第 7半導体層 8 7、 および、 p型第 7半導体層 88を形成 する。 次に、 図 6 3を参照して、 第 2半導体層 8 2、 第 3半導体層 8 3、 第 4半導 体層 8 4、 第 5半導体層 8 5、 第 6半導体層 8 6、 および、 第 7半導体層 8 7 中の所定領域に p型の不純物を導入することにより、 第 2半導体層 8 2と第 3 半導体層 8 3との間、 第 3半導体層 8 4と第 5半導体層 8 5との間、 第 5半導 体層 8 5と第 7半導体層 8 7との間、 第 7半導体層 7 7と第 8半導体層 7 8と の間において、 それぞれの領域をまたがるように、 不純物濃度が 3 X 1 0 1 8 c m一3〜 1 X 1 0 2 ° c m— 3程度の第 1ゲート電極層 8 8 A、 第 2ゲート電極層 8 8 B、 第 3ゲート電極層 7 8 C、 および、 第 4ゲート電極層 8 8 Dを形成する。 次に、 図 6 4を参照して、 第 2半導体層 8 2、 第 3半導体層 8 3、 第 4半導 体層 8 4、 第 5半導体層 8 5、 第 6半導体層 8 6、 第 7半導体層 8 7、 および、 第 7半導体層 8 7中の所定領域に n型の不純物を導入することにより、 第 2半 導体層 8 2、 第 3半導体層 8 3、 第 4半導体層 8 4、 第 5半導体層 8 5、 第 6 半導体層 8 6、 第 7半導体層 8 7、 および、 第 7半導体層 8 7が配置される方 向に沿うとともに、 第 1ゲート電極層 8 8 A、 第 2ゲート電極層 8 8 B、 およ び、 第 3ゲート電極層 8 8 Cを挟み込み、 第 3半導体層 8 3の不純物濃度より も高い、 1 X 1 0 1 9 c m - 3〜 1 X 1 0 2 0 c m一 3程度の n型の不純物を含むソー スノドレイン領域層 6 , 8を形成する。 その後、 図示していないが、 表面熱酸 化 '開口 · N i電極形成、 絶縁層形成 (O C D等) 、 コンタク トホール開口 ■ A 1配線 ·パッド形成、 熱処理、 ォーミツタコンタク ト形成等の工程を経るこ とにより、 図 5 1に示す本実施の形態における横型接合型電界効果トランジス タ 8 0 0が完成する。
(作用効果)
以上、 上記構成からなる横型 J F E Tによれば、 半導体基板 2上に設けられ る各半導体層が、 半導体基板 2上において隣接する横方向に沿って配置される ことにより、 基板の平面方向に沿ってトランジスタ構造を形成することになる ため、 従来の構造に対して、 さらに素子のオン抵抗を下げることが可能になる。 また、 第 2半導体層 8 2と、 第 3半導体層 8 3と、 第 4半導体層 8 4と、 第 5 半導体層 8 5と、 第 6半導体層 8 6と、 第 7半導体層 8 7、 第 8半導体層 8 8 との不純物濃度および膜厚さを略同じ値にすることにより、 横型 J F E Tのォ ン抵抗を最小にし、 耐圧値を最大に設定することを可能としている。
なお、 半導体層およびゲート電極層を設ける数量については、 横型 J F E T に要求される性能によって決定されることができ、 たとえば、 半導体層を 3層、 ゲート電極層を 2層設ける構造や、 半導体層を 4層、 ゲート電極層を 3層設け る構造の採用が可能である。
なお、 上記実施の形態 6〜8に示す製造方法においては、 デバイスの厚み (第 2半導体層の図中の縦方向の厚み) によっては、 複数回に分けてのイオン 注入を行なうことも考えられる。 この場合、 各半導体層、 各ゲート電極層、 ソ ース /ドレイン領域層の各工程を複数回繰返して行ない、 所望の厚みのデバイ スを形成することになる。
(実施の形態 9 )
(横型接合型電界効果トランジスタ 9 0 0の構造)
以下、 実施の形態 9における横型接合型電界効果トランジスタ 9 0 0の構造 について、 図 6 5および図 6 6を参照して説明する。
本実施の形態における横型接合型電界効果トランジスタ 9 0 0の構造的特徴 は、 上記横型接合型電界効果トランジスタ 6 0 0と同様に、 p n接合およびゲ 一ト電極層を横方向に配置するようにしたものである。
この横型接合型電界効果トランジスタ 9 0 0は、 S i等からなる半導体基板
2上に位置する p型不純物を含む第 1半導体層 9 1と、 この第 1半導体層 9 1 上に位置し、 p型不純物を含む第 2半導体層 9 2と、 第 1半導体層 9 1の上に、 かつ、 第 2半導体層 9 2の横方向に隣接して位置し、 n型不純物を含む第 3半 導体層 9 3と、 第 1半導体層 9 1の上に、 かつ、 第 3半導体層 9 3の横方向に 隣接して位置し、 p型不純物を含む第 4半導体層 9 4と、 第 1半導体層 9 1の 上に、 かつ、 第 4半導体層 9 4の横方向に隣接して位置し、 n型不純物を含む 第 5半導体層 9 5と、 第 1半導体層 9 1の上に、 かつ、 第 5半導体層 9 5の横 方向に隣接して位置し、 p型不純物を含む第 6半導体層 9 6とが設けられてい る。
ここで、 第 1半導体層 9 1の材質は S i C、 膜厚は 3 μ πι〜4 程度、 不 純物濃度は 1 X 1 0 1 6 c m— 3程度に設けられ、 第 2半導体層 9 2、 第 3半導体 層 9 3、 第 4半導体層 9 4、 第 5半導体層 9 5、 および、 第 6半導体層 9 6の 材質は S i C、 膜厚は 0 . 5 μ πι〜1 . 0 μ m程度、 不純物濃度は 1 X 1 0 1 7 c m一3〜 3 X 1 0 1 7 c m_ 3程度に設けられる。 なお、 第 2半導体層 9 2〜第 6 半導体層 9 6の膜厚は、 図 1 4の奥行き方向の厚みを示す。
第 2半導体層 9 2、 第 3半導体層 9 3、 第 4半導体層 9 4、 第 5半導体層 9 5、 および、 第 6半導体層 9 6中において所定の間隔を隔てて設けられ、 第 3 半導体層 9 3および第 5半導体層 9 5の不純物濃度よりも高い濃度の n型の不 純物を含むソース Zドレイン領域層 6, 8が設けられる。 ソース/ドレイン領 域層 6 , 8の不純物濃度は 1 X 1 0 1 9 c m— 3〜1 X 1 0 2 ° c m— 3程度に設けら れる。
第 2半導体層 9 2中のソース/ドレイン領域層 6, 8の間には、 その一方の 側面が第 3半導体層 9 3にまで延在するように設けられ、 第 3半導体層 9 3の 不純物濃度よりも高い p型の不純物濃度を含む第 1ゲート電極層 9 8 Aが設け られている。
また、 第 4半導体層 9 4中のソース/ドレイン領域層 6 , 8の間には、 その 一方の側面が第 3半導体層 9 3にまで延在し、 他方の側面が第 5半導体層 9 5 にまで延在するように設けられ、 第 1ゲート電極層 9 8 Aとほぼ同じ不純物濃 度を有し、 かつ同電位を有する p型の第 2グート電極層 9 8 Bが設けられてい る。
また、 第 6半導体層 9 6中のソース/ドレイン領域層 6, 8の間には、 その 一方の側面が第 5半導体層 9 5にまで延在するように設けられ、 第 1ゲート電 極層 9 8 Aとほぼ同じ不純物濃度を有し、 かつ、 同電位を有する p型の第 3ゲ 一ト電極層 9 8 Cが設けられている。
また、 第 1ゲート電極層 9 8 Aと第 2ゲート電極層 9 8 Bとに挟まれた第 3 半導体層 9 8 Bには、 第 1ゲート電極層 9 8 Aとほぼ同じ不純物濃度を有し、 かつ、 同電位を有する P型の第 1不純物注入領域 9 9 Aが設けられている。 また、 第 2ゲート電極 9 8 Bと第 3ゲート電極層 9 8 Cとに挟まれた第 5半 導体層 9 5には、 第 1ゲート電極層 9 8 Aとほぼ同じ不純物濃度を有し、 かつ 同電位を有する p型の第 2不純物注入領域 9 9 Bが設けられている。 なお、 図 6 5においては、 第 1不純物注入領域 9 9 A、 および、 第 2不純物 注入領域 9 9 Bを一層設ける場合を図示しているが、 総チャネル幅を広く しォ ン抵抗を下げつつ、 かつ、 ノーマリオフ型の横型接合型トランジスタを実現さ せる観点から、 半導体層内に第 1不純物注入領域 9 9 A、 および、 第 2不純物 注入領域 9 9 Bをそれぞれ複数層設けることも可能である。
なお、 第 1ゲート電極層 9 8 A、 第 2ゲート電極層 9 8 B、 第 3ゲート電極 層 9 8 C、 第 1不純物注入領域 9 9 A、 および、 第 2不純物注入領域 9 9 Cの 不純物濃度は 3 X 1 0 1 8 c m— 3〜1 X 1 0 2 ° c m— 3程度に設けられる。
なお、 ノーマリオフ型の横型接合型電界効果トランジスタを実現させるため には、 第 1ゲート電極層 9 8 Aと、 第 1不純物注入領域 9 9 Aの最も近接する 面同士の間隔 (w 9 1 ) が、 第 3半導体層 9 3と第 1ゲート電極層 9 8 Aとの 接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さくなるように設 けられ、 第 1不純物注入領域 9 9 Aと、 第 2ゲート電極層 9 8 Bの最も近接す る面同士の間隔 (w 9 2 ) 力 第 3半導体層 9 3と第 1ゲート電極層 9 8 Aと の接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さくなるように 設けられ、 第 2ゲート電極層 9 8 Bと、 第 2不純物注入領域 9 9 Bの最も近接 する面同士の間隔 (w 9 3 ) 、 第 3半導体層 9 3と第 1グート電極層 9 8 A との接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さくなるよう に設けられ、 第 2不純物注入領域 9 9 Bと、 第 3ゲート電極層 9 8 Cの最も近 接する面同士の間隔 (w 9 4 ) 力 第 3半導体層 9 3と第 1ゲート電極層 9 8 Aとの接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さくなるよ うに設ければ良い。
(横型接合型電界効果トランジスタ 9 0 0の製造方法)
次に、 上記構成からなる横型接合型電界効果トランジスタ 9 0 0の製造方法 について、 図 6 7〜図 7 1を参照して説明する。
図 6 7を参照して、 S i等からなる半導体基板 2上に、 p型不純物を含む厚 さ 3 μ ιη〜4 μ πι程度、 不純物濃度が 1 X 1 0 1 6 c m一3程度の S i Cからなる 第 1半導体層 9 1をェピタキシャノレ成長により形成する。
次に、 図 6 8を参照して、 この第 1半導体層 9 1の上に、 n型不純物を含む 厚さ 1 μ m〜 2 μ m程度、 不純物濃度が第 1半導体層 9 1よりも高い 1 X 101 7 cm— 3〜3 X 1017 cm— 3程度の S i Cからなる半導体層 9 OAをェピタキ シャル成長により形成する。
次に、 図 6 9を参照して、 半導体層 9 OA中の所定領域に、 基板 2の平面方 向 (奥行き方向) に沿って所定の間隔を隔てて p型不純物を導入することによ り、 それぞれ奥行き方向の膜厚さが 0. 5 μη!〜 1. Ο μιη程度、 不純物濃度 が 1 X 1017 c m_3〜3 X 1017 c m— 3程度の、 p型第 2半導体層 92、 n型 第 3半導体層 9 3、 p型第 4半導体層 94、 n型第 5半導体層 95、 および、 P型第 6半導体層 96を形成する。
次に、 図 6 9を参照して、 第 2半導体層 9 2、 第 3半導体層 93、 第 4半導 体層 94、 第 5半導体層 9 5、 および、 第 6半導体層 96の所定領域に p型の 不純物を導入することにより、 第 2半導体層 9 2と第 3半導体層 9 3との間、 第 3半導体層 79と第 5半導体層 95との間、 第 5半導体層 9 5と第 6半導体 層 96との間において、 それぞれの領域をまたがるように、 不純物濃度が 3 X 10ls cm— 3〜1 X 102 ° c m 3程度の第 1ゲート電極層 98 A、 第 2ゲート 電極層 98 B、 および、 第 3ゲート電極層 98 Cを形成する。 また、 同時に、 第 3半導体層 73、 および、 第 5半導体層 75の中に、 第 1ゲート電極層 98 A、 第 2ゲート電極層 98 B、 および、 第 3ゲート電極層 98 Cとほぼ同じ 3 X 1018 cm一3〜 1 X 102°cm— 3程度不純物濃度えお有し、 かつ、 同電位を 有する第 1不純物注入領域 99 A、 および、 第 2不純物注入領域 9 9 Bを形成 する。
次に、 図 70を参照して、 第 2半導体層 9 2、 第 3半導体層 93、 第 4半導 体層 94、 第 5半導体層 9 5、 および、 第 6半導体層 96の所定領域に n型の 不純物を導入することにより、 第 2半導体層 9 2、 第 3半導体層 9 3、 第 4半 導体層 94、 第 5半導体層 95、 および、 第 6半導体層 96が配置される方向 に沿うとともに、 第 1ゲート電極層 98A、 第 2ゲート電極層 98 B、 第 3ゲ ート電極層 98 C、 第 Ί不純物注入領域 9 9 A、 および、 第 2不純物注入領域 99 Bを挟み込み、 第 3半導体層 93の不純物濃度よりも高い、 1 X 1019 c m一3〜 1 X 102° cm— 3程度の n型の不純物を含むソース/ドレイン領域層 6, 8を形成する。 その後、 図示していないが、 表面熱酸化 '開口 ■ N i電極形成、 絶縁層形成 (O C D等) 、 ンタク トホール開口 · A 1配線 ·パッド形成、 熱 処理、 ォーミックコンタク ト形成等の工程を経ることにより、 図 6 5に示す本 実施の形態における横型接合型電界効果トランジスタ 9 0 0が完成する。
(作用効果)
以上、 上記構成からなる横型 J F E Tおよびその製造方法によれば、 半導体 基板 2上に設けられる各半導体層が、 半導体基板 2上において隣接する横方向 に沿って配置されることにより、 基板の平面方向に沿ってトランジスタ構造を 形成することになるため、 従来の構造に対して、 さらに素子のオン抵抗を下げ ることが可能になる。 また、 第 2半導体層 9 2と、 第 3半導体層 9 3と、 第 4 半導体層 9 4と、 第 5半導体層 9 5と、 第 6半導体層 9 6との不純物濃度およ び膜厚さを略同じ値にすることにより、 横型 J F E Tのオン抵抗を最小にし、 耐圧値を最大に設定することを可能としている。
なお、 半導体層、 ゲート電極層、 および不純物注入領域を設ける数量につい ては、 横型 J F E Tに要求される性能によって決定されることができ、 たとえ ば、 半導体層を 3層、 ゲート電極層を 2層、 不純物注入領域を 1層設ける構造 や、 半導体層を 4層、 ゲート電極層を 2層、 不純物注入領域を 2層設ける構造 の採用が可能である。
なお、 今回開示された実施の形態はすべての点で例示であつて制限的なもの ではないと考えられるべきである。 本発明の範囲は上記した説明ではなくて特 許請求の範囲によって示され、 特許請求の範囲と均等の意味および範囲内での すべての変更が含まれることが意図される。 産業上の利用可能性
この発明に基づいた横型接合型電界効果トランジスタおよびその製造方法の 1つの局面によれば、 半導体基板上の各半導体層の積層方向である縦方向に沿 つてトランジスタ構造を形成することになるため、 従来の構造に対して、 さら に素子のオン抵抗を下げることが可能になる。
また、 この発明に基づいた横型接合型電界効果 方法の他の局面によれば、 複数の横型 J F E Tにおいて p n接合を縦方向に配 置し、 ゲート電極層を横方向に配置した構成が採用されているため、 従来の構 造に対して、 さらに素子のオン抵抗を下げることが可能になる。
また、 この発明に基づいた横型接合型電界効果トランジスタおよびその製造 方法のさらに他の局面によれば、 半導体基板上に設けられる各半導体層が、 半 導体基板上において隣接する横方向に沿って配置されることにより、 基板の平 面方向に沿ってトランジスタ構造を形成することになるため、 従来の構造に対 して、 さらに素子のオン抵抗を下げることが可能になる。

