WO2003088323A1 - Verfahren und vorrichtung zur konditionierung von halbleiterwafern und/oder hybriden - Google Patents

Verfahren und vorrichtung zur konditionierung von halbleiterwafern und/oder hybriden Download PDF

Info

Publication number
WO2003088323A1
WO2003088323A1 PCT/EP2003/003937 EP0303937W WO03088323A1 WO 2003088323 A1 WO2003088323 A1 WO 2003088323A1 EP 0303937 W EP0303937 W EP 0303937W WO 03088323 A1 WO03088323 A1 WO 03088323A1
Authority
WO
WIPO (PCT)
Prior art keywords
room
wafer
hybrid
line
fluid
Prior art date
Application number
PCT/EP2003/003937
Other languages
English (en)
French (fr)
Inventor
Erich Reitinger
Original Assignee
Ers Electronic Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=28798441&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2003088323(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ers Electronic Gmbh filed Critical Ers Electronic Gmbh
Priority to CA2481260A priority Critical patent/CA2481260C/en
Priority to KR1020047016355A priority patent/KR100625631B1/ko
Priority to AU2003224079A priority patent/AU2003224079A1/en
Priority to US10/511,335 priority patent/US7900373B2/en
Priority to DK03720475.7T priority patent/DK1495486T5/da
Priority to JP2003585158A priority patent/JP4070724B2/ja
Priority to EP03720475A priority patent/EP1495486B3/de
Priority to DE50305265T priority patent/DE50305265D1/de
Publication of WO2003088323A1 publication Critical patent/WO2003088323A1/de
Priority to NO20044607A priority patent/NO336896B1/no

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present invention relates to a method and an apparatus for conditioning semiconductor wafers and / or hybrids.
  • test measurements on semiconductor wafers are typically carried out in a temperature range between -200 ° C. and +400 ° C.
  • a semiconductor wafer is placed on a test table, which is cooled and / or heated according to the target temperature. Care must be taken to ensure that the temperature of the semiconductor wafer does not fall below the dew point of the surrounding gaseous medium, since otherwise condensation of moisture on the wafer surface or icing occurs, which hinders or makes the test measurements impossible.
  • FIG. 5 shows a schematic cross-sectional view of a conditioning device to explain the problems on which the present invention is based.
  • reference numeral 1 designates a space in a container 5, in which a temperature-adjustable test table 10 is provided, towards which a semiconductor wafer (not shown) Test purposes can be put on.
  • the volume of the container 5 is usually between 400 and 800 liters.
  • the room 1 is essentially closed by the walls of the container 5, which have bushings for electrical lines and media supply lines and, if necessary, bushings for externally attached probes with which the test measurements shown semiconductor wafers are to be carried out.
  • the space 1 does not have to be hermetically sealed by the container 5, depending on the application, but at least has to be closed to the extent that an undesired penetration of moist ambient air can be prevented by building up an internal overpressure.
  • the rehearsal table 10 (also called a chuck) has thermal insulation 15, by means of which it is connected to a usually movable foot 20.
  • a corresponding movement mechanism generally has adjustability in the X, Y and Z directions. If the movement mechanism is not in the container, a seal must be placed between the base and the container.
  • a heating device 90 is integrated in the rehearsal table 10, which can be supplied with electrical current for heating from the outside and which has a temperature probe (not shown).
  • Reference numeral 100 denotes a dew point sensor, by means of which the dew point inside the container 5 can be determined and which can deliver a corresponding signal to the outside of the container 5 to a monitor 101.
  • the dew point sensor 100 is used in particular for safety when opening the device, so that, for example, counter heating can take place in order to avoid condensation.
  • outflow elements 30 are also provided in the container, via which air or a similar fluid, such as e.g. Nitrogen, can be introduced into the container to expel ambient air from the container 5. This air is first supplied externally via a line rOO to an air dryer 3 and then fed into line rl.
  • air or a similar fluid such as e.g. Nitrogen
  • a separate unit which is connected to the container 5 via a corresponding electrical line 11 and a media supply line r2, is the temperature control rack 2, which has the following devices.
  • Reference numeral 80 denotes a temperature controller which can regulate the temperature of the test table 10 by heating the heating device 90, the test table 10 being able to be flushed with air for cooling at the same time or alternatively, as will be explained in more detail below.
  • Reference numeral 70 denotes a temperature control device which is supplied with dry air, for example from a gas bottle or also from an air dryer, via the lines rO and il and which has a heat exchanger 95 which is connected to cooling units 71, 72, by means of which it can be brought to a predetermined temperature is.
  • the dry air supplied via the lines rO, il is passed through the heat exchanger 95 and then via the supply line r2 into the container 5 to the test table 10, which it crosses through corresponding cooling coils or cooling pipes, not shown.
  • the dry air which is led into the container 1 via the outflow elements 30 to condition the atmosphere in the container 5, is kept at room temperature, so that only the surface of the test table 10 is kept at the desired measuring temperature, for example -20 ° C. the remaining elements in the container 5 are approximately at room temperature. From the container 5, this flows dry air supplied via the outflow elements 30 through cracks or gaps (not shown) or a separate outlet line.
  • this known device for conditioning semiconductor wafers has the disadvantage of issued that occurs, a relatively high consumption of dried air, as this on the one hand 'is 10 blown through the container 5 to the atmosphere for conditioning the atmosphere and on the other hand for cooling the Proberti- sch. This means that the consumption of dried air is relatively high. A failure of the air dryer 3 also causes the tested wafer to freeze immediately at appropriate temperatures.
  • the method according to the invention with the features of claim 1 and the corresponding device according to claim 9 have the advantage over the known approach that efficient use of the dry gas, for example the dried air, is possible. Further advantages lie in the high level of operational reliability and in the guarantee of freedom from ice or condensation, since the dry air leaving the wafer / hybrid holding device is always below the dew point of the temperature at the wafer / hybrid holding device.
  • the idea on which the present invention is based is that at least a part of the gas leaving the wafer / hybrid receiving device is used to condition the atmosphere within the room.
  • cooling air is simultaneously used at least partially as dry air. It is advantageous if the part of the gas is first tempered and then allowed to flow out within the room.
  • the part is tempered outside a container and then fed back to the container.
  • a particular advantage of this example is that a higher cooling efficiency is made possible by a corresponding return of the air from the rehearsal table to the outside of the container.
  • the recirculated cooled air can additionally be used either for pre-cooling the supplied dry air or for cooling certain aggregates, and not only for cooling the wafer / hybrid receiving device.
  • part of the gas may flow out of the container immediately after leaving the test table. Since direct discharge is not advisable at all temperatures, a corresponding regulating valve should be provided for this part of the gas.
  • the line device has a first line via which the fluid from is outside the room in the wafer / hybrid receptacle, a second line through which the fluid from the wafer / hybrid receptacle can be conducted outside the room, and a third line through which the fluid from outside the room in the Space is traceable to.
  • a temperature control device is provided between the second and third lines.
  • outflow elements are provided at the end of the third line.
  • the line device has a first line, via which the fluid can be conducted into the wafer / hybrid receiving device from outside the room, and a fourth line, via which the fluid flows from the wafer / hybrid receiving device into the Space is conductive on.
  • the line device has a second line, via which the fluid from the wafer / hybrid receiving device can be directed outside the room, and a third line, via which the fluid can be returned to the room from outside the room.
  • a temperature control device is provided between the second and third lines.
  • a valve is provided for regulating the fourth line in terms of flow.
  • the temperature control device has a heating device.
  • the temperature control device has a heat exchanger to which at least part of the fluid leaving the room can be supplied.
  • the heat exchanger serves to pre-cool the supplied fluid.
  • the line device is designed in such a way that the part leaving the heat exchanger can at least partially be returned to the room for conditioning the atmosphere.
  • a further line is provided, via which additional dry fluid can be conducted into the room directly from outside the room.
  • the space is essentially closed by a container.
  • Fig. 1 is a schematic representation of a first embodiment of the condition- reasoning apparatus according to the invention.
  • FIG. 2 shows a schematic illustration of a second embodiment of the conditioning device according to the invention
  • FIG. 3 shows a schematic cross-sectional view of a third embodiment of the conditioning device according to the invention.
  • FIG. 4 shows a schematic cross-sectional view of a fourth embodiment of the conditioning device according to the invention.
  • FIG. 5 shows a schematic cross-sectional view of a conditioning device to explain the problem on which the present invention is based.
  • FIG. 1 shows a schematic representation of a first embodiment of the conditioning device according to the invention. To avoid repetitions, components that have already been described above in connection with FIG. 5 are not described again below.
  • Reference number 80 denotes a modified temperature controller which can not only regulate the temperature of the test table 10 by heating the heating device 90, but is also coupled to the dew point sensor 100 via a line 12 and thus an automatic counter heating in the event of a risk of condensation / icing can initiate.
  • a heating device 105 is also integrated in the temperature control device 70, which is not in direct contact with the heat exchanger 95. Instead of ending in the ambient atmosphere, the line r3 is directed to the heating device 105, so that the dry air leaving the test table 10 is returned to the temperature control rack 2, as it were, and after passing through the heating device 105 via line r4 it is passed back to the container 5, in which it flows out through outflow elements 40 for conditioning the atmosphere in space 1.
  • Reference numeral 4 denotes a temperature sensor for detecting the temperature in room 1, which supplies a corresponding temperature signal TS to the temperature control device 70. finished, which is used to control the temperature by means of the heater 105.
  • the dried air can fulfill a double function, namely first cooling the rehearsal table 10 and then conditioning the atmosphere of the room 1 before it is led back to the ambient atmosphere through openings in the container 5, and thus used more effectively.
  • FIG. 2 shows a schematic representation of a second embodiment of the conditioning device according to the invention.
  • a line r5 branches off from the line r2 immediately in front of the test table 10, which line is likewise passed through the test table 10 in the form of a cooling coil or a cooling tube, but then the test table 10 at another location leaves as the line r3 and from there via a controllable outlet valve 45 leads the corresponding dried air directly into the container 5 after leaving the rehearsal table 10.
  • this option of directing the dry gas via line r5 into container 1 can be regulated through outlet valve 45.
  • the Regu- lation can be done in the usual way, for example remotely or wire-controlled.
  • the second embodiment is constructed in the same way as the first embodiment described above.
  • FIG 3 shows a schematic cross-sectional view of a third embodiment of the conditioning device according to the invention.
  • Reference number 80 ⁇ denotes a further modified temperature controller which also controls the temperature control device 70 via the control line ST and thus plays the role of a central temperature control.
  • a portion of the dry air returned via line r3 is branched off via a line 13 in front of the heating device 105 and passed through the heat exchanger 95, where it is just like the fresh air supplied via the lines r0, il Air contributes to cooling.
  • the dry air leaves the heat exchanger 95 via the line i4 and is brought together immediately behind the heating device 105 with the air which has flowed through the heating device 105.
  • this dry air is conducted from the corresponding node via the line r4 and the outflow elements 40 into the container 5 for conditioning its atmosphere.
  • this embodiment provides a controllable mixing valve 46 and a bypass line r10 through which the heat exchanger 95 can be bypassed.
  • the particular advantage of this embodiment is that a “residual cold” of the dried air, which flows back from the test table 10, can be used to cool the heat exchanger and, at the same time, can be heated and returned to the container 5.
  • the second embodiment is constructed in the same way as the first embodiment described above.
  • FIG. 4 shows a schematic cross-sectional view of a fourth embodiment of the conditioning device according to the invention.
  • Reference numeral 85 in FIG. 4 denotes an additional gas temperature controller, to which dry gas, for example dried air, is supplied via lines r0, i2 from the same gas source as that of the heat exchanger 95, which brings it to a predetermined temperature and then via line rl via the outflow elements 30 into the interior of the container 5.
  • dry gas for example dried air
  • the direct supply of dried air via the outflow elements 30 into the container 5 is therefore additionally provided in this embodiment, but can be configured so that it can be switched off if the flow rate through the bertisch 10 completely sufficient for conditioning the atmosphere within the container 5.
  • the residual coldness of the recirculated gas can be used not only to cool the heat exchanger 95, but also to cool any other units or heat exchanger before it is fed back to the container 5.
  • the invention is also not limited to gaseous dried air, but can in principle be applied to any fluids.
  • the wafer / hybrid holding device is not limited to a rehearsal table or chuck, but can be varied as desired, e.g. as a clamp device or the like

