WO2003082436A2 - Filtration media comprising granules of binder-agglomerated active component - Google Patents

Filtration media comprising granules of binder-agglomerated active component Download PDF

Info

Publication number
WO2003082436A2
WO2003082436A2 PCT/US2003/008755 US0308755W WO03082436A2 WO 2003082436 A2 WO2003082436 A2 WO 2003082436A2 US 0308755 W US0308755 W US 0308755W WO 03082436 A2 WO03082436 A2 WO 03082436A2
Authority
WO
WIPO (PCT)
Prior art keywords
binder
media
particles
active
binder material
Prior art date
Application number
PCT/US2003/008755
Other languages
French (fr)
Other versions
WO2003082436A3 (en
Inventor
Roger P. Reid
Bruce Saaski
Original Assignee
Omnipure Filter Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omnipure Filter Company filed Critical Omnipure Filter Company
Priority to AU2003228347A priority Critical patent/AU2003228347A1/en
Priority to DE60333441T priority patent/DE60333441D1/en
Priority to US10/509,439 priority patent/US20050221089A1/en
Priority to EP03726094A priority patent/EP1487561B1/en
Priority to AT03726094T priority patent/ATE474646T1/en
Publication of WO2003082436A2 publication Critical patent/WO2003082436A2/en
Publication of WO2003082436A3 publication Critical patent/WO2003082436A3/en
Priority to US12/016,992 priority patent/US7740141B2/en
Priority to US12/821,011 priority patent/US8167145B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28095Shape or type of pores, voids, channels, ducts
    • B01J20/28097Shape or type of pores, voids, channels, ducts being coated, filled or plugged with specific compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/324Inorganic material layers containing free carbon, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3295Coatings made of particles, nanoparticles, fibers, nanofibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/48Processes of making filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • Filtration Media Comprising Granules of Binder- Agglomerated Active Component
  • the invention relates to a high-surface-area, high-activity granular media for liquid filtration and/or treatment. More specifically, the preferred embodiment relates to a two- part media composition of binder and active particles, without a conventional solid support core.
  • the media comprises binder-agglomerated active materials, wherein a binder material holds together particles of active component so that a high percentage of the active particles are exposed to the liquid being filtered/treated.
  • the granules may take the form, for example, of an inner core and/or matrix of binder that supports an active component coating, or the form of active particles bound together by particles, globules, or amorphous shapes of binder.
  • the primary particulate, binder particulate, and support particulate are mixed and the mixture is heated to a temperature within about 25 degrees of the softening temperature of the binder material.
  • the binder material does not soften to the point where it readily flows and masks the internal pores of the primary and support materials.
  • This procedure causes the binder material to lose shape and become sufficiently viscous to adhere the primary particles to the support material, with the binder in-between.
  • the mixture is cooled to ambient whereby adhesion of the binder material between the primary material and the support material becomes substantially permanent.
  • the result is a particulate media with particles having diameters generally equal to the diameter of the support material plus the layers of binder and primary material.
  • the invented media comprise binder and active materials agglomerated together to form media granules.
  • the agglomerated materials preferably comprise only two components, namely, the binder plus primary active material adhering to, or connected by, the binder. These agglomerated materials may comprise a core/support of polymeric binder holding active materials on the binder surface and/or active materials stuck together by relatively small and discontinuous amounts of binder.
  • the invented granules have a large surface area of active material exposed to the liquid being filter/treated, because of the two- component structure and because of the presence of many void spaces in each granule that provide access to active sites in the interior of the granule.
  • the invented granules of agglomerated materials preferably do not include a large solid support coated by an intermediate layer of binder and an outer layer of active material.
  • Figures IA and IB are prior art filtration media, including a solid support, a binder material, and a primary material.
  • Figure 2 is a depiction of one embodiment of a media according to the invention with a binder matrix coated with active primary material.
  • Figure 3 A is a depiction of another embodiment of the invented granular media with a plurality of generally spherical binder cores each coated with active primary material, and the binder cores adhering to each other or connected by additional binder.
  • Figure 3B is a depiction of another embodiment of the invented granular media comprising active primary material connected by small, discontinuous connectors of binder.
  • Figure 4 is a depiction of another embodiment of the invented media, which has been compressed and then re-separated into granules.
  • Figure 5 A schematically illustrates particle sizes for manufacture of granular media according to the prior art.
  • Figure 5B schematically illustrates particle sizes for manufacture of one embodiment of the invention.
  • the preferred media granule is made from two components, which are a binder that becomes a core/support or a connecting means, and a material that is active to accomplish the filtration and/or treatment of the fluid. Because the core/support/connecting means is a binder material, no further component besides these two is necessary, that is, no solid support particle is needed.
  • each granule comprises a single, generally spherical core of binder material coated with particulate active material.
  • clumped,” “matrix,” and “connecting" binder shapes are achieved in the granules depend chiefly on the relative amounts of binder and active particles, and on the softening point/melt index of the binder, the temperature of the manufacturing process, and the sizes and type of binder and active materials. With higher melt index and/or more mixing time or higher temperature during the heating step, and optionally with compression, the binder particles tend to become a "matrix,” which takes the form of a plurality of binder particles sticking together and substantially losing their original shape to deform or "smear" into a network of irregularly-shaped portions with internal voids.
  • binder particles With lower melt index and/or less mixing time or lower temperature during the heating step, and with low or preferably no compression, the binder particles tend to stick together but generally retain their original shape. With lower amounts of binder relative to active particles, binder particles tend to stick in between and serve as connectors between several active particles, rather than to stick to multiple other binder particles to form a binder clump or matrix.
  • the two components of the granules may be selected from lists of conventional binders and primary active materials.
  • the binder is preferably a polymeric binder that is inactive or inert to the fluid, preferably performing no treatment or chemical action on the fluid being treated, and preferably no physical action upon the fluid being treated.
  • the coating material is preferably an active material chosen for a specific purpose or purposes of treatment. Examples of active coating materials include metal sorbent or carbon. Also, metal shavings or particles may be effective active material.
  • prior three-component granules G' are designed to have, relative to each other, a large support particle (S), a outer layer of medium size primary particles (P), and small binder particles (B) melted together into a middle layer.
  • S large support particle
  • P outer layer of medium size primary particles
  • B small binder particles
  • the preferred methods and compositions of the invention result in a very high active surface area per volume of media, with good pressure drop characteristics.
  • This high surface results from small binder particles and small active (or "primary") materials coated onto the binder material, rather than relying on primary material being coated onto binder along the surface of a large, solid core.
  • the invented media attains this high surface area with acceptable-to-excellent pressure drop, because the large, solid core of each prior art granule is replaced with a clump or matrix of binder, having many internal voids and channels that allow liquid flow into and through the granule, or with small, discontinuous amounts of binder connecting portions of active particles.
  • FIG. 2 there are shown cross-sectional views of media granules 20 according to one embodiment of the invention, wherein the center core of • granules 20 comprises a binder matrix 22, that is, a nonuniform structure of binder (cross- hatched in Figure 2) having multiple voids and channels 24.
  • the embodiment of Figure 2 is formed according to an embodiment with higher melt index (for example, 10 g/min) and a temperature selected to deform the binder without encapsulating the active particles.
  • Primary active particles 26 adhere to the binder matrix 22, coating part or all of the outer surface 32 of the matrix and part or all of the inner surfaces 34 of the matrix, that is, the surfaces surrounding and defining the voids and channels 24.
  • the binder matrix 22 does not take the form of a uniform shape or spheres, but rather a network of irregular shapes with internal voids.
  • the binder particles in the granules 20 of Figure 2 have softened and deformed enough to connect together and substantially lose their original shape.
  • the media granules 50 have a center core of binder particles that have softened and deformed less and, although they stick together, they retain more of their generally original shape.
  • the binder particles therefore, form a core that is a "clump" or “cluster” or “grouping” 52 of binder (cross-hatched in Figure 3 A), with internal voids and channels 54.
  • Primary, active particles 56 adhere to part or all of the outer surface 62 of the clump 52, as well as part or all of the inner surface 64 surrounding and defining voids and channels 54.
  • This clumping or grouping effect (as opposed to the matrix) is believed to be a result from one, or a combination of several, of the factors of: a lower temperature, lower agitation or stirring time, lack of compression, very low met index, and/or relatively high ratios of binder to active materials.
  • Figure 3B illustrates media granules 150 wherein the binder particles or globules 152 (shown in cross-hatching) act to connect the active particles 156 together by sticking between the active particles but not sticking to many other binder particles or globules.
  • binder particles or globules 152 shown in cross-hatching
  • globules of binder are dispersed between the active particles, but tend not to form a continuous matrix or continuous clumping of binder.
  • this "connector" binder structure also results in large numbers of voids and channels 154 through each granule for increased surface area and good pressure drop.
  • Such embodiments may be made, for example, by combining relatively small amounts of binder with the active particles, as in Example I and II below.
  • Figure 3B illustrates granules that are made from relatively large, irregularly-shaped activated carbon particles (156) agglomerated together by smaller particles/globules of binder (152).
  • relatively small, discontinuous portions of binder connect relatively large particles of active material, there are many voids in each granule, as well as channels that extend all the way through the granule.
  • the preferred embodiments of the invention involve no compression of the mixture of binder and active particles.
  • some less-preferred embodiments may include a limited amount of compression, as illustrated in Figure 4.