Claims

請求の範囲
1. 半導体基板 (2) 上に位置する第 1導電型不純物 (P) を含む第 1半導体 層 (1 1) と、
前記第 1半導体層 (1 1) の上に位置し、 前記第 1半導体層 (1 1) の不純 物濃度よりも高い濃度の第 2導電型不純物 (n) を含む第 2半導体層 (1 2) と、
前記第 2半導体層 (1 2) の上に位置し、 第 1導電型不純物 (p) を含む第 3半導体層 (1 3) と、
前記第 3半導体層' (1 3) の上に位置し、 第 2導電型不純物 (n). を含む第 4半導体層と (14) 、
前記第 4半導体層 (14) の上に位置し、 第 1導電型不純物 (p) を含む第 5半導体層と (1 5) 、
前記第 5半導体層 (1 5) 中において所定の間隔を隔てて、 下面が前記第 2 半導体層 (1 2) にまで延在するように設けられ、 前記第 2半導体層 (1 2) および前記第 4半導体層 (14) の不純物濃度よりも高い濃度の第 2導電型の 不純物を含むソースノドレイン領域層 (6, 8) と、
前記第 3半導体層中の前記ソース/ドレイン領域層 (6, 8) の間において、 下面が前記第 2半導体層 (12) にまで延在するように設けられ、 前記第 2半 導体層 (1 2) の不純物濃度よりも高い第 1導電型 (p) の不純物濃度を含む 第 1ゲート電極層 (18A) と、
前記第 5半導体層 (1 5) 中の前記ソース/ドレイン領域層 (6, 8) の間 において、 下面が前記第 4半導体層 (14) にまで延在するように設けられ、 前記第 1ゲート電極層 (1 8A) とほぼ同じ不純物濃度を有し、 かつ、 同電位 を有する第 2ゲート電極層 (18B) と、
を備える横型接合型電界効果トランジスタ。
2. 前記第 2半導体層 (1 2) と、 前記第 3半導体麕 (1 3) と、 前記第 4半 導体層 (14) と、 前記第 5半導体層 (1 5) との不純物濃度と膜厚さとがほ ぼ同じである、 請求項 1に記載の横型接合型電界効果
3. 前記第 1半導体層 (1 1) の最上部と前記第 1ゲート電極 (1 8A) の最 下部との間の間隔 (w l l) 力 前記第 2半導体層 (1 2) と前記第 1ゲート 電極層 (1 8A) との接合における拡散電位で広がる空乏層の間隔よりも小さ 前記第 3半導体層 (1 3) の最上部と前記第 2ゲート電極層 (1 8 B) の最 下部との間の間隔 (w l 2) 、 前記第 4半導体層 (14) と前記第 2ゲート 電極層 (1 8 B) との接合における拡散電位で広がる空乏層の間隔よりも小さ いことを特徴とする、 請求項 1に記載の横型電界効果トランジスタ。
4. 前記第 3半導体層 (1 3) と前記第 4半導体層 (14) との間に、 前記第 2半導体層 (1 2) と前記第 3半導体層 (1 3) と前記第 1ゲート電極層 (1
8 A) とほぼ同じ構造である単位トランジスタ構造を 1つまたは 2以上備える、 請求項 1に記載の横型接合型電界効果トランジスタ。
5. 半導体基板 (2) 上に位置する第 1導電型不純物 (p) を含む第 1半導体 層 (21) と、
前記第 1半導体層 (21) の上に位置し、 前記第 1半導体層 (2 1) の不純 物濃度よりも高い濃度の第 2導電型不純物 (n) を含む第 2半導体層 (22) と、
前記第 2半導体層 (22) の上に位置し、 第 1導電型不純物 (p) を含む第 3半導体層 (23) と、
前記第 3半導体層 (23) の上に位置し、 第 2導電型不純物 (n) を含む第 4半導体層 (24) と、
前記第 4半導体層 (24) の上に位置し、 第 1導電型不純物 (p) を含む第 5半導体層 (25) と、
前記第 5半導体層 (25) 中において所定の間隔を隔てて、 下面が前記第 2 半導体層 (22) にまで延在するように設けられ、 前記第 2半導体層 (22) および第 4半導体層 (24) の不純物濃度よりも高い濃度の第 2導電型の不純 物を含むソース/ドレイン領域層 (6, 8) と、
前記第 3半導体層 (23) 中の前記ソース/ドレイン領域層 (6, 8) の藺 において、 下面が前記第 2半導体層 (22) にまで延在するように設けられ、 前記第 2半導体層 (22) の不純物濃度よりも高い第 1導電型 (p) の不純物 濃度を含む第 1ゲート電極層 (28A) と、
前記第 5半導体層 (25) 中の前記ソース/ドレイン領域層 (6, 8) の間 において、 下面が前記第 4半導体層 (24) にまで延在するように設けられ、 前記第 1ゲート電極層 (28A) とほぼ同じ不純物濃度を有し、 かつ、 同電位 を有する第 2ゲート電極層 (28B) と、
前記第 1半導体層 (21) と前記第 1ゲート電極層 (28A) とに挟まれた 前記第 2半導体層 (22) に、 前記第 1ゲート電極層 (28A) とほぼ同じ不 純物濃度を有し、 かつ、 同電位を有する第 1導電型 (p) の第 1不純物注入領 域 (29 A) と、
前記第 3半導体層 (23) と前記第 2ゲート電極層 (28 B) とに挟まれた 前記第 4半導体層 (24) に、 前記第 1ゲート電極 (28A) とほぼ同じ不純 物濃度を有し、 かつ、 同電位を有する第 1導電型 (p) の第 2不純物注入領域 (29 B) と、
を備える横型接合型電界効果トランジスタ。
6. 前記第 2半導体層 (22) と、 前記第 3半導体層 (23) と、 前記第 4半 導体層 (24)' と、 前記第 5半導体層 (25) との不純物濃度と膜厚さとがほ ぼ同じである、 請求項 5に記載の横型接合型電界効果トランジスタ。
7. 前記第 1半導体層 (2 1) の最上部と前記第 1不純物注入領域 ( 2 9 A) の最下部との間の間隔 (w21) 力 前記第 2半導体層 (22) と前記第 1不 純物注入領域 (29A) との接合における拡散電位で広がる空乏層の間隔より も小さく、
前記第 1不純物注入領域 (2 9A) の最上部と前記第 1ゲート電極層 (28 A) の最下部との間の間隔 (w 22) 力 前記第 2半導体層 (22) と前記第 1ゲート電極層 (28 A) との接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さく、
前記第 3半導体層 (23) の最上部と前記第 2不純物注入領域 (29 B) の 最下部との間の間隔 (w23) 力 前記第 4半導体層 (24) と前記第 2不純 物注入領域 (29 B) との接合における拡散電位で広がる空乏層の間隔よりも 小さく、
前記第 2不純物注入領域 (29B) の最上部と前記第 2ゲート電極層 (28 B) の最下部との間の間隔 (w24) I 前記第 4半導体層 (24) と前記第 2ゲート電極層 (28 Β) との接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さいことを特徴とする、 請求項 5に記載の横型接合型電界効果ト
8. 前記第 3半導体層 (23) と前記第 4半導体層 (24) との間に、 前記第 2半導体層 (22) と前記第 3半導体層 (23) と前記第 1ゲート電極層 (2 8 Α) と前記第 1不純物注入領域 (29 Α) とほぼ同じ構造である単位トラン ジスタ構造を 1つまたは 2以上備える、 請求項 5に記載の横型接合型電界効果
9. 半導体基板 (2) 上に位置する第 1導電型不純物 (ρ) を含む第 1半導体 層 (31) と、
前記第 1半導体層 (3 1) の上に位置し、 前記第 1半導体層 (3 1) の不純 物濃度よりも高い濃度の第 2導電型不純物 (η) を含む第 2半導体層 (32) と、
前記第 2半導体層 (32) の上に位置し、 第 1導電型不純物 (ρ) を含む第 3半導体層 (33) と、
前記第 3半導体層 (33) の上に位置し、 第 2導電型不純物 (η) を含む第 4半導体層 (34) と、
前記第 4半導体層 (34) の上に位置し、 第 1導電型不純物 (ρ) を含む第 5半導体層 (35) と、
前記第 5半導体層 (35) 中において所定の間隔を隔てて、 下面が前記第 2 半導体層にまで延在するように設けられ、 前記第 2半導体層 (32) および第 4半導体層 (34) の不純物濃度よりも高い濃度の第 2導電型(η)の不純物を 含むソースノドレイン領域層 (6, 8) と、
前記第 3半導体層 (33) 中の前記ソース/ドレイン領域層 (6, 8) の間 において、 下面が前記第 2半導体層 (32) にまで延在し、 上面が前記第 4半 導体層 (34) にまで延在するように設けられ、 前記第 2半導体層 (3 2) お よび前記第 4半導体層 (34) の不純物濃度よりも高い第 1導電型 (p) の不 純物濃度を含む第 1ゲート電極層 (38A) と、 前記第 5半導体層 (3 5) 中 の前記ソース/ドレイン領域層 (6, 8) の間において、 下面が前記第 4半導 体層にまで延在するように設けられ、 前記第 1ゲート電極層とほぼ同じ不純物 濃度を有し、 かつ、 同電位を有する第 2ゲート電極層と (38 B) 、
を備える横型接合型電界効果トランジスタ。
10. 前記第 2半導体層 (32) と前記第 3半導体層 (33) と前記第 4半導 体層 (34) と、 前記第 5半導体層 (35) との不純物濃度と膜厚さとがほぼ 同じである、 請求項 9に記載の横型接合型電界効果トランジスタ。
1 1. 前記第 1半導体層 (3 1) の最上部と前記第 1ゲート電極層 (38A) の最下部との間の間隔 (w3 1) 、 前記第 2半導体層 (32) と前記第 1ゲ ート電極層 (38A) との接合における拡散電位で広がる空乏層の間隔よりも 小さく、
前記第 1ゲート電極層 (3 8A) の最上部と前記第 2ゲート電極層 (3 8 B) の最下部との間の間隔 (w32) 力 前記第 4半導体層 (34) と前記第 1ゲート電極層 (38A) との接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さいことを特徴とする、 請求項 9に記載の横型接合型電界効果ト
1 2. 前記第 4半導体層 (34) と前記第 5半導体層 (35) との間に、 前記 第 3半導体層 (3 3) と前記第 4半導体層 (34) と前記第 1ゲート電極層
(38 A) とほぼ同じ構造である単位トランジスタ構造を 1つまたは 2以上備 える、 請求項 9に記載の横型接合型電界効果トランジスタ。
1 3. 半導体基板 (2) 上に位置する第 1導電型不純物 (p) を含む第 1半導 体層 (41) と、
前記第 1半導体層 (41) の上に位置し、 前記第 1半導体層 (4 1) の不純 物濃度よりも高い濃度の第 2導電型不純物 (n) を含む第 2半導体層 (42) と、
前記第 2半導体層 (42) の上に位置し、 第 1導電型不純物 (P) を含む第 3半導体層 (43) と、 前記第 3半導体層 (43) の上に位置し、 第 2導電型不純物 (n) を含む第 4半導体層 (44) と、
前記第 4半導体層 (44) の上に位置し、 第 1導電型不純物 (p) を含む第 5半導体層 (45) と、
前記第 5半導体層 (45) 中において所定の間隔を隔てて、 下面が前記第 2 半導体層 (42) にまで延在するように設けられ、 前記第 2半導体層 (42) および第 4半導体層 (44) の不純物濃度よりも高い濃度の第 2導電型の不純 物を含むソース/ドレイン領域層 (6, 8) と、