Abstract

Die vorliegende Erfindung schafft ein Verfahren zur Konditionierung von Halbleiterwafern und/oder Hybriden mit den Schritten: Bereitstellen eines zumindest teilweise geschlossenen Raums (1) mit einer darin befindlichen Wafer/Hybrid-Aufnahmeeinrichtung (10) zur Aufnahme eines Halbleiterwafers und/oder Hybrids; und Leiten eines trockenen Fluids durch die Wafer/Hybrid-Aufnahmeeinrichtung (10) zum Temperieren der Wafer/Hybrid-Aufnahmeeinrichtung (10); wobei zumindest ein Teil des die Wafer/Hybrid-Aufnahmeeinrichtung (10) verlassenden Fluids zum Konditionieren der Atmosphäre innerhalb des Raums (1) verwendet wird. Die Erfindung schafft auch eine entsprechende Vorrichtung zur Konditionierung von Halbleiterwafern und/oder Hybriden.

Description

Verfahren und Vorrichtung zur Konditionierung von Halbleiterwafem und/oder Hybriden
Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Konditionierung von Halbleiterwafem und/oder Hybriden.
Bekannterweise werden Testmessungen an Halbleiterwafe typischerweise in einem Temperaturbereich zwischen -200 °C und +400 °C durchgeführt. Zur Temperierung wird ein Halbleiterwafer auf einen Probertisch gelegt, der entsprechend der Soll-Temperatur gekühlt und/oder beheizt wird. Dabei ist darauf zu achten, dass die Temperatur des Halbleiterwafers nicht unter den Taupunkt des umgebenden gasförmigen Mediums gerät, da sonst eine Kondensation von Feuchtigkeit auf der Waferoberflache bzw. eine Vereisung auftritt, welche die Testmessungen behindert bzw. unmöglich macht.
Fig. 5 zeigt eine schematische Querschnittsansicht einer Konditionierungsvorrichtung zur Erläuterung der Problematik, welche der vorliegenden Erfindung zugrunde liegt.
In Fig. 4 bezeichnet Bezugszeichen 1 einen Raum in einem Behälter 5, in dem ein temperierbarer Probertisch 10 vorgesehen ist, auf den (nicht gezeigter) ein Halbleiterwafer zu Testzwecken aufgelegt werden kann. Das Volumen des Behälters 5 liegt üblicherweise zwischen 400 und 800 Litern.
Der Raum 1 ist im wesentlichen durch die Wände des Behälters 5 geschlossen, welche Durchführungen für elektrische Leitungen und Medienversorgungsleitungen sowie ggf. Durchführungen für extern anzubringende Sonden aufweisen, mit denen die Testmessungen gezeigten Halbleiterwafer durchzuführen sind. Der Raum 1 muss durch den Behälter 5 allerdings abhängig vom Anwendungsfall nicht hermetisch abgeschlossen sein, muss aber zumindest soweit geschlossen, dass ein ungewünschtes Eindringen von feuchter Umgebungsluft durch Aufbau eines inneren Überdrucks verhindert werden kann.
Der Probertisch 10 (auch Chuck genannt) weist eine thermische Isolation 15 auf, über die er mit einem üblicherweise beweglichen Fuß 20 verbunden ist. Ein entsprechender nicht gezeigter Bewegungsmechanismus weist in der Regel eine Verstellbarkeit in X-, Y- und Z-Richtung auf. Falls sich der Bewegungsmechanismus nicht in dem Behälter befindet, ist zwischen Fuß und Behälter eine Dichtung anzubringen.
Des weiteren ist in dem Probertisch 10 eine Heizeinrichtung 90 integriert, die von außen mit elektrischem Strom zum Heizen versorgt werden kann und die eine nicht gezeigte Temperatursonde aufweist. Bezugszeichen 100 bezeichnet einen Taupunktsensor, mittels dem der Taupunkt innerhalb des Behälters 5 ermittelbar ist und die ein entsprechendes Signal nach außerhalb des Behälters 5 an einen Monitor 101 liefern kann. Der Taupunktsensor 100 dient insbesondere zur Sicherheit beim Öffnen des Geräts, damit z.B. ein Gegenheizen erfolgen kann, um eine Betauung zu vermeiden.
Weiterhin vorgesehen im Behälter sind Ausströmelemente 30 (oBdA. sind nur zwei gezeigt) , über die von außerhalb über eine Leitung rl getrocknete Luft oder ein ähnliches Fluid, wie z.B. Stickstoff, in den Behälter eingeführt werden kann, um feuchte Umgebungsluft aus dem Behälter 5 auszutreiben. Diese Luft wird zunächst extern über eine Leitung rOO an einen Lufttrockner 3 zugeführt und dann in die Leitung rl eingespeist.
Eine separate Einheit, welche mit dem Behälter 5 über eine entsprechende elektrische Leitungen 11 und eine Medienversorgungsleitung r2 verbunden ist, ist das Temperatursteuer- rack 2 , welches folgende Einrichtungen aufweist.
Mit Bezugszeichen 80 ist ein Temperatur-Controller bezeichnet, der durch Beheizen der Heizeinrichtung 90 die Temperatur des Probertisches 10 regeln kann, wobei der Probertisch 10 gleichzeitig oder alternativ mit Luft zur Kühlung durchspülbar ist, wie unten näher erläutert wird. Bezugszeichen 70 bezeichnet eine Temperierungseinrichtung, der über die Leitungen rO und il trockene Luft z.B. aus einer Gasflasche oder auch aus einem Lufttrockner zugeführt wird und die einen Wärmetauscher 95 aufweist, der mit Kühlaggregaten 71, 72 verbunden ist, durch die er auf eine vorbestimmte Temperatur bringbar ist.
Die über die Leitungen rO, il zugeführte trockene Luft wird durch den Wärmetauscher 95 geleitet und anschließend über die Versorgungsleitung r2 in den Behälter 5 zum Probertisch 10 geführt, den sie durch entsprechende nicht gezeigte Kühlschlangen bzw. Kühlrohre durchquert. Über die Leitung r3 verlässt die trockene Luft, welche den Probertisch 10 gekühlt hat, denselben und wird aus dem Behälter 5 heraus an die Atmosphäre geleitet.
Üblicherweise wird die trockene Luft, welche zur Konditionierung der Atmosphäre in dem Behälter 5 über die Ausströmelemente 30 in den Behälter 1 geleitet wird, auf Raumtemperatur gehalten, so dass lediglich die Oberfläche des Probertisches 10 auf der gewünschten Messtemperatur, beispielsweise -20°C, gehalten wird, die übrigen Elemente in dem Behälter 5 jedoch ungefähr auf Raumtemperatur sind. Aus dem Behälter 5 heraus strömt diese über die Ausströmelemente 30 zugeführte trockene Luft durch nicht gezeigte Ritzen bzw. Spalte oder eine separate Auslassleitung.
Als nachteilhaft bei dieser bekannten Vorrichtung zum Kon- ditionieren von Halbleiterwafem hat sich die Tatsache her- ausgestellt, dass ein relativ hoher Verbrauch an getrockneter Luft auftritt, da diese einerseits zum Konditionieren der Atmosphäre und andererseits zum Kühlen des Proberti- sch'es 10 durch den Behälter 5 an die Atmosphäre geblasen wird. Somit ist der Verbrauch an getrockneter Luft relativ hoch. Auch bewirkt ein Ausfall des Lufttrockners 3 ein sofortiges Vereisen des getesteten Wafers bei entsprechenden Temperaturen.
Daher ist es Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zur Konditionierung von Halbleiterwafem und/oder Hybriden anzugeben, welche eine effizientere Konditionierung ermöglichen.
Das erfindungsgemäße Verfahren mit den Merkmalen des Anspruchs 1 bzw. die entsprechende Vorrichtung nach Anspruch 9 weisen gegenüber dem bekannten Lösungsansatz den Vorteil auf, dass eine effiziente Ausnutzung des trockenen Gases möglich ist, beispielsweise der getrockneten Luft. Weitere Vorteile liegen in der hohen Betriebssicherung und in der Garantie der Eisfreiheit bzw. Kondensationsfreiheit, da die die Wafer/Hybrid-Aufnahmeeinrichtung verlassende trockene Luft stets unterhalb des Taupunktes der an der Wafer/ Hyb- rid-Aufnahmeeinrichtung anliegenden Temperatur ist.
Die der vorliegenden Erfindung zugrundeliegende Idee besteht darin, dass zumindest ein Teil des die Wafer/Hybrid- Aufnahmeeinrichtung verlassenden Gases zum Konditionieren der Atmosphäre innerhalb des Raums verwendet wird. Bei der vorliegenden Erfindung wird also Kühlluft gleichzeitig zumindest teilweise als Trockenluft verwendet. Es ist vorteilhaft, wenn der Teil des Gases zunächst temperiert wird und dann innerhalb des Raums ausströmen gelassen wird.
Z.B. wird der Teil außerhalb eines Behälters temperiert und dann dem Behälter wieder zugeführt. Ein besonderer Vorteil dieses Beispiels liegt darin, dass eine höhere Kühleffizienz durch eine entsprechende Rückführung der Luft vom Probertisch nach außerhalb des Behälters ermöglicht wird. Mit anderen Worten kann die rückgeführte gekühlte Luft zusätzlich entweder zur Vorkühlung der eingespeisten trockenen Luft oder zur Kühlung bestimmter Aggregate verwendet werden, und nicht nur zur Kühlung der Wafer/Hybrid- Aufnahmeeinrichtung.
Es ist aber auch alternativ oder zusätzlich möglich, dass ein Teil des Gases unmittelbar nach dem Verlassen des Pro- bertischs innerhalb des Behälters ausströmen gelassen wird. Da ein direktes Ausströmenlassen nicht bei allen Temperaturen zweckmäßig ist, sollte ein entsprechendes Regulierventil für diesen Teil des Gases vorgesehen sein.
In den Unteransprüchen finden sich vorteilhafte Weiterbildungen und Verbesserungen des betreffenden Gegenstandes der Erfindung.
Gemäss einer bevorzugten Weiterbildung weist die Leitungseinrichtung eine erste Leitung, über die das Fluid von au- ßerhalb des Raums in die Wafer/Hybrid-Aufnahmeeinrichtung leitbar ist, eine zweite Leitung, über die das Fluid aus der Wafer/Hybrid-Aufnahmeeinrichtung nach außerhalb des Raums leitbar ist, und eine dritte Leitung, über die das Fluid von außerhalb des Raums in den Raum rückführbar ist, auf. Zwischen der zweiten und dritten Leitung ist eine Temperierungseinrichtung vorgesehen .
Gemäss einer weiteren bevorzugten Weiterbildung sind am Ende der dritten Leitung Ausströmelemente vorgesehen.
Gemäss einer weiteren bevorzugten Weiterbildung weist die Leitungseinrichtung eine erste Leitung, über die das Fluid von außerhalb des Raums in die Wafer/Hybrid-Aufnahme- einrichtung leitbar ist, und eine vierte Leitung, über die das Fluid aus der Wafer/Hybrid-Aufnahmeeinrichtung in den Raum leitbar ist, auf.
Gemäss einer weiteren bevorzugten Weiterbildung weist die Leitungseinrichtung eine zweite Leitung, über die das Fluid aus der Wafer/Hybrid-Aufnahmeeinrichtung nach außerhalb des Raums leitbar ist, eine dritte Leitung, über die das Fluid von außerhalb des Raums in den Raum rückführbar ist, auf. Zwischen der zweiten und dritten Leitung ist eine Temperierungseinrichtung vorgesehen.
Gemäss einer weiteren bevorzugten Weiterbildung ist ein Ventil zum strömungsmengenmäßigen Regulieren der vierten Leitung vorgesehen. Gemäss einer weiteren bevorzugten Weiterbildung weist die Temperierungseinrichtung eine Heizeinrichtung aufweist.
Gemäss einer weiteren bevorzugten Weiterbildung weist die Temperierungseinrichtung einen Wärmetauscher auf, dem zumindest ein Teil des den Raum verlassenden Fluids zuleitbar ist .
Gemäss einer weiteren bevorzugten Weiterbildung dient der Wärmetauscher zum Vorkühlen des zugeführten Fluids.
Gemäss einer weiteren bevorzugten Weiterbildung ist die Leitungseinrichtung derart gestaltet ist, dass der den Wärmetauscher verlassende Teil zumindest teilweise zum Konditionieren der Atmosphäre in den Raum rückführbar ist.
Gemäss einer weiteren bevorzugten Weiterbildung ist eine weitere Leitung vorgesehen ist, über die zusätzlich trockenes Fluid direkt von außerhalb des Raums in den Raum leitbar ist.
Gemäss einer weiteren bevorzugten Weiterbildung ist der Raum durch einen Behälter im wesentlichen geschlossen.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert . Es zeigen:
Fig. 1 eine schematische Darstellung einer ersten Ausführungsform der erfindungsgemäßen Konditionie- rungsVorrichtung,
Fig. 2 eine schematische Darstellung einer zweiten Ausführungsform der erfindungsgemäßen Konditionierungsvorriehtung;
Fig. 3 eine schematische Querschnittsansicht einer dritten Ausführungsform der erfindungsgemäßen Konditionierungsvorrichtung;
Fig. 4 eine schematische Querschnittsansicht einer vierten Ausführungsform der erfindungsgemäßen Kondi- tionierungsvorrichtung; und
Fig. 5 eine schematische Querschnittsansicht einer Kon- ditionierungsvorrichtung zur Erläuterung der Problematik, welche der vorliegenden Erfindung zugrunde liegt.
In den Figuren bezeichnen gleiche Bezugszeichen gleiche o- der funktionsgleiche Bestandteile.
Fig. 1 zeigt eine schematische Darstellung einer ersten Ausführungsform der erfindungsgemäßen Konditionierungsvor- richtung. Im folgenden werden zur Vermeidung von Wiederholungen Komponenten nicht erneut beschrieben, die bereits oben im Zusammenhang mit Fig. 5 beschrieben wurden.
Mit Bezugszeichen 80 ist ein modifizierter Temperatur- Controller bezeichnet, der nicht nur durch Beheizen der Heizeinrichtung 90 die Temperatur des Probertisches 10 regeln kann, sondern auch über eine Leitung 12 mit dem Taupunktsensor 100 gekoppelt ist und so ein automatisches Gegenheizen bei einer Betauungs-/ Vereisungsgefahr einleiten kann.
Bei der ersten Ausführungsform gemäss Fig. 1 ist in der Temperierungseinrichtung 70 zusätzlich eine Heizeinrichtung 105 integriert, welche nicht in direktem Kontakt mit dem Wärmetauscher 95 steht. Anstatt an der Umgebungsatmosphäre zu enden, ist die Leitung r3 zur Heizeinrichtung 105 geleitet, so dass die den Probertisch 10 verlassene trockene Luft gleichsam zum Te peratursteuerrack 2 zurückgeführt wird und nach Durchlaufen der Heinzeinrichtung 105 über die Leitung r4 wieder zum Behälter 5 geleitet, in dem sie durch Ausströmelemente 40 zum Konditionieren der Atmosphäre in dem Raum 1 ausströmt.
Bezugszeichen 4 bezeichnet einen Temperatursensor zur Erfassung der Temperatur im Raum 1, der ein entsprechendes Temperatursignal TS an die Temperierungseinrichtung 70 lie- fert, welches zur Regelung der Temperatur mittels der Heizeinrichtung 105 verwendet wird.
Durch diese Anordnung kann die getrocknete Luft eine Doppelfunktion erfüllen, nämlich zuerst die Kühlung des Probertisches 10 und danach die Konditionierung der Atmosphäre des Raums 1, bevor sie durch Öffnungen des Behälters 5 wieder an die Umgebungsatmosphäre geführt wird, und somit effektiver verwendet werden.
Fig. 2 zeigt eine schematische Darstellung einer zweiten Ausführungsform der erfindungsgemäßen Konditionierungsvor- richtung.
Bei der zweiten Ausführungsform gemäss Fig. 2 zweigt von der Leitung r2 unmittelbar vor dem Probertisch 10 eine Leitung r5 ab, welche ebenfalls durch den Probertisch 10 in Form von einer Kühlschlange bzw. einem Kühlrohr geleitet wird, aber dann den Probertisch 10 an einer anderen Stelle verlässt als die Leitung r3 und von dort aus über ein steuerbares Auslassventil 45 die entsprechende getrocknete Luft direkt in den Behälter 5 nach dem Verlassen des Probertisches 10 leitet.
Da dies bei sehr tiefen Temperaturen bei bestimmten Anwendungen zu Problemen führen könnte, ist diese Option des Leitens des trockenen Gases über die Leitung r5 in den Behälter 1 durch das Auslassventil 45 regulierbar. Die Regu- lierung kann in üblicher Weise, beispielsweise ferngesteuert oder drahtgesteuert, erfolgen.
Ansonsten ist die zweite Ausführungsform gleich aufgebaut wie die oben beschriebene erste Ausführungsform.
Fig. 3 zeigt eine schematische Querschnittsansicht einer dritten Ausführungsform der erfindungsgemäßen Konditionie- rungsvorrichtung .
Mit Bezugszeichen 80 Λ ist ein weiter modifizierter Temperatur-Controller bezeichnet, der auch die Temperierungseinrichtung 70 über die Steuerleitung ST steuert und somit die Rolle einer Zentraltemperatursteuerung spielt.
Bei der dritten Ausführungsform gemäss Fig. 3 wird ein Teil der über die Leitung r3 zurückgeführten trockenen Luft vor der Heizeinrichtung 105 über eine Leitung 13 abgezweigt und durch den Wärmetauscher 95 geleitet, wo sie genau so wie die frisch über die Leitungen rO, il zugeführte trockene Luft zur Abkühlung beiträgt. Den Wärmetauscher 95 verlässt die trockene Luft über die Leitung i4 und wird unmittelbar hinter der Heizeinrichtung 105 mit der Luft zusammengeführt, welche durch die Heizeinrichtung 105 geflossen ist. Vom entsprechenden Knotenpunkt wird diese trockene Luft genau wie bei der ersten Ausführungsform über die Leitung r4 und die Ausströmelemente 40 in den Behälter 5 zur Konditionierung dessen Atmosphäre geleitet. Weiterhin sieht diese Ausführungsform ein steuerbares Mischventil 46 und eine Bypassleitung rlO vor, durch die der Wärmetauscher 95 umgangen werden kann.
Der besondere Vorteil bei dieser Ausführungsform ist, dass eine „Restkälte" der getrockneten Luft, welche vom Probertisch 10 zurückfließt, zur Abkühlung des Wärmetauschers genutzt werden kann und gleichzeitig erwärmt in den Behälter 5 zurückgeführt werden kann.
Ansonsten ist die zweite Ausführungsform gleich aufgebaut wie die oben beschriebene erste Ausführungsform.
Fig. 4 zeigt eine schematische Querschnittsansicht einer vierten Ausführungsform der erfindungsgemäßen Konditionie- rungsvorrichtung.
Bezugszeichen 85 In Fig. 4 bezeichnet einen zusätzlichen Gastemperatur-Controller, dem über Leitungen rO, i2 trockenes Gas, beispielsweise getrocknete Luft, von derselben Gasquelle wie derjenigen des Wärmetausches 95 zugeführt wird, welche dieser auf eine vorbestimmte Temperatur bringt und dann über die Leitung rl über die Ausströmelemente 30 in das Innere des Behälters 5 leitet.
Die direkte Zuführung getrockneter Luft über die Ausströmelemente 30 in den Behälter 5 ist bei dieser Ausführungsform also noch zusätzlich vorgesehen, kann aber abschaltbar gestaltet werden, wenn die Durchflussmenge durch den Pro- bertisch 10 vollständig zur Konditionierung der Atmosphäre innerhalb des Behälters 5 ausreicht.
Obwohl die vorliegende Erfindung vorstehend anhand bevorzugter Ausführungsbeispiele beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Weise modifizierbar.
Insbesondere sei darauf hingewiesen, dass die obigen Aus- führungsbeispiele selbstverständlich miteinander kombinierbar sind. Auch können zusätzliche Leitungsverbindungen bzw. Regulierventile für die jeweilige Gasströmung vorgesehen werden, welche manuell oder elektrisch steuerbar sind.
Zudem lässt sich die Restkälte des rückgeführten Gases nicht nur zur Kühlung des Wärmetauschers 95 verwenden, sondern auch zur Kühlung beliebiger anderer Aggregate bzw. Wärmetauscher, bevor sie wieder dem Behälter 5 zugeführt wird.
Auch ist die Erfindung nicht auf gasförmige getrocknete Luft beschränkt, sondern prinzipiell auf beliebige Fluide anwendbar.
Weiterhin ist die Wafer/Hybrid-Aufnahmeeinrichtung nicht auf einen Probertisch bzw. Chuck beschränkt, sondern beliebig variierbar, z.B. als Klammereinrichtung o.a.