  • Already-formed granules are treated in a compression step, for example, in the 1 - 30 psi range, while the granules are still above the binder's softening point, followed by separating and sizing the granules to the desired granule size.
  • the active particles 76 are more uniformly adhering to the binder core 72 (cross-hatches), and more deeply embedded in the binder material both at the outer surface 82 of the granule and at the inner surface 84 of the voids and channels 74.
  • binders and active materials may be used in the binder-agglomerated granules of the invention.
  • Active materials may be in the size range of 850 microns (about 20 mesh) down to one (1) micron, for example, with a preferred size range of 300 microns (about 50 mesh) down to one (1) micron. Some embodiments are very effective with smaller active materials of only 150 microns and smaller.
  • Preferred active particles may be activated carbon, for example, 50 X 20 mesh carbon; lead sorbents; synthetic and natural zeolites; alumina oxides; titanium hydroxides; hydrated metal oxides; resins; charged polymers with higher softening point than binder; and mixtures of the same.
  • the primary material may be inorganic hydrated metal oxides, amorphous metal silicates, inorganic hydrated titanium oxides or silicates, inorganic hydrated tin oxides or silicates and mixtures thereof, titanium silicate, tin silicate and mixtures thereof, titanium silicate, tin silicate and mixtures thereof.
  • Primary material may be micronized or powdered in form, for example.
  • the binder according to the invention may be, for example, thermoplastic polymer, thermoplastic polymer, crystalline polymer and mixtures thereof, preferably polyolefms, polyamides and mixtures thereof.
  • binder material may be provided in particulate/powdered form, for example. Binders according to the invention most preferably have Nicat Softening Points in the range of 150 - 400 degrees F, whereas the active materials included in the granules according to the invention have softening points greater than 400 degrees F, and typically, much greater than 400 degrees F.
  • the binder particles may be provided in a wide range of diameters, for example, 10 - 10,000 microns, with the preferred binder particles have diameters in the range of about 1-150 microns and more preferably in the range of about 75-150 microns or about 100 x 200 standard U.S. mesh size.
  • the binder particles preferably do not flow, but do soften and/or deform from their original shape to an extent that forms the preferred binder matrix, the connection of a plurality of binder cores together to form a granule, and/or the connection of active particles with discontinuous portions of binder.
  • Preferred binder particles exhibit a melt index in the range of ⁇ 10g/min.. Binder particles with a melt index in the range of 1-10 g/min may be appropriate for forming a binder matrix as in Figure 2. Binder particles with a very low melt index in the range ⁇ l g/min. are more likely to form binder structures shown as in the Figures 3 and Figure 4 embodiments.
  • Figure 5B illustrates schematically examples of size ranges of the invented two- component system, wherein the active particles are in the range of about 1 - 150 microns (100 - 500 mesh) and the binder particles are also in the range of about 1 - 150 microns.
  • the active particles are in the range of about 1 - 150 microns (100 - 500 mesh) and the binder particles are also in the range of about 1 - 150 microns.
  • there are no particles larger than the primary particles and binder particles that is, there are no large support particles such as are typical in the three-component granules.
  • there may be some small percentage of materials (the tails that are below about 5 wt%) outside of the preferred range of mesh, depending on the method of manufacture, sizing, screening, and handling.
  • the granules according to the invention provide high activity and high surface area due to the interior voids and channels that expose high surface area to the water or liquid being treated. Good pressure drop is achieved by sizing the granules to an appropriate range that does not restrict flow through a bed of the granules.
  • the total diameter of a media granule according to many embodiments of the invention are in the 4 to 200 mesh range (75 micron up to about 4700 micron), and preferably in the 4 - 100 mesh range (140 micron up to about 4700 micron). This results from many 1-150 micron (or even larger) binder particles sticking together and becoming coated with the primary active material (1 - 150 micron or even larger). In especially-preferred manufacturing processes, sizing is preferred in order to separate any the >1700 micron granules into more than one 250 - 1700 micron granules.
  • two powders are mixed together, one being a powdered binder and one being a powdered carbon or sorbent or other active material.
  • Many embodiments of said mixtures, and hence of the resulting granules consist of 8 - 50 wt-% binder and 92 - 50 wt-% active material, and no other components. More preferably, said mixtures, and hence resulting granules, consist of 8 - 35 wt-% binder and 92 - 65 wt-% active material, with no other components.
  • the mixture is heated to a temperature at which the binder softens enough to form the binder matrix, clump, or connectors, and the active material coats the binder matrix or clumps or sticks together due to the binder.
  • This temperature is typically in the range of 275 - 350 degrees F for many of the preferred binders, but may be even higher, for example, 275 - 425 degrees or even up to 500 degrees F.
  • the target temperature is within about 25 degrees of the Nicat softening point, but this may be lowered or raised depending upon the particular granule characteristics desired.
  • the quality and effectiveness of many embodiments of the invention are not extremely sensitive to what temperature is chosen. With many polyolefin binder particles, which are white before heating, one may observe when the particles reach an appropriate temperature due to the particles losing their white color and becoming clear.
  • the material resulting from the heating and agitating step is sized, and the mixture is cooled to ambient by any of various methods, to obtain the invented media.
  • Sizing the heated mixture while warm, rather than after cooling, serves to limit fines production. This is believed to be because the breaking apart of warm granules to the desired size granule comprises a separation or pulling apart of portions of the binder, rather than breaking of solidified binder or active particles, and does not produce significant fines.
  • Sizing a cool mixture (or a cool compressed block of granules) is believed to break binder and/or active particles, and produces more fines of binder and/or active material.
  • the invented media is loaded into a cartridge, filter, tank, housing or other vessel with appropriate support and screening and influent and effluent means directing fluid to the media and away from the media.
  • the operation temperature should be significantly below the temperature at which the media was made, to prevent the binder softening enough to release the primary material and to prevent further deformation of the binder.
  • the invented media is especially beneficial in gravity flow water filtration applications.
  • the manufacturer is able to obtain a high yield of high active-surface-area, appropriate-pressure-drop media.
  • the preferred methods and compositions result in particles that exhibit appropriate packing characteristics in a filter/treatment bed or housing, and that exhibit excellent treatment performance.
  • a high yield of on-spec product is achieved.
  • the invented media is called a "two-component"media because it is manufactured from a binder material and an active material, rather than from a combination of a solid support, a binder material, and an active material.
  • two-component the inventors do not intend to limit the binder to being only one type of polymer, for example, but do intend to include binders that may comprise one binder or a mixture of two or more binders that may be softened at temperatures in an appropriate range for causing active material to adhere to the binder(s) and for causing multiple particles of binder to adhere to each other. Also, the inventors do not intend “two-component” to limit the active material to being only one type of active material, but rather do intend to include one active material or a mixture of two or more active materials.
  • the binder may itself be a mixture of several different binder particles, preferably, but not necessarily, exhibiting close to the same melting/softening point.
  • different polyolefins may be used, or two different binders wherein one is optimum for creating voids and channels in the granules and one that reduces fines.
  • the active material may be a mixture of several different active particles for different purposes, preferably, but not necessarily, being close to the same diameter range. Two or more active materials selective to different metals or to different species within the fluid being treated, may be used.
  • the different active materials may lie in a monolayer or multiple layers in the binders, or, in the "connector" style binder structures, the different active materials may be stuck together adjacent to each other in a random structure of active particles connected by discontinuous globules of binder.
  • the binder is preferably prevented from encapsulating the active material or covering its active sites, and yet the binder's tackiness at the temperatures used in manufacture of the media cause the active material(s) to adhere to the outside surface of the binder and the binder surfaces in the interior voids and channels of the granule.
  • the preferred shapes of the support structure of the invented granule range from a binder matrix, to a grouping of binder-coated cores, to relatively smaller, discontinuous amounts of binder in-between active particles.
  • the "coating" the support structure preferably includes partial or total coating of the binder's outer surface, which translates to the outer surface of the granule being coated with active particles and to the granule having many interior voids and channels which are defined by binder surfaces inside the granule being coated with or attached to active particles.
  • the various binder structures work to agglomerate the active materials without any support material besides the binder, and especially without a third component consisting of a large solid particulate support at or near the center of the media granule.
  • the invented granules provide increased active surface area, because volume is not taken up by a solid support particle that is substantially greater in size than the active material.
  • Some increased pressure drop may be witnessed in the invented media because of the particles of binder and active material being bound together, compared to the large solid support particles in the prior art.
  • the combined binder and active material structure in the invented granules has sufficient interior void space and channels to provide acceptable or good pressure drop even in gravity flow applications, in that the liquid flows into and through the void spaces both between granules and inside the granules.
  • the increased mass and exposed surface area of active material in the invented granules results in increased activity per volume of the media.
  • especially-preferred granules which are binder-agglomerated active materials include: activated carbon agglomerated with polyolefin binder; hydrated metal oxide particles (with or without activated carbon active particles) agglomerated with polyolefin binder; arsenic reduction materials such as iron hydroxide agglomerated with various binders; fine metal powders agglomerated with polyethylene binder for chlorine removal.
  • Alusil Powder of 40 - 70 micron size available from Selecto Scientific
  • “Microthene FN510" powdered polyolefin binder with nominal 20 micron particle size wherein the Alusil Powder is 65 - 90 wt-% of the mixture and the binder is 35 - 10 wt-% of the mixture.
  • the Alusil Power may be 80 - 90 wt-% of the mixture and the binder may be 20 - 10 wt-% of the mixture.