前記第 3半導体層 (43) 中の前記ソースノドレイン領域層 (6, 8) の間 において、 下面が前記第 2半導体層 (42) にまで延在し、 上面が前記第 4半 導体層 (44) にまで延在するように設けられ、 前記第 2半導体層 (42) お よび前記第 4半導体層 (44) の不純物濃度よりも高い不純物濃度を含む第 1 ゲート電極層 (48 A) と、
前記第 5半導体層 (45) 中の前記ソース/ドレイン領域層 (6, 8) の間 において、 下面が前記第 4半導体層 (44) にまで延在するように設けられ、 前記第 1ゲート電極層 (48A) とほぼ同じ不純物濃度を有し、 かつ、 同電位 を有する第 1導電型 (P) の第 2ゲート電極層 (48B) と、
前記第 1半導体層 (41) と前記第 1ゲート電極層 (48A) とに挟まれた 前記第 2半導体層 (42) に、 前記第 1ゲート電極層 (48A) とほぼ同じ不 純物濃度を有し、 かつ、 同電位を有する第 1導電型 (p) の第 1不純物注入領 域 (49 A) と、
前記第 1ゲート電極層 (48A) と前記第 2ゲート電極層 (48 B) とに挟 まれた前記第 4半導体層 (44) に、 前記第 1ゲート電極層 (48A) とほぼ 同じ不純物濃度を有し、 かつ同電位を有する第 1導電型 (p) の第 2不純物注 入領域 (49 B) と、
を備える、 横型接合型電界効果トランジスタ。
14. 前記第 2半導体層 (42) と、 前記第 3半導体層 (43) と、 前記第 4 半導体層 (44) と、 前記第 5半導体層 (45) との不純物濃度と膜厚さとが ほぼ同じである、 請求項 13に記載の横型接合型電界効果
1 5. 前記第 1半導体層 (4 1) の最上部と前記第 1不純物注入領域 (4 9 A) の最下部との間の間隔 (w43) 、 前記第 2半導体層 (42) と前記第 1不純物注入領域 (49A) との接合における拡散電位で広がる空乏層の間隔 よりも小さく、
前記第 1不純物注入領域 (49A) の最上部と前記第 1ゲート電極層 (48
A) の最下部との間隔 (w44) 力 前記第 2半導体層 (42) と前記第 1ゲ ート電極層 (48A) との接合における拡散電位で広がる空乏層の間隔の 2倍 よりも小さく、
前記第 1ゲート電極層 (48A) の最上部と前記第 2不純物注入領域 (49
B) の最下部との間の間隔 (w45) ヽ 前記第 4半導体層 (44) と前記第 2不純物注入領域 (49 B) との接合における拡散電位で広がる空乏層の間隔 の 2倍よりも小さく、
前記第 2不純物注入領域 (49 B) の最上部と前記第 2ゲート電極層 (48 B) の最下部との間の間隔 (w46) 、 前記第 4半導体層 (44) と前記第 2ゲート電極層 (48 Β) との接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さいことを特徴とする、 請求項 1 3に記載の横型接合型電界効果
1 6. 前記第 4半導体層 (44) と前記第 5半導体層 (45) との間に、 前記 第 3半導体層 (4 3) と前記第 4半導体層 (44) と前記第 1ゲート電極層
(48 Α) と前記第 2不純物注入領域 (49 Β) とほぼ同じ構造である単位ト ランジスタ構造を 1つまたは 2以上備える、 請求項 1 3に記載の横型接合型電 界効果トランジスタ。
1 7. 半導体基板 (2) 上に位置する第 1導電型不純物 (ρ) を含む第 1半導 体層 (5 1) と、
前記第 1半導体層 (5 1) の上に位置し、 前記第 1半導体層の不純物濃度よ りも高い濃度の第 2導電型不純物 (η) を含む第 2半導体層 (52) と、 前記第 2半導体層 (52) の上に位置し、 第 1導電型不純物 (Ρ) を含む第 3半導体層 (53) と、
前記第 3半導体層 (53) の上に位置し、 第 2導電型不純物 (η) を含む第 4半導体層 (54) と、
前記第 4半導体層 (54) の上に位置し、 第 1導電型不純物 (p) を含む第 5半導体層 (55) と、
前記第 5半導体層 (55) 中において所定の間隔を隔てて、 下面が前記第 2 半導体層 (52) にまで延在するように設けられ、 前記第 2半導体層 (52) および第 4半導体層 (54) の不純物濃度よりも高い濃度の第 2導電型の不純 物を含むソース/ドレイン領域層 (6, 8) と、
前記第 5半導体層 (55) 中の前記ソース/ドレイン領域層 (6, 8) の間 において、 下面が前記第 2半導体層 (52) にまで延在するように設けられ、 前記第 2半導体層 (5 2) の不純物濃度よりも高い第 1導電型 (p) の不純物 濃度を含む第 1ゲート電極層 (58A) と、
前記第 5半導体層 (55) 中の前記ソース/ドレイン領域層 (6, 8) の間 において、 下面が前記第 2半導体層 (52) にまで延在するように前記第 1ゲ ート電極層 (58A) に隣接して設けられ、 前記第 1ゲート電極層 (58A) とほぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 1導電型 (P) の第 2 ゲート電極層 (58 B) と、
を備える横型接合型電界効果トランジスタ。
1 8. 前記第 2半導体層 (52) と、 前記第 3半導体層 (53) と、 前記第 4 半導体層 (54) と、 前記第 5半導体層 (55) との不純物濃度と膜厚さとが ほぼ同じである、 請求項 17に記載の横型接合型電界効果トランジスタ。
1 9. 前記第 1ゲート電極層 (58A) と前記第 2ゲート電極層 (58 B) と の間の間隔 (w 5 1) 、 前記第 2半導体層 (52) と前記第 1ゲート電極層 (58 Α) との接合における拡散電位で広がる空乏層の間隔、 および前記第 4 半導体層 (54) と前記第 1ゲート電極層 (58Α) との接合における拡散電 位で広がる空乏層の間隔の 2倍よりも小さいことを特徴とする、 請求項 1 7に 記載の横型接合型電界効果トランジスタ。
20. 前記第 1ゲート電極層 (58Α) と前記第 2ゲート電極層 (58 Β) と の間に、 下面が前記第 2半導体層 (52) にまで延在するように設けられ、 前 記第 1ゲート電極層 (58Α) とほぼ同じ不純物濃度を有し、 かつ、 同電位を 有する第 1導電型 (p) の不純物注入領域 (5 9A) を 1つ備える、 請求項 1 7に記載の横型接合型電界効果トランジスタ。
21. 前記第 1ゲート電極層 ( 58 A) と前記不純物注入領域 ( 5 9 A) との 間の間隔 (w 5 1) および前記不純物注入領域 (5 9A) と前記第 2ゲート電 極層 (58 B) との間隔 (w5 2) 、 前記第 2半導体層 (52) と前記第 1 ゲート電極層 (58A) との接合における拡散電位で広がる空乏層の間隔、 お よび前記第 4半導体層 (54) と前記第 1ゲート電極層 (58A) との接合に おける拡散電位で広がる空乏層の間隔の 2倍よりも小さいことを特徴とする、 請求項 20に記載の横型接合型電界効果トランジスタ。
22. 前記不純物注入領域 ( 5 9 A) が 2以上設けられる、 請求項 2 1に記載 の横型接合型電界効果トランジスタ。
23. 前記第 1ゲート電極層 (5 8A) に最も近接する前記不純物注入領域 (.59 A) と前記第 1ゲート電極層 (58A) との間の間隔 (w5 1) 、 前記 不純物注入領域同士の間隔 (w 5 3) 、 および前記第 2ゲート電極層 (58 B) に最も近接する前記不純物注入領域 (5 9 B) と前記第 2ゲート電極層 (58 B) との間の間隔 (w54) 1S いずれも、 前記第 2半導体層 (52) と前記第 1ゲート電極層 (58A) との接合における拡散電位で広がる空乏層 の間隔、 および前記第 4半導体層 (54) と前記第 1ゲート電極層 (58A) との接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さいことを特 徴とする、 請求項 21に記載の横型接合型電界効果トランジスタ。
24. 前記第 4半導体層 (54) と前記第 5半導体層 (55) との間に、 前記 第 3半導体層 (5 3) と前記第 4半導体層 (54) とほぼ同じ構造を 1つ以上 有する、 請求項 1 7に記載の横型接合型電界効果トランジスタ。
25. 半導体基板 (2) 上に位置する第 1導電型不純物 (p) を含む第 1半導 体層 (6 1) と、
前記第 1半導体層 (6 1) の上に位置し、 第 1導電型不純物 (P) を含む第 2半導体層 (62) と、
前記第 1半導体層 (61) の上に、 かつ、 前記第 2半導体層 (6 2) に隣接 して位置し、 第 2導電型不純物 (n) を含む第 3半導体層 (63) と、 前記第 2半導体層 (62) および前記第 3半導体層 (6 3) 中において所定 の間隔を隔てて設けられ、 前記第 3半導体層 (63) の不純物濃度よりも高い 濃度の第 2導電型 (n) の不純物を含むソース/ドレイン領域層 (6, 8) と、 前記第 2半導体層 (62) 中の前記ソース/ドレイン領域層 (6, 8) の間 において、 その一方の側面が前記第 3半導体層 (63) にまで延在するように 設けられ、 前記第 1半導体層 (6 1) の不純物濃度よりも高い第 1導電型
(p) の不純物濃度を含むゲート電極層 (68A) と、
'を備える横型接合型電界効果トランジスタ。
26. 半導体基板 (2) 上に位置する第 1導電型不純物 (p) を含む第 1半導 体層 ( 6 1 ) と、
前記第 1半導体層 (6 1) の上に位置し、 第 1導電型不純物 (p) を含む第 2半導体層 (62) と、
前記第 1半導体層 (6 1) の上に、 かつ、 前記第 2半導体層 (6 2) に隣接 して位置し、 第 2導電型不純物 (n) を含む第 3半導体層 (63) と、
前記第 1半導体層 (6 1) の上に、 かつ、 前記第 3半導体層 (63) に隣接 して位置し、 第 1導電型不純物 (p) を含む第 4半導体層 (64) と、
前記第 1半導体層 (6 1) の上に、 かつ、 前記第 4半導体層 (64) に隣接 して位置し、 第 2導電型不純物 (n) を含む第 5半導体層 (65) と、
前記第 2半導体層 (62) 、 前記第 3半導体層 (6 3) 、 前記第 4半導体層 (64) および前記第 5半導体層 (65) 中において所定の間隔を隔てて設け られ、 前記第 3半導体層 (63) および前記第 5半導体層 (6 5) の不純物濃 度よりも高い濃度の第 2導電型の不純物を含むソース/ドレイン領域層 (6, 8) と、
前記第 2半導体層 (62) 中の前記ソース/ドレイン領域層 (6, 8) の間 において、 その一方の側面が前記第 3半導体層 (6 3) にまで延在するように 設けられ、 前記第 3半導体層 (6 3) の不純物濃度よりも高い第 1導電型 (p) の不純物濃度を含む第 1ゲート電極層 (68A) と、 前記第 4半導体層 (64) 中の前記ソースノドレイン領域層 (6, 8) の間において、 その一方 の側面が前記第 5半導体層 (65) にまで延在するように設けられ、 前記第 1 ゲート電極層 (68 A) とほぼ同じ不純物濃度を有し、 かつ、 同電位を有する 第 1導電型 (p) の第 2ゲート電極層 (68B) と、
を備える横型接合型電界効果トランジスタ。
