WO2003085417A1 - Detecteur d'objets et lecteur de carte a circuit integre le contenant - Google Patents

Detecteur d'objets et lecteur de carte a circuit integre le contenant Download PDF

Info

Publication number
WO2003085417A1
WO2003085417A1 PCT/JP2003/002315 JP0302315W WO03085417A1 WO 2003085417 A1 WO2003085417 A1 WO 2003085417A1 JP 0302315 W JP0302315 W JP 0302315W WO 03085417 A1 WO03085417 A1 WO 03085417A1
Authority
WO
WIPO (PCT)
Prior art keywords
card
coil
sensor
detection
shaft end
Prior art date
Application number
PCT/JP2003/002315
Other languages
English (en)
French (fr)
Inventor
Yukihiko Takita
Kenji Hirasawa
Shogo Momose
Yasuhiro Kitazawa
Original Assignee
Sankyo Seiki Mfg. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002056213A external-priority patent/JP3630142B2/ja
Priority claimed from JP2002226759A external-priority patent/JP2004070538A/ja
Priority claimed from JP2003027906A external-priority patent/JP4212373B2/ja
Application filed by Sankyo Seiki Mfg. Co., Ltd. filed Critical Sankyo Seiki Mfg. Co., Ltd.
Priority to US10/505,927 priority Critical patent/US7607580B2/en
Publication of WO2003085417A1 publication Critical patent/WO2003085417A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0013Methods or arrangements for sensing record carriers, e.g. for reading patterns by galvanic contacts, e.g. card connectors for ISO-7816 compliant smart cards or memory cards, e.g. SD card readers
    • G06K7/0056Methods or arrangements for sensing record carriers, e.g. for reading patterns by galvanic contacts, e.g. card connectors for ISO-7816 compliant smart cards or memory cards, e.g. SD card readers housing of the card connector
    • G06K7/0069Methods or arrangements for sensing record carriers, e.g. for reading patterns by galvanic contacts, e.g. card connectors for ISO-7816 compliant smart cards or memory cards, e.g. SD card readers housing of the card connector including means for detecting correct insertion of the card, e.g. end detection switches notifying that the card has been inserted completely and correctly
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K13/00Conveying record carriers from one station to another, e.g. from stack to punching mechanism
    • G06K13/02Conveying record carriers from one station to another, e.g. from stack to punching mechanism the record carrier having longitudinal dimension comparable with transverse dimension, e.g. punched card
    • G06K13/08Feeding or discharging cards