Abstract

Granules comprise binder-agglomeratd active particles for liquid treatment or filtration. Each granule has a center core of a material that itself has binding properties without the addition of other binders or sprays or adhesives, or, alternatively, each granule comprirses a matrix of active materials stuck together with the binder. The binder structure preferably ranges from a non-uniform matrix of binder formed by heat-deformed binder particles, to a clump of binder particles generally retaining the original shape or the binder particles, to non-continuous connectors of binder between active particles. The invented two-part media has high surface area per volume of media, which, because the outer surface and inner void surfaces of the particles are preferably substantially covered with active particles, translates to high activity for the preferred treatment process. Therefore, while a mixture of active particles may be used and a mixture of binders may be used, each media granule preferably consists only of a matrix, clump, or plurality of connectors of binder coated with active particles, with preferably no support for the active component other than the binder material.

Description

Filtration Media Comprising Granules of Binder- Agglomerated Active Component
DESCRIPTION
BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a high-surface-area, high-activity granular media for liquid filtration and/or treatment. More specifically, the preferred embodiment relates to a two- part media composition of binder and active particles, without a conventional solid support core. The media comprises binder-agglomerated active materials, wherein a binder material holds together particles of active component so that a high percentage of the active particles are exposed to the liquid being filtered/treated. The granules may take the form, for example, of an inner core and/or matrix of binder that supports an active component coating, or the form of active particles bound together by particles, globules, or amorphous shapes of binder.
Related Art.
Particulate materials have been disclosed for removal of heavy metal contaminants from aqueous solutions and vapor phase systems, for example, in Lisenko (U.S. Patents 5,639,550 ('"550") and 5,603,987 ('"987")).
Lisenko '550 illustrates in Figure IA a prior art media, such as found in U.S. Patent No. 5,277,931, in which a porous particle (S) is first sprayed with an aqueous basic material (B) and subsequently sprayed with a concentrated aqueous acidic solution of a source of suitable metallic ions. The sprayed-on source of suitable metallic ions is the primary material (P), that is, the active material. Such spray-on prior art media are described by Lisenko as exhibiting high attrition.
Lisenko discloses a particulate media comprising three-part granules (G', Figure IB), wherein each granule is made of a large support material (S), and a primary material (P) bound to the outer surface of the support material by a binder material (B). In Lisenko, the softening temperature of the binder is less than the softening temperature of the support material and less than the softening temperature of the primary material. Thus, Lisenko discloses a three-part composite, wherein the center core is a solid particulate that holds two layers on its outer surface, an intermediate layer of binder and an outer layer of primary filtration material. In other words, the three-part media is a solid support with a solid primary material "stuck" to the support by a layer of binder that is relatively very thin compared to the diameter of the support material.
In three-part granules, the support material preferably has preferably substantially uniform particle diameters which are substantially greater in size than the particle diameters of the primary material. The support material may be granulated activated carbon, glass beads or bubbles; porous or non-porous volcanic media; plastic beads or pellets; plastic fibers; wood fibers; carbon fibers; ceramic media; fired or unfϊred clay; diatomaceous earth; metal particles; ferro magnetic material; silica gel; magnetic stainless steel; organic fiber; cellulose fiber; acrylic fiber; and silicon carbide.
The primary material for the three-part granules may be inorganic hydrated metal oxides, amorphous metal silicates, zeolite and mixtures thereof, and more preferably inorganic hydrated titanium oxides or silicates, inorganic hydrated tin oxides or silicates and mixtures thereof, and most preferably titanium silicate, tin silicate and mixtures thereof, and most preferably titanium silicate, tin silicate and mixtures thereof. The primary material is chosen for a desired property for treatment, such as ion exchange capacity or metals removal. Preferably, the primary material may be micronized or powdered in form.
The binder in a three-part granular media is chosen from a wide variety of materials including crystalline thermoplastic polymer, thermoplastic polymer, crystalline polymer and mixtures thereof, preferably polyolefms, polyamides and mixtures thereof, and specifically polyethylene, polypropylene, ethylene vinyl acetate and mixtures thereof. The binder material may be provided in particulate form to the process of manufacturing the composite media.
Typical relative sizes for the components of three-part granular are illustrated in Figure 5 A. The large support particles are shown in the 4 -100 mesh range (from very large particles down to 140 microns), the primary particles are shown in the 230 - 500 mesh range (approximately 60 down to 25 microns) and binder particles are shown in the 450 - 500 mesh range (approximately 30 microns and smaller).
During manufacture of the three-part granular media, the primary particulate, binder particulate, and support particulate are mixed and the mixture is heated to a temperature within about 25 degrees of the softening temperature of the binder material. This way, the binder material does not soften to the point where it readily flows and masks the internal pores of the primary and support materials. This procedure causes the binder material to lose shape and become sufficiently viscous to adhere the primary particles to the support material, with the binder in-between. Then, the mixture is cooled to ambient whereby adhesion of the binder material between the primary material and the support material becomes substantially permanent. The result is a particulate media with particles having diameters generally equal to the diameter of the support material plus the layers of binder and primary material.
Still, there is needed an improved particulate filter/treatment media that is strong, very high in active surface area, and economical and convenient to make and use. The present invention serves these needs.
SUMMARY OF THE INVENTION
The invented media comprise binder and active materials agglomerated together to form media granules. The agglomerated materials preferably comprise only two components, namely, the binder plus primary active material adhering to, or connected by, the binder. These agglomerated materials may comprise a core/support of polymeric binder holding active materials on the binder surface and/or active materials stuck together by relatively small and discontinuous amounts of binder. The invented granules have a large surface area of active material exposed to the liquid being filter/treated, because of the two- component structure and because of the presence of many void spaces in each granule that provide access to active sites in the interior of the granule. The invented granules of agglomerated materials preferably do not include a large solid support coated by an intermediate layer of binder and an outer layer of active material.
Whether a granule takes the form of a coated matrix of binder, coated cores of binder stuck together, or active particles stuck together by relatively small and discontinuous amounts of binder, each granule has many interior void spaces or channels and a large surface area of exposed active component. The exposed active material comprises both the active material on the outer surface of the granule and the active material on the interior surfaces of the granule that surround and define the void spaces. Because preferably none of the granule mass or volume is a conventional solid support core, a greater percent of the mass and volume of each granule is active component. Because there are many voids extending into and even all the way through the granule, the active component is easily accessible to the liquid being filtered. These features result in the granule exhibiting higher activity than conventional three-part media granules while still exhibiting good pressure drop characteristics and good flowrates even under gravity flow conditions. Brief Description of the Drawings
Figures IA and IB are prior art filtration media, including a solid support, a binder material, and a primary material.
Figure 2 is a depiction of one embodiment of a media according to the invention with a binder matrix coated with active primary material.
Figure 3 A is a depiction of another embodiment of the invented granular media with a plurality of generally spherical binder cores each coated with active primary material, and the binder cores adhering to each other or connected by additional binder.
Figure 3B is a depiction of another embodiment of the invented granular media comprising active primary material connected by small, discontinuous connectors of binder.
Figure 4 is a depiction of another embodiment of the invented media, which has been compressed and then re-separated into granules.
Figure 5 A schematically illustrates particle sizes for manufacture of granular media according to the prior art.
Figure 5B schematically illustrates particle sizes for manufacture of one embodiment of the invention.
Detailed Description of Preferred Embodiments of the Invention
Referring to the Figures, there are shown prior art three-part filtration media granules, and some, but not all, of the embodiments of the invented binder-agglomerated granular media. While the preferred media according to the invention may be hereafter and in the claims referred to as a "treatment media," this term includes media for many purposes, including filtration, additive addition, adsorption, metals removal, and other treatments of fluid streams, including preferably both liquid and gases.