27. 半導体基板 (2) 上に位置する第 1導電型不純物 (p) を含む第 1半導 体層 ( 6 1 ) と、
前記第 1半導体層 (6 1) の上に位置し、 第 1導電型不純物 (p) を含む第 2半導体層 (62) と、
前記第 1半導体層 (6 1) の上に、 かつ、 前記第 2半導体層 (6 2) に隣接 して位置し、 前記第 2導電型不純物 (n) を含む第 3半導体層 (63) と、 前記第丄半導体層 (6 1) の上に、 かつ、 前記第 3半導体層 (63) に隣接 して位置し、 第 1導電型不純物 (p) を含む第 4半導体層 (64) と、
前記第 2半導体層 (62) 、 前記第 3半導体層 (6 3) および前記第 4半導 体層 (64) 中において所定の間隔を隔てて設けられ、 前記第 3半導体層の不 ' 純物濃度よりも高い濃度の第 2導電型 (n) の不純物を含むソース Zドレイン 領域層 (6, 8) と、
前記第 2半導体層 (62) 中の前記ソース/ドレイン領域層 (6, 8) の間 において、 その一方の側面が前記第 3半導体層 (6 3) にまで延在するように 設けられ、 前記第 3半導体層 (6 3) の不純物濃度よりも高い第 1導電型 (p) の不純物濃度を含むゲート電極層 (68A) と、
を備える横型接合型電界効果トランジスタ。
28. 前記第 2半導体層 (6 2) と、 前記第 3半導体層 (6 3) と、 前記第 4 半導体層 (64) との不純物濃度と膜厚さとがほぼ同じである、 請求項 27に 記載の横型接合型電界効果トランジスタ。
29. 前記ゲート電極層 (68A) と前記第 4半導体層 (64) との間の間隔 (w6 1) 力 前記第 3半導体層 (63) と前記ゲート電極層 (68A) との 接合 おける拡散電位で広がる空乏層の間隔よりも小さいことを特徴とする、 請求項 27に記載の横型接合型電界効果トランジスタ。
30. 前記第 3半導体層 (6 3) と前記第 4半導体層 (64) との間に前記第 2半導体層 (6 2) と前記第 3半導体層 (6 3) と前記ゲート電極層 (6 8 A) とほぼ同じ構造である単位トランジスタ構造を 1つまたは 2以上備える、 請求項 27に記載の横型接合型電界効果トランジスタ。
3 1. 半導体基板 (2) 上に位置する第 1導電型不純物 (p) を含む第 1半導 体層 (71) と、
5 前記第 i半導体層 (71) の上に位置し、 第 1導電型不純物 (p) を含む第 2半導体層 (72) と、
前記第 1半導体層 (71) の上に、 かつ、 前記第 2半導体層 (7 2) に隣接 して位置し、 第 2導電型不純物 (n) を含む第 3半導体層 (73) と、
前記第 2半導体層 (72) および前記第 3半導体層 (73) 中において所定 10 の間隔を隔てて設けられ、 前記第 3半導体層 (73) の不純物濃度よりも高い 濃度の第 2導電型 (n) の不純物を含むソース Zドレイン領域層 (6, 8) と、 ' 前記第 2半導体層 (72) 中の前記ソース/ドレイン領域層 (6, 8) の間 において、 その一方の側面が前記第 3半導体層 (73) にまで延在するように 設けられ、 前記第 3半導体層 (7 3) の不純物濃度よりも高い第 1導電型 15 (p) の不純物濃度を含むゲート電極層 (78A) と、
前記ゲート電極層 (78A) と前記第 3半導体層 (73) の前記ゲート電極 層と (78A) 接しない面とに挟まれた前記第 3半導体層 (73) に、 前記ゲ ート電極層 (78A) とほぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 1導電型 ( p ) の不純物注入領域 ( 79 A) と、
20 を備える横型接合型電界効果トランジスタ。
3 2. .半導体基板 (2) 上に位置する第 1導電型不純物 (p) を含む第 1半導 体層 (71) と、
前記第 1半導体層 (71) の上に位置し、 第 1導電型不純物 (P) を含む第 2半導体層 (72) と、
25 前記第 1半導体層 (71) の上に、 かつ、 前記第 2半導体層 (7 2) に隣接 して位置し、 第 2導電型不純物 (n) を含む第 3半導体層 (73) と、
前記第 1半導体層 (71) の上に、 かつ、 前記第 3半導体層 (73) に隣接 ' して位置し、 第 1導電型不純物 (P)'を含む第 4半導体層 (74) と、
前記第 1半導体層 (71) の上に、 かつ前記第 4半導体層 (74) に隣接し て位置し、 第 2導電型不純物 (n) を含む第 5半導体層 (75) と、
前記第 2半導体層 (72) 、 前記第 3半導体層 (7 3) 、 前記第 4半導体層 (74) および前記第 5半導体層 (75) 中において所定の間隔を隔てて設け られ、 前記第 3半導体層 (73) および前記第 5半導体層 (7 5) の不純物濃 度よりも高い濃度の第 2導電型 (n) の不純物を含むソース Zドレイン領域層 (6, 8) と、
前記第 2半導体層 (72) 中の前記ソース Zドレイン領域層 (6, 8) の間 において、 その一方の側面が前記第 3半導体層 (73) にまで延在するように 設けられ、 前記第 3半導体層 (73) の不純物濃度より も高い第 1導電型 (p) の不純物濃度を含む第 1ゲート電極層 (78A) と、
前記第 4半導体層 (74) 中の前記ソース Zドレイン領域層 (6, 8) の間 においてその一方の側面が前記第 5半導体層 (75) にまで延在するように設 けられ、 前記第 1ゲート電極層 (78A) とほぼ同じ不純物濃度を有し、 かつ 同電位を有する第 2ゲート電極層 (78 B) と、
前記第 4半導体層 (74) と前記第 1ゲート電極層 (78A) とに挟まれた 前記第 3半導体層 (73) に、 前記第 1ゲート電極層 (78A) とほぼ同じ不 純物濃度を有し、 かつ同電位を有する第 1導電型 (p) の第 1不純物注入領域 (79 A) と、
前記第 2ゲート電極層 (78 B) と、 前記第 5半導体層 (7 5) の前記第 2 ゲート電極層 (78 B) と接しない面とに挟まれた前記第 5半導体層 (75) に、 前記第 1ゲート電極層 (78A) とほぼ同じ不純物濃度を有し、 かつ、 同 電位を有する第 1導電型 (p) の第 2不純物注入領域 (79B) と、
を備える横型接合型電界効果トランジスタ。
33. 半導体基板 (2) 上に位置する第 1導電型不純物 (p) を含む第 1半導 体層 ( 7 1 ) と、
前記第 1半導体層 (71) の上に位置し、 第 1導電型不純物 ( ) を含む第 2半導体層 (72) と、
前記第 1半導体層 (71) の上に、 かつ、 前記第 2半導体層 (72) ί して位置し、 第 2導電型不純物 (η) を含む第 3半導体層 (73) と、 前記第 1半導体層 (7 1) の上に、 かつ、 前記第 3半導体層 (73) に隣接 して位置し、 第 1導電型不純物 (p) を含む第 4半導体層 (74) と、
前記第 2半導体層 (72) 、'前記第 3半導体層 (73) および前記第 4半導 体層 (74) 中において所定の間隔を隔てて設けられ、 前記第 3半導体層 (7 3) の不純物濃度よりも高い濃度の第 2導電型 (η) の不純物を含むソース/ ドレイン領域層 (6, 8) と、
前記第 2半導体層.(72) 中の前記ソース/ドレイン領域層 (6, 8) の間 において、 その一方の側面が前記第 3半導体層 (73) にまで延在するように 設けられ、 前記第 3半導体層 ( 7 3) の不純物濃度よりも高い第 1導電型 (p) の不純物濃度を含むゲート電極層 (78A) と、
前記第 4半導体層 (74) と前記ゲート電極層 (78A) とに挟まれた前記 第 3半導体層 (73) に、 前記ゲート電極層 (78A) とほぼ同じ不純物濃度 を有し、 力つ同電位を有する第 1導電型 (p) の不純物注入領域 (79A) と、 を備える横型接合型電界効果トランジスタ。
34. 前記第 2半導体層 (72) と、 前記第 3半導体層 (73) と、 前記第 4 半導体層 (74) の不純物濃度と膜厚さとがほぼ同じである、 請求項 3 3に記 載の横型電界効果トランジスタ。
35. 前記ゲート電極層 (78A) と前記不純物注入領域 (79A) との間の 間隔 (w7 1) 、 前記第 3半導体層 (73) と前記ゲート電極層 (78A) との接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さく、
前記不純物注入領域 (79A) と前記第 4半導体層 (74) との間の間隔が、 前記第 3半導体層 (7 3) と前記ゲート電極層 (78A) との接合における拡 散電位で広がる空乏層の間隔よりも小さいことを特徴とする、 請求項 3 3に記 載の横型接合型電界効果トランジスタ。
36. 前記第 3半導体層 (73) と前記第 4半導体層 (74) との間に、 前記 第 2半導体層 (72) と前記第 3半導体層 (73) と前記ゲート電極層 (78 A) と前記不純物注入領域 (7 9A) とほぼ同じ構造である単位トランジスタ 構造を 1つまたは 2以上備える、 請求項 3 3に記載の横型接合型電界効果トラ
3 7. 半導体基板 (2) 上に位置する第 1導電型不純物 (p) を含む第 1半導 体層 (8 1) と、
前記第 1半導体層 (81) の上に位置し、 第 1導電型不純物 (p) を含む第 2半導体層 (82) と、
5 前記第 1半導体層 (81) の上に、 かつ、 前記第 2半導体層 (8 2) に隣接 して位置し、 第 2導電型不純物 (n) を含む第 3半導体層 (83) と、
前記第 1半導体層 (81) の上に、 かつ、 前記第 3半導体層 (8 3) に隣接 して位置し、 第 1導電型不純物 (p) を含む第 4半導体層 (84) と、
前記第 2半導体層 (82) 、 前記第 3半導体層 (8 3) および前記第 4半導 10 体層 (84) 中において所定の間隔を隔てて設けられ、 前記第 3半導体層 (8 3) の不純物濃度よりも高い濃度の第 2導電型 (n) の不純物を含むソース Z ドレイン領域層 (6, 8) と、
前記第 2半導体層 (82) 中の前記ソース/ドレイン領域層 (6, 8) の間 において、 その一方の側面が前記第 3半導体層 (8 3) にまで延在するように 15 設けられ、 前記第 3半導体層 (8 3) の不純物濃度よりも高い第 1導電型
(p) の不純物濃度を含む第 1ゲート電極層 (88A) と、
前記第 4半導体層 (84) 中の前記ソース/ドレイン領域層 (6, 8) の間 において、 その一方の側面が前記第 3半導体層 (8 3) にまで延在するように 設けられ、 前記第 1ゲート電極層 (88A) とほぼ同じ不純物濃度を有し、 か 20 つ同電位を有する第 1導電型 (P) の第 2ゲート電極層 (88 B) と、
を備える横型接合型電界効果トランジスタ。
38. 前記第 2半導体層 (82) と、 前記第 3半導体層 (83) と、 前記第 4 半導体層 (84) との不純物濃度と膜厚さとがほぼ同じである、 請求項 37に 記載の横型接合型電界効果トランジスタ。
25 3 9. 前記第 1ゲート電極層 (88A) と、 前記第 2ゲート電極層 (88 B) の最も近接する面同士の間隔 (w8 1) ί 前記第 3半導体層 (7 3) と前記 第 1ゲート電極層 (88Α) との接合における拡散電位で広がる空乏層の間隔
' の 2倍よりも小さいことを特徴とする、 請求項 3 7に記載の横型接合型電界効 果トランジスタ。