Definitions

  • the present invention provides an object detection sensor configured to detect the presence or absence of an object to be detected, and information on an IC card inserted to a read / write position in the apparatus main body, including the object detection sensor.
  • IC card reader for recording and playback.
  • an object detection sensor is a device that handles coins such as vending machines, vending machines, ATMs, etc., and is widely used in a wide variety of devices, such as a device for identifying irregularities and materials of coins, and a motor drive control device.
  • Conventional object detection sensors usually have a structure called an eddy current type. For example, as shown in FIG. 10, the sensor is wound around a rod-shaped core body 100. A current is passed through the coil 200 to generate a magnetic flux ⁇ r for detection.
  • the object 300 and the core 100 0 Is relatively moved, and the magnitude of the eddy current generated in the object 300 changes in accordance with the change in the distance between the two at that time, and the magnetic resistance changes.
  • a detection output as shown in Fig. 11 is obtained.
  • the DC resistance component is included in the magnetoresistance change between the core body 100 and the detection body 300 via air. From, the final output detected is 1
  • an entrance sensor for detecting the authenticity or the front and back of a force input into the main body of the device is installed.
  • an entrance sensor is often placed immediately after or near the force entrance to detect the authenticity and front / back of a card inserted into the main body of the device. Have been done. That is, by detecting the information recording section, etc. of the card inserted in the main body with the entrance sensor, the correct card is inserted, or even if the card is correct, the front and back are not reversed. Is detected by the entrance sensor, and if the card is incorrect, the shutter located immediately after the entrance sensor or on the downstream side is kept closed, and fraudulent activity is detected in advance. I try to prevent it.
  • IC cards with ICs incorporated in the cards have been adopted, and IC contacts are disposed at the contact terminals of the IC cards so that the IC contacts can be connected and separated.
  • An IC card reader for reading / writing information by using a computer has appeared.
  • the IC card reader which records and plays back information on the IC card, has a card slot for inserting a card into the main body of the device, and a read / write position for a card inserted through the card slot. It has a card transport path that guides the card and a transport drive unit that moves the card in the card transport path.
  • the authenticity or front and back of the card inserted into the card insertion slot is detected by the entrance sensor located near the card ⁇ entrance, and when it is detected that the card is proper, the card is driven by the transport driving means to IC power. It is transported to the position of an IC contact that is removably attached to the contact terminal of a single node, and reads / writes information.
  • an eddy current type sensor As disclosed in Japanese Patent Application Laid-Open No. H11-325210, a problem arises in that the IC cannot be made thinner. I do.
  • an eddy current sensor has three or more exciting rod-shaped cores, so it is unavoidable to increase the size of the sensor.
  • the magnetic permeability of the core changes with humidity, and the temperature with respect to the operating environment depends on the humidity. Since the characteristics fluctuate greatly, the threshold level for determining the presence or absence of the IC force must be set higher than the fluctuation in the temperature characteristics. If the distance is longer than a certain level, detection of IC force may not be possible.
  • the recent cart reader using an IC card as described above. No specific proposal has yet been made on how to detect the card type.
  • the conventional card reader cannot determine the type of card inserted into the device body, and determines whether the card currently used is a magnetic card or an IC card. There is a problem that cannot be determined. Also, in the case of an IC card, it cannot be determined whether the card is a contact type IC card or a non-contact type IC card. Naturally, it is impossible at all. For this reason, for example, when an unusable card is inserted, the shutter closing control operation cannot be performed reliably, and no countermeasures can be taken to prevent malfunction or damage of the device. is there.
  • an object of the present invention is to provide an object detection sensor that can obtain a stable detection result while obtaining good detection sensitivity with a simple configuration.
  • the present invention provides an IC force reader capable of detecting a disconnection or the like of an entrance sensor and performing an appropriate process before detecting whether the force is true or false. Aim. Disclosure of the invention
  • the excitation coil and the detection coil are mounted by being wound around the same axis of the core body, respectively.
  • One side of the exciting coil and the detecting coil is mounted on a central core portion arranged substantially at the center in the axial direction of the core body, and the other side of the exciting coil and the detecting coil is mounted on the other side.
  • the core body is mounted on a pair of shaft end cores disposed at both ends in the axial direction of the core body, and one side of the pair of shaft end cores and the object to be detected can face each other.
  • the exciting coil and the detecting coil are arranged so as to be distinguished from each other, and furthermore, a pair of exciting coils or a pair of exciting coils are arranged. Since detection is performed based on the balance between the output coils, high-sensitivity output can be achieved using a small core body by directly measuring the amount of change in magnetic flux regardless of the impedance including DC resistance etc. In addition, stable detection can be performed irrespective of environmental temperature fluctuations by using an inexpensive circuit without using a conventional constant current circuit.
  • the core body according to claim 1 since the core body according to claim 1 is formed of a single plate-shaped member, the core body is reduced in thickness. Therefore, the size can be further reduced.
  • the width of the shaft end core portion in the direction perpendicular to the axial direction of the shaft end core portion according to claim 1 is formed smaller than the width size of the central core portion.
  • the width dimension of the shaft end core portion according to the third aspect is set to be equal to or less than half the width dimension of the central core portion.
  • the detection sensitivity is further increased by reducing the width of the shaft end core portion approaching the object to be detected, improving the current efficiency in the shaft end core portion, and generating more magnetic flux.
  • a locking flange portion protruding in the width direction.
  • the winding positions of the exciting coil and the detecting coil are regulated to predetermined positions by the locking flange.
  • the shaft end core portion on the opposite side to the side disposed so as to face the object to be detected is provided.
  • the comparative metal body is disposed so as to face the shaft end core portion.
  • the detection accuracy and the resolution are improved by obtaining the output change, and good linearity is obtained.
  • the excitation coil according to claim 1 has a pair of coil winding portions, and the pair of coil winding portions are on the same axis. This arrangement is such that an opposing magnetic field is formed. According to such a means, one output in a differential state is obtained by a pair of exciting coils, so that more sensitive and accurate detection is possible. Is possible.
  • the contact terminal portion of the IC card is provided at an appropriate position upstream of the reading Z writing position in the insertion direction of the IC card.
  • an entrance sensor for detecting whether the inserted card is correct or not by the detection is provided.
  • the entrance sensor for detecting the contact terminal portion of the IC card is used. The correctness of the card is easily and reliably detected.
  • the device main body includes a card inlet for inserting an IC card and an IC card inserted through the force inlet for reading the IC card.
  • a card transport path leading to a writing position transport drive means for moving an IC card in the card transport path, and a force transport path downstream of the force inlet in the IC card insertion direction.
  • a shutter means for shutting off and opening the card is provided, and the entrance sensor is arranged at a position between the card entrance and the shirt evening means. The inserted IC card is sent into the forced transport path after the shirt sensor is opened by detecting the entrance sensor.
  • the IC card reader according to claim 8 the IC card reader according to claim 8.
  • the entrance sensor of the IC card is placed in an appropriate positional relationship with the contact terminal so that it can detect the front and back of the IC card. They are easily and reliably detected.
  • the entrance sensor according to claim 9 since the entrance sensor according to claim 9 is mounted at a position drawn from the force transport path, it enters into the IC card or the device.
  • the entrance sensor is effectively prevented from being damaged by dust and the like.
  • the magnetic information recording unit is detected based on the distance from the leading end position of the IC card in the insertion direction to the contact terminal unit according to claim 8.
  • the distance between the center of the gap of the magnetic head provided as described above and the entrance sensor is set to be substantially equal, so that the detection of the card having the magnetic information recording unit is performed smoothly. Has become.
  • the entrance sensor according to claim 8 is mounted by winding an excitation coil and a detection coil on the same axis of the core body.
  • One side of the exciting coil and the detecting coil is mounted on a central core portion arranged substantially at the center in the axial direction of the core body.
  • the other ends of the excitation coil and the detection coil are respectively mounted on a pair of shaft end cores disposed at both ends in the axial direction of the core body, and of the pair of shaft end cores, The one side and the object to be detected are arranged so that they can face each other.
  • the excitation coil and the detection coil are arranged separately, and a pair of excitation coils or a pair of excitation coils is arranged.
  • Detection coil Since the detection is performed based on the balance between the coils, direct measurement of the amount of change in the magnetic flux regardless of the impedance including the DC resistance, etc., enables highly sensitive output while using a small core body. In addition, stable detection can be performed regardless of environmental temperature fluctuations by using an inexpensive circuit without using a constant current circuit as in the past.
  • the core body according to claim 13 is formed of a single plate-shaped member, so that the core body is further reduced in thickness. The size can be reduced.
  • the width of the shaft end core portion in the direction orthogonal to the axial direction of the shaft end core portion is formed to be smaller than the width size of the central core portion.
  • the width of the shaft end core portion according to claim 15 is set to be equal to or less than half the width of the central core portion.
  • the detection sensitivity is improved by reducing the width of the shaft end core that is close to the IC force as the object to be detected, improving the current efficiency in the shaft end core, and generating more magnetic flux. Can be further enhanced.
  • a locking flange protruding in the width direction.
  • the winding positions of the exciting coil and the detecting coil are regulated to predetermined positions by the locking flange.
  • the IC card reader according to claim 15 Of the pair of mounted shaft end core portions, the shaft end core portion on the opposite side to the side which is disposed so as to be able to face the IC card side as the object to be detected is opposed to the shaft end core portion.
  • the comparative metal body is arranged.
  • the difference between the detection output from the IC card as the object to be detected and the detection output from the comparison metal is detected as the amount of change, the distance between the comparison metal and the shaft end core portion, By changing the material of the comparison metal body, etc., it becomes possible to set the starting point position in the detection section required for the IC card as the object to be detected to “0” output and use it. Thus, a large output change is obtained to improve detection accuracy and resolution, and good linearity is obtained.
  • the exciting coil according to claim 13 has a pair of coil winding portions, and the pair of coil winding portions is the same as the coil winding portion.
  • the opposing magnetic field is arranged on the axis so that a single output in a differential state is obtained by the pair of exciting coils, so that higher sensitivity is achieved. And accurate detection becomes possible.
  • the IC reader according to claim 20 detects the type of the inserted card at an appropriate position upstream of the reading / writing position in the card insertion direction. Since an entrance sensor is provided, it is possible to perform a control operation such as closing a shutter when an unusable card is inserted by using a detection signal from the entrance sensor.
  • the entrance sensor according to claim 20 includes a first magnetic sensor that detects a magnetic stripe of a magnetic card, and a contact terminal portion of a contact type IC force. And a third magnetic sensor that detects the antenna of the non-contact type IC card. At least two magnetic sensors.
  • the inserted card is a magnetic card, a contact type IC card, or a non-contact type IC card according to the detection signal from the entrance sensor. Therefore, it can be properly detected whether or not the card shares either of them.
  • the card body for inserting a card into the apparatus main body according to claim 20 and the card inserted through the card insertion port are read / written.
  • a shutter means for opening is provided, and an entrance sensor is arranged at a position between the card insertion slot and the shutter means.
  • the force inserted from the card insertion slot is detected by the entrance sensor, and the shutter means is opened, so that the force in the card conveyance path is reduced. Are sent to
  • At least one of the entrance sensors according to claim 20 has an exciting coil and a detecting coil wound on the same axis of the core body.
  • a central core portion which is configured as a magnetic differential type mounted by being rotated, wherein one side of the excitation coil and the detection coil is disposed substantially at the center in the axial direction of the core body.
  • the other side of the excitation coil and the detection coil are respectively mounted on a pair of shaft end cores arranged at both ends in the axial direction of the core body, and the pair of shafts One of the end cores and the object to be detected are arranged so that they can face each other.
  • the excitation coil and the detection coil are arranged separately, and a pair of excitation coils or a pair of excitation coils is arranged. Because the detection is performed based on the balance between the detection coils, the change in magnetic flux is directly measured regardless of the impedance including DC resistance, etc. A highly sensitive output can be obtained, and stable detection can be performed regardless of environmental temperature fluctuations by using an inexpensive circuit without using a conventional constant current circuit.
  • the core body according to claim 23 is made of a plate-shaped member, the core body is thinned, and further downsizing is achieved. It is planned.
  • the width of the shaft end core portion in the direction orthogonal to the axial direction in the shaft end core portion is formed to be smaller than the width size of the central core portion.
  • the width dimension of the shaft end core portion according to claim 25 is set to be less than half the width dimension of the central core portion.
  • the detection efficiency is further improved by reducing the width of the shaft end core portion approaching the card as the object to be detected, improving the current efficiency in the shaft end core portion, and generating more magnetic flux. .
  • each of the boundary portions between the central core portion according to claim 25 and the pair of shaft end core portions has a locking flange protruding in the width direction.
  • the winding positions of the exciting coil and the detecting coil are regulated to predetermined positions by the locking flange.
  • the side of the pair of shaft end cores described in claim 25, which is arranged so as to be able to face the card as the object to be detected A comparative metal body is arranged on the opposite shaft end core so as to face the shaft end core.
  • the excitation coil according to claim 23 has a pair of coil winding portions, and the pair of coil winding portions is the same axial center.
  • the above arrangement is such that an opposing magnetic field is formed. According to such a means, one output in a differential state is obtained by a pair of exciting coils, so that higher sensitivity and more accurate Detection becomes possible.
  • a magnetic card having a pair of an exciting coil and a detecting coil wound around a magnetic core is provided at a position on the entrance side of the card transport path.
  • a differential-type entrance sensor is provided, and when the entrance sensor detects the contact terminal of the IC card, it is guided to the read / write position by the transport driving means, and the entrance sensor is moved to the contact terminal of the IC card.
  • the excitation coil is excited and the voltage of the output signal output from the detection coil causes the disconnection of the entrance sensor, etc.
  • a disconnection diagnosis means for diagnosing the disconnection is provided so that disconnection of the entrance sensor or the like is detected in advance.
  • the entrance sensor according to claim 30 is mounted by winding an excitation coil and a detection coil on the same axis of the core body.
  • One side of the exciting coil and the detecting coil is mounted on a central core portion arranged substantially at the center in the axial direction of the core body.
  • the other side of the exciting coil and the other side of the detecting coil are respectively mounted on a pair of shaft end cores disposed at both ends in the axial direction of the core body, and of the pair of shaft end cores, And the object to be detected are arranged so that they can face each other.
  • the excitation coil and the detection coil are arranged separately, and based on a pair of excitation coil balances. Since the detection is performed from the detection coil, the amount of change in magnetic flux is directly measured irrespective of the impedance including DC resistance, etc., so that a highly sensitive output can be obtained using a small core body, and Stable detection operation is possible regardless of environmental temperature fluctuation.
  • the disconnection diagnosis means according to claim 30 excites an excitation coil when the contact terminal portion is not detected, and performs a detection by a comparator. By comparing the voltage value of the output signal output from the coil with a predetermined ⁇ value, disconnection of the excitation coil and the detection coil is determined.
  • the disconnection diagnosis means according to claim 30 is characterized in that when the output level of the detection coil exceeds a predetermined threshold level, Diagnose one of the disconnections 1 5
  • the disconnection diagnosis means according to claim 30 reads / writes information from / to the IC card and ejects the IC card from a force transport path. After the excitation coil is excited and the disconnection of the entrance sensor is diagnosed, the disconnection of the entrance sensor should be detected before the next detection of the authenticity or front / back of the IC card. It's swelling.
  • the disconnection diagnosis means according to claim 30 is configured such that, after inserting the IC card into the entrance of the card transport path, the entrance sensor detects the contact terminal portion of the IC card. Since the excitation coil is energized in advance to diagnose the disconnection of the sensor, etc., before the entrance sensor detects the authenticity or the front and back of the IC card, it detects the disconnection of the entrance sensor in advance. I have.
  • the entrance sensor according to claim 30 is configured such that the pair of exciting coils or the pair of shaft end cores are unbalanced, and the exciting coils are excited. Sometimes, a minute standby voltage is output from the detection coil, and the disconnection of both the pair of excitation coils or the detection coil is detected by comparison with the minute standby voltage.
  • the excitation coil and the detection coil are separately arranged, and the detection is performed based on the balance between the pair of excitation coils.
  • the amount of change that is eliminated by canceling out the impedance due to the DC resistance and the like can be obtained with high sensitivity with good linearity using a small core body, and a conventional constant current circuit is used.
  • a low-cost circuit enables stable detection operation regardless of environmental temperature fluctuations. With this configuration, it is possible to obtain a stable detection result while obtaining good detection sensitivity with respect to the presence or absence of the object to be detected, and to improve the performance and reliability of the object detection sensor.
  • the core body is formed from a single plate-shaped member and the core body is reduced in thickness. In addition to the above-described effects, further downsizing is achieved. be able to.
  • the object detection sensor according to claim 3 and claim 4 is configured to reduce the width of the shaft end core portion approaching the object to be detected, improve current efficiency in the shaft end core portion, and collect more magnetic flux.
  • the object detection sensor according to claim 5 by providing a locking flange portion at a boundary portion between the central core portion and the shaft end core portion, enables the winding position of each coil to be accurately positioned, Since the configuration is such that the phase shift is reduced and a large change rate is obtained, the above-described effect can be further enhanced.
  • the object detection sensor detects the difference between the detection output from the detected object and the detection output from the comparison metal body as a change amount, and detects the difference between the comparison metal body and the shaft end core portion. By changing the distance, the material of the comparison metal body, etc., the starting point position in the detection section required for the object to be detected can be set.
  • It is configured so that it can be used by setting it to “0” output, thereby obtaining a large output change to improve detection accuracy and resolution and obtain good linearity. The effect can be further enhanced.
  • the object detection sensor according to claim 7 wherein an output is set to an ideal differential state by forming a facing magnetic field by a pair of exciting coils, and more sensitive and accurate detection is possible. Therefore, the effect described above Can be further enhanced.
  • the IC card reader according to claim 8 of the present invention detects the contact terminal portion of the IC card at an appropriate position on the upstream side from the reading Z writing position in the inserting direction of the IC card, thereby inserting the IC card reader.
  • An entrance sensor for detecting the validity of the card is provided, and the validity of the card is easily and reliably detected by the entrance sensor for detecting the contact terminals of the IC card. Can be improved in reliability.
  • a ninth aspect of the present invention there is provided an IC card reader according to the eighth aspect, wherein the apparatus main body is provided with a card transport path for guiding an IC card inserted through the card insertion slot to the reading / writing position.
  • a shutter was provided to shut off and open the transport path, and an entrance sensor was placed at a position between the entrance and the shirt entrance. Since the IC card is detected by the entrance sensor and then sent into the forced transfer path, in addition to the above-mentioned effects, the shutter means can be used to ensure that illegal cards are eliminated, and the device can be used. The cleanliness inside the main body can be maintained satisfactorily.
  • the IC card reader according to claim 10 of the present invention is characterized in that: The IC card is placed in an appropriate position with respect to the contact terminals so that the front and back of the IC card can be detected. In addition to the correctness of the force, the front and back of the IC card are detected easily and reliably. Therefore, the above-described effects can be further improved.
  • the IC card reader according to claim 12 of the present invention is arranged such that the magnetic information recording section is detected with respect to the distance from the leading end position of the IC card in the insertion direction to the contact terminal section in claim 8.
  • the distance between the center of the gap of the magnetic head provided and the entrance sensor is set to be substantially equal, so that the detection of the card having the magnetic information recording unit is performed smoothly. Therefore, the same effect can be obtained with respect to the force having the magnetic information recording portion.
  • the IC card reader according to claim 13 of the present invention uses a magnetic differential type entrance sensor as the entrance sensor in claim 8 to provide a highly sensitive output while using a small core body.
  • the IC card can be detected stably with good detection sensitivity in addition to the effects described above. A small, high-performance IC card reader can be obtained.
  • the IC card reader according to claim 14 of the present invention is such that the core body of the entrance sensor according to claim 13 is formed from a single plate-shaped member to reduce the thickness of the core body. In addition to the effects described above, further downsizing can be achieved.
  • the IC card reader according to claims 15 and 16 of the present invention is characterized in that the shaft end core of the inlet sensor according to claims 13 and 14 has a small width, and Since the current efficiency is improved and the detection sensitivity is further increased by collecting more magnetic flux, the above-described effects can be further enhanced.
  • the IC card reader according to claim 17 of the present invention is characterized in that the locking flange is provided at the boundary between the central core portion and the shaft end core portion of the entrance sensor in claim 15, so that each coil is Since the winding position can be accurately positioned to reduce the phase shift and obtain a large rate of change, the above-described effects can be further enhanced.
  • the IC card reader according to claim 18 of the present invention detects the difference between the detection output from the IC force detected by the entrance sensor in claim 15 and the detection output from the comparative metal body as a change amount.
  • an IC card reader according to claim 19 of the present invention provides an ideal differential state by forming an opposing magnetic field by a pair of exciting coils of the entrance sensor according to claim 13, Since the detection can be performed with higher sensitivity and higher accuracy, the above-described effect can be further enhanced.
  • the IC force reader according to claim 20 of the present invention includes an entrance sensor for detecting the type of the inserted card at an appropriate position on the upstream side in the force insertion direction from the read / write position.
  • an entrance sensor for detecting the type of the inserted card at an appropriate position on the upstream side in the force insertion direction from the read / write position.
  • An IC card reader is the IC card reader according to claim 20, wherein the entrance sensor according to claim 20 is a first magnetic sensor that detects a magnetic stripe of a magnetic card, and a contact terminal of a contact type IC force. At least two of a second magnetic sensor for detecting an antenna of the contactless IC and a third magnetic sensor for detecting an antenna of the non-contact type IC. Whether the inserted card is a magnetic card, a contact-type IC card, a non-contact-type IC card, or a card that shares any of them, so that it can be detected properly. Therefore, the above-described effects can be reliably obtained.
  • the IC card reader according to claim 22 of the present invention is characterized in that: Item 20.
  • a card transport path for guiding a card inserted through the force inlet to the read / write position is provided, and a shutter means for blocking and opening the card transport path is provided.
  • the IC card reader according to claim 23 of the present invention uses a magnetic differential type magnetic differential sensor as the entrance sensor in claim 20, so that the IC card reader can use a small-sized core body, Because stable detection operation is possible regardless of environmental temperature fluctuations while obtaining a sensitive output, in addition to the effects described above, card detection can be performed stably with good detection sensitivity. A small, high-performance IC card reader can be obtained.
  • the IC force reader according to claim 24 of the present invention is such that the core body of the magnetic differential sensor according to claim 23 is formed from a plate-shaped member to reduce the thickness of the core body. In addition to the effects described above, further downsizing can be achieved.
  • the IC force reader according to claims 25 and 26 of the present invention is characterized in that the shaft end core portion of the magnetic differential sensor according to claims 23 and 24 has a small width, and Since the current efficiency in the end core portion is improved and more magnetic flux is collected to further increase the detection sensitivity, the above-described effects can be further enhanced.
  • An IC card reader provides the magnetic differential sensor according to the twenty-fifth aspect, by providing a locking flange at a boundary between the central core portion and the shaft end core portion. Accurately position the winding position of each coil Since the phase shift can be determined and the phase shift is reduced and a large change rate is obtained, the above-described effect can be further enhanced.
  • the IC card reader according to claim 28 of the present invention uses the difference between the detection output from the card by the magnetic differential sensor according to claim 25 and the detection output from the comparison metal as a change amount.
  • the starting point position in the detection section required for the object to be detected is output to “0” output. It is possible to set and use it, thereby obtaining a large output change to increase the detection accuracy and resolution and to obtain good linearity. it can.
  • an IC card reader according to claim 29 of the present invention provides an ideal differential state by forming an opposing magnetic field by a pair of exciting coils of the magnetic differential sensor according to claim 23.
  • the detection can be performed with higher sensitivity and more accuracy, the above-described effects can be further enhanced.
  • the IC card reader according to claim 30 of the present invention is a magnetic differential type having a pair of an exciting coil and a detecting coil wound around a magnetic core at a position on the entrance side of a card transport path.
  • the entrance sensor detects the contact terminal of the IC card, it is guided to the read / write position by the transport drive means, and the entrance sensor detects the contact terminal of the IC card.
  • the disconnection diagnosis means for diagnosing the disconnection of the entrance sensor based on the voltage value of the output signal outputted from the detection coil by exciting the excitation coil is provided, so that the disconnection of the entrance sensor can be determined by itself. Therefore, the reliability as an IC card reader can be greatly improved.
  • the IC card reader according to claim 31 of the present invention is characterized in that:
  • the use of a magnetic-differential entrance sensor as the entrance sensor in 30 enables a stable detection operation regardless of environmental temperature fluctuations while using a small core to obtain high-sensitivity output. Therefore, in addition to the effects described above, IC cards can be detected stably with good detection sensitivity, and a small, high-performance IC card reader can be obtained.
  • the IC card reader according to claim 32 of the present invention is characterized in that the disconnection diagnosis means in claim 30 does not detect the contact terminal of the IC card, such as disconnection of the excitation coil of the entrance sensor or the detection coil. Since the disconnection of the IC card reader is determined, it can be detected without affecting the original operation of the IC card reader.
  • the disconnection diagnosing means according to claim 30 is configured such that when the output level of the detection coil exceeds a predetermined threshold level, the pair of excitation coils Since one of the disconnections is diagnosed, it is possible to identify the disconnection point of the entrance sensor or the like.
  • the IC card reader according to claim 34 of the present invention is characterized in that the disconnection diagnosis means in claim 30 diagnoses disconnection of the entrance sensor after the IC force is discharged.
  • the disconnection of the inlet sensor can be detected in advance before the force is detected or the front and back are detected.
  • the disconnection diagnosis means in claim 30 diagnoses disconnection of the entrance sensor when the IC card is inserted into the entrance of the card transport path. Before the entrance sensor detects whether the IC power is true or false or front and back, disconnection of the entrance sensor can be detected in advance.
  • the entrance sensor according to claim 30 outputs a minute standby signal from the detection coil when the exciting coil is excited.
  • FIG. 1 is an explanatory side view showing a schematic structure of an object detection sensor according to an embodiment of the present invention.
  • FIG. 2 is an external perspective view illustrating the core structure of the object detection sensor shown in FIG.
  • FIG. 3 is a diagram comparing the detection output of the object detection sensor according to the present invention with a conventional sensor.
  • FIGS. 4A and 4B show schematic arrangement examples when the object detection sensor according to the present invention is used as a coin presence / absence detection sensor.
  • FIG. 4A is a side view, and FIG. It is.
  • FIG. 5 is a diagram showing an example of an output obtained by the configuration of FIG.
  • FIG. 6 is an explanatory side view showing a schematic structure of an object detection sensor according to another embodiment of the present invention.
  • FIG. 7 is a diagram showing an adjustment state of a detection section by the object detection sensor shown in FIG.
  • FIGS. 8A and 8B show examples of other three-dimensional shapes of the core body.
  • FIG. 8A is an external perspective view of the cylindrical core body, and FIG.
  • FIG. 9 is a circuit diagram illustrating an example of parallel connection of exciting coils.
  • FIG. 10 is an explanatory side view showing a schematic structure of a general object detection sensor.
  • FIG. 11 is a diagram of a detection output by the general object detection sensor shown in FIG.
  • Fig. 12 is an explanatory perspective view showing the general structure of a general object detection sensor. It is.
  • FIG. 13 is a longitudinal sectional view showing a state in which an IC card is transported to a reading Z writing position in a card transport path of an IC card reader having an object detection sensor (entrance sensor) according to an embodiment of the present invention.
  • FIG. 13 is a longitudinal sectional view showing a state in which an IC card is transported to a reading Z writing position in a card transport path of an IC card reader having an object detection sensor (entrance sensor) according to an embodiment of the present invention.
  • FIG. 14 is an explanatory longitudinal sectional view showing a state immediately before the IC force reaches the reading Z writing position in the card transport path of the IC card reader shown in FIG.
  • FIG. 15 is an explanatory side view showing a configuration of a card ⁇ entrance portion in a force transport path of the IC card reader shown in FIG.
  • FIG. 16 is an explanatory plan view of the card ⁇ entrance portion shown in FIG.
  • FIG. 17 is an explanatory front view of the card ⁇ entrance portion shown in FIG.
  • FIG. 18 is an explanatory longitudinal sectional view showing an example of an entrance sensor used in the IC card reader in FIG.
  • FIG. 19 is an explanatory cross-sectional view of the entrance sensor shown in FIG.
  • FIG. 20 is an explanatory side view showing a schematic structure of the entrance sensor shown in FIG.
  • FIG. 21 is an external perspective explanatory view showing the core structure of the entrance sensor shown in FIG.
  • FIG. 22 is a diagram showing measurement results of temperature characteristics in the inlet sensor according to the present invention.
  • FIG. 23 is a diagram showing a measurement result of a relationship between an interval between an entrance sensor and a contact terminal portion of an IC card and an output voltage from the entrance sensor.
  • FIG. 24 is a diagram showing a temperature characteristic of a detection output voltage obtained from an actually installed entrance sensor.
  • FIG. 25 is an explanatory plan view showing the positions of the contact terminals provided on the IC card. Five
  • FIG. 26 is an enlarged view of a portion A in FIG.
  • FIG. 27 is an explanatory plan view showing the position of the embossed area provided on the IC card.
  • FIG. 28 is an explanatory front view showing a state where the IC card is properly inserted with the IC card facing up.
  • FIG. 29 is an explanatory front view showing a state in which the IC card is improperly inserted with the IC card facing backward.
  • FIG. 30 (a) is a side explanatory view showing a schematic structure of an entrance sensor according to another embodiment of the present invention, and (b) is a side view of a detection section by the entrance sensor shown in (a).
  • FIG. 3 is a diagram illustrating an adjustment state.
  • FIG. 31 shows a state in which the IC force is conveyed to the reading Z writing position in the force conveyance path of the IC card reader having the object detection sensor (entrance sensor) according to the embodiment of the present invention. It is the longitudinal section explanatory view shown.
  • FIG. 32 is an explanatory longitudinal sectional view showing a state immediately before the card reaches the reading Z writing position in the force transport path of the IC card reader shown in FIG. 31.
  • FIG. 33 is an explanatory side view showing, on an enlarged scale, a card ⁇ entrance portion in the card transport path of the IC card reader shown in FIG. 31.
  • FIG. 34 is an explanatory front view of the force door entrance portion shown in FIG.
  • FIG. 35 is an explanatory front view showing, in an enlarged manner, an inlet portion of the force door shown in FIG.
  • FIG. 36 is an explanatory side view showing an example of the magnetic differential sensor used in the IC card reader shown in FIG.
  • FIG. 37 is an explanatory plan view of the magnetic differential sensor (entrance sensor) shown in FIG.
  • FIG. 9 is a diagram illustrating a result of measuring a relationship with an output voltage from a mold sensor.
  • FIG. 39 is a plane explanatory view showing the position standard of the magnetic stripe in the magnetic card.
  • FIG. 40 is an explanatory plan view showing a minimum coupling region between the antenna unit and the chip provided in the non-contact type IC card.
  • FIG. 41 is a circuit block diagram showing a control circuit section as a disconnection diagnosis means of the present invention.
  • FIG. 42 is a longitudinal section showing a state in which an IC card is conveyed to a reading / writing position in a force conveyance path of an IC card reader provided with an object detection sensor (entrance sensor) according to an embodiment of the present invention.
  • FIG. 43 is an explanatory longitudinal sectional view showing a state immediately before the IC card reaches the reading Z writing position in the card transport path of the IC force reader shown in FIG.
  • FIG. 44 is a waveform diagram showing signals in each state of the control circuit unit shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • a detection coil is provided for a central core portion 11 a of a core body 11 made of one thin plate-shaped member.
  • a pair of shaft end cores 1 1c are integrally wound on both sides of the central core 11 a in the vertical direction in the figure via locking flanges 11 b.
  • 11 d are wound with exciting coils 13 c, 13 d, respectively.
  • the shaft end core portions 11c and 11d are arranged on the upper side in the drawing.
  • the placed one of the shaft end core portions 11 c is arranged so as to be able to face the detection object 14 made of a metal member or a magnetic material.
  • the direction (vertical direction in the drawing) of the axis CX reaching the shaft end core portion 11 d on the other side through the central core portion 11 a is the moving direction of the detection object 14.
  • the positions are set to be substantially orthogonal.
  • the object to be detected 14 is reciprocated along the direction substantially perpendicular to the axis CX with respect to the shaft end core portion 11c on the one side.
  • the object 1 It is configured to detect the presence (presence) of 4. It should be noted that the object detection sensor 10 may move in a state where the object 14 is fixed.
  • the central core portion 11a is disposed at a substantially central portion of the object detection sensor 10 in the extending direction (vertical direction in the drawing) of the axis CX, and is arranged in the direction of the axis CX.
  • the width dimension W1 in a direction (horizontal direction in the figure) perpendicular to the width is relatively wide.
  • the width W2 of each of the core ends lie and lld at both ends is set smaller than the width W1 of the central core 11a (W2 ⁇ W1). Is formed to have dimensions less than half (W2 ⁇ W 1/2).
  • the portion of the central core portion 11a around which the detection coil 12 is wound is cut out so as to have a slightly narrow dimension W3.
  • the pair of excitation coils 13c and 13 wound around the two shaft end cores 11c and lid are composed of a series of integrally connected coil members.
  • the inner end portions wound around the base portion of the core portions lie, 11d at both shaft ends are connected to each other by a crossover wire 13 They are connected together by e to form a series.
  • the lead portions 13 f and 13 g drawn out from the respective distal ends of the core ends 11 c and 11 d are connected to the two terminals of the AC power supply 15, respectively.
  • the sine wave or the rectangular wave generated from the AC power supply 15 is applied to each coil winding portion of the both shaft end core portions 11c and 11d, so that the same shaft center CX described above is applied.
  • opposing magnetic fields ⁇ 1 and ⁇ 2 in opposite directions are formed.
  • each locking flange 11b, lib provided at each boundary between the central core 11a and the pair of shaft end cores 11c, 11d is connected to the shaft center CX.
  • the exciting coils 13c and 13c are located at positions protruding in the axial direction with respect to the respective locking flanges 11b in a width direction projecting in a width direction substantially orthogonal to the direction of Each of the detection coils 13 d is wound. That is, the winding positions of the coils 13c and 13d are determined by the locking flanges 11b and 11b.
  • the detection output obtained from the detection coil 12 is generated by the pair of excitation coils 13c and 13d. Is based on the magnetic field corresponding to the sum of the opposing magnetic fields ⁇ 1 and ⁇ 2 in the opposite directions.
  • the above-described object 14 does not exist (none) or the object 14 If it is sufficiently far (infinity) from the detection sensor 10, the absolute values of the opposing magnetic fields ⁇ 1 and ⁇ 2 in the opposite directions are equal (
  • the object detection sensor 10 and the object to be detected 14 are relatively close to each other and within a certain range (present)
  • the eddy current generated in the object 14 changes, , Reverse opposing magnetic field phi I described above, [Phi 2 of Palance is collapsed, for example, if phi I increases phi 2 is Become smaller.
  • a differential output is obtained from the detection coil 12 based on a magnetic field corresponding to a difference between the absolute values of the opposing magnetic fields ⁇ 1 and ⁇ 2 at that time (I ° 1 I ⁇ I ⁇ 2 I).
  • the excitation coils 13c and 13d and the detection coil 12 are arranged separately from each other. Since the detection is performed based on the balance between 13c and 13d, the amount of change in magnetic flux is good irrespective of the impedance due to DC resistance etc., while using a thin and small core body 11. High sensitivity with high linearity. In addition, a stable detection operation regarding the presence or absence of the object 14 can be performed by an inexpensive circuit without using a constant current circuit as in the related art, regardless of environmental temperature fluctuations.
  • the shaft end cores 11 c and 11 d arranged facing the detection object 14 are made small, and the current efficiency of the shaft end cores 11 c and lid is reduced. Since more magnetic flux is generated by this, the amount of change in detection, that is, the detection sensitivity with respect to the presence or absence of the detection target 14 is further improved.