The preferred media granule is made from two components, which are a binder that becomes a core/support or a connecting means, and a material that is active to accomplish the filtration and/or treatment of the fluid. Because the core/support/connecting means is a binder material, no further component besides these two is necessary, that is, no solid support particle is needed. The preferred structures of the invented granules are 1) a non- uniformly-shaped support matrix of binder, to which the particulate active material adheres, and which has many interior void spaces or channels; 2) a plurality of cores of binder (retaining generally the original shape of the binder particles) coated with particulate active material, wherein the plurality of coated cores adhere together to form a single granule due to additional binder connecting the cores together or because portions of the binder cores are exposed and stick together; 3) a plurality of active particles stuck together by a relatively smaller amount of binder in discontinuous portions; and 4) structures that are somewhere between or a combination of these structures. In a much-less preferred embodiment, each granule comprises a single, generally spherical core of binder material coated with particulate active material.
The binder has a melt index in a range that allows it during manufacture of the media to 1) deform sufficiently so that a plurality of binder particles adhere together to form clumps/groupings of particles or a matrix of binder and/or 2) become sufficiently tacky for active material to adhere to it. Cooling of the granules at or near the end of the manufacturing steps serves to solidify/firm-up the binder in the "clumped," "matrix," or "connecting"shapes, each having internal voids and channels.
Whether the "clumped," "matrix," and "connecting" binder shapes are achieved in the granules depend chiefly on the relative amounts of binder and active particles, and on the softening point/melt index of the binder, the temperature of the manufacturing process, and the sizes and type of binder and active materials. With higher melt index and/or more mixing time or higher temperature during the heating step, and optionally with compression, the binder particles tend to become a "matrix," which takes the form of a plurality of binder particles sticking together and substantially losing their original shape to deform or "smear" into a network of irregularly-shaped portions with internal voids. With lower melt index and/or less mixing time or lower temperature during the heating step, and with low or preferably no compression, the binder particles tend to stick together but generally retain their original shape. With lower amounts of binder relative to active particles, binder particles tend to stick in between and serve as connectors between several active particles, rather than to stick to multiple other binder particles to form a binder clump or matrix.
The two components of the granules may be selected from lists of conventional binders and primary active materials. The binder is preferably a polymeric binder that is inactive or inert to the fluid, preferably performing no treatment or chemical action on the fluid being treated, and preferably no physical action upon the fluid being treated. The coating material is preferably an active material chosen for a specific purpose or purposes of treatment. Examples of active coating materials include metal sorbent or carbon. Also, metal shavings or particles may be effective active material.
Referring specifically the Figures:
Figure IB, prior three-component granules G' are designed to have, relative to each other, a large support particle (S), a outer layer of medium size primary particles (P), and small binder particles (B) melted together into a middle layer. When these three particle sizes are mixed and heated, the desired prior art product is produced, that is, a large solid core with active primary ingredient stuck to it's outer surface by the binder.
Referring to Figures 2-4, the preferred methods and compositions of the invention result in a very high active surface area per volume of media, with good pressure drop characteristics. This high surface results from small binder particles and small active (or "primary") materials coated onto the binder material, rather than relying on primary material being coated onto binder along the surface of a large, solid core. The invented media attains this high surface area with acceptable-to-excellent pressure drop, because the large, solid core of each prior art granule is replaced with a clump or matrix of binder, having many internal voids and channels that allow liquid flow into and through the granule, or with small, discontinuous amounts of binder connecting portions of active particles.
Referring specifically to Figure 2, there are shown cross-sectional views of media granules 20 according to one embodiment of the invention, wherein the center core of • granules 20 comprises a binder matrix 22, that is, a nonuniform structure of binder (cross- hatched in Figure 2) having multiple voids and channels 24. The embodiment of Figure 2 is formed according to an embodiment with higher melt index (for example, 10 g/min) and a temperature selected to deform the binder without encapsulating the active particles. Primary active particles 26 adhere to the binder matrix 22, coating part or all of the outer surface 32 of the matrix and part or all of the inner surfaces 34 of the matrix, that is, the surfaces surrounding and defining the voids and channels 24. As one may see from Figure 2, the binder matrix 22 does not take the form of a uniform shape or spheres, but rather a network of irregular shapes with internal voids. The binder particles in the granules 20 of Figure 2 have softened and deformed enough to connect together and substantially lose their original shape.
In Figure 3A, the media granules 50 according to the invention have a center core of binder particles that have softened and deformed less and, although they stick together, they retain more of their generally original shape. The binder particles, therefore, form a core that is a "clump" or "cluster" or "grouping" 52 of binder (cross-hatched in Figure 3 A), with internal voids and channels 54. Primary, active particles 56 adhere to part or all of the outer surface 62 of the clump 52, as well as part or all of the inner surface 64 surrounding and defining voids and channels 54. This clumping or grouping effect (as opposed to the matrix) is believed to be a result from one, or a combination of several, of the factors of: a lower temperature, lower agitation or stirring time, lack of compression, very low met index, and/or relatively high ratios of binder to active materials.
Figure 3B illustrates media granules 150 wherein the binder particles or globules 152 (shown in cross-hatching) act to connect the active particles 156 together by sticking between the active particles but not sticking to many other binder particles or globules. In such embodiments, globules of binder are dispersed between the active particles, but tend not to form a continuous matrix or continuous clumping of binder. Like the matrix or clumping binder structures, this "connector" binder structure also results in large numbers of voids and channels 154 through each granule for increased surface area and good pressure drop. Such embodiments may be made, for example, by combining relatively small amounts of binder with the active particles, as in Example I and II below.
Figure 3B illustrates granules that are made from relatively large, irregularly-shaped activated carbon particles (156) agglomerated together by smaller particles/globules of binder (152). In such embodiments wherein relatively small, discontinuous portions of binder connect relatively large particles of active material, there are many voids in each granule, as well as channels that extend all the way through the granule.
The preferred embodiments of the invention involve no compression of the mixture of binder and active particles. However, some less-preferred embodiments may include a limited amount of compression, as illustrated in Figure 4. Already-formed granules are treated in a compression step, for example, in the 1 - 30 psi range, while the granules are still above the binder's softening point, followed by separating and sizing the granules to the desired granule size. One may see, in Figure 4, that the active particles 76 are more uniformly adhering to the binder core 72 (cross-hatches), and more deeply embedded in the binder material both at the outer surface 82 of the granule and at the inner surface 84 of the voids and channels 74. There are still many internal voids and channels 74 in the granules 70 that, as in the other granules 20, 50, are accessible to liquid being filtered.
Many different sizes, types, and combinations of binders and active materials may be used in the binder-agglomerated granules of the invention. Active materials may be in the size range of 850 microns (about 20 mesh) down to one (1) micron, for example, with a preferred size range of 300 microns (about 50 mesh) down to one (1) micron. Some embodiments are very effective with smaller active materials of only 150 microns and smaller. Preferred active particles may be activated carbon, for example, 50 X 20 mesh carbon; lead sorbents; synthetic and natural zeolites; alumina oxides; titanium hydroxides; hydrated metal oxides; resins; charged polymers with higher softening point than binder; and mixtures of the same. Other active particles for various water treatment processes may be used, as will be known to those of skill in the art after understanding this Description and Drawings. For example, the primary material may be inorganic hydrated metal oxides, amorphous metal silicates, inorganic hydrated titanium oxides or silicates, inorganic hydrated tin oxides or silicates and mixtures thereof, titanium silicate, tin silicate and mixtures thereof, titanium silicate, tin silicate and mixtures thereof. Primary material may be micronized or powdered in form, for example. The binder according to the invention may be, for example, thermoplastic polymer, thermoplastic polymer, crystalline polymer and mixtures thereof, preferably polyolefms, polyamides and mixtures thereof. For example, polyethylene, polypropylene, ethylene vinyl acetate and mixtures thereof are especially useful. The binder material may be provided in particulate/powdered form, for example. Binders according to the invention most preferably have Nicat Softening Points in the range of 150 - 400 degrees F, whereas the active materials included in the granules according to the invention have softening points greater than 400 degrees F, and typically, much greater than 400 degrees F.
The binder particles may be provided in a wide range of diameters, for example, 10 - 10,000 microns, with the preferred binder particles have diameters in the range of about 1-150 microns and more preferably in the range of about 75-150 microns or about 100 x 200 standard U.S. mesh size.
During the heating step used to binder-agglomerate the active particles, the binder particles preferably do not flow, but do soften and/or deform from their original shape to an extent that forms the preferred binder matrix, the connection of a plurality of binder cores together to form a granule, and/or the connection of active particles with discontinuous portions of binder. Preferred binder particles exhibit a melt index in the range of < 10g/min.. Binder particles with a melt index in the range of 1-10 g/min may be appropriate for forming a binder matrix as in Figure 2. Binder particles with a very low melt index in the range ≤l g/min. are more likely to form binder structures shown as in the Figures 3 and Figure 4 embodiments. Binders with what is called a "zero'Or very low melt index binder, that is, preferably less than or equal to 1 g/ 10 minute, as measured by conventional standard melt index tests, are expected to exhibit ultra high activity but slightly higher fines content. (Melt Index is measured by ASTM D1238 or DLΝ 53735 at 190 degrees C and 15 kilograms.)