40. 半導体基板 (2) 上に位置する第 1導電型不純物 (p) を含む第 1半導 体層 (81) と、
前記第 1半導体層 (8 1) の上に位置し、 第 1導電型不純物 (p) を含む第 2半導体層 (82) と、
前記第 1半導体層 (8 1) の上に、 かつ、 前記第 2半導体層 (82) に隣接 ' して位置し、 第 2導電型不純物 (n) を含む第 3半導体層 (83) と、
前記第 1半導体層 (8 1) の上に、 かつ前記第 3半導体層 (83) に隣接し て位置し、 第 1導電型不純物 (p) を含む第 4半導体層 (84) と、
前記第 1半導体層 (8 1) の上に、 かつ前記第 4半導体層 (84) に隣接し て位置し、 第 2導電型不純物 (n) を含む第 5半導体層 (85) と、
前記第 1半導体層 (8 1) の上に、 かつ、 前記第 5半導体層 (85) に隣接 して位置し、 第 1導電型不純物 (p) を含む第 6半導体層と、
前記第 2半導体層 (82) 、 前記第 3半導体層 (8 3) 、 前記第 4半導体層 (84) 、 前記第 5半導体層 (85) および前記第 6半導体層 (86) 中にお いて所定の間隔を隔てて設けられ、 前記第 3半導体層 (83) および前記第 5 半導体層 (8 5) の不純物濃度よりも高い濃度の第 2導電型 (n) の不純物を 含むソース Zドレイン領域層 (6, 8) と、
前記第 2半導体層 (82) 中の前記ソース/ドレイン領域層 (6, 8) の間 において、 その一方の側面が前記第 3半導体層 (8 3) にまで延在するように 設けられ、 前記第 3半導体層 (8 3) の不純物濃度よりも高い第 1導電型 (p) の不純物濃度を含む第 1ゲート電極層 (88A) と、
前^第 4半導体層 (84) 中の前記ソース Zドレイン領域層 (6, 8) の間 においてその一方の側面が前記第 3半導体層 (83) にまで延在し、 他方の側 面が前記第 5半導体層 (8 5) にまで延在するように設けられ、 前記第 1ゲー ト電極層 (88A) とほぼ同じ不純物濃度を有し、 かつ同電位を有する第 1導 電型 (p) の第 2ゲート電極層 (88B) と、
前記第 6半導体層 (86) の前記ソース Zドレイン領域層 (6, 8) の間に おいてその一方の側面が前記第 5半導体層 (8 5) にまで延在するように設け られ、 前記第 1ゲート電極層とほぼ同じ不純物濃度を有し、 かつ、 同電位を有 する第 1導電型 (p) の第 3ゲート電極層 (88C) と、
を備える横型接合型電界効果トランジスタ。
4 1. 前記第 2半導体層 (82) と、 前記第 3半導体層 (8 3) と、 前記第 4 半導体層 (84) と、 前記第 5半導体層 (8 5) と、 前記第 6半導体層 (8 6) との不純物濃度と膜厚さとがほぼ同じである、 請求項 40に記載の横型接 合型電界効果トランジスタ。
42. 前記第 1ゲート電極層 (88A) と、 前記第 2ゲート電極層 (8 8 B) の最も近接する面同士の間隔 (w8 1) が、 前記第 3半導体層 (8 3) と前記 第 1ゲート電極層 (88A) との接合における拡散電位で広がる空乏層の間隔 の 2倍よりも小さく、
前記第 2ゲート電極層 (88 B) と前記第 3ゲート電極層 (88 C) の最も 近接する面同士の間隔 (w82) ヽ 前記第 3半導体層 (8 3) と前記第 1ゲ ート電極層 (88A) との接合における拡散電位で広がる空乏層の間隔の 2倍 よりも小さいことを特徴とする、 請求項 40に記載の横型接合型電界効果トラ
43. 前記第 5半導体層 (85) と前記第 6半導体層 (86) との間に、 前記 第 4半導体層 (84) と前記 5半導体層 (85) と前記第 2ゲート電極層 (8 8 B) とほぼ同じ構造である単位トランジスタ構造を 1つ以上備える、 請求項 40に記載の横型接合型電界効果トランジスタ。
44. 半導体基板 (2) 上に位置する第 1導電型不純物 (p) を含む第 1半導 体層 (9 1) と、
前記第 1半導体層 (9 1) 上に位置し、 第 1導電型不純物 (P) を含む第 2 半導体層 (92) と、
前記第 1半導体層 (9 1) の上に、 かつ、 前記第 2半導体層 (9 2) t して位置し、 第 2導電型不純物 (n) を含む第 3半導体層 (93) と、
前 ¾第 1半導体層 (9 1) の上に、 かつ、 前記第 3半導体層 (9 3) t して位置し、 第 1導電型不純物 (p) を含む第 4半導体層 (94) と、
前記第 2半導体層 (92) 、 前記第 3半導体層 (9 3) および前記第 4半導 体層 (94) 中において所定の間隔を隔てて設けられ、 前記第 3半導体層 (9 3) の不純物濃度よりも高い濃度の第 2導電型 (n) の不純物を含むソース/ ドレイン領域層 (6, 8) と、
前記第 2半導体層 (92) 中の前記ソース/ドレイン領域層 (6, 8) の間 において、 その一方の側面が前記第 3半導体層 (9 3) にまで延在するように 設けられ、 前記第 3半導体層 ( 9 3) の不純物濃度よりも高い第 1導電型 (p) の不純物濃度を含む第 1ゲート電極層 (98A) と、
前記第 4半導体層 (94) 中の前記ソース/ドレイン領域層 (6, 8) の間 において、 その一方の側面が前記第 3半導体層にまで延在するように設けられ、 前記第 1ゲート電極層 (98A) とほぼ同じ不純物濃度を有し、 かつ同電位を 有する第 2ゲート電極層 (98 B) と、
前記第 1ゲート電極層 (98A) と前記第 2ゲート電極層 (98 B) とに挟 まれた前記第 3半導体層 (93) に、 前記第 1ゲート電極層 (98A) とほぼ 同じ不純物濃度を有し、 かつ同電位を有する第 1導電型 (p) の不純物注入領 域 (99 A) と、
を備える横型接合型電界効果トランジスタ。
45. 前記第 2半導体層 (92) と前記第 3半導体層 (93) と前記第 4半導 体層 (94) との不純物濃度と膜厚さとがほぼ同じである、 請求項 44に記載 の横型接合型電界効果トランジスタ。
46. 前記第 1ゲート電極層 ( 98 A) と、 前記不純物注入領域 ( 99 A) の 最も近接する面同士の間隔 (w91) ヽ 前記第 3半導体層 (93) と前記第 1ゲート電極層 (98A) との接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さく、
前記不純物注入領域 (99A) と、 前記第 2ゲート電極 (98 B) の最も近 接する面同士の間隔 (W92) 力 前記第 3半導体層 (93) と前記第 1ゲー ト電極層 (98A) との接合における拡散電位で広がる空乏層の間隔の 2倍よ りも小さいことを特徴とする、 請求項 44に記載の横型接合型電界効果トラン ジスタ。 .
47. 半導体基板 (2) 上に位置する第 1導電型不純物 (P) を含む第 1半導 体層 (9 1) と、 前記第 1半導体層 (91) の上に位置し、 第 1導電型不純物 (p) を含む第 2半導体層 (92) と、
前記第 1半導体層 (91) の上に、 かつ、 前記第 2半導体層 (92) に隣接 して位置し、 第 2導電型不純物 (n) を含む第 3半導体層 (93) と、
前記第 1半導体層 (9 1) の上にかつ前記第 3半導体層 (9 3) に隣接して 位置し、 第 1導電型不純物 (p) を含む第 4半導体層 (94) と、
前記第 1半導体層 (9 1) の上に、 かつ、 前記第 4半導体層 (94) に隣接 して位置し、 第 2導電型不純物 (n) を含む第 5半導体層 (95) と、
前記第 1半導体層 (91) の上に、 かつ、 前記第 5半導体層 (95) に隣接 して位置し、 第 1導電型不純物 (p) を含む第 6半導体層 (96) と、
前記第 2半導体層 (92) 、 前記第 3半導体層 (9 3) 、 前記第 4半導体層 (94) 、 前記第 5半導体層 (95) および前記第 6半導体層 (96) 中にお いて所定の間隔を隔てて設けられ、 前記第 3半導体層 (93) および前記第 5 半導体層 (9 5) の不純物濃度よりも高い濃度の第 2導電型 (n) の不純物を 含むソース Zドレイン領域層 (6, 8) と、
前記第 2半導体層 (92) 中の前記ソース Zドレイン領域層 (6, 8) の間 において、 その一方の側面が前記第 3半導体層 (9 3) にまで延在するように 設けられ、 前記第 3半導体層 (9 3) の不純物濃度よりも高い第 1導電型 (p) の不純物濃度を含む第 1ゲート電極層 (98A) と、
前記第 4半導体層 (94) 中の前記ソース Zドレイン領域層 (6, 8) の間 において、 その一方の側面が前記第 3半導体層 (9 3) にまで延在し、 他方の 側面が前記第 5半導体層 (9 5) にまで延在するように設けられ、 前記第 1ゲ ート電極層 (98A) とほぼ同じ不純物濃度を有し、 かつ同電位を有する第 1 導電型 (P) の第 2ゲート電極層 (98 B) と、
前記第 6半導体層 (96) 中の前記ソース/ドレイン領域層 (6, 8) の間 において、 その一方の側面が前記第 5半導体層 (9 5) にまで延在するように 設けられ、 前記第 1ゲート電極層 (98A) とほぼ同じ不純物濃度を有し、 か つ、 同電位を有する第 1導電型 (p) の第 3ゲート電極層 (98 C) と、 前記第 1ゲート電極層 (98A) と前記第 2ゲート電極層 (98 B) とに挟 まれた前記第 3半導体層 (9 3 B) に、 前記第 1ゲート電極層 (9 8 A) とほ ぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 1導電型 (p) の第 1不純 物注入領域 ( 9 9 A) と、
前記第 2ゲート電極 (9 8 B) と前記第 3ゲート電極層 (9 8 C) とに挟ま れた前記第 5半導体層 (9 5) に、 前記第 1ゲート電極層 (9 8 A) とほぼ同 じ不純物濃度を有し、 かつ同電位を有する第 1導電型 (p) の第 2不純物注入 領域 (9 9 B) と、
を備える横型接合型電界効果トランジスタ。
4 8. 前記第 2半導体層 (9 2) と、 前記第 3半導体層 (9 3 ) と、 前記第 4 半導体層 (9 4) と、 前記第 5半導体層 (9 5 ) と、 前記第 6半導体層 (9 6) との不純物濃度と膜厚さとがほぼ同じである、 請求項 4 7に記載の横型接 合型電界効果トランジスタ。
4 9. 前記第 1ゲート電極層 (9 8 A) と、 前記第 1不純物注入領域 (9 9 A) の最も近接する面同士の間隔 (w 9 1 ) 力 S、 前記第 3半導体層 (9 3 ) と 前記第 1ゲート電極層 (9 8 A) との接合における拡散電位で広がる空乏層の 間隔の 2倍よりも小さく、
前記第 1不純物注入領域 (9 9 A) と、 前記第 2ゲート電極層 (9 8 B) の 最も近接する面同士の間隔 (w 9 2) 、 前記第 3半導体層 (9 3 ) と前記第 1ゲート電極層 (9 8 Α) との接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さく、
前記第 2ゲート電極層 (9 8 Β) と、 前記第 2不純物注入領域 (9 9 Β) の 最も近接する面同士の間隔 (w 9 3 ) 力 前記第 3半導体層 (9 3 ) と前記第 1ゲート電極層 (9 8 A) との接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さく、