  • the locking flange 11 is provided at the boundary between the central core 11a and the shaft end cores 11c and 11d.
  • the object detection sensor 10 since the output balance between the pair of excitation coils 13c and 13d is in a differential state, the sensitivity and accuracy are further improved. Detection is possible. Also, the temperature characteristics are good because of the differential.
  • a coil having a winding number of 20 T is employed as the excitation coils 13 c and 13 d, while a coil having a winding number of 40 T is employed as the detection coil 12, the excitation frequency is 1 MHz, and the excitation frequency is 1 MHz.
  • the current was set to 20 mA pp (0.65 V) and the object detection sensor 10 according to the present invention described above was compared with a conventional product, the result shown in FIG. 3 was obtained. was gotten. That is, when the output from the detection coil 12 is “1” when the object 14 is not present or at a sufficiently long distance (infinity), the object 14 and the object detection are performed.
  • the output change rate (vertical axis in Fig.
  • the object detection sensor 10 according to the present invention is actually replaced by a coin sensor for detecting the presence or absence of coin C such as a 500 yen coin.
  • a coin sensor for detecting the presence or absence of coin C such as a 500 yen coin.
  • FIG. 5 good measurement results were obtained regardless of the distance (gap) G between the coin C and the coin sensor 10 as described above.
  • the results in Fig. 5 were measured with the current and amplifier gain fixed.
  • one of the pair of shaft end cores 11 c and 11 d disposed on the upper side in the drawing is one of the shaft end cores 11 c and 11 d.
  • the other end of the shaft end core lid which is disposed so as to face the lower side of the drawing, is made of the same material as or a similar conductivity to the above-mentioned detected object 14 (detected object 14). Is arranged so as to face a comparative metal body 20 having a similar magnetic permeability (a magnetic body when the object 14 is a magnetic body). .
  • the object to be detected 14 is an aluminum material, copper, ferrite, permalloy, or the like
  • aluminum material, copper, ferrite, permalloy of the same material as the comparative metal body 20, or any of them are used, even if the comparative metal body 20 is used, aluminum material, copper, ferrite, permalloy of the same material as the comparative metal body 20, or any of them.
  • magnetic materials or non-magnetic members are used in combination.
  • the one-side shaft end core portion 11 c becomes the object to be detected.
  • the distance L1 between the two members changes between a finite value and an infinite value.
  • the shaft end core portion 11 on the other side is configured to be maintained at a predetermined position without changing the distance L2 with respect to the comparative metal body 20. Therefore, the position where the output from the detection coil 12 becomes “0” is determined by the distance L 2 between the comparison metal body 20 and the shaft end core portion 1 1d on the other side.
  • the position is equal to the distance L1 between the shaft end core portion 11c and the object 14 to be detected, the above-described detection of the shaft end core portion 11c on one side and the object 14 can be performed. If the interval L1 is set to be equal to or smaller than the interval L2 (0 ⁇ L1 ⁇ L2) between the comparative metal body 20 and the other end 1d of the shaft end, However, it is possible to take out a large detection output regarding the presence or absence of the object 14 to be detected.
  • the detected object Since the difference between the detected output from 14 and the detected output from the comparative metal body 20 is used as the amount of change, the distance L between the comparative metal body 20 and the shaft end core 1 1 c
  • the position L2 can be changed and used arbitrarily, and as a result, the detection accuracy can be enhanced by obtaining a large output regarding the presence or absence of the object 14 to be detected.
  • the excitation coils 13 c and 13 d are arranged on both sides with the detection coil 12 interposed therebetween at the center portion, but the excitation coil is disposed at the center portion. It is also possible to configure so that the detection coils are arranged on both sides of the sandwich.
  • the width of the shaft end core 11c is smaller than the width of the center core 11a (W2 ⁇ W1). It is also possible to make them equal or vice versa.
  • the central core portion 11 a of the core body 11 is provided with a concave notch at a position where the detection coil 12 is wound. It is also possible to form it into a simple rectangular shape without providing a hole.
  • a single thin plate-shaped member is used as the core body, but a three-dimensional core body as shown in FIGS. 8 (a) and (b) is used.
  • the shaft is provided at the central portion in the axial direction. It is possible to form a simple shape without forming the notched concave portions 11'a and 11 "a.
  • the pair of exciting coils 13 c and 13 d are connected in series in a continuous manner.
  • the respective exciting coils 13 c and 13 d it is also possible to connect the respective exciting coils 13 c and 13 d so as to be in parallel with the AC power supply 15 to form an opposing magnetic field.
  • one excitation power supply is provided independently, but a separate power supply is arranged for each excitation coil 13c, 13d. It is also possible. However, in that case, it is necessary to set so that the phases of each power supply are synchronized.
  • FIGS. 13 and 14, FIGS. 31 and 32, and FIGS. 42 and 43 show an IC card reader, and show an embodiment in which an IC card 3 is inserted to read information and to perform Z writing. Is shown.
  • the "IC card 3" in the embodiment shown in FIG. 31 is a "contact type IC card 3".
  • the "object detection sensor” is an entrance sensor or a "magnetic differential sensor”.
  • a force feeding path in which an IC card 3 inserted through a force slot 2 provided on the right side in the drawing is arranged so as to extend substantially horizontally. As shown in the figure, it is guided by 4 and fed to the rear end of the device.
  • the card transport path 4 is configured to be sandwiched between the upper frame 4a and the lower frame 4b, and is disposed at a position relatively forward (to the right in the figure) of the card transport path 4.
  • the above-mentioned IC card 3 is rotated by the motor (not shown) to rotate the above-mentioned IC card 3 to the rear end side (the right end side in the figure). It is guided to the card reading Z writing position located at
  • a card feed roller 5c and a feed pad 5d are arranged at a position substantially at the center of the force feed path 4.
  • the card feed rollers 5a and 5c or the feed pads 5b and 5d are rotated by a motor (not shown), so that the IC card 3 is disposed at the rear end (right end in the drawing). It is guided to the card reading / writing position.
  • the IC card 3 taken in from the card entrance 2 into the inside of the card transport path 4 is further pushed in after the front end 3 a of the IC card 3 contacts the card contact member 6. Then, the card contact member 6 is moved in the card running direction together with the IC card 3. Then, along with the movement of the force contact member 6, the IC contact 7 is moved to a position where it comes into contact with the contact terminal portion 3b of the IC card 3 by the action of the contact block 8.
  • the card contact member 6 includes a protruding portion 6 a for contacting the front end 3 a of the IC card 3 and a receiving means 6 b for supporting the back side of the IC card 3.
  • the protruding portion 6a is located at the tip of the card contact member 6 (left side in the figure). (The end portion), a part of the protruding portion 6a so that the IC card 3 traveling in the card transport path 4 abuts on the protruding portion 6a. Are disposed so as to protrude into the force-feeding conveyance path 4 formed by the upper frame 4a and the lower frame 4b.
  • the above-described card contact member 6 is provided so as to be movable in the direction in which the IC card 3 travels. However, a spring or the like (not shown) is used to move the IC card 3 toward the rear end side, that is, the right side in the drawing. The IC card 3 contacts the card contact member 6 and moves until the IC card 3 moves, as shown in FIGS. 14, 34, and 43 (the right position in the figure). ).
  • the contact block 8 is engaged with the card contact member 6 while holding the probe needle-shaped IC contact 7, and the card contact member 6 moves to the left end in the drawing. In conjunction with this, it descends along the oblique cam groove 8 b from the card separation position shown in FIGS. 14, 32, and 43, and the card contact shown in FIGS. 13, 31, and 42. It is configured to reach the contact position.
  • the contact block 8 is configured to contact the IC contact 7 with the contact terminal 3b of the IC card 3 immediately before reaching the force contact position.
  • the sensor 9 arranged on the upper side in the figure is provided on the card contact member 6.
  • the sensor 6 detects the slit 6c and the rear end face 6d of the card contact member 6, and the sensor 9 detects the slit 6c.
  • the timing at which the speed is reduced is detected, and by detecting the rear end surface 6d, it is detected that the IC card 3 is stopped at the force reading Z writing position.
  • an optical sensor is used as the sensor 9, but other means, for example, a magnetic sensor or a mechanical sensor can be used.
  • the contact terminal 3b of the IC card 3 is detected upstream of the card reading Z writing position, more specifically, at a position immediately after the above-mentioned card slot 2 on the left side in the drawing.
  • a magnetic differential type entrance sensor 10 for detecting whether or not the card is an IC card is provided so as to face the inside of the card transport path 4. Further, in the insertion direction of the IC card 3, on the downstream side of the entrance sensor 10, a magnetic pre-head 20 constituting an entrance sensor when using a card having a magnetic recording information section, Shutter means 30 for opening and closing the transport path 4 are provided so as to be in parallel with each other.
  • the width of the IC card 3 in the insertion direction is detected at the upstream side of the sensor 10 in the insertion direction of the IC card 3 to determine whether the card is appropriate.
  • a card detector 600 for detecting whether or not the card is present is provided.
  • the magnetic differential type entrance sensor 10 has a function of detecting the contact terminal portion 3b of the IC card 3 inserted from the force input port 2 described above.
  • the shutter means 3 is inserted, the shutter means 30 is opened based on the appropriate detection signal. If the contact terminal section 3b of the IC card 3 is not detected due to the insertion of the card, the shutter means 30 is kept in the shut-off state to prevent the use of an unauthorized card, etc. To prevent this.
  • the card reading Z At the position upstream of the insertion position, three entrance sensors 20, 10, and 40 are provided for detecting the type of the inserted card.
  • These entrance sensors 20, 10, 40 are composed of a first magnetic sensor 20 for detecting a magnetic stripe of a magnetic force, and a second magnetic sensor for detecting a contact terminal of a contact type IC force. It comprises a magnetic sensor 10 and a third magnetic sensor 40 for detecting an antenna portion of a non-contact type IC force.
  • the second magnetic sensor 10 and the third magnetic sensor 40 are magnetic differential sensors (entrance sensors) provided so as to face the card transport path 4, respectively (details).
  • the two sensors 10 and 10 are arranged in parallel in a direction substantially perpendicular to the card traveling direction immediately after the left side of the force input port 2 in FIG.
  • the 40 are arranged so that they are substantially at the same position.
  • the second magnetic sensor 10 has a function of detecting the contact terminal portion 3b provided on the contact type IC card 3 described above. ⁇ ⁇
  • a detection signal is generated from the second magnetic sensor 10.
  • the third magnetic sensor 40 is arranged so as to detect an antenna portion which is arranged around a non-contact type IC card so as to form a belt or the like, and the non-contact type IC card is provided. Is inserted from Card 2 The third magnetic sensor 40 generates a detection signal.
  • the first magnetic sensor 20 constitutes a magnetic pre-head when a card having a magnetic stripe is used as a magnetic recording information section, and the first and second magnetic sensors 20 are arranged in the force transport direction.
  • Third magnetic sensor 10
  • the 40 is located slightly downstream (rear side) of the first magnetic sensor 20 when a force having a magnetic stripe such as a magnetic card is inserted through the card slot 2. A signal is to be emitted.
  • a well-known shutter means 30 for opening and closing the card transport path 4 is arranged on the downstream side (rear side) of the first magnetic sensor 20 in the card transport direction.
  • the shutter means 30 is opened based on the appropriate detection signal, but when an incorrect card is inserted, that is, when the contact terminal of the IC card 3 is inserted.
  • the shutter means 30 is kept in the shut-off state, thereby preventing use of an unauthorized card or the like.
  • the opening / closing circuit of the shutter means 30 is the same as the conventionally known one, so that the description is omitted. It is also possible to prevent the illegal force from being taken into the apparatus by controlling the driving of the motor without providing a simple shirt evening means 30.
  • the detection signal from the appropriate IC card 3 (the detection signal indicating that the IC card 3 is appropriate) is transmitted to the entrance sensor 10 (in the embodiment shown in FIG. 31, the entrance sensors 20, 10, 4). 0), the card and the transport driving means are driven on the basis of the detection signal, whereby the power feeder 5a (power in the embodiment shown in FIG. Feed roller 5a,
  • the card feed roller 5a (the card feed rollers 5a, 5c in the embodiment shown in FIG. Run card 3. Therefore, the projecting portion 6a of the card contact member 6 is pushed in the card traveling direction by the tip 3a of the IC card 3, and the card contact member 6 is integrated with the IC card 3 in the card traveling direction, that is, in the drawing. It will move to the far left side.
  • the contact block 8 engaged with the force contact member 6 is configured to move up and down. That is, the contact block 8 descends by using the cam groove 8 b to bring the IC contact 7 into contact with the contact terminal 3 b of the IC card 3. Thereafter, the IC card 3 moves to the position where the information is read and written, so that the contact block 8 is further lowered. Therefore, as the IC card 3 approaches the card reading / writing position, the IC contact 7 is further pressed against the contact terminal portion 3b of the IC card 3.
  • the above-described second magnetic sensor 10 and third magnetic sensor 40 are composed of magnetic differential sensors having substantially the same structure as each other.
  • an example of the structure of the magnetic differential sensor will be described in detail. Since the two sensors 10 and 40 have the same configuration as described above, only the second magnetic sensor 10 will be described below.
  • the above-described IC card reader has a magnetic recording information portion formed of a magnetic stripe on one surface.
  • a magnetic card (not shown) can be inserted to read / write information. That is, a magnetic pre-head 20 that constitutes a magnetic force entrance sensor is disposed downstream of the entrance sensor 10 in the card insertion direction. Then, by inserting the magnetic card from the card entrance 2, the magnetic pre-head 20 first detects the magnetic recording information part of the magnetic card. When a proper magnetic card is inserted, the shutter means 30 is opened based on the proper detection signal, but when an improper force is inserted, the magnetic recording of the magnetic card is performed. If the information section is not detected, the shut-down means 30 is kept in the cut-off state, thereby preventing the use of fraudulent information.
  • the motor of the transport driving means is driven based on the detection signal, and the card feed rollers 5 a and 5 c are driven. Is driven to rotate, and the magnetic card is carried into the card transport path 4 through the shutter means 30.
  • a magnetic head 80 for reading / writing information in a magnetic recording information section of the magnetic card is provided so as to face the card transport path 4.
  • the magnetic card conveyed by the card feed roller 5a is conveyed while sliding on the magnetic recording information section, and after the information is read and written, the tip of the magnetic card reaches the card feed roller 5c. It reaches and is further transported.
  • the sensor 99 detects the rear end of the magnetic card.
  • the rotation of the card feed rollers 5a and 5c is stopped so as to stop the conveyance of the magnetic card, and the card reading Z writing of the magnetic force is completed. Is detected.
  • the magnetic drive in the card transport path 4 is conveyed in the reverse direction by reversing the rotational drive direction of the card feed rollers 5a and 5c. ⁇ ⁇ You are led to entrance 2. Then, the rear end of the magnetic card is projected from the card insertion slot 2 so that the magnetic card can be taken out.
  • the inlet sensor 10 is mounted in a housing 10 a as shown in FIGS. 6 and 7,
  • Each terminal plate 10b provided so as to protrude substantially horizontally from the housing 10a is connected to a circuit control unit (not shown).
  • the second magnetic sensor 10 in the embodiment shown in FIGS. 36 and 37 is formed of a magnetic differential type sensor, but has a resin body attached to the housing 10a.
  • the housing 10 extends from a magnetic differential sensor (hereinafter referred to as a magnetic differential sensor 10) embedded in the 10 b and constituting the second magnetic sensor 10.
  • a magnetic differential sensor hereinafter referred to as a magnetic differential sensor 10
  • Each terminal board 10c protruding substantially horizontally toward the outside of a is connected to a circuit control unit (not shown).
  • the entrance sensor (magnetic differential sensor) 10 itself is located at a position corresponding to the central core portion 11 a of the core body 11 composed of a single thin plate-shaped member. It has a magnetic differential type structure in which a detection coil 12 is wound.
  • the center core 11a is integrally formed on both sides in the vertical direction in the figure via a locking bell 11b.
  • Excitation coils 13c and 13d are respectively wound around a pair of shaft end core portions 11c and 11d connected to the shaft.
  • the lower end of the pair of shaft end cores 11c and 11d is disposed below the drawing.
  • the one-sided shaft end core portion 1 1c is placed on the contact terminal portion 3b of the above-described IC card 3 (in the embodiment shown in FIG. 31, the contact terminal portion 3 b of the above-described contact type IC card 3 is formed). , Or the antenna section of a non-contact type IC card).
  • the direction of the axis CX (the vertical direction in the drawing) passing through the central core portion 11a to the shaft end core portion 11d on the other side corresponds to the contact terminal portion of the IC card 3.
  • 3b in the embodiment shown in FIG.
  • the positional relationship is set to be substantially orthogonal to the moving direction of the contact terminal 3b of the contact type IC card 3 or the antenna portion of the non-contact type IC card.
  • the contact terminal 3b of the IC force 3 against the shaft end core 11c on the one side is reciprocated along a direction substantially orthogonal to the axis CX, as shown in FIG. 1 c and the contact terminal 3 b of the IC card 3 (in the embodiment shown in FIG.
  • the contact terminal 3 b of the contact type IC card 3 or the antenna of the non-contact type IC card described above When the two members 11c and 3b (both members in the embodiment shown in FIG. 31) face each other within a proper distance range while facing each other, the IC card 3 Contact terminal portion 3 b (in the embodiment shown in FIG. 31, the contact terminal portion 3 b of the contact type IC card 3 described above, Or the presence (presence) of a non-contact type IC card antenna).
  • the contact terminal portion 3b of the (contact type) IC card 3 (in the embodiment shown in FIG. 31, the contact terminal portion 3b of the contact type IC card 3 described above or the antenna of the non-contact type IC card)
  • the entrance sensor (magnetic differential sensor) 10 may move while the unit is fixed.
  • the central core portion 11a is located approximately in the middle of the entrance sensor (magnetic differential sensor) 10 in the direction in which the axis CX extends (vertical direction in the drawing).
  • the width dimension W 1 which is arranged in the central part and is orthogonal to the direction of the axis CX (left and right directions in the figure), is formed relatively wide.
  • the width 2 of each of the shaft end cores 1 1c and 1 101 is set smaller than the width W 1 of the central core 11 a (W2 ⁇ W 1).
  • it is formed so as to have a dimension of not more than half (W2 ⁇ W1 / 2).
  • the portion of the central core portion 11a around which the detection coil 12 is wound is cut out so as to have a slightly narrow dimension W3.
  • the pair of exciting coils 13c, 13d wound around the core portions 11c, 11d are composed of a series of coil members integrally connected.
  • the inner ends of the coil members, which are wound around the roots of the two shaft end cores 1 1c: 1 1d, are integrally connected by a crossover 13 e. , Have been made in series.
  • the leads 13 f, 13 g pulled out from the tip ends of the core ends 11 c, 11 d of the above-mentioned shaft end respectively have an appropriate resistance to both contact terminals of the AC power supply 15.
  • Sine wave or rectangular wave generated from the AC power supply 15 is applied to each coil winding part of the both shaft end core parts 11 c and 11 d.
  • opposing magnetic fields ⁇ 1 and ⁇ 2 in opposite directions are formed.
  • each locking flange 11b, lib provided at each boundary between the central core 11a and the pair of shaft end cores 11c, 11d is defined by the shaft center CX.
  • the exciting coils 13c and 13c are located at positions protruding in the axial direction with respect to the respective locking flanges 11b in a width direction projecting in a width direction substantially orthogonal to the direction of Each of the detection coils 13 d is wound. That is, the winding positions of the coils 13c and 13d are determined by the locking flanges lib and lib.
  • the detection output obtained from the detection coil 12 is determined by the pair of excitation coils 13 c and 13 d. It is based on the magnetic field corresponding to the sum of the opposite facing magnetic fields ⁇ 1 and ⁇ 2 generated in the opposite direction. Therefore, the above-mentioned IC card 3 does not exist (none) or the IC card 3
  • the contact terminal 3b the card in the embodiment of FIG. 31
  • the opposite magnetic field ⁇ 1 The absolute value of ⁇ 2 becomes equal (
  • the entrance sensor (magnetic differential sensor) 10 and the contact terminal 3b (the card in the embodiment of FIG. 31) of the IC card 3 are relatively close to each other and within an appropriate range.
  • the eddy current generated in the contact terminal 3b of the IC card 3 corresponds to the change in the distance between the two. Is changed, thereby disturbing the balance between the opposing magnetic fields ⁇ ⁇ and ⁇ 2 in the opposite direction described above. For example, as ⁇ ⁇ ⁇ ⁇ increases, ⁇ 2 decreases.
  • a differential output is obtained from the detection coil 12 based on a magnetic field corresponding to the difference (I ⁇ 1I-I2I) between the absolute values of the opposing magnetic fields ⁇ and ⁇ 2 at that time.
  • the excitation coils 13 c and 13 d and the detection coil 12 are arranged separately. Since detection is performed based on the balance between the pair of excitation coils 13c and 13d, the amount of change in magnetic flux is small regardless of the impedance due to DC resistance, etc. It can be obtained with high sensitivity with good linearity using body 11.
  • a low-cost circuit can be used without using a constant current circuit as in the past, and regardless of environmental temperature fluctuations, the contact terminals 3b of the IC card 3 (forced in the embodiment of FIG. 31) can be used. A stable detection operation regarding presence / absence becomes possible.
  • the shaft end cores 11 c and lid disposed facing the contact terminal portion 3 b of the IC card 3 are assumed to be small in width.
  • the current efficiency in the shaft end cores 11c and 11d is improved, and as a result, more magnetic flux is generated, so the amount of change in detection, that is, the contact terminal of the IC card 3
  • the detection sensitivity for the presence or absence of the part 3b is further enhanced.
  • a locking flange 1 lb is provided at the boundary between the central core 11 a and the shaft end cores lie and lid.
  • the output deviation is reduced and a large change rate is obtained.
  • the output balance between the pair of exciting coils 13 c and 13 d is in the differential state, so that it is further improved. Highly sensitive and accurate detection is possible. Also, because of the differential, when the IC card does not exist or is at infinity, the changes in ⁇ 1 and ⁇ 2 due to temperature changes are almost the same, and the output remains 0. Therefore, the temperature characteristics are good.
  • a coil having a winding number of 20 T (turns) is used as the excitation coils 13 c and 13 d, while a coil having a winding number of 40 T (turns) is adopted as the detection coil 12.
  • the frequency was set to 1 ⁇
  • the excitation current was set to 20 mA pp (0.65 V)
  • the above-described inlet sensor 10 according to the present invention was evaluated, the environment was set as follows. A sensor that can perform stable detection operation regardless of the temperature fluctuation was realized.
  • the inlet sensor 10 As described above, since the temperature fluctuation of the output voltage from the inlet sensor 10 is extremely small (0.018 V) as described above, the inlet sensor 10 with good sensitivity can be obtained.
  • the threshold value (slice level) for the output voltage from the entrance sensor 10 is set to about 10 times (0.18 V) the output fluctuation described above.
  • the relationship between the output voltage from the entrance sensor 10 when the threshold (slice level) is set as described above and the distance between the entrance sensor 10 and the contact terminal 3b of the IC card 3 Take a look.
  • the output voltage from the entrance sensor 10 (vertical axis in FIG. 23) is the difference between the entrance sensor 10 and the contact terminal 3b of the IC card 3. Although it is almost inversely proportional to the interval between them (horizontal axis in Fig. 23), a detection output exceeding the threshold (slice level; 0.18 V) actually set as described above is obtained. To this end, it has been found that the distance between the entrance sensor 10 and the contact terminal 3b of the IC card 3 may be set to, for example, "1.1 mm" or less.
  • the space between the inlet sensor 10 and the contact terminal 3b of the IC force 3 was actually set to “l mm”, and the mounting of the inlet sensor 10 was performed.
  • the output voltage of the inlet sensor 10 ( The vertical axis in Fig. 24) was obtained as a sufficient output with good correspondence in all regions.
  • the magnetic differential sensors that is, the second and third magnetic sensors 10 and 40. It is possible to dispose the entrance sensor 10 (in the embodiment shown in FIG. 31, the second and third magnetic sensors 10, 40) at a position where the entrance sensor 10 is drawn from the card transport path 4.
  • the lower surface of the entrance sensor 10 in the embodiment shown in FIG. 31, the second and third magnetic sensors 10, 40 in the embodiment shown in FIG. 31
  • the inlet sensor 10 in the embodiment shown in FIG. 15
  • the second and The three magnetic sensors 10, 40) are set so as not to contact the surface of the IC card 3.
  • the entrance sensor 10 in the embodiment shown in FIG. 31, the second and third magnetic sensors 10 and 40
  • the entrance sensor 10 can prevent dust from entering the surface of the IC card 3 or the inside of the device. It is attached so as not to be deformed or damaged by rubbing between the contact type IC card 3 and the contact terminal portion 3 b of the contact type IC card 3 in the embodiment shown in FIG.
  • a threshold (slice level) larger than the temperature fluctuation of the output voltage from the entrance sensors 20, 10, 40 described above is set.
  • FIG. 38 the output voltage (vertical axis in FIG. 38) from the magnetic differential sensors 10 and 40 is the same as that of the magnetic differential sensors 10 and 40 on the card side. It is almost inversely proportional to the distance (horizontal axis in Fig. 38), but it can be seen that good detection output can be obtained by setting the threshold (slice level) appropriately.
  • the above-mentioned entrance sensor 10 can detect the front and back of the IC card 3 according to the standard dimensions of the IC card 3 shown in FIGS. 25, 26 and 27. Are located.
  • the contact terminal portion 3b of the IC card 3 shown in FIG. 25 is, for example, as shown in FIG.
  • the position from s is specified.
  • Each dimension in the figure is “mmj”, “max” in the figure represents an upper limit, and “min” in the figure represents a lower limit.
  • the IC card 3 defines an embossed area for forming irregular characters and the like, for example, as shown in FIG. That is, the embossed area formed in the IC card 3 has a first area 3c and a second area 3d as shown in the respective standard dimensions in FIG.
  • the contact terminals 3b of the IC card 3 described above are not provided so as to overlap c and 3d.
  • the center position of the entrance sensor 10 described above is appropriately determined from the upper end (reference end) 3s of the IC card 3
  • the contact terminals of the IC card 3 Portion 3b is detected by the inlet sensor 10, but if the IC card 3 is incorrectly inserted with the “back” position as shown in Fig. 29, the contact The terminal unit 3b is configured so as not to be detected by the entrance sensor 10 or at a distance from the entrance sensor 10.
  • the center position of the gap in the force entry direction of the magnetic pre-head 20 described above is from the leading end 3a of the IC card 3 in the insertion direction to the contact terminal 3b.
  • the distance is set so as to be almost the same as the distance to the sensor, so that the detection position of the magnetic recording section and the detection position of the contact terminal section 3b are substantially the same, and a smooth detection operation is performed. It is composed.
  • the first, second, and third magnetic sensors 20, 10, 40 as described above are shown in FIG. 39, FIG. 25, FIG. They are arranged corresponding to the standard dimensions of magnetic cards and IC cards as shown in FIG.
  • the first magnetic sensor 20 is set so as to correspond to the positional standard (ISO07821-2-2) of the magnetic stripe 50a in the magnetic card 50 as shown in FIG. If a detection signal is obtained from the first magnetic sensor 20, it can be determined that a force having the magnetic drive 50 a has been inserted.
  • the second magnetic sensor 10 is provided with a position standard (ISO 7816) C1-C of the contact terminal 3b in the contact type IC card 3 as shown in FIGS. 25 and 27. 8 are arranged so as to correspond to at least a part thereof. However, in the area where the second magnetic sensor 10 is arranged, there is a minimum coupling area 60a between the antenna unit and the chip in the non-contact type IC card 60 as shown in FIG.
  • the position is set so as to correspond to the position standard (IS 01 444 3-2) of the minimum binding region 60a. Therefore, if a detection signal is obtained from the second magnetic sensor 10, it can be determined that either the non-contact type IC card 60 or the contact type IC card 3 has been inserted.
  • the third magnetic sensor 40 is located at a position where it can detect an antenna unit disposed so as to extend all over the non-contact type IC card 60, for example, a non-contact type It is arranged at a position corresponding to a part of the antenna section extending along the longitudinal direction of the IC card.
  • the antenna section of this non-contact type IC card is not specified in ISO standards, etc., but is specified separately for each system and card.
  • the third magnetic sensor 40 will be appropriately arranged. Therefore, this third magnetic PC recommendation 15
  • the type of the inserted card is determined as follows. It becomes possible.
  • FIG. 31 (a) (the magnetic card 50, the non-contact IC card 6 In the embodiment shown in (1), one of the pair of shaft end cores 1 1c and 1 1d is arranged on the lower side in the drawing. lc is arranged so as to face the contact terminal portion 3b (the force side in the embodiment shown in FIG. 31) of the IC card 3, and the shaft end core on the other side arranged on the upper side in the figure.
  • a comparative metal body having the same material as the contact terminal portion 3b (the card side in the embodiment shown in FIG. 31) or the same conductivity or the same magnetic permeability as the contact terminal portion 3b of the IC card 3 described above. It is arranged to face 70.
  • the contact terminal portion 3b (the card in the embodiment shown in FIG. 31) of the IC card 3 is an entrance sensor (the magnetic differential sensor 10 (or 40) in the embodiment shown in FIG. 31).
  • the shaft end core section 11 c on one side becomes the contact terminal section 3 b of the IC card 3 (the implementation shown in FIG. 31).
  • the distance L1 between the two members changes between a finite value and an infinite value.
  • the shaft end core portion 11d on the other side is configured to be maintained at a predetermined position without changing the distance L2 with respect to the comparative metal body 70.
  • the position at which the output from the detection coil 12 becomes “0” is determined by the distance L 2 between the comparison metal body 70 and the shaft end core 11 d on the other side. Since the position is equal to the distance L 1 between the shaft end core portion 11 c of the IC card 3 and the contact terminal portion 3 b of the IC card 3 (the card side in the embodiment shown in FIG. 31), The distance L1 for detecting the shaft end core portion 1 1c of the IC card 3 and the contact terminal portion 3b of the IC card 3 (the card side in the embodiment shown in FIG. 31) is determined by the distance between the comparative metal body 70 and the other shaft.
  • the contact terminal 3b of the IC card 3 (see Fig. 31) In the illustrated embodiment, it is possible to extract a large detection output regarding the presence or absence of a card.
  • the entrance sensor 10 according to the present embodiment (the embodiment shown in FIG. 31)
  • the detection output from the contact terminal portion 3b of the IC card 3 (the card side in the embodiment shown in FIG. Since the difference from the detection output from 0 is used as the amount of change, it is necessary to change the distance L 2 between the comparative metal body 70 and the shaft end core 1 1 c, the material of the comparative metal body 70, etc.
  • the above-described inlet sensor 10 (or the magnetic differential sensors 10 and 40 shown in FIG. 31) (hereinafter referred to as “the inlet sensor 10”) is
  • the excitation of the excitation coils 13 c and 13 d is controlled by the control circuit section CC shown in FIG. 41, and the detection signal output from the detection coil 12 is processed.
  • the control circuit CC detects the suitability of the IC card 3 based on the detection signal output from the detection coil 12, and detects a disconnection of the input sensor 10, a signal processing circuit SPC, and an excitation coil 13 c , And an excitation control circuit ECC that controls the excitation of 13 d.
  • the signal processing circuit SPC includes a sensor amplifier 500 that amplifies an output signal output from the detection coil 12 and a detection circuit 5 that converts an output signal of the sensor amplifier 500 into an IC card detection signal having a DC voltage.
  • 10.Comparator 520 that compares the output voltage of the detection circuit 510 with the threshold voltage provided by the reference voltage generator 530, and the output signal of the comparator 520 to determine the appropriate IC card Outputs an IC card detection signal that detects 3 while detecting that the entrance sensor 10 is disconnected and outputs a disconnection determination signal.
  • PC Ranko 15 PC Ranko 15
  • a decision circuit 540 is provided.
  • the excitation control circuit ECC is a detection signal detection circuit 550 for detecting that the IC force detection signal is not output, and the excitation coils 13 c, 1 are output by the output signal of the detection signal detection circuit 550.
  • a command signal generator 560 that determines the timing and time width for exciting 3 d, and a coil excitation circuit 5 7 that excites the exciting coils 13 c and 13 d by the output signal of the command signal generator 560. It has 0.
  • the force detector 600 such as a micro switch, provided on the upstream side of the entrance sensor 10 in the insertion direction of the IC card 3 is activated. Detects the width of IC card 3. If the IC card 3 is appropriate, the card detector 600 turns ON and emits a detection signal. By outputting this detection signal to the command signal generator 560, a trigger for exciting the exciting coils 13c and 13d is given to the coil exciting circuit 570.
  • the coil excitation circuit 570 excites the excitation coils 13c and 13d by supplying an excitation current with an excitation frequency of 1 MHz, for example.
  • the exciting current at this time is set to, for example, 20 mA pp (0.65 V).
  • the differential output from the detection coil 12 becomes 0 and the IC card detection signal also becomes 0.
  • the signal is detected and detected by the signal detection circuit 550.
  • the excitation of the excitation coils 13c and 13d is stopped by the command of the signal generator 560.
  • the entrance sensor 10 has a pair of shaft end cores 1 1 c, 1, in which the detection coil 12 is wound around the central core 11 a of the core body 11, and integrally connected. Excitation coils 13c and 13d are wound around each 1d, respectively, to form a magnetic differential type. Since the entrance sensor 10 is configured to be small, the detection coil 12 and the excitation coils 13c and 13d are wound using a thin wire. For this reason, one of the coils may break during heavy use. In addition, the above-mentioned coils and the terminal board 10b that is connected to the circuit control unit by relaying may be defective in soldering, or the lead wire that connects the circuit control unit and each terminal board 10b may be connected. It may break. Such a disconnection of the entrance sensor 10 or the like is detected by a disconnection diagnosis unit described below.
  • the disconnection diagnosis means is constituted by the signal processing circuit SPC and the excitation control circuit ECC described above.
  • the disconnection of each coil provided in the entrance sensor 10 or the disconnection or disconnection of the lead wire connected to the entrance sensor 10 can be detected by detecting that the entrance sensor 10 is the contact terminal of the IC card 3. Executed when 3 is not detected.
  • the timing of the command signal is triggered by the timing when the processing of the IC card 3 is completed and the IC card 3 is returned to the card entrance 2 and turned off when the IC card 3 passes through the force detector 600.
  • Command signal issued The generator 560 activates the coil excitation circuit 570 for a predetermined time to supply an excitation current to the pair of excitation coils 13c and 13d.
  • the disconnection of one of the exciting coils 13c and 13d is detected and a determination signal is output.
  • this determination signal is output, an alarm is generated from the IC card reader, and control is performed so that the IC card 3 is not inserted into the card entrance 2 thereafter.
  • both coils of the pair of excitation coils 13c and 13d, or the lead wire connected to these coils are disconnected or disconnected, both coils are not excited.
  • the differential output from coil 12 becomes 0. Therefore, even though the command signal generator 560 activates the coil excitation circuit 570 to excite the pair of excitation coils 13c and 13d, the differential signal from the detection coil 12 is generated.
  • the determination circuit 540 determines that an output cannot be obtained, and outputs a determination signal.
  • the command signal generator 560 activates the coil excitation circuit 570 to generate a pair of coils. Although the excitation coils 13c and 13d are excited, the differential output from the detection coil 12 becomes zero. You. However, the fact that no differential output is obtained from the detection coil 12 is the same as the case where both of the pair of excitation coils 13 c and 13 d are disconnected, as described above. It is not possible to determine that 12 or the like is disconnected. Therefore, the disconnection diagnostic means is provided with a function of determining that the detection coils 12 and the like are disconnected.
  • the inlet sensor 10 configured as a magnetic differential type has a pair of shaft end core portions that are integrally connected with a detection coil 12 wound around a central core portion 11 a of a core body 11. Excitation coils 13c and 13d are wound around 11c and 11d, respectively. Then, the balance between the opposite magnetic fields ⁇ 1, ⁇ 2 in the opposite direction collapses from the detection coil 12, and the difference between the absolute values of the counter magnetic fields ⁇ 1, ⁇ 2 (1 ⁇ 1 1-I ⁇ 2 A differential output based on the magnetic field corresponding to I) is obtained.
  • the pair of shaft end cores 11 c and 11 d of the core body 11 around which the exciting coils 13 c and 13 d are wound respectively have some variation in dimensional accuracy. ing. For this reason, a difference also occurs in the opposing magnetic fields ⁇ 1 and ⁇ 2, so even in a standby state in which the contact terminal 3 b of the IC card 3 is not detected. A slight standby voltage is output from the detection coil 12. ing.
  • the exciting current applied to each of the exciting coils 13c and 13d is changed by the volume VR to set the standby voltage close to 0, but in the present invention, the exciting coil is used.
  • the detection coil 12 can be slightly The standby voltage is set to be high.
  • the disconnection of the detection coils 12 and the like can be determined by the standby voltage being 0. That is, when the detection coil 12 or the like is disconnected, the standby voltage is not output from the detection coil 12 even if the excitation coils 13 c and 13 d are excited.
  • This standby voltage is
  • the determination circuit 54 detects that the detection coil 12 or the like is disconnected, and outputs a determination signal.
  • the third threshold voltage SV3 is set to a voltage slightly lower than the standby voltage.
  • the excitation coil 13 c, 13 d, or the detection coil 12 and the lead wire connected to these coils, or the transmission path such as the connection to the terminal, etc.
  • the disconnection is detected by the output signal from the detection coil 12, and moreover, it is possible to almost identify the location of the disconnection.
  • the timing of the disconnection diagnosis of the entrance sensor 10 is performed when the IC card 3 is returned to the force entrance 2 as described above, or after the IC card 3 is inserted into the card insertion slot 2. May be executed before the sensor 10 detects the contact terminal 3b, and may be executed at any timing if the sensor 10 does not detect the contact terminal 3b.
  • the disconnection diagnosis may be performed every time the IC card 3 is inserted or returned, or may be performed every five or ten times.
  • three magnetic sensors are arranged.
  • the same operation and effect may be obtained with two magnetic sensors. Therefore, in the present invention, at least two magnetic sensors may be provided.
  • the excitation coils 13c and 13d are disposed on both sides with the detection coil 12 interposed therebetween.
  • the excitation coil is located at the center It is also possible to arrange a detection coil on both sides of the sensor.
  • the entrance sensor 10 magnetic differential sensor according to the above-described embodiment can be used.
  • the width of the shaft end core 11c is made smaller than the width of the center core 11a (W2 ⁇ W1). It is also possible to set a magnitude relationship.
  • the central core portion 11a of the core body 11 in the above-described embodiment is provided with a concave notch at a position where the detection coil 12 is wound. It is also possible to form a simple rectangular shape without providing a part.
  • one thin plate-shaped member is used as the core body.
  • the pair of exciting coils 13 c and 13 d are connected in series in a continuous manner.
  • the exciting coils 13 c and 13 d so as to be in parallel with the AC power supply 15 to form a facing magnetic field.
  • one excitation power supply is provided independently.
  • a separate power supply can be arranged for each excitation coil 13c, 13d. It is. However, in that case, it is necessary to set so that the phases of each power supply are synchronized.
  • each width dimension W2, W2 of the pair of both shaft end core portions 11c, lid in the above-described embodiment is, for example, 5 m due to a manufacturing error. It is conceivable that the output may differ from each other by a very small amount as a result, and as a result, the differential output when no object is detected may not be “0”. It is possible to easily deal with this by adjusting the current values supplied to 13c and 13d so that the differential output becomes “0”.
  • the inlet sensor (magnetic differential sensor) is not limited to the magnetic differential sensor as in the above-described embodiment, and an eddy current sensor, an optical sensor, and the like are similarly applied. be able to.
  • the present invention is a device for handling coins such as a vending machine, a vending machine, an ATM, etc. It can be suitably applied to various devices.