Figure 5B illustrates schematically examples of size ranges of the invented two- component system, wherein the active particles are in the range of about 1 - 150 microns (100 - 500 mesh) and the binder particles are also in the range of about 1 - 150 microns. Preferably, there are no particles larger than the primary particles and binder particles, that is, there are no large support particles such as are typical in the three-component granules. As may be seen in Figure 5B, there may be some small percentage of materials (the tails that are below about 5 wt%) outside of the preferred range of mesh, depending on the method of manufacture, sizing, screening, and handling.
The granules according to the invention provide high activity and high surface area due to the interior voids and channels that expose high surface area to the water or liquid being treated. Good pressure drop is achieved by sizing the granules to an appropriate range that does not restrict flow through a bed of the granules. The total diameter of a media granule according to many embodiments of the invention are in the 4 to 200 mesh range (75 micron up to about 4700 micron), and preferably in the 4 - 100 mesh range (140 micron up to about 4700 micron). This results from many 1-150 micron (or even larger) binder particles sticking together and becoming coated with the primary active material (1 - 150 micron or even larger). In especially-preferred manufacturing processes, sizing is preferred in order to separate any the >1700 micron granules into more than one 250 - 1700 micron granules.
To make the preferred embodiment, two powders are mixed together, one being a powdered binder and one being a powdered carbon or sorbent or other active material. Many embodiments of said mixtures, and hence of the resulting granules, consist of 8 - 50 wt-% binder and 92 - 50 wt-% active material, and no other components. More preferably, said mixtures, and hence resulting granules, consist of 8 - 35 wt-% binder and 92 - 65 wt-% active material, with no other components.
The mixture is heated to a temperature at which the binder softens enough to form the binder matrix, clump, or connectors, and the active material coats the binder matrix or clumps or sticks together due to the binder. This temperature is typically in the range of 275 - 350 degrees F for many of the preferred binders, but may be even higher, for example, 275 - 425 degrees or even up to 500 degrees F. The target temperature is within about 25 degrees of the Nicat softening point, but this may be lowered or raised depending upon the particular granule characteristics desired. The quality and effectiveness of many embodiments of the invention are not extremely sensitive to what temperature is chosen. With many polyolefin binder particles, which are white before heating, one may observe when the particles reach an appropriate temperature due to the particles losing their white color and becoming clear.
While still warm, the material resulting from the heating and agitating step is sized, and the mixture is cooled to ambient by any of various methods, to obtain the invented media. Sizing the heated mixture while warm, rather than after cooling, serves to limit fines production. This is believed to be because the breaking apart of warm granules to the desired size granule comprises a separation or pulling apart of portions of the binder, rather than breaking of solidified binder or active particles, and does not produce significant fines. Sizing a cool mixture (or a cool compressed block of granules) is believed to break binder and/or active particles, and produces more fines of binder and/or active material.
For use, the invented media is loaded into a cartridge, filter, tank, housing or other vessel with appropriate support and screening and influent and effluent means directing fluid to the media and away from the media. The operation temperature should be significantly below the temperature at which the media was made, to prevent the binder softening enough to release the primary material and to prevent further deformation of the binder. The invented media is especially beneficial in gravity flow water filtration applications.
By using only the two components, without a third material, (that is, without a traditional non-tacky, non-binding support material), the manufacturer is able to obtain a high yield of high active-surface-area, appropriate-pressure-drop media. The preferred methods and compositions result in particles that exhibit appropriate packing characteristics in a filter/treatment bed or housing, and that exhibit excellent treatment performance. By using the invented methods of manufacture, a high yield of on-spec product is achieved.
The invented media is called a "two-component"media because it is manufactured from a binder material and an active material, rather than from a combination of a solid support, a binder material, and an active material. By using the term "two-component," the inventors do not intend to limit the binder to being only one type of polymer, for example, but do intend to include binders that may comprise one binder or a mixture of two or more binders that may be softened at temperatures in an appropriate range for causing active material to adhere to the binder(s) and for causing multiple particles of binder to adhere to each other. Also, the inventors do not intend "two-component" to limit the active material to being only one type of active material, but rather do intend to include one active material or a mixture of two or more active materials.
For example, the binder may itself be a mixture of several different binder particles, preferably, but not necessarily, exhibiting close to the same melting/softening point. For example, different polyolefins may be used, or two different binders wherein one is optimum for creating voids and channels in the granules and one that reduces fines.
Likewise, the active material may be a mixture of several different active particles for different purposes, preferably, but not necessarily, being close to the same diameter range. Two or more active materials selective to different metals or to different species within the fluid being treated, may be used. The different active materials may lie in a monolayer or multiple layers in the binders, or, in the "connector" style binder structures, the different active materials may be stuck together adjacent to each other in a random structure of active particles connected by discontinuous globules of binder.
By using a low melt index binder material, the binder is preferably prevented from encapsulating the active material or covering its active sites, and yet the binder's tackiness at the temperatures used in manufacture of the media cause the active material(s) to adhere to the outside surface of the binder and the binder surfaces in the interior voids and channels of the granule. The preferred shapes of the support structure of the invented granule range from a binder matrix, to a grouping of binder-coated cores, to relatively smaller, discontinuous amounts of binder in-between active particles. The "coating" the support structure preferably includes partial or total coating of the binder's outer surface, which translates to the outer surface of the granule being coated with active particles and to the granule having many interior voids and channels which are defined by binder surfaces inside the granule being coated with or attached to active particles. Preferably, as discussed above, the various binder structures work to agglomerate the active materials without any support material besides the binder, and especially without a third component consisting of a large solid particulate support at or near the center of the media granule.
Compared to prior art materials, the invented granules provide increased active surface area, because volume is not taken up by a solid support particle that is substantially greater in size than the active material. Some increased pressure drop may be witnessed in the invented media because of the particles of binder and active material being bound together, compared to the large solid support particles in the prior art. The combined binder and active material structure in the invented granules, however, has sufficient interior void space and channels to provide acceptable or good pressure drop even in gravity flow applications, in that the liquid flows into and through the void spaces both between granules and inside the granules. Further, the increased mass and exposed surface area of active material in the invented granules, compared to prior art three-part granules, results in increased activity per volume of the media.
Examples of especially-preferred granules which are binder-agglomerated active materials include: activated carbon agglomerated with polyolefin binder; hydrated metal oxide particles (with or without activated carbon active particles) agglomerated with polyolefin binder; arsenic reduction materials such as iron hydroxide agglomerated with various binders; fine metal powders agglomerated with polyethylene binder for chlorine removal.
Example I
Mix 50 X 200 mesh activated carbon with powdered polyolefin binder ("Microthene FN510" powdered polyolefin binder with nominal 20 micron particle size), wherein the activated carbon is 85 - 92 wt-% and the polyolefin binder is 15 - 8 wt-% of the mixture.
Uniformly mix and agitate while heating the mixture to between 325 - 375 degrees F, over a period of about 2 - 10 minutes. Continually agitate or stir the mixture during this process.
Size the resulting granules while warm using screens to 20 X 50 mesh. Cool.
Example IT
Mix Alusil Powder of 40 - 70 micron size (available from Selecto Scientific) with "Microthene FN510" powdered polyolefin binder with nominal 20 micron particle size, wherein the Alusil Powder is 65 - 90 wt-% of the mixture and the binder is 35 - 10 wt-% of the mixture. Alternatively, the Alusil Power may be 80 - 90 wt-% of the mixture and the binder may be 20 - 10 wt-% of the mixture. Unifoirmly mix and agitate while heating the mixture to between 325 - 375 degrees F, over a period of about 2 - 10 minutes. Continually agitate or stir the mixture during this process.
Size the resulting granules while warm using screens to 20 X 50 mesh. Cool.
Although this invention has been described above with reference to particular means, materials and embodiments, it is to be understood that the invention is not limited to these disclosed particulars, but extends instead to all equivalents within the scope of the following claims.