前記第 2不純物注入領域 (9 9 B) と、 前記第 3ゲート電極層 (9 8 C) の 最も近接する面同士の間隔 (w 94) 力 前記第 3半導体層 (9 3 ) と前記第 1ゲート電極層 (9 8 A) との接合における拡散電位で広がる空乏層の間隔の 2倍よりも小さいことを特徴とする、 請求項 4 7に記載の横型接合型電界効果
50. 前記第 5半導体層 (95) と前記第 6半導体層 (96) との間に、 前記 第 4半導体層 (94) と前記第 5半導体層 (9 5) と前記第 2ゲート電極層 (98 B) と前記第 2不純物注入領域 (9 9 B) とほぼ同じ構造である単位ト ランジスタ構造を 1つ以上備える、 請求項 47に記載の横型接合型電界効果ト ランジスタ。
5 1. 半導体基板 (2) 上に、 第 1導電型不純物 (p) を含む第 1半導体層 (1 1) を形成する工程と、
前記第 1半導体層 (1 1) の上に、 前記第 1半導体層 (1 1) の不純物濃度 よりも高い濃度の第 2導電型不純物 (n) を含む第 2半導体層 (1 2) を形成 する工程と、
前記第 2半導体層 (1 2) の上に、 第 1導電型不純物 (p) を含む第 3半導 体層 (1 3) を形成する工程と、
前記第 2半導体層 (12) と前記第 3半導体層 (1 3) とにまたがるように、 第 3半導体層 (1 3) の所定領域に不純物を導入して、 前記第 2半導体層 (1 2) の不純物濃度よりも高い第 1導電型 (p) の不純物濃度を含む第 1ゲート 電極層. (18 A) を形成する工程と、
前記第 3半導体層 (1 3) の上に、 第 2導電型不純物 (n) を含む第 4半導 体層 (14) を形成する工程と、
前記第 4半導体層 (14) の上に、 第 1導電型不純物 (p) を含む第 5半導 体層 (1 5) を形成する工程と、
前記第第 5半導体層 (1 5) の所定領域に不純物を導入して、 下面が前記第 4半導体層 (14) にまで延在し、 前記第 1ゲート電極層 (1 8A) とほぼ同 じ不純物濃度を有し、 かつ、 同電位を有する第 2ゲート電極層 (1 8 B) を形 成する工程と、
前記第 1ゲート電極層 (1 8A) および前記第 2ゲート電極層 (1 8 B) の 両側において、 前記第 5半導体層 (1 5) に不純物を導入して、 下面が前記第 2半導体層 (1 2) にまで延在し、 前記第 2半導体層 (1 2) および前記第 4 半導体層 (14) の不純物濃度よりも高い濃度の第 2導電型の不純物を含むソ ース Zドレイン領域層 (6, 8) を形成する工程と、 を備える、 横型接合型電界効果トランジスタの製造方法。
5 2. 半導体基板 (2) 上に、 第 1導電型不純物 (p) を含む第 1半導体層 (21) を形成する工程と、
前記第 1半導体層 (21) の上に、 前記第 1半導体層 (2 1) の不純物濃度 よりも高い濃度の第 2導電型不純物 (n) を含む第 2半導体層 (22) を形成 する工程と、
前記第 2半導体層 (22) の上に、 第 1導電型不純物 (p) を含む第 3半導 体層 (23) を形成する工程と、
前記第 2半導体層 (22) の所定領域に不純物を導入して、 前記第 2半導体 層 (22) 内に第 1導電型 (p) の第 1不純物注入領域 (29A) を形成する 工程と、
前記第 2半導体層 (22) と前記第 3半導体層 (23) とにまたがるように 不純物を導入して、 前記第 2半導体層 (22) の不純物濃度よりも高い第 1導 電型 (p) の不純物濃度を含む第 1ゲート電極層 (28A) を形成する工程と、 前記第 3半導体層 (23) の上に、 第 2導電型不純物 (n) を含む第 4半導 体層 (24) を形成する工程と、
前記第 4半導体層 (24) の上に、 第 1導電型不純物 (p) を含む第 5半導 体層 (25) を形成する工程と、
前記第 4半導体層 (24) の所定領域に不純物を導入して、 前記第 4半導体 層 (24) 内に前記第 1ゲート電極 (28A) とほぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 1導電型 (P) の第 2不純物注入領域 (29 B) を形 成する工程と、
前記第 5半導体層 (25) の所定領域に不純物を導入して、 下面が前記第 4 半導体層 (24) にまで延在するように設けられ、 前記第 1ゲート電極層 (2 8 A) とほぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 2ゲート電極層 (28B) を形成する工程と、
前記第 1ゲート電極層 (28A) および前記第 2ゲート電極層 (28 B) の 両側において、 前記第 5半導体層 (25) の所定領域に不純物を導入して、 下 面が前記第 2半導体層 (22) にまで延在するよう(こ設けられ、 前記第 2半導 体層 (22) および第 4半導体層 (24) の不純物濃度よりも高い濃度の第 2 導電型の不純物を含むソース/ドレイン領域層 (6, 8) を形成する工程と、 を備える横型接合型電界効果トランジスタの製造方法。
5 3. 半導体基板 (2) 上に、 第 1導電型不純物 (p) を含む第 1半導体層 (3 1) を形成する工程と、
前記第 1半導体層 (3 1) の上に、 前記第 1半導体層 (3 1) の不純物濃度 よりも高い濃度の第 2導電型不純物 (n) を含む第 2半導体層 (3 2) を形成 する工程と、
前記第 2半導体層 (32) の上に、 第 1導電型不純物 (p) を含む第 3半導 体層 (33) を形成する工程と、
前記第 3半導体層 (33) の上に、 第 2導電型不純物 (n) を含む第 4半導 体層 (34) を形成する工程と、
前記第 4半導体層 (34) の所定領域に不純物を導入し、 下面が前記第 2半 導体層 (32) にまで延在し、 上面が前記第 4半導体層 (34) にまで延在し、 前記第 2半導体層 (3 2) および前記第 4半導体層 (34) の不純物濃度より も高い第 1導電型 (p) の不純物濃度を含む第 1ゲート電極層 (38A) を形 成する工程と、
前記第 4半導体層 (34) の上に、 第 1導電型不純物 (p) を含む第 5半導 体層 (35) を形成する工程と、
前記第 5半導体層 (35) の所定領域に不純物を導入し、 下面が前記第 4半 導体層 (34) にまで延在するように設けられ、 前記第 1ゲート電極層 (38 A) とほぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 2ゲート電極層 (38 B) を形成する工程と、
前記第 1ゲート電極層 (38A) および前記第 2ゲート電極層 (38 B) の 両側において、 前記第 5半導体層 (35) の所定領域に不純物を導入して、 下 面が前記第 2半導体層 (32) にまで延在するように設けられ、 前記第 2半導 体層 (32) および第 4半導体層 (34) の不純物濃度よりも高い濃度の第 2 導電型(n)の不純物を含むソース Zドレイン領域層 (6, 8) と、
を備える横型接合型電界効果トランジスタの製造方法。
54. 半導体基板 (2) の上に、 第 1導電型不純物 (p) を含む第 1半導体層 (41) を形成する工程と、
前記第 1半導体層 (41) の上に、 前記第 1半導体層 (41) の不純物濃度 よりも高い濃度の第 2導電型不純物 (n) を含む第 2半導体層 (42) を形成 する工程と、
前記第 2半導体層 (42) の上に、 第 1導電型不純物 (p) を含む第 3半導 体層 (43) を形成する工程と、
前記第 3半導体層 (43) の上に、 第 2導電型不純物 (n) を含む第 4半導 体層 (44) を形成する工程と、
前記第 4半導体層 (44) の所定領域に不純物を導入して、 下面が前記第 2 半導体層 (42) にまで延在し、 上面が前記第 4半導体層 (44) にまで延在 し、 、 前記第 2半導体層 (42) および前記第 4半導体層 (44) の不純物濃 度よりも高い不純物濃度を含む第 1ゲート電極層 (48A) を形成する工程と、 前記第 2半導体層 (42) の所定領域に不純物を導入して、 前記第 2半導体 層 (42) 内に、 前記第 1ゲート電極層 (48A) とほぼ同じ不純物濃度を有 し、 かつ同電位を有する第 1導電型 (p) の第 1不純物注入領域 (49A) を 形成する工程と、
前記第 4半導体層 (44) の上に、 第 1導電型不純物 (p) を含む第 5半導 体層 (45) を形成する工程と、
前記第 5半導体層 (45) の所定領域に不純物を導入して、 下面が前記第 4 半導体層 (44) にまで延在するように設けられ、 前記第 1ゲート電極層 (4
8 A) とほぼ同じ不純物濃度を有し、 かつ、 同電位を有する第 1導電型 (P) の第 2ゲート電極層 (48B) を形成する工程と、
前記第 4半導体層 (44) の所定領域に不純物を導入して、 前記第 4半導体 層 (44) 内に、 前記第 1ゲート電極層 (48A) とほぼ同じ不純物濃度を有 し、 かつ同電位を有する第 1導電型 (p) の第 2不純物注入領域 (49 B) を 形成する工程と、
前記第 1ゲート電極層 (48A) および前記第 2ゲート電極層 (48 B) の 両側において、 下面が前記第 2半導体層 (42) にまで延在するように設けら れ、 前記第 2半導体層 (42) および第 4半導体層 (44) の不純物濃度より も高い濃度の第 2導電型の不純物を含むソース/ドレイン領域層 (6, 8) を 形成する工程と、 ·
を備える、 横型接合型電界効果トランジスタ。
5 5. 半導体基板 (2) 上に、 第 1導電型不純物 (p) を含む第 1半導体層 (5 1) を形成する工程と、
前記第 1半導体層 (5 1) の上に、 前記第 1半導体層の不純物濃度よりも高 い濃度の第 2導電型不純物 (n) を含む第 2半導体層 (52) を形成する工程 と、
前記第 2半導体層 (5 2) の上に、 第 1導電型不純物 (p) を含む第 3半導 体層 (53) を形成する工程と、
前記第 3半導体層 (53) の上に、 第 2導電型不純物 (n) を含む第 4半導 体層 (54) を形成する工程と、
前記第 4半導体層 (54) の上に、 第 1導電型不純物 (p) を含む第 5半導 体層 (55) を形成する工程と、
前記第 5半導体層 (55) 中の所定領域に不純物を導入することにより、 下 面が前記第 2半導体層 (52) にまで延在するように設けられ、 前記第 2半導 体層 (5 2) の不純物濃度よりも高い第 1導電型 (p) の不純物濃度を含み、 前記基板 (2) の平面方向に沿って互いに所定の間隔を隔てて配置される第 1 ゲート電極層 (58A) および第 2ゲート電極層 (58 B) を形成する工程と、 前記第 5半導体層 (55) 中の所定領域に不純物を導入することにより、 前 記第 1ゲート電極層 (58A) および前記第 2ゲート電極層 (58 B) の配置 方向に沿って前記第 1ゲート電極層 (5 8A) および前記第 2ゲート電極層 (58 B) を両側から挟みこみ、 下面が前記第 2半導体層 (52) にまで延在 するように設けられ、 前記第 2半導体層 (52) および第 4半導体層 (54) の不純物濃度よりも高い濃度の第 2導電型の不純物を含むソース/ドレイン領 域層 (6, 8) を形成する工程と、