Description

明 細 書 物体検知センサ及びそれを備えた I Cカードリーダ 技術分野
本発明は、 被検出体の有無を検出するように構成された物体検知セン サ、 及びこの物体検知センサを備え、 装置本体内の読取/書込位置まで 挿入された I Cカードに対して情報を記録 ·再生する I Cカードリーダ に関する。 背景技術
一般に、 物体検知センサは、 自動販売機、 自動券売機、 A T M等の硬 貨を取り扱う装置でコィンの凹凸や材質の識別装置、 モータの回転駆動 制御装置など、 多種多様な装置において広く用いられている。 従来の物 体検知センサは、 通常、 渦電流型と呼ばれる構造を備えたものであって. 例えば図 1 0に示されているように、 棒状をなすコア体 1 0 0に巻回さ れたコイル 2 0 0に電流を流して、 検出用の磁束 Φ rを発生させておき. その検出用磁束 Φ rにより形成される磁界中において、 被検出体 3 0 0 と上記コア体 1 0 0とを相対的に移動させ、 そのときの両者間の距離変 動に対応して上記被検出体 3 0 0に生成される渦電流の大きさが変化し て磁気抵抗が変化することから、 その変化量をィンダクタンスの変化量 として捕らえることによって、 図 1 1に示されているような検出出力を 得るようにしている。
しかしながら、 このような従来型の物体検知センサでは、 上述したコ ァ体 1 0 0と被検出体 3 0 0との間の空気を介在した磁気抵抗変化に、 直流抵抗分が含まれていることから、 最終的に検出される出力は、 イン 1
ピーダンス変化に対応したものとなっている。 その結果、 従来型の物体 検知センサでは、 検出出力の感度が未だ十分とはいえず、 しかも、 直流 抵抗分やコア体の透磁率の温度変動などの影響によって、 良好な温度特 性が得られないという問題もある。
また、 上述したコア体 1 0 0と被検出体 3 0 0との間の空気中におけ る磁気抵抗変化は、 距離の二乗に比例していることから、 検出出力の直 線性が良好でなく、 しかも図 1 2に示されているように、 三次元的な磁 束 Φ rの変化を利用して変化量を大きくすることが行われることから、 装置全体が大型化する傾向がある。 また、 センサーアンプ間のケーブル の長さを変えことによってインピーダンスが変動してしまうことから、 それに対応して、 アンプの調整を行わねばならないという問題もある。 一般にまた、 A T M、 自動販売機、 自動券売機などにおいて、 各種型 式のカードの情報記録部に対して特定の情報の記録 ·再生を行うカート リーダが広く採用されている。 さらに、 最近のカードリーダでは、 装置 本体内に揷入された力一ドの真偽や表裏を検出するための入口センサを 設置することが行われている。 それらの磁気カードリーダにおいて、 装 置本体内に挿入されたカードの真偽や表裏を検出するためのに、 入口セ ンサを、 力一ド揷入口の直後にまたは近傍に配置することがしばしば行 われている。 すなわち、 装置本体内に挿入されたカードの情報記録部等 を、 入口センサで検知することによって適正なカードが揷入されている か、 或いは適正なカードであっても表裏が反対になっていないかなどを 入口センサで検出し、 不適正なカードであった場合には、 上記入口セン サの直後にまたは下流側に配置されたシャッターを閉じたままに保持し て、 不正行為などを未然に防止するようにしている。
さらに近年は、 カード内に I Cが組み込まれた I Cカードが採用され つつあり、 この I Cカードの接点端子部に I C接点を接離可能に配設し て情報の読取/書込を行うための I Cカードリーダが出現している。 I Cカードに対して情報の記録 ·再生を行う I Cカードリーダは、 装 置本体内にカードを揷入するカード揷入口と、 このカード揷入口を通し て揷入されたカードを読取/書込位置まで導くカード搬送路と、 カード 搬送路内のカードを移動させる搬送駆動手段を備えている。 カード挿入 口に挿入されたカードの真偽あるいは表裏をカード揷入口の近傍に配置 される入口センサによって検知し、 適正なカードであることが検知され たときは、 カードを搬送駆動手段によって I C力一ドの接点端子部に接 離可能に配設した I C接点の位置まで搬送し、 情報の読取/書込を行つ ている。
ところが、 一般に広く用いられているカードとしての磁気カードの磁 気ス トライプに対して情報を記録 ·再生する力一トリーダの場合には、 上述した入口センサとして、 小型の磁気へッドを用いて簡易な構成とす ることができるが、 最近のカードとしての I C力一ドを用いる場合には、 どのようにして I Cカードの正否 を検出するかについての具体的な提案 は、 未だなされていない。
なお、 I C力一ドを判別するにあたって、 特開平 1 1— 3 5 2 1 0 8 号公報に開示されたような渦電流型のセンサを用いる場合には、 薄型化 ができなくなるという問題が発生する。 すなわち、 渦電流型のセンサで は、 励磁用の棒状コアを 3個以上配置することから大型化が避けられな い上に、 コアの透磁率が湿度により変化することにより使用環境に対す る温度特性が大きく変動してしまうことから、 I C力一ドの有無を判定 する際の閾値レベルを、 温度特性の変動以上に高く設定しなければなら なくなってしまい、 I Cカードと入口センサとの間にある程度以上の距 離ができてしまう場合には、 I C力一ドの検出ができなくなるおそれが ある。 さらに、 上述した最近の I Cカードを用いるカートリーダの場合には. どのようにしてカードの種別を検出するかについての具体的な提案は未 だなされていない。
このように従来のカードリーダでは、 装置本体内に挿入されたカード の種類を判定することができず、 現時点で用いられているカードが、 磁 気力一ドであるのか I C力一ドであるのかの判別ができないという問題 がある。 また、 I Cカードの場合には、 接触型の I Cカードであるのか. 非接触型の I Cカードであるのかを判別することができず、 従って、 そ れらを共用しているカードの判別も、 当然に全く不可能になっている。 そのため、 例えば使用不能なカードを揷入した場合などに、 シャッター を閉じる制御動作を確実に行うことができず、 装置の誤動作や損傷を防 止するといつた対策を採ることができないのが現状である。
また、 上述した I Cカードを用いるカードリーダにおいては、 I C力 一ドの真偽あるいは表裏を入口センサによって適正に検知されるもので ある。 従ってが、 上記入口センサの内部あるいは入口センサと信号処理 回路等との間が断線した場合等は、 I Cカードを適正に検知できないた め、 適正な I Cカードであるにも関わらず不正なカードと誤認して使用 できない問題が生ずる。 しかし、 一般の I Cカードを用いるカードリー ダでは、 入口センサの断線等を事前に検出することができないという問 題があった。
そこで本発明は、 簡易な構成よつて、 良好な検出感度を得つつ安定し た検出結果を得ることができるようにした物体検知センサを提供するこ とを目的とする。
また本発明は、 簡易な構成よつて、 I Cカードの検出を良好に行うこ とができるようにした I Cカードリーダを提供することを目的とする。 さらに本発明は、 簡易で小型の装置構成よつて、 挿入されたカードの 種別を確実かつ安定的に検出することができ、 装置の誤動作や損傷を良 好に防止することができるようにした I Cカードリーダを提供すること を目的とする。
さらにまた本発明は、 力一ドの真偽等を検知する前に入口センサの断 線等を検出して適正な処理を行うことができるようにした I C力一ドリ ーダを提供することを目的とする。 発明の開示
上記目的を達成するために請求項 1記載の物体検知センサでは、 コア 体の同一軸心上に、 励磁用コイル及び検出用コイルがそれぞれ巻回され ることにより装着されたものであって、 上記励磁用コイル及び検出用コ ィルの一方側が、 前記コア体の軸心方向における略中央に配置された中 央コア部に装着されているとともに、 前記励磁用コイル及び検出用コィ ルの他方側が、 上記コア体の軸心方向における両端部分に配置された一 対の軸端コア部にそれぞれ装着され、 それら一対の軸端コア部のうちの 一方側と前記被検出体とが、 互いに対面可能な配置関係になされている, すなわち、 このような構成を有する物体検知センサでは、 励磁用コィ ルと検出用コイルとが区別されて配置されていて、 しかも一対の励磁用 コィル又は一対の検出コイルの間のバランスに基づいて検出が行われる ことから、 直流抵抗分等を含むィンピ一ダンスに関係なく磁束の変化量 を直接測定することによって、 小型のコア体を用いつつ高感度な出力が 得られ、 しかも、 従来のような定電流回路を使用することなく安価な回 路によって、 環境の温度変動にかかわらず安定的な検出動作が可能とな つている。
また、 請求項 2記載の物体検知センサでは、 前記請求項 1記載のコア 体が、 一枚の板形状部材からなることから、 コア体が薄型化されること となって、 より一層小型化が図られる。
さらに、 請求項 3記載の物体検知センサでは、 前記請求項 1記載の軸 端コア部における軸心方向と直交する方向の幅寸法が、 前記中央コア部 の幅寸法よりも小さく形成されているとともに、 請求項 4記載の物体検 知センサでは、 前記請求項 3記載の軸端コア部の幅寸法が、 中央コア部 の幅寸法の半分以下に設定されている。
このように、 被検出体に近接される軸端コア部を小幅として、 当該軸 端コア部における電流効率を向上させ、 より多くの磁束を発生させるこ とで、 検出感度が一層高められる。
さらにまた、 請求項 5記載の物体検知センサでは、 前記請求項 3記載 の中央コア部と、 前記一対の軸端コア部との各境界部分には、 幅方向に 向かって突出する係止鍔部がそれぞれ設けられ、 該係止鍔部によって、 前記励磁用コイル及び検出用コイルの巻回位置が、 予定の位置に位置決 め規制されている。
このように、 中央コア部と軸端コア部との境界部分に係止鍔部を設け ることによって、 各コイルの巻回位置を精度良く位置決め可能としてお けば、 位相ズレ又は出力ズレが低減されるとともに、 大きな変化率が得 られる。
また、 請求項 6記載の物体検知センサでは、 前記請求項 3記載の一対 の軸端コア部のうち、 前記被検出体側に対面可能に配置されている側と は反対側の軸端コア部には、 該軸端コア部と対向するようにして、 比較 金属体が配置されている。 このように、 被検出体からの検出出力と、 比較金属体からの検出出力との差分を変化量として検出を行えば、 比較 金属体と軸端コア部との距離や、 比較金属体の材質などを変更すること によって、 被検出体に対して必要とされる検出区間における始点位置を 「0」 出力に設定して用いることが可能となり、 それによつて、 大きな PC謂聽 15
7
出力変化を得て検出精度、 及び分解能が高められるとともに、 良好な直 線性が得られるようになっている。
さらに、 請求項 7記載の物体検知センサでは、 前記請求項 1記載の励 磁用コイルは、 一対のコイル巻回部を有し、 それら一対のコイル巻回部 は、 前記同一の軸心上に対向磁界が形成するように配置されていて、 こ のような手段によれば、 一対の励磁用コイルによって差動状態となった 一つの出力が得られることから、 より一層高感度で正確な検出が可能と なる。
一方、 上記目的を達成するために請求項 8記載の I Cカードリーダで は、 I Cカードの揷入方向における前記読取 Z書込位置より上流側の適 宜の位置に、 I Cカードの接点端子部を検知することによって、 挿入さ れたカードの正否を検出する入口センサが設けられており、 このような 構成を有する I Cカードリーダによれば、 I Cカードの接点端子部を検 知する入口センサによって、 カードの正否が容易かつ確実に検出される ようになつている。
また、 請求項 9記載の I Cカードリーダでは、 上記請求項 8記載の装 置本体には、 I Cカードを挿入するカード揷入口と、 その力一ド揷入口 を通して挿入された I Cカードを前記読取 Z書込位置まで導くカード搬 送路と、 当該カード搬送路内の I Cカードを移動させる搬送駆動手段と、 上記 I Cカードの挿入方向において前記力一ド揷入口の下流側で前記力 ード搬送路を遮断 · 開放するシャッター手段とが設けられているととも に、 前記入口センサが、 上記カード揷入口とシャツ夕一手段との間の位 置に配置されていることから、 カード揷入口から掙入された I Cカード は、 入口センサで検知されることによってシャツ夕一手段が開放状態に なされた後に、 力一ド搬送路内に送り込まれるようになつている。
さらに、 請求項 1 0記載の I Cカードリーダでは、 前記請求項 8記載 の入口センサが、 I Cカードの表裏を検知可能とするように、 接点端子 部に対して適宜の位置関係にて配置されていることから、 力一ドの正否 に加えて、 I Cカードの表裏が容易かつ確実に検出されるようになって いる。
さらにまた、 請求項 1 1記載の I Cカードリーダでは、 前記請求項 9 記載の入口センサが、 力一ド搬送路から引き込まれた位置に取り付けら れていることから、 I Cカードや装置内に侵入した塵埃等によって入口 センサが損傷を受けることが良好に防止されるようになっている。
また、 請求項 1 2記載の I C力一ドリ一ダでは、 上記請求項 8記載の I Cカードの揷入方向先端位置から接点端子部に至るまでの距離に対し て、 磁気情報記録部を検知するように設けられた磁気へッドのギャップ 中心と前記入口センサとの間の距離が、 略等しい距離に設定されている ことから、 磁気情報記録部を有するカードの検知が円滑に行われるよう になっている。
さらに、 請求項 1 3記載の I Cカードリーダでは、 前記請求項 8記載 の入口センサが、 コア体の同一軸心上に、 励磁用コイル及び検出用コィ ルがそれぞれ巻回されることにより装着された磁気差動型に構成された ものであって、 上記励磁用コイル及び検出用コイルの一方側が、 前記コ ァ体の軸心方向における略中央に配置された中央コア部に装着されてい るとともに、 前記励磁用コイル及び検出用コイルの他方側が、 上記コア 体の軸心方向における両端部分に配置された一対の軸端コア部にそれぞ れ装着され、 それら一対の軸端コア部のうちの一方側と前記被検出体と が、 互いに対面可能な配置関係になされている。
すなわち、 このような構成を有する I Cカードリーダに用いられてい る磁気差動型の入口センサでは、 励磁用コイルと検出用コイルとが区別 されて配置されていて、 しかも一対の励磁用コイル又は一対の検出コィ ルの間のバランスに基づいて検出が行われることから、 直流抵抗分等を 含むインピーダンスに関係なく磁束の変化量を直接測定することによつ て、 小型のコア体を用いつつ高感度な出力が得られ、 しかも、 従来のよ うな定電流回路を使用することなく安価な回路によって、 環境の温度変 動にかかわらず安定的な検出動作が可能となっている。
さらにまた、 請求項 1 4記載の I Cカードリーダでは、 前記請求項 1 3記載のコア体が、 一枚の板形状部材からなることから、 コア体が薄型 化されることとなって、 より一層小型化が図られる。
一方、 請求項 1 5記載の I Cカードリーダでは、 前記請求項 1 3記載 の軸端コア部における軸心方向と直交する方向の幅寸法が、 前記中央コ ァ部の幅寸法よりも小さく形成されているとともに、 請求項 1 6記載の I Cカードリーダでは、 前記請求項 1 5記載の軸端コア部の幅寸法が、 中央コア部の幅寸法の半分以下に設定されている。
このように、 被検出体としての I C力一ドに近接される軸端コア部を 小幅として、 当該軸端コア部における電流効率を向上させ、 より多くの 磁束を発生させることで、 検出感度が一層高められる。
また、 請求項 1 7記載の I Cカードリーダでは、 前記請求項 1 5記載 の中央コア部と、 前記一対の軸端コア部との各境界部分には、 幅方向に 向かって突出する係止鍔部がそれぞれ設けられ、 該係止鍔部によって、 前記励磁用コイル及び検出用コイルの巻回位置が、 予定の位置に位置決 め規制されている。
このように、 中央コア部と軸端コア部との境界部分に係止鍔部を設け ることによって、 各コイルの巻回位置を精度良く位置決め可能としてお けば、 位相ズレ又は出力ズレが低減されるとともに、 大きな変化率が得 られる。
さらに、 請求項 1 8記載の I Cカードリーダでは、 前記請求項 1 5記 載の一対の軸端コア部のうち、 前記被検出体としての I Cカード側に対 面可能に配置されている側とは反対側の軸端コア部には、 該軸端コア部 と対向するようにして、 比較金属体が配置されている。
このように、 被検出体としての I Cカードからの検出出力と、 比較金 属体からの検出出力との差分を変化量として検出を行えば、 比較金属体 と軸端コア部との距離や、 比較金属体の材質などを変更することによつ て、 被検出体としての I Cカードに対して必要とされる検出区間におけ る始点位置を 「 0」 出力に設定して用いることが可能となり、 それによ つて、 大きな出力変化を得て検出精度、 及び分解能が高められるととも に、 良好な直線性が得られるようになっている。
さらにまた、 請求項 1 9記載の I Cカードリーダでは、 前記請求項 1 3記載の励磁用コイルは、 一対のコイル卷回部を有し、 それら一対のコ ィル巻回部は、 前記同一の軸心上に対向磁界が形成するように配置され ていて、 このような手段によれば、 一対の励磁用コイルによって差動状 態となつた一つの出力が得られることから、 より一層高感度で正確な検 出が可能となる。
一方、 上記目的を達成するために請求項 2 0記載の I C力一ドリーダ では、 読取/書込位置よりもカード挿入方向において上流側の適宜の位 置に、 掙入されたカードの種別を検出する入口センサが設けられている ことから、 その入口センサからの検出信号を用いることによって、 使用 不能なカードを挿入した場合にシャッターを閉じるなどの制御動作を行 うことが可能となる。
また、 請求項 2 1記載の I Cカードリーダでは、 上記請求項 2 0記載 の入口センサが、 磁気カードの磁気ストライプを検出する第 1の磁気セ ンサと、 接触型 I C力一ドの接点端子部を検出する第 2の磁気センサと、 非接触型 I Cカードのアンテナ部を検出する第 3の磁気センサとのうち の少なくとも二つの磁気センサを備えている。
従って、 この請求項 2 1にかかる発明によれば、 入口センサからの検 出信号によって、 挿入されたカードが、 磁気カードであるか、 接触型 I Cカードであるか、 非接触型 I Cカードのであるから、 又はそれらのい ずれを共用するカードであるかが良好に検出されることとなる。
さらに、 請求項 2 2記載の I Cカードリーダでは、 上記請求項 2 0記 載の装置本体に、 カードを挿入する力一ド揷入口と、 そのカード挿入口 を通して挿入されたカードを前記読取/書込位置まで導くカード搬送路 と、 当該カード搬送路内の力一ドを移動させる搬送駆動手段と、 上記力 一ドの揷入方向において前記カード掙入口の下流側で前記カード搬送路 を遮断 · 開放するシャッター手段とが設けられ、 入口センサが、 カード 挿入口とシャッ夕一手段との間の位置に配置されている。
従って、 この請求項 2 2にかかる発明によれば、 カード挿入口から揷 入された力一ドは、 入口センサで検知されることによってシャッター手 段が開放状態になされた後に、 カード搬送路内に送り込まれるようにな つている。
さらに、 請求項 2 3記載の I Cカードリーダでは、 前記請求項 2 0記 載の入口センサのうちの少なくとも一つが、 コア体の同一軸心上に、 励 磁用コイル及び検出用コイルがそれぞれ巻回されることにより装着され た磁気差動型に構成されたものであって、 上記励磁用コイル及び検出用 コイルの一方側が、 前記コア体の軸心方向における略中央に配置された 中央コア部に装着されているとともに、 前記励磁用コイル及び検出用コ ィルの他方側が、 上記コア体の軸心方向における両端部分に配置された 一対の軸端コア部にそれぞれ装着され、 それら一対の軸端コア部のうち の一方側と前記被検出体とが、 互いに対面可能な配置関係になされてい る。 すなわち、 このような構成を有する I Cカードリーダに用いられてい る磁気差動型の入口センサでは、 励磁用コイルと検出用コイルとが区別 されて配置されていて、 しかも一対の励磁用コイル又は一対の検出コィ ルの間のパランスに基づいて検出が行われることから、 直流抵抗分等を 含むィンピーダンスに関係なく磁束の変化量を直接測定することによつ て、 小型のコア体を用いつつ高感度な出力が得られ、 しかも、 従来のよ うな定電流回路を使用することなく安価な回路によって、 環境の温度変 動にかかわらず安定的な検出動作が可能となっている。
さらにまた、 請求項 2 4記載の I Cカードリーダでは、 前記請求項 2 3記載のコア体が、 板形状部材からなることから、 コア体が薄型化され ることとなって、 より一層小型化が図られる。
一方、 請求項 2 5記載の I Cカードリーダでは、 前記請求項 2 3記載 の軸端コア部における軸心方向と直交する方向の幅寸法が、 前記中央コ ァ部の幅寸法よりも小さく形成されているとともに、'請求項 2 6記載の I Cカードリーダでは、 前記請求項 2 5記載の軸端コア部の幅寸法が、 中央コア部の幅寸法の半分以下に設定されている。
このように、 被検出体としてのカードに近接される軸端コア部を小幅 として、 当該軸端コア部における電流効率を向上させ、 より多くの磁束 を発生させることで、 検出感度が一層高められる。
また、 請求項 2 7記載の I Cカードリーダでは、 前記請求項 2 5記載 の中央コア部と、 前記一対の軸端コア部との各境界部分には、 幅方向に 向かって突出する係止鍔部がそれぞれ設けられ、 該係止鍔部によって、 前記励磁用コイル及び検出用コイルの巻回位置が、 予定の位置に位置決 め規制されている。
このように、 中央コア部と軸端コア部との境界部分に係止鍔部を設け ることによって、 各コイルの巻回位置を精度良く位置決め可能としてお けば、 位相ズレ又は出力ズレが低減されるとともに、 大きな変化率が得 られる。
さらに、 請求項 2 8記載の I Cカードリーダでは、 前記請求項 2 5記 載の一対の軸端コア部のうち、 前記被検出体としてのカード側に対面可 能に配置されている側とは反対側の軸端コア部には、 該軸端コア部と対 向するようにして、 比較金属体が配置されている。
このように、 被検出体としてのカードからの検出出力と、 比較金属体 からの検出出力との差分を変化量として検出を行えば、 比較金属体と軸 端コア部との距離や、 比較金属体の材質などを変更することによって、 被検出体としての力一ドに対して必要とされる検出区間における始点位 置を 「0」 出力に設定して用いることが可能となり、 それによつて、 大 きな出力変化を得て検出精度、 及び分解能が高められるとともに、 良好 な直線性が得られるようになっている。
さらにまた、 請求項 2 9記載の I Cカードリーダでは、 前記請求項 2 3記載の励磁用コイルが一対のコイル巻回部を有し、 それら一対のコィ ル卷回部は、 前記同一の軸心上に対向磁界が形成するように配置されて いて、 このような手段によれば、 一対の励磁用コイルによって差動状態 となった一つの出力が得られることから、 より一層高感度で正確な検出 が可能となる。
一方、 上記目的を達成するために請求項 3 0記載の I Cカードリーダ では、 カード搬送路の入口側の位置には、 磁気コアに巻回された一対の 励磁用コイル及び検出用コイルを有する磁気差動型に構成された入口セ ンサが設けられ、 入口センサが I Cカードの接点端子部を検知したとき に、 搬送駆動手段によって読取ノ書込位置まで導き、 入口センサが I C カードの接点端子部を検知しないときには励磁用コイルを励磁して検出 用コイルから出力される出力信号の電圧値によって入口センサの断線等 を診断する断線診断手段が備えられ、 入口センサの断線等を事前に検出 するようになつている。
また、 請求項 3 1記載の I Cカードリーダでは、 上記請求項 3 0記載 の入口センサは、 コア体の同一軸心上に、 励磁用コイル及び検出用コィ ルがそれぞれ巻回されることにより装着された磁気差動型に構成された ものであって、 上記励磁用コイル及び検出用コイルの一方側が、 前記コ ァ体の軸心方向における略中央に配置された中央コア部に装着されてい るとともに、 前記励磁用コイル及び検出用コイルの他方側が、 上記コア 体の軸心方向における両端部分に配置された一対の軸端コア部にそれぞ れ装着され、 それら一対の軸端コア部のうちの一方側と前記被検出体と が、 互いに対面可能な配置関係になされている。
すなわち、 このような構成を有する I Cカードリーダに用いられてい る磁気差動型の入口センサでは、 励磁用コイルと検出用コイルとが区別 されて配置され、 しかも一対の励磁用コイルバランスに基づいて検出コ ィルから検出が行われることから、 直流抵抗分等を含むインピーダンス に関係なく磁束の変化量を直接測定することによって、 小型のコア体を 用いつつ高感度な出力が得られ、 しかも、 環境の温度変動にかかわらず 安定的な検出動作が可能となっている。
さらに、 請求項 3 2記載の I C力一ドリーダでは、 前記請求項 3 0に 記載の断線診断手段は、 前記接点端子部を検知しないときに励磁用コィ ルを励磁させて、 コンパレー夕によって検出用コイルから出力される出 力信号の電圧値と所定の闞値とを比較することにより、 励磁コイルゃ検 出コイルの断線等を判定するようになされている。
さらにまた、 請求項 3 3記載の I C力一ドリーダでは、 前記請求項 3 0記載の断線診断手段は、 検出用コイルの出力レベルが所定の閾レベル を越えたときに一対の前記励磁用コイルのうちの一方の断線を診断する 1 5
ことから、 入口センサ等の断線個所を特定できるようにしている。
また、 請求項 3 4記載の I Cカードリーダでは、 前記請求項 3 0記載 の断線診断手段は、 I Cカードに対して情報の読取/書込を行い力一ド 搬送路から前記 I Cカードが排出された後に前記励磁用コイルを励磁し て入口センサの断線等を診断することから、 次に I Cカードの真偽ある いは表裏を検知するまでの間に、 入口センサの断線を事前に検出するよ うになつている。
さらに、 請求項 3 5記載の I Cカードリーダでは、 前記請求項 3 0記 載の断線診断手段は、 I Cカードをカード搬送路の入口に挿入後、 入口 センサが I Cカードの接点端子部を検出する前に励磁用コイルを励磁し てセンサの断線等を診断するので、 入口センサが I Cカードの真偽ある いは表裏を検知する前に、 事前に入口センサの断線等を検出するように なっている。
さらにまた、 請求項 3 6記載の I Cカードリーダでは、 前記請求項 3 0記載の入口センサは、 一対の励磁用コイルまたは一対の軸端コア部を アンバランスに構成し、 励磁用コイルを励磁したときに、 検出コイルか ら微小な待機電圧を出力させるようにして、 一対の励磁用コイルの両方、 あるいは検出コイルの断線を、 微小な待機電圧との比較により検出する ようにしている。
以上述べたように、 本発明にかかる請求項 1記載の物体検知センサは、 励磁用コイルと検出用コイルとを区別して配置し、 一対の励磁用コイル どうしの間のバランスに基づいて検出を行うことにより、 直流抵抗分等 によるィンピ一ダンスを相殺させて取り除いた残りの変化量を、 小型の コア体を用いつつ良好な直線性をもって高感度で得るとともに、 従来の ような定電流回路を使用することなく安価な回路によって、 環境の温度 変動にかかわらず安定的な検出動作を可能としたものであるから、 簡易 な構成よつて、 被検出体の有無に関して良好な検出感度を得つつ安定し た検出結果を得ることができ、 物体検知センサの性能及び信頼性を向上 させることができる。
また、 請求項 2記載の物体検知センサは、 コア体を一枚の板形状部材 から形成してコア体を薄型化したものであるから、 上述した効果に加え て、 より一層の小型化を図ることができる。
さらに、 請求項 3及び請求項 4記載の物体検知センサは、 被検出体に 近接される軸端コア部を小幅として、 当該軸端コア部における電流効率 を向上させ、 より多くの磁束を集めるようにして検出感度を一層高める ようにしたものであるから、 上述した効果を更に高めることができる。 さらにまた、 請求項 5記載の物体検知センサは、 中央コア部と軸端コ ァ部との境界部分に係止鍔部を設けることによって、 各コイルの巻回位 置を精度良く位置決め可能として、 位相ズレを低減させるとともに、 大 きな変化率を得るように構成したものであるから、 上述した効果を更に 高めることができる。
また、 請求項 6記載の物体検知センサは、 被検出体からの検出出力と、 比較金属体からの検出出力との差分を変化量として検出を行い、 比較金 属体と軸端コア部との距離や、 比較金属体の材質などを変更することに よって、 被検出体に対して必要とされる検出区間における始点位置を
「0」 出力に設定して用いることを可能とし、 それによつて、 大きな出 力変化を得て検出精度及び分解能を高めるとともに良好な直線性が得ら れるように構成したものであるから、 上述した効果を一層高めることが できる。