Claims

Claims I claim:
1. A two-part fluid treatment media granule comprising: a central support core of binder material having an outer surface and internal surfaces defining void spaces in the granule; and an active material that is active for fluid treatment adhering to said outer surface of the central support core of binder material and adhering to said internal surfaces.
2. The media as in Claim 1 wherein the binder material is a polyolefin with a melt index of 1-10 g/min.
3. The media as in Claim 1, wherein the active material is activated carbon.
4. The media as in Claim 1, wherein the active material is a sorbent material.
5. The media as in Claim 1, wherein the granule is 75 microns up to about 4700 microns in diameter.
6. The media as in Claim 1, wherein the binder material has a Nicat Softemng Point in the range of 150 - 400 degrees F, and the active material has a softening point of greater than 400 degrees F.
7. The media as in Claim 1 wherein the central support core of binder material is a matrix of binder particles stuck together and deformed to be substantially non- spherical.
8. The media as in Claim 1 wherein the central support core of binder material is a grouping of binder particles stuck together and substantially retaining a spherical shape.
9. The media as in Claim 7 wherein the binder material is made from binder particles having < 150 micron diameter.
10. The media as in Claim 8 wherein the binder material is made from binder particles having < 150 micron diameter.
11. The media as in Claim 9 wherein the active material is active particles of < 150 micron diameter.
12. The media as in Claim 10 wherein the active material is active particles of < 150 micron diameter.
13. A fluid treatment media consisting of granules consisting only of a binder material and a layer of active material for fluid treatment adhering to the binder material.
14. The media as in Claim 13 wherein the binder material is a polyolefin with a melt index of 1-10 g/min.
15. The media as in Claim 13 wherein the active material is activated carbon.
16. The media as in Claim 13, wherein the active material is a sorbent material.
17. The media as in Claim 13, wherein the granules are 75 microns up to about 4700 microns in diameter.
18. The media as in Claim 13, wherein the binder material is a matrix of binder particles stuck together and deformed to be substantially non-spherical.
19. The media as in Claim 13 wherein the binder material is a grouping of binder particles stuck together and each binder particle substantially retaining a spherical shape.
20. The media as in Claim 18 wherein the binder material is made from binder particles having < 150 micron diameters.
21 The media as in Claim 19 wherein the binder material is made from binder particles having < 150 micron diameters.
22. The media as in Claim 20 wherein the active material is active particles of < 150 micron diameter.
23. The media as in Claim 21 wherein the active material is active particles of < 150 micron diameter.
24. A fluid filtration media comprising granules, each of said granules comprising particles that are active for filtering liquid agglomerated together by a binder material with a softemng point in the range of 150 - 400 degrees F, and wherein said granules do not comprise said active particles being bound to any solid support core.
25. The media as in Claim 24 wherein the binder material is polyolefin with a melt index of 1-10 g/min.
26. The media as in Claim 24 wherein the active particles are activated carbon.
27. The media as in Claim 24 wherein the active particles are sorbent material.
28. The media as in Claim 24 wherein the active particles are not bound to any material with a Nicat Softening Point greater than 400 degrees F.
29. The media as in Claim 24 wherein the binder material is particles having < 150 micron diameters.
30. The media as in Claim 24 wherein the active particles have < 150 micron diameters.
31. A method of making a fluid treatment media, the method comprising: mixing together only binder material and particles of a material active for fluid treatment; heating the resulting mixture to a temperature in the range of about 275 - 500 degrees F; wherein the binder material softens so that the material active for fluid treatment adheres to the binder material; and cooling the mixture; wherein no solid support material is included in the mixture.
32. The method as in Claim 31 wherein the binder material is a polyolefin with a melt index of 1-10 g/min.
33. The method as in Claim 31 , wherein the primary material is activated carbon.
34. The method as in Claim 31, wherein the primary material is a sorbent material.
35. The method as in Claim 31 wherein the binder material has a Nicat softening point in the range of 150 - 400 degrees F.
36. The method as in Claim 31 wherein the binder material is made from binder particles having < 150 micron diameters.
37. The method as in Claim 31 wherein the primary material is active particles of < 150 micron diameter.
38. The method as in Claim 31 comprising mixing said binder material and said active particles together so that the resulting mixture is 8 - 50 wt-% binder material and 92 - 50 wt-%) active material.
39. The method as in Claim 31 comprising no addition of any particle larger 150 microns.
PCT/US2003/008755 2002-03-23 2003-03-24 Filtration media comprising granules of binder-agglomerated active component WO2003082436A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2003228347A AU2003228347A1 (en) 2002-03-23 2003-03-24 Filtration media comprising granules of binder-agglomerated active component
DE60333441T DE60333441D1 (en) 2002-03-23 2003-03-24 FILTER MEDIUM WITH GRAINS OF A BINDER AGGLOMERATED ACTIVE COMPONENT
US10/509,439 US20050221089A1 (en) 2002-03-23 2003-03-24 Filtration media comprising granules of binder-agglomerated active component
EP03726094A EP1487561B1 (en) 2002-03-23 2003-03-24 Filtration media comprising granules of binder-agglomerated active component
AT03726094T ATE474646T1 (en) 2002-03-23 2003-03-24 FILTER MEDIUM WITH GRAINS OF A BINDER-AGGLOMERIZED ACTIVE COMPONENT
US12/016,992 US7740141B2 (en) 2002-03-23 2008-01-18 Method of making a granular media water filter
US12/821,011 US8167145B2 (en) 2002-03-23 2010-06-22 Method of making a granular media water filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36702802P 2002-03-23 2002-03-23
US60/367,028 2002-03-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US50943903A A-371-Of-International 2002-03-23 2003-03-24
US12/016,992 Continuation US7740141B2 (en) 2002-03-23 2008-01-18 Method of making a granular media water filter