を備える横型接合型電界効果トランジスタの製造方法。
5 6. 半導体基板 (2) 上に、 第 1導電型不純物 (p) を含む第 1半導体層 (61) を形成する工程と、
前記第 1半導体層 (6 1) の上に、 第 2導電型不純物 (n) を含む半導体層 (6 OA) を形成する工程と、
前記半導体層 (6 OA) 中の所定領域に、 前記基板 (2) の平面方向に沿つ て所定の間隔を隔てて第 1導電型不純物 (p) を導入することにより、 第 1導 電型不純物 (p) を含む第 2半導体層 (6 2) と第 2導電型不純物 (n) を含 む第 3半導体層 (63) とを形成する工程と、
前記第 2半導体層 (6 2) および前記第 3半導体層 (6 3) 中の所定領域に 不純物を導入することにより、 前記第 2半導体層 (62) および前記第 3半導 体層 (6 3) にまたがるように設けられ、 前記第 1半導体層 (61) の不純物 濃度よりも高い第 1導電型 (p) の不純物濃度を含むゲート電極層 (68A) を形成する工程と、
前記第 2半導体層 (62) および前記第 3半導体層 (6 3) の所定領域に不 純物を導入することにより、 前記第 2半導体層 (6 2) および前記第 3半導体 層 (6 3) が配置される方向に沿うとともに、 前記ゲート電極層 (68A) を 挟み込み、 前記第 3半導体層 (63) の不純物濃度よりも高い濃度の第 2導電 型 (n) の不純物を含むソース/ドレイン領域層 (6, 8) を形成する工程と、 を備える横型接合型電界効果トランジスタの製造方法。
5 7. 半導体基板 (2) 上に、 第 1導電型不純物 (P) を含む第 1半導体層 (71) を形成する工程と、
前記第 1半導体層 (7 1) の上に、 第 2導電型不純物 (n) を含む半導体層 (7 OA) を形成する工程と、
前記半導体層 (7 OA) 中の所定領域に、 前記基板 (2) の平面方向に沿つ て所定の間隔を隔てて第 1導電型不純物 (p) を導入することにより、 第 1導 電型不純物 (p) を含む第 2半導体層 (72) と第 2導電型不純物 (n) を含 む第 3半導体層 (73) とを形成する工程と、
前記第 2半導体層 (72) および前記第 3半導体層 (73) 中の所定領域に 不純物を導入することにより、 前記第 2半導体層 (72) および前記第 3半導 体層 (73) にまたがるように設けられ、 前記第 3半導体層 (73) の不純物 濃度よりも高い第 1導電型 (p) の不純物濃度を含むゲート電極層 (78A) と、 前記第 3半導体層 (73) の中に、 前記ゲート電極層 (78A) とほぼ同 じ不純物濃度を有し、 かつ、 同電位を有する第 1導電型 (p) の不純物注入領 域 (79A) とを形成する工程と、
前記第 2半導体層 (72) および前記第 3半導体層 (7 3) の所定領域に不 純物を導入することにより、 前記第 2半導体層 (72) および前記第 3半導体 層 (73) が配置される方向に沿うとともに、 前記ゲート電極層 (78A) お よび不純物注入領域 (79A) を挟み込み、 前記第 3半導体層 (7 3) の不純 物濃度よりも高い濃度の第 2導電型 (n) の不純物を含むソース/ドレイン領 域層 (6, 8) を形成する工程と、
を備える横型接合型電界効果トランジスタの製造方法。
5 8. 半導体基板 (2) 上に、 第 1導電型不純物 (p) を含む第 1半導体層 (81) を形成する工程と、
前記第 1半導体層 (8 1) の上に、 第 2導電型不純物 (n) を含む半導体層 (8 OA) を形成する工程と、
前記半導体層 (8 OA) 中の所定領域に、 前記基板 (2) の平面方向に沿つ て所定の間隔を隔てて第 1導電型不純物 (p) を導入することにより、 第 1導 電型不純物 (p) を含む第 2半導体層 (8 2) 、 第 2導電型不純物 (n) を含 む第 3半導体層 (83) 、 および、 第 1導電型不純物 (p) を含む第 4半導体 層 (84) を形成する工程と、
前記第 2半導体層 (82) 、 前記第 3半導体層 (83) 、 および、 前記第 4 半導体層 (84) 中の所定領域に不純物を導入することにより、 前記第 2半導 体層 (82) および前記第 3半導体層 (9 3) にまたがるように設けられ、 前 記第 3半導体層 (83) の不純物濃度よりも高い第 1導電型 (p) の不純物濃 度を含む第 1ゲート電極層 (88A) と、 前記第 3半導体層 (83) および前 記第 4半導体層 (84) にまたがるように設けられ、 前記第 1ゲート電極層 (8 8 A) とほぼ同じ不純物濃度を有し、 かつ同電位を有する第 1導電型 (p) の第 2ゲート電極層 (88B) とを形成する工程と、
前記第 2半導体層 (82) 、 前記第 3半導体層 (8 3) 、 および、 前記第 4 半導体層 (84) の所定領域に不純物を導入することにより、 前記第 2半導体 層 (82) 、 前記第 3半導体層 (83) 、 および、 前記第 4半導体層 (84) が配置される方向に沿うとともに、 前記 1ゲート電極層 (88A) および前記 第 2ゲート電極層 ( 88 B ) を挟み込み、 前記第 3半導体層 (83) の不純物 濃度よりも高い濃度の第 2導電型 (n) の不純物を含むソース/ドレイン領域 層 (6, 8) を形成する工程と、
を備える横型接合型電界効果トランジスタの製造方法。
5 9. 半導体基板 (2) 上に、 第 1導電型不純物 (p) を含む第 1半導体層 (9 1) を形成する工程と、
前記第 1半導体層 (9 1) の上に、 第 2導電型不純物 (n) を含む半導体層 (9 OA) を形成する工程と、
前記半導体層 (8 OA) 中の所定領域に、 前記基板 (2) の平面方向に沿つ て所定の間隔を隔てて第 1導電型不純物 (p) を導入することにより、 第 1導 電型不純物 (p) を含む第 2半導体層 (92) 、 第 2導電型不純物 (n) を含 む第 3半導体層 (93) 、 および、 第 1導電型不純物 (p) を含む第 4半導体 層 (94) を形成する工程と、
前記第 2半導体層 (92) 、 前記第 3半導体層 (93) 、 および、 前記第 4 半導体層 (94) 中の所定領域に不純物を導入することにより、 前記第 2半導 体層 (92) および前記第 3半導体層 (9 3) にまたがるように設けられ、 前 記第 3半導体層 (93) の不純物濃度よりも高い第 1導電型 (p) の不純物濃 度を含む第 1ゲート電極層 (98A) と、 前記第 3半導体層 (93) および前 記第 4半導体層 (94) にまたがるように設けられ、 前記第 1ゲート電極層 (9 8 A) とほぼ同じ不純物濃度を有し、 かつ同電位を有する第 1導電型 (p) の第 2ゲート電極層 (98 B) と、 前記第 1ゲート電極層 (98A) お よび前記第 2ゲート電極層 (98B) に挟まれた前記第 3半導体層 (93) に、 前記第 1ゲート電極層 (98A) とほぼ同じ不純物濃度を有し、 かつ同電位を 有する第 1導電型 (p) の不純物注入領域 (99A) とを形成する工程と、 前記第 2半導体層 (92) 、 前記第 3半導体層 (93) 、 および、 前記第 4 半導体層 (94) の所定領域に不純物を導入することにより、 前記第 2半導体 層 (92) 、 前記第 3半導体層 (93) 、 および、 前記第 4半導体層 (94) が配置される方向に沿うとともに、 前記 1ゲート電極層 (98A) 、 前記第 2 ゲート電極層 (98 B) および不純物注入領域 (9 9A) を挟み込み、 前記第 3半導体層 (9 3) の不純物濃度よりも高い濃度の第 2導電型 (n) の不純物 を含むソース ドレイン領域層 (6, 8) を形成する工程と、
を備える横型接合型電界効果トランジスタの製造方法。
PCT/JP2002/012608 2002-03-15 2002-12-02 Transistor a effet de champ a jonction laterale et son procede de fabrication WO2003079455A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US10/496,040 US7049644B2 (en) 2002-03-15 2002-12-02 Lateral junction field effect transistor and method of manufacturing the same
KR1020047014319A KR100876487B1 (ko) 2002-03-15 2002-12-02 횡형 접합형 전계효과트랜지스터 및 그 제조방법
AU2002354162A AU2002354162A1 (en) 2002-03-15 2002-12-02 Lateral junctiion field-effect transistor and its manufacturing method
EP02786001A EP1487024A4 (en) 2002-03-15 2002-12-02 LATERAL JUNCTION FIELD EFFECT TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME
CA002465340A CA2465340A1 (en) 2002-03-15 2002-12-02 Lateral junction field effect transistor and method of manufacturing the same
US11/402,701 US7420232B2 (en) 2002-03-15 2006-04-11 Lateral junction field effect transistor and method of manufacturing the same
US12/179,320 US7671387B2 (en) 2002-03-15 2008-07-24 Lateral junction field effect transistor and method of manufacturing the same
US12/552,212 US7671388B2 (en) 2002-03-15 2009-09-01 Lateral junction field effect transistor and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002071944A JP3925253B2 (ja) 2002-03-15 2002-03-15 横型接合型電界効果トランジスタおよびその製造方法
JP2002-71944 2002-03-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10496040 A-371-Of-International 2002-12-02
US11/402,701 Division US7420232B2 (en) 2002-03-15 2006-04-11 Lateral junction field effect transistor and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2003079455A1 true WO2003079455A1 (fr) 2003-09-25