さらに、 請求項 7記載の物体検知センサは、 一対の励磁用コイルによ り対向磁界を形成することによって出力を理想的な差動状態とし、 より 一層高感度で正確な検出が可能としたものであるから、 上述した効果を 一層高めることができる。
また、 本発明の請求項 8にかかる I Cカードリーダは、 I Cカードの 揷入方向における読取 Z書込位置より上流側の適宜の位置に、 I Cカー ドの接点端子部を検知することによって、 挿入されたカードの正否を検 出する入口センサを設けて、 I Cカードの接点端子部を検知する入口セ ンサによってカードの正否を容易かつ確実に検出するように構成したも のであるから、 I Cカードリーダの信頼性を向上させることができる。 また、 本発明の請求項 9にかかる I Cカードリーダは、 上記請求項 8 における装置本体に、 そのカード挿入口を通して揷入された I Cカード を前記読取/書込位置まで導くカード搬送路を設けるとともに、 その力 一ド搬送路を遮断 · 開放するシャッター手段を設け、 その力一ド揷入口 とシャツ夕一手段との間の位置に入口センサを配置したことによって、 カード揷入口から揷入された I Cカードを入口センサで検知した後に力 一ド搬送路内に送り込むようにしたものであるから、 上述した効果に加 えて、 シャッター手段によって不正カードの排除を確実に行わせること ができるとともに、 装置本体内の清浄性を良好に維持することができる, さらに、 本発明の請求項 1 0にかかる I Cカードリーダは、 上記請求 項 8における入口センサを、 I Cカードの表裏を検知可能とするように 接点端子部に対して適宜の位置関係にて配置し、 力一ドの正否に加えて. I Cカードの表裏を容易かつ確実に検出するように構成したものである から、 上述した効果を更に向上させることができる。
一方、 本発明の請求項 1 2にかかる I Cカードリーダは、 上記請求項 8における I Cカードの挿入方向先端位置から接点端子部に至るまでの 距離に対して、 磁気情報記録部を検知するように設けられた磁気へッド のギヤップ中心と前記入口センサとの間の距離を略等しい距離に設定し て、 磁気情報記録部を有するカードの検知が円滑に行われるように構成 したものであるから、 磁気情報記録部を有する力一ドに対しても同様な 効果を奏することができる。
また、 本発明の請求項 1 3にかかる I Cカードリーダは、 上記請求項 8における入口センサとして磁気差動型の入口センサを用いたことによ り、 小型のコア体を用いつつ高感度な出力を得つつ環境の温度変動にか かわらず安定的な検出動作が可能としたものであるから、 上述した効果 に加えて、 I Cカードの検出を良好な検出感度により安定的に行うこと ができ、 小型で高性能な I Cカードリーダを得ることができる。
さらに、 本発明の請求項 1 4にかかる I Cカードリーダは、 前記請求 項 1 3における入口センサのコア体を一枚の板形状部材から形成してコ ァ体を薄型化したものであるから、 上述した効果に加えて、 より一層の 小型化を図ることができる。
さらにまた、 本発明の請求項 1 5及び請求項 1 6にかかる I Cカード リーダは、 上記請求項 1 3及び請求項 1 4における入口センサの軸端コ ァ部を小幅として、 当該軸端コア部における電流効率を向上させ、 より 多くの磁束を集めるようにして検出感度を一層高めるようにしたもので あるから、 上述した効果を更に高めることができる。
また、 本発明の請求項 1 7にかかる I Cカードリーダは、 上記請求項 1 5における入口センサの中央コア部と軸端コア部との境界部分に係止 鍔部を設けることによって、 各コイルの巻回位置を精度良く位置決め可 能として、 位相ズレを低減させるとともに、 大きな変化率を得るように 構成したものであるから、 上述した効果を更に高めることができる。 一方、 本発明の請求項 1 8にかかる I Cカードリーダは、 上記請求項 1 5における入口センサによる I C力一ドからの検出出力と、 比較金属 体からの検出出力との差分を変化量として検出を行い、 比較金属体と軸 端コア部との距離や、 比較金属体の材質などを変更することによって、 被検出体に対して必要とされる検出区間における始点位置を 「 0」 出力 に設定して用いることを可能とし、 それによつて、 大きな出力変化を得 て検出精度及び分解能を高めるとともに良好な直線性が得られるように 構成したものであるから、 上述した効果を一層高めることができる。
また、 本発明の請求項 1 9にかかる I Cカードリーダは、 上記請求項 1 3における入口センサの一対の励磁用コイルにより対向磁界を形成す ることによって出力を理想的な差動状態とし、 より一層高感度で正確な 検出が可能としたものであるから、 上述した効果を一層高めることがで さる。
一方、 本発明の請求項 2 0にかかる I C力一ドリーダは、 読取 Z書込 位置よりも力一ド挿入方向において上流側の適宜の位置に、 挿入された カードの種別を検出する入口センサを設け、 その入口センサからの検出 信号を用いることによって、 使用不能なカードを揷入した場合にはシャ ッターを閉じるなどの制御動作を可能としたものであるから、 カードの 不正行為などを未然に防止することができ、 I Cカードリーダの信頼性 を向上させることができる。
また、 請求項 2 1記載の I Cカードリーダは、 上記請求項 2 0記載の 入口センサが、 磁気カードの磁気ストライプを検出する第 1の磁気セン サと、 接触型 I C力一ドの接点端子部を検出する第 2の磁気センサと、 非接触型 I C力一ドのアンテナ部を検出する第 3の磁気センサとのうち の少なくとも二つの磁気センサを備え、 入口センサからの検出信号によ つて、 挿入されたカードが、 磁気カードであるか、 接触型 I Cカードで あるか、 非接触型 I Cカードのであるから、 又はそれらのいずれを共用 するカードであるかが良好に検出されるようにしたものであるから、 上 述した効果を確実に得ることができる。
さらに、 本発明の請求項 2 2にかかる I Cカードリーダは、 上記請求 項 2 0における装置本体に、 その力一ド揷入口を通して挿入されたカー ドを前記読取/書込位置まで導くカード搬送路を設けるとともに、 その カード搬送路を遮断 · 開放するシャッター手段を設け、 そのカード挿入 口とシャッター手段との間の位置に入口センサを配置したことによって 挿入されたカードを入口センサで検知した後に力一ド搬送路内に送り込 むようにしたものであるから、 上述した効果に加えて、 シャッター手段 によって不正カードの排除を確実に行わせることができるとともに、 装 置本体内の清浄性を良好に維持することができる。
さらにまた、 本発明の請求項 2 3にかかる I Cカードリーダは、 上記 請求項 2 0における入口センサとして磁気差動型の磁気差動型センサを 用いたことにより、 小型のコア体を用いつつ高感度な出力を得つつ環境 の温度変動にかかわらず安定的な検出動作が可能としたものであるから、 上述した効果に加えて、 カードの検出を良好な検出感度により安定的に 行うことができ、 小型で高性能な I Cカードリーダを得ることができる。
また、 本発明の請求項 2 4にかかる I C力一ドリーダは、 前記請求項 2 3における磁気差動型センサのコア体を板形状部材から形成してコア 体を薄型化したものであるから、 上述した効果に加えて、 より一層の小 型化を図ることができる。
さらに、 本発明の請求項 2 5及び請求項 2 6にかかる I C力一ドリー ダは、 上記請求項 2 3及び請求項 2 4における磁気差動型センサの軸端 コア部を小幅として、 当該軸端コア部における電流効率を向上させ、 よ り多くの磁束を集めるようにして検出感度を一層高めるようにしたもの であるから、 上述した効果を更に高めることができる。
また、 本発明の請求項 2 7にかかる I Cカードリーダは、 上記請求項 2 5における磁気差動型センサの中央コア部と軸端コア部との境界部分 に係止鍔部を設けることによって、 各コイルの巻回位置を精度良く位置 決め可能として、 位相ズレを低減させるとともに、 大きな変化率を得る ように構成したものであるから、 上述した効果を更に高めることができ る。
一方、 本発明の請求項 2 8にかかる I Cカードリーダは、 上記請求項 2 5における磁気差動型センサによるカードからの検出出力と、 比較金 属体からの検出出力との差分を変化量として検出を行い、 比較金属体と 軸端コア部との距離や、 比較金属体の材質などを変更することによって- 被検出体に対して必要とされる検出区間における始点位置を 「0」 出力 に設定して用いることを可能とし、 それによつて、 大きな出力変化を得 て検出精度及び分解能を高めるとともに良好な直線性が得られるように 構成したものであるから、 上述した効果を一層高めることができる。
また、 本発明の請求項 2 9にかかる I Cカードリーダは、 上記請求項 2 3における磁気差動型センサの一対の励磁用コイルにより対向磁界を 形成することによって出力を理想的な差動状態とし、 より一層高感度で 正確な検出が可能としたものであるから、 上述した効果を一層高めるこ とができる。
一方、 本発明の請求項 3 0にかかる I Cカードリーダは、 カード搬送 路の入口側の位置に、 磁気コアに巻回された一対の励磁用コイル及び検 出用コイルを有する磁気差動型に構成されたセンサが設けられ、 入口セ ンサが I Cカードの接点端子部を検知したときに、 搬送駆動手段によつ て読取 書込位置まで導き、 入口センサが I Cカードの接点端子部を検 知しないときには励磁用コイルを励磁して検出用コイルから出力される 出力信号の電圧値によって入口センサの断線等を診断する断線診断手段 が備えたので、 入口センサの断線等を自己判断することができるので、 I Cカードリ一ダとしての信頼性を大幅に向上することができる。
また、 本発明の請求項 3 1にかかる I Cカードリーダは、 上記請求項 3 0における入口センサとして磁気差動型の入口センサを用いたことに より、 小型のコア体を用いつつ高感度な出力を得つつ環境の温度変動に かかわらず安定的な検出動作が可能としたものであるから、 上述した効 果に加えて、 I Cカードの検出を良好な検出感度により安定的に行うこ とができ、 小型で高性能な I Cカードリーダを得ることができる。
さらに、 本発明の請求項 3 2にかかる I Cカードリーダは、 前記請求 項 3 0における断線診断手段が、 I Cカードの接点端子部を検知しない ときに入口センサの励磁用コイルや検出コイルの断線等の断線を判定す るので、 I Cカードリーダ本来の動作に影響を与えることなく検出する ことができる。
一方、 本発明の請求項 3 3にかかる I Cカードリーダは、 前記請求項 3 0における断線診断手段が、 検出用コイルの出力レベルが所定の閾レ ベルを越えたときに一対の前記励磁用コイルのうちの一方の断線等を診 断するので、 入口センサ等の断線個所を特定することができる。
また、 本発明の請求項 3 4にかかる I Cカードリーダは、 上記請求項 3 0における断線診断手段が、 I C力一ドが排出された後に入口センサ の断線等を診断することから、 次に I C力一ドの真偽あるいは表裏を検 知するまでの間に、 入口センサの断線を事前に検出することができる。 さらに、 本発明の請求項 3 5にかかる I Cカードリーダは、 前記請求 項 3 0における断線診断手段が、 I Cカードをカード搬送路の入口に挿 入したときに入口センサの断線等を診断するので、 入口センサが I C力 一ドの真偽あるいは表裏を検知する前に、 事前に入口センサの断線等を 検出することができる。
さらにまた、 本発明の請求項 3 6にかかる I Cカードリーダは、 前記 請求項 3 0における入口センサが、 励磁用コイルを励磁したとき、 検出 コイルから微小な待機信号を出力するので、 この待機信号の電圧値を比 較することによって、 検出コイルが断線していることを検出することが でき、 入口センサの断線等を検出することができる。 図面の簡単な説明
図 1は、 本発明の一実施形態における物体検知センサの概略構造を表 した側面説明図である。
図 2は、 図 1に示された物体検知センサのコア構造を表した外観斜視 説明図である。
図 3は、 本発明にかかる物体検知センサの検出出力を、 従来センサと 比較した線図である。
図 4は、 本発明にかかる物体検知センサを、 コインの有無検出センサ として用いた場合における概略の配置例を表したものであって、 ( a ) は 側面説明図、 (b ) は平面説明図である。
図 5は、 図 4の構成によって得られた出力の一例を表した線図である。 図 6は、 本発明の他の実施形態における物体検知センサの概略構造を 表した側面説明図である。
図 7は、 図 6に示された物体検知センサによる検出区間の調整状態を 表した線図である。
図 8は、 コア体の他の立体形状例を表したものであって、 ( a ) は円筒 形状のコア体、 (b ) は角柱形状のコア体の外観斜視説明図である。
図 9は、 励磁用コイルの並列状の接続例を表した回路説明図である。 図 1 0は、 一般の物体検知センサの概略構造を表した側面説明図であ る。
図 1 1は、 図 1 0に示された一般の物体検知センサによる検出出力の 線図である。
図 1 2は、 一般の物体検知センサの概略構造を表した外観斜視説明図 である。
図 1 3は、 本発明の一実施形態における物体検知センサ (入口セン サ) を備えた I Cカードリーダのカード搬送路において I Cカードが読 取 Z書込位置に搬送された状態を表した縦断面説明図である。
図 1 4は、 図 1 3に表された I Cカードリーダのカード搬送路におい て I C力一ドが読取 Z書込位置に至る直前の状態を表した縦断面説明図 である。
図 1 5は、 図 1 3に表された I Cカードリーダの力一ド搬送路におけ るカード揷入口部分の構成を表した側面説明図である。
図 1 6は、 図 1 5に表されたカード揷入口部分の平面説明図である。 図 1 7は、 図 1 5に表されたカード揷入口部分の正面説明図である。 図 1 8は、 図 1 3における I Cカードリーダに用いられている入口セ ンサの一例を表した縦断面説明図である。
図 1 9は、 図 1 8に表された入口センサの横断面説明図である。
図 2 0は、 図 1 8に表された入口センサの概略構造を表した側面説明 図である。
図 2 1は、 図 2 0に示された入口センサのコア構造を表した外観斜視 説明図である。
図 2 2は、 本発明にかかる入口センサにおける温度特性の測定結果を 表した線図である。
図 2 3は、 入口センサと I Cカードの接点端子部との間の間隔と、 入 口センサからの出力電圧との関係を測定した結果を表した線図である。 図 2 4は、 実際に取り付けられた入口センサから得られる検知出力電 圧の温度特性を表した線図である。
図 2 5は、 I Cカードに設けられた接点端子部の位置を表した平面説 明図である。 5
25
図 2 6は、 図 2 5中の A部拡大図である。
図 2 7は、 I Cカードに設けられたエンボス領域の位置を表した平面 説明図である。
図 2 8は、 I Cカードを表側にして適正に挿入した状態を表した正面 説明図である。
図 2 9は、 I Cカードを裏側にして不適正に挿入した状態を表した正 面説明図である。
図 3 0 ( a ) は、 本発明の他の実施形態における入口センサの概略構 造を表した側面説明図であり、 (b ) は、 ( a ) に示された入口センサに よる検出区間の調整状態を表した線図である。
図 3 1は、 本発明の一実施形態における物体検知センサ (入口セン サ) を備えた I Cカードリーダの力一ド搬送路において I C力一ドが読 取 Z書込位置に搬送された状態を表した縦断面説明図である。
図 3 2は、 図 3 1に表された I Cカードリーダの力一ド搬送路におい てカードが読取 Z書込位置に至る直前の状態を表した縦断面説明図であ る。
図 3 3は、 図 3 1に表された I Cカードリーダのカード搬送路におけ るカード揷入口部分を拡大して表した側面説明図である。
図 3 4は、 図 3 3に表された力一ド揷入口部分の正面説明図である。 図 3 5は、 図 3 4に表された力一ド揷入口部分を拡大して表した正面 説明図である。
図 3 6は、 図 3 1に示された I Cカードリーダに用いられている磁気 差動型センサの一例を表した側面説明図である。
図 3 7は、 図 3 6に表された磁気差動型センサ (入口センサ) の平面 説明図である。
闵 3 8は、 磁気差動型センサと I Cカードとの間の間隔と、 磁気差動 型センサからの出力電圧との関係を測定した結果を表した線図である。 図 3 9は、 磁気カードにおける磁気ストライプの位置規格を表した平 面説明図である。
図 4 0は、 非接触型 I Cカードにおける設けられたアンテナ部とチッ プとの最小結合領域を表した平面説明図である。
図 4 1は、 本発明の断線診断手段としての制御回路部を示す回路プロ ック図である。
図 4 2は、 本発明の一実施形態における物体検知センサ (入口セン サ) を備えた I Cカードリーダの力一ド搬送路において I Cカードが読 取 書込位置に搬送された状態を表した縦断面説明図である。
図 4 3は、 図 4 1に表された I C力一ドリ一ダのカード搬送路におい て I Cカードが読取 Z書込位置に至る直前の状態を表した縦断面説明図 である。
図 4 4は、 図 4 1に表された制御回路部の各状態における信号を表し た波形図である。 本発明を実施するための最良の形態
まず、 本発明の物体検知センサに関する実施形態を図面に基づいて詳 細に説明する。
図 1及び図 2に示されている実施形態にかかる物体検知センサ 1 0に おいては、 一枚の薄板形状部材からなるコア体 1 1の中央コア部 1 1 a に対して、 検出用コイル 1 2が巻回されているとともに、 上記中央コア 部 1 1 aの図示上下方向両側に、 係止鍔部 1 1 bをそれぞれ介して一体 的に連接された一対の軸端コア部 1 1 c , 1 1 dの各々に対して、 励磁 用コイル 1 3 c , 1 3 dがそれぞれ巻回されている。
そして、 上記一対の軸端コア部 1 1 c , 1 1 dのうちの図示上側に配 置された一方側の軸端コア部 1 1 cが、 金属部材又は磁性体からなる被 検出体 1 4と対面可能に配置されている。 このとき本実施形態では、 前 記中央コア部 1 1 aを通して他方側の軸端コア部 1 1 dに至る軸心 C X の方向 (図示上下方向) が、 前記被検出体 1 4の移動方向に略直交する 位置関係に設定されている。 そして、 上記一方側の軸端コア部 1 1 cに 対して被検出体 1 4が、 上記軸心 C Xに略直交する方向に沿って往復移 動されることによって、 これら一方側の軸端コア部 1 1 cと被検出体 1 4とが互いに対向しつつ近接 · 離間され、 それらの両部材 1 1 c , 1 4 どうしが互いに適宜の距離範囲内において対面したときに、 前記被検出 体 1 4の存在 (有り) を検出する構成になされている。 なお、 上記被検 出体 1 4が固定された状態で、 物体検知センサ 1 0側が動く構成であつ てもよい。
より具体的には、 上記中央コア部 1 1 aは、 前記軸心 CXの延在方向 (図示上下方向) において物体検知センサ 1 0の略中央部分に配置され ていて、 上記軸心 CXの方向と直交する方向 (図示左右方向) における 幅寸法 W1 が、 比較的幅広に形成されている。 これに対して、 上記両軸 端コア部 l i e , l l dの各幅寸法W2 は、 上記中央コア部 1 1 aの 幅寸法 W 1 より小さく設定されており (W2 <W 1 )、 本実施形態で は、 半分以下の寸法 (W2 ≤W 1 / 2 ) となるように形成されている。 このとき、 上記中央コア部 1 1 aにおける検出用コイル 1 2が巻回され ている部位は、 やや細幅の寸法 W3 となるように切り欠かれた形状に なされている。
また、 上記両軸端コア部 1 1 c, l i dに巻回された一対の励磁用コ ィル 1 3 c , 1 3 は、 一体的に連結された一連のコイル部材から構成 されていて、 それらの各コイル部材のうちの、 上記両軸端コア部 l i e , 1 1 dにおける付け根部分に巻回された内端部分どうしが、 渡り線 1 3 eによって一体的に接続されて、 直列の状態になされている。 一方、 上 記両軸端コア部 1 1 c, 1 1 dの各先端側から引き出された各リード部 13 f , 1 3 gは、 交流電源 1 5の両端子部にそれぞれ接続されていて、 その交流電源 1 5から発生される正弦波又は矩形波が、 上記両軸端コア 部 1 1 c, 1 1 dの各コイル巻回部に印加されることによって、 上述し た同一の軸心 C X上において、 逆方向の対向磁界 Φ 1 , Φ 2が形成され るように構成されている。
このとき、 上記中央コア部 1 1 aと、 一対の軸端コア部 1 1 c, 1 1 dとの各境界部分に設けられた各係止鍔部 1 1 b, l i bは、 上記軸心 CXの方向と略直交する幅方向に向かって突出する張出形状になされて おり、 それらの各係止鍔部 1 1 bに対する軸心方向の前後の位置に、 前 記励磁用コイル 1 3 c及び検出用コイル 1 3 dがそれぞれ巻回されてい る。 すなわち、 それらの各コイル 1 3 c, 1 3 dの巻回位置は、 上記両 係止鍔部 1 1 b, 1 1 bによって位置決めされるようになっている。
このような構成を有する本実施形態にかかる物体検知センサ 1 0にお いて、 上記検出用コイル 1 2から得られる検出出力は、 一対の励磁用コ ィル 1 3 c , 1 3 dにより発生される逆方向の対向磁界 φ 1 , Φ 2の和 に相当する磁界に基づくものとなっており、 従って、 上述した被検出体 14が存在していない (無し) か、 または被検出体 14が物体検知セン サ 1 0から十分な遠方 (無限遠) にある場合には、 上記逆方向の対向磁 界 φ 1, Φ 2の絶対値は等しくなつて ( | ^ 1 | = | φ 2 、 上記検出 用コイル 1 2からの出力は 「0」 となる。 一方、 物体検知センサ 1 0と 被検出体 14とが、 相対的に近接して適宜の範囲内に存在する (有り) の状態になると、 これら両者間の距離の変化に対応して、 上記被検出体 14に発生する渦電流が変化し、 それにより、 上述した逆方向の対向磁 界 φ ΐ, Φ 2のパランスが崩れて、 例えば、 φ ΐが大きくなると φ 2が 小さくなる。 そして、 そのときの対向磁界 φ 1 , Φ 2の絶対値の差 ( I ø 1 I - I Φ 2 I ) に相当する磁界に基づいて、 上記検出用コイル 1 2 から差動出力が得られる。
このような差動状態によって一つの出力が得られるが、 その出力は、 例えば以下の式によって表されるものとなっている。 d d
ώ t. d ;
出力 = dt
但し、
Φ、 =Asin Wt
(同位相)
Figure imgf000031_0001
すなわち、 上述した構成を有する物体検知センサ 1 0では、 励磁用コ ィル 1 3 c, 1 3 dと、 検出用コイル 1 2とが区別されて配置されてい て、 しかも、 一対の励磁用コイル 1 3 c , 1 3 dどうしの間のバランス に基づいて検出が行われることから、 直流抵抗分等によるインピーダン スに関係なく磁束の変化量が、 薄型で小型のコア体 1 1を用いつつ良好 な直線性をもって高感度で得られる。 しかも、 従来のような定電流回路 を使用することなく安価な回路によって環境の温度変動にかかわらず、 被検出体 1 4の有無に関して安定的な検出動作が可能となる。
また、 本実施形態では、 被検出体 1 4に対面配置される軸端コア部 1 1 c , 1 1 dを小幅なものとして、 当該軸端コア部 1 1 c, l i dにお ける電流効率を向上させており、 それによつて、 より多くの磁束を発生 させていることから、 検出の変化量、 つまり被検出体 1 4の有無に関す る検出感度が一層高められるようになっている。
さらにまた、 本実施形態にかかる物体検知センサ 1 0では、 中央コア 部 1 1 aと、 軸端コア部 1 1 c, 1 1 dとの境界部分に、 係止鍔部 1 1 bを設けることによって、 各コイル 1 2, 1 3 c , 1 3 dの巻回位置を 精度良く位置決め可能としていることから、 位相ズレ又は出カズレが低 減されるとともに、 大きな変化率が得られる。
また、 本実施形態にかかる物体検知センサ 1 0では、 一対の励磁用コ ィル 1 3 c, 1 3 dどうしの間の出力バランスを差動状態としているこ とから、 より一層高感度で正確な検出が可能となっている。 また、 差動 になっているので、 温度特性も良い。
例えば、 励磁用コイル 1 3 c , 1 3 dとして卷数 2 0 Tのものを採用 する一方、 検出用コイル 1 2として巻数 4 0 Tのものを採用し、 励磁周 波数を 1 MH z、 励磁電流を 2 0 mA p p ( 0. 6 5 V) に設定して、 上述した本発明にかかる物体検知センサ 1 0を従来品とを比較してみた ところ、 図 3に示されているような結果が得られた。 すなわち、 被検出 体 1 4がない又は十分な遠距離 (無限遠) にある場合の上記検出用コィ ル 1 2からの出力を 「 1」 としたときの、 上記被検出体 1 4と物体検知 センサ 1 0との間の距離 (図 3の横軸 ; mm) に対する出力変化率 (図 3の縦軸 ; %) は、 従来の物体検知センサで (同図中 A線) 約 1 0〜 2 0 %の変化量しか得られなかったのに対して、 本願発明にかかる物体検 知センサ 1 0では (同図中 B線)、 9 0 0〜 9 5 0 %の大きな変化量が得 られた。
また、 図 4 ( a), (b) に示されているように、 実際に、 本発明にか かる物体検知センサ 1 0を、 5 0 0円硬貨などのコィン Cの有無を検知 するコインセンサとして用いてみたところ、 上記コイン Cと、 コインセ ンサ 1 0との距離 (ギャップ) Gにかかわらず、 図 5に示されているよ うに、 良好な測定結果が得られた。 なお、 図 5の結果は、 電流, アンプ ゲインを固定状態として測定を行ったものである。
一方、 上述した実施形態と同一の構成物に対して同一の符号を付した PC画薦 15
31
図 6に示された実施形態では、 一対の軸端コア部 1 1 c , 1 1 dのうち の図示上側に配置された一方側の軸端コア部 1 1 cが、 被検出体 1 4と 対向するように配置されているとともに、 図示下側に配置された他方側 の軸端コア部 l i dが、 上記被検出体 1 4と同一材質、 又は同程度の導 電率 (被検出体 1 4が非磁性体のときは非磁性体)、 或いは同程度の透磁 率 (被検出体 1 4が磁性体のときは磁性体) を有する比較金属体 2 0と 対向するように配置されている。 例えば、 上記被検出体 1 4が、 アルミ 材、 銅、 フェライ ト、 パーマロイなどの場合には、 比較金属体 2 0とし ても、 それと同一材質のアルミ材、 銅、 フェライ ト、 パーマロイ、 又は それらのうちの磁性材どうし、 或いは非磁性部材どうしが組み合わせて 用いられる。
そして、 上述した被検出体 1 4が、 物体検知センサ 1 0に対して対面 •離間するように図示左右の方向に移動すると、 上記一方側の軸端コア 部 1 1 cが、 上記被検出体 1 4に対して対面 ·離間されて、 それら両部 材どうしの間の間隔 L 1が、 有限値と無限値との間で変化することにな る。 そのとき、 他方側の軸端コア部 1 1 は、 比較金属体 2 0に対して 間隔 L 2を変えることなく所定の位置に維持される構成になされている。 従って、 上記検出用コイル 1 2からの出力が 「 0」 となる位置は、 上 記比較金属体 2 0と他方側の軸端コア部 1 1 dとの間の間隔 L 2が、 一 方側の軸端コア部 1 1 cと被検出体 1 4との間隔 L 1 と等しくなる位置 であることから、 上述した一方側の軸端コア部 1 1 c と、 被検出体 1 4 の検出を行う間隔 L 1を、 比較金属体 2 0と他方側の軸端コア部 1 1 d との間の間隔 L 2よりも同じか小さい範囲 (0≤L 1≤L 2 ) に設定し ておけば、 被検出体 1 4の有無に関して大きな検出出力を取り出すこと が可能となる。
このように、 本実施形態にかかる物体検知センサによれば、 被検出体 1 4からの検出出力と、 比較金属体 2 0からの検出出力との差分が変化 量になされることから、 比較金属体 2 0と軸端コア部 1 1 cとの距離 L
2や、 比較金属体 2 0の材質などを変更することによって、 図 7中の符 号 0〜L 2で示された上記被検出体 1 4に対する必要な検出区間におい て、 「0」 となる位置 L 2を任意に変更して用いることが可能となり、 そ の結果、 被検出体 1 4の有無に関して大きな出力を得ることによって検 出精度が高められる。
以上、 本発明者によってなされた発明の物体検知センサに関する実施 形態を具体的に説明したが、 本発明は、 上記実施形態に限定されるもの ではなく、 その要旨を逸脱しない範囲で種々変形可能であることはいう までもない。
例えば、 上述した物体検知センサに関する実施形態では、 検出用コィ ル 1 2を中央部分に挟んで両側に励磁用コイル 1 3 c , 1 3 dを配置し ているが、 励磁用コイルを中央部分に挟んで両側に検出用コイルを配置 するように構成することも可能である。
また、 上述した物体検知センサに関する実施形態では、 軸端コア部 1 1 cの幅寸法を、 中央コア部 1 1 aの幅寸法よりも小さくしているが ( W 2 < W 1 )、 両者を等しくしたり、 逆の大小関係に設定することも 可能である。 また、 上述した実施形態におけるコア体 1 1の中央コア部 1 1 aには、 検出用コイル 1 2を巻回する部位に凹状の切欠き部が設け られているが、 そのような切欠き部を設けることなく単純な矩形状をな すように形成することも可能である。
さらに、 上述した物体検知センサに関する実施形態では、 コア体とし て、 一枚の薄板形状部材を用いているが、 図 8 ( a ) , ( b ) に示されて いるような立体形状のコア体 1 1 ' , 1 1 " であっても同様に採用するこ とができる。 なお、 この場合においても、 軸方向の中央部分に設けられ た切欠状の凹部 1 1 ' a, 1 1 " aを形成することなく単純形状に構成 することが可能である。
さらに、 上述した物体検知センサに関する実施形態では、 一対の励磁 用コイル 1 3 c, 1 3 dがー連 ·一体に直列状態にて接続されているが, 例えば、 図 9に示されているように、 それらの各励磁用コイル 1 3 c , 1 3 dを、 交流電源 1 5に対して並列状態となるように接続して対向磁 界を形成することも可能である。
さらにまた、 上述した物体検知センサに関する実施形態は、 一つの励 磁用電源を単独で設けたものであるが、 各励磁用コイル 1 3 c , 1 3 d 毎に、 別個の電源をそれぞれ配置することも可能である。 但し、 その場 合には、 各電源どうしの位相が同期するように設定することが必要とな る。
一方、 上述した物体検知センサに関する実施形態における一対の両軸 端コア部: L l c, :! 丄 の各幅寸法1^? , W2 が、 作製誤差などに よって、 例えば 5 mのように微少量だけ互いに異なってしまい、 その 結果、 被検出物がない場合の差動出力が 「0」 にならなくなってしまう ことも考えられるが、 その場合には、 上記各励磁用コイル 1 3 c , 1 3 dに供給する電流値を、 差動出力が 「 0」 となるようにオフセット調整 することによって容易に対処することが可能である。
次に、 上述した物体検知センサを備えた I Cカードリーダに関する本 発明の実施形態を図面に基づいて詳細に説明する。
まず、 図 1 3, 1 4、 図 3 1 , 3 2、 及び図 4 2 , 4 3は、 I Cカー ドリーダを示し、 I Cカード 3を揷入して情報を読取 Z書込する場合の 形態を示している。 なお、 図 3 1に示す実施形態における " I Cカード 3 " は、 "接触型 I Cカード 3 " とする。 また、 "物体検知センサ" は、 入口センサ" または "磁気差動型センサ" とする。 I Cカードリーダの装置本体 1内には、 図示右端側に設けられた力一 ド挿入口 2を通して挿入された I Cカード 3が、 略水平方向に延在する ように配置された力一ド搬送路 4により案内されて、 図示したように装 置後端側まで送り込まれる構成となっている。 このカード搬送路 4は、 上側フレーム 4 aと下側フレーム 4 bとの間に挟まれるようにして構成 されており、 当該カード搬送路 4の比較的前方 (図示右方) の位置に配 置された搬送駆動手段としての力一ド送りローラ 5 a又は送りパッ ト 5 bが、 図示を省略したモータによって回転駆動されることによって、 上 記 I Cカード 3が、 後端側 (図示右端側) に配置されたカード読取 Z書 込位置まで導かれるようになっている。
なお、 図 4 2及び図 4 3に示す I Cカードリーダでは、 当該力一ド搬 送路 4のほぼ中央の位置に、 カード送りローラ 5 c と送りパッ 卜 5 dが 配置されている。 カード送りローラ 5 a、 5 c又は送りパット 5 b、 5 dは、 図示を省略したモータによって回転駆動されることによって、 上 記 I Cカード 3が、 後端側 (図示右端側) に配置されたカード読取/書 込位置まで導かれるようになっている。
より具体的には、 上記カード揷入口 2からカード搬送路 4の内部側に 取り込まれた I Cカード 3は、 当該 I Cカード 3の先端 3 aがカード当 接部材 6に当接された後に更に押し込まれ、 その I Cカード 3とともに 上記カード当接部材 6をカード走行方向に移動させる。 そして、 その力 ード当接部材 6の移動に伴って、 I C接点 7が、 接点ブロック 8の作用 によって上記 I Cカード 3の接点端子部 3 bに当接させる位置まで移動 される。
一方、 上記カード当接部材 6は、 I Cカード 3の先端 3 aを当接させ る突出部 6 aと、 I Cカード 3の裏面側を受け支える受け手段 6 bとを 備えている。 上記突出部 6 aは、 カード当接部材 6の先端部分 (図示左 端側部分) において、 下方を向くように形成されており、 その突出部 6 aに対して、 カード搬送路 4内を走行する I Cカード 3が当接するよう に、 当該突出部 6 aの一部が、 前記上側フレーム 4 aと下側フレーム 4 bとにより形成される力一ド搬送路 4内に突出するように配置されてい る。
上述したカード当接部材 6は、 I Cカード 3が走行する方向に移動可 能に設けられているが、 スプリング等 (図示省略) によって I Cカード 3の後端側方向、 すなわち図示右方の手前側に復帰付勢されており、 そ のカード当接部材 6に I Cカード 3が当接して移動させるまでは、 図 1 4、 図 3 2及び図 4 3に示すように後方位置 (図示右方位置) に待機し ている。 そして、 I Cカード 3が図示左方側のカード読取 Z書込位置に 向かって走行し、 当該 I Cカード 3の先端 3 aがカード当接部材 6の突 出部 6 aに当接すると、 当該カード当接部材 6は、 I Cカード 3ととも にカード走行方向すなわち図示左方の奥側に向かって移動し、 それによ つて、 上記カード当接部材 6が、 図 1 3、 図 3 1及び図 4 2に示すカー ドセッ ト位置、 つまり I C力一ド 3に対する情報の読取 Z書込を行う位 置に到達する。
一方、 上記接点ブロック 8は、 プローブ針状の I C接点 7を保持しな がらカード当接部材 6に係合しており、 カード当接部材 6が、 図示左方 の先端側へ移動するのに連動して、 図 1 4、 図 3 2及び図 4 3のカード 離間位置から斜め方向のカム溝 8 bに沿って下降していき、 図 1 3、 図 3 1及び図 4 2に示すカード当接位置に到達する構成になされている。 上記接点プロック 8は、 力一ド当接位置に至る直前において上記 I C接 点 7を I Cカード 3の接点端子部 3 bに当接させるように構成されてい る。
図示上方側に配置されたセンサ 9は、 前記カード当接部材 6に設けら れたスリッ ト 6 cと、 カード当接部材 6の後端側端面 6 dとを検出する ように設けられていて、 このセンサ 9でスリッ ト 6 cを検知することに よって I Cカード 3の走行スピードを低下させるタイミングが検出され るとともに、 後端側端面 6 dを検知することによって I Cカード 3が力 一ド読取 Z書込位置に停止していることが検出されるようになっている, 本実施形態では、 上記センサ 9として光センサを用いているが、 他の手 段、 例えば磁気センサあるいは機械式センサを用いることもできる。 一方、 特に図 1 4、 図 3 2及び図 4 3、 並びに図 1 5、 図 3 3及び図 1 6に示されているように、 上記 I Cカード 3の揷入方向 (図示左方 向) において、 前記カード読取 Z書込位置より上流側、 より具体的には, 上述したカード揷入口 2の図示左方側直後の位置に、 上記 I Cカード 3 の接点端子部 3 bを検出してカードの正否 (カードが I Cカードか否 か) を検出する磁気差動型の入口センサ 1 0が、 カード搬送路 4内に臨 むように設けられている。 また、 上記 I Cカード 3の挿入方向において 上記入口センサ 1 0の下流側には、 磁気記録情報部を有するカードを用 いる場合の入口センサを構成する磁気プリへッド 2 0と、 前記力一ド搬 送路 4を開放 · 閉塞するシャッター手段 3 0とが、 順次並列するように 設けられている。
なお、 図 4 2及び図 4 3に示す I Cカードリーダでは、 I Cカード 3 の挿入方向においてセンサ 1 0の上流側には、 I Cカード 3の挿入方向 における幅を検出して適正なカードであるか否かを検知するカード検出 器 6 0 0が設けられている。
前記磁気差動型の入口センサ 1 0は、 前述した力一ド揷入口 2から揷 入された I Cカード 3の接点端子部 3 bを検出する機能を備えたもので あって、 適正な I Cカード 3が挿入された場合には、 その適正な検出信 号に基づいて上記シャッター手段 3 0を開放状態とするが、 不適正な力 一ドが揷入されることによって、 I Cカード 3の接点端子部 3 bが検出 されない場合には、 上記シャッター手段 3 0を遮断状態のままに保持さ せることによって、 不正カードの使用などを未然に防止するようにして いる。
一方、 特に図 3 3、 図 3 4及び図 3 5に示されているように、 カード 挿入部分、 すなわち、 上記接触型 I Cカード 3の揷入方向 (図示左方 向) において前記カード読取 Z書込位置より上流側の位置には、 挿入さ れたカードの種別を検出するための 3体の入口センサ 2 0, 1 0 , 4 0 が設けられている。 これらの入口センサ 2 0 , 1 0 , 4 0は、 磁気力一 ドの磁気ス トライプを検出する第 1の磁気センサ 2 0と、 接触型 I C力 一ドの接点端子部を検出する第 2の磁気センサ 1 0と、 非接触型 I C力 —ドのアンテナ部を検出する第 3の磁気センサ 4 0とから構成されてい る。
そのうちの上記第 2の磁気センサ 1 0及び第 3の磁気センサ 4 0は、 前記カード搬送路 4内に臨むように設けられた磁気差動型センサ (入口 センサ) からそれぞれ構成されていて (詳細な構造は後述)、 本実施形態 では、 上述した力一ド揷入口 2の図 1左方側直後においてカード走行方 向と略直交する方向に並列していることによって、 これら両センサ 1 0 , 4 0どうしが互いに略同位置となるように配置されている。
ここで、 上記第 2の磁気センサ 1 0は、 前述した接触型の I Cカード 3に設けられた接点端子部 3 bを検出する機能を備えたものであって、 接触型の I Cカード 3がカード揷入口 2から挿入された場合に、 当該第 2の磁気センサ 1 0から検出信号が発せられるようになつている。 また、 前記第 3の磁気センサ 4 0は、 非接触型の I Cカードに帯状等をなすよ うに張り巡らして配置されたアンテナ部を検出するように配置されてお り、 非接触型の I Cカードがカード揷入口 2から挿入された場合に、 当 該第 3の磁気センサ 4 0から検出信号が発せられるようになつている。 一方、 前記第 1の磁気センサ 2 0は、 磁気記録情報部として磁気スト ライプを有するカードを用いる場合の磁気プリへッ ドを構成するもので あって、 力一ド搬送方向において上記第 2及び第 3の磁気センサ 1 0,
4 0のやや下流側 (奥側) に配置されており、 磁気カードなどの磁気ス トライプを有する力一ドがカード揷入口 2から挿入された場合に、 当該 第 1の磁気センサ 2 0から検出信号が発せられるようになっている。
さらに、 上記前記第 1の磁気センサ 2 0のカード搬送方向下流側 (奥 側) には、 前記カード搬送路 4を開放 · 閉塞する公知のシャッター手段 3 0が配置されており、 適正な I Cカード 3が揷入された場合には、 そ の適正な検出信号に基づいて上記シャッター手段 3 0を開放状態とする が、 不適正なカードが揷入された場合、 すなわち I Cカード 3の接点端 子部 3 bが検出されない場合には、 上記シャッター手段 3 0を遮断状態 のままに保持させることによって、 不正カードの使用などを未然に防止 するようにしている。
さて、 上述した図 1 3、 図 3 2及び図 4 2等に示す I Cカードリーダ において、 シャッター手段 3 0の開閉回路については、 従来公知のもの と同様であるので説明は省略するが、 このようなシャツ夕一手段 3 0を 設けることなく、 モータの駆動制御によって不正力一ドを装置内に取り 込まないようにすることも可能である。
また、 適正な I Cカード 3からの検知信号 ( I Cカード 3が適正であ るとの検知信号) が上記入口センサ 1 0 (図 3 1に示す実施形態では入 口センサ 2 0, 1 0 , 4 0 ) から発せられると、 その検知信号に基づい てカードと搬送駆動手段のモー夕が駆動され、 それによつて上述した力 ード送り口一ラ 5 a (図 4 2に示す実施形態では力一ド送りローラ 5 a、
5 c ) が回転駆動されることとなり、 I Cカード 3が、 前記シャツ夕一 手段 3 0を通ってカード搬送路 4の内部へと搬入されていく。 そして、 カード搬送路 4内を走行する I Cカード 3の先端 3 aは、 前記カード当 接部材 6の突出部 6 aに導かれる。 当該 I Cカード 3の先端 3 aが突出 部 6 aに当接した後も、 カード送りローラ 5 a (図 4 2に示す実施形態 ではカード送りローラ 5 a、 5 c ) は引き続き回転駆動されて I Cカー ド 3を走行させる。 したがって、 上記カード当接部材 6の突出部 6 aは、 I Cカード 3の先端 3 aによってカード走行方向に押されていき、 カー ド当接部材 6が I Cカード 3と一体にカード走行方向すなわち図示左方 側の奥側へ移動することとなる。
一方、 上記力一ド当接部材 6がカード走行方向に移動するのに伴って、 その力一ド当接部材 6に係合する接点ブロック 8が上下動を行うように 構成されている。 すなわち、 上記接点ブロック 8は、 カム溝 8 bを利用 して下降して I C接点 7を I Cカード 3の接点端子部 3 bに接触させる。 その後も、 I Cカード 3が情報の読取 書込が行われる位置まで移動す るので、 これに伴い上記接点ブロック 8もさらに下降する。 したがって、 I Cカード 3がカード読取 //書込位置に近づくにつれて、 I Cカード 3 の接点端子部 3 bに対して I C接点 7がさらに押し付けられることとな る。
ここで、 図 3 1に示す実施形態では、 上述した第 2の磁気センサ 1 0 及び第 3の磁気センサ 4 0は、 互いに略同一の構造をなす磁気差動型セ ンサから構成されているが、 その磁気差動型センサの構造例を次に詳細 に説明する。 なお、 上述したように上記両センサ 1 0 , 4 0は互いに同 一構成となっているので、 以下、 第 2の磁気センサ 1 0に関してのみ説 明する。
また、 図 4 2、 4 3に示す実施形態においては、 上述した I Cカード リーダは、 一方面に磁気ストライプからなる磁気記録情報部が形成され た磁気カード (図示しない) を挿入して情報を読取/書込することがで きるように構成されている。 即ち、 前記カードの挿入方向において入口 センサ 1 0の下流側には、 磁気力一ドの入口センサを構成する磁気プリ ヘッ ド 2 0が配設されている。 そして、 磁気カードをカード揷入口 2か ら揷入することによって、 まず磁気プリへッ ド 2 0が磁気カードの磁気 記録情報部を検知する。 適正な磁気カードが挿入された場合には、 その 適正な検出信号に基づいてシャッター手段 3 0を開放状態とするが、 不 適正な力一ドが揷入されることによって、 磁気カードの磁気記録情報部 が検知されない場合には、 シャッ夕一手段 3 0を遮断状態のままに保持 させることによって、 不正力一ドの使用などを未然に防止するようにし ている。
そして、 磁気プリへッ ド 2 0から適正な磁気カードの検知信号が出力 さられると、 その検知信号に基づいて搬送駆動手段のモー夕が駆動され ることにより、 カード送りローラ 5 a、 5 cが回転駆動され、 磁気カー ドがシャッ夕一手段 3 0を通ってカード搬送路 4の内部へと搬入される。 カード送りローラ 5 aの下流側には、 磁気カードの磁気記録情報部の 情報を読取/書込を行う磁気へッ ド 8 0が、 カード搬送路 4内に臨むよ うに設けられている。 そして、 カード送りローラ 5 aによって搬送され た磁気カードは、 磁気記録情報部に摺接しながら搬送され、 情報の読取 Z書込が行われた後に、 磁気カードの先端がカード送りローラ 5 cに到 達してさらに搬送されていく。 その後、 磁気カードの後端がカード送り ローラ 5 aから離脱して磁気へッ ド 8 0に達すると、 センサ 9 9が磁気 カードの後端が検出される。 そして、 センサ 9 9で後端を検知すると、 磁気カードの搬送を停止させるようにカード送りローラ 5 a、 5 cの回 転駆動を停止させるとともに、 磁気力一ドのカード読取 Z書込が終了し ていることが検出される。 上記磁気カードのカード読取 Z書込動作が終了した後は、 カード送り ローラ 5 a、 5 cの回転駆動方向を反転させることにより、 カード搬送 路 4内の磁気カードを逆方向に搬送させてカード揷入口 2へと導かれる。 そして、 磁気カードの後端をカード挿入口 2から突出させることによつ て取り出し可能な状態にされる。
次に、 上述した入口センサ 1 0の構造を詳細に説明する。
まず、 上記入口センサ 1 0、 特に図 1 3及び図 4 2に示す実施形態に おける入口センサは、 図 6及び図 7に示されているように、 ハウジング 1 0 a内に取り付けられており、 当該ハウジング 1 0 aから略水平に突 出するように設けられた各端子板 1 0 bが、 図示を省略した回路制御部 に接続されている。
同様に、 図 3 6及び図 3 7に示されている実施形態における第 2の磁 気センサ 1 0は、 磁気差動型センサから構成されているが、 ハウジング 1 0 aに取り付けられた樹脂体 1 0 b内に埋設されており、 当該第 2の 磁気センサ 1 0を構成している磁気差動型センサ (以下、 磁気差動型セ ンサ 1 0という。) から延出して上記ハウジング 1 0 aの外部側に向かつ て略水平に突出する各端子板 1 0 cが、 図示を省略した回路制御部に接 続されている。
また、 上記入口センサ (磁気差動型センサ) 1 0自体は、 図 2 0に示 されているように、 一枚の薄板形状部材からなるコア体 1 1の中央コア 部 1 1 aに対して、 検出用コイル 1 2が巻回された磁気差動型の構造を 備えており、 上記中央コア部 1 1 aの図示上下方向両側には、 係止鐸部 1 1 bをそれぞれ介して一体的に連接された一対の軸端コア部 1 1 c , 1 1 dの各々に対して、 励磁用コイル 1 3 c, 1 3 dがそれぞれ巻回さ れている。
そして、 上記一対の軸端コア部 1 1 c, 1 1 dのうちの図示下側に配 置された一方側の軸端コア部 1 1 cが、 上述した I Cカード 3の接点端 子部 3 b (図 3 1に示す実施形態では、 上述した接触型 I Cカード 3の 接点端子部 3 b、 又は非接触型 I Cカードのアンテナ部) と対面可能に 配置されている。 このとき本実施形態では、 前記中央コア部 1 1 aを通 して他方側の軸端コア部 1 1 dに至る軸心 C Xの方向 (図示上下方向) が、 前記 I Cカード 3の接点端子部 3 b (図 3 1に示す実施形態では、 上述した接触型 I Cカード 3の接点端子部 3 b、 又は非接触型 I Cカー ドのアンテナ部) の移動方向に略直交する位置関係に設定されている。 そして、 上記一方側の軸端コア部 1 1 cに対して I C力一ド 3の接点端 子部 3 b (図 3 1に示す実施形態では、 上述した接触型 I Cカード 3の 接点端子部 3 b、 又は非接触型 I Cカードのアンテナ部) が、 上記軸心 C Xに略直交する方向に沿って往復移動されることによって、 図 2 8に 示すように、 これら一方側の軸端コア部 1 1 cと I Cカード 3の接点端 子部 3 b (図 3 1に示す実施形態では、 上述した接触型 I Cカード 3の 接点端子部 3 b、 又は非接触型 I Cカードのアンテナ部) とが互いに対 向しつつ近接 · 離間され、 それらの両部材 1 1 c , 3 bどうし (図 3 1 に示す実施形態では両部材どうし) が互いに適宜の距離範囲内において 対面したときに、 前記 I Cカード 3の接点端子部 3 b (図 3 1に示す実 施形態では、 上述した接触型 I Cカード 3の接点端子部 3 b、 又は非接 触型 I Cカードのアンテナ部) の存在 (有り) を検出する構成になされ ている。 なお、 上記 (接触型) I Cカード 3の接点端子部 3 b (図 3 1 に示す実施形態では、 上述した接触型 I C力一ド 3の接点端子部 3 b、 又は非接触型 I Cカードのアンテナ部) が固定された状態で、 入口セン サ (磁気差動型センサ) 1 0側が動く構成であってもよい。
より具体的には、 上記中央コア部 1 1 aは、 前記軸心 C Xの延在方向 (図示上下方向) において入口センサ (磁気差動型センサ) 1 0の略中 央部分に配置されていて、 上記軸心 C Xの方向と直交する方向 (図示左 右方向) における幅寸法 W 1 が、 比較的幅広に形成されている。 これに 対して、 上記両軸端コア部 1 1 c , 1 1 01の各幅寸法 2 は、 上記中 央コア部 1 1 aの幅寸法 W 1 より小さく設定されており (W2 <W 1 )、 本実施形態では、 半分以下の寸法 (W2 ≤W 1 / 2 ) となるよう に形成されている。 このとき、 上記中央コア部 1 1 aにおける検出用コ ィル 1 2が巻回されている部位は、 やや細幅の寸法 W3 となるように 切り欠かれた形状になされている。
また、 上記両軸端コア部 1 1 c, 1 1 dに巻回された一対の励磁用コ ィル 1 3 c , 1 3 dは、 一体的に連結された一連のコイル部材から構成 されていて、 それらの各コイル部材のうちの、 上記両軸端コア部 1 1 c : 1 1 dにおける付け根部分に巻回された内端部分どうしが、 渡り線 1 3 eによって一体的に接続されて、 直列の状態になされている。 一方、 上 記両軸端コア部 1 1 c, 1 1 dの各先端側から引き出された各リード部 1 3 f , 1 3 gは、 交流電源 1 5の両接点端子部に適宜の抵抗を介して それぞれ接続されていて、 その交流電源 1 5から発生される正弦波又は 矩形波が、 上記両軸端コア部 1 1 c , 1 1 dの各コイル巻回部に印加さ れることによって、 上述した同一の軸心 C X上において、 逆方向の対向 磁界 Ψ 1 , Φ 2が形成されるように構成されている。
このとき、 上記中央コア部 1 1 aと、 一対の軸端コア部 1 1 c , 1 1 dとの各境界部分に設けられた各係止鍔部 1 1 b , l i bは、 上記軸心 C Xの方向と略直交する幅方向に向かって突出する張出形状になされて おり、 それらの各係止鍔部 1 1 bに対する軸心方向の前後の位置に、 前 記励磁用コイル 1 3 c及び検出用コイル 1 3 dがそれぞれ巻回されてい る。 すなわち、 それらの各コイル 1 3 c, 1 3 dの巻回位置は、 上記両 係止鍔部 l i b , l i bによって位置決めされるようになっている。 このような構成を有する本実施形態にかかる入口センサ (磁気差動型 センサ) 1 0において、 上記検出用コイル 1 2から得られる検出出力は、 一対の励磁用コイル 1 3 c , 1 3 dにより発生される逆方向の対向磁界 Φ 1 , Φ 2の和に相当する磁界に基づくものとなっており、 従って、 上 述した I Cカード 3が存在していない (無し) か、 または I Cカード 3 の接点端子部 3 b (図 3 1の実施形態ではカード) が入口センサ (磁気 差動型センサ) 1 0から十分な遠方 (無限遠) にある場合には、 上記逆 方向の対向磁界 Φ 1 , Φ 2の絶対値は等しくなって ( | φ 1 | = | φ 2 I ), 上記検出用コイル 1 2からの出力は 「0」 となる。 一方、 入口セン サ (磁気差動型センサ) 1 0と I Cカード 3の接点端子部 3 b (図 3 1 の実施形態ではカード) とが、 相対的に近接して適宜の範囲内に存在す る (有り) の状態になると、 これら両者間の距離の変化に対応して、 上 記 I Cカード 3の接点端子部 3 b (図 3 1の実施形態では I Cカード 3 側) に発生する渦電流が変化し、 それにより、 上述した逆方向の対向磁 界 φ ΐ , φ 2のバランスが崩れて、 例えば、 φ ΐが大きくなると φ 2が 小さくなる。 そして、 そのときの対向磁界 φ ΐ , φ 2の絶対値の差 ( I Φ 1 I - I 2 I ) に相当する磁界に基づいて、 上記検出用コイル 1 2 から差動出力が得られる。
このような差動状態によって一つの出力が得られるが、 その出力は、 例えば以下の式によって表されるものとなっている。 W
45
出力一 I—
Figure imgf000047_0001
但し、
(同位相)
Figure imgf000047_0002
すなわち、 上述した構成を有する入口センサ (磁気差動型センサ) 1 0では、 励磁用コイル 1 3 c, 1 3 dと、 検出用コイル 1 2とが区別さ れて配置されていて、 しかも、 一対の励磁用コイル 1 3 c, 1 3 dどう しの間のバランスに基づいて検出が行われることから、 直流抵抗分等に よるィンピーダンスに関係なく磁束の変化量が、 薄型で小型のコア体 1 1を用いつつ良好な直線性をもって高感度で得られる。 しかも、 従来の ような定電流回路を使用することなく安価な回路によって環境の温度変 動にかかわらず、 I Cカード 3の接点端子部 3 b (図 3 1の実施形態で は力一ド) の有無に関して安定的な検出動作が可能となる。
また、 本実施形態では、 I Cカード 3の接点端子部 3 b (図 3 1の実 施形態ではカード側) に対面配置される軸端コア部 1 1 c, l i dを小 幅なものとして、 当該軸端コア部 1 1 c , 1 1 dにおける電流効率を向 上させており、 それによつて、 より多くの磁束を発生させていることか ら、 検出の変化量、 つまり I Cカード 3の接点端子部 3 b (図 3 1の実 施形態ではカード側) の有無に関する検出感度が一層高められるように なっている。
さらにまた、 本実施形態にかかる入口センサ (磁気差動型センサ) 1 0では、 中央コア部 1 1 aと、 軸端コア部 l i e , l i dとの境界部分 に、 係止鍔部 1 l bを設けることによって、 各コイル 1 2 , 1 3 c , 1 3 dの巻回位置を精度良く位置決め可能としていることから、 位相ズレ W
46
又は出力ズレが低減されるとともに、 大きな変化率が得られる。
また、 本実施形態にかかる入口センサ (磁気差動型センサ) 1 0では、 一対の励磁用コイル 1 3 c , 1 3 dどうしの間の出力バランスを差動状 態としていることから、 より一層高感度で正確な検出が可能となってい る。 また、 差動になっているので、 I Cカードが存在していない、 又は 無限遠のとき、 温度変化による Φ 1 , Φ 2の変化量はほぼ同じとなり、 出力は 0のままである。 よって温度特性も良い。
例えば、 励磁用コイル 1 3 c , 1 3 dとして巻数 2 0 T (回卷) のも のを採用する一方、 検出用コイル 1 2として卷数 40 T (回卷) のもの を採用し、 励磁周波数を 1 ΜΗ ζ、 励磁電流を 2 0mA p p ( 0. 6 5 V) に設定して、 上述した本発明にかかる入口センサ 1 0を評価してみ たところ、 次に説明するように、 環境の温度変動にかかわらず安定的な 検出動作が可能なセンサを実現することができた。