Publications (2)

Publication Number Publication Date
WO2003082436A2 true WO2003082436A2 (en) 2003-10-09
WO2003082436A3 WO2003082436A3 (en) 2003-12-24

Family

ID=28675312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/008755 WO2003082436A2 (en) 2002-03-23 2003-03-24 Filtration media comprising granules of binder-agglomerated active component

Country Status (7)

Country Link
US (3) US7293661B2 (en)
EP (1) EP1487561B1 (en)
CN (1) CN1315568C (en)
AT (1) ATE474646T1 (en)
AU (1) AU2003228347A1 (en)
DE (1) DE60333441D1 (en)
WO (1) WO2003082436A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010054714A2 (en) * 2008-11-14 2010-05-20 BLüCHER GMBH Adsorptive molded parts and the use thereof
DE102009044675A1 (en) * 2009-11-27 2011-06-01 Wolf Pvg Gmbh & Co. Kg Filter material for odor- and pollutant filters, comprises an expanded absorbent filling, which comprises agglomerate, which is formed predominantly from absorbent particles, which are adhered with a binding agent
US8167145B2 (en) 2002-03-23 2012-05-01 Omnipure Filter Co., Inc. Method of making a granular media water filter
US20200407240A1 (en) * 2019-06-29 2020-12-31 Aqua Guidance Technologies, Ltd. Porous filter media
US20210252474A1 (en) * 2018-06-08 2021-08-19 Lixil Corporation Granulation-purpose fibrous binder

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060163151A1 (en) * 2002-10-29 2006-07-27 Kuraray Chemical Co., Ltd. Composition adsorbent and method for producing thereof, and water purification material and water purifier
US7618606B2 (en) * 2003-02-06 2009-11-17 The Ohio State University Separation of carbon dioxide (CO2) from gas mixtures
US7303683B2 (en) * 2003-04-04 2007-12-04 The Clorox Company Microorganism-removing filter medium having high isoelectric material and low melt index binder
US7846333B2 (en) * 2003-11-24 2010-12-07 Effendorf AG Porous media
WO2006099599A2 (en) * 2005-03-17 2006-09-21 The Ohio State University High temperature co2 capture using engineered eggshells: a route to carbon management
US7378372B2 (en) * 2005-10-11 2008-05-27 Layne Christensen Company Filter and sorbent for removal of contaminants from a fluid
US20080135489A1 (en) * 2006-09-20 2008-06-12 Omnipure Filter Company, Inc. Solid Profile Filters Comprising Activated Carbon Fiber Rods and Methods of Making and Using Same
CN101541398B (en) * 2006-09-25 2014-01-22 俄亥俄州立大学 High purity hydrogen production and in situ capture of CO<2> and sulfur
CA2669837C (en) * 2006-11-16 2016-07-05 Multisorb Technologies, Inc. Clean, compressed sorbent tablets
US8116029B2 (en) * 2007-11-09 2012-02-14 Donaldson Company, Inc. Contaminant-control material for use in an electronic enclosure
JP5524862B2 (en) * 2007-12-31 2014-06-18 スリーエム イノベイティブ プロパティズ カンパニー Composite nonwoven fibrous web having a continuous particulate phase and methods for making and using the same
CA2747632A1 (en) 2008-12-18 2010-07-15 3M Innovative Properties Company Filter element utilizing shaped particle-containing nonwoven web
US9386803B2 (en) * 2010-01-06 2016-07-12 Celanese Acetate Llc Tobacco smoke filter for smoking device with porous mass of active particulate
DE202010009493U1 (en) * 2010-02-15 2011-04-07 BLüCHER GMBH Agglomerates of adsorbent particles
US9839868B2 (en) 2010-06-15 2017-12-12 Karl J. Fritze Electrically enhanced filter cartridge and methods for its use
EP2627203A4 (en) 2010-10-15 2018-04-04 Celanese Acetate LLC Apparatuses, systems, and associated methods for forming porous masses for smoke filter
US20130118987A1 (en) 2011-11-16 2013-05-16 Ecowater Systems Llc Anti-scale water treatment system and method
US20130134100A1 (en) * 2011-11-28 2013-05-30 Celanese Acetate Llc Compacted Filter Beds Comprising Non-Sintered, Buoyant Filter Media and Methods Relating Thereto
WO2013085767A1 (en) * 2011-12-06 2013-06-13 Imerys Oilfield Minerals, Inc. Granulated inorganic particulates and their use in oilfield applications
US20150190778A1 (en) * 2012-06-26 2015-07-09 Imerys Filtration Minerals, Inc. Co-Agglomerated Composite Materials, Methods for Making Co-Agglomerated Composite Materials, and Methods for Using Co-Agglomerated Composite Materials
EP2994212A4 (en) * 2013-05-10 2017-01-25 Arkema Inc. Block products incorporating small particle thermoplastic binders and methods of making same
EP3045227B1 (en) * 2013-09-11 2019-12-11 Mitsui Mining & Smelting Co., Ltd Exhaust gas purification catalyst
TWI664999B (en) * 2014-05-13 2019-07-11 美商愛克瑪公司 Block products incorporating small particle thermoplastic binders and methods of making same
JP6085336B2 (en) * 2015-06-18 2017-02-22 関西熱化学株式会社 Activated carbon molded body, method for producing the activated carbon molded body, adsorbent using the activated carbon molded body, and occlusion material
EP3548209A4 (en) 2017-04-28 2020-04-29 Hewlett-Packard Development Company, L.P. Metallic build material granules
KR20210006243A (en) * 2019-07-08 2021-01-18 엘지전자 주식회사 filter for water purifier and water purifier using thereof
CN114502250B (en) * 2019-08-13 2023-10-24 滴管公司 Methods and compositions for sample filtration
US11027987B1 (en) * 2019-11-20 2021-06-08 Andy Andalibian Ballast water, bilge water, slop water, or oily water treatment system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041961A (en) * 1976-02-09 1977-08-16 Shaler Amos J Hair curler with sintered desiccant body
US4102816A (en) * 1976-10-18 1978-07-25 The United States Of America As Represented By The Secretary Of The Interior Adsorbent for polynuclear aromatic compounds
GB2013102A (en) * 1978-01-31 1979-08-08 Von Bluecher H A filter material and its manufacture
US5332426A (en) * 1992-07-29 1994-07-26 Minnesota Mining And Manufacturing Company Agglomerated activated carbon air filter
US5639550A (en) * 1995-06-21 1997-06-17 Specialty Media Corporation Composite particulate material and process for preparing same