Claims

PATENTANSPRÜCHE
1. Verfahren zur Konditionierung von Halbleiterwafem und/oder Hybriden mit den Schritten:
Bereitstellen eines zumindest teilweise geschlossenen Raums (1) mit einer darin befindlichen Wafer/Hybrid-Aufnahmeeinrichtung (10) zur Aufnahme eines Halbleiterwafers und/oder Hybrids; und
Leiten eines trockenen Fluids durch die Wafer/Hybrid- Aufnahmeeinrichtung (10) zum Temperieren der Wafer/Hybrid- Aufnahmeeinrichtung (10);
wobei zumindest ein Teil des die Wafer/Hybrid-Aufnahmeeinrichtung (10) verlassenden Fluids zum Konditionieren der Atmosphäre innerhalb des Raums (1) verwendet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Raum (1) durch einen Behälter (5) im wesentlichen geschlossen ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Teil zunächst temperiert wird und dann innerhalb des Raums (1) ausströmen gelassen wird.
4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass der Teil außerhalb des Raums (1) temperiert wird und dann dem Raum (1) wieder zugeführt wird.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Teil unmittelbar nach dem Verlassen der Wafer/ Hybrid-Aufnahmeeinrichtung (10) innerhalb des Raums (1) ausströmen gelassen wird.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein erster Teil des den Probertisch (10) verlassenden Fluids zunächst temperiert wird und dann innerhalb des Raums (1) ausströmen gelassen wird und ein zweiter Teil unmittelbar nach dem Verlassen der Wafer/Hybrid- Aufnahmeeinrichtung (10) innerhalb des Raums (1) ausströmen gelassen wird.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zumindest einer vom ersten und zweiten Teil strömungsmengenmäßig regulierbar ist.
8. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Teil dadurch temperiert wird, dass er zur Vorkühlung, insbesondere zur Vorkühlung des Fluids, außerhalb des Raums (1) verwendet wird, bevor er innerhalb des Raums (1) ausströmen gelassen wird.
9. Vorrichtung zur Konditionierung von Halbleiterwafe und/oder Hybriden mit:
einem zumindest teilweise geschlossenen Raum (1) mit einer darin befindlichen Wafer/Hybrid-Aufnahmeeinrichtung (10) zur Aufnahme eines Halbleiterwafers und/oder Hybrides; und
einer Leitungseinrichtung (r2, r3, r4, r5, 13, i4) zum Leiten eines trockenen Fluids durch die Wafer/Hybrid- Aufnahmeeinrichtung (10) zum Temperieren der Wafer/Hybrid- Aufnahmeeinrichtung (10) und zum Leiten zumindest ein Teil des die Wafer/Hybrid-Aufnahmeeinrichtung (10) verlassenden Fluids in den Raum (1) zum Konditionieren der Atmosphäre in dem Raum (1 ) .
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Leitungseinrichtung (r2, r3, r4, r5, 13, i4) aufweist :
eine erste Leitung (r2), über die das Fluid von außerhalb des Raums (1) in die Wafer/Hybrid-Aufnahmeeinrichtung (10) leitbar ist;
eine zweite Leitung (r3) , über die das Fluid aus der Wa- fer/Hybrid-Aufnahmeeinrichtung (10) nach außerhalb des Raums (1) leitbar ist; und eine dritte Leitung (r4) , über die das Fluid von außerhalb des Raums (1) in den Raum (1) rückführbar ist;
wobei zwischen der zweiten und dritten Leitung (r3, r4) eine Temperierungseinrichtung (70; 70, 80 V vorgesehen ist.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass am Ende der dritten Leitung (r4) Ausströmelemente (40) vorgesehen sind.
12. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Leitungseinrichtung (r2, r3, r4, r5, i3, i4) aufweist :
eine erste Leitung (r2) , über die das Fluid von außerhalb des Raums (1) in die Wafer/Hybrid-Aufnahmeeinrichtung (10) leitbar ist; und
eine vierte Leitung (r5) , über die das Fluid aus der Wa- fer/Hybrid-Aufnahmeeinrichtung (10) in den Raum (1) leitbar ist.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Leitungseinrichtung (r2, r3, r4, r5, i3, 14) aufweist: eine zweite Leitung (r3), über die das Fluid aus der Wa- fer/Hybrid-Aufnahmeeinrichtung (10) 'nach außerhalb des Raums (1) leitbar ist; und
eine dritte Leitung (r4), über die das Fluid von außerhalb des Raums (1) in den Raum (1) rückführbar ist;
wobei zwischen der zweiten und dritten Leitung (r3, r4) eine Temperierungseinrichtung (70; 70, 80 Λ ) vorgesehen ist.
14. Vorrichtung nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, dass ein Ventil (45) zum strömungsmengenmäßigen Regulieren der vierten Leitung (r5) vorgesehen ist.
15. Vorrichtung nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass die Temperierungseinrichtung (70; 70, 80) eine Heizeinrichtung (105) aufweist.
16. Vorrichtung nach einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, dass die Temperierungseinrichtung (70; 70, 80 λ ) einen Wärmetauscher (95) aufweist, dem zumindest ein Teil des den Raum (1) verlassenden Fluids zuleitbar ist.
17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass der Wärmetauscher (95) zum Vorkühlen des zugeführten Fluids dient.
18. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass die Leitungseinrichtung (r2, r3, r4, r5, 13, i4) derart gestaltet ist, dass der den Wärmetauscher (95) verlassende Teil zumindest teilweise zum Konditionieren der Atmosphäre in den Raum rückführbar ist.
19. Vorrichtung nach einem der Ansprüche 9 bis 18, dadurch gekennzeichnet, dass eine weitere Leitung (rl) vorgesehen ist, über die zusätzlich trockenes Fluid direkt von außerhalb des Raums (1) in den Raum (1) leitbar ist.
20. Vorrichtung nach einem der Ansprüche 9 bis 19, dadurch gekennzeichnet, dass der Raum (1) durch einen Behälter (5) im wesentlichen geschlossen ist.
PCT/EP2003/003937 2002-04-15 2003-04-15 Verfahren und vorrichtung zur konditionierung von halbleiterwafern und/oder hybriden WO2003088323A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2481260A CA2481260C (en) 2002-04-15 2003-04-15 Method and device for conditioning semiconductor wafers and/or hybrids
KR1020047016355A KR100625631B1 (ko) 2002-04-15 2003-04-15 반도체 웨이퍼 및/또는 하이브리드를 컨디셔닝하는 방법및 장치
AU2003224079A AU2003224079A1 (en) 2002-04-15 2003-04-15 Method and device for conditioning semiconductor wafers and/or hybrids
US10/511,335 US7900373B2 (en) 2002-04-15 2003-04-15 Method for conditioning semiconductor wafers and/or hybrids
DK03720475.7T DK1495486T5 (da) 2002-04-15 2003-04-15 Fremgangsmåde og anordning til konditionering af halvlederskiver og/eller hybrider
JP2003585158A JP4070724B2 (ja) 2002-04-15 2003-04-15 温度調整方法及び検査測定装置
EP03720475A EP1495486B3 (de) 2002-04-15 2003-04-15 Verfahren und vorrichtung zur konditionierung von halbleiterwafern und/oder hybriden
DE50305265T DE50305265D1 (de) 2002-04-15 2003-04-15 Verfahren und vorrichtung zur konditionierung von halbleiterwafern und/oder hybriden
NO20044607A NO336896B1 (no) 2002-04-15 2004-10-26 Fremgangsmåte og anordning for behandling av halvlederskiver og/eller hybrider

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10216786A DE10216786C5 (de) 2002-04-15 2002-04-15 Verfahren und Vorrichtung zur Konditionierung von Halbleiterwafern und/oder Hybriden
DE10216786.9 2002-04-15

Publications (1)

Publication Number Publication Date
WO2003088323A1 true WO2003088323A1 (de) 2003-10-23

Family

ID=28798441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/003937 WO2003088323A1 (de) 2002-04-15 2003-04-15 Verfahren und vorrichtung zur konditionierung von halbleiterwafern und/oder hybriden

Country Status (16)

Country Link
US (1) US7900373B2 (de)
EP (1) EP1495486B3 (de)
JP (1) JP4070724B2 (de)
KR (1) KR100625631B1 (de)
CN (1) CN100378903C (de)
AT (1) ATE341831T1 (de)
AU (1) AU2003224079A1 (de)
CA (1) CA2481260C (de)
DE (2) DE10216786C5 (de)
DK (1) DK1495486T5 (de)
ES (1) ES2274225T7 (de)
NO (1) NO336896B1 (de)
PL (1) PL211045B1 (de)
PT (1) PT1495486E (de)
RU (1) RU2284609C2 (de)
WO (1) WO2003088323A1 (de)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002263A (en) * 1997-06-06 1999-12-14 Cascade Microtech, Inc. Probe station having inner and outer shielding
US6838890B2 (en) * 2000-02-25 2005-01-04 Cascade Microtech, Inc. Membrane probing system
US6914423B2 (en) 2000-09-05 2005-07-05 Cascade Microtech, Inc. Probe station
US6965226B2 (en) 2000-09-05 2005-11-15 Cascade Microtech, Inc. Chuck for holding a device under test
US6951846B2 (en) * 2002-03-07 2005-10-04 The United States Of America As Represented By The Secretary Of The Army Artemisinins with improved stability and bioavailability for therapeutic drug development and application
US6861856B2 (en) * 2002-12-13 2005-03-01 Cascade Microtech, Inc. Guarded tub enclosure
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test
US7250626B2 (en) 2003-10-22 2007-07-31 Cascade Microtech, Inc. Probe testing structure
US7187188B2 (en) 2003-12-24 2007-03-06 Cascade Microtech, Inc. Chuck with integrated wafer support
US7535247B2 (en) 2005-01-31 2009-05-19 Cascade Microtech, Inc. Interface for testing semiconductors
US7656172B2 (en) 2005-01-31 2010-02-02 Cascade Microtech, Inc. System for testing semiconductors
US20070294047A1 (en) * 2005-06-11 2007-12-20 Leonard Hayden Calibration system
KR101492408B1 (ko) 2007-10-10 2015-02-12 캐스캐이드 마이크로텍 드레스덴 게엠베하 소정의 열 조건 하에서의 시험 기판의 시험 방법과 열적으로 조절가능한 탐침기
US8596336B2 (en) * 2008-06-03 2013-12-03 Applied Materials, Inc. Substrate support temperature control
DE102008047337B4 (de) 2008-09-15 2010-11-25 Suss Microtec Test Systems Gmbh Verfahren und Vorrichtung zur Prüfung eines Testsubstrats in einem Prober unter definierten thermischen Bedingungen
US8319503B2 (en) 2008-11-24 2012-11-27 Cascade Microtech, Inc. Test apparatus for measuring a characteristic of a device under test
DE102009045291A1 (de) * 2009-10-02 2011-04-07 Ers Electronic Gmbh Vorrichtung zur Konditionierung von Halbleiterchips und Testverfahren unter Verwendung der Vorrichtung
GB0921315D0 (en) * 2009-12-05 2010-01-20 Lemay Patrick An improved opened geothermal energy system
JP5477131B2 (ja) * 2010-04-08 2014-04-23 東京エレクトロン株式会社 基板処理装置
WO2011143398A1 (en) 2010-05-12 2011-11-17 Brooks Automation, Inc. System and method for cryogenic cooling
JP5947023B2 (ja) * 2011-11-14 2016-07-06 東京エレクトロン株式会社 温度制御装置、プラズマ処理装置、処理装置及び温度制御方法
JP5942459B2 (ja) * 2012-02-14 2016-06-29 セイコーエプソン株式会社 ハンドラー、及び部品検査装置
US9377423B2 (en) * 2012-12-31 2016-06-28 Cascade Microtech, Inc. Systems and methods for handling substrates at below dew point temperatures
US20170248973A1 (en) * 2016-02-29 2017-08-31 Cascade Microtech, Inc. Probe systems and methods including active environmental control
JP6256523B2 (ja) * 2016-05-16 2018-01-10 セイコーエプソン株式会社 ハンドラー、及び部品検査装置
JP6256526B2 (ja) * 2016-05-25 2018-01-10 セイコーエプソン株式会社 ハンドラー、及び部品検査装置
JP7012558B2 (ja) * 2018-02-26 2022-01-28 東京エレクトロン株式会社 検査装置及び検査装置の動作方法
JP2020049400A (ja) * 2018-09-25 2020-04-02 東京エレクトロン株式会社 ドライエアーの生成装置、ドライエアーの生成方法、および基板処理システム
US11231455B2 (en) * 2018-12-04 2022-01-25 Temptronic Corporation System and method for controlling temperature at test sites
DE102020002962A1 (de) 2020-05-18 2021-11-18 Att Advanced Temperature Test Systems Gmbh Temperiervorrichtung, System und Verfahren zum Temperieren eines Probertisches für Halbleiterwafer und/oder Hybride

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885353A (en) * 1996-06-21 1999-03-23 Micron Technology, Inc. Thermal conditioning apparatus
US6099643A (en) * 1996-12-26 2000-08-08 Dainippon Screen Mfg. Co., Ltd. Apparatus for processing a substrate providing an efficient arrangement and atmospheric isolation of chemical treatment section
DE20205949U1 (de) * 2002-04-15 2002-08-22 Ers Electronic Gmbh Vorrichtung zur Konditionierung von Halbleiterwafern und/oder Hybriden
WO2003014411A1 (en) * 2001-08-08 2003-02-20 Lam Research Corporation Rapid cycle chamber having a top vent with nitrogen purge

Family Cites Families (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3269136A (en) * 1964-12-15 1966-08-30 Umano Shuji Apparatus for separation of solvent from solute by freezing
DE1623033A1 (de) * 1966-02-24 1970-03-26 Siemens Ag Vorrichtung zur Bestimmung der photosynthetischen Leistung und der Transpirationsrate von Pflanzen
US4015340A (en) * 1975-08-20 1977-04-05 Tec Systems, Inc. Ultraviolet drying apparatus
US4079522A (en) * 1976-09-23 1978-03-21 Rca Corporation Apparatus and method for cleaning and drying semiconductors
JPS54136963A (en) * 1978-04-14 1979-10-24 Sharp Corp Hot permanent waver
US4434563A (en) * 1980-02-28 1984-03-06 Hauni-Werke Korber & Co. Kg Method and apparatus for drying tobacco
JPS609119B2 (ja) * 1981-05-29 1985-03-07 日産自動車株式会社 塗装ラインの熱回収装置
US4520252A (en) * 1981-07-07 1985-05-28 Inoue-Japax Research Incorporated Traveling-wire EDM method and apparatus with a cooled machining fluid
US4538899A (en) * 1983-02-22 1985-09-03 Savin Corporation Catalytic fixer-dryer for liquid developed electrophotocopiers
US4612978A (en) * 1983-07-14 1986-09-23 Cutchaw John M Apparatus for cooling high-density integrated circuit packages
JPS60108162A (ja) * 1983-11-16 1985-06-13 Hitachi Ltd 蒸気槽
US4531307A (en) * 1983-12-27 1985-07-30 The Maytag Company Fabric dryer control with cycle interrupt
US6327994B1 (en) * 1984-07-19 2001-12-11 Gaudencio A. Labrador Scavenger energy converter system its new applications and its control systems
US4628991A (en) * 1984-11-26 1986-12-16 Trilogy Computer Development Partners, Ltd. Wafer scale integrated circuit testing chuck
JPH0236276Y2 (de) * 1985-01-10 1990-10-03
JPS6242725A (ja) * 1985-08-14 1987-02-24 Iwata Tosouki Kogyo Kk 空気除湿装置
JPS62101688A (ja) * 1985-10-30 1987-05-12 Nippon Steel Chem Co Ltd コ−クス乾式消火設備ボイラ−給水予熱方法
US4776105A (en) * 1985-12-23 1988-10-11 Hitachi Techno Engineering Co., Ltd. Apparatus for fixing electronic parts to printed circuit board
US4724621A (en) * 1986-04-17 1988-02-16 Varian Associates, Inc. Wafer processing chuck using slanted clamping pins
JPH0834204B2 (ja) * 1986-07-02 1996-03-29 ソニー株式会社 ドライエツチング方法
US4872835A (en) * 1986-07-24 1989-10-10 Hewlett-Packard Company Hot chuck assembly for integrated circuit wafers
DE3627904A1 (de) * 1986-08-16 1988-02-18 Monforts Gmbh & Co A Konvektionstrocken- und/oder -fixiermaschine
JPH07111995B2 (ja) * 1987-09-02 1995-11-29 東京エレクトロン株式会社 プローブ装置
US4841645A (en) * 1987-12-08 1989-06-27 Micro Contamination Components Industries Vapor dryer
FR2631010B1 (fr) * 1988-05-06 1991-03-22 Sagem Dispositif de support et de regulation thermique d'une piece et appareillage de test de plaques de circuits semi-conducteurs incluant un tel dispositif
DE3823006C2 (de) * 1988-07-07 1994-09-08 Licentia Gmbh Gehäuse für infrarotempfindliche Bauelemente
US5038496A (en) * 1988-07-27 1991-08-13 Hitachi Techno Engineering Co., Ltd. Vapor reflow type soldering apparatus
JPH03234021A (ja) * 1990-02-09 1991-10-18 Mitsubishi Electric Corp 半導体ウエハの洗浄装置及びその洗浄方法
JPH03294021A (ja) * 1990-04-12 1991-12-25 Toyoda Gosei Co Ltd 金属パイプの曲げ加工方法
US5203401A (en) * 1990-06-29 1993-04-20 Digital Equipment Corporation Wet micro-channel wafer chuck and cooling method
US5198753A (en) * 1990-06-29 1993-03-30 Digital Equipment Corporation Integrated circuit test fixture and method
US5635070A (en) * 1990-07-13 1997-06-03 Isco, Inc. Apparatus and method for supercritical fluid extraction
US5192849A (en) * 1990-08-10 1993-03-09 Texas Instruments Incorporated Multipurpose low-thermal-mass chuck for semiconductor processing equipment
US5088006A (en) * 1991-04-25 1992-02-11 International Business Machines Corporation Liquid film interface cooling system for semiconductor wafer processing
US5186238A (en) * 1991-04-25 1993-02-16 International Business Machines Corporation Liquid film interface cooling chuck for semiconductor wafer processing
US5191506A (en) * 1991-05-02 1993-03-02 International Business Machines Corporation Ceramic electrostatic chuck
US5155652A (en) * 1991-05-02 1992-10-13 International Business Machines Corporation Temperature cycling ceramic electrostatic chuck
US5285798A (en) * 1991-06-28 1994-02-15 R. J. Reynolds Tobacco Company Tobacco smoking article with electrochemical heat source
US5698070A (en) * 1991-12-13 1997-12-16 Tokyo Electron Limited Method of etching film formed on semiconductor wafer
US5310453A (en) * 1992-02-13 1994-05-10 Tokyo Electron Yamanashi Limited Plasma process method using an electrostatic chuck
US5209028A (en) * 1992-04-15 1993-05-11 Air Products And Chemicals, Inc. Apparatus to clean solid surfaces using a cryogenic aerosol
US5504040A (en) * 1992-06-30 1996-04-02 Texas Instruments Incorporated Planarized material layer deposition using condensed-phase processing
JPH0645310A (ja) * 1992-07-27 1994-02-18 Tsukada Fuainesu:Kk 乾燥方法および乾燥装置
JP2902222B2 (ja) * 1992-08-24 1999-06-07 東京エレクトロン株式会社 乾燥処理装置
US5564281A (en) * 1993-01-08 1996-10-15 Engelhard/Icc Method of operating hybrid air-conditioning system with fast condensing start-up
US5649428A (en) * 1993-01-08 1997-07-22 Engelhard/Icc Hybrid air-conditioning system with improved recovery evaporator and subcool condenser coils
US5551245A (en) * 1995-01-25 1996-09-03 Engelhard/Icc Hybrid air-conditioning system and method of operating the same
US5277030A (en) * 1993-01-22 1994-01-11 Welch Allyn, Inc. Preconditioning stand for cooling probe
MY111204A (en) * 1993-02-26 1999-09-30 Mitsubishi Chem Ind Apparatus and method for separating a liquid mixture
US5695795A (en) * 1993-03-23 1997-12-09 Labatt Brewing Company Limited Methods for chill-treating non-distilled malted barley beverages
USRE36897E (en) * 1993-03-23 2000-10-03 Labatt Brewing Company Limited Methods for chill treating non-distilled malted barley beverages
US5525780A (en) * 1993-08-31 1996-06-11 Texas Instruments Incorporated Method and apparatus for uniform semiconductor material processing using induction heating with a chuck member
US5575079A (en) * 1993-10-29 1996-11-19 Tokyo Electron Limited Substrate drying apparatus and substrate drying method
US5869114A (en) * 1994-03-18 1999-02-09 Labatt Brewing Company Limited Production of fermented malt beverages
JP2900788B2 (ja) * 1994-03-22 1999-06-02 信越半導体株式会社 枚葉式ウェーハ処理装置
DE4413077C2 (de) * 1994-04-15 1997-02-06 Steag Micro Tech Gmbh Verfahren und Vorrichtung zur chemischen Behandlung von Substraten
US5521790A (en) * 1994-05-12 1996-05-28 International Business Machines Corporation Electrostatic chuck having relatively thick and thin areas and means for uniformly cooling said thick and thin areas during chuck anodization
US5595241A (en) * 1994-10-07 1997-01-21 Sony Corporation Wafer heating chuck with dual zone backplane heating and segmented clamping member
US5931721A (en) * 1994-11-07 1999-08-03 Sumitomo Heavy Industries, Ltd. Aerosol surface processing
US5967156A (en) * 1994-11-07 1999-10-19 Krytek Corporation Processing a surface
JPH08189768A (ja) * 1994-11-07 1996-07-23 Ryoden Semiconductor Syst Eng Kk 蒸気乾燥装置、それを組込んだ洗浄装置および蒸気乾燥方法
TW301761B (de) * 1994-11-29 1997-04-01 Sharp Kk
US5517828A (en) * 1995-01-25 1996-05-21 Engelhard/Icc Hybrid air-conditioning system and method of operating the same
DE19506404C1 (de) * 1995-02-23 1996-03-14 Siemens Ag Verfahren zum Freiätzen (Separieren) und Trocknen mikromechanischer Komponenten
DE69628483T2 (de) * 1995-03-22 2003-12-18 Nestle Sa Verfahren und Einrichtung zur Herstellung von Gegenständen aus gefrorenen Süsswaren
US5526578A (en) * 1995-05-17 1996-06-18 Iyer; Ramanathan K. Comb-type hair dryer
US5715612A (en) * 1995-08-17 1998-02-10 Schwenkler; Robert S. Method for precision drying surfaces
JP3000899B2 (ja) * 1995-08-31 2000-01-17 ノーリツ鋼機株式会社 感光材料処理装置
US5644467A (en) * 1995-09-28 1997-07-01 Applied Materials, Inc. Method and structure for improving gas breakdown resistance and reducing the potential of arcing in a electrostatic chuck
US5775416A (en) * 1995-11-17 1998-07-07 Cvc Products, Inc. Temperature controlled chuck for vacuum processing
KR980012044A (ko) * 1996-03-01 1998-04-30 히가시 데츠로 기판건조장치 및 기판건조방법
US5720818A (en) * 1996-04-26 1998-02-24 Applied Materials, Inc. Conduits for flow of heat transfer fluid to the surface of an electrostatic chuck
US5862605A (en) * 1996-05-24 1999-01-26 Ebara Corporation Vaporizer apparatus
JP3308816B2 (ja) * 1996-07-09 2002-07-29 オリオン機械株式会社 耐薬品性熱交換器
US6170428B1 (en) * 1996-07-15 2001-01-09 Applied Materials, Inc. Symmetric tunable inductively coupled HDP-CVD reactor
JP2930109B2 (ja) * 1996-09-19 1999-08-03 日本電気株式会社 低温試験方法および低温試験装置
US6045624A (en) * 1996-09-27 2000-04-04 Tokyo Electron Limited Apparatus for and method of cleaning objects to be processed
US6050275A (en) * 1996-09-27 2000-04-18 Tokyo Electron Limited Apparatus for and method of cleaning objects to be processed
US6413355B1 (en) * 1996-09-27 2002-07-02 Tokyo Electron Limited Apparatus for and method of cleaning objects to be processed
US5835334A (en) * 1996-09-30 1998-11-10 Lam Research Variable high temperature chuck for high density plasma chemical vapor deposition
US5764406A (en) * 1996-10-01 1998-06-09 Corning Incorporated Hydrid optical amplifier having improved dynamic gain tilt
DE19645425C2 (de) * 1996-11-04 2001-02-08 Steag Micro Tech Gmbh Vorrichtung zum Behandeln von Substraten
JP3471543B2 (ja) * 1996-11-07 2003-12-02 大日本スクリーン製造株式会社 回転式基板乾燥装置
US5815942A (en) * 1996-12-13 1998-10-06 Kabushiki Kaisha Toshiba Vapor drying system and method
US5864966A (en) * 1996-12-19 1999-02-02 California Institute Of Technology Two solvent vapor drying technique
JP3171807B2 (ja) * 1997-01-24 2001-06-04 東京エレクトロン株式会社 洗浄装置及び洗浄方法
JP3374033B2 (ja) * 1997-02-05 2003-02-04 東京エレクトロン株式会社 真空処理装置
JPH10284461A (ja) * 1997-04-04 1998-10-23 Mitsubishi Electric Corp 乾燥装置および乾燥方法
JPH10284382A (ja) * 1997-04-07 1998-10-23 Komatsu Ltd 温度制御装置
US7276485B1 (en) * 1997-04-21 2007-10-02 The Procter + Gamble Co. Flowable nondigestible oil and process for making
JP3230051B2 (ja) * 1997-05-16 2001-11-19 東京エレクトロン株式会社 乾燥処理方法及びその装置
JPH10321584A (ja) * 1997-05-22 1998-12-04 Mitsubishi Electric Corp 乾燥装置および乾燥方法
JPH10321585A (ja) * 1997-05-22 1998-12-04 Mitsubishi Electric Corp 乾燥装置および乾燥方法
US6077357A (en) * 1997-05-29 2000-06-20 Applied Materials, Inc. Orientless wafer processing on an electrostatic chuck
US6109206A (en) * 1997-05-29 2000-08-29 Applied Materials, Inc. Remote plasma source for chamber cleaning
US5994662A (en) * 1997-05-29 1999-11-30 Applied Materials, Inc. Unique baffle to deflect remote plasma clean gases
US6083344A (en) * 1997-05-29 2000-07-04 Applied Materials, Inc. Multi-zone RF inductively coupled source configuration
US6189483B1 (en) * 1997-05-29 2001-02-20 Applied Materials, Inc. Process kit
US6286451B1 (en) * 1997-05-29 2001-09-11 Applied Materials, Inc. Dome: shape and temperature controlled surfaces
JP3151613B2 (ja) * 1997-06-17 2001-04-03 東京エレクトロン株式会社 洗浄・乾燥処理方法及びその装置
KR100707107B1 (ko) * 1997-07-17 2007-12-27 동경 엘렉트론 주식회사 세정.건조처리방법및장치
JP3897404B2 (ja) * 1997-07-22 2007-03-22 オメガセミコン電子株式会社 ベーパ乾燥装置及び乾燥方法
US5989462A (en) * 1997-07-31 1999-11-23 Q2100, Inc. Method and composition for producing ultraviolent blocking lenses
AU9296098A (en) 1997-08-29 1999-03-16 Sharon N. Farrens In situ plasma wafer bonding method
US6354311B1 (en) * 1997-09-10 2002-03-12 Dainippon Screen Mfg. Co., Ltd. Substrate drying apparatus and substrate processing apparatus
US6254809B1 (en) * 1998-05-19 2001-07-03 Steag Hamatech, Inc. System and method for curing a resin disposed between a top and bottom substrate with thermal management
US6425953B1 (en) * 1997-11-14 2002-07-30 Tokyo Electron Limited All-surface biasable and/or temperature-controlled electrostatically-shielded RF plasma source
US5901030A (en) * 1997-12-02 1999-05-04 Dorsey Gage, Inc. Electrostatic chuck employing thermoelectric cooling
KR100524204B1 (ko) * 1998-01-07 2006-01-27 동경 엘렉트론 주식회사 가스 처리장치
US6026589A (en) * 1998-02-02 2000-02-22 Silicon Valley Group, Thermal Systems Llc Wafer carrier and semiconductor apparatus for processing a semiconductor substrate
US6059567A (en) * 1998-02-10 2000-05-09 Silicon Valley Group, Inc. Semiconductor thermal processor with recirculating heater exhaust cooling system
SG81975A1 (en) * 1998-04-14 2001-07-24 Kaijo Kk Method and apparatus for drying washed objects
US6210541B1 (en) * 1998-04-28 2001-04-03 International Business Machines Corporation Process and apparatus for cold copper deposition to enhance copper plating fill
US6108932A (en) * 1998-05-05 2000-08-29 Steag Microtech Gmbh Method and apparatus for thermocapillary drying
US6080272A (en) * 1998-05-08 2000-06-27 Micron Technology, Inc. Method and apparatus for plasma etching a wafer
JP2963443B1 (ja) * 1998-06-19 1999-10-18 キヤノン販売株式会社 半導体装置の製造装置
US6389225B1 (en) * 1998-07-14 2002-05-14 Delta Design, Inc. Apparatus, method and system of liquid-based, wide range, fast response temperature control of electronic device
US6096135A (en) * 1998-07-21 2000-08-01 Applied Materials, Inc. Method and apparatus for reducing contamination of a substrate in a substrate processing system
US6170496B1 (en) * 1998-08-26 2001-01-09 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and method for servicing a wafer platform
US6170268B1 (en) * 1998-09-28 2001-01-09 Weyerhaeuser Company Method and apparatus for automatically hydrating, freezing and packaged hydration material
US6199564B1 (en) * 1998-11-03 2001-03-13 Tokyo Electron Limited Substrate processing method and apparatus
US6098408A (en) * 1998-11-11 2000-08-08 Advanced Micro Devices System for controlling reflection reticle temperature in microlithography
US20040022028A1 (en) * 1998-12-22 2004-02-05 Hildebrandt James J. Apparatus and system for cooling electric circuitry, integrated circuit cards, and related components
JP2000205960A (ja) * 1998-12-23 2000-07-28 Csp Cryogenic Spectrometers Gmbh 検出器装置
US6214988B1 (en) * 1999-01-03 2001-04-10 Schlumberger Technology Corporation Process for making an HMX product
US6583638B2 (en) * 1999-01-26 2003-06-24 Trio-Tech International Temperature-controlled semiconductor wafer chuck system
KR100317829B1 (ko) * 1999-03-05 2001-12-22 윤종용 반도체 제조 공정설비용 열전냉각 온도조절장치
US6460721B2 (en) * 1999-03-23 2002-10-08 Exxonmobil Upstream Research Company Systems and methods for producing and storing pressurized liquefied natural gas
JP2000286267A (ja) * 1999-03-31 2000-10-13 Tokyo Electron Ltd 熱処理方法
US6290274B1 (en) * 1999-04-09 2001-09-18 Tsk America, Inc. Vacuum system and method for securing a semiconductor wafer in a planar position
US6128830A (en) * 1999-05-15 2000-10-10 Dean Bettcher Apparatus and method for drying solid articles
US6201117B1 (en) * 1999-05-26 2001-03-13 Schlumberger Technology Corporation Process for making a 1,3,5,7-tetraalkanoyl-1,3,5,7-tetraazacyclooctane
US6265573B1 (en) * 1999-05-26 2001-07-24 Schlumberger Technology Corporation Purification process
US6194571B1 (en) * 1999-05-26 2001-02-27 Schlumberger Technology Corporation HMX compositions and processes for their preparation
US6428724B1 (en) * 1999-05-26 2002-08-06 Schlumberger Technology Corporation Granulation process
AU5173100A (en) * 1999-05-27 2000-12-18 Lam Research Corporation Apparatus and methods for drying batches of wafers
WO2000074117A1 (en) * 1999-05-27 2000-12-07 Matrix Integrated Systems, Inc. Rapid heating and cooling of workpiece chucks
US6373679B1 (en) * 1999-07-02 2002-04-16 Cypress Semiconductor Corp. Electrostatic or mechanical chuck assembly conferring improved temperature uniformity onto workpieces held thereby, workpiece processing technology and/or apparatus containing the same, and method(s) for holding and/or processing a workpiece with the same
DE19931866A1 (de) * 1999-07-09 2001-01-18 Parkap Beteiligungs Und Verwal Verfahren und Vorrichtung zur Aufbereitung einer Abfallflüssigkeit
US6334266B1 (en) * 1999-09-20 2002-01-01 S.C. Fluids, Inc. Supercritical fluid drying system and method of use
US7215697B2 (en) * 1999-08-27 2007-05-08 Hill Alan E Matched impedance controlled avalanche driver
US6192600B1 (en) * 1999-09-09 2001-02-27 Semitool, Inc. Thermocapillary dryer
US6740853B1 (en) * 1999-09-29 2004-05-25 Tokyo Electron Limited Multi-zone resistance heater
US6199298B1 (en) * 1999-10-06 2001-03-13 Semitool, Inc. Vapor assisted rotary drying method and apparatus
US6377437B1 (en) * 1999-12-22 2002-04-23 Lam Research Corporation High temperature electrostatic chuck
US6494959B1 (en) * 2000-01-28 2002-12-17 Applied Materials, Inc. Process and apparatus for cleaning a silicon surface
SG105487A1 (en) * 2000-03-30 2004-08-27 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
US6436739B1 (en) * 2000-04-27 2002-08-20 The Regents Of The University Of California Thick adherent dielectric films on plastic substrates and method for depositing same
US6418728B1 (en) * 2000-05-10 2002-07-16 Jerry Monroe Thermoelectric water pre-cooling for an evaporative cooler
EP1356499A2 (de) * 2000-07-10 2003-10-29 Temptronic Corporation Scheibenhalter mit verschachtelten wärme- und kühlelementen
US6736668B1 (en) * 2000-09-15 2004-05-18 Arnold V. Kholodenko High temperature electrical connector
JP3910791B2 (ja) * 2000-09-19 2007-04-25 東京エレクトロン株式会社 基板の熱処理方法及び基板の熱処理装置
US7225819B2 (en) * 2000-12-08 2007-06-05 David P Jackson Apparatus process and method for mounting and treating a substrate
US6596093B2 (en) * 2001-02-15 2003-07-22 Micell Technologies, Inc. Methods for cleaning microelectronic structures with cyclical phase modulation
US6613157B2 (en) * 2001-02-15 2003-09-02 Micell Technologies, Inc. Methods for removing particles from microelectronic structures
US6641678B2 (en) * 2001-02-15 2003-11-04 Micell Technologies, Inc. Methods for cleaning microelectronic structures with aqueous carbon dioxide systems
US6602351B2 (en) * 2001-02-15 2003-08-05 Micell Technologies, Inc. Methods for the control of contaminants following carbon dioxide cleaning of microelectronic structures
US6562146B1 (en) * 2001-02-15 2003-05-13 Micell Technologies, Inc. Processes for cleaning and drying microelectronic structures using liquid or supercritical carbon dioxide
CN102200356B (zh) * 2001-02-23 2014-03-26 布鲁克斯自动化公司 超低温闭环再循环气体冷却系统
US6628503B2 (en) * 2001-03-13 2003-09-30 Nikon Corporation Gas cooled electrostatic pin chuck for vacuum applications
US6552560B2 (en) * 2001-03-20 2003-04-22 Despatch Industries, L.L.P. Wafer-level burn-in oven
JP2002299319A (ja) * 2001-03-29 2002-10-11 Hitachi Kokusai Electric Inc 基板処理装置
US6649883B2 (en) * 2001-04-12 2003-11-18 Memc Electronic Materials, Inc. Method of calibrating a semiconductor wafer drying apparatus
KR100397047B1 (ko) * 2001-05-08 2003-09-02 삼성전자주식회사 정전척의 냉각장치 및 방법
US6398875B1 (en) * 2001-06-27 2002-06-04 International Business Machines Corporation Process of drying semiconductor wafers using liquid or supercritical carbon dioxide
US6564469B2 (en) * 2001-07-09 2003-05-20 Motorola, Inc. Device for performing surface treatment on semiconductor wafers
KR20030006245A (ko) * 2001-07-12 2003-01-23 삼성전자 주식회사 웨이퍼 건조장치
JP2003090892A (ja) * 2001-07-13 2003-03-28 Toshiba Corp 蒸気乾燥器、熱交換器、発熱体被覆管および伝熱システム
WO2003008928A2 (en) * 2001-07-16 2003-01-30 Sensor Tech, Inc. Sensor device and method for qualitative and quantitative analysis of gas phase substances
US6853953B2 (en) * 2001-08-07 2005-02-08 Tokyo Electron Limited Method for characterizing the performance of an electrostatic chuck
US6634177B2 (en) * 2002-02-15 2003-10-21 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for the real-time monitoring and control of a wafer temperature
US6771086B2 (en) * 2002-02-19 2004-08-03 Lucas/Signatone Corporation Semiconductor wafer electrical testing with a mobile chiller plate for rapid and precise test temperature control
US6646233B2 (en) * 2002-03-05 2003-11-11 Hitachi High-Technologies Corporation Wafer stage for wafer processing apparatus and wafer processing method
US6796054B2 (en) * 2002-03-12 2004-09-28 Tokyo Electron Limited Low-pressure dryer and low-pressure drying method
JP2003294799A (ja) * 2002-04-05 2003-10-15 Orion Mach Co Ltd 環境試験装置
JP3802446B2 (ja) * 2002-05-15 2006-07-26 東邦化成株式会社 基板乾燥方法およびその装置
US7195693B2 (en) * 2002-06-05 2007-03-27 Advanced Thermal Sciences Lateral temperature equalizing system for large area surfaces during processing
US6897940B2 (en) * 2002-06-21 2005-05-24 Nikon Corporation System for correcting aberrations and distortions in EUV lithography
US7156951B1 (en) * 2002-06-21 2007-01-02 Lam Research Corporation Multiple zone gas distribution apparatus for thermal control of semiconductor wafer
JP3913625B2 (ja) * 2002-07-12 2007-05-09 東京エレクトロン株式会社 減圧乾燥装置、塗布膜形成装置及び減圧乾燥方法
KR100431332B1 (ko) * 2002-08-06 2004-05-12 삼성전자주식회사 반도체 설비의 냉각 가스 공급 장치
US7002341B2 (en) * 2002-08-28 2006-02-21 Vanderbilt University Superconducting quantum interference apparatus and method for high resolution imaging of samples
US20040045813A1 (en) * 2002-09-03 2004-03-11 Seiichiro Kanno Wafer processing apparatus, wafer stage, and wafer processing method
US7046025B2 (en) * 2002-10-02 2006-05-16 Suss Microtec Testsystems Gmbh Test apparatus for testing substrates at low temperatures
JP4133209B2 (ja) * 2002-10-22 2008-08-13 株式会社神戸製鋼所 高圧処理装置
KR100541447B1 (ko) * 2003-07-23 2006-01-11 삼성전자주식회사 웨이퍼용 정전척
US20050016467A1 (en) * 2003-07-24 2005-01-27 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for dry chamber temperature control
US7072165B2 (en) * 2003-08-18 2006-07-04 Axcelis Technologies, Inc. MEMS based multi-polar electrostatic chuck
US7517498B2 (en) * 2003-08-19 2009-04-14 Agilent Technologies, Inc. Apparatus for substrate handling
JP4592270B2 (ja) * 2003-10-06 2010-12-01 日東電工株式会社 半導体ウエハの支持材からの剥離方法およびこれを用いた装置
US6905984B2 (en) * 2003-10-10 2005-06-14 Axcelis Technologies, Inc. MEMS based contact conductivity electrostatic chuck
KR100653687B1 (ko) * 2003-11-04 2006-12-04 삼성전자주식회사 반도체기판들을 건조시키는 장비들 및 이를 사용하여반도체기판들을 건조시키는 방법들
CN101068483A (zh) * 2004-02-19 2007-11-07 P2科技公司 用于头发处理装置的改进的加热元件和电路
JP4330467B2 (ja) * 2004-02-26 2009-09-16 東京エレクトロン株式会社 プロセス装置及び該プロセス装置内のパーティクル除去方法
US20060023395A1 (en) * 2004-07-30 2006-02-02 Taiwan Semiconductor Manufacturing Co., Ltd. Systems and methods for temperature control of semiconductor wafers
US7314506B2 (en) * 2004-10-25 2008-01-01 Matheson Tri-Gas, Inc. Fluid purification system with low temperature purifier
DE102005001163B3 (de) * 2005-01-10 2006-05-18 Erich Reitinger Verfahren und Vorrichtung zum Testen von Halbleiterwafern mittels einer temperierbaren Aufspanneinrichtung
GB0505379D0 (en) * 2005-03-16 2005-04-20 Robio Systems Ltd Cellular entity maturation and transportation systems
US20060242967A1 (en) * 2005-04-28 2006-11-02 Taiwan Semiconductor Manufacturing Co., Ltd. Termoelectric heating and cooling apparatus for semiconductor processing
US7834527B2 (en) * 2005-05-05 2010-11-16 SmartMotion Technologies, Inc. Dielectric elastomer fiber transducers
JP4410147B2 (ja) * 2005-05-09 2010-02-03 東京エレクトロン株式会社 加熱装置、塗布、現像装置及び加熱方法
US20060274474A1 (en) * 2005-06-01 2006-12-07 Lee Chung J Substrate Holder
US20060275547A1 (en) * 2005-06-01 2006-12-07 Lee Chung J Vapor Phase Deposition System and Method
JP4049172B2 (ja) * 2005-07-13 2008-02-20 住友電気工業株式会社 ウェハプローバ用ウェハ保持体およびそれを搭載したウェハプローバ
US7615970B1 (en) * 2005-08-24 2009-11-10 Gideon Gimlan Energy invest and profit recovery systems
US20070084496A1 (en) * 2005-10-18 2007-04-19 Edey Bruce A Solid state power supply and cooling apparatus for a light vehicle
US8608900B2 (en) * 2005-10-20 2013-12-17 B/E Aerospace, Inc. Plasma reactor with feed forward thermal control system using a thermal model for accommodating RF power changes or wafer temperature changes
US7447025B2 (en) * 2005-11-01 2008-11-04 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device
US7920926B2 (en) * 2005-12-09 2011-04-05 Apsara Medical Corporation Method and apparatus for carrying out the controlled heating of tissue in the region of dermis
JP4527670B2 (ja) * 2006-01-25 2010-08-18 東京エレクトロン株式会社 加熱処理装置、加熱処理方法、制御プログラムおよびコンピュータ読取可能な記憶媒体
US20070214631A1 (en) * 2006-03-15 2007-09-20 Thomas Landrigan Thermal chuck and processes for manufacturing the thermal chuck
JP4889331B2 (ja) * 2006-03-22 2012-03-07 大日本スクリーン製造株式会社 基板処理装置および基板処理方法
US8585786B2 (en) * 2006-03-31 2013-11-19 Coaltek, Inc. Methods and systems for briquetting solid fuel
US8585788B2 (en) * 2006-03-31 2013-11-19 Coaltek, Inc. Methods and systems for processing solid fuel
US8524005B2 (en) * 2006-07-07 2013-09-03 Tokyo Electron Limited Heat-transfer structure and substrate processing apparatus
JP4812563B2 (ja) * 2006-08-29 2011-11-09 大日本スクリーン製造株式会社 基板処理方法および基板処理装置
US20080083700A1 (en) * 2006-10-10 2008-04-10 Lexmark International, Inc. Method and Apparatus for Maximizing Cooling for Wafer Processing
JP4884180B2 (ja) * 2006-11-21 2012-02-29 東京エレクトロン株式会社 基板処理装置および基板処理方法
US20080200039A1 (en) * 2007-02-16 2008-08-21 United Microelectronics Corp. Nitridation process
US7479463B2 (en) * 2007-03-09 2009-01-20 Tokyo Electron Limited Method for heating a chemically amplified resist layer carried on a rotating substrate
US8706914B2 (en) * 2007-04-23 2014-04-22 David D. Duchesneau Computing infrastructure
US7954449B2 (en) * 2007-05-08 2011-06-07 Palo Alto Research Center Incorporated Wiring-free, plumbing-free, cooled, vacuum chuck
JP2007235171A (ja) * 2007-05-17 2007-09-13 Sumitomo Electric Ind Ltd ウェハプローバ用ウェハ保持体およびそれを搭載したウェハプローバ
EP2047981B1 (de) * 2007-09-20 2010-11-03 Kabushiki Kaisha Kobe Seiko Sho Aluminiumlegierungsmaterial mit einem hervorragenden Meereswasserkorrosionswiderstand und Plattenhitzeaustauscher
JP2009091648A (ja) * 2007-09-20 2009-04-30 Kobe Steel Ltd 海水耐食性に優れたアルミニウム合金材及びプレート式熱交換器
US20090149930A1 (en) * 2007-12-07 2009-06-11 Thermage, Inc. Apparatus and methods for cooling a treatment apparatus configured to non-invasively deliver electromagnetic energy to a patient's tissue
US8198567B2 (en) * 2008-01-15 2012-06-12 Applied Materials, Inc. High temperature vacuum chuck assembly
US20090188211A1 (en) * 2008-01-25 2009-07-30 Xcellerex, Inc. Bag wrinkle remover, leak detection systems, and electromagnetic agitation for liquid containment systems
US7547358B1 (en) * 2008-03-03 2009-06-16 Shapiro Zalman M System and method for diamond deposition using a liquid-solvent carbon-transfer mechanism
WO2009151718A2 (en) * 2008-03-25 2009-12-17 Ronald De Strulle Environmentally-neutral processing with condensed phase cryogenic fluids
US8515553B2 (en) * 2008-04-28 2013-08-20 Thermage, Inc. Methods and apparatus for predictively controlling the temperature of a coolant delivered to a treatment device
EP2310109A4 (de) * 2008-07-14 2012-03-28 Tenoroc Llc Aerodynamische trenndüse
US9064911B2 (en) * 2008-10-24 2015-06-23 Applied Materials, Inc. Heated cooling plate for E-chucks and pedestals
JP5185790B2 (ja) * 2008-11-27 2013-04-17 株式会社日立ハイテクノロジーズ プラズマ処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885353A (en) * 1996-06-21 1999-03-23 Micron Technology, Inc. Thermal conditioning apparatus
US6099643A (en) * 1996-12-26 2000-08-08 Dainippon Screen Mfg. Co., Ltd. Apparatus for processing a substrate providing an efficient arrangement and atmospheric isolation of chemical treatment section
WO2003014411A1 (en) * 2001-08-08 2003-02-20 Lam Research Corporation Rapid cycle chamber having a top vent with nitrogen purge
DE20205949U1 (de) * 2002-04-15 2002-08-22 Ers Electronic Gmbh Vorrichtung zur Konditionierung von Halbleiterwafern und/oder Hybriden

Also Published As

Publication number Publication date
PT1495486E (pt) 2007-01-31
US20050227503A1 (en) 2005-10-13
CA2481260C (en) 2010-10-12
EP1495486B1 (de) 2006-10-04
EP1495486B3 (de) 2009-10-21
AU2003224079A1 (en) 2003-10-27
ES2274225T3 (es) 2007-05-16
CN1647246A (zh) 2005-07-27
NO20044607L (no) 2004-10-26
CA2481260A1 (en) 2003-10-23
US7900373B2 (en) 2011-03-08
PL371238A1 (en) 2005-06-13
NO336896B1 (no) 2015-11-23
DE10216786B4 (de) 2004-07-15
DE10216786C5 (de) 2009-10-15
DE50305265D1 (de) 2006-11-16
RU2284609C2 (ru) 2006-09-27
JP2005528781A (ja) 2005-09-22
ATE341831T1 (de) 2006-10-15
PL211045B1 (pl) 2012-04-30
CN100378903C (zh) 2008-04-02
DK1495486T5 (da) 2010-03-08
JP4070724B2 (ja) 2008-04-02
KR20040111509A (ko) 2004-12-31
KR100625631B1 (ko) 2006-09-20
RU2004130436A (ru) 2005-07-10
ES2274225T7 (es) 2010-03-31
DK1495486T3 (da) 2007-02-05
EP1495486A1 (de) 2005-01-12
DE10216786A1 (de) 2003-11-06

Similar Documents

Publication Publication Date Title
DE10216786B4 (de) Verfahren und Vorrichtung zur Konditionierung von Halbleiterwafern und/oder Hybriden
EP3315940A1 (de) Prüfkammer
EP2483700B1 (de) Vorrichtung zur konditionierung von halbleiterchips und testverfahren unter verwendung der vorrichtung
EP0007103A1 (de) Kryochirurgiegerät
EP1673609A2 (de) Vorrichtung und verfahren zur handhabung einer kryoprobe
DE102018213274B4 (de) Klimagerät sowie Verfahren zum Betrieb eines Klimagerätes
EP2356411B1 (de) Wägezelle und verfahren zum temperieren einer wägezelle
EP0116834A1 (de) Gerät zur Erzeugung eines trockenen, kalten Luftstromes zur Behandlung rheumatischer Erkrankungen
EP2469577A1 (de) Vorrichtung zur Kühlung von Proben während einer Ionenstrahlpräparation
DE102012221511C5 (de) Kühlhaube zum langsamen Abkühlen von Glühgut
DE4115586C2 (de) Verfahren zum Konditionieren von Luft in einem abschließbaren Raum sowie Klimaprüfkammer
EP4154304A1 (de) Temperiervorrichtung, system und verfahren zum temperieren eines probertisches für halbleiterwafer und/oder hybride
DE102020128629A1 (de) Vorrichtung und Verfahren zum kombinierten Betrieb einer Wärmepumpe zur Erwärmung von Wasser und eines Lüftungssystems
DE19654790C1 (de) Verfahren zum Konditionieren von Gas sowie Klimaprüfschrank
DE102018122503A1 (de) Saunaofen, Saunakabine mit und Verfahren zum Betrieb eines Saunaofens
EP3320352B1 (de) Testen von diskreten halbleiter-bauelementen
DE102015110899A1 (de) Testen von diskreten Halbleiter-Bauelementen
DE10205401B4 (de) Konditioniervorrichtung für eine Heizfeuerungsstätte
DE102015013434A1 (de) Vorrichtung zur reproduzierbaren Belastungsanalyse von Materialien hinsichtlich Wind, Regen, Schnee und/oder Eis
DE102011050691A1 (de) Vorrichtung und Verfahren zur Einstellung der Luftfeuchte in Kühlräumen
WO2018060419A1 (de) Vorrichtung zum beeinflussen des volumenstroms eines füllprodukts in einer abfüllanlage
WO2019096984A1 (de) Temperaturänderungsvorrichtung
DE3615364A1 (de) Verfahren und vorrichtung zur kuehlung von materialien
DE7821298U1 (de) Kiyochinirgiegerät
CH697983B1 (de) Verfahren zum Betrieb eines Luftbefeuchtungsgerätes sowie Luftbefeuchtungsgerät.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2481260

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020047016355

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003585158

Country of ref document: JP

Ref document number: 20038084384

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003720475

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2560/CHENP/2004

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2004130436

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020047016355

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003720475

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10511335

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003720475

Country of ref document: EP