つまり、 上述した構造を有する磁気差動型の入口センサ 1 0における 温度変化に基づく出力変動を実際に測定してみたところ、 例えば図 2 2 に示されているように、 — 4 0 °Cから + 5 5 °Cまでの間の温度変化 (図 2 2の横軸) に対して、 当該入口センサ 1 0の出力電圧 (図 2 2の縦 軸) の変動は、 0. 0 1 8 Vにしか過ぎなかった。 これは、 前出の通り、 温度変化に伴う φ ΐ , Φ 2の変化量が同じであるためである。 ここで、 I Cカード 3の接点端子部 3 bを検知するには、 入口センサ 1 0からの 出力電圧の温度変動よりも大きな閾値 (スライスレベル) を設定して検 出を行うようにすれば良いこととなるが、 上述したように入口センサ 1 0からの出力電圧の温度変動は極めて小さいため ( 0. 0 1 8 V)、 感度 の良好な入口センサ 1 0とすることができる。 本実施形態では、 入口セ ンサ 1 0からの出力電圧に対する閾値 (スライスレベル) を、 上述した 出力変動の約 1 0倍 (0. 1 8 V) に設定している。 次に、 閾値 (スライスレベル) を上述したように設定したときの入口 センサ 1 0からの出力電圧と、 入口センサ 1 0と I Cカード 3の接点端 子部 3 bとの間の間隔との関係をみてみる。
まず、 例えば図 2 3に示されているように、 上記入口センサ 1 0から の出力電圧 (図 2 3の縦軸) は、 当該入口センサ 1 0と I Cカード 3の 接点端子部 3 bとの間の間隔 (図 2 3の横軸) にほぼ反比例したものと なっているが、 上述したようにして実際に設定した閾値 (スライスレべ ル; 0. 1 8 V) を越えた検知出力を得るためには、 上記入口センサ 1 0と I Cカード 3の接点端子部 3 bとの間の間隔を、 例えば 「 1. 1 m m」 以下に設定すればよいことが判明した。
そして、 入口センサ 1 0と I C力一ド 3の接点端子部 3 bとの間の間 隔が、 実際に 「 l mm」 となるように設定して入口センサ 1 0の取付を 行ってみたところ、 例えば図 2 4に示されているように、 一 4 0 °Cから + 5 5 °Cまでの間の温度変化 (図 2 4の横軸) に対して、 入口センサ 1 0の出力電圧 (図 2 4の縦軸) は、 全ての領域で良好な対応関係を有し つつ十分な出力として得られた。
このようなことから、 本実施形態にかかる入口センサ 1 0 (図 3 1に 示す実施形態では、 磁気差動型センサ、 すなわち第 2及び第 3の磁気セ ンサ 1 0, 4 0) を取り付けるにあたっては、 当該入口センサ 1 0 (図 3 1に示す実施形態では、 当該第 2及び第 3の磁気センサ 1 0, 40 ) を、 カード搬送路 4から引き込んだ位置に配置することが可能となり、 実際には、 上記入口センサ 1 0 (図 3 1に示す実施形態では、 当該第 2 及び第 3の磁気センサ 1 0, 40) の図示下面を、 前述したカード搬送 路 4の上側フレーム 4 aの壁面 (図示下面) から適宜の距離 (例えば、 図 1 5に示す実施形態では、 a 0. 5 mm) だけ引き込んだ位置に配 置して、 入口センサ 1 0 (図 3 1に示す実施形態では、 当該第 2及び第 3の磁気センサ 1 0 , 40 ) が I Cカード 3の表面に非接触となるよう に設定されている。 このような構成によって入口センサ 1 0 (図 3 1に 示す実施形態では、 当該第 2及び第 3の磁気センサ 1 0 , 4 0 ) は、 I Cカード 3の表面や、 装置内部に侵入した粉塵などとの間の擦れによつ て変形したり損傷を受けたりすることのないように取り付けられている, ここで、 図 3 1に示す実施形態では、 接触型 I Cカード 3の接点端子 部 3 b、 又は非接触型 I Cカードのアンテナ部を検知するには、 上述し た入口センサ 2 0, 1 0 , 4 0からの出力電圧の温度変動よりも大きな 閾値 (スライスレベル) を設定して検出を行うようにすれば良いことと なるが、 磁気差動型センサ 1 0 , 4 0からの出力電圧の温度変動は極め て小さいため、 感度の良好な磁気差動型センサとすることができる。 具 体的に、 磁気差動型センサ 1 0 , 4 0からの出力電圧と、 磁気差動型セ ンサ 1 0 , 4 0とカード側との間の間隔との関係をみてみると、 例えば 図 3 8に示されているように、 上記磁気差動型センサ 1 0, 4 0からの 出力電圧 (図 3 8の縦軸) は、 当該磁気差動型センサ 1 0 , 4 0とカー ド側との間の距離 (図 3 8の横軸) にほぼ反比例したものとなっている が、 適宜に閾値 (スライスレベル) 設定することによって良好な検知出 力が得られることが判る。
さらに、 上述した入口センサ 1 0は、 図 2 5、 図 2 6及び図 2 7に示 されている I Cカード 3の規格寸法に対応して、 I Cカード 3の表裏を 検知することができるように配置されている。
すなわち、 まず図 2 5に示された I Cカード 3の接点端子部 3 bは、 I S 07 8 1 6等によって、 例えば図 2 6に示されているように、 力一 ド上端 (基準端) 3 sからの位置が規格されている。 なお、 本図中の各 寸法は 「mmj であり、 同図中の 「ma x」 は上限値を表し、 同図中の 「m i n」 は下限値をそれぞれ表している。 一方、 上記 I Cカード 3には、 凹凸の文字等を形成するエンボス領域 が、 例えば図 2 7に示されているように規定されている。 すなわち、 I Cカード 3に形成されるエンボス領域は、 第 1の領域 3 c及び第 2の領 域 3 dを、 同図中の各規格寸法のように備えており、 これらの各ェンポ ス領域 3 c , 3 dに、 上述した I Cカード 3の接点端子部 3 bが重なり 合うように設けられることはない。
このような I Cカード 3の接点端子部 3 bの位置に関する各規格から、 本実施形態では、 前述した入口センサ 1 0の中心位置を、 I Cカード 3 のカード上端 (基準端) 3 sから適宜の距離 b (図 1 7、 図 2 8及び図 2 9中の13 = 2 3 . 7 mm) 以内に設定しており、 それによつて I C力 ード 3の表裏が検出されるようにしている。 つまり、 本実施形態では、 図 2 8及ぴ図 2 9に示されているように、 入口センサ 1 0の中心位置 S Cが、 I Cカード 3のカード上端 (基準端) 3 sから 2 0 . 0 8 ( = b ) m mの位置に設定されており、 例えば図 2 8に示されているように I Cカード 3を 「表」 にして正規に揷入した場合には、 当該 I Cカード 3の接点端子部 3 bが入口センサ 1 0によって検知されるが、 図 2 9に 示されているように I Cカード 3を 「裏」 の状態にして不適正に挿入し た場合には、 I Cカード 3の接点端子部 3 bが入口センサ 1 0によって、 または、 入口センサ 1 0から遠距離になることによって、 検知されなく なるように構成されている。
また、 このような入口センサ 1 0に対して、 前述した磁気プリヘッ ド 2 0の力一ド揷入方向におけるギヤップ中心位置は、 前記 I Cカード 3 の挿入方向先端 3 aから接点端子部 3 bに至るまでの距離と略同一に設 定されており、 これによつて、 磁気記録部の検知位置と、 接点端子部 3 bの検知位置とを略同一とし、 円滑な検出動作が行われるように構成し ている。 一方、 図 3 1に示す実施形態においては、 上述したような第 1、 第 2 及び第 3の磁気センサ 2 0 , 1 0 , 4 0は、 図 3 9、 図 2 5、 図 2 7、 図 4 0に示されているような磁気カード、 及び I Cカードの規格寸法に 対応して配置されている。 すなわち、 まず第 1の磁気センサ 2 0は、 図 3 9に示されているような磁気カード 5 0における磁気ストライプ 5 0 aの位置規格 ( I S O 0 7 8 2 1— 2 ) に対応するように配置されてお り、 当該第 1の磁気センサ 2 0から検出信号が得られれば、 磁気ストラ イブ 5 0 aを有する力一ドが揷入されたものと判断することができる。 次に、 第 2の磁気センサ 1 0は、 図 2 5及び図 2 7に示されているよ うな接触型 I Cカード 3における接点端子 3 bの位置規格 ( I S O 7 8 1 6 ) C 1〜C 8の少なくとも一部に対応するように配置されている。 但し、 当該の第 2の磁気センサ 1 0の配置領域には、 図 4 0に示されて いるような非接触型 I Cカード 6 0におけるアンテナ部とチップとの最 小結合領域 6 0 aが存在していることから、 その最小結合領域 6 0 aの 位置規格 ( I S 01 444 3— 2 ) にも対応した位置となるようにして いる。 従って、 この第 2の磁気センサ 1 0から検出信号が得られれば、 非接触型 I Cカード 6 0、 又は接触型 I Cカード 3のいずれかが挿入さ れたものと判断するすることができる。
更に、 前記第 3の磁気センサ 4 0は、 例えば本実施形態では、 非接触 型 I Cカード 6 0の全体を張り巡らすようにして配置されたアンテナ部 を検知することができる位置、 例えば非接触型 I Cカードの長手方向に 沿って延在しているアンテナ部の一部分に対応する位置に配置されてい る。 この非接触型 I Cカードにおけるアンテナ部は、 I S O規格等では 規定されておらず、 各システム、 カードごとにそれぞれ個別に規定され ていることから、 それらのアンテナ部の各位置に各々対応して上記第 3 の磁気センサ 40を適宜に配置することとなる。 従って、 この第 3の磁 PC翻薦 15
51
気センサ 4 0から検出信号が得られれば、 非接触型 I Cカード 6 0が挿 入されたものと判断することができる。
以上のような第 1の磁気センサ 2 0、 第 2の磁気センサ 1 0、 及び第 3の磁気センサ 4 0からの各検出信号をみれば、 挿入されたカードの種 別が次のように判定可能となる。
すなわち、
① 第 1の磁気センサ 2 0のみの検出信号を得た場合には 「磁気カード」 が挿入されたものと判断される。
② 第 3の磁気センサ 4 0からの検出信号がなく、 第 2の磁気センサ 1 0 のみの検出信号を得た場合には 「接触型 I Cカード」 が挿入されたもの と判断される。
③ 第 2の磁気センサ 1 0からの検出信号と、 第 3の磁気センサ 4 0から の検出信号との双方を得た場合には 「非接触型 I Cカード」 が揷入され たものと判断される。
④ 第 3の磁気センサ 4 0からの検出信号がなく、 第 1及び第 2の磁気セ ンサ 2 0 , 1 0からの双方の検出信号を得た場合には 「磁気と接触型 I Cの共用カード」 が揷入されたものと判断される。
⑤ 第 1、 第 2及び第 3の磁気センサ 2 0、 1 0及び 4 0から全ての検出 信号を得た場合には、 「磁気と非接触型との共用カード」 が挿入されたも のと判断される。
このようなことから、 使用不能なカードを揷入した場合には、 シャツ 夕一手段 3 0を閉じるなどの制御動作が可能となる。
一方、 上述した実施形態と同一の構成物に対して同一の符号を付した 図 3 0 ( a ) (なお、 図 3 1に示す実施形態では、 磁気カード 5 0、 非接 触式 I Cカード 6 0も含む) に示された実施形態では、 一対の軸端コア 部 1 1 c , 1 1 dのうちの図示下側に配置された一方側の軸端コア部 1 l cが、 I Cカード 3の接点端子部 3 b (図 3 1に示す実施形態では力 ード側) と対向するように配置されているとともに、 図示上側に配置さ れた他方側の軸端コア部 1 1 dが、 上記 I Cカード 3の接点端子部 3 b (図 3 1に示す実施形態ではカード側) と同一材質、 又は同程度の導電 率、 或いは同程度の透磁率を有する比較金属体 7 0と対向するように配 置されている。
そして、 上述した I Cカード 3の接点端子部 3 b (図 3 1に示す実施 形態ではカード) が、 入口センサ (図 3 1に示す実施形態では磁気差動 型センサ 1 0 (又は 4 0 ) ) 1 0に対して対面 · 離間するように図示左右 の方向に移動すると、 上記一方側の軸端コア部 1 1 cが、 上記 I Cカー ド 3の接点端子部 3 b (図 3 1に示す実施形態ではカード) に対して対 面 ·離間されて、 それら両部材どうしの間の間隔 L 1が、 有限値と無限 値との間で変化することになる。 そのとき、 他方側の軸端コア部 1 1 d は、 比較金属体 7 0に対して間隔 L 2を変えることなく所定の位置に維 持される構成になされている。
従って、 上記検出用コイル 1 2からの出力が 「 0」 となる位置は、 上 記比較金属体 7 0 と他方側の軸端コア部 1 1 dとの間の間隔 L 2が、 一 方側の軸端コア部 1 1 cと I Cカード 3の接点端子部 3 b (図 3 1に示 す実施形態ではカード側) との間隔 L 1 と等しくなる位置であることか ら、 上述した一方側の軸端コア部 1 1 cと、 I Cカード 3の接点端子部 3 b (図 3 1に示す実施形態ではカード側) の検出を行う間隔 L 1を、 比較金属体 7 0と他方側の軸端コア部 1 1 dとの間の間隔 L 2よりも同 じか小さい範囲 ( 0≤L 1≤L 2 ) に設定しておけば、 I Cカード 3の 接点端子部 3 b (図 3 1に示す実施形態ではカード) の有無に関して大 きな検出出力を取り出すことが可能となる。
このように、 本実施形態にかかる入口センサ 1 0 (図 3 1に示す実施 形態では磁気差動型センサ 1 0 (又は 4 0)) によれば、 I Cカード 3の 接点端子部 3 b (図 3 1に示す実施形態ではカード側) からの検出出力 と、 比較金属体 7 0からの検出出力との差分が変化量になされることか ら、 比較金属体 7 0と軸端コア部 1 1 cとの距離 L 2や、 比較金属体 7 0の材質などを変更することによって、 図 3 0 (b) 中の符号 0〜L 2 で示された上記 I Cカード 3の接点端子部 3 b (図 3 1に示す実施形態 ではカード) に対する必要な検出区間において、 「 0」 となる位置 L 2を 任意に変更して用いることが可能となり、 その結果、 I Cカード 3の接 点端子部 3 b (図 3 1に示す実施形態ではカード) の有無に関して大き な出力を得ることによって検出精度が高められる。
また、 図 4 2に示す実施形態において、 上述した入口センサ 1 0 (又 は図 3 1に示す磁気差動型センサ 1 0、 4 0 ) (以下、 「入口センサ 1 0」とする) は、 図 4 1に示す制御回路部 C Cによって、 励磁用コイル 1 3 c , 1 3 dの励磁が制御されると共に、 検出用コイル 1 2から出力さ れる検出信号が処理される。 制御回路部 C Cは、 検出用コイル 1 2から 出力される検出信号によって I Cカード 3の適否を検知すると共に、 入 口センサ 1 0の断線を検出する信号処理回路 S P Cと、 励磁用コイル 1 3 c , 1 3 dの励磁を制御する励磁制御回路 E C Cとによって構成され ている。
信号処理回路 S P Cは、 検出用コイル 1 2から出力される出力信号を 増幅するセンサアンプ 5 0 0、 このセンサアンプ 5 0 0の出力信号を直 流電圧の I Cカード検出信号に変換する検波回路 5 1 0、 検波回路 5 1 0の出力電圧と基準電圧発生器 5 3 0によって与えられる閾電圧と比較 するコンパレータ 5 2 0、 及び、 コンパレータ 5 2 0の出力信号を判定 して、 適正な I Cカード 3を検知する I Cカード検知信号を出力する一 方、 入口センサ 1 0が断線したことを検知して断線判定信号を出力する PC蘭細 15
54
判定回路 5 4 0を備えている。
励磁制御回路 E C Cは、 前記 I C力一ド検知信号が出力されていない ことを検出する検知信号検出回路 5 5 0、 この検知信号検出回路 5 5 0 の出力信号によって励磁用コイル 1 3 c , 1 3 dを励磁するタイミング と時間幅を決める指令信号発生器 5 6 0 , 及び、 指令信号発生器 5 6 0 の出力信号によって励磁用コイル 1 3 c, 1 3 dを励磁するコイル励磁 回路 5 7 0を備えている。
前述したように、 カード掙入口 2に I Cカード 3を揷入すると、 I C カード 3の挿入方向において入口センサ 1 0の上流側に設けられたマイ クロスィツチ等からなる力一ド検出器 6 0 0が I Cカード 3の幅を検知 する。 適正な I Cカード 3のときは、 カード検出器 6 0 0が ONとなり 検知信号を発する。 この検知信号を指令信号発生器 5 6 0に出力するこ とによって、 励磁用コイル 1 3 c , 1 3 dを励磁させるためのトリガー がコイル励磁回路 5 7 0に対して与えられる。 コイル励磁回路 5 7 0は 前述したように、 例えば励磁周波数を 1 MH zとした励磁電流を励磁用 コイル 1 3 c , 1 3 dに通電させて励磁する。 このときの励磁電流は、 例えば 2 0 mA p p ( 0. 6 5 V) に設定される。
その後、 入口センサ 1 0に I Cカード 3の接点端子部 3 bが近接する と、 前述したように、 I Cカード 3の接点端子部 3 bに発生する渦電流 が変化することにより、 逆方向の対向磁界 φ ΐ , Φ 2のバランスが崩れ ることから、 対向磁界 Φ 1 , 2の絶対値の差 ( I φ 1 I — I φ 2 I ) に相当する磁界に基づいて検出用コイル 1 2から差動出力が得られる。 この出力信号は、 センサアンプ 5 0 0によって増幅された後、 検波回路 5 1 0によって直流電圧に変換される。 この直流電圧をコンパレータ 5 2 0に加えて第 1の閾電圧 S V 1 と比較される。 この比較によって、 検 出用コイル 1 2から差動出力が適正である場合には、 判定回路 5 4 0か ら適正な I Cカード 3であることを検知した結果として、 I Cカード検 知信号が出力される。
やがて、 I Cカード 3の接点端子部 3 bが入口センサ 1 0から遠ざか ると、 検出用コイル 1 2からの差動出力が 0となり、 I Cカード検知信 号も 0となることから、 これを検知信号検出回路 5 5 0が検出して指令 信号発生器 5 6 0の指令により励磁用コイル 1 3 c , 1 3 dの励磁を停 止する。
入口センサ 1 0は、 前述したように、 コア体 1 1の中央コア部 1 1 a に検出用コイル 1 2が巻回され、 一体的に連接された一対の軸端コア部 1 1 c , 1 1 dの各々に励磁用コイル 1 3 c , 1 3 dがそれぞれ巻回さ れた磁気差動型に構成されている。 上記入口センサ 1 0は、 小型に構成 されていることから、 上記検出用コイル 1 2及び励磁用コイル 1 3 c , 1 3 dは細い線材を用いて巻回されている。 このため、 頻繁に使用して いる間には、 いずれかのコイルが断線することがある。 また、 上記各コ ィル、 及び、 回路制御部に中継して接続する各端子板 1 0 bの半田付け の欠損、 あるいは、 回路制御部と各端子板 1 0 bとを接続するリード線 が断線する場合がある。 このような入口センサ 1 0等の断線は、 以下に 説明する断線診断手段によって検出される。
上記断線診断手段は、 前述した信号処理回路 S P C、 及び、 励磁制御 回路 E C Cによって構成されている。 入口センサ 1 0に設けられた各コ ィルの断線、 もしくは、 入口センサ 1 0に接続されるリード線の断線、 または、 離脱等の検出は、 入口センサ 1 0が I Cカード 3の接点端子部 3 を検知していないタイミングに実行される。 このタイミングとして は、 I Cカード 3の処理が終了してカード揷入口 2に戻され、 I Cカー ド 3が力一ド検出器 6 0 0を通り過ぎたときに O F Fになるタイミング をトリガーとして、 指令信号発生器 5 6 0に信号を与える。 指令信号発 生器 5 6 0は、 所定時間の間、 コイル励磁回路 5 7 0を作動させて一対 の励磁用コイル 1 3 c , 1 3 dに励磁電流を通電させる。
このとき、 一対の励磁用コイル 1 3 c, 1 3 dのうちの一方のコイル、 またはこれらコイルに接続されるリ一ド線が断線もしくは離脱した場合 は、 一方のコイルが励磁されないことから、 前述した対向磁界 Φ 1 , Φ 2のうちの一方が発生しないのでパランスが崩れ、 この結果、 検出用コ ィル 1 2から高い電圧の差動出力が得られる。 この差動出力の信号は、 センサアンプ 5 0 0及び検波回路 5 1 0を介して直流電圧に変換され、 コンパレータ 5 2 0に加えられる。 コンパレータ 5 2 0は、 第 2の閾電 圧 S V 2と比較して、 検出用コイル 1 2から差動出力が第 2の閾電圧 S V 2よりも高い場合には、 判定回路 54 0がー対の励磁用コイル 1 3 c , 1 3 dのうちの一方のコイル等が断線したことを検出して判定信号が出 力される。 この判定信号が出力されたときは、 I Cカードリーダからァ ラームを発生させ、 以後に、 I Cカード 3をカード揷入口 2に揷入させ ないように制御される。
次に、 一対の励磁用コイル 1 3 c , 1 3 dの両方のコイル、 またはこ れらコイルに接続されるリード線が断線もしくは離脱した場合は、 両方 のコイルが励磁されないことから、 検出用コイル 1 2からの差動出力が 0となる。 従って、 指令信号発生器 5 6 0がコイル励磁回路 5 7 0を作 動させて一対の励磁用コイル 1 3 c , 1 3 dを励磁したにも関わらず、 検出用コイル 1 2からの差動出力が得られないことを判定回路 54 0に よって判定して判定信号を出力する。
また、 入口センサ 1 0の検出用コイル 1 2、 またはこのコイルに接続 されるリード線が断線もしくは離脱した場合は、 指令信号発生器 5 6 0 がコイル励磁回路 5 7 0を作動させて一対の励磁用コイル 1 3 c, 1 3 dを励磁したにも関わらず、 検出用コイル 1 2からの差動出力が 0とな る。 ところが、 検出用コイル 1 2から差動出力が得られないことは、 上 述した一対の励磁用コイル 1 3 c , 1 3 dの両方のコイル等が断線した 場合と同じであり、 検出用コイル 1 2等が断線したことが判定できない, そこで、 当該断線診断手段においては、 検出用コイル 1 2等が断線し たことを判定する機能を付加している。 即ち、 磁気差動型に構成された 入口センサ 1 0は、 コア体 1 1の中央コア部 1 1 aに検出用コイル 1 2 が巻回され、 一体的に連接された一対の軸端コア部 1 1 c, 1 1 dの各 々に励磁用コイル 1 3 c, 1 3 dがそれぞれ巻回されている。 そして、 検出用コイル 1 2からは前述した逆方向の対向磁界 Φ 1 , φ 2のバラン スが崩れることによって、 対向磁界 Φ 1 , Φ 2の絶対値の差 ( 1 ^ 1 1 - I Φ 2 I ) に相当する磁界に基づく差動出力が得られるようにしてい る。 しかし、 励磁用コイル 1 3 c, 1 3 dがそれぞれ巻回される前記コ ァ体 1 1の一対の軸端コア部 1 1 c , 1 1 dは、 寸法精度に多少のバラ ツキを有している。 このため、 対向磁界 Φ 1 , Φ 2にも差が生ずること から、 I Cカード 3の接点端子部 3 bを検知しない待機状態においても. 検出用コイル 1 2からは僅かな待機時電圧が出力されている。
通常は、 ボリューム V Rによって各励磁用コイル 1 3 c , 1 3 dに通 電する励磁電流を変えて、 待機時電圧を 0に近づけるように設定してい るが、 本発明においては、 励磁用コイル 1 3 c, 1 3 dを励磁すること によって発生する逆方向の対向磁界 φ 1 , Φ 2のバランスを僅かに不均 一に設定することにより、 待機状態においても、 検出用コイル 1 2から 僅かな待機時電圧が出力されるように設定している。
従って、 検出用コイル 1 2等が断線したことは、 待機時電圧が 0であ ることによって判定することができる。 即ち、 検出用コイル 1 2等が断 線したときは、 励磁用コイル 1 3 c, 1 3 dを励磁しても検出用コイル 1 2からは待機時電圧も出力されない。 この待機時電圧をコンパレ一夕 5 2に加えて第 3の閾電圧 S V 3と比較して低い場合には、 判定回路 5 4によって検出用コイル 1 2等が断線したことを検出して判定信号が出 力される。 上記第 3の閾電圧 S V 3は、 待機時電圧よりもやや低い電圧 に設定されている。
上述した断線診断手段によって、 励磁用コイル 1 3 c , 1 3 d , ある いは、 検出用コイル 1 2、 及び、 これらコイルに接続されたリード線、 または、 端子との接続等の伝達経路における断線が、 検出用コイル 1 2 からの出力信号によって検出され、 しかも、 ほぼ断線個所を特定するこ とが可能となる。
入口センサ 1 0の断線診断のタイミングとしては、 上述したように、 I Cカード 3が力一ド揷入口 2に戻されたときに実行する他、 I Cカー ド 3をカード挿入口 2に挿入した後、 センサ 1 0が接点端子部 3 bを検 知するまでの間に実行しても良く、 その他、 センサ 1 0が接点端子部 3 bを検知していないときであれば、 任意のタイミングに実行しても良い, また、 断線診断は、 I Cカード 3の挿入または戻される毎に毎回実行す る他、 5回または 1 0回おきに実行するようにしてもよい。
以上、 本発明者によってなされた発明の実施形態を具体的に説明した が、 本発明は、 上記実施形態に限定されるものではなく、 その要旨を逸 脱しない範囲で種々変形可能であることはいうまでもない。
例えば、 上述した実施形態にかかるカードリーダでは、 3体の磁気セ ンサを配置しているが、 装置の構成によっては 2体の磁気センサで同様 な作用 ·効果が得られることもある。 従って、 本発明では、 少なくとも 二つの磁気センサを備えていればよい。
例えば、 上述した実施形態にかかる入口センサ 1 0 (磁気差動型セン サ 1 0、 4 0 ) では、 検出用コイル 1 2を中央部分に挟んで両側に励磁 用コイル 1 3 c , 1 3 dを配置しているが、 励磁用コイルを中央部分に 挟んで両側に検出用コイルを配置するように構成することも可能である, また、 上述した実施形態にかかる入口センサ 1 0 (磁気差動型センサ
1 0, 40 ) では、 軸端コア部 1 1 cの幅寸法を、 中央コア部 1 1 aの 幅寸法よりも小さくしているが (W2 <W 1 )、 両者を等しくしたり、 逆の大小関係に設定することも可能である。 また、 上述した実施形態に おけるコア体 1 1の中央コア部 1 1 aには、 検出用コイル 1 2を巻回す る部位に凹状の切欠き部が設けられているが、 そのような切欠き部を設 けることなく単純な矩形状をなすように形成することも可能である。 さらに、 上述した実施形態にかかる入口センサ 1 0 (磁気差動型セン サ 1 0, 4 0 ) では、 コア体として、 一枚の薄板形状部材を用いている が、 図 8 ( a), (b) に示されているような立体形状のコア体 1 1 ', ]
1 " であっても同様に採用することができる。 なお、 この場合において も、 軸方向の中央部分に設けられた切欠状の凹部 1 1 ' a, 1 1 " aを 形成することなく単純形状に構成することが可能である。 なお、 同形状 の薄板材を 2枚以上貼り付けてもよい。
さらに、 上述した実施形態では、 一対の励磁用コイル 1 3 c , 1 3 d がー連 ·一体に直列状態にて接続されているが、 例えば、 図 9に示され ているように、 それらの各励磁用コイル 1 3 c , 1 3 dを、 交流電源 1 5に対して並列状態となるように接続して対向磁界を形成することも可 能である。
さらにまた、 上述した実施形態は、 一つの励磁用電源を単独で設けた ものであるが、 各励磁用コイル 1 3 c, 1 3 d毎に、 別個の電源をそれ ぞれ配置することも可能である。 但し、 その場合には、 各電源どうしの 位相が同期するように設定することが必要となる。
一方、 上述した実施形態における一対の両軸端コア部 1 1 c , l i d の各幅寸法 W2 , W2 が、 作製誤差などによって、 例えば 5 mの ように微少量だけ互いに異なってしまい、 その結果、 被検出物がない場 合の差動出力が 「0」 にならなくなってしまうことも考えられるが、 そ の場合には、 上記各励磁用コイル 1 3 c, 1 3 dに供給する電流値を、 差動出力が 「 0」 となるようにオフセッ ト調整することによって容易に 対処することが可能である。
また、 入口センサ (磁気差動型センサ) としては、 上述した実施形態 のような磁気差動型のものに限定されることはなく、 渦電流型のセンサ や、 光センサなども同様に適用することができる。
さらに、 上述した実施形態では I Cカードが自動的に搬送されるカー ドリーダにおける実施の形態を説明したが、 カードの搬送が手動式であ る力一ドリーダにおいても本発明を実施することができる。 産業上の利用可能性
以上のように、 本発明は、 自動販売機、 自動券売機、 A T M等の硬貨 を取り扱う装置でコインの凹凸や材質の識別装置をはじめとして、 モー 夕の回転駆動制御装置などのような多種多様な装置に対しても好適に採 用することができるものである。

Claims

請 求 の 範 囲
1 . 特定の場所に存在する被検出体に対面して出力を発するように構成 され、 その出力に基づいて上記被検出体の有無を検出する物体検知セン サにおいて、
コァ体の同一軸心上に、 励磁用コイル及び検出用コイルがそれぞれ巻 回されることにより装着されたものであって、
上記励磁用コイル及び検出用コイルの一方側が、 前記コア体の軸心方 向における略中央に配置された中央コア部に装着されているとともに、 前記励磁用コイル及び検出用コイルの他方側が、 上記コア体の軸心方向 における両端部分に配置された一対の軸端コア部にそれぞれ装着され、 それら一対の軸端コア部のうちの一方側と前記被検出体とが、 互いに 対面可能な配置関係になされていることを特徴とする物体検知センサ。
2 . 前記コア体が、 一枚の板形状部材からなることを特徴とする請求項 1記載の物体検知センサ。
3 . 前記軸端コア部における軸心方向と直交する方向の幅寸法が、 前記 中央コア部の幅寸法よりも小さく形成されていることを特徴とする請求 項 1記載の物体検知センサ。
4 . 前記軸端コア部の幅寸法が、 中央コア部の幅寸法の半分以下に設定 されていることを特徴とする請求項 3記載の物体検知センサ。
5 . 前記中央コア部と、 前記一対の軸端コア部との各境界部分には、 幅 方向に向かって突出する係止鍔部がそれぞれ設けられ、
該係止鍔部によって、 前記励磁用コイル及び検出用コイルの巻回位置 が、 予定の位置に位置決め規制されていることを特徴とする請求項 3記 載の物体検知センサ。
6 . 前記一対の軸端コア部のうち、 前記被検出体側に対面可能に配置さ れている側とは反対側の軸端コア部には、 該軸端コア部と対向するよう にして、 比較金属体が配置されていることを特徴とする請求項 3記載の 物体検知センサ。
7 . 前記励磁用コイルは、 一対のコイル巻回部を有し、
それら一対のコイル巻回部は、 前記同一の軸心上に対向磁界が形成す るように配置されていることを特徴とする請求項 1記載のことを特徴と する物体検知センサ。
8 . 装置本体内に挿入されて読取 Z書込位置まで搬送された I Cカード の接点端子部に I C接点を接触させることによって、 上記 I Cカードに 対する情報の記録 ·再生を行うように構成された I C力一ドリ一ダにお いて、
上記 I C力一ドの揷入方向における前記読取ノ書込位置より上流側の 適宜の位置に、 前記 I C力一ドの接点端子部を検知することによって、 揷入された力一ドの正否を検出する入口センサが設けられていることを 特徴とする I Cカードリーダ。
9 . 前記装置本体には、 前記 I Cカードを挿入するカード揷入口と、 そ の力一ド揷入口を通して挿入された I Cカードを前記読取/書込位置ま で導くカード搬送路と、 当該カード搬送路内の I Cカードを移動させる 搬送駆動手段と、 上記 I Cカードの揷入方向において前記力一ド揷入口 の下流側で前記カード搬送路を遮断 · 開放するシャッター手段と、 が設 けられているとともに、
前記入口センサは、 上記カード揷入口とシャッタ一手段との間の位置 に配置されていることを特徴とする請求項 8記載の I C力一ドリーダ。
1 0 . 前記入口センサが、 前記 I Cカードの表裏を検知可能とするよう に、 前記接点端子部に対して適宜の位置関係にて配置されていることを 特徴とする請求項 8記載の I Cカードリーダ。
1 1 . 前記入口センサが、 前記カード搬送路から引き込まれた位置に取 り付けられていることを特徴とする請求項 9記載の I Cカードリーダ。
1 2 . 前記 I Cカードの揷入方向先端位置から接点端子部に至るまでの 距離に対して、 磁気情報記録部を検知するように設けられた磁気へッ ド のギヤップ中心と前記入口センサとの間の距離が、 略等しい距離に設定 されていることを特徴とする請求項 8記載の I Cカードリーダ。
1 3 . 前記入口センサは、 コア体の同一軸心上に、 励磁用コイル及び検 出用コイルがそれぞれ巻回されることにより装着された磁気差動型に構 成されたものであって、
上記励磁用コイル及び検出用コイルの一方側が、 前記コア体の軸心方 向における略中央に配置された中央コア部に装着されているとともに、 前記励磁用コイル及び検出用コイルの他方側が、 上記コア体の軸心方向 における両端部分に配置された一対の軸端コア部にそれぞれ装着され、 それら一対の軸端コア部のうちの一方側と前記被検出体とが、 互いに 対面可能な配置関係になされていることを特徴とする請求項 8記載の I C力一ドリーダ。
1 4 . 前記コア体が、 一枚の板形状部材からなることを特徴とする請求 項 1 3記載の I Cカードリーダ。
1 5 . 前記軸端コア部における軸心方向と直交する方向の幅寸法が、 前 記中央コア部の幅寸法よりも小さく形成されていることを特徴とする請 求項 1 3記載の I Cカードリーダ。
1 6 . 前記軸端コア部の幅寸法が、 中央コア部の幅寸法の半分以下に設 定されていることを特徴とする請求項 1 5記載の I Cカードリーダ。
1 7 . 前記中央コア部と、 前記一対の軸端コア部との各境界部分には、 幅方向に向かって突出する係止鍔部がそれぞれ設けられ、
該係止鳄部によって、 前記励磁用コイル及び検出用コイルの巻回位置 が、 予定の位置に位置決め規制されていることを特徴とする請求項 1 5 記載の I Cカードリーダ。
1 8 . 前記一対の軸端コア部のうち、 前記被検出体としての I Cカード 側に対面可能に配置されている側とは反対側の軸端コア部には、 該軸端 コア部と対向するようにして、 比較金属体が配置されていることを特徴 とする請求項 1 5記載の I Cカードリーダ。
1 9 . 前記励磁用コイルは、 一対のコイル巻回部を有し、
それら一対のコイル巻回部は、 前記同一の軸心上に対向磁界が形成す るように配置されていることを特徴とする請求項 1 3記載の I Cカード リーダ。
2 0 . 装置本体内に挿入されて読取/書込位置まで搬送されたカードの 情報記録部に対して所望の情報を記録 ·再生するように構成された I C カードリーダにおいて、 前記読取 Z書込位置よりも、 カード揷入方向において上流側の適宜の 位置に、 掙入された力一ドの種別を検出する入口センサが設けられてい ることを特徴とする I C力一ドリーダ。
2 1 . 前記入口センサは、 磁気カードの磁気ストライプを検出する第 1 の磁気センサと、 接触型 I Cカードの接点端子部を検出する第 2の磁気 センサと、 非接触型 I Cカードのアンテナ部を検出する第 3の磁気セン サとのうちの少なくとも二つの磁気センサを備えていることを特徴とす る請求項 2 0記載の I Cカードリーダ。
2 2 . 前記装置本体には、 前記カードを挿入するカード揷入口と、 その 力一ド揷入口を通して挿入されたカードを前記読取 Z書込位置まで導く カード搬送路と、 当該カード搬送路内のカードを移動させる搬送駆動手 段と、 上記カードの揷入方向において前記力一ド揷入口の下流側で前記 カード搬送路を遮断 · 開放するシャッター手段とが設けられ、 前記入口センサは、 上記カード揷入口とシャツタ一手段との間の位置 に配置されていることを特徴とする請求項 2 0記載の I Cカードリーダ。
2 3 . 前記入口センサのうちの少なくとも一つが、 コア体の同一軸心上 に、 励磁用コイル及び検出用コイルがそれぞれ巻回されることにより装 着された磁気差動型に構成されたものであって、
上記励磁用コイル及び検出用コイルの一方側が、 前記コア体の軸心方 向における略中央に配置された中央コア部に装着されているとともに、 前記励磁用コイル及び検出用コイルの他方側が、 上記コア体の軸心方向 における両端部分に配置された一対の軸端コア部にそれぞれ装着され、 それら一対の軸端コア部のうちの一方側と前記被検出体とが、 互いに 対面可能な配置関係になされていることを特徴とする請求項 2 0記載の
1 Cカードリーダ。
2 4 . 前記コア体が、 板形状部材からなることを特徴とする請求項 2 3 記載の I Cカードリーダ。
2 5 . 前記軸端コア部における軸心方向と直交する方向の幅寸法が、 前 記中央コア部の幅寸法よりも小さく形成されていることを特徴とする請 求項 2 3記載の I Cカードリーダ。
2 6 . 前記軸端コア部の幅寸法が、 中央コア部の幅寸法の半分以下に設 定されていることを特徴とする請求項 2 5記載の I Cカードリーダ。
2 7 . 前記中央コア部と、 前記一対の軸端コア部との各境界部分には、 幅方向に向かって突出する係止鍔部がそれぞれ設けられ、
該係止鍔部によって、 前記励磁用コイル及び検出用コイルの巻回位置 が、 予定の位置に位置決め規制されていることを特徴とする請求項 2 5 記載の I Cカードリーダ。
2 8 . 前記一対の軸端コア部のうち、 前記被検出体としてのカード側に 対面可能に配置されている側とは反対側の軸端コア部には、 該軸端コア 部と対向するようにして、 比較金属体が配置されていることを特徴とす る請求項 2 5記載の I Cカードリーダ。
2 9 . 前記励磁用コイルは、 一対のコイル巻回部を有し、
それら一対のコイル卷回部は、 前記同一の軸心上に対向磁界が形成す るように配置されていることを特徴とする請求項 2 3記載の I Cカード リーダ。
3 0 . 装置本体の搬送駆動手段によりカード搬送路内に搬送された I C カードの接点端子部に接離可能に配設した I c接点を配設し、 上記 I C カードに対して情報の読取 Z書込を行う I Cカードリーダにおいて、 前記カード搬送路の入口側の位置には、 磁気コアに巻回された一対の 励磁用コイル及び検出用コイルを有する磁気差動型に構成された入口セ ンサと、
前記入口センサが前記 I Cカードの接点端子部を検知したときに前記 検出用コイルから出力される検知信号により前記 I Cカードを読取 書 込位置まで導く搬送駆動手段と、
前記接点端子部を検知しないときに前記励磁用コイルを励磁し、 前記 検出用コイルから出力される出力信号の電圧値により前記入口センサ等 の断線を診断する断線診断手段とを備えたことを特徴とする I cカード リーダ。
3 1 . 前記入口センサは、 コア体の同一軸心上に、 検出用コイル及び一 対の励磁用コイルがそれぞれ巻回されることにより装着された磁気差動 型に構成されたものであって、
上記検出用コイルが、 前記コア体の軸心方向における略中央に配置さ れた中央コア部に装着されているとともに、 前記一対の励磁用コイルが. 上記コア体の軸心方向における両端部分に配置された一対の軸端コア部 に各々装着され、 それら一対の軸端コア部のうちの一方側と前記被検出体とが、 互いに 対面可能な配置関係になされていることを特徴とする請求項 3 0記載の I Cカードリーダ。
3 2 . 前記断線診断手段は、 前記接点端子部を検知しないときに前記励 磁用コイルを励磁する指令信号を与える指令信号発生器と、 前記検出用 コイルの出力レベルと所定の閾レベルを比較するコンパレー夕と、 前記 閾値となる基準電圧を発生する基準電圧発生器とを備え、
前記励磁信号発生器の出力信号により前記励磁コイルを励磁すると共 に、 前記検出用コイルから出力される出力信号を前記コンパレー夕に加 えて前記基準電圧と比較し、 出力信号の電圧値により励磁コイルや検出 コイルの断線等を判定する請求項 3 0記載の I Cカードリーダ。
3 3 . 前記断線診断手段は、 前記検出用コイルの出力レベルが所定の閾 レベルを越えたときに一対の前記励磁用コイルのうちの一方が断線して いることを診断する請求項 3 0記載の I Cカードリーダ。
3 4 . 前記断線診断手段は、 前記 I Cカードに対して情報の読取/書込 を行いカード搬送路から前記 I Cカードが排出された後に前記励磁用コ ィルを励磁してセンサの断線等を診断する請求項 3 0乃至 3 3記載の I Cカードリーダ。
3 5 . 前記断線診断手段は、 前記 I Cカードを前記カード搬送路の入口 に揷入後、 前記入口センサが前記 I Cカードの接点端子部を検出する前 に前記励磁用コイルを励磁してセンサの断線等を診断する請求項 3 0乃 至 3 3記載の I Cカードリーダ。
3 6 . 前記入口センサは、 前記一対の励磁用コイルまたは一対の軸端コ ァ部をアンバランスに構成し、 励磁用コイルを励磁したときに出力され る前記検出コイルからの待機電圧よりも小さいときに前記検出コイルの 断線等を診断する請求項 3 0記載の I Cカードリーダ。
PCT/JP2003/002315 2002-03-01 2003-02-28 Detecteur d'objets et lecteur de carte a circuit integre le contenant WO2003085417A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/505,927 US7607580B2 (en) 2002-03-01 2003-02-28 Object sensor and IC card reader with the object sensor

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2002-056213 2002-03-01
JP2002056213A JP3630142B2 (ja) 2002-03-01 2002-03-01 物体検知センサ
JP2002066291 2002-03-12
JP2002-066291 2002-03-12
JP2002-226759 2002-08-02
JP2002226759A JP2004070538A (ja) 2002-08-02 2002-08-02 カードリーダ
JP2003-027906 2003-02-05
JP2003027906A JP4212373B2 (ja) 2003-02-05 2003-02-05 Icカードリーダ

Publications (1)

Publication Number Publication Date
WO2003085417A1 true WO2003085417A1 (fr) 2003-10-16

Family

ID=28795104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002315 WO2003085417A1 (fr) 2002-03-01 2003-02-28 Detecteur d'objets et lecteur de carte a circuit integre le contenant

Country Status (3)

Country Link
US (1) US7607580B2 (ja)
CN (1) CN1300601C (ja)
WO (1) WO2003085417A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4522072B2 (ja) * 2003-10-22 2010-08-11 日立オムロンターミナルソリューションズ株式会社 カード処理装置
US7581678B2 (en) 2005-02-22 2009-09-01 Tyfone, Inc. Electronic transaction card
US8562814B2 (en) * 2006-08-03 2013-10-22 Panasonic Corporation Measurement device and sensor ejection method
JP5132210B2 (ja) * 2007-07-09 2013-01-30 キヤノン株式会社 磁気検出素子及び検出方法
JP5033533B2 (ja) * 2007-07-31 2012-09-26 日本電産サンキョー株式会社 カード処理装置
TWI346304B (en) * 2007-08-30 2011-08-01 Inventec Appliances Corp Apparatus and method for preventing integrated circuit card illeally reading
US20090102473A1 (en) * 2007-10-22 2009-04-23 Soshi Narishige Eddy current testing method and eddy current testing apparatus
US7878397B2 (en) * 2007-11-15 2011-02-01 Verifone, Inc. Enhanced security magnetic card reader especially useful in point of sale devices
US9741027B2 (en) 2007-12-14 2017-08-22 Tyfone, Inc. Memory card based contactless devices
US8451122B2 (en) 2008-08-08 2013-05-28 Tyfone, Inc. Smartcard performance enhancement circuits and systems
US7961101B2 (en) 2008-08-08 2011-06-14 Tyfone, Inc. Small RFID card with integrated inductive element
EP2401708A4 (en) 2009-02-24 2012-08-15 Tyfone Inc CONTACTLESS DEVICE WITH MINIATURIZED ANTENNA
JP5728791B2 (ja) * 2009-03-05 2015-06-03 日本電産サンキョー株式会社 カードリーダ
NL2003394C2 (en) * 2009-03-27 2011-07-12 Ns Reizigers B V Card feed unit, read out unit, atm and method.
JP5303736B2 (ja) * 2009-04-21 2013-10-02 日本電産サンキョー株式会社 非接触式情報処理装置および非接触式カード状媒体発行機
JP5341650B2 (ja) * 2009-07-13 2013-11-13 日本電産サンキョー株式会社 媒体処理装置および媒体処理方法
KR101765916B1 (ko) * 2010-12-31 2017-08-23 엘지이노텍 주식회사 전자 선반 라벨 및 배터리 잔량 관리 방법
CN102610957B (zh) * 2011-01-20 2014-09-10 鸿富锦精密工业(深圳)有限公司 连接器
US9792463B2 (en) * 2011-07-28 2017-10-17 Kenneth L. Miller Combination magnetic stripe and contactless chip card reader
JP5408290B2 (ja) * 2012-05-23 2014-02-05 沖電気工業株式会社 媒体処理装置、媒体処理方法及びプログラム
CN103675092A (zh) * 2012-08-30 2014-03-26 射阳县无损检测技术研究所 一种轮径兼容可开合线圈磁粉探伤机
US9262651B2 (en) * 2013-01-08 2016-02-16 Cirque Corporation Method for preventing unintended contactless interaction when performing contact interaction
EP3324341B1 (en) * 2013-07-31 2020-04-29 Nidec Sankyo Corporation Card reader and control method therefor
CN104134269B (zh) * 2014-06-23 2017-07-07 江苏多维科技有限公司 一种硬币检测系统
CN105590366B (zh) * 2014-11-14 2018-05-15 日立金融设备系统(深圳)有限公司 自动交易装置及自动交易装置的假卡检测方法
US9715603B1 (en) * 2016-05-31 2017-07-25 Verifone, Inc. Smart card connector
CN106339728A (zh) * 2016-10-15 2017-01-18 广州明森科技股份有限公司 一种快速智能卡即时发卡设备
US10181093B2 (en) * 2017-04-14 2019-01-15 Foxlink Image Technology Co., Ltd. Scanning device
JP2022186325A (ja) * 2021-06-04 2022-12-15 日立チャネルソリューションズ株式会社 カードリーダ及びカードリーダにおける異物検知方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961403A (ja) * 1995-08-29 1997-03-07 Tdk Corp 磁気的検知装置
JPH11352108A (ja) * 1998-06-05 1999-12-24 Sankyo Seiki Mfg Co Ltd 渦電流式センサ
JP2000260112A (ja) * 1999-03-04 2000-09-22 Sankyo Seiki Mfg Co Ltd 記録媒体検知装置及び記録媒体検知方法
JP2001194438A (ja) * 2000-01-13 2001-07-19 Sankyo Seiki Mfg Co Ltd 磁気センサ
JP2001296342A (ja) * 2000-02-10 2001-10-26 Sankyo Seiki Mfg Co Ltd 差動式磁気センサー装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0161764U (ja) * 1987-10-09 1989-04-19
JPH01108693A (ja) * 1987-10-21 1989-04-25 Omron Tateisi Electron Co Icカードリーダライタ
KR20020027461A (ko) * 1999-07-02 2002-04-13 캐롤린 에이. 베이츠 스마트 카드 판독기
JP3815325B2 (ja) * 1999-07-16 2006-08-30 松下電器産業株式会社 Icカードリーダ
WO2002019253A1 (fr) * 2000-08-31 2002-03-07 Anritsu Corporation Dispositif de manipulation de carte a circuit integre

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961403A (ja) * 1995-08-29 1997-03-07 Tdk Corp 磁気的検知装置
JPH11352108A (ja) * 1998-06-05 1999-12-24 Sankyo Seiki Mfg Co Ltd 渦電流式センサ
JP2000260112A (ja) * 1999-03-04 2000-09-22 Sankyo Seiki Mfg Co Ltd 記録媒体検知装置及び記録媒体検知方法
JP2001194438A (ja) * 2000-01-13 2001-07-19 Sankyo Seiki Mfg Co Ltd 磁気センサ
JP2001296342A (ja) * 2000-02-10 2001-10-26 Sankyo Seiki Mfg Co Ltd 差動式磁気センサー装置

Also Published As

Publication number Publication date
CN1300601C (zh) 2007-02-14
US20050218227A1 (en) 2005-10-06
US7607580B2 (en) 2009-10-27
CN1650191A (zh) 2005-08-03

Similar Documents

Publication Publication Date Title
WO2003085417A1 (fr) Detecteur d&#39;objets et lecteur de carte a circuit integre le contenant
JP5180984B2 (ja) 磁気読取装置
JP5648024B2 (ja) カードリーダ
US8985450B2 (en) Card insertion part and card reader
US9576161B2 (en) Card reader and control method therefor
US9626820B2 (en) Card reader
JP5759552B2 (ja) 磁気記録媒体読取装置
US10055615B2 (en) Card reader
JP4067431B2 (ja) Icカードリーダ
JP4212373B2 (ja) Icカードリーダ
JP5853717B2 (ja) 厚み検出装置
JP2006344196A (ja) Icカードデータ記録装置と、そのデータ記録方法
JP2004070538A (ja) カードリーダ
JP2004227371A (ja) カードリーダ
JP5603401B2 (ja) 磁気読取装置
JP6423298B2 (ja) カードリーダ
JP3663314B2 (ja) 記録媒体検知装置及び記録媒体検知方法
KR101413954B1 (ko) 매체 감지 장치 및 금융기기
JP2005156225A (ja) 物体検知センサおよびそれを用いたカードリーダ
US6199760B1 (en) Magnetic card reader and card taking-in method for magnetic card
JP2001092915A (ja) 磁気検出装置
JPH0826528A (ja) 帳票処理装置および取引処理装置
JP2005049229A (ja) 物体検知センサおよび物体検知方法、ならびにそれらを用いたカードリーダ
JPH02300040A (ja) 媒体搬送装置
CZ201697A3 (cs) Zařízení pro čtení bankovních šeků

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038097486

Country of ref document: CN

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10505927

Country of ref document: US