Family

ID=28035142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012608 WO2003079455A1 (fr) 2002-03-15 2002-12-02 Transistor a effet de champ a jonction laterale et son procede de fabrication

Country Status (9)

Country Link
US (4) US7049644B2 (ja)
EP (1) EP1487024A4 (ja)
JP (1) JP3925253B2 (ja)
KR (1) KR100876487B1 (ja)
CN (1) CN100379029C (ja)
AU (1) AU2002354162A1 (ja)
CA (2) CA2708358A1 (ja)
TW (1) TWI248680B (ja)
WO (1) WO2003079455A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10325748B4 (de) * 2003-06-06 2008-10-02 Infineon Technologies Ag Sperrschicht-Feldeffekttransistor (JFET) mit Kompensationsstruktur und Feldstoppzone
JP4963120B2 (ja) * 2006-02-14 2012-06-27 独立行政法人産業技術総合研究所 光電界効果トランジスタ,及びそれを用いた集積型フォトディテクタ
US7646043B2 (en) * 2006-09-28 2010-01-12 Cree, Inc. Transistors having buried p-type layers coupled to the gate
JP2008282878A (ja) * 2007-05-08 2008-11-20 Rohm Co Ltd 半導体装置およびその製造方法
US7977714B2 (en) * 2007-10-19 2011-07-12 International Business Machines Corporation Wrapped gate junction field effect transistor
US9450050B2 (en) * 2009-11-30 2016-09-20 Alpha And Omega Semiconductor Incorporated Lateral super junctions with high substrate breakdown and build in avalanche clamp diode
US8373208B2 (en) * 2009-11-30 2013-02-12 Alpha And Omega Semiconductor Incorporated Lateral super junction device with high substrate-gate breakdown and built-in avalanche clamp diode
KR20130040383A (ko) * 2011-10-14 2013-04-24 주식회사 동부하이텍 고전압 트랜지스터 및 그의 제조방법
JP2013201190A (ja) * 2012-03-23 2013-10-03 Toshiba Corp 接合形電界効果トランジスタ及びその製造方法
JP2015125997A (ja) * 2013-12-25 2015-07-06 キヤノン株式会社 撮像装置、撮像システム、および、撮像装置の製造方法。
KR101866673B1 (ko) * 2013-12-25 2018-06-11 캐논 가부시끼가이샤 촬상 장치, 촬상 시스템 및 촬상 장치의 제조 방법
JP6265731B2 (ja) * 2013-12-25 2018-01-24 キヤノン株式会社 撮像装置、撮像システム、および、撮像装置の製造方法。
TWI553868B (zh) * 2014-04-03 2016-10-11 世界先進積體電路股份有限公司 半導體裝置與其形成方法
EP3696863B1 (en) * 2019-02-15 2021-10-13 Infineon Technologies Austria AG Lateral transistor device
US11869983B2 (en) * 2020-03-12 2024-01-09 International Business Machines Corporation Low voltage/power junction FET with all-around junction gate
KR102546323B1 (ko) * 2021-07-02 2023-06-21 삼성전자주식회사 전계 효과 게이트를 가지는 질화물 반도체 소자
WO2024014510A1 (ja) * 2022-07-14 2024-01-18 国立大学法人京都大学 SiC接合型電界効果トランジスタ及びSiC相補型接合型電界効果トランジスタ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0053854A1 (en) 1980-12-10 1982-06-16 Philips Electronics Uk Limited High voltage semiconductor devices
JPS63131579A (ja) * 1986-11-21 1988-06-03 Hitachi Ltd 半導体装置
JPH025533A (ja) * 1988-06-24 1990-01-10 Nec Corp 接合型電界効果トランジスタ及びその製造方法
US5012305A (en) 1986-11-17 1991-04-30 Linear Technology Corporation High speed junction field effect transistor for use in bipolar integrated circuits
EP0735589A2 (en) * 1995-03-30 1996-10-02 Kabushiki Kaisha Toshiba Semiconductor device with a trench gate and method of manufacturing the same
GB2355584A (en) 1996-01-22 2001-04-25 Fuji Electric Co Ltd A semiconductor device having a drift region
JP2001274414A (ja) * 2000-03-24 2001-10-05 Toshiba Corp 電力用半導体素子およびその駆動方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3755012A (en) * 1971-03-19 1973-08-28 Motorola Inc Controlled anisotropic etching process for fabricating dielectrically isolated field effect transistor
US5264713A (en) * 1991-06-14 1993-11-23 Cree Research, Inc. Junction field-effect transistor formed in silicon carbide
US5412224A (en) * 1992-06-08 1995-05-02 Motorola, Inc. Field effect transistor with non-linear transfer characteristic
SE500815C2 (sv) * 1993-01-25 1994-09-12 Ericsson Telefon Ab L M Dielektriskt isolerad halvledaranordning och förfarande för dess framställning
US5436499A (en) * 1994-03-11 1995-07-25 Spire Corporation High performance GaAs devices and method
US5399887A (en) * 1994-05-03 1995-03-21 Motorola, Inc. Modulation doped field effect transistor
JP2713205B2 (ja) * 1995-02-21 1998-02-16 日本電気株式会社 半導体装置
US6005267A (en) * 1995-09-29 1999-12-21 Itt Corporation MES/MIS FET with split-gate RF input
US6800903B2 (en) * 1996-11-05 2004-10-05 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6207994B1 (en) * 1996-11-05 2001-03-27 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
JPH10209174A (ja) * 1997-01-27 1998-08-07 Nikon Corp 接合型電界効果トランジスタ
US5714777A (en) * 1997-02-19 1998-02-03 International Business Machines Corporation Si/SiGe vertical junction field effect transistor
US6246083B1 (en) * 1998-02-24 2001-06-12 Micron Technology, Inc. Vertical gain cell and array for a dynamic random access memory
JP3812421B2 (ja) * 2001-06-14 2006-08-23 住友電気工業株式会社 横型接合型電界効果トランジスタ
JP3764401B2 (ja) * 2002-04-18 2006-04-05 株式会社東芝 半導体装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0053854A1 (en) 1980-12-10 1982-06-16 Philips Electronics Uk Limited High voltage semiconductor devices
US5012305A (en) 1986-11-17 1991-04-30 Linear Technology Corporation High speed junction field effect transistor for use in bipolar integrated circuits
JPS63131579A (ja) * 1986-11-21 1988-06-03 Hitachi Ltd 半導体装置
JPH025533A (ja) * 1988-06-24 1990-01-10 Nec Corp 接合型電界効果トランジスタ及びその製造方法
EP0735589A2 (en) * 1995-03-30 1996-10-02 Kabushiki Kaisha Toshiba Semiconductor device with a trench gate and method of manufacturing the same
GB2355584A (en) 1996-01-22 2001-04-25 Fuji Electric Co Ltd A semiconductor device having a drift region
JP2001274414A (ja) * 2000-03-24 2001-10-05 Toshiba Corp 電力用半導体素子およびその駆動方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAMINSKI N. ET AL.: "Punch-through behaviour wide bandgap materials (with example in 6H-SiC) and its benefit to JFETs", MATERIALS SCIENCE FORUM, vol. 264-268, 1998, pages 1073 - 1076, XP002972211 *
MUGGLI ET AL.: "IBM Technical Disclosure Bulletin", vol. 24, 1 July 1981, IBM CORPORATION, article "double gate bipolar compatible N-channel junction FET", pages: 997 - 998

Also Published As

Publication number Publication date
US20080277696A1 (en) 2008-11-13
AU2002354162A1 (en) 2003-09-29
EP1487024A4 (en) 2009-10-21
US20060202238A1 (en) 2006-09-14
US7420232B2 (en) 2008-09-02
CA2465340A1 (en) 2003-09-25
US7671387B2 (en) 2010-03-02
KR20040091130A (ko) 2004-10-27
US7049644B2 (en) 2006-05-23
JP2003273126A (ja) 2003-09-26
CA2708358A1 (en) 2003-09-25
TWI248680B (en) 2006-02-01
US20050093017A1 (en) 2005-05-05
CN100379029C (zh) 2008-04-02
US20090315082A1 (en) 2009-12-24
EP1487024A1 (en) 2004-12-15
KR100876487B1 (ko) 2008-12-31
TW200308094A (en) 2003-12-16
US7671388B2 (en) 2010-03-02
CN1620730A (zh) 2005-05-25
JP3925253B2 (ja) 2007-06-06

Similar Documents

Publication Publication Date Title
US10529848B2 (en) Insulated-gate semiconductor device and method of manufacturing the same
JP3385938B2 (ja) 炭化珪素半導体装置及びその製造方法
JP6367760B2 (ja) 絶縁ゲート型スイッチング装置とその製造方法
US7420232B2 (en) Lateral junction field effect transistor and method of manufacturing the same
JP2004327598A (ja) 半導体装置及びその製造方法
US9698217B1 (en) Semiconductor device
JP2018046163A (ja) 半導体装置および半導体装置の製造方法
WO2008075488A1 (ja) 横型接合型電界効果トランジスタ
US20220293787A1 (en) Trench bottom shielding methods and approaches for trenched semiconductor device structures
US20220052152A1 (en) Sidewall dopant shielding methods and approaches for trenched semiconductor device structures
WO2012105170A1 (ja) 半導体装置およびその製造方法
WO2013175880A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2001127285A (ja) 縦型電界効果トランジスタ
JP2010027833A (ja) 炭化珪素半導体装置およびその製造方法
CN114664934B (zh) 一种含有场板的dmos晶体管及其制作方法
JP6029330B2 (ja) 半導体装置およびその製造方法
JP3952814B2 (ja) 炭化珪素半導体装置およびその製造方法
KR102217856B1 (ko) 트렌치 게이트 하부에 쉴드를 형성하는 방법
JP4128117B2 (ja) 半導体装置
CN102379032A (zh) 横向结型场效应晶体管
JP2009130098A (ja) 半導体装置の製造方法
JP4810736B2 (ja) 横型接合型電界効果トランジスタおよびその製造方法
JP2002231730A (ja) 横型接合型電界効果トランジスタおよびその製造方法
JP2024029440A (ja) 半導体装置とその製造方法
JP2023024802A (ja) スイッチング素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2465340

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10496040

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20028282019

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002786001

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047014319

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020047014319

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002786001

Country of ref document: EP