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US53119A (en) * 1866-03-13 Improvement in water-closets
US42719A (en) * 1864-05-10 Improvement in safety-doors for churches
US5776353A (en) 1996-02-16 1998-07-07 Advanced Minerals Corporation Advanced composite filtration media
US3721072A (en) * 1970-07-13 1973-03-20 Calgon Corp Bonded activated carbon air filter
US4061807A (en) * 1976-02-09 1977-12-06 Shaler Amos J Adsorbent body and method for making same
US4147624A (en) 1976-04-15 1979-04-03 Arthur D. Little, Inc. Wastewater treatment with desorbing of an adsorbate from an adsorbent with a solvent in the near critical state
US4299613A (en) 1979-02-22 1981-11-10 Environmental Chemicals, Inc. Controlled release of trace nutrients
US5017318A (en) 1986-04-07 1991-05-21 Amway Corporation Method of making a water filter
US4859386A (en) 1986-04-07 1989-08-22 Amway Corporation Method of making a water filter
US4753728A (en) 1986-04-07 1988-06-28 Amway Corporation Water filter
GB8804408D0 (en) 1988-02-25 1988-03-23 Raychem Sa Nv Polyethylene alkyl acrylate adhesive composition
GB8827335D0 (en) 1988-11-23 1988-12-29 Du Pont Canada Method for manufacture of modified polypropylene compositions
US5019311A (en) * 1989-02-23 1991-05-28 Koslow Technologies Corporation Process for the production of materials characterized by a continuous web matrix or force point bonding
US5133871A (en) 1990-06-12 1992-07-28 Ehud Levy Water filter
NL9100385A (en) 1991-03-04 1992-10-01 Stamicarbon USE OF A PLASTIC DISPERSION AS A COVER FOR INORGANIC AND ORGANIC PARTICLES.
DE4117144A1 (en) 1991-05-25 1992-11-26 Basf Ag HIGHLY FLOWABLE PROPYLENE ETHYLENE COPOLYMERISATE
US5277931A (en) 1992-08-21 1994-01-11 Engelhard Corporation Composite ion-exchange material, preparation and use thereof
DE4334767A1 (en) 1993-10-12 1995-04-13 Mst Micro Sensor Tech Gmbh Selective carbon filter
US5582892A (en) 1994-04-08 1996-12-10 Minnesota Mining And Manufacturing Company Dimensionally stable particle-loaded PTFE web
JP2766459B2 (en) 1994-12-26 1998-06-18 株式会社ノリタケカンパニーリミテド Adsorbent manufacturing method
US5631324A (en) 1995-06-07 1997-05-20 Acushnet Company Golf ball covers
GB9515827D0 (en) 1995-08-02 1995-10-04 Scapa Group Plc Pressure sensitive adhesive tape
US5953797A (en) 1996-10-09 1999-09-21 Velcro Industries B.V. Hook fasteners and methods of manufacture
US5767060A (en) 1996-10-30 1998-06-16 Advanced Water Systems Bonded polymer filter medium and its use
US6662956B2 (en) 1997-03-18 2003-12-16 Selecto, Inc. Nanocrystal-containing filtration media
US5973035A (en) 1997-10-31 1999-10-26 Xyleco, Inc. Cellulosic fiber composites
US20030032702A1 (en) 1997-09-02 2003-02-13 Marshall Medoff Compositions and composites of cellulosic and lignocellulosic materials and resins, and methods of making the same
DE69841061D1 (en) 1997-10-31 2009-09-24 Metabolix Inc Use of organic phosphonic or phosphinic acids, or of metal oxides or hydroxides, or of carboxylic acid salts of a metal as heat stabilizers for polyhydroxyalkanoates
EP1073610B1 (en) * 1998-02-18 2009-04-01 Abtech Industries, Inc. Curb-inlet storm drain systems for filtering trash and hydrocarbons
WO1999054398A1 (en) 1998-04-16 1999-10-28 Cryovac Inc. Ternary polymer blend, the film containing it, and the easy-to-open package made therewith
US6270609B1 (en) 1999-01-11 2001-08-07 3M Innovative Properties Company Hard disk drive filter
CN1109575C (en) * 2001-02-28 2003-05-28 北京峰华铁讯有限责任公司 Active carbon stick as composite material carrier and its preparing method
US6764601B1 (en) 2001-04-16 2004-07-20 Selecto Scientific, Inc. Method for granulating powders
US6793866B2 (en) * 2001-10-23 2004-09-21 Equistar Chemicals, Lp Process for producing bonded activated carbon structures and articles
ATE474646T1 (en) 2002-03-23 2010-08-15 Omnipure Filter Company FILTER MEDIUM WITH GRAINS OF A BINDER-AGGLOMERIZED ACTIVE COMPONENT

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041961A (en) * 1976-02-09 1977-08-16 Shaler Amos J Hair curler with sintered desiccant body
US4102816A (en) * 1976-10-18 1978-07-25 The United States Of America As Represented By The Secretary Of The Interior Adsorbent for polynuclear aromatic compounds
GB2013102A (en) * 1978-01-31 1979-08-08 Von Bluecher H A filter material and its manufacture
US5332426A (en) * 1992-07-29 1994-07-26 Minnesota Mining And Manufacturing Company Agglomerated activated carbon air filter
US5639550A (en) * 1995-06-21 1997-06-17 Specialty Media Corporation Composite particulate material and process for preparing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8167145B2 (en) 2002-03-23 2012-05-01 Omnipure Filter Co., Inc. Method of making a granular media water filter
WO2010054714A2 (en) * 2008-11-14 2010-05-20 BLüCHER GMBH Adsorptive molded parts and the use thereof
WO2010054715A2 (en) * 2008-11-14 2010-05-20 BLüCHER GMBH Adsorptive structures and the use thereof
WO2010054714A3 (en) * 2008-11-14 2010-08-26 BLüCHER GMBH Adsorptive molded parts and the use thereof
WO2010054715A3 (en) * 2008-11-14 2010-08-26 BLüCHER GMBH Adsorptive structures and the use thereof
JP2012508645A (en) * 2008-11-14 2012-04-12 ブリュッヒャー ゲーエムベーハー Adsorbent molded products and their use
JP2012508646A (en) * 2008-11-14 2012-04-12 ブリュッヒャー ゲーエムベーハー Adsorbent structures and their use
DE102009044675A1 (en) * 2009-11-27 2011-06-01 Wolf Pvg Gmbh & Co. Kg Filter material for odor- and pollutant filters, comprises an expanded absorbent filling, which comprises agglomerate, which is formed predominantly from absorbent particles, which are adhered with a binding agent
US20210252474A1 (en) * 2018-06-08 2021-08-19 Lixil Corporation Granulation-purpose fibrous binder
US20200407240A1 (en) * 2019-06-29 2020-12-31 Aqua Guidance Technologies, Ltd. Porous filter media

Also Published As

Publication number Publication date
AU2003228347A1 (en) 2003-10-13
CN1315568C (en) 2007-05-16
WO2003082436A3 (en) 2003-12-24
ATE474646T1 (en) 2010-08-15
EP1487561B1 (en) 2010-07-21
US8167145B2 (en) 2012-05-01
US20030224932A1 (en) 2003-12-04
EP1487561A2 (en) 2004-12-22
AU2003228347A8 (en) 2003-10-13
US20110152074A1 (en) 2011-06-23
CN1652870A (en) 2005-08-10
US7293661B2 (en) 2007-11-13
US7740141B2 (en) 2010-06-22
DE60333441D1 (en) 2010-09-02
US20090035460A1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
US8167145B2 (en) Method of making a granular media water filter
CA2224974C (en) Composite particulate material and process for preparing same
US6770736B1 (en) Activated carbon filter
US7169466B2 (en) Multiple-component binder systems for porous composite blocks
FI85283C (en) FOER FARING FRAMSTAELLNING AV IMMOBILISERADE ENZYMER.
JP3888924B2 (en) Method for producing a filter body
WO2005070182A2 (en) Carbon block filters
US20030080473A1 (en) Process for producing bonded activated carbon structures and articles
CN106999908A (en) Adsorbent mixtures with improved thermal capacity
JPS62503097A (en) silica structure
US20050221089A1 (en) Filtration media comprising granules of binder-agglomerated active component
EP1803493A2 (en) Method for manufacturing filters
JP2009208076A (en) Adsorbent, and water purifier using the same
JP3177867B2 (en) Method for producing hollow activated carbon molded product
JP2657938B2 (en) Activated carbon sintered body and method for producing the same
CN1099356A (en) Hydrated granular carrier for biological treatment apparatus and method for producing same
JPH10211428A (en) Adsorptive ceramic
MXPA97010493A (en) Mixed particular material and parapreparing my process
MXPA06008017A (en) Carbon block filters
WO1998030324A2 (en) Filterable composite adsorbents
RO107839B1 (en) Adsorbant element for filtering and preparation process thereof
MXPA01003099A (en) Activated carbon filter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003726094

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038111853

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003726094

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10509439

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP