WO2003090305A1 - Systeme de traitement d'eau de formation et procede de traitement d'eau de formation, et generateur d'electricite - Google Patents

Systeme de traitement d'eau de formation et procede de traitement d'eau de formation, et generateur d'electricite Download PDF

Info

Publication number
WO2003090305A1
WO2003090305A1 PCT/JP2003/005012 JP0305012W WO03090305A1 WO 2003090305 A1 WO2003090305 A1 WO 2003090305A1 JP 0305012 W JP0305012 W JP 0305012W WO 03090305 A1 WO03090305 A1 WO 03090305A1
Authority
WO
WIPO (PCT)
Prior art keywords
generated water
water
generated
power generator
absorbing member
Prior art date
Application number
PCT/JP2003/005012
Other languages
English (en)
French (fr)
Inventor
Minehisa Imazato
Kiyoshi Yamaura
Toru Hokari
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US10/509,843 priority Critical patent/US7816043B2/en
Priority to AU2003235279A priority patent/AU2003235279A1/en
Publication of WO2003090305A1 publication Critical patent/WO2003090305A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04171Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal using adsorbents, wicks or hydrophilic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a generated water treatment system and a generated water treatment method for treating generated water generated at the time of power generation by a power generator, and a generated water treatment system and a generated water treatment method applied to the generated water.
  • the present invention relates to a power generator for processing generated water. Background art
  • a fuel cell is a device that supplies fuel gas such as hydrogen and oxygen (air), and electrochemically reacts the fuel gas with oxygen to generate electric power in a power generator.
  • fuel gas such as hydrogen and oxygen (air)
  • electrochemically reacts the fuel gas with oxygen to generate electric power in a power generator.
  • Such a fuel cell is expected to be greatly applied to electric vehicles and hybrid vehicles by being mounted as a power source in vehicles such as automobiles, and it is also easy to reduce its weight and size. Due to its structure, it is not limited to applications such as current dry batteries and rechargeable batteries, but also telecommunications such as portable equipment, power tools, household appliances, lighting, emergency uninterruptible power Applications to the power supply field and the munitions field are being attempted.
  • a predetermined electrolyte membrane such as a proton conductor membrane is provided between an anode electrode serving as a hydrogen side electrode and a cathode electrode serving as an oxygen side electrode.
  • a structure in which a plurality of cell structures each including a catalyst layer containing a catalyst added so that a feed material reacts and a diffusion layer portion for the reaction material to reach the catalyst are stacked.
  • hydrogen gas (H 2) separates into protons (H +) and electrons (e ⁇ ).
  • protons (H +) move through the proton conductor membrane from the anode electrode side to the force source electrode side, and electrons (e-) pass through a predetermined external circuit. Then, it moves to the force-sword electrode, and a reaction that produces water from oxygen (air), protons (H +), and electrons (e—) is performed at the force-sword electrode, and a predetermined electromotive force is generated.
  • the feedstock In such a fuel cell, the feedstock must be smoothly sent to the catalyst layer for the reaction to take place.However, the moisture generated at the cathode electrode and the proton conductor film are diffused back to the anode side. The generated water may obstruct the flow of feedstock such as hydrogen gas, or the moisture may stagnate in the air supply channel to supply oxygen (air) and obstruct the flow of oxygen (air) It is known to be a factor in reducing efficiency.
  • a method of blowing off the water as a liquid using the gas flow velocity, or a method of discharging the water as a liquid using gravity is used.
  • the method of discharging water in a liquid state using gravity is placed in a small device such as a portable electronic device when it is applied to a small device such as a portable electronic device. It cannot be used because the direction is limited.
  • the method of blowing off water as a liquid using the gas flow rate is not practical because a large pump must be used to realize the method. Therefore, in a fuel cell, when it is applied to a small device, a small pump / fan is used to discharge water as a liquid, or the water is evaporated by air.
  • Patent Document 1 discloses that a power source side current collector includes a water-repellent second filler in a hole of a base material having a carbon fiber skeleton and a first filler having a low water repellency. This is a composite with a porous deer layer formed by sintering the paste with the material, and this power source side current collector and at least one of the anode side current collectors are in contact with each other. There is disclosed a fuel cell having water moving means for moving water from the interface with the back surface of the current collector. In this fuel cell, since the water produced by the reaction at the power source moves through the passage formed by the first filler particles continuously arranged in the thickness direction of the current collector, the power source gas supply is not hindered. Is described as having the effect.
  • Patent Document 2 Japanese Patent Application Laid-Open No. H11-97041) or Patent Document 3 (Japanese Patent Application Laid-Open No. 2000-101) discloses a technique for ensuring the gas flow by discharging moisture from the air supply groove.
  • Japanese Patent Application Publication No. 11032 has been proposed.
  • Patent Document 2 discloses a solid polymer fuel cell in which a water-repellent region and a hydrophilic region which have been subjected to a water-repellent treatment and a hydrophilic treatment are formed on at least a part of the wall surface of the supply groove on the anode electrode side. ing. In this polymer electrolyte fuel cell, it is described that a gas passage can be secured by forming a water-repellent region and a hydrophilic region.
  • Patent Document 3 discloses that at least one of the anode electrode, the force source electrode, and a pair of separators formed with a supply groove for supplying gas to the anode electrode and the cathode electrode has, There is disclosed a polymer electrolyte fuel cell in which a flow path for removing moisture is arranged. In this polymer electrolyte fuel cell, by providing a flow path for removing water generated on the cathode electrode side, the discharge of water and the flow of gas can be separated. It describes that blockage can be avoided.
  • Such water can be discharged by controlling the pressure or flow rate of oxygen or air at the cathode electrode and controlling the flow rate, but the cathode electrode is often open-to-atmosphere.
  • a power generation cell it is difficult to control the pressure and flow rate of the gas and discharge it along with the gas flow.
  • a power generation cell is mounted on a portable electronic device, it is difficult to add a new device for controlling the pressure and flow rate of gas in order to treat generated water. If the collected water becomes water droplets and diffuses, it will cause malfunction due to water scattering around the equipment.
  • Patent Document 2 has a problem that a large pump is required because water droplets need to be discharged from a long air supply groove for supplying air without relying on gravity. there were.
  • the present invention has been made in view of such circumstances, and it is possible to efficiently and reliably treat generated water generated during power generation by a power generator with a simple configuration. It is an object of the present invention to provide a generated water treatment system and a generated water treatment method, and a power generation apparatus to which the generated water treatment system and the generated water treatment method are applied. Disclosure of the invention
  • a generated water treatment system that achieves the above-described object is a generated water treatment system that processes generated water generated at the time of power generation by a power generator, and is provided in the power generator and extends. It is characterized by comprising a generated water absorbing member that collects and moves generated water using capillary action and a generated water retention member that temporarily accumulates generated water.
  • the generated water generated by the power generation of the power generator can be collected by the generated water absorbing member, and the generated water can be treated without staying inside the power generator. .
  • the power generator has an anode electrode supplied with a substance mainly composed of hydrogen as an active substance, and oxygen as an active substance when exposed to the atmosphere.
  • a substance mainly composed of hydrogen as an active substance, and oxygen as an active substance when exposed to the atmosphere is a fuel cell having a supplied force electrode and an electrolyte membrane sandwiched between the anode electrode and the force electrode.
  • a current collector is formed on the power source electrode, and an opening for supplying oxygen to the cathode electrode is formed on the current collector.
  • a generated water absorbing member is formed in a peripheral portion. More specifically, the generated water absorbing member is formed so as to surround the periphery of the opening, cover the cross section of the opening, and reach the force source electrode.
  • the generated water treatment system according to the present invention when the power generator is an open-to-atmosphere type fuel cell, is provided around the opening of the current collector provided to supply oxygen by opening to the atmosphere.
  • a formed water absorbing member is formed in the water, and the generated water is collected by the formed water absorbing member.
  • the generated water treatment system according to the present invention can efficiently absorb the generated water by forming the generated water absorbing member around the opening of the current collector in which the generated water is particularly likely to be generated, The generated water can be treated without staying inside the power generator. Further, in the generated water treatment system according to the present invention, since the generated water absorbing member absorbs the generated water from the power generator and evaporates it to the atmosphere, it does not need to add a device for managing gas pressure and flow rate. The generated water can be treated.
  • the generated water treatment system according to the present invention can efficiently absorb and move the generated water by the generated water absorbing member to process the generated water, the generated water passes through the electrolyte membrane and passes through the anode electrode. To prevent the supply of hydrogen gas to the catalyst section from being hindered, and to prevent the generated water from closing the opening and hindering the supply of air to the catalyst layer. can do. Further, in the generated water treatment system according to the present invention, since water is discharged from the power source side, it is possible to prevent a decrease in the output of the fuel cell. Further, in the generated water treatment system according to the present invention, the generated water absorbing member is formed of a thread-like material having a void region formed in the longitudinal direction or a porous material having a concave portion on the surface.
  • a capillary phenomenon occurs in the generated water absorbing member, and the generated water can be easily collected by using the capillary phenomenon.
  • the generated water can be moved.
  • the generated water absorbing member can move the generated water using the capillary phenomenon, the generated water can be transferred regardless of the direction of the generated water absorbing member with respect to the flow of wind and the direction of the generated water absorbing member with respect to gravity. It can be absorbed and moved.
  • the generated water absorption member evaporates the water generated from the surface of the power generator into the atmosphere and processes it.Therefore, it does not require a new function to treat the generated water or a device that supplies energy, so the power generation time can be reduced. It is possible to simply and efficiently treat the generated water that increases with the increase in water content. In particular, in the case of a miniaturized power generator, the generated water can be easily and continuously treated. Further, in the generated water treatment system according to the present invention, the generated water absorbing member is provided to extend on a surface of the electronic device on which the power generator is mounted. Therefore, the generated water absorbing member can move the collected generated water to the surface of the electronic device and evaporate it to the atmosphere on the surface of the electronic device having a larger area than the surface of the power generator.
  • the generated water treatment system according to the present invention can surely treat the generated water, so that it is possible to prevent performance degradation due to the generated water of the power generator incorporated in the electronic device. Can be prevented from being scattered around the device, and thus malfunction of the device due to scattering of the generated water can be avoided.
  • the generated water absorbing member has an uneven portion or a projecting portion. Therefore, the generation according to the present invention
  • the water treatment system can increase the area of the generated water absorbing member that comes into contact with the air, and can increase the amount of evaporation of the generated water as the area that comes into contact with the air increases.
  • the generated water treatment system according to the present invention can easily adjust the amount of evaporating generated water by changing the structure of the generated water absorbing member, such as providing an uneven portion or a projecting portion.
  • the amount of water inside the power generator can be adjusted by adjusting the amount of generated water collected by the generated water absorbing member.
  • the generated water treatment system according to the present invention is characterized by including a generated water retaining member that temporarily accumulates generated water generated by the power generator. Therefore, the generated water treatment system according to the present invention, after the generated water absorbing member collects the generated water, accumulates the generated water in the generated water retaining member, thereby reducing the amount of the generated water evaporating from the generated water absorbing member. Can be adjusted. Further, the generated water treatment system according to the present invention can adjust the amount of generated water temporarily stored by changing the capacity of the generated water retaining member and the like, and evaporates from the generated water absorbing member. By adjusting the amount of generated water evaporation, the amount of generated water collected by the generated water absorbing member can be adjusted, and the amount of water inside the power generator can be adjusted.
  • the generated water retaining member is provided between the generated water absorbing member and the electronic device. Therefore, the generated water treatment system according to the present invention can recover the generated water by the generated water retaining member provided on the surface of the electronic device even when the generated water is scattered around the electronic device, Equipment malfunction due to scattering can be avoided.
  • the produced water treatment system according to the present invention is characterized in that at least a water absorbing layer having water absorbency, gas permeability, and conductivity is provided between the diffusion layer and the current collector.
  • the generated water treatment system To further increase the efficiency of water absorption by absorbing the generated water present in the diffusion layer and further absorbing the generated water absorbed by the water absorbing layer by the generated water absorbing member that contacts a part of the water absorbing layer. And efficiently collect the generated electricity.
  • a generated water treatment method for achieving the above-mentioned object is a generated water treatment method for treating generated water generated at the time of power generation by a power generator, wherein the generated water utilizes a capillary phenomenon. It is characterized in that it is collected and moved and processed outside the power generator, or it is temporarily stored and then processed outside the power generator.
  • the generated water generated by the power generation of the power generator is collected by the generated water absorbing member, so that the generated water can be processed without staying in the power generator. .
  • a power generating apparatus that achieves the above-described object, supplies a fuel gas and an oxidizing gas, and generates electric power by electrochemically reacting the fuel gas and the oxidizing gas.
  • a product water absorbing member that is provided to extend to the power generating body, and that collects and moves generated water generated by the power generating body using capillary action.
  • Such a power generation device is configured such that generated water generated by power generation of the power generator is collected by the generated water absorbing member, so that the generated water is processed without staying inside the power generator. Power generation efficiency can be stabilized.
  • a generated water treatment system that achieves the above object is a generated water treatment system that processes generated water generated at the time of power generation by a power generator.
  • a fuel supply groove for supplying fuel gas and an oxidant supply groove for supplying an oxidant gas to the second electrode are formed, and a separator sandwiching the power generator and at least in the middle of the oxidant supply groove Territory And a produced water treatment means for treating produced water.
  • the generated water stays in the oxidant supply groove by processing the generated water by at least the generated water treatment means provided in an intermediate region of the oxidant supply groove. This eliminates blockage. Therefore, the generated water treatment system according to the present invention can avoid obstruction of the flow of the oxidizing gas passing through the oxidizing agent supply groove.
  • a water absorbing member that absorbs generated water can be used as the generated water treatment means.
  • the water absorbing member is desirably provided along at least a part of the side wall of the oxidant supply groove.
  • the generated water treatment system according to the present invention can directly absorb the generated water generated in the oxidant supply groove.
  • the water absorbing member may be provided so as to cover at least a part of the surface where the oxidant supply groove is formed.
  • the generated water treatment system according to the present invention can be configured such that the generated water absorbed by the water-absorbing member provided along at least a part of the side wall of the oxidant supply groove further forms the oxidant supply groove.
  • the water-absorbing member provided so as to cover at least a part of the formed surface can be diffused to a place separated from the power generator without using any external means.
  • a heat radiating portion for radiating heat of the power generator is formed in the separator so as to cover at least a part of the surface where the oxidant supply groove is formed.
  • the water-absorbing member is formed so as to have a predetermined shape extending from the surface on which the heat radiating portion is formed, and the predetermined-shaped region covers at least a part of the oxidant supply groove. Arrangement Is placed.
  • the generated water treatment system according to the present invention can diffuse the generated water to the heat radiating portion separated from the power generator, and can efficiently and surely evaporate the generated water in the heat radiating portion.
  • the water-absorbing member absorbs generated water by utilizing the capillary phenomenon.
  • the generated water treatment system according to the present invention can diffuse the generated water to the entire area of the water absorbing member, so that the water treatment speed can be improved, and the generated water can be absorbed extremely efficiently and reliably.
  • the water absorbing member can serve as a buffer for temporarily holding the generated water, and can cope with a change in the evaporation rate of the generated water due to environmental humidity. it can.
  • a water-absorbing member that absorbs generated water using such a capillary phenomenon
  • a water-absorbing member that is configured as an aggregate of thread-like fibers in which a void region is formed in the longitudinal direction.
  • the water-absorbing member is formed by attaching a predetermined tape material to a second material having a two-layer structure in which a first material having a moisture absorbing and releasing property and a second material having a water absorbing property are bonded together. It is desirable to have a three-layer structure attached to the lower layer of the material. Further, it is preferable that the second material absorbs generated water by utilizing a capillary phenomenon.
  • the generated water treatment system according to the present invention can prevent the portion covering the oxidant supply groove from being loosened by using the water absorbing member provided with the predetermined tape material in the lowermost layer. In addition to being able to stabilize the shape, it is possible to easily realize the work formation involving cutting of the water absorbing member.
  • the second material of the water absorbing member having the three-layer structure is a capillary tube. It is desirable that the generated water be absorbed by utilizing the phenomenon.
  • the generated water treatment system according to the present invention can use an oxidizing agent supply groove having a roughened surface as the generated water treating means, and furthermore, an oxidizing agent that forms a region having high water repellency or hydrophilicity. Supply grooves can also be used.
  • the generated water treatment system according to the present invention does not block the oxidizing agent supply groove due to stagnation of the generated water even by using such generated water treatment means, and passes through the oxidizing agent supply groove. Obstruction of the flow of the oxidizing gas can be avoided.
  • the produced water treatment system according to the present invention is characterized in that at least a water-absorbing layer having water-absorbing, gas-permeable, and conductive properties is provided between the diffusion layer and the separator.
  • the generated water treatment system is a generated water treatment means for absorbing the generated water present in the diffusion layer by the water absorption layer, and contacting the generated water absorbed by the water absorption layer with a part of the water absorption layer.
  • the generated water can be treated more efficiently, and the generated electricity can be collected more efficiently.
  • the generated water treatment method according to the present invention that achieves the above object is a generated water treatment method for treating generated water generated at the time of power generation by a power generator.
  • the generated water is treated by the generated water treatment means provided at least in an intermediate region of the oxidant supply groove. Accordingly, the generated water stays in the oxidant supply groove and is not blocked, so that the flow of the oxidant gas passing through the oxidant supply groove can be prevented from being hindered.
  • a power generating apparatus that achieves the above object provides a fuel gas and an oxidizing gas, and generates electric power by electrochemically reacting the fuel gas and the oxidizing gas.
  • a power generator having a predetermined electrolyte membrane provided between the first electrode and the second electrode, a fuel supply groove for supplying a fuel gas to the first electrode, and a second power supply.
  • An oxidant supply groove for supplying an oxidant gas to the electrode is formed, and is provided at a separation area that sandwiches the power generator and at least in an intermediate region of the oxidant supply groove, and is generated when power is generated by the power generator.
  • a generated water treatment means for treating generated water.
  • the generated water is treated by the generated water treatment means provided at least in the middle region of the oxidant supply groove, so that the generated water stays in the oxidant supply groove. Obstruction does not occur. Therefore, the power generation device according to the present invention can avoid obstruction of the flow of the oxidizing gas passing through the oxidizing agent supply groove, and can stabilize the power generation efficiency.
  • FIG. 1 is a cross-sectional view showing a configuration of a power generation apparatus to which the generated water treatment system shown as the first embodiment of the present invention is applied.
  • FIG. 2 is a perspective view schematically showing the external appearance of a notebook personal combination provided with a generated water absorbing member.
  • FIG. 3 shows a schematic external view of a notebook personal computer provided with a generated water absorbing member having a shape different from that of the generated water absorbing member shown in FIG. It is a perspective view.
  • FIG. 4 is a perspective view showing an outline of a notebook personal computer provided with a generated water absorbing member having a shape different from that of the generated water absorbing member shown in FIGS. 2 and 3.
  • FIG. 5 is a perspective view schematically showing an external appearance of a notebook personal computer provided with a generated water retaining member together with a generated water absorbing member.
  • Fig. 6 is a diagram for explaining the experimental results for verifying the effect of the power generator provided with the generated water absorbing member, and shows the relationship between the output voltage from the power generator and the elapsed time from the start of power generation.
  • FIG. 7 is a plan view of a separator applicable to the fuel cell according to the second embodiment of the present invention, as viewed from the surface.
  • Fig. 8 is a bottom view of the separation from the back.
  • FIG. 9 is a cross-sectional view of the same separation taken along the line HH indicated by a dashed line in FIG.
  • FIG. 10 is a cross-sectional view for explaining the structure of a three-layer water-absorbing cloth.
  • Fig. 11 is a cross-sectional view showing a partial area of Separation, and illustrates how the portion covering the air supply groove is loosened when used as a water-absorbing cloth without providing a tape material. It is.
  • Fig. 12 is a diagram for explaining the experimental results for verifying the effect of the separator provided with the water absorbing cloth shown in Fig. 10; the output voltage from the power generator, the elapsed time from the start of power generation, and FIG.
  • FIG. 13 is an exploded perspective view showing a configuration of a fuel cell to which the same separation is applied.
  • FIG. 14A is a structural view showing a structure of a casing constituting the fuel cell, and is a front view showing one side surface,
  • FIG. 14B is a structural diagram showing a structure of a casing constituting the fuel cell, It is a rear view showing another side,
  • FIG. 14C is a structural view showing a structure of a casing constituting the fuel cell, and is a side view showing one end face;
  • FIG. 14D is a structural view showing a structure of a casing constituting the fuel cell, and is a side view showing another end face.
  • FIG. 15 is a perspective view showing a power generation unit constituting the fuel cell.
  • FIG. 16 is an exploded perspective view showing a part of the power generation unit.
  • FIG. 17 is a plan view showing the internal configuration of the fuel cell, and is a diagram for explaining the flow of air.
  • Fig. 18 shows a configuration in which the water-absorbing cloth is in contact with only part of the carbon fiber layer, which is the diffusion layer
  • FIG. 2 is a cross-sectional view illustrating a configuration of a fuel cell.
  • FIG. 19 is a cross-sectional view showing the configuration of the fuel cell shown as the third embodiment of the present invention.
  • This embodiment is directed to a fuel cell as a power generation device that supplies hydrogen as a fuel gas and air as an oxidizing gas, and electrochemically reacts the hydrogen and air to generate power in a power generator. And a generated water treatment system applied to the fuel cell.
  • FIG. 1 is a cross-sectional view showing an example of a power generation device to which the generated water treatment system is applied.
  • the generated water treatment system has a power generator and A generated water absorbing member that extends and is provided to collect and move generated water generated by power generation by the power generating body by using a capillary phenomenon, and a generated water retaining member that temporarily accumulates generated water.
  • the power generation device 20 has a hydrogen-side current collector 11 disposed on an anode electrode serving as a hydrogen-side electrode and a cathode electrode disposed on an oxygen-side electrode.
  • the main constituent elements are an oxygen-side current collector 17 provided and a power-generating body 10 sandwiched between the hydrogen-side current collector 11 and the oxygen-side current collector 17.
  • a generated water absorbing member 18 for moving generated water generated at the cathode electrode is provided on the oxygen-side current collector 17 of the power generator 20, a generated water absorbing member 18 for moving generated water generated at the cathode electrode is provided.
  • the generated water absorbing member 18 is formed around the opening 17 a so that oxygen is supplied to the cathode electrode from an opening 17 a in the oxygen-side current collector 17 described later.
  • the opening 17a is formed so as not to impede the contact of the force source electrode with the atmosphere.
  • a substance such as hydrogen (H 2) methanol is supplied as fuel to the anode electrode of the power generation device 20 from, for example, a hydrogen storage cartridge or the like.
  • Oxygen (air) is supplied to the power source electrode of the power generator 20.
  • the opening 17a is formed in the oxygen-side current collector 17 as described above, and the oxygen-side diffusion layer 16 is released to the atmosphere through the opening 17a. By contacting the atmosphere, oxygen is supplied to the force source electrode.
  • the generated water absorbing member 18 formed on the power generation device 20 is used to temporarily accumulate the generated water generated during power generation by the power generator 10. It is connected to the water retention member 22. As will be described later, the generated water retaining member 22 comes into contact with the generated water absorbing member 18 and is provided on the surface of an electronic device or the like.
  • the power generator 10 is composed of an oxygen-side diffusion layer 16 in contact with the oxygen-side current collector 17, and electrons (e—) from the anode electrode and prosthesis with respect to oxygen from the oxygen-side diffusion layer 16.
  • the oxygen-side catalyst layer 15 that reacts with the ton (H +) to generate moisture, the electrolyte membrane 14 that enables the transfer of the proton (H +), and the electrons (
  • the structure has a structure in which a hydrogen-side catalyst layer 13 that generates e —) and protons (H +) and a hydrogen-side diffusion layer 12 that is in contact with the hydrogen-side current collector 11 are stacked.
  • the hydrogen-side catalyst layer 13, the hydrogen-side diffusion layer 12, and the hydrogen-side current collector 11 constitute a fuel electrode. Hydrogen supplied as fuel is diffused in the hydrogen-side diffusion layer 12, and a reaction such as H 2 ⁇ 2 H + + 2 e— occurs in the hydrogen-side catalyst layer 13 using the diffused hydrogen, and electrons (e — ) And proton (H +).
  • the protons (H +) generated in the hydrogen-side catalyst layer 13 move to the electrolyte membrane 14 and then reach the oxygen-side catalyst layer 15 to react with oxygen. Then, the electrons (e—) reach the oxygen-side catalyst layer 15 via the oxygen-side current collector 17 by an external circuit (not shown).
  • the oxygen-side current collector 17 of the power generator 20 has an opening as a gas inlet for supplying oxygen in the air to the oxygen-side diffusion layer 16 of the power generator 10.
  • a plurality of parts 1 ⁇ a are formed.
  • the generated water absorbing member 18 is formed so as to cover the cross section of the opening 17a. Oxygen is taken in when the oxygen-side diffusion layer 16 of the power generator 10 is opened to the atmosphere through the opening 17a.
  • the opening may be formed in, for example, the generated water absorbing member 18. More specifically, the opening is formed in the generated water absorbing member 18.
  • the opening may be formed so as to overlap the opening 17a so as to cover the cross section of the opening 17a.
  • the shape of the opening formed in the generated water absorbing member 18 is the same as the shape of the opening 17 a in the oxygen-side current collector 17, such as a circle, an ellipse, a stripe, or a multiplicity.
  • Various shapes such as a rectangular shape can be adopted, and it is desirable that the oxygen-side diffusion layer 16 be shaped so as to easily come into contact with the atmosphere.
  • the generated water absorbing member 18 is a separate component from the oxygen-side current collector 17.
  • the generated water-absorbing member may be formed, for example, by applying a coating or the like. It can also be integrated with body 17.
  • the generated water absorbing member 18 provided on the oxygen-side current collector 17 is provided in contact with the oxygen-side current collector 17, and the oxygen-side diffusion layer 16 of the power generator 10 is provided. It is provided around the opening 17a so as to surround the periphery of the opening 17a provided for supplying oxygen to the atmosphere by supplying it to the atmosphere. Specifically, for example, the opening 17a Is formed so as to cover the cross section of. In this case, the generated water absorbing member 18 does not block the opening 17a for supplying air, so that the flow of air is not obstructed.
  • Such a generated water absorbing member 18 is made of a hydrophilic absorbing material that absorbs water, such as a crosslinked polyacrylate, isobutylene maleate, starch Z polyacrylate, and PVA. (PolyVinylAlcohool) High polymer materials such as nopolyacrylic type, acrylic fiber hydrolysis type, and bridge PVA type can be applied. Further, as described later, the generated water absorbing member 18 desirably moves the generated water to a predetermined separated location to evaporate the generated water, and desirably is a material that moves moisture.
  • Such a material examples include a porous metal or a porous mineral having a concave portion on the surface, hydrophilic carbon, paper, pulp, a polymer material, a natural fiber, a synthetic fiber, and the like. Also, such materials have a capillary effect
  • Materials having high water absorbency are known, and examples thereof include a polyester nonylon composite material and a polyester, which are synthetic fibers in which a thread-like material in which a fine void region is formed in a cross section in the longitudinal direction is woven vertically and horizontally.
  • a synthetic fiber or the like in which a thread-like material having a fine void region formed in a cross section in a longitudinal direction may be used as the generated water absorbing member 18.
  • a thread-like material in which a fine void region is formed in a cross section in the longitudinal direction
  • a composite material such as a polyester nonylon composite material.
  • another material is formed between each convex portion of the material of the mold shape.
  • a fine void region is formed between the substantially star-shaped material and another material, and moisture penetrating into the fine void region is cross-sectional in the longitudinal direction of the void region. Since the surface area is small, the pressure is increased by the surface tension of water, causing capillary action.
  • the minute void region may be a gap between a substantially star-shaped material and another material, or may be a fine groove formed in the longitudinal direction.
  • a thread-like material having a fine void region formed in a cross section with respect to the longitudinal direction when used, pressure is increased by surface tension of water due to the fine void region, and a capillary phenomenon occurs.
  • the water can be moved by utilizing water, and a moving material having high water absorption can be formed. Further, when such a thread-like material is used, a surface tension of water is generated between the thread-like materials, and a water-absorbing material capable of absorbing water by the surface tension of water can be formed.
  • the generated water generated in the oxygen-side catalyst layer in the force source electrode enters the oxygen-side diffusion layer. Furthermore, the generated water that has penetrated the oxygen-side diffusion layer reaches the oxygen-side current collector, contacts water at room temperature, forms water droplets, and aggregates on the oxygen-side current collector.
  • the steam is formed as water droplets on the oxygen-side current collector
  • water droplets increase due to the surface tension of water, and the opening corresponding to the opening 17a is blocked by water droplets, preventing the supply of oxygen to the oxygen-side catalyst layer and reducing the output of the power generator. Will do.
  • the generated water absorbing member 18 is formed in contact with the oxygen-side current collector 17, and the generated water-absorbing member 18 is formed by the opening in the oxygen-side current collector 17. Since the formed water is formed at the periphery of the portion 17a, the generated water that increases at the opening 17a comes into contact with the generated water absorbing member 18 and is absorbed. At this time, in the power generator 20, when the generated water comes into contact with the generated water absorbing member 18, the generated water is attracted to the generated water absorbing member 18 by the surface tension of the water. When the member 18 is composed of a thread-like material, the generated water is absorbed by the produced water absorbing member 18 because the surface tension of water acts between the thread-like materials to exhibit water absorption.
  • the thread-like material forming the generated water absorbing member 18 forms a fine void region in a cross section in the longitudinal direction, a high water absorption in which a capillary phenomenon occurs The absorbed water can be moved by utilizing the capillary phenomenon.
  • the power generation device 20 even the moisture that permeates the oxygen-side current collector 17 is reliably absorbed by the generated water absorbing member 18 having high absorbency, and the opening 17a has a good opening. Oxygen is supplied to the power generator 10 under the state.
  • the generated water absorbing member 18 moves the absorbed generated water to the surface of an electronic device or the like having an area larger than the surface of the power generator 10 to evaporate the generated water.
  • the steam can be efficiently evaporated, and the generated water absorbing member 18 can generate the generated water.
  • the water produced can be continuously evaporated every time it is absorbed and moved.
  • the cross section in the longitudinal direction is minute.
  • the generated water absorbing member 18 composed of a thread-like material with a unique void area
  • the generated water is recovered under high water absorption by utilizing the capillary phenomenon generated in the generated water absorbing member 18.
  • the generated water that aggregates on the oxygen-side current collector 17 tends to aggregate around the opening 17 a
  • the generated water absorbing member 18 in the peripheral portion it is possible to efficiently collect and move the generated water every time the generated water is generated.
  • the generated water absorbing member 18 since the generated water absorbing member 18 is provided on the oxygen-side current collector 17, heat generated in the oxygen-side current collector 17 due to power generation causes the generated water absorbing member 1 Since the generated water can be promoted from Fig. 8 and the heat generated at the time of power generation is used for the evaporation of the generated water, the temperature rise of the generator 10 due to the heat at the time of power generation can be efficiently avoided. Can be.
  • the generated water absorbing member 18 is not provided so as to cover the cross section around the opening 17a of the oxygen-side current collector 17, but is separated from the opening 17a. Thus, it may be configured to absorb generated water separated from the oxygen-side current collector 17 by gravity or wind flow.
  • FIG. 2 is a schematic diagram of an example of a notebook personal convenience set provided with a generated water absorbing member 18.
  • the generated water absorbing member 18 is provided around the opening 17a of the power generation device 20 to collect generated water during power generation, and then collects the generated water to generate electricity 10 From the surface of the notebook personal computer 21 with a large surface area to evaporate on the back of the notebook personal computer 21. Therefore, the generated water absorbing member 18 is disposed on the oxygen-side current collector 17 of the power generation device 20 and at the same time, has a large surface area so that the generated water can easily evaporate. It is provided extending to the back.
  • the generated water absorbing member 18 is provided on the entire back of the display of the notebook personal computer 21 in which the power generator 20 is stored.
  • the power generation device 20 is attached to a notebook personal computer 21 which is a main body of the device.
  • the power generation device 20 may be inserted from a slot for a card. It may be attached to the bottom of the personal convenience store 21.
  • a notebook personal computer is described here as a portable electronic device, the portable electronic device may be a mobile phone or the like to which power is supplied from a fuel cell card.
  • the generated water generated by the power source electrode of the power generation device 20 is generated by The water-absorbing member 18 recovers the water by utilizing the capillary phenomenon, and is moved over the entire area of the generated water-absorbing member 18.
  • the capillary 18 is used. Using the phenomenon, it can be sucked and moved in the direction opposite to the direction of gravity.
  • the generated water absorbing member 18 has a fine cross-sectional area in the longitudinal direction. The smaller the volume, the higher the water absorption, and the more easily the generated water can be sucked up. Furthermore, the generated water absorbing member 18 can easily move the collected water as the cross-sectional area of the water passage for sucking up moisture by using the capillary phenomenon is smaller, and the generated water absorbing member 18 The generated water can be easily transferred to the entire area of the river.
  • the generated water absorbing member 18 moves the generated water over the entire area, the generated water absorbing member 18 is a moisture releasing material on the surface portion in contact with the atmosphere. The generated water is evaporated from the water absorbing member 18.
  • the generated water collected by the generated water absorbing member 18 must continue to evaporate from the entire surface of the generated water absorbing member 18 formed on the back of the display, which is larger than the surface area of the generator 10. Therefore, the generated water can be easily discharged to the outside and treated without providing a new device for discharging the generated water to the outside of the power generation device 20.
  • the water generated by the power generator 10 is absorbed by the generated water absorbing member 18 in contact with the oxygen-side current collector 17 and is moved to the entire area of the generated water absorbing member 18.
  • the direction of gravity is reversed by utilizing the capillary phenomenon of the generated water absorbing member 18. Absorbs water in the direction. Therefore, even when the notebook personal computer 21 is opened for power generation, the generated water absorbing member 18 formed on the back of the notebook personal computer 21 absorbs the generated water and has a large surface area.
  • the generated water can be easily evaporated from the entire rear surface of the display of the notebook personal computer 21, and the generated water can be more efficiently treated.
  • the generated water is evaporated from the generated water absorbing member 18, the water concentration of the generated water contained in the generated water absorbing member 18 is reduced. Even at the time of power generation in which generated water is easily generated, the generated water can be treated, and the power generation performance of the power generator 10 can be maintained.
  • the power generator 20 is mounted on the bottom of the notebook personal computer 21 as a flat, large-area power generator, the generated water absorbing member 18 that collects the generated water from the power generator 10 is used. Since the surface area of the water is large, the generated water is easily evaporated from the surface of the generated water absorbing member 18, and the generated water can be more efficiently evaporated into the atmosphere.
  • the generated water is absorbed by the oxygen-side current collector 17.
  • a storage member 18 is provided to absorb and move generated water generated by power generation, and then to evaporate the generated water into the atmosphere for treatment, the water generated by the power generator 10 is transferred to the power generation device 20. It can be discharged from the oxygen-side diffusion layer 16 without staying inside. Therefore, in the power generation device 20, it is possible to prevent the supply of hydrogen gas to the hydrogen-side catalyst layer 13 from being hindered due to the back diffusion of water to the anode electrode through the electrolyte membrane 14. Can be done.
  • the water generated at the force source electrode does not block the opening 17a in the oxygen-side current collector 17 and the oxygen-side diffusion layer 16 It is possible to prevent the supply to the power supply from being hindered, and it is possible to continue power generation without lowering the power generation performance of the power generator 10.
  • the volume and the amount of the generated water absorbing member 18 can be easily adjusted, by adjusting the volume and the amount of the generated water absorbing member 18, the generated water absorbing member 1 can be adjusted.
  • the amount of generated water absorbed by 8 and the amount of generated water evaporated by the generated water absorbing member 18 can be easily adjusted, making it less affected by external environments such as humidity, temperature, and air flow. Optimum power generation according to the external environment and output can be performed.
  • the generated water absorbing member may have the following shape.
  • FIG. 3 shows an example in which the generated water absorbing member formed on the back surface of the display of the notebook personal computer 21 has another shape.
  • the shape of the produced water absorbing member 18a in the figure is a saw-toothed shape with uneven portions. Even in the generated water absorbing member 18a, the absorbed product water is evaporated to the atmosphere after moving to the whole area. The larger the surface area of the generated water absorbing member 18a in contact with the atmosphere, the larger the generated water. Is easy to evaporate. The amount of product water that evaporates increases in proportion to the product. For this reason, when the water absorption member 18a shown in the figure is formed into a saw-toothed shape with irregularities, the surface area of the water absorption member 18a in contact with the air increases. However, the amount of evaporating generated water can be increased without increasing the projected area of the generated water absorbing member 18a.
  • FIG. 4 shows an example in which the generated water absorbing member formed on the back surface of the display of the notebook personal computer 21 has another shape.
  • the shape of the generated water absorbing member 18b in the figure is such that a protruding portion having a T-shaped cross section is formed on the surface thereof. Similar to the generated water absorbing member 18a shown in Fig. 3, the generated water evaporates more easily as the generated water absorbing member 18b has a larger surface area in contact with the atmosphere, and the generated water evaporates in proportion to the surface area. . Therefore, when the T-shaped protruding portion is formed as in the case of the generated water absorbing member 18b shown in the same figure, the surface area of the generated water absorbing member 18b in contact with the atmosphere is reduced. The amount of generated water that evaporates can be increased without increasing the projected area of the generated water absorbing member 18b.
  • the formed water absorbing member 18 can have various three-dimensional shapes, thereby increasing the area in contact with the atmosphere, and evaporating with the increase in the area in contact with the atmosphere. As a result, the amount of generated water that can be treated can be efficiently increased.
  • an appropriate amount of water is required for the anode electrode of the power generation device 20 to allow hydrogen to enter the hydrogen-side diffusion layer 12, but the shape of the generated water absorption member 18 is changed. By changing the surface area, the amount of generated water absorbed by the generated water absorbing member 18 can be controlled, and the amount of recovered generated water can be controlled.
  • Fig. 5 is a schematic diagram of an example of a notebook personal computer provided with a generated water retention member that temporarily stores generated water together with the generated water absorption member. is there.
  • the generated water retaining member 22 is provided between the back of the display of the notebook personal computer 21 and the generated water absorbing member 18.
  • the generated water retaining member 22 It may be provided on a part of the back of the display, such as near the outer wall.
  • the notebook personal computer 21 after the generated water retaining member 22 absorbs and accumulates the generated water from the generated water absorbing member 18, the generated water absorbing member 18 is stored from the generated water retaining member 22. The generated water is absorbed again, and the generated water is evaporated from the generated water absorbing member 18 or the generated water retaining member 22 to the atmosphere.
  • the generated water retaining member 22 is configured to be detachable from the notebook personal computer 21 and the generated water absorbing member 18, and is replaced when the absorbed generated water exceeds a certain amount.
  • the produced water can be squeezed and reused.
  • the generated water retaining member 22 can have a structure that can be attached and detached simultaneously when attaching and detaching the power generation device 20 from the notebook personal computer 21, and hydrogen that supplies fuel to the power generation device 20 can be used. It can be attached and detached at the same time when the storage cartridge is replaced.
  • the generated water generated by the power generator 10 of the power generation device 20 is collected by the generated water absorbing member 18 and then moved over the entire area of the generated water absorbing member 18 to be absorbed by the generated water retaining member 22. Then, the generated water retention member 22 is temporarily stored.
  • the generated water retaining member 22 is made of, for example, a material capable of absorbing generated water and retaining water in the same manner as the generated water absorbing member 18. Examples of the material include a porous metal or a porous mineral having a concave portion on its surface, and a hydrophilic material. Water-retaining materials such as conductive carbon and polymer materials can be used.
  • the generated water retaining member 22 similarly to the generated water absorbing member 18, when a moving material configured by gathering a thread-like material having a fine void region formed in a cross section in the longitudinal direction is used. Moves the generated water absorbing member 18 The generated water is sucked up by utilizing the capillary phenomenon and is absorbed and accumulated in the generated water retaining member 22. At this time, the smaller the cross-sectional area of the fine void region, the greater the force of sucking up by capillary action.Therefore, the generated water retaining member 22 has a higher water absorbing property as the cross-sectional area of the water passage in the fine void region is smaller. It is possible to absorb water easily.
  • the generated water absorbing member 18 when the generated water absorbing member 18 is disposed in the power generation device 20 to collect and move the generated water generated by the power generation, and then temporarily store the generated water in the generated water retaining member 22.
  • the generated water retaining member 22 is provided in contact with the generated water absorbing member 18, but after the generated water absorbing member 18 collects and moves generated water generated by the power generation of the power generator 10,
  • the generated water can be temporarily accumulated when the amount of evaporation from the generated water absorbing member 18 is smaller than the amount of generated water collected by the generated water absorbing member 18 .
  • the power generation device 20 by adjusting the volume and the amount of the generated water retaining member 22, the amount of water in the generated water collected by the generated water absorbing member 18 can be adjusted, and the humidity, temperature, It is hardly affected by the external environment such as the air flow, and it is possible to perform optimal power generation according to the external environment and output.
  • a fuel cell as a power generator was manufactured as follows.
  • “platinum-supported carbon (support amount 46.7 wt%)” manufactured by Tanaka Metals Co., Ltd.
  • the polymer electrolyte solution Nafion (registered trademark) solution
  • NPA sodium-supported carbon
  • the polymer electrolyte solution "was mixed with so-called NPA and water, and the mixture was stirred for 2 hours in a polyethylene container to which metal spheres were added to improve dispersibility. This was placed on a polytetrafluoroethylene sheet with a platinum loading density of 0.22 mg. It was applied so as to have a thickness of cm 2 and dried to form a hydrogen side catalyst layer and an oxygen side catalyst layer.
  • the power generator as the membrane-electrode assembly is gripped by a metal structure as a hydrogen-side current collector and an oxygen-side current collector whose surfaces are subjected to gold plating to produce a fuel cell.
  • a metal structure as a hydrogen-side current collector and an oxygen-side current collector whose surfaces are subjected to gold plating to produce a fuel cell.
  • the experiment was performed in an indoor environment with an air temperature of 22 to 23 and a relative humidity of 30% to 40%.
  • hydrogen gas is supplied to the anode side as fuel, and an opening is provided on the cathode side as an air intake port in a part of the metal structure in contact with the oxygen-side diffusion layer, and air is supplied through this opening. Supplied.
  • the generated water absorbing member a cloth made of "Berima (registered trademark) X", which is a fiber having high water absorption and high water release properties, manufactured by Kanebo Gosen Co., Ltd., is used. , Especially in the vicinity. Further, as a comparative example, a similar experiment was performed when the process of disposing the generated water absorbing member was not performed.
  • Figure 6 shows the results of an experiment using such a power generator.
  • the figure shows a time series chart when the constant current characteristics at 1.5 A are measured for the voltage generated by the power generator.
  • the vertical axis in the figure shows the power generation in volts (V).
  • the output voltage from the body is shown, and the horizontal axis shows the elapsed time in minutes.
  • the generated water was observed to accumulate as water droplets at the opening serving as the air intake by the power generation of the power generator, whereas the generated water absorption member was arranged. No accumulation of water droplets was observed. This is because the generated water absorbing member was arranged near the opening provided in a part of the metal structure on the force sword side. It is nothing but a stable intake of air. In this way, the generated water recovered by the generated water absorbing member is evaporated from the generated water absorbing member to the atmosphere, and stable recovery of the generated water can be performed for a long time. It was found that stable air intake could be achieved.
  • the generated water generated by the power generator 10 is absorbed and moved by the generated water absorbing member 18, the generated water is evaporated to the atmosphere by the generated water absorbing member 18. Let it be processed. Therefore, in the power generation device 20, the water generated in the power generation unit 10 can be treated without staying inside the power generation device 20, and can be discharged from the oxygen-side diffusion layer 16. Further, in the power generator 20, the water is diffused back into the anode electrode through the electrolyte membrane 14, so that a substance mainly composed of hydrogen, such as hydrogen gas, is supplied to the hydrogen-side catalyst layer 13. It can be prevented from being hindered.
  • the generated water does not close the opening 17 a of the oxygen-side current collector 17, and the oxygen-side diffusion layer 16
  • the power supply to the power generator 10 can be prevented from being hindered, and the power generation can be continued without lowering the power generation performance of the power generator 10.
  • the power generation device 20 since the generated water absorbing member 18 collects and moves the generated water by utilizing the capillary phenomenon, the capacity of the generated water absorbing member 18 can be maintained without changing the absorption. By easily adjusting the amount, it is possible to adjust the water content of the generated water and the evaporation amount of the generated water that evaporates, and it is not easily affected by the external environment such as humidity, temperature, and air flow. Optimal power generation can be performed according to the output.
  • the anode electrode of the power generation device 20 needs an appropriate amount of water for the proton to move in the electrolyte, but in the power generation device 20, the volume of the generated water absorbing member 18 is required.
  • the amount of water generated and the amount of water that evaporates can be adjusted by adjusting the amount of generated water and the amount of water that evaporates. 2 can control the amount of water wetting.
  • the generated water absorbing member 18 is a high-moisture-release material having high absorbency utilizing a capillary phenomenon, and is therefore a flat type or small power generator in which the cathode electrode is often open to the atmosphere.
  • the generated water absorbing member 18 uses a capillary phenomenon, unlike methods of blowing off water droplets by an external device or a naturally generated wind flow, and discharging water to the outside by the weight of the water droplets. Since the generated water is sucked up and evaporated to the atmosphere, the generated water can be collected and evaporated to the atmosphere regardless of the direction of the device with respect to the flow of wind or gravity. Therefore, in the power generator 20, the generated water is not scattered in an unintended place or in the device, not only to prevent the performance of the fuel cell built in the electronic device from deteriorating, but also easily and reliably outside the device. The generated water can be evaporated to the atmosphere You.
  • the generated water generated by the power source electrode of the power generation device 20 is collected by the generated water absorbing member 18 and then evaporated by the generated water absorbing member 18.
  • the generated water absorbing member 18 evaporates to the atmosphere. Therefore, without collecting and accumulating the generated water in a certain place, and without providing a function to generate new energy, a small-sized device can easily and efficiently reduce the water that increases with the increase of the power generation time. Can be evaporated to the atmosphere.
  • the formed water absorbing member 18 can be formed into various shapes to increase the area in contact with the atmosphere, thereby efficiently increasing the amount of generated water that can be evaporated and treated. Can be done. Furthermore, in the power generator 20, when the amount of evaporation from the generated water absorbing member 18 is smaller than the amount of generated water absorbed by the generated water absorbing member 18, the generated water absorbing member 18 By providing the generated water retaining member 22 in contact with the upper part, generated water can be temporarily accumulated. Therefore, in the power generation device 20, by providing the generated water retention member 22, the amount of generated water evaporating from the generated water absorbing member 18 can be controlled, and the water content inside the power generation device 20 can be controlled. The amount can be easily controlled, and it is not affected by the external environment such as humidity, temperature, and air flow, and it is possible to perform optimal power generation according to the external environment and output.
  • electronic devices to which the generated water absorbing member is applied include notebook personal computers. It is not limited to a null computer. In other words, in addition to notebook personal computers, portable printers and facsimile machines, peripheral devices for personal computers, telephones, televisions, etc. Receivers, communication equipment, mobile terminals, cameras, audio equipment, video equipment, electric fans, refrigerators, irons, pots, vacuum cleaners, rice cookers, electromagnetic cookers, lighting equipment, game machines, radio control cars, etc. Toys, power tools, medical equipment, measuring equipment, on-vehicle equipment, office equipment, health and beauty equipment, electronically controlled robots, clothing-type electronic equipment, and other uses. Can be. In particular, when the fuel cell is mounted on a portable and small electronic device, the present invention can be used without adding a new device for treating generated water.
  • the second embodiment is a fuel cell as a power generator to which the generated water treatment system is applied.
  • This fuel cell is configured by stacking a plurality of so-called MEAs as a power generator having a predetermined electrolyte membrane provided between an anode electrode and a force source electrode, and supplies hydrogen to the anode electrode.
  • the MEA is sandwiched by thin plate-shaped separators formed on the front and back surfaces of a hydrogen supply groove as a fuel supply groove and an air supply groove as an oxidant supply groove for supplying air to the cathode electrode. Power is generated by supplying hydrogen and air through the power supply.
  • this fuel cell has a simple configuration by providing a means for treating the water generated at the time of power generation by the power generator at least in the middle of the air supply groove formed in the separator.
  • the generated water can be treated efficiently and reliably.
  • FIG. 7 is a plan view of the separator 110 of the fuel cell as viewed from the surface.
  • a hydrogen supply groove 111 for supplying hydrogen to an anode (not shown) is formed on the surface of the separator 110.
  • the hydrogen supply groove 111 is for allowing hydrogen to flow into the surface of the separator 110, and is provided with a supply hole 112 for connection with a hydrogen supply part (not shown) for supplying hydrogen gas and a connection part. It is formed integrally through 113 and is formed integrally through a discharge hole 114 for discharging hydrogen gas and a connecting portion 115.
  • the hydrogen supply groove 1 1 1 is connected to the supply hole 1 1 3 from the connection 1 1 3 to the discharge hole 1 1 4 from the connection 1 1 4 in order to increase power generation efficiency while reducing the size. It is formed as a single groove in a meandering shape up to 15.
  • the supply holes 112 and the discharge holes 114 are connected between the separators 110 that are stacked when a stack structure is formed as a power generation unit, which will be described later, and supply hydrogen gas to each separator.
  • a supply path for supplying 110 is formed.
  • an air supply groove 116 for supplying air to a force sword electrode is formed in the separator 110.
  • the air supply grooves 1 16 are for allowing oxygen-containing air to flow into the plane of the separator 110, and both side edges in the lateral direction of the separator 110 shown in the vertical direction in FIG. It is formed so as to open and extend.
  • a plurality of the air supply grooves 116 are formed along the longitudinal direction shown in the horizontal direction in FIG. Note that FIG. 1 shows a state in which 10 air supply grooves 116 are provided.
  • air is supplied to the air supply groove 116 through a supply port 117 opened on one side facing the air supply unit (not shown) for supplying air. Air is exhausted through the outlet 1 18 opened on the other side edge opposite to the mouth 1 17 Is done.
  • the supply port 1 17 and the discharge port 1 18 are each formed so as to be larger than the cross-sectional area of the air supply groove 1 16 and the air supply groove 1 16 shown in the vertical direction in FIG. It is formed in a shape in which the cross section narrows in a tapered shape along the depth direction.
  • the separator 110 it is possible to reduce the flow path resistance at the time of taking in air into the air supply groove 116 and discharging air from the air supply groove 116, thereby reducing the air supply. And discharge can be performed smoothly.
  • the water absorption that absorbs the generated water so as to cover at least a part of the surface on which the air supply groove 116 is formed as indicated by the hatched portion in the figure.
  • a water absorbing cloth 120 as a member is provided.
  • the water-absorbing cloth 120 has a plurality of belt-like regions extending from a surface on which a heat-radiating fin having a predetermined area, on which the air supply groove 116 shown in the right part of FIG.
  • a strip-like shape is formed, and the strip-like region is arranged so as to cover at least a part of the air supply groove 116.
  • a cross-sectional view of the HH line indicated by the dashed line in Fig. 8 is shown in Fig. 9 along the side wall of the air supply groove 116.
  • Water absorbing cloth 1 2 1 is provided.
  • any water-absorbing cloth can be used as long as it has water absorption.
  • a water-absorbing material having hydrophilicity as the water-absorbing cloths 120 and 121.
  • a water-absorbing material having hydrophilicity for example, like the above-described generated water-absorbing member 18, for example, Polymer materials such as styrene, isobutylene nomaleate, starch polyacrylate, PVAZ polyacryl, hydrolyzation of acryl fiber, and bridged PVA can be used.
  • the water absorbing cloths 120 and 121 it is desirable that the generated water that has absorbed water is moved to a predetermined place separated and evaporated, and even a material that moves moisture is preferable. Desirably.
  • Such materials include, as described above, for example, porous metals and porous minerals having concave portions on the surface, hydrophilic carbon, paper, pulp, polymer materials, natural fibers, and synthetic fibers. Further, as such a material, a material having high water absorption utilizing a capillary phenomenon is known.For example, a thread-like material in which a fine void region is formed in a cross section in a longitudinal direction is woven vertically and horizontally. Polyester, a synthetic fiber, nylon-polyester, and polyester.
  • water-absorbing cloths 120 and 121 various materials realizing such characteristics can be used.
  • the water-absorbing cloth has a two-layer structure in which the first material 13 1 with excellent moisture absorption and desorption properties and the second material 13 2 with excellent water absorption are bonded together.
  • a material having a three-layer structure in which a tape material 133 such as an adhesive tape is adhered to a lower layer of the second material 132 is proposed.
  • the first material 131 a material having excellent moisture absorption / desorption properties is used. "HYGRA (registered trademark)" can be applied. When used for clothes, etc., this Hydara (registered trademark) absorbs and releases moisture by the difference in vapor pressure between clothes and outside air.
  • the first material 13 1 forms the uppermost layer of a three-layer water-absorbent cloth, absorbs the water absorbed by the second material 13 2, and releases it to the outside air.
  • the second material 132 a material excellent in water absorbency is used.
  • "LUMIACE” registered trademark
  • This Lumiace® is a collection of fibers of different densities with irregular cross-sections, each fiber having a much greater number of contact points than a normal round cross-section, It has a contact surface that does not exist.
  • the Lumies (registered trademark) increases the pressure due to the surface tension of moisture that has penetrated into the minute void region formed in the longitudinal direction due to the presence of these contact points and contact surfaces, thereby causing a capillary. It acts to exhibit excellent water absorption.
  • HYGRA-LU ' manufactured by Unitika Fiber Co., Ltd.
  • HYGRA-LU ' manufactured by Unitika Fiber Co., Ltd.
  • the tape material 133 a resin-based material having adhesiveness is used, and is provided for sticking a water-absorbing cloth to Separate 110. Therefore, it is desirable that the tape material 133 is not easily affected by the adhesive force due to moisture.
  • a resin-based double-sided tape manufactured by Sumitomo SLIM Limited for example, a "polyester-based double-sided tape manufactured by Sumitomo SLIM Limited"
  • This tape material 133 forms the lowermost layer of a three-layer water-absorbent cloth. Then, the separated water is adhered to the separation material 110, and the generated water absorbed by the water absorption force of the second material 13 2 passes through the second material 13 2 In the separation material 110, By using such a three-layered material that has high water absorption by utilizing the capillary phenomenon, it is extremely efficient. Thus, it is possible to reliably and reliably absorb generated water.
  • Separation 110 using the tape material 133 provided on the lowermost layer as the water-absorbing cloths 120, 121 makes the air supply groove 116 unnecessary. Can be avoided. That is, since the cloth material having water absorbency is extremely flexible, when the cloth material 130 is used as it is without providing the tape material 133, the separator 110 shown in FIG. As shown in a partial region of the cross section, the portion covering the air supply groove 116 may be loosened, and it may be difficult to stabilize the shape. On the other hand, since the tape material 133 has the rigidity enough to stabilize the shape even though it is flexible, the shape of the water-absorbing cloth 120 can be stabilized, and This can prevent the air supply groove 116 from being unnecessarily closed.
  • the above-mentioned tape material 133 provided in the lowermost layer is used as the water-absorbing cloths 120, 121, so that the water-absorbing cloths 120, 122 It is easy to handle when arbitrarily cutting and shaping the shape. That is, in the case of the separator 110, when the water-absorbing cloths 120 and 121 are formed into the above-described strip shape or the like, a commercially available cloth material or the like is cut. However, the edges of the cloth material are easily frayed and hard to cut into any shape. Therefore, the water-absorbing cloths 120 and 121 are made of a material having a three-layer structure provided with a tape material 133, so that it is possible to easily realize the processing and forming with cutting. It becomes possible.
  • the water absorbing cloths 120, 121 are provided in the middle area of the air supply groove 116, so that the water absorbing cloths 120, 121 are generated at the time of power generation by the power generator. The generated water is absorbed.
  • the separator 110 the water stays in the air supply groove 1 16 due to the water absorbing cloth 1 21 provided along the side wall of the air supply groove 1 16 The generated water is absorbed.
  • the water generated by the absorbent cloth 121 is further absorbed by the absorbent cloth 120 provided so as to cover at least a part of the air supply groove 116. Then, it moves via the water absorbing cloth 120 to the area where the heat radiation fin shown in the right part of FIG. 8 is located. Then, at 110 at Separe, the generated water that has moved to the radiating fin is evaporated by the heat or wind at the radiating fin.
  • the water absorbing cloths 120, 121 are provided in the middle of the air supply groove 116, so that the water generated by the power generator is generated. Water is absorbed, so that the air supply groove 116 is not blocked by the generated water, and the flow of air passing through the air supply groove 116 can be prevented from being obstructed. Stabilization can be achieved.
  • the present applicant conducted a comparative experiment in order to verify the effect of the separator 110 provided with such water absorbing cloths 120 and 121.
  • the experiment was conducted under constant temperature conditions of 25 ° C and relative humidity of 100%, and the current supplied to the MEA was measured at a constant current of 157 mA / cm2. A comparison was made between the presence and absence of 120 and 121.
  • the MEA used in the experiment used so-called perfluorocarboxylic acid as a conductor.
  • the water-absorbing cloths 120 and 121 include the above-mentioned “HYG RA-LU” manufactured by Unitika Fiber Co., Ltd. and “Polyester-based double-sided tape 4442 JS” manufactured by Sumitomo Surimu Co., Ltd.
  • a laminated material with a three-layer structure was used.
  • This material is one of the water absorption test methods for textiles standardized by JIS (Japan Industrial Standard), in which the lower end of a vertically suspended test piece is immersed in water and left for a certain period of time.
  • a confirmation test of the water absorption is conducted using the Vilec method, which is a method of expressing the water absorption rate by the height of the water that has risen later.
  • the results shown in FIG. 12 were obtained.
  • the vertical axis in the figure indicates the output voltage from the power generator in volts (V), and the horizontal axis indicates the elapsed time in minutes.
  • the water absorbing cloths 120 and 121 are provided in the middle of the air supply groove 116, so that the pump and the newly formed flow path for removing moisture are provided.
  • the generated water can be efficiently and reliably treated under a simple configuration without using any complicated mechanism such as that described above, and the power generation efficiency can be stabilized.
  • the generated water caught by the water absorbing cloths 120, 121 diffuses throughout the water absorbing cloths 120, 121, so the evaporation rate, that is, the water treatment Speed can be improved.
  • the absorbent cloths 120 and 121 also play a role of a buffer for retaining the generated water. Generated water can be retained.
  • water absorption cloths 120 and 121 are formed by using a material having such a three-layer structure having high water absorption by utilizing the capillary phenomenon. As long as the cloths 120 and 121 are formed long, the generated water is generated without any external means by capillary action. The heat can be diffused to the heat radiation fins that are separated from the electric body, and the heat generated by the heat radiation fins can evaporate the generated water. Therefore, in Separation 110, the water treatment speed can be improved, and in particular, the output during power generation can be stabilized even in a daily environment where the relative humidity is high.
  • the air passage is narrowed by providing the water-absorbing cloth 121 along the side wall of the air supply groove 116, thereby affecting the air flow. It is feared that it will come out.
  • the biggest factor inhibiting air flow is asphyxiation due to stagnation of generated water.Therefore, in practice, there is no adverse effect due to the provision of the absorbent cloth 122 along the side wall of the air supply groove 116. However, this fact has been verified by experiments by the applicant.
  • the fuel cell 150 includes a casing 160, a control board 170 on which various circuits necessary for operating the fuel cell 150 are formed, and a separator.
  • the power generation section 180 composed of the evening 110, the cooling fan 191 for cooling the power generation section 180, and the supply of air to the power generation section 180 described above.
  • It is equipped with a manual valve 196 for supplying hydrogen gas to the power generation unit 180, and air, which is taken in from the outside and the fuel, if necessary, although not shown. Sensors that detect the temperature, humidity, pressure, etc.
  • this fuel cell 150 has a hydrogen storage car in which hydrogen gas is stored. Tridge 200 is installed. The fuel cell 150 receives the hydrogen gas supplied from the hydrogen storage capacity-bridge 200 and generates power. That is, the hydrogen storage cartridge 200 corresponds to the hydrogen supply unit that supplies the hydrogen gas described above.
  • the casing 160 has a substantially rectangular parallelepiped outer shape as shown in FIGS. 13 and 14, and has a hollow inside so as to cover various members mounted on the fuel cell 150. , The bottom surface is open. In addition, one side surface of the housing 160 has an inclined surface facing the one side surface.
  • the exhaust ports 16 1, 16 2, and 16 3 are formed adjacent to each other on one side surface of the housing 16 as shown in FIG. From these exhaust ports 16 1, 16 2, and 16 3, the air flowing inside the fuel cell 150 and the power generating section 180 cool down the power generating section 180, respectively. The air after the power generation reaction is discharged.
  • a plurality of exhaust ports 161 are formed in one side surface of the housing 160 in the vertical direction on one side surface, which has a substantially slit-shaped hole.
  • the size is formed so as to gradually become shorter as the size goes up and down the one side surface.
  • the exhaust port 161 is provided as an air outlet for discharging air from the fuel cell 150 for releasing heat through a radiating fin described later.
  • each of the exhaust ports 16 2, 16 3 has a substantially slit-shaped hole on one side surface of the housing 160, similarly to the exhaust port 16 1.
  • a plurality of holes are formed in the up and down direction of the side surface, and the size of these holes is formed so as to be gradually shortened in the up and down direction of the one side surface.
  • These exhaust ports 16 2 and 16 3 are Each of them is provided as an outlet for discharging the air supplied to the power generation unit 180 when the power generation unit 180 generates power.
  • the intake ports 16 4 and 16 5 are on one side of the housing 16 0 where the exhaust ports 16 1, 16 2 and 16 3 are formed. It is formed so as to be adjacent to each other on the other side face facing. From these intake ports 16 4 and 16 5, air for cooling the power generation section 180 and air containing oxygen used for the power generation reaction by the power generation section 180 are supplied from the fuel cell 1, respectively. Taken inside 50. Specifically, a plurality of intake ports 164 are formed in a vertical direction on one side surface having a hole opened in a substantially slit shape on the other side surface of the housing 160. The intake port 164 is provided as an intake port for air for radiating heat through a radiating fin described later into the fuel cell 150.
  • the intake port 165 has a substantially slit-shaped hole formed on the other side of the housing 160. .
  • the intake port 165 is provided as an intake port for taking in the air supplied to the power generation unit 180 when the power generation unit 180 generates power.
  • the housing 160 has various signals between the fuel cell 150 and the outside as shown in FIGS.
  • a connection hole 166 is formed for inserting a wire for transmitting and receiving the gas into the inside of the fuel cell 150, and a required connection hole 167 is formed on the other end face.
  • control board 170 Various circuits including a control circuit for controlling various members constituting the fuel cell 150 are formed on the control board 170.
  • the control board 170 is provided above the power generation section 180. Although details of the control circuit formed on the control board 170 are not particularly shown, for example, a control circuit for controlling the driving of the cooling fan 191, and the air supply fans 1992 and 1993, water A control circuit that controls the opening / closing operation of the elementary purge valve 194, a voltage conversion circuit such as a direct current to direct current (DC) converter that boosts the voltage output from the power generation unit 180, and a sensor described later A control circuit and the like for giving an instruction regarding driving of various members by acquiring various environmental conditions such as detected temperature and humidity are mounted. Note that, here, the description will be made assuming that the control board 170 is provided inside the fuel cell 150, but the control board 170 may be provided outside the fuel cell 150, For example, various electronic devices provided with driving power from the fuel cell 150 may be provided.
  • DC direct current to direct current
  • the power generation unit 180 has a substantially rectangular parallelepiped outer shape, and has a side 18 6 facing the cooling fan 19 1 and the air supply fans 19 2 and 19 3. A part of the side surface facing the shape is cut into a rectangular shape along the vertical direction.
  • the power generation section 180 is constituted by, for example, a bonded body 18 1 serving as a power generator interposed between nine separators 110, for example. As a result, it has a stack structure in which eight power-generating unit elements are connected in series.
  • the unit element UN is composed of the above-mentioned two separators 110 and a joined body 181 sandwiched between these two separators 110.
  • two unit elements UN connected in series are shown.
  • a heat radiating fin 182 protrudes out of the plane where the hydrogen supply groove 1 11 and the air supply groove 1 16 are formed.
  • heat is dissipated through the heat dissipating fins 182 by the action of the cooling fan 191, as described later.
  • the separator 110 is provided with a plurality of air supply grooves 116 on the back surface side. Separation evening 1 1 0 Smell As described later, air is supplied to the air supply groove 1 16 by the action of the air supply fans 19 2 and 19 3, thereby realizing the flow of air inside the power generation section 18. .
  • the joined body 18 1 is formed by a solid polymer electrolyte membrane 18 3 having ion conductivity when absorbing moisture, and electrodes 18 4 sandwiching the solid polymer electrolyte membrane 18 3 from both sides.
  • a solid polymer electrolyte membrane 18 3 for example, a sulfonic acid-based solid polymer electrolyte membrane can be used.
  • an electrode supporting a catalyst for promoting a power generation reaction can be used.
  • a sealing member 1 for sealing between the separator 110 and the joint 181 is formed. 8 5 is arranged.
  • the sealing member 185 is made of a material that can sufficiently insulate the periphery of the separator 110 from the periphery of the joined body 181. Further, as the sealing member 185, a material having high thermal conductivity may be used in order to enhance the heat dissipation of the power generation unit 180. Also, a material having electrical insulation properties can be used.
  • Such a unit element can output a voltage of about 0.6 V by itself, and the power generation section 180 shown in FIG. 15 has eight unit elements connected in series. Therefore, it is possible to output a voltage of 4.8 V as a whole.
  • the power generation unit 180 can pass a current of about 2 mm.
  • the power output from the power generation section 180 is ideally 9.6 W, but due to heat generation in the power generation reaction, etc., it is actually about 70% of the ideal output power. It is 6.7 W.
  • the power generation unit 180 can further increase its output by appropriately adjusting the amount of water contained in the bonded body 181, or by realizing a smooth supply of hydrogen gas to the power generation unit 180. Power can be increased. Note that the number of unit elements forming the power generation section 180 does not need to be eight, but is provided in a required number according to the output power required to drive various electronic devices.
  • the power generation section 180 has a stack structure by connecting a plurality of such unit elements in series. Therefore, as shown in FIG. 15, the side surface 186 of the power generation unit 180 has the above-described discharge ports 1 1 6 in the plurality of air supply grooves 1 16 formed in each separation 110. Although not shown, the above-described supply port 1 in the plurality of air supply grooves 1 16 corresponds to each of the plurality of discharge ports 1 18, although not shown.
  • the power generation section 180 is configured such that the front face 17 faces.
  • the cooling fan 1991 and the air supply fans 1992 and 1993 are provided along the side surface 1886 so as to be adjacent to each other.
  • a hydrogen purge valve 194, a regulator 195, and a manual valve 196 are provided along the end face of the power generation section 180 so as to be adjacent to each other.
  • the cooling fan 191 is provided along the side surface 186 between the exhaust port 161 formed in the housing 160 and the heat radiating fin 182 in the power generation unit 180, and is provided along the side surface 186. Cool 180.
  • the cooling fan 1991 allows the air taken in from the intake port 164 formed in the housing 160 to flow to the exhaust port 161, Drain the fuel cell 150.
  • the air is caused to flow by the cooling fan 191 so as to pass through the heat radiating fins 18 2, so that the power generation section 18 0 heat can be dissipated.
  • the position of the cooling fan 191 is not limited to the vicinity of the heat dissipating fin 18 2, and air is caused to flow through the entire fuel cell 150 for the purpose of cooling the power generation unit 180. it may be provided in a position such as £ In the fuel cell 150, the air may flow in the opposite direction by rotating the cooling fan 1991 in the reverse direction.
  • the air supply fans 19 2 and 19 3 are connected to the exhaust ports 16 2 and 16 3 formed in the housing 16 and the air outlets 11 of the air supply grooves 1 16 in the power generation section 180, respectively. 8 along the side 1 8 6 between the area facing 8
  • each of the air outlets 93 through the air intake port 165 formed in the housing 160 outputs the air through the power generation section 180, and
  • the power generation unit 180 is configured by flowing air by the air supply fans 1992 and 193 so as to pass through the power generation unit 180.
  • the air can be supplied to the air supply groove 1 16 formed in the separator 110.
  • the air may be caused to flow in the opposite direction by rotating the air supply fans 192 and 1993 in reverse.
  • the flow of air formed by each of the air supply fans 192 and 1993 can be made independent of the flow of air formed by the cooling fan 1991. Therefore, in the fuel cell 150, by independently driving the cooling fan 191 and the air supply fans 192 and 193, the cooling of the power generation unit 180 and the cooling of the power generation unit 180 are performed. Air supply and discharge can be performed independently. In particular, in the fuel cell 150, the temperature of the power generation section 180 and the amount of moisture remaining in the power generation section 180 were measured, and the air supply fans 192, 193 and the cooling section were cooled accordingly.
  • the hydrogen purge valve 194 discharges the water that has accumulated by opening the hydrogen supply groove 111 formed in the separator 110 to the atmosphere. That is, in the fuel cell 150, when the hydrogen supply groove 111 is opened to the atmosphere by opening the hydrogen purge valve 194, the hydrogen remaining on the hydrogen supply groove 111 on the supply path side is removed. A pressure difference is generated between the pressure of the gas and the pressure on the discharge side that is opened to the atmosphere, and the water remaining in the hydrogen supply groove 111 is discharged due to the pressure difference.
  • a hydrogen purge valve 194 that is driven by a driving method using electromagnetic force may be used, and electric power for driving the hydrogen purge valve 194 is generated by a power generation unit. It may be supplied from 180.
  • the regulator 1995 controls the pressure of the hydrogen gas supplied from the hydrogen storage cartridge 200, and adjusts the pressure of the hydrogen gas to a predetermined pressure. Supply 0. For example, when the pressure of hydrogen gas supplied from the hydrogen storage cartridge 200 is approximately 0.8 MPa to 1.0 MPa, the pressure of hydrogen gas is reduced to 0 MPa. The pressure is reduced to about 0.5 MPa to 0.10 MPa and supplied to the power generation section 180.
  • the manual valve 196 is provided to supply hydrogen gas to the power generation unit 180, and when the power generation unit 180 generates power, the hydrogen storage capacity The flow path for supplying hydrogen gas from the storage unit 200 to the power generation unit 180 is opened.
  • the cooling fan 191, the air supply fans 192, 193, the hydrogen purge valve 1994, the regulator 1995, and the manual valve 1996 are connected.
  • various members for driving the fuel cell 150 can be compactly housed inside the housing 160. As a result, it is possible to significantly reduce the size of the fuel cell 150.
  • the fuel cell 150 can be used for any type of electronic device, including various portable electronic devices such as a notebook personal computer, a mobile phone or a personal digital assistant (PDA). It can be very suitably used as a power supply for supplying power for driving.
  • various portable electronic devices such as a notebook personal computer, a mobile phone or a personal digital assistant (PDA). It can be very suitably used as a power supply for supplying power for driving.
  • PDA personal digital assistant
  • the power generation unit 180 is configured by using the separator 110 provided with the above-mentioned water-absorbing cloths 120, 121, so that the pump and the water removing unit are formed. Generated water can be efficiently and reliably treated under a simple configuration without using any complicated mechanism such as a newly formed flow path, and the power generation efficiency can be stabilized. .
  • the absorbent cloths 121 are provided along both side walls of the air supply grooves 116 formed in the separator 110. Can be applied even if the absorbent cloth 122 is provided along one side wall, and it should be provided not at least along the entire side wall but at least along part of the side wall. You may.
  • the shape of the water-absorbing cloth 120 is shortened by extending a plurality of belt-like regions from the region of the heat-radiating fins 18.
  • the present invention has been described with respect to a book-like shape, the present invention is not limited to the shape of the water-absorbing cloth 120, and may be, for example, such that it covers the entire surface on which the air supply grooves 116 are formed. It may be shaped.
  • the present invention can efficiently discharge the water absorbed by the water-absorbing cloths 122 to the outside. If so, only the water-absorbing cloth 12 1 may be provided.
  • the water absorbing cloths 120, 121 are used as the means for treating the generated water.
  • the present invention relates to the water absorbing cloths 120, 122. It can be applied even if it is different from 1.
  • a surface or the like of the air supply groove may be roughened by applying a flaw or the like to a side wall or a bottom surface of the air supply groove.
  • the material of the air supply groove may be made of a material having high water repellency such as Teflon (registered trademark) or silicon, or the air supply groove may be treated by plasma treatment using fluorine gas.
  • a region having high water repellency is formed in the air supply groove.
  • formation of a region having high hydrophilicity in the air supply groove can also be mentioned.
  • a plurality of these means may be combined.
  • the present invention is applicable to any means for treating the generated water generated at the time of power generation by the power generator as long as the means is provided at least in the middle of the air supply groove. be able to.
  • the fuel cell 150 has been described as a specific application example of Separation 110, but the present invention relates to such a fuel cell.
  • the present invention is not limited to the battery 150, but can be applied to any device capable of applying a separator provided with a means for treating generated water.
  • the third embodiment is a further improvement of the first and second embodiments described above, and includes at least water absorption between a diffusion layer and a separator as a current collector.
  • a water-absorbing layer having water permeability, air permeability, and conductivity, the efficiency of water absorption can be further improved, and the generated electricity can be efficiently collected.
  • a fuel cell 300 as a power generator is provided with hydrogen provided on both sides of a predetermined electrolyte membrane 301.
  • the water generated by the power generation in the side catalyst layer 302 and the oxygen side catalyst layer 303 becomes, for example, a carbon fiber paper-like water-repellent diffusion fiber layer 304 which is a water-repellent diffusion layer.
  • This water is moved, and this water is generated by a generated water absorbing member ⁇ water absorbing cloth (hereinafter collectively referred to as a water absorbing cloth 307) provided around an air supply groove 306 formed in the separation 305. It has been described that water is absorbed.
  • the water-absorbing cloth 307 is in contact with only a part of the carbon fiber layer 304 as a diffusion layer. Therefore, in such a fuel cell 300, if the generated water present in the carbon fiber layer 304 is expressed as W 1, W 2, W 3, W 4 for convenience depending on the location, the water absorbing cloth 3 0 The force that 7 is in contact with The generated water W 2, ⁇ ⁇ 3 or near the bonbon fiber layer 304 The water is discharged from the bonbon fiber layer 304 and reaches the air supply groove 306 Only the generated water is absorbed by the absorbent cloth 307.
  • the water-absorbing cloth 307 In order to efficiently discharge generated water from the carbon fiber layer 304, It is sufficient to increase the area of the water-absorbing cloth 307 in contact with the bon fiber layer 304. In the fuel cell 300, the water-absorbing cloth 307 is provided over the entire area of the separator 305. In this case, since the water-absorbing cloth 307 has no conductivity, it is difficult to collect generated electricity by the separator 305. Therefore, as shown in Fig. 19, the ribbon fiber layer 304 and the separator
  • a fuel cell 300 ′ provided with a water absorbing layer 350 having at least water absorbency, gas permeability, and conductivity between the fuel cell 300 and the fuel cell 300 ′.
  • the generated water W 1, W 2, W 3, W 4 present in the carbon fiber layer 304 is temporarily absorbed by the water absorbing layer 350, and Spread inside 50. Then, in the fuel cell 300 ′, the generated water absorbed by the water absorbing layer 350 is further absorbed by the water absorbing cloth 307 in contact with a part of the water absorbing layer 350. 3 0
  • water absorbing layer 350 for example, carbon black such as “Ketchon Black” manufactured by Ketchon Black in Japan National and a hydrophilic binder such as polyimide are mixed using a solvent such as NPA. However, it can be formed by applying this as an ink to substantially the entire area of the separation layer 305.
  • the water-absorbing layer 350 a material obtained by subjecting a metal synthetic fiber to a hydrophilic treatment or a material obtained by mixing a thread-like fiber having high water absorption utilizing the above-described capillary phenomenon with carbon or metal is used. Can also.
  • the generated water treatment system and the fuel cell (power generation device) shown as the embodiments of the present invention can process the generated water extremely efficiently and reliably by providing the water absorbing member that absorbs the generated water. can do.
  • the present invention is not limited to the above-described embodiment.
  • specific examples that are different according to the embodiment are shown as the generated water absorbing member and the water absorbing cloth.
  • the present invention includes members represented by these specific examples, The present invention can be applied to the case where the embodiments are used mutually.
  • the present invention may appropriately combine the above-described three embodiments as far as possible.
  • the generated water treatment system, the generated water treatment method, and the power generation device according to the present invention are configured such that, after the generated water generated by power generation is collected by the generated water absorption member, By processing the generated water by evaporating it to the atmosphere, the water generated by the power generation of the power generator can be processed outside without staying inside the power generator.
  • the generated water treatment system and the generated water treatment method according to the present invention, and the power generation device process the generated water by at least a generated water treatment means provided in an intermediate region of the oxidant supply groove. Accordingly, the generated water stays in the oxidant supply groove and is not clogged, and the flow of the oxidant gas passing through the oxidant supply groove can be prevented from being hindered. Therefore, the generated water treatment system, the generated water treatment method, and the power generation device according to the present invention each have an extremely simple configuration without using any complicated mechanism such as a pump or a newly formed flow path for removing moisture. In this way, efficient and reliable processing can be achieved, and power generation efficiency can be stabilized.

Description

明 細 書 生成水処理システム及び生成水処理方法、 並びに発電装置 技術分野
本発明は、 発電体による発電の際に生成される生成水を処理する生成 水処理システム及び生成水処理方法、 並びにこれら生成水処理システム 及び生成水処理方法を適用して発電の際に生成される生成水を処理する 発電装置に関する。 背景技術
燃料電池は、 水素等の燃料ガスを供給するとともに、 酸素 (空気) を 供給し、 これら燃料ガスと酸素とを電気化学的に反応させて発電体に電 力を発生させる装置である。 このような燃料電池は、 自動車等の車両に 動力源として搭載することによって電気自動車やハイプリ ッ ト式車両と しての応用が大きく期待されている他、 その軽量化や小型化が容易とな る構造に起因して、 現状の乾電池や充電式電池の如き用途に限らず、 例 えば携帯可能な機器といった電気通信分野、 電動工具分野、 一般家庭電 気製品分野、 照明分野、 非常用無停電電源分野、 及び軍需分野等への応 用が試みられている。
燃料電池としては、 水素側電極であるァノード電極と酸素側電極であ るカソ一ド電極との間に、 例えばプロ トン伝導体膜といった所定の電解 質膜が設けられ、 各電極が、 それぞれに対する供給原料が反応するよう に添加された触媒を含む触媒層と、 反応原料が触媒まで到達するための 拡散層部とから構成されたセル構造体が複数積層されて構成されたもの がある。 このような燃料電池においては、 ァノ一ド電極にて水素ガス(H 2 ) がプロ トン (H + ) と電子 ( e— ) とに分離する反応が生じる。 そ して、 燃料電池においては、 プロ トン (H + ) がアノード電極側から力 ソード電極側に向かってプロ トン伝導体膜中を移動するとともに、 電子 ( e - ) が所定の外部回路を通過して力ソード電極に移動し、 力ソード 電極にて酸素 (空気) とプロ トン (H + ) と電子 ( e —) とから水を生 成する反応が行われることにより、 所定の起電力が発生する。
このような燃料電池においては、 反応が行われるために供給原料が触 媒層に円滑に送られる必要があるが、 カソード電極にて発生した水分や プロ トン伝導体膜をァノード側に逆拡散してきた水分が、 水素ガス等の 供給原料の流れを阻害したり、 これら水分が酸素 (空気) を供給する空 気供給溝に滞留して酸素 (空気) の流れを阻害したりすることにより、 発電効率を低下させる要因となることが知られている。
そこで、 燃料電池においては、 このような水分を除去するために、 通 常は、 ガスの流速を利用して水分を液体のまま吹き飛ばす手法や、 重力 を利用して水分を液体のまま排出する手法といったことが行われている しかしながら、 燃料電池においては、 重力を利用して水分を液体のま ま排出する手法は、 携帯型の電子機器といった小型の機器に適用した場 合には、 デバイスを置く方向が限定されてしまうことから用いることが できない。 また、 ガスの流速を利用して水分を液体のまま吹き飛ばす手 法は、 実現するために大型ポンプを用いる必要があることから現実的で はない。 そのため、 燃料電池においては、 小型の機器に適用する場合に は、 小型のポンプ · ファンを用いて水分を液体のまま排出するか、 また は、 空気で水分を蒸発させることになる。
なお、 具体的には、 触媒層や拡散層から水分を排出する技術として、 特許文献 1 (特開平 1 0— 2 8 9 7 2 3号公報) に記載された技術が提 案されている。 この特許文献 1 には、 力ソード側集電体が、 カーボン繊維を骨格とし た基体の孔内に撥水性の第 2充填材と当該第 2充填材ょりも撥水性の小 さい第 1充填材との混合ペース トが焼成された多孔性鹿合物層が形成さ れた合成体であり、 この力ソード側集電体と、 アノード側集電体の少な く とも一方が、 接触する電極との界面から当該集電体の背面側に向けて 水を移動する水移動手段を有する燃料電池が開示されている。 この燃料 電池においては、 力ソードでの反応生成水が、 集電体の厚み方向に連続 的に配された第 1充填材粒子の形成する通路を通って移動することから 力ソードガス供給が阻害されないという効果を奏する旨が記述されてい る。
また、 空気供給溝から水分を排出してガスの流れを確保する技術とし て、 特許文献 2 (特開平 1 1 一 9 7 0 4 1号公報) 又は特許文献 3 (特 開 2 0 0 1 — 1 1 0 3 2号公報) に記載された技術が提案されている。 特許文献 2には、 少なくともァノ一ド電極側の供給溝の壁面の一部に 撥水処理及び親水処理を施した撥水性領域及び親水性領域を形成した固 体高分子型燃料電池が開示されている。 この固体高分子型燃料電池にお いては、 撥水性領域及び親水性領域を形成することにより、 ガスの通路 を確保することができる旨が記述されている。
また、 特許文献 3には、 アノード電極と、 力ソード電極と、 これらァ ノード電極及びカソード電極にガスを供給する供給溝を形成した一対の セパレ一夕とのうち、 少なく とも 1力所に、 水分除去用の流路を配置し た高分子電解質型燃料電池が開示されている。 この高分子電解質型燃料 電池においては、 カソード電極側にて生成した水分を除去するための流 路を設けることにより、 水分の排出とガスの流れとを分離することがで き、 ガス流路の閉塞を回避することができる旨が記述されている。
しかしながら、 上述した特許文献 1に記載された技術においては、 水 分を確実に拡散層から外部へと排出することができず、 内部に滞留した 水分が水滴となって触媒層へのガスの供給を阻害するという問題があつ た。 また、 この技術においては、 力ソード側にて生成した水分が外部に 排出されなければプロ トン伝導体膜をァノ一ド側に逆拡散する水分が増 加することから、 アノード側においても水分が供給原料の流れを阻害す るという問題があった。
このような水分は、 カソード電極の酸素或いは空気を圧力や流量を管 理してガスの流れに乗せて排出することもできるが、 カソード電極を大 気開放型にする場合が多い平面型や小型の発電セルにおいては、 ガスの 圧力や流量を管理してガスの流れに乗せて排出することが困難である。 特に、 このような発電セルを携帯型の電子機器に搭載する場合には、 生 成水を処理するためにガスの圧力や流量を管理する装置を新たに追加す ることが困難であり、 生成された水分が水滴となって拡散すると、 機器 周囲への水分散乱による動作不良の原因となる。
また、 上述したように、 外部装置或いは自然によつて発生した風の流 れを用いて水分を吹き飛ばしたり、 水滴の自重によって水分を外部に排 出したりする方法もあるが、 これらの方法においては、 風の流れや重力 に対するデバイスの向きが所定の範囲内でなければ、 離脱した水滴が意 図しない場所に散乱する等の事態を生じることが想定され、 発電セルを 所定の機器に内蔵する場合には、 燃料電池の性能低下だけでなく、 機器 内への水分の放出そのものが問題となる。
さらに、 生成された水滴をパイプや溝等に沿って流すことにより、 一 定場所に水滴を回収することもできるが、 回収するためのエネルギを供 給する新たな機能を設けることになり、 装置の小型化と効率化が望めな !^。 例えば、 特許文献 4 (特開平 9— 2 1 3 3 5 9号公報) に記載され た技術においては、 カソード電極にて生成する水分を回収してァノ一ド 電極の加湿に利用するのであるが、 発電時間の増加にともなって水分の 生成が増加し、 最終的には水分を処理する必要がある。
また、 上述した特許文献 2に記載された技術においては、 重力によら ずに、 空気を供給する長い空気供給溝から水滴を排出する必要があるこ とから、 大型のポンプが必要となるという問題があった。
さらに、 上述した特許文献 3に記載された技術においては、 水分を除 去するための流路に入った水分は排出することができるものの、 空気供 給溝に入ってしまった水分については全く排出することができないとい う問題があった。
本発明は、 このような実情に鑑みてなされたものであり、 発電体によ る発電の際に生成される生成水を、 簡易な構成のもとに、 効率よく且つ 確実に処理することができる生成水処理システム及び生成水処理方法、 並びにこれら生成水処理システム及び生成水処理方法を適用した発電装 置を提供することを目的とする。 発明の開示
上述した目的を達成する本発明にかかる生成水処理システムは、 発電 体による発電の際に生成される生成水を処理する生成水処理システムで あって、 発電体に配設されるとともに延在して設けられ、 生成水を毛細 管現象を利用して回収して移動させる生成水吸収部材と、 生成水を一時 的に蓄積する生成水保水部材とを備えることを特徴としている。
このような本発明にかかる生成水処理システムは、 発電体の発電によ つて生成する生成水を生成水吸収部材によって回収し、 生成水を発電体 の内部に滞留させることなく処理することができる。
ここで、 発電体は、 水素を主体とする物質を活性物質として供給され るアノード電極と、 大気開放されることによって酸素を活性物質として 供給される力ソード電極と、 これらアノード電極と力ソード電極とに挟 持される電解質膜とを有する燃料電池である。 そして、 本発明にかかる 生成水処理システムにおいては、 力ソード電極に集電体が形成され、 こ の集電体にカソード電極に酸素を供給するための開口部が形成され、 こ の開口部の周辺部に生成水吸収部材が形成される。 より具体的には、 生 成水吸収部材は、 開口部の周囲を囲んで開口部の断面を覆い、 力ソード 電極に至るように形成される。
したがって、 本発明にかかる生成水処理システムは、 発電体が大気開 放型の燃料電池である場合には、 大気開放することによって酸素を供給 するために設けられる集電体の開口部の周辺部に生成水吸収部材を形成 し、 生成水を生成水吸収部材によって回収する。 このように、 本発明に かかる生成水処理システムは、 生成水が特に生じやすい集電体の開口部 を囲んで生成水吸収部材を形成することにより、 生成水を効率よく吸収 することができ、 生成水を発電体の内部に滞留させることなく処理する ことができる。 また、 本発明にかかる生成水処理システムは、 生成水吸 収部材が発電体から生成水を吸収して大気に蒸発させることから、 ガス の圧力や流量を管理する装置を新たに追加することなく、 生成水を処理 することができる。
このように、 本発明にかかる生成水処理システムは、 生成水吸収部材 によって生成水を効率よく吸収じて移動させて処理することができるこ とから、 生成水が電解質膜を通過してアノード電極に逆拡散し、 水素ガ スの触媒部への供給が阻害されるのも回避することができ、 生成水が開 口部を閉塞して空気の触媒層への供給が阻害されるのを回避することが できる。 また、 本発明にかかる生成水処理システムは、 水分が力ソード 側から排出されることから、 燃料電池の出力低下を防止することができ る。 また、 本発明にかかる生成水処理システムにおいて、 生成水吸収部材 は、 長手方向に対して空隙領域が形成された糸状の材料又は表面に凹部 を有する多孔質の材料から構成される。
したがって、 本発明にかかる生成水処理システムは、 生成水吸収部材 で毛細管現象が生じ、 この毛細管現象を利用して生成水を容易に回収す ることができ、 さらには、 毛細管現象を利用して生成水を移動させるこ とができる。 また、 生成水吸収部材は、 毛細管現象を利用して生成水を 移動させることができることから、 風の流れに対する生成水吸収部材の 向きや重力に対する生成水吸収部材の向きに関係なく、 生成水を吸収し て移動させることができる。
生成水吸収部材は、 発電体の表面から回収した生成水を大気に蒸発さ せて処理することから、 生成水を処理するための新たな機能やエネルギ を供給する装置を設けることなく、 発電時間の増加にともなって増加す る生成水を簡便且つ効率よく処理することができる。 特に、 小型化され た発電装置の場合には、 生成水を簡便に処理し続けることができる。 さらに、 本発明にかかる生成水処理システ厶において、 生成水吸収部 材は、 発電体が装着される電子機器の表面に延在して設けられる。 その ため、 生成水吸収部材は、 回収した生成水を電子機器の表面に移動して 発電体の表面に比べて面積が大きい電子機器の表面で確実に大気に蒸発 させることができる。 また、 本発明にかかる生成水処理システムは、 生 成水を確実に処理することができるため、 電子機器に内蔵される発電体 の生成水による性能低下を防ぐことができ、 さらには、 生成水が機器周 囲に散乱するのを防ぐことができることから、 生成水の散乱による機器 の動作不良を回避することができる。
さらにまた、 本発明にかかる生成水処理システムにおいて、 生成水吸 収部材は、 凹凸部又は突設部を有する。 そのため、 本発明にかかる生成 水処理システムは、 生成水吸収部材が大気に接触する面積を増加させる ことができ、 大気に接触する面積の増加にともなって生成水の蒸発量を 増加させることができる。また、本発明にかかる生成水処理システムは、 凹凸部や突設部を設けるといったように、 生成水吸収部材の構造を変化 させることにより、 蒸発する生成水の蒸発量を容易に調節することがで き、 生成水吸収部材が回収する生成水の回収量を調節して発電体の内部 の水分量を調節することができる。
また、 本発明にかかる生成水処理システムは、 発電体が生成する生成 水を一時的に蓄積する生成水保水部材を備えることを特徴としている。 そのため、 本発明にかかる生成水処理システムは、 生成水吸収部材が 生成水を回収した後、 生成水保水部材に生成水を蓄積することにより、 生成水吸収部材から蒸発する生成水の蒸発量を調節することができる。 さらに、 本発明にかかる生成水処理システムは、 生成水保水部材の容量 等を変化させることにより、 一時的に蓄積する生成水の蓄積量を調節す ることができ、 生成水吸収部材から蒸発する生成水の蒸発量を調節して 生成水吸収部材が回収する生成水の回収量を調節することができ、 発電 体の内部の水分量を調節することができる。
ここで、 生成水保水部材は、 生成水吸収部材と電子機器との間に設け られる。 そのため、 本発明にかかる生成水処理システムは、 生成水が電 子機器の周囲に散乱した場合であっても、 電子機器の表面に設けられる 生成水保水部材によって回収することができ、 生成水の散乱による機器 の動作不良を回避することができる。
さらに、 本発明にかかる生成水処理システムは、 拡散層と集電体との 間に、 少なく とも、 吸水性、 通気性、 及び導電性を有する吸水層を備え ることを特徴としている。
これにより、 本発明にかかる生成水処理システムは、 吸水層によって 拡散層に存在する生成水を吸水し、吸水層によって吸水された生成水を、 当該吸水層の一部に接触する生成水吸収部材によってさらに吸水するこ とから、 吸水のさらなる効率化を図ることができるとともに、 発生した 電気の集電を効率よく行うことができる。
また、 上述した目的を達成する本発明にかかる生成水処理方法は、 発 電体による発電の際に生成される生成水を処理する生成水処理方法であ つて、 生成水を毛細管現象を利用して回収して移動させ、 発電体の外部 へと処理する、 若しくは一時的に蓄積した後に発電体の外部へと処理す ることを特徴としている。
このような本発明にかかる生成水処理方法は、 発電体の発電によって 生成する生成水を生成水吸収部材によって回収することにより、 生成水 を発電体の内部に滞留させることなく処理することができる。
さらに、 上述した目的を達成する本発明にかかる発電装置は、 燃料ガ スと酸化剤ガスとを供給し、 燃料ガスと酸化剤ガスとを電気化学的に反 応させて電力を発生させる発電装置であって、 発電体に延在して設けら れ、 発電体で生成される生成水を毛細管現象を利用して回収して移動さ せる生成水吸収部材を備えることを特徴としている。
このような本発明にかかる発電装置は、 発電体の発電によって生成す る生成水を生成水吸収部材によって回収することにより、 生成水が発電 体の内部に滞留することなく処理されることから、 発電効率の安定化を 図ることができる。
さらにまた、 上述した目的を達成する本発明にかかる生成水処理シス テムは、 発電体による発電の際に生成される生成水を処理する生成水処 理システムであって、 第 1の電極に対して燃料ガスを供給する燃料供給 溝と第 2の電極に対して酸化剤ガスを供給する酸化剤供給溝とが形成さ れ、 発電体を挟持するセパレー夕と、 少なく とも酸化剤供給溝の途中領 域に設けられ、 生成水を処理する生成水処理手段とを備えることを特徴 としている。
このような本発明にかかる生成水処理システムは、 生成水を、 少なく とも酸化剤供給溝の途中領域に設けられた生成水処理手段によって処理 することにより、 酸化剤供給溝に生成水が滞留することによって閉塞す ることがなくなる。したがって、本発明にかかる生成水処理システムは、 酸化剤供給溝を通過する酸化剤ガスの流れが阻害されることを回避する ことができる。
ここで、 生成水処理手段としては、 生成水を吸水する吸水部材を用い ることができる。 特に、 この吸水部材は、 少なく とも酸化剤供給溝の側 壁の一部領域に沿って設けられるのが望ましい。
これにより、 本発明にかかる生成水処理システムは、 酸化剤供給溝に 生成した生成水を直接的に吸水することができる。
また、 本発明にかかる生成水処理システムにおいて、 吸水部材を、 さ らに、 酸化剤供給溝が形成された面の少なく とも一部を覆うように設け るようにしてもよい。
これにより、 本発明にかかる生成水処理システムは、 少なく とも酸化 剤供給溝の側壁の一部領域に沿って設けられた吸水部材によって吸水さ れた生成水を、 さらに、 酸化剤供給溝が形成された面の少なく とも一部 を覆うように設けられた吸水部材によって外部手段を何ら用いることな く発電体とは離隔された場所にまで拡散させることができる。
さらに、 本発明にかかる生成水処理システムにおいて、 セパレー夕に は、 発電体の放熱を行うための放熱部が形成されており、 酸化剤供給溝 が形成された面の少なく とも一部を覆うように設けられた吸水部材は、 放熱部が形成された面上から延在した所定の形状を呈するように形成さ れ、 所定の形状の領域が酸化剤供給溝の少なく とも一部を覆うように配 置される。
これにより、 本発明にかかる生成水処理システムは、 発電体とは離隔 された放熱部にまで生成水を拡散させ、 この放熱部にて生成水を効率よ く且つ確実に蒸発させることができる。
さらに、 吸水部材は、 毛細管現象を利用して生成水を吸水するもので あることが望ましい。
これにより、 本発明にかかる生成水処理システムは、 生成水を吸水部 材の全域に拡散させることができることから、 水処理速度を向上させ、 極めて効率よく且つ確実に生成水を吸水することが可能となる。 また、 本発明にかかる生成水処理システムは、 吸水部材が生成水を一時的に保 持するバッファの役割を果たすことができ、 環境湿度による生成水の蒸 発速度の変化にも対応することができる。
なお、 このような毛細管現象を利用して生成水を吸水する吸水部材と しては、 長手方向に対して空隙領域が形成された糸状の繊維の集合体と して構成されるものがある。
さらにまた、 吸水部材は、 吸放湿性を有する第 1の素材と、 吸水性を 有する第 2の素材とを貼り合わせた 2層構造からなる素材に対して、 所 定のテープ材を第 2の素材の下層に貼り合わせた 3層構造からなるもの であることが望ましい。 また、 第 2の素材は、 毛細管現象を利用して生 成水を吸水するものであることが望ましい。
このように、 本発明にかかる生成水処理システムは、 所定のテープ材 を最下層に設けた吸水部材を用いることにより、 酸化剤供給溝を覆う部 分が弛むのを回避することができ、 形状を安定させることができるとと もに、 吸水部材に対する切断をともなう加工形成を容易に実現すること が可能となる。
なお、 この 3層構造からなる吸水部材のうち、 第 2の素材は、 毛細管 現象を利用して生成水を吸水するものであることが望ましい。
また、本発明にかかる生成水処理システムは、生成水処理手段として、 表面を粗面化した酸化剤供給溝を用いることもでき、 さらには、 撥水性 や親水性の高い領域を形成した酸化剤供給溝を用いることもできる。 本発明にかかる生成水処理システムは、 このような生成水処理手段を 用いることによつても、 酸化剤供給溝に生成水が滞留することによって 閉塞することがなくなり、 酸化剤供給溝を通過する酸化剤ガスの流れが 阻害されることを回避することができる。
さらに、 本発明にかかる生成水処理システムは、 拡散層とセパレー夕 との間に、 少なくとも、 吸水性、 通気性、 及び導電性を有する吸水層を 備えることを特徴としている。
これにより、 本発明にかかる生成水処理システムは、 吸水層によって 拡散層に存在する生成水を吸水し、吸水層によって吸水された生成水を、 当該吸水層の一部に接触する生成水処理手段によってさらに処理するこ とから、 生成水処理をさらに効率よく行うことができるとともに、 発生 した電気の集電を効率よく行うことができる。
また、 上述した目的を達成する本発明にかかる生成水処理方法は、 発 電体による発電の際に生成される生成水を処理する生成水処理方法であ つて、 発電体を挟持するセパレー夕に形成された燃料供給溝を介して第 1の電極に対して燃料ガスを供給するとともに、 セパレー夕に形成され た酸化剤供給溝を介して第 2の電極に対して酸化剤ガスを供給し、 発電 体による発電を行う発電工程と、 少なく とも酸化剤供給溝の途中領域に 設けられた生成水処理手段を用いて生成水を処理する生成水処理工程と を備えることを特徴としている。
このような本発明にかかる生成水処理方法は、 生成水を、 少なく とも 酸化剤供給溝の途中領域に設けられた生成水処理手段によって処理する ことにより、 酸化剤供給溝に生成水が滞留することによって閉塞するこ とがなくなり、 酸化剤供給溝を通過する酸化剤ガスの流れが阻害される ことを回避することができる。
さらに、 上述した目的を達成する本発明にかかる発電装置は、 燃料ガ スと酸化剤ガスとを供給し、 これら燃料ガスと酸化剤ガスとを電気化学 的に反応させて電力を発生させる発電装置であって、 第 1 の電極と第 2 の電極との間に所定の電解質膜が設けられた発電体と、' 第 1の電極に対 して燃料ガスを供給する燃料供給溝と第 2の電極に対して酸化剤ガスを 供給する酸化剤供給溝とが形成され、 発電体を挟持するセパレー夕と、 少なく とも酸化剤供給溝の途中領域に設けられ、 発電体による発電の際 に生成される生成水を処理する生成水処理手段とを備えることを特徴と している。
このような本発明にかかる発電装置は、 生成水を、 少なく とも酸化剤 供給溝の途中領域に設けられた生成水処理手段によって処理することに より、 酸化剤供給溝に生成水が滞留することによって閉塞することがな くなる。 したがって、 本発明にかかる発電装置は、 酸化剤供給溝を通過 する酸化剤ガスの流れが阻害されることを回避することができ、 発電効 率の安定化を図ることができる。 図面の簡単な説明
図 1は、 本発明の第 1 の実施の形態として示す生成水処理システムを 適用した発電装置の構成を示す断面図である。
図 2は、 生成水吸収部材が設けられたノー卜型パーソナルコンビユー 夕の外観概略を示す斜視図である。
図 3は、 図 2に示す生成水吸収部材とは異なる形状を有する生成水吸 収部材が設けられたノート型パーソナルコンピュータの外観概略を示す 斜視図である。
図 4は、 図 2及び図 3に示す生成水吸収部材とは異なる形状を有する 生成水吸収部材が設けられたノート型パーソナルコンピュータの外観概 略を示す斜視図である。
図 5は、 生成水吸収部材とともに生成水保水部材が設けられたノート 型パーソナルコンピュー夕の外観概略を示す斜視図である。
図 6は、 生成水吸収部材が設けられた発電体による効果を検証するた めの実験結果を説明するための図であり、 発電体からの出力電圧と発電 開始からの経過時間との関係を示す図である。
図 7は、 本発明の第 2の実施の形態として示す燃料電池に適用可能な セパレー夕を表面から見た平面図である。
図 8は、 同セパレー夕を裏面から見た底面図である。
図 9は、 図 8中一点鎖線で示す H H線で切断した同セパレ一夕の断面 図である。
図 1 0は、 3層からなる吸水布の構造を説明するための断面図である。 図 1 1は、 セパレ一夕の一部領域を示す断面図であって、 テープ材を 設けずにそのまま吸水布として用いた場合に、 空気供給溝を覆う部分が 弛む様子を説明するための図である。
図 1 2は、 図 1 0に示す吸水布が設けられたセパレー夕による効果を 検証するための実験結果を説明するための図であり、 発電体からの出力 電圧と発電開始からの経過時間との関係を示す図である。
図 1 3は、 同セパレ一夕を適用した燃料電池の構成を示す分解斜視図 である。
図 1 4 Aは、同燃料電池を構成する筐体の構造を示す構造図であって、 一の側面を示す正面図であり、
図 1 4 Bは、同燃料電池を構成する筐体の構造を示す構造図であって、 他の側面を示す背面図であり、
図 1 4 Cは、同燃料電池を構成する筐体の構造を示す構造図であって、 一の端面を示す側面図であり、
図 1 4 Dは、同燃料電池を構成する筐体の構造を示す構造図であって、 他の端面を示す側面図である。
図 1 5は、 同燃料電池を構成する発電部を示す斜視図である。
図 1 6は、 同発電部の一部を示す分解斜視図である。
図 1 7は、 同燃料電池の内部構成を示す平面図であり、 空気の流れを 説明するための図である。
図 1 8は、 吸水布が拡散層たるカーボン繊維層の一部にしか接触して いない構成とされる
燃料電池の構成を示す断面図である。
図 1 9は、 本発明の第 3の実施の形態として示す燃料電池の構成を示 す断面図である。 発明を実施するための最良の形態
以下、 本発明を適用した具体的な実施の形態について図面を参照しな がら詳細に説明する。
この実施の形態は、 燃料ガスとしての水素と酸化剤ガスとしての空気 とを供給し、 これら水素と空気とを電気化学的に反応させて発電体に電 力を発生させる発電装置としての燃料電池、 及びこの燃料電池に適用さ れる生成水処理システムである。
まず、 第 1の実施の形態として示す生成水処理システムについて説明 する。
図 1は、 生成水処理システムを適用した発電装置の一例を示す断面図 である。 生成水処理システムは、 発電体と、 この発電体に配設されると ともに延在して設けられ当該発電体による発電の際に生成される生成水 を毛細管現象を利用して回収して移動させる生成水吸収部材と、 生成水 を一時的に蓄積する生成水保水部材とを有する。
具体的には、 同図に示すように、 発電装置 2 0は、 水素側電極である アノード電極に配設される水素側集電体 1 1 と、 酸素側電極であるカソ 一ド電極に配設される酸素側集電体 1 7 と、 これら水素側集電体 1 1 と 酸素側集電体 1 7 との間に挟持される発電体 1 0を主たる構成要素とさ れる。
この発電装置 2 0の酸素側集電体 1 7上には、 カソード電極にて生成 される生成水を移動させる生成水吸収部材 1 8が設けられる。 この生成 水吸収部材 1 8は、 後述する酸素側集電体 1 7における開口部 1 7 aか らカソ一ド電極に対して酸素が供給されるように当該開口部 1 7 aの周 辺部に形成されるとともに、 また、 当該開口部 1 7 aから力ソード電極 が大気に接触するのを阻害しないように形成される。
この発電装置 2 0のアノード電極には、 燃料として水素 (H 2 ) ゃメ 夕ノール等の物質が、 例えば水素吸蔵カートリ ッジ等から燃料として供 給される。 発電装置 2 0の力ソード電極には、 酸素 (空気) が供給され る。 ここで、 酸素側集電体 1 7には、 上述したように、 開口部 1 7 aが 形成されており、 この開口部 1 7 aを介して酸素側拡散層 1 6が大気開 放されて大気に接触することにより、 力ソード電極に対して酸素が供給 される。
なお、 同図において概略的に示すように、 発電装置 2 0上に形成され る生成水吸収部材 1 8は、 発電体 1 0による発電の際に生成される生成 水を一時的に蓄積する生成水保水部材 2 2に連結している。 この生成水 保水部材 2 2は、 後述するように、 生成水吸収部材 1 8に当接するとと もに電子機器の表面等に設けられる。 発電体 1 0は、 酸素側集電体.1 7に当接する酸素側拡散層 1 6 と、 こ の酸素側拡散層 1 6からの酸素に対してアノード電極からの電子( e —) とプロ トン (H + ) とを反応させて水分を生じさせる酸素側触媒層 1 5 と、 プロ トン (H + ) の移動を可能とする電解質膜 1 4と、 力ソード電 極へと移動する電子 ( e — ) とプロ トン (H + ) とを生じさせる水素側 触媒層 1 3 と、 水素側集電体 1 1 に当接する水素側拡散層 1 2 とを積層 した構造となる。
このような発電体 1 0においては、 酸素側集電体 1 7における開口部 1 7 aから大気開放によって流入する酸素が酸素側拡散層 1 6で拡散さ れ、 拡散した酸素を用いて酸素側触媒層 1 5で 1 Z 202 + 2 H + + 2 e - = H 2〇の如き反応が起こり、 このときの発電によって水分が生成 ' される。 ここで、 水素側触媒層 1 3、 水素側拡散層 1 2、 及び水素側集 電体 1 1は、 燃料電極を構成する。 燃料として供給される水素は、 水素 側拡散層 1 2で拡散され、 拡散した水素を用いて水素側触媒層 1 3で H 2→ 2 H+ + 2 e —の如き反応が起こり、 電子 ( e — ) とプロ トン (H + ) を発生させる。 水素側触媒層 1 3で発生したプロ トン (H +) は、 電解質膜 1 4に移動した後、 酸素側触媒層 1 5へと到達して酸素と反応 する。 そして、 電子 ( e — ) は、 図示しない外部回路によって酸素側集 電体 1 7を介して酸素側触媒層 1 5へと到達する。
また、 発電装置 2 0の酸素側集電体 1 7には、 上述したように、 空気 中の酸素を発電体 1 0の酸素側拡散層 1 6に対して供給するための気体 流入口として開口部 1 Ί aが複数形成される。 生成水吸収部材 1 8は、 開口部 1 7 aの断面を覆うように形成される。 酸素は、 この開口部 1 7 aを介して発電体 1 0の酸素側拡散層 1 6が大気開放されることによつ て取り込まれる。 なお、 開口部としては、 例えば生成水吸収部材 1 8に 形成してもよく、 より具体的には、 この生成水吸収部材 1 8に形成され た開口部を開口部 1 7 aに重ねるようにして当該開口部 1 7 aの断面を 覆うように形成してもよい。 この場合、 生成水吸収部材 1 8に形成され る開口部の形状は、 酸素側集電体 1 7における開口部 1 7 aの形状と同 様に、 円形、 楕円形、 ス トライプ形状、 又は多角形形状等の各種形状と することができ、 酸素側拡散層 1 6を大気に接触しやすいような形状と するのが望ましい。 また、 ここでは、 生成水吸収部材 1 8が酸素側集電 体 1 7 と別個の構成部材となっているが、 生成水吸収部材としては、 例 えばコーティ ング等を施すことによって酸素側集電体 1 7 と一体化する こともできる。
さらに、 酸素側集電体 1 7上に設けられる生成水吸収部材 1 8は、 酸 素側集電体 1 7に当接して設けられるのであるが、 発電体 1 0の酸素側 拡散層 1 6に対して大気開放して酸素を供給するために設けられた開口 部 1 7 aの周囲を囲むようにして当該開口部 1 7 aの周辺部に設けられ. 具体的には、 例えば開口部 1 7 aの断面を覆うように形成される。 この 場合、 生成水吸収部材 1 8は、 空気を供給する開口部 1 7 aを閉塞する ことがないため、 空気の流れを阻害することがない。
このような生成水吸収部材 1 8は、 水分を吸収する親水性を有する吸 収材料からなり、 例えば、 橋架ポリアクリル酸塩系、 イソブチレン マ ィレン酸塩系、澱粉 Zポリアク リル酸塩系、 P V A ( Po l y V i ny l A l c oho l ) ノポリアクリル系、 アクリル繊維の加水分解系、 橋架 P V A系といった 高分子材料を適用することができる。 また、 生成水吸収部材 1 8は、 後 述するように、 生成水を離隔された所定の場所まで移動させて蒸発させ るのが望ましく、 水分を移動させる材料でもあることが望ましい。 この ような材料としては、 例えば、 表面に凹部を有する多孔質金属や多孔質 鉱物、 親水性カーボン、 紙、 パルプ、 高分子材料、 天然繊維、 合成繊維 等が挙げられる。 また、 このような材料としては、 毛細管現象が生じる 高吸水性を有する材料が知られており、 例えば、 長手方向に対する断面 に微細な空隙領域が形成された糸状の材料を縦横に織り込んだ合成繊維 であるポリエステルノナイロン複合材ゃポリエステル等がある。 また、 生成水吸収部材 1 8 としては、 長手方向に対する断面に微細な空隙領域 が形成された糸状の材料を集合した合成繊維等でもよい。
例えば、 長手方向に対する断面に微細な空隙領域が形成された糸状の 材料としては、 ポリエステルノナイロン複合材等の複合材があるが、 凸 部を有する略星型形状の材料を中心として当該略星型形状の材料が有す る各凸部の間に他の材料が形成される複合材がある。 この複合材におい ては、 略星型形状の材料と他の材料との間に微細な空隙領域が形成され ており、 微細な空隙領域に侵入する水分は、 空隙領域の長手方向に対す る断面での面積が小さいことから、 水の表面張力によって圧力が高めら れて毛細管現象が生じる。 また、 微細な空隙領域は、 略星型形状の材料 と他の材料との間の隙間であってもよいし、 長手方向に対して形成され た微細な溝であってもよい。 このように、 長手方向に対する断面で微細 な空隙領域が形成された糸状の材料を用いた場合には、 微細な空隙領域 により水の表面張力によって圧力が高められて毛細管現象が生じ、 この 毛細管現象を利用して水分を移動させることができ、 高い吸水性を有す る移動材料を構成できる。 さらに、 このような糸状の材料を用いた場合 には、 各糸状の材料同士の間で水の表面張力が生じ、 水の表面張力によ つて水を吸収することができる吸水材料を構成できる。
ここで、 従来例においては、 力ソード電極における酸素側触媒層にて 生成される生成水は、 酸素側拡散層に侵入する。 さらに、 酸素側拡散層 に侵入した生成水は、 酸素側集電体へと到達し、 常温である大気に接触 することによって水滴となり、酸素側集電体上に凝集する。このように、 従来例においては、 蒸気が水滴となって酸素側集電体上に生成する場合 には、 水の表面張力によって水滴が大きくなり、 開口部 1 7 aに相当す る開口部が水滴によって閉塞し、 酸素側触媒層への酸素の供給が阻害さ れ、 発電体の出力が低下することになる。
これに対して、 発電装置 2 0においては、 酸素側集電体 1 7に当接し て生成水吸収部材 1 8が形成され、 この生成水吸収部材 1 8が酸素側集 電体 1 7における開口部 1 7 aの周辺部に形成されることから、 開口部 1 7 aで増加する生成水が生成水吸収部材 1 8に接触して吸収される。 このとき、 発電装置 2 0においては、 生成水が生成水吸収部材 1 8 に接 触すると水の表面張力によって生成水吸収部材 1 8に吸い寄せられるの であるが、 上述したように、 生成水吸収部材 1 8が糸状の材料から構成 される場合には、 糸状の材料間で水の表面張力が作用して吸水性を呈す ることから、 生成水が生成水吸収部材 1 8に吸収される。 さらに、 発電 装置 2 0においては、 上述したように、 生成水吸収部材 1 8を形成する 糸状の材料が長手方向に対する断面で微細な空隙領域が形成されること から、 毛細管現象が生じる高吸水性を有する材料とされ、 吸収した生成 水を毛細管現象を利用して移動させることができる。 また、 発電装置 2 0においては、 酸素側集電体 1 7に染み出る水分であっても、 高吸収性 を有する生成水吸収部材 1 8によって確実に吸収され、 開口部 1 7 aが 良好な状態のもとに発電体 1 0に酸素が供給されることになる。
また、 後述するように、 生成水吸収部材 1 8は、 吸収した生成水を発 電体 1 0の表面よりも大きい面積を有する電子機器等の表面に移動させ て蒸発させる。 このように、 発電装置 2 0においては、 生成水吸収部材 1 8を面積が大きい電子機器等の表面に設けることにより、 効率よく蒸 発させることができ、 生成水吸収部材 1 8が生成水を吸収 ·移動させる 度に生成水を常に蒸発させ続けることができる。
このように、 発電装置 2 0においては、 長手方向に対する断面に微細 な空隙領域が形成された糸状の材料から構成される生成水吸収部材 1 8 を用いることにより、 生成水吸収部材 1 8で生じる毛細管現象を利用し て生成水を高吸水性のもとに回収して移動させることができる。 特に、 発電体 1 0のような大気開放型燃料電池においては、 酸素側集電体 1 7 に凝集する生成水は開口部 1 7 aの周辺部に凝集しやすいが、 開口部 1 7 aの周辺部に生成水吸収部材 1 8を設けることにより、 生成水が生成 される度に効率よく回収して移動させることができる。 また、 発電装置 2 0においては、 生成水吸収部材 1 8が酸素側集電体 1 7上に設けられ ることから、 発電によって酸素側集電体 1 7に生じる熱により、 生成水 吸収部材 1 8から生成水が蒸発するのを促進させることができ、 発電時 に生じる熱が生成水の蒸発に用いられることから、 発電時の熱による発 電体 1 0の温度上昇を効率よく回避することができる。 なお、 発電装置 2 0においては、 生成水吸収部材 1 8を酸素側集電体 1 7の開口部 1 7 a周辺部の断面を覆うように設けるのではなく、 開口部 1 7 aから離隔 して、 重力や風の流れによって酸素側集電体 1 7から離隔した生成水を 吸収するように構成してもよい。
図 2は、 生成水吸収部材 1 8が設けられたノート型パーソナルコンビ ユー夕の一例の概略図である。上述したように、生成水吸収部材 1 8は、 発電装置 2 0における開口部 1 7 aの周辺部分に設けられて発電時の生 成水を回収した後、 回収した生成水を発電体 1 0の表面から移動させて 表面積が大きいノート型パーソナルコンピュータ 2 1 の背面で蒸発させ る。 そのため、 生成水吸収部材 1 8は、 発電装置 2 0の酸素側集電体 1 7に配設されると同時に、 生成水が蒸発しやすいような表面積が大きい ノート型パーソナルコンピュー夕 2 1の背面に延在して設けられる。 例 えば、 同図に示すように、 生成水吸収部材 1 8は、 発電装置 2 0が収納 されるノート型パーソナルコンピュータ 2 1のディスプレイ背面全体に 設けられる。 また、 図示しないが、 発電装置 2 0は、 装置本体であるノ ―ト型パーソナルコンピュー夕 2 1 に装着されるのであるが、 カード用 のスロッ トから挿入したりしてもよく、 ノート型パーソナルコンビユー 夕 2 1 の底部に装着したりしてもよい。 なお、 ここでは、 携帯型の電子 機器としてノート型パーソナルコンピュータを用いて説明するが、 携帯 型の電子機器としては、 燃料電池カードから電力が供給される携帯電話 等であつてもよい。
生成水吸収部材 1 8 として長手方向に対する断面に微細な空隙領域が 形成された糸状の材料からなる移動材料を用いる場合には、 発電装置 2 0の力ソード電極で生成される生成水は、 生成水吸収部材 1 8により、 毛細管現象を利用して回収され、 当該生成水吸収部材 1 8の全域に亘っ て移動される。 特に、 生成水吸収部材 1 8は、 ノート型パーソナルコン ピュー夕 2 1のディスプレイの背面に設けられる場合には、 当該ノート 型パーソナルコンピュータ 2 1の使用時にディスプレイを開いた場合で あっても、 毛細管現象を利用して重力の方向とは逆方向に吸い上げて移 動させることができる。 このとき、 毛細管現象を利用して水分を吸い上 げる水通路の断面積が小さいほど吸い上げる力が大きくなることから、 生成水吸収部材 1 8は、 長手方向に対する断面に微細な空隙領域の断面 積が小さいほど吸水性が高くなり、 生成水を容易に吸い上げることがで きる。 さらに、 生成水吸収部材 1 8は、 毛細管現象を利用して水分を吸 い上げる水通路の断面積が小さいほど回収した生成水を容易に移動させ ることができ、 当該生成水吸収部材 1 8の全域に生成水を移動しやすく なる。 ノート型パーソナルコンピュータ 2 1 においては、 生成水吸収部 材 1 8が生成水を全域に亘つて移動させると、 当該生成水吸収部材 1 8 が大気に接触する表面部分で放湿材料である当該生成水吸収部材 1 8か ら生成水が蒸発される。 このように、 ノー卜型パーソナルコンピュータ 2 1 においては、 生成水吸収部材 1 8によって回収された生成水が、 発 電体 1 0の表面積に比べて大きいディスプレイ背面に形成される生成水 吸収部材 1 8の表面全域から蒸発し続けることから、 生成水を発電装置 2 0の外部へと排出する新たな装置を設けることなく、 簡便に生成水を 外部へと排出して処理することができる。
上述したように、 発電体 1 0で生成された水分は、 酸素側集電体 1 7 に当接する生成水吸収部材 1 8によって吸収され、 生成水吸収部材 1 8 の全域へと移動される。 このとき、 ノート型パーソナルコンビュ一夕 2 1 においては、 生成水吸収部材 1 8によって生成水を吸収する際に、 生 成水吸収部材 1 8での毛細管現象を利用して重力の方向とは逆方向に水 分を吸収する。 そのため、 ノート型パーソナルコンピュータ 2 1 を開い て使用する発電時であっても、 ノート型パーソナルコンピュータ 2 1の 背面に形成された生成水吸収部材 1 8は、 生成水を吸収して表面積が大 きいノート型パーソナルコンピュータ 2 1のディスプレイ背面の全面か ら生成水を容易に蒸発させることができ、 より効率よく生成水を処理す ることができる。 また、 ノート型パーソナルコンピュータ 2 1 において は、 生成水吸収部材 1 8から生成水を蒸発させることにより、 生成水吸 収部材 1 8が含む生成水の水分濃度が低下するため、 発電体 1 0から生 成水が生じやすい発電時であっても、 生成水を処理することができ、 発 電体 1 0の発電性能を保持し続けることができる。 また、 発電装置 2 0 を平面型で面積の大きな発電装置としてノート型パーソナルコンビュ一 夕 2 1の底部に装着する場合には、 発電体 1 0から生成水を回収する生 成水吸収部材 1 8の表面積が大きくなることから、 生成水吸収部材 1 8 の表面から生成水が蒸発しやすくなり、 より効率よく生成水を大気に蒸 発させることができる。
このように、 発電装置 2 0においては、 酸素側集電体 1 7に生成水吸 収部材 1 8を設け、 発電によって生じる生成水を吸収 · 移動した後、 こ の生成水を大気に蒸発させて処理する場合には、 発電体 1 0で生じる水 分を当該発電装置 2 0の内部で滞留させることなく、 酸素側拡散層 1 6 から排出することができる。 そのため、 発電装置 2 0においては、 電解 質膜 1 4を通過してアノード電極に水分が逆拡散することにより、 水素 ガスの水素側触媒層 1 3への供給が阻害されるのを回避することができ る。 また、 発電装置 2 0においては、 力ソード電極にて生成された生成 水についても、 酸素側集電体 1 7における開口部 1 7 aを閉塞すること がなく、 空気の酸素側拡散層 1 6への供給が阻害されるのを回避するこ とができ、 発電体 1 0の発電性能を低下させることなく発電し続けるこ とができる。 さらに、 発電装置 2 0においては、 生成水吸収部材 1 8の 容積や分量を容易に調整することができることから、 生成水吸収部材 1 8の容積や分量を調節することにより、 生成水吸収部材 1 8が吸収する 生成水の水分量や生成水吸収部材 1 8で蒸発する生成水の蒸発量を容易 に調節することができ、 湿度、 温度、 空気の流れといった外部環境に影 響されにく く、 外部環境及び出力に応じた最適な発電を行うことができ る。
なお、 生成水吸水部材としては、 以下のような形状とすることもでき る。
図 3には、 ノート型パーソナルコンピュータ 2 1のディスプレイ背面 に形成する生成水吸収部材について、 他の形状を有する場合における一 例を示している。 同図における生成水吸収部材 1 8 aの形状は、 鋸歯形 状に凹凸部が形成されたものである。 この生成水吸収部材 1 8 aにおい ても、 吸収した生成水を全域に移動した後に大気に蒸発させるのである が、 当該生成水吸収部材 1 8 aが大気に接触する表面積が大きいほど生 成水は蒸発しやすいため、 生成水吸収部材 1 8 aが大気に接触する表面 積に比例して蒸発する生成水の量は増加する。 そのため、 同図に示す生 成水吸収部材 1 8 aのように、 鋸歯形状に凹凸部が形成された形状とし た場合には、 生成水吸収部材 1 8 aが大気に接触する表面積が増加し、 生成水吸収部材 1 8 aの投影面積を増加させることなく、 蒸発する生成 水の量を増加させることができる。
また、 図 4には、 ノート型パーソナルコンピュータ 2 1のディスプレ ィ背面に形成する生成水吸収部材について、 さらに他の形状を有する場 合における一例を示している。 同図における生成水吸収部材 1 8 bの形 状は、その表面に断面が T字型を呈する突設部が形成されたものである。 図 3に示した生成水吸水部材 1 8 aと同様に、 生成水吸収部材 1 8 bが 大気に接触する表面積が大きいほど生成水は蒸発しやすく、 生成水が表 面積に比例して蒸発する。 そのため、 同図に示す生成水吸収部材 1 8 b のように、 T字型の突設部が形成された形状とした場合には、 生成水吸 収部材 1 8 bが大気に接触する表面積が増加し、 生成水吸収部材 1 8 b の投影面積を増加させることなく、 蒸発する生成水の量を増加させるこ とができる。
このように、 生成水吸収部材 1 8 としては、 その形状を立体的な種々 の形状とすることにより、大気に接触する面積を増加させることができ、 大気に接触する面積の増加にともなって蒸発させて処理できる生成水の 量を効率よく増加させることができる。 また、 発電装置 2 0におけるァ ノ一ド電極には、 水素を水素側拡散層 1 2へと侵入させるために適量の 水分が必要であるが、 生成水吸収部材 1 8の形状を変更して表面積を変 更することにより、生成水吸収部材 1 8による生成水の吸収量を制御し、 回収する生成水の回収量を制御することができる。
図 5は、 生成水吸収部材とともに生成水を一時的に蓄積する生成水保 水部材が設けられたノート型パーソナルコンピュータの一例の概略図で ある。 この場合、 生成水保水部材 2 2は、 ノート型パーソナルコンビュ 一夕 2 1のディスプレイ背面と生成水吸収部材 1 8 との間に設けられる このとき、 生成水保水部材 2 2は、 ディスプレイの背面全体に設けるよ うにしてもよいし、 デイスプレイ背面の外緣部付近等の一部に設けるよ うにしてもよい。 ノート型パーソナルコンピュータ 2 1 においては、 生 成水保水部材 2 2が生成水吸収部材 1 8から生成水を吸収して蓄積した 後、 生成水吸収部材 1 8が生成水保水部材 2 2から蓄積された生成水を 再度吸収し、 この生成水を生成水吸収部材 1 8又は生成水保水部材 2 2 から大気に蒸発させる。 このような生成水保水部材 2 2は、 ノート型パ 一ソナルコンピュータ 2 1及び生成水吸収部材 1 8から着脱できるよう に構成され、 吸収した生成水がある一定の量を越えると交換したり、 或 いは生成水を絞ってから再利用したりすることもできる。 例えば、 生成 水保水部材 2 2としては、 ノート型パーソナルコンピュータ 2 1から発 電装置 2 0を着脱する際に同時に着脱可能な構造とすることができ、 発 電装置 2 0に燃料を供給する水素吸蔵カートリ ッジを交換する際等に同 時に着脱されるようにすることができる。
発電装置 2 0の発電体 1 0で生成される生成水は、 生成水吸収部材 1 8で回収された後に生成水吸収部材 1 8の全域に亘つて移動され、 生成 水保水部材 2 2に吸収されて当該生成水保水部材 2 2に一時的に蓄積さ れる。 生成水保水部材 2 2は、 例えば生成水吸収部材 1 8 と同様に生成 水を吸収でき且つ保水できる材料から構成されるが、 一例として、 表面 に凹部を有する多孔質金属や多孔質鉱物、 親水性カーボン、 高分子材料 といつた保水性を有する材料を用いることができる。
また、 生成水保水部材 2 2 としては、 生成水吸収部材 1 8と同様に、 長手方向に対する断面に微細な空隙領域が形成された糸状の材料が集合 して構成される移動材料を用いる場合には、 生成水吸収部材 1 8が移動 した生成水が毛細管現象を利用して吸い上げられて当該生成水保水部材 2 2に吸収されて蓄積される。 このとき、 微細な空隙領域の断面積が小 さいほど毛細管現象によって吸い上げる力が大きくなることから、 生成 水保水部材 2 2は、 微細な空隙領域の水通路の断面積が小さいほど吸水 性が高くなり、 容易に吸水することが可能とされる。
このように、 発電装置 2 0に生成水吸収部材 1 8を配設し、 発電によ つて生じる生成水を回収 · 移動した後、 生成水保水部材 2 2に生成水を 一時的に蓄積する場合には、 生成水保水部材 2 2は、 生成水吸収部材 1 8に当接して設けられるのであるが、 生成水吸収部材 1 8が発電体 1 0 の発電によって生じる生成水を回収 ·移動した後に生成水を蒸発させる 場合には、 生成水吸収部材 1 8からの蒸発量が生成水吸収部材 1 8の回 収する生成水量に比べて少ないときに、 一時的に生成水を蓄積すること ができる。 そのため、 発電装置 2 0においては、 生成水保水部材 2 2の 容積や分量を調節することにより、 生成水吸収部材 1 8が回収する生成 水の水分量を調節することができ、 湿度、 温度、 空気の流れといった外 部環境に影響されにく く、 外部環境及び出力に応じた最適な発電を行う ことができる。
以上のような発電装置 2 0について、 本件出願人は、 以下のような実 験を行った。
まず、 発電体である燃料電池を以下のように製造した。 すなわち、 発 電体における水素側触媒層及び酸素側触媒層を形成するために、 田中金 属株式会社製"白金担持カーボン (担持量 4 6 . 7 w t % ) "とデュポン 株式会社製''固体高分子電解質溶液 (N a f i o n (登録商標) 溶液) " とを、 いわゆる N P Aと水とを用いて混合し、 分散性向上のため、 金属 球を添加したポリエチレン容器中で 2時間攪拌した。 さらに、 これをポ リテトラフルォロエチレンシー卜の上に白金担持密度が 0 . 2 2 m g c m 2 となるように塗布して乾燥させ、 水素側触媒層及び酸素側触媒層 を形成した。 そして、 水素側触媒層及び酸素側触媒層を形成した後、 こ れらの触媒層を固体高分子膜からなる電解質膜 (商品名 N a f i o n (登録商標) 1 1 2 ) の両面に熱転写した。 さらに、 水素側拡散層及 び酸素側拡散層をそれぞれ水素側触媒層及び酸素側触媒層上に形成する ため、 ジャパンゴァテックス株式会社製"力一ボンクロス C A R B E L
(登録商標) "にて挟み込み、 再度、 熱プレスにて接合を行い、 発電体と なる膜一電極接合体を製作した。
そして、 この膜一電極接合体である発電体を、 表面に金メッキ処理を 施した水素側集電体及び酸素側集電体である金属構造体で把持して燃料 電池を製造し、この燃料電池を用いて電圧特性の確認を行った。実験は、 気温が 2 2 〜 2 3 であり、 相対湿度が 3 0 %〜 4 0 %である室内環 境下で行った。 また、 燃料としてアノード側に水素ガスを供給するとと もに、 カソード側については酸素側拡散層と接する金属構造体の一部に 空気取り入れ口として開口部を設け、 この開口部を介して空気を供給し た。 さらに、 生成水吸収部材としては、 カネボウ合繊株式会社製の高吸 +水性且つ高放湿性を有する繊維である"ベリーマ (登録商標) X "からな る布地を用い、 これを開口部の周辺部、 特に近傍に配置した。 さらにま た、 比較例として、 生成水吸収部材を配置する処理を行わない場合につ いても、 同様の実験を行った。
このような発電体を用いた実験結果を図 6に示す。 同図には、 発電体 による発電電圧について、 1 . 5 Aでの定電流特性を測定したときの時 系列チャートを示しており、 同図における縦軸は、 ボルト (V ) を単位 とする発電体からの出力電圧を示し、 横軸は、 分を単位とする経過時間 を示している。
同図に示すように、 生成水吸収部材を配置しない比較例においては、 時間の経過にともない出力が徐々に低下していくのに対して、 生成水吸 収部材を配置した実施例においては、 時間の経過にかかわらず出力が安 定していることがわかる。 また、 目視観察についても、 比較例において は、 発電体の発電によって生成水が空気取り入れ口である開口部に水滴 として蓄積したのが観察されたのに対して、 生成水吸収部材を配置した 場合には、 水滴の蓄積は観察されなかった。 これは、 力ソード側の金属 構造体の一部に設けられる開口部の近傍に生成水吸収部材を配置したた めであり、 生成水吸収部材が生成水を回収して移動させたために、 開口 部から安定した空気の取り入れを行うことができるからに他ならない。 このように、 生成水吸収部材によって回収された生成水は、 生成水吸収 部材から大気に蒸発され、 長時間に亘つて安定した生成水の回収を行う ことができ、 さらには、 燃料電池に対して安定した空気の取り入れを行 うことができることがわかった。
以上のように、 発電装置 2 0においては、 生成水吸収部材 1 8によつ て発電体 1 0で生じる生成水を吸収 · 移動した後、 生成水吸収部材 1 8 によって生成水を大気に蒸発させて処理する。 そのため、 発電装置 2 0 においては、 発電体 1 0で生じる生成水を当該発電装置 2 0の内部に滞 留させることなく処理することができ、 酸素側拡散層 1 6から排出する ことができる。 さらに、 発電装置 2 0においては、 電解質膜 1 4を通過 してアノー ド電極に水分が逆拡散することにより、 水素ガス等の水素を 主体とする物質の水素側触媒層 1 3への供給が阻害されるのを回避する ことができる。 また、 発電装置 2 0においては、 力ソード電極について も、 生成された生成水が酸素側集電体 1 7の開口部 1 7 aを閉塞するこ とがなく、 空気の酸素側拡散層 1 6への供給が阻害されるのを回避する ことができ、 発電体 1 0の発電性能を低下させることなく発電し続ける ことができる。 また、 発電装置 2 0においては、 生成水吸収部材 1 8が毛細管現象を 利用して生成水を回収して移動させることから、 吸収性を変えることな く、 生成水吸収部材 1 8の容積や分量を容易に調整することにより、 生 成水の水分量や蒸発する生成水の蒸発量を調節することができ、 湿度、 温度、 空気の流れといった外部環境に影響されにく く、 外部環境及び出 力に応じた最適な発電を行うことができる。 さらに、 発電装置 2 0のァ ノ一ド電極には、 プロ トンが電解質内を移動するために適量の水分が必 要であるが、 発電装置 2 0においては、 生成水吸収部材 1 8の容積や分 量を調節することにより、 生成水の水分量や蒸発する生成水の蒸発量を 調節することができ、 生成水吸収部材 1 8の生成水の吸収量を制御して 水素側拡散層 1 2を湿らせる水分量を制御することができる。
さらに、 生成水吸収部材 1 8は、 毛細管現象を利用した高吸収性を有 する高放湿材料であることから、 カソード電極を大気開放型にする場合 が多い平面型や小型の発電装置であっても、 ガスの圧力や流量を管理す る装置を新たに追加することなく、 確実に生成水を回収して大気に蒸発 させて処理することができ、 さらには、 生成水吸収部材 1 8が生成水を 回収することにより、 機器周囲に散乱する可能性がある生成水を処理す ることができ、 機器の動作不良を回避することができる。
さらにまた、 生成水吸収部材 1 8は、 外部装置や自然に発生した風の 流れによって水滴を吹き飛ばしたり、 水滴の自重によって水分を外部へ と排出したりする方法とは異なり、 毛細管現象を利用して生成水を吸い 上げて大気に蒸発させることから、 風の流れや重力に対する装置の向き とは関係なく生成水を回収して大気に蒸発させることができる。 そのた め、 発電装置 2 0においては、 生成水が意図しない場所や機器内に散乱 することなく、 電子機器に内蔵される燃料電池の性能低下を防ぐだけで はなく、 機器外へ容易且つ確実に生成水を大気に蒸発させることができ る。
また、 発電装置 2 0の力ソード電極で生成された生成水は、 生成水吸 収部材 1 8によって回収された後に、 生成水吸収部材 1 8で蒸発するの であるが、 生成水吸収部材 1 8が回収して移動させる度に、 生成水吸収 部材 1 8から大気に蒸発する。 そのため、 一定場所に生成水を回収して 蓄積させることなく、 また新たなエネルギを発電する機能を設けること なく、 小型化された装置で発電時間の増加にともなって増加する水分を 簡便且つ効率よく大気に蒸発させることができる。 また、 新たに水分を 蓄積する部位を設けることが困難な平面型や小型の携帯型の発電装置で あっても、 生成水吸収部材 1 8で水分を回収する度に、 生成水吸収部材 1 8から大気に蒸発させるため、 蓄積した水分を定期的に処理する必要 がなく、 発電体 1 0で生成される水分を容易に常に処理し続けることが できる。
さらに、 生成水吸収部材 1 8は、 その形状を種々の形状とすることに より、 大気に接触する面積を増加させることができ、 それにともなって 蒸発させて処理できる生成水の量を効率よく増加させることができる。 さらにまた、 発電装置 2 0においては、 生成水吸収部材 1 8からの蒸 発量が生成水吸収部材 1 8の吸収する生成水量に比べて少ないような場 合には、 生成水吸収部材 1 8上に当接して生成水保水部材 2 2を設ける ことにより、 一時的に生成水を蓄積することができる。 そのため、 発電 装置 2 0においては、 生成水保水部材 2 2を設けることにより、 生成水 吸収部材 1 8から蒸発する生成水の蒸発量を制御することができ、 当該 発電装置 2 0の内部の水分量を容易に制御することができ、湿度、温度、 空気の流れといった外部環境に影響されにく く、 外部環境及び出力に応 じた最適な発電を行うことができる。
なお、 生成水吸収部材を適用した電子機器としては、 ノート型パーソ ナルコンピュータに限られるものではない。 すなわち、 生成水吸収部材 を適用した燃料電池や燃料電池カードを搭載する機器としては、 ノート 型パーソナルコンピュータの他、 携帯型のプリ ンタやファクシミ リ、 パ 一ソナルコンピュータ用周辺機器、 電話機、 テレビジョン受像機、 通信 機器、 携帯端末機、 カメラ、 オーディオ機器、 ビデオ機器、 扇風機、 冷 蔵庫、 アイロン、 ポッ ト、 掃除機、 炊飯器、 電磁調理器、 照明器具、 ゲ 一ム機ゃラジコンカー等の玩具、 電動工具、 医療機器、 測定機器、 車両 搭載用機器、 事務機器、 健康美容器具、 電子制御型ロボッ ト、 衣類型電 子機器等を挙げることができ、その他の用途にも使用することができる。 特に、 本発明は、 携帯型で小型の電子機器に燃料電池を搭載する場合に は、 新たに生成水を処理する装置を追加することなく使用することがで きる。
つぎに、 第 2の実施の形態として示す生成水処理システムについて説 明する。
この第 2の実施の形態は、 生成水処理システムを適用した発電装置た る燃料電池である。 この燃料電池は、 アノード電極と力ソード電極との 間に所定の電解質膜が設けられた発電体としてのいわゆる M E Aを複数 積層して構成されたものであり、 ァノード電極に対して水素を供給する 燃料供給溝としての水素供給溝とカソード電極に対して空気を供給する 酸化剤供給溝としての空気供給溝とが表裏面に形成された薄板状のセパ レー夕によって M E Aを挟持し、 このセパレー夕を介して水素及び空気 の供給を行うことにより、 発電を行うものである。
特に、 この燃料電池は、 少なく ともセパレー夕に形成された空気供給 溝の途中領域に、 発電体による発電の際に生成された生成水を処理する 手段を設けることにより、 簡易な構成のもとに、 生成水を効率よく且つ 確実に処理することができるものである。 まず, 燃料電池におけるセパレー夕の構成について説明する。
図 7に燃料電池におけるセパレー夕 1 1 0を表面から見た平面図を示 す。 このセパレ一タ 1 1 0には、 図示しないアノード電極に対して水素 を供給する水素供給溝 1 1 1がその表面に形成される。
この水素供給溝 1 1 1 は、 セパレー夕 1 1 0の面内に水素を流入させ るためのものであり、 水素ガスを供給する図示しない水素供給部と接続 する供給孔 1 1 2と接続部 1 1 3を介して一体に形成されるとともに、 水素ガスを排出する排出孔 1 1 4と接続部 1 1 5を介して一体に形成さ れる。 また、 水素供給溝 1 1 1は、 小型化を図りつつも発電効率を高め るために、 供給孔 1 1 2 と接続する接続部 1 1 3から排出孔 1 1 4と接 続する接続部 1 1 5まで蛇行状に 1本の溝として形成される。 なお、 供 給孔 1 1 2及び排出孔 1 1 4は、 後述する発電部としてスタック構造を 形成した際に積層される各セパレー夕 1 1 0の間で接続され、 水素ガス を各セパレ一夕 1 1 0に供給する供給路を形成する。
また、 このセパレー夕 1 1 0には、 図 8に裏面から見た底面図を示す ように、 図示しない力ソード電極に対して空気を供給する空気供給溝 1 1 6が形成される。
この空気供給溝 1 1 6は、 セパレー夕 1 1 0の面内に酸素を含む空気 を流入させるためのものであり、 同図縦方向で示すセパレー夕 1 1 0の 短手方向における両側縁部に開口して延在するように形成される。 セパ レー夕 1 1 0には、 この空気供給溝 1 1 6が、 同図横方向で示す長手方 向に沿って複数形成される。 なお、 同図においては、 1 0本の空気供給 溝 1 1 6が設けられている様子を示している。 また、 空気供給溝 1 1 6 には、 空気を供給する図示しない'空気供給部に臨んで一方の側緣部に開 口した供給口 1 1 7を介して空気が供給されるとともに、 この供給口 1 1 7 とは逆側の他方の側縁に開口した排出口 1 1 8を介して空気が排出 される。 ここで、 供給口 1 1 7及び排出口 1 1 8は、 それぞれ、 空気供 給溝 1 1 6の断面積よりも大きく形成されるとともに、 同図縦方向で示 す空気供給溝 1 1 6の奥行き方向に沿ってテーパ状に断面が狭まる形状 に形成される。 これにより、 セパレー夕 1 1 0においては、 空気供給溝 1 1 6への空気の取り込み及び空気供給溝 1 1 6からの空気の排出の際 における流路抵抗を低減することができ、 空気の供給及び排出を円滑に 行うことが可能となる。
さらに、 セパレ一夕 1 1 0には、 同図中斜線部に示すように、 空気供 給溝 1 1 6が形成された面の少なく とも一部を覆うように、 生成水を吸 水する吸水部材としての吸水布 1 2 0が設けられる。 この吸水布 1 2 0 は、 同図中右部に示す空気供給溝 1 1 6が形成されていない所定の面積 を有する放熱フィ ンが形成された面上から、 複数の帯状領域が延在する ことによって短冊状の形状を呈するように形成され、 短冊状の領域が空 気供給溝 1 1 6の少なく とも一部を覆うように配置される。 また、 セパ レー夕 1 1 0には、 図 8中一点鎖線で示す H H線の断面図を図 9 に示す ように、 空気供給溝 1 1 6の側壁に沿って同図斜線部に示す吸水部材と しての吸水布 1 2 1が設けられる。
これら吸水布 1 2 0 , 1 2 1 としては、 吸水性を有するものであれば いかなるものであっても適用することができる。
具体的には、 吸水布 1 2 0 , 1 2 1 としては、 親水性を有する吸水材 料を用いるのが望ましく、 上述した生成水吸収部材 1 8 と同様に、 例え ば、 橋架ポリアクリル酸塩系、 イソブチレンノマイ レン酸塩系、 澱粉ノ ポリアクリル酸塩系、 P V A Zポリアク リル系、 アク リル繊維の加水分 解系、橋架 P V A系といった高分子材料を適用することができる。また、 吸水布 1 2 0 , 1 2 1 としては、 吸水した生成水を離隔された所定の場 所まで移動させて蒸発させるのが望ましく、 水分を移動させる材料でも あることが望ましい。 このような材料としても、 上述したように、 例え ば、表面に凹部を有する多孔質金属や多孔質鉱物、親水性カーボン、紙、 パルプ、 高分子材料、 天然繊維、 合成繊維等が挙げられる。 また、 この ような材料としては、 毛細管現象を利用した高吸水性を有する材料が知 られており、 例えば、 長手方向に対する断面に微細な空隙領域が形成さ れた糸状の材料を縦横に織り込んだ合成繊維であるポリエステル Zナイ ロン複合材ゃポリエステル等がある。
吸水布 1 2 0, 1 2 1 としては、 このような特性を実現する種々の材 料を用いることができる。
ここで、 吸水布 1 2 0, 1 2 1に望まれるこれらの特性を踏まえ、 吸 水布 1 2 0, 1 2 1 として、 以下に示すものを提案する。
吸水布としては、 図 1 0に示すように、 吸放湿性に優れた第 1の素材 1 3 1 と、 吸水性に優れた第 2の素材 1 3 2とを貼り合わせた 2層構造 からなる布材に対して、 さらに、 粘着テープ等のテープ材 1 3 3を第 2 の素材 1 3 2の下層に貼り合わせた 3層構造からなる素材を提案する。 第 1の素材 1 3 1 は、 吸放湿性に優れたものが用いられ、 例えば、 吸 水ポリマーをナイ口ンで被覆した芯鞘複合構造によって吸放湿性の制御 を可能としたュニチカファイバ一株式会社製"ハイダラ (H Y G R A ) (登録商標) "を適用することができる。 このハイダラ (登録商標) は、 衣服等に用いた場合には、 衣服内及び外気における蒸気圧の差によって 吸湿及び放湿を行うものである。 このような第 1の素材 1 3 1は、 3層 構造からなる吸水布の最上層を形成し、 第 2の素材 1 3 2によって吸水 された生成水を吸湿し、 外気へと放湿する。
第 2の素材 1 3 2は、 吸水性に優れたものが用いられ、 例えば、 上述 した毛細管現象を利用して高吸水性を発揮するュニチカファイバー株式 会社製"ルミエース (L U M I A C E ) (登録商標) "を適用することが できる。 このルミエース (登録商標) は、 不定型断面を有する異なる繊 度の繊維の集合体であり、 各繊維が通常の丸断面よりも非常に多くの接 触点を有するとともに、 通常の丸断面糸では存在しない接触面を有する ものである。 そして、 このルミェ一ス (登録商標) は、 これら接触点及 び接触面の存在によって長手方向に対して形成される微細な空隙領域に 侵入した水分の表面張力による圧力が高くなることにより、 毛細管作用 が働き、 優れた吸水性を発揮するものである。 このような第 2の素材 1
3 2は、 3層構造からなる吸水布の中間層を形成し、 テープ材 1 3 3を 介して吸水した生成水を第 1の素材 1 3 1へと放出する。
なお、 第 1の素材 1 3 1 と第 2の素材 1 3 2 とを貼り合わせた 2層構 造からなる布材としては、 例えば、 ュニチカファイバー株式会社製" H Y G R A— L U ' 'のように市販されているものもあり、 吸水布としては、 こ のような材料を用いることもできる。
テープ材 1 3 3は、 粘着性を有する榭脂系のものが用いられ、 セパレ 一夕 1 1 0に対して吸水布を貼着するために設けられる。 したがって、 テープ材 1 3 3は、 水分によって接着力に影響を受けにくいものが望ま しく、 例えば、 住友スリ一ェム株式会社製"ポリエステル基材両面テープ
4 4 2 J S "を適用することができる。このポリエステル基材両面テープ 4 4 2 J Sは、 ポリエステル基材の両面に耐ァルカリ性に優れたゴム系 粘着材をコーティ ングしたいわゆる両面テープであり、 種々の被着体に 対して優れた初期接着力を示すとともに、 剥離時には糊残りがしにくい ものである。 このようなテープ材 1 3 3は、 3層構造からなる吸水布の 最下層を形成し、 セパレー夕 1 1 0に貼着され、 第 2の素材 1 3 2によ る吸水力によって吸水された生成水を第 2の素材 1 3 2へと通過させる セパレー夕 1 1 0においては、 毛細管現象を利用して高吸水性を有す るこのような 3層構造からなる素材を用いることにより、 極めて効率よ く且つ確実に生成水を吸水することが可能となる。
また、 セパレー夕 1 1 0においては、 吸水布 1 2 0, 1 2 1 として、 このようなテープ材 1 3 3を最下層に設けたものを用いることにより、 空気供給溝 1 1 6を不必要に閉塞するおそれを回避することができる。 すなわち、 吸水性を有する布材は、 極めてしなやかであることから、 テ ープ材 1 3 3を設けずにそのまま吸水布 1 2 0 として用いた場合には、 図 1 1 にセパレータ 1 1 0の断面の一部領域を示すように、 空気供給溝 1 1 6を覆う部分が弛み、 形状を安定させることが困難となるおそれが ある。 これに対して、 テープ材 1 3 3は、 可撓性はあっても形状が安定 する程度の強固性を有するものであることから、 吸水布 1 2 0の形状を 安定させることができ、 弛みによって空気供給溝 1 1 6を不必要に閉塞 するおそれを回避することができる。
さらに、セパレー夕 1 1 0においては、吸水布 1 2 0, 1 2 1 として、 上述したテープ材 1 3 3を最下層に設けたものを用いることにより、 吸 水布 1 2 0, 1 2 1 を任意に切断して形状を整える際の取り扱いが容易 となる。 すなわち、 セパレー夕 1 1 0においては、 吸水布 1 2 0, 1 2 1 を、 上述した短冊状の形状等に加工形成する場合には、 市販されてい る布材等を切断することになるが、 布材の端部はほつれやすく、 任意の 形状に切断しにくい。 そこで、 吸水布 1 2 0 , 1 2 1 においては、 テ一 プ材 1 3 3を設けた 3層構造を呈する素材とすることにより、 切断をと もなう加工形成を容易に実現することが可能となる。
さて、 このようなセパレー夕 1 1 0においては、 吸水布 1 2 0 , 1 2 1が空気供給溝 1 1 6の途中領域に設けられることにより、 発電体によ る発電の際に生成された生成水が吸水される。
具体的には、 セパレ一タ 1 1 0においては、 空気供給溝 1 1 6の側壁 に沿って設けられた吸水布 1 2 1 により、 空気供給溝 1 1 6に滞留する 生成水が吸水される。 セパレ一タ 1 1 0においては、 この吸水布 1 2 1 によって吸水された生成水が、 空気供給溝 1 1 6の少なく とも一部を覆 うように設けられた吸水布 1 2 0によってさらに吸水され、 図 8中右部 に示した放熱フィ ンがある領域へと吸水布 1 2 0を介して移動する。 そ して、 セパレ一夕 1 1 0においては、 放熱フィ ンへと移動した生成水が 当該放熱フィ ンにて熱や風等によって蒸発する。
このように、 セパレー夕 1 1 0においては、 吸水布 1 2 0, 1 2 1が 空気供給溝 1 1 6の途中領域に設けられることにより、 発電体による発 電の際に生成された生成水が吸水されることから、 空気供給溝 1 1 6が 生成水によって閉塞することがなく、 空気供給溝 1 1 6を通過する空気 の流れが阻害されることを回避することができ、 発電効率の安定化を図 ることができる。
実際に、 このような吸水布 1 2 0 , 1 2 1が設けられたセパレー夕 1 1 0による効果を検証するために、 本件出願人は比較実験を行った。 実験は、気温 2 5 °C、相対湿度 1 0 0 %という結露しやすい環境下で、 M E Aへの供給電流を、 1 5 7 m A/ c m 2とした定電流測定によるも のであり、 吸水布 1 2 0, 1 2 1の有無による比較を試みた。 なお、 実 験に使用した ME Aは、 いわゆるパーフルォロカ一ポンスルホン酸を伝 導体として用いたものである。 また、 吸水布 1 2 0, 1 2 1 としては、 上述したュニチカファイバー株式会社製" HYG R A— L U"と住友スリ —ェム株式会社製"ポリエステル基材両面テープ 4 4 2 J S"とを貼り合 わせた 3層構造からなる素材を用いた。 なお、 この素材については、 J I S (Japan Industrial Standard) にて規格化されている繊維製品の吸 水性試験方法の 1つであって、 鉛直に吊した試験片の下端を水中に浸し て一定時間放置後に上昇した水の高さで吸水速度を表す方法であるバイ レック法を用いて、 吸水性の確認試験を行っている。 この実験の結果、 図 1 2に示す結果が得られた。 なお、 同図における 縦軸は、 ボルト (V ) を単位とする発電体からの出力電圧を示し、 横軸 は、 分を単位とする経過時間を示している。
同図から、 吸水布 1 2 0 , 1 2 1 を設けない場合には、 発電開始から 2 0分程度で空気供給溝 1 1 6の窒息現象によって電圧低下を引き起こ しているのに対して、 吸水布 1 2 0, 1 2 1 を設けた場合には、 発電開 始から 1時間経過後においても、 安定した出力が得られることが明らか である。
このように、 セパレー夕 1 1 0においては、 吸水布 1 2 0 , 1 2 1が 空気供給溝 1 1 6の途中領域に設けられることにより、 ポンプや水分除 去用に新たに形成した流路といった複雑な機構を何ら用いることなく簡 易な構成のもとに、 生成水を効率よく且つ確実に処理することができ、 発電効率の安定化を図ることができる。
また、 セパレー夕 1 1 0においては、 吸水布 1 2 0, 1 2 1 によって 捉えた生成水が当該吸水布 1 2 0 , 1 2 1の全域に拡散することから、 蒸発速度、 すなわち、 水処理速度を向上させることができる。
さらに、 一般に、 外部環境の湿度が低い場合には、 水は蒸発しやすい が、 外部環境の湿度が高い場合には、 蒸発しにくい。 すなわち、 水の蒸 発速度は、 環境湿度によって変化する。 これに対して、 セパレータ 1 1 0においては、 吸水布 1 2 0 , 1 2 1が生成水を保持するバッファの役 '割も果たすことから、 外部環境の湿度が高い場合には、 一時的に生成水 を保持しておく ことができる。
さらにまた、 セパレー夕 1 1 0においては、 吸水布 1 2 0 , 1 2 1 と して、 毛細管現象を利用して高吸水性を有するこのような 3層構造から なる素材を用いることにより、 吸水布 1 2 0, 1 2 1 を長く形成しさえ すれば、 毛細管現象によって外部手段を何ら用いることなく生成水を発 電体とは離隔された放熱フィ ンにまで拡散させることができ、 放熱フィ ンにて熱や風等を用いて生成水を蒸発させることができる。したがって、 セパレ一夕 1 1 0においては、 水処理速度を向上させることができ、 特 に、 相対湿度が高いような日常環境下であっても、 発電時の出力を安定 させることができる。
なお、 セパレ一夕 1 1 0においては、 空気供給溝 1 1 6の側壁に沿つ て吸水布 1 2 1 を設けることにより、 空気の通路が狭くなり、 これによ つて空気の流れに影響が出ることが懸念される。 しかしながら、 空気の 流れを阻害する最大要因は、 生成水の滞留による窒息であることから、 実際には、 空気供給溝 1 1 6の側壁に沿って吸水布 1 2 1 を設けること による弊害はなく、 この事実は、 本件出願人による実験によって検証済 みである。
さて、 以下では、 このようなセパレ一夕 1 1 0が設けられた燃料電池 の具体例について説明する。
図 1 3に示すように、 燃料電池 1 5 0は、 筐体 1 6 0と、 当該燃料電 池 1 5 0を動作させるのに必要な各種回路が形成された制御基板 1 7 0 と、 セパレー夕 1 1 0を用いて構成される発電部 1 8 0と、 この発電部 1 8 0を冷却するための冷却ファン 1 9 1 と、 発電部 1 8 0に対して空 気を供給する上述した空気供給部に相当する 2つの空気供給ファン 1 9 2 , 1 9 3 と、 水素供給溝 1 1 1に滞留した水を排出するための水素パ —ジバルブ 1 9 4と、水素ガスの圧力制御を行うレギユレ一夕 1 9 5 と、 水素ガスを発電部 1 8 0に供給するための手動バルブ 1 9 6 とを備える 他、 図示しないが、 必要に応じて、 外部から取り こまれる空気や当該燃 料電池 1 5 0の内部から排出される空気の温度 · 湿度 · 圧力等を検知す るセンサや、 発電部' 1 8 0 自体の温度を検知するセンサ等を備える。 また、 この燃料電池 1 5 0には、 水素ガスを吸蔵させた水素吸蔵カー トリ ッジ 2 0 0が取り付けられる。 燃料電池 1 5 0は、 この水素吸蔵力 ー トリ ッジ 2 0 0から供給される水素ガスを受け取り、 発電を行う。 す なわち、 この水素吸蔵カートリ ッジ 2 0 0は、 上述した水素ガスを供給 する水素供給部に相当するものである。
筐体 1 6 0は、 図 1 3及び図 1 4に示すように、 略直方体状の外形を 呈し、 燃料電池 1 5 0に搭載される各種部材を覆うように、 内部が空洞 とされるとともに、底面が開放されて構成される。 また、筐体 1 6 0は、 その上面における一の側面側が、 かかる一の側面に向かった傾斜面とさ れる。
また、 筐体 1 6 0には、 3つの排気口 1 6 1 , 1 6 2 , 1 6 3と、 2 つの吸気口 1 6 4, 1 6 5とが形成される。
排気口 1 6 1 , 1 6 2 , 1 6 3は、 図 1 4 ( a) に示すように、 筐体 1 6 0の一の側面において互いに隣接するように形成される。 これら排 気口 1 6 1 , 1 6 2 , 1 6 3からは、 それぞれ、 発電部 1 8 0を冷却す るために燃料電池 1 5 0の内部で流動された空気と発電部 1 8 0による 発電反応後の空気とが排出される。
具体的には、 排気口 1 6 1は、 筐体 1 6 0の一の側面に略スリ ッ ト状 に開口した孔がかかる一の側面の上下方向に複数形成されるとともに、 これらの孔の大きさがかかる一の側面の上下方向にいくにしたがって徐 々に短くなるように形成される。 この排気口 1 6 1は、 後述する放熱フ ィ ンを介して放熱するための空気が、 燃料電池 1 5 0から排出されるた めの空気の出口として設けられる。 また、 排気口 1 6 2 , 1 6 3は、 そ れぞれ、 排気口 1 6 1 と同様に、 筐体 1 6 0の一の側面に略スリ ッ ト状 に開口した孔がかかる一の側面の上下方向に複数形成されるとともに、 これらの孔の大きさがかかる一の側面の上下方向にいくにしたがって徐 々に短くなるように形成される。 これら排気口 1 6 2 , 1 6 3は, それ ぞれ、 発電部 1 8 0による発電を行う際に、 この発電部 1 8 0に供給さ れた空気が排出されるための出口として設けられる。
また、 吸気口 1 6 4, 1 6 5は、 図 1 4 ( b ) に示すように、 筐体 1 6 0における排気口 1 6 1 , 1 6 2 , 1 6 3が形成された一の側面と対 面する他の側面において互いに隣接するように形成される。 これら吸気 口 1 6 4 , 1 6 5からは、 それぞれ、 発電部 1 8 0を冷却するための空 気と発電部 1 8 0による発電反応に供される酸素を含む空気とが、 燃料 電池 1 5 0の内部に取り込まれる。 具体的には、 吸気口 1 6 4は、 筐体 1 6 0の他の側面に略スリ ツ ト状に開口した孔がかかる一の側面の上下 方向に複数形成される。 この吸気口 1 6 4は、 後述する放熱フィ ンを介 して放熱するための空気が、 燃料電池 1 5 0に取り込まれるための空気 の取り込み口として設けられる。 また、 吸気口 1 6 5は、 吸気口 1 6 4 と同様に、 筐体 1 6 0の他の側面に略スリ ッ ト状に開口した孔がかかる 一の側面の上下方向に複数形成される。 この吸気口 1 6 5は、 発電部 1 8 0による発電を行う際に、 この発電部 1 8 0に供給される空気が取り 込まれるための取り込み口として設けられる。
さらに、 筐体 1 6 0には、 図 1 3、 図 1 4 ( c ) 及び図 1 4 ( d ) に 示すように、 一の端面に、 燃料電池 1 5 0と外部との間で各種信号を送 受信するための配線を当該燃料電池 1 5 0の内部に挿入するための接続 孔 1 6 6が形成されるとともに、 他の端面に、 所要の接続孔 1 6 7が形 成される。
制御基板 1 7 0には、 燃料電池 1 5 0を構成する各種部材を制御する ための制御回路を含む各種回路が形成される。 制御基板 1 7 0は、 発電 部 1 8 0の上側に設けられる。 なお、 この制御基板 1 7 0に形成される 制御回路の詳細については、 特に図示しないが、 例えば、 冷却ファン 1 9 1及び空気供給ファン 1 9 2, 1 9 3の駆動を制御する制御回路、 水 素パージバルブ 1 94の開閉動作を制御する制御回路、 発電部 1 8 0か ら出力される電圧を昇圧する D CZD C (Direct Current to Di rect Current) コンバ一夕といった電圧変換回路、 後述するセンサによって検 知された温度や湿度等の各種環境条件を取得することによって各種部材 の駆動に関する指示を与える制御回路等が実装される。なお、ここでは、 この制御基板 1 7 0が、 燃料電池 1 5 0の内部に設けられるものとして 説明するが、 この制御基板 1 7 0は、 燃料電池 1 5 0の外部に設けても よく、 例えば、 燃料電池 1 5 0から駆動用の電力が提供される各種電子 機器が備えるようにしてもよい。
発電部 1 8 0は、 図 1 3及び図 1 5に示すように、 略直方体状の外形 を呈し、 冷却ファン 1 9 1及び空気供給ファン 1 9 2, 1 9 3に臨む側 面 1 8 6に対向する側面の一部が上下方向に沿って矩形状に切り欠かれ た形状とされる。
具体的には、 発電部 1 8 0は、 図 1 5に示すように、 例えば 9枚のセ パレー夕 1 1 0の間にそれぞれ発電体としての接合体 1 8 1が挟み込ま れて構成され、 これにより、 発電を行う単位素子が 8個直列に接続され たスタック構造を有する。
図 1 6に示すように、 単位素子 UNは、 上述した 2つのセパレー夕 1 1 0と、 これら 2つのセパレー夕 1 1 0の間に挟持される接合体 1 8 1 とから構成される。 なお、 同図においては、 直列に接続される 2つの単 位素子 UNを示している。
セパレー夕 1 1 0には、 水素供給溝 1 1 1及び空気供給溝 1 1 6が形 成された面外に放熱フィ ン 1 8 2が突設される。 セパレー夕 1 1 0にお いては、 後述するように、 冷却フアン 1 9 1の作用により、 この放熱フ イ ン 1 8 2を介して放熱が行われる。 また、 セパレータ 1 1 0には、 裏 面側に複数の空気供給溝 1 1 6が設けられる。 セパレー夕 1 1 0におい ては、 後述するように、 空気供給ファン 1 9 2 , 1 9 3の作用によって この空気供給溝 1 1 6に空気が供給されることにより、 発電部 1 8 内部における空気の流動が実現される。
接合体 1 8 1は、 吸湿した際にイオン伝導性を有する固体高分子電解 質膜 1 8 3 と、 この固体高分子電解質膜 1 8 3を両面から挟み込む電極 1 8 4とによって形成される。 固体高分子電解質膜 1 8 3 としては、 例 えばスルホン酸系の固体高分子電解質膜を用いることができる。 また、 電極 1 8 4としては、 発電反応を促進するための触媒が担持された電極 を用いることができる。
また、 接合体 1 8 1の周縁付近には、 発電部 1 8 0 としてスタック構 造を形成した際に、 セパレー夕 1 1 0 と接合体 1 8 1 との間を封止する 封止部材 1 8 5が配置される。 この封止部材 1 8 5は、 セパレー夕 1 1 0の周縁部と接合体 1 8 1 の周縁部とを十分に絶縁することができる材 質から構成される。 また、 封止部材 1 8 5 としては、 発電部 1 8 0の放 熱性を高めるために高い熱伝導性を有する材質を用いてもよく、 例えば コサーム (太陽金網社製) といった十分な熱伝導性及び電気的絶縁性を 有するものを用いることもできる。
このような単位素子は、 1素子で約 0 . 6 Vの電圧を出力することが できるものであり、 図 1 5に示した発電部 1 8 0は、 単位素子が 8個直 列に接続されていることから、 全体で 4 . 8 Vの電圧を出力することが 可能とされる。 また、 発電部 1 8 0は、 約 2 Αの電流を流すことが可能 である。 これにより、 発電部 1 8 0から出力される電力は、 理想的には 9 . 6 Wとなるが、 発電反応における発熱等により、 実際には、 理想的 な出力電力の約 7割である約 6 . 7 Wとされる。 ただし、 発電部 1 8 0 は、 接合体 1 8 1 に含まれる水分量を適切に調整したり、 当該発電部 1 8 0への水素ガスの円滑な供給を実現したりすることにより、 さらに出 力電力を高めることができる。 なお、 発電部 1 8 0を形成する単位素子 は、 8個である必要はなく、 各種電子機器を駆動するために必要とされ る出力電力に合わせて所要の数だけ設けられる。
発電部 1 8 0は、 このような単位素子が複数直列に接続されることに よってスタック構造とされる。 したがって、 発電部 1 8 0の側面 1 8 6 には、 図 1 5に示したように、 各セパレ一夕 1 1 0に形成された複数の 空気供給溝 1 1 6における上述した排出口 1 1 8が臨み、 側面 1 8 6の 反対側の側面には、 図示しないが、 複数の排出口 1 1 8のそれぞれに対 応するように、 複数の空気供給溝 1 1 6における上述した供給口 1 1 7 が臨むように、 当該発電部 1 8 0が構成される。
そして、 発電部 1 8 0には、 図 1 3に示したように、 側面 1 8 6に沿 つて、 冷却フアン 1 9 1及び空気供給フアン 1 9 2, 1 9 3が互いに隣 接するように設けられる。 また、 発電部 1 8 0には、 端面に沿って、 水 素パージバルブ 1 9 4、 レギュレー夕 1 9 5及び手動バルブ 1 9 6が互 いに隣接するように設けられる。 冷却ファン 1 9 1 は、 筐体 1 6 0に 形成された排気口 1 6 1 と発電部 1 8 0における放熱フィ ン 1 8 2との 間に側面 1 8 6に沿って設けられ、 発電部 1 8 0を冷却する。 具体的に は、 冷却フアン 1 9 1は、 図 1 7に示すように、 筐体 1 6 0に形成され た吸気口 1 6 4から取り込まれた空気を排気口 1 6 1 まで流動させ、 燃 料電池 1 5 0の外部に排出する。
このように、 燃料電池 1 5 0においては、 放熱フイ ン 1 8 2を通過す るように冷却ファン 1 9 1 によって空気を流動させることにより、 放熱 フィ ン 1 8 2を介して発電部 1 8 0の放熱を行うことができる。
なお、 冷却フアン 1 9 1 を設ける位置としては、 放熱フィ ン 1 8 2の 近傍に限ることはなく、 発電部 1 8 0の冷却を目的として燃料電池 1 5 0の内部全体に空気を流動させるような位置に設けるようにしてもよい £ また、 燃料電池 1 5 0においては、 冷却ファン 1 9 1 を逆回転させるこ とにより、 空気を逆向きに流動させるようにしてもよい。
空気供給ファン 1 9 2, 1 9 3は、 それぞれ、 筐体 1 6 0に形成され た排気口 1 6 2 , 1 6 3 と発電部 1 8 0における空気供給溝 1 1 6の排 出口 1 1 8に臨む領域との間に側面 1 8 6に沿って設けられ、 発電部 1
8 0に対して空気を供給する。 具体的には、 空気供給ファン 1 9 2 , 1
9 3は、 それぞれ、 図 1 7に示すように、 筐体 1 6 0に形成された吸気 口 1 6 5から取り込まれた空気を発電部 1 8 0を介して排気口 1 6 2,
1 6 3まで流動させ、 燃料電池 1 5 0の外部に排出する。
このように、 燃料電池 1 5 0においては、 発電部 1 8 0を通過するよ うに空気供給フアン 1 9 2 , 1 9 3のそれぞれによって空気を流動させ ることにより、 発電部 1 8 0を構成するセパレー夕 1 1 0に形成された 空気供給溝 1 1 6に空気を供給することができる。
なお、 燃料電池 1 5 0においては、 冷却ファン 1 9 1 と同様に、 空気 供給ファン 1 9 2 , 1 9 3のそれぞれを逆回転させることにより、 空気 を逆向きに流動させるようにしてもよい。 また、 これら空気供給ファン 1 9 2 , 1 9 3のそれぞれによって形成される空気の流れは、 冷却ファ ン 1 9 1によって形成される空気の流れとは独立させることができる。 したがって、 燃料電池 1 5 0においては、 冷却ファン 1 9 1 と空気供給 ファン 1 9 2 , 1 9 3 とを独立して駆動することにより、 発電部 1 8 0 の冷却と発電部 1 8 0に対する空気の供給及び排出とを独立して行うこ とが可能となる。 特に、 燃料電池 1 5 0においては、 発電部 1 8 0の温 度や発電部 1 8 0に残留する水分量を測定し、 これに応じて、 空気供給 ファン 1 9 2, 1 9 3 と冷却ファン 1 9 1 とを独立して駆動することに より、 例えばドライアップのような発電の際の不具合を生じさせること なく安定した発電を行うことが可能となる。 水素パージバルブ 1 9 4は、 セパレー夕 1 1 0に形成された水素供給 溝 1 1 1 を大気開放することによって滞留した水を排出する。すなわち、 燃料電池 1 5 0においては、 水素パージバルブ 1 9 4を開く ことによつ て水素供給溝 1 1 1が大気開放されると、 水素供給溝 1 1 1 に滞留した 水分に対する供給路側の水素ガスの圧力と大気開放された排出側の圧力 との間に圧力差が生じ、 かかる圧力差によって水素供給溝 1 1 1 に滞留 した水分が排出される。
このように、 燃料電池 1 5 0においては、 水素ガスを供給する供給路 側と水素パージバルブ 1 9 4によって大気開放される水分の排出側との 間で圧力差を生じさせることにより、 発電部 1 8 0がスタック構造を有 する場合であっても、 滞留した水分の影響によって水素ガスが流れにく くなつている水素供給溝 1 1 1から水分を排出することが可能となり、 水素供給溝 1 1 1に水素ガスを円滑に流すことができる。
なお、 燃料電池 1 5 0においては、 水素パージバルブ 1 9 4として、 例えば電磁力を用いた駆動方式によって駆動するものを用いてもよく、 当該水素パージバルブ 1 9 4を駆動させるための電力を発電部 1 8 0か ら供給するようにしてもよい。
レギユレ一タ 1 9 5は、 水素吸蔵カートリ ッジ 2 0 0から供給される 水素ガスの圧力制御を行うものであり、 水素ガスの圧力を所定の圧力に なるように調整し、 発電部 1 8 0に供給する。 例えば、 レギユレ一夕 1 9 5は、 水素吸蔵カートリッジ 2 0 0から供給される水素ガスの圧力が 0 . 8 M P a〜 l . 0 M P a程度である場合には、 この水素ガスの圧力 を 0 . 0 5 M P a〜 0 . 1 0 M P a程度の圧力に減圧し、 発電部 1 8 0 に供給する。
手動バルブ 1 9 6は、 水素ガスを発電部 1 8 0に供給するために設け られるものであり、 発電部 1 8 0によって発電を行う際に、 水素吸蔵力 一卜リ ッジ 2 0 0から発電部 1 8 0に水素ガスを供給するための流路を 開放する。
このような各部を備える燃料電池 1 5 0においては、 冷却フアン 1 9 1、 空気供給ファン 1 9 2, 1 9 3、 水素パージバルブ 1 9 4、 レギュ レー夕 1 9 5及び手動バルブ 1 9 6を配置するための領域を発電部 1 8 0の周囲に確保することにより、 当該燃料電池 1 5 0を駆動するための 各種部材をコンパク トに筐体 1 6 0の内部に収納することが可能となり . これにより、 当該燃料電池 1 5 0の大幅な小型化を実現することが可能 となる。
したがって、 燃料電池 1 5 0は、 例えば、 ノート型パーソナルコンビ ュ一夕、 携帯電話機又は携帯情報端末機 (Personal Digital Assistants ; PDA) といった携帯型の各種電子機器をはじめとする任意の電子機 器を駆動するための電力を供給する電源として極めて好適に用いること ができる。
そして、 この燃料電池 1 5 0においては、 上述した吸水布 1 2 0 , 1 2 1が設けられたセパレー夕 1 1 0を用いて発電部 1 8 0を構成するこ とにより、 ポンプや水分除去用に新たに形成した流路といった複雑な機 構を何ら用いることなく簡易な構成のもとに、 生成水を効率よく且つ確 実に処理することができ、 発電効率の安定化を図ることができる。
なお、 この第 2の実施の形態では、 セパレー夕 1 1 0に形成.された空 気供給溝 1 1 6の両側壁に沿って吸水布 1 2 1が設けられるものとして 説明したが、 本発明は、 吸水布 1 2 1を片側壁に沿って設けるものであ つても適用することができ、また、側壁全域に沿って設けるのではなく、 少なく とも側壁の一部領域に沿って設けるようにしてもよい。
また、 第 2の実施の形態では、 吸水布 1 2 0の形状として、 放熱フィ ン 1 8 2とされる領域から、 複数の帯状領域が延在することによって短 冊状の形状を呈するものについて説明したが、 本発明は、 吸水布 1 2 0 の形状に限定されるものではなく、 例えば、 空気供給溝 1 1 6が形成さ れた面を全部覆うような形状としてもよい。
さらに、 第 2の実施の形態では、 吸水布 1 2 0, 1 2 1 を設けるもの として説明したが、 本発明は、 吸水布 1 2 1 によって吸水した生成水を 効率よく外部へと排出できるのであれば、 吸水布 1 2 1のみを設ける場 合であってもよい。
さらにまた、 第 2の実施の形態では、 生成水を処理する手段として、 吸水布 1 2 0 , 1 2 1 を用いるものとして説明したが、 本発明は、 これ ら吸水布 1 2 0, 1 2 1 とは異なる手段であっても適用することができ る。
例えば、 生成水を処理する手段としては、 空気供給溝の側壁や底面に キズ等を付けることによって当該空気供給溝の表面を粗面化することが 挙げられる。 また、 生成水を処理する手段としては、 空気供給溝の材質 をテフロン (登録商標) やシリコン等の撥水性の高いものとしたり、 フ ッ素ガスを用いたプラズマ処理等によって空気供給溝に対して撥水処理 を行ったりするといつたように、 空気供給溝に撥水性の高い領域を形成 することが挙げられる。 さらに、 生成水を処理する手段としては、 空気 供給溝を親水性の高い領域を形成することも挙げられる。 さらにまた、 生成水を処理する手段としては、 これら複数の手段を組み合わせてもよ い。
いずれにせよ、 本発明は、 発電体による発電の際に生成された生成水 を処理する手段を、 少なく とも空気供給溝の途中領域に設けるものであ れば、 いかなるものであっても適用することができる。
また、 第 2の実施の形態では、 セパレ一夕 1 1 0の具体的な適用例と して、 燃料電池 1 5 0について説明したが、 本発明は、 このような燃料 電池 1 5 0についてのみ適用されるものではなく、 生成水を処理する手 段を設けたセパレー夕を適用可能な装置であれば、 いかなるものであつ ても適用することができる。
最後に、 第 3の実施の形態として示す生成水処理システムについて説 明する。
この第 3の実施の形態は、 上述した第 1の実施の形態及び第 2の実施 の形態をさらに改良したものであって、 拡散層と集電体たるセパレー夕 との間に、 少なくとも、 吸水性、 通気性、 及び導電性を有する吸水層を 設けることにより、 吸水のさらなる効率化を図るとともに、 発生した電 気の集電を効率よく行うことができるものである。
上述した第 1 の実施の形態及び第 2の実施の形態においては、 例えば 図 1 8に示す発電装置たる燃料電池 3 0 0のように、 所定の電解質膜 3 0 1 の両側に設けられた水素側触媒層 3 0 2や酸素側触媒層 3 0 3で発 電によって生成した水分が、 例えばカーボン繊維を紙状として撥水処理 が施された拡散層としての力一ボン繊維層 3 0 4に移動し、 この水分が セパレ一夕 3 0 5に形成された空気供給溝 3 0 6の周囲に設けられた生 成水吸収部材ゃ吸水布 (以下、 吸水布 3 0 7 と総称する。 ) によって吸 水されるものとして説明した。
ここで、 吸水布 3 0 7は、 拡散層たるカーボン繊維層 3 0 4の一部に しか接触していない。 したがって、 このような燃料電池 3 0 0において は、 カーボン繊維層 3 0 4に存在する生成水を、 場所に応じて便宜上、 W 1 , W 2 , W 3 , W 4として表すと、 吸水布 3 0 7が接触している力 一ボン繊維層 3 0 4の近傍に存在する生成水 W 2 , \¥ 3カ 若しくは力 一ボン繊維層 3 0 4から排出されて空気供給溝 3 0 6に到達した生成水 しか、 吸水布 3 0 7によって吸水されない。
カーボン繊維層 3 0 4から生成水を効率よく排出するためには、 カー ボン繊維層 3 0 4と接触する吸水布 3 0 7の面積を大きくすればよいが. 燃料電池 3 0 0においては、 吸水布 3 0 7 をセパレ一タ 3 0 5の全域に 亘つて設けるようにすると、吸水布 3 0 7が導電性を有しないことから、 発生した電気をセパレー夕 3 0 5によって集電することが困難となる。 そこで、 図 1 9に示すように、 力一ボン繊維層 3 0 4とセパレー夕 3
0 5 との間に、 少なく とも、 吸水性、 通気性、 及び導電性を有する吸水 層 3 5 0を設けた燃料電池 3 0 0 'を考案した。
このような燃料電池 3 0 0 'においては、カーボン繊維層 3 0 4に存在 する生成水 W l , W 2 , W 3 , W 4が一旦吸水層 3 5 0によって吸水さ れ、 この吸水層 3 5 0内部で拡散する。 そして、 燃料電池 3 0 0 'におい ては、 吸水層 3 5 0によって吸水された生成水が、 当該吸水層 3 5 0の 一部に接触する吸水布 3 0 7によってさらに吸水され、 この吸水布 3 0
7を介して外部へと排出されることになる。
吸水層 3 5 0 としては、 例えばケッチョ ン · ブラック · イン夕一ナシ ョナル社製''ケッチヨ ンブラック"等のカーボンブラックとポリイミ ド等 の親水性バインダとを、 N P A等の溶剤を用いて混合し、 これをインク としてセパレー夕 3 0 5の略全域に塗布することにより、 形成すること ができる。
その他、 吸水層 3 5 0 としては、 金属の合成繊維に親水処理を施した ものや、 例えば上述した毛細管現象を利用した高吸水性を有する糸状の 繊維をカーボンや金属に混合したものを用いることもできる。
このように、 燃料電池 3 0 0 'においては、 カーボン繊維層 3 0 4とセ パレ一夕 3 0 5 との間に、 少なく とも、 吸水性、 通気性、 及び導電性を 有する吸水層 3 5 0を設けることにより、 生成水をさらに効率よく吸水 することができるとともに、 発生した電気をセパレ一夕 3 0 5によって 効率よく集電することも可能となる。 以上説明したように、 本発明の実施の形態として示す生成水処理シス テム及び燃料電池 (発電装置) は、 生成水を吸水する吸水部材を設ける ことにより、極めて効率よく且つ確実に生成水を処理することができる。 なお、 本発明は、 上述した実施の形態に限定されるものではない。 例 えば、 上述した実施の形態では、 生成水吸収部材ゃ吸水布として、 実施 の形態に応じて異なる具体例について示したが、 本発明は、 これら具体 例に代表されるような部材を、 各実施の形態間で相互に用いる場合にも 適用することができる。
また、 本発明は、 上述した 3つの実施の形態を、 可能な範囲で適宜組 み合わせるようにしてもよい。
このように、 本発明は、 その趣旨を逸脱しない範囲で適宜変更が可能 であることはいうまでもない。 産業上の利用可能性
以上詳細に説明したように、 本発明にかかる生成水処理システム及び 生成水処理方法、 並びに発電装置は、 それぞれ、 発電によって生じる生 成水を生成水吸収部材により回収した後、 生成水吸収部材によって生成 水を大気に蒸発させて処理することにより、 発電体の発電によって生じ る水分を発電体の内部に滞留させることなく外部に処理することができ る。
また、 本発明にかかる生成水処理システム及び生成水処理方法、 並び に発電装置は、 それぞれ、 生成水を、 少なく とも酸化剤供給溝の途中領 域に設けられた生成水処理手段によって処理することにより、 酸化剤供 給溝に生成水が滞留することによって閉塞することがなくなり、 酸化剤 供給溝を通過する酸化剤ガスの流れが阻害されることを回避することが できる。 したがって、本発明にかかる生成水処理システム及び生成水処理方法、 並びに発電装置は、 それぞれ、 ポンプや水分除去用に新たに形成した流 路といった複雑な機構を何ら用いることなく極めて簡易な構成のもとに 効率よく且つ確実に処理することができ、 発電効率の安定化を図ること ができる。

Claims

請 求 の 範 囲
1 . 発電体による発電の際に生成される生成水を処理する生成水処理 システムであって、
上記発電体に配設されるとともに延在して設けられ、 上記生成水を毛 細管現象を利用して回収して移動させる生成水吸収部材と、
上記生成水を一時的に蓄積する生成水保水部材とを備えること を特徴とする生成水処理システム。
2 . 上記発電体は、
水素を主体とする物質を活性物質として供給されるアノード電極と、 大気開放されることによって酸素を活性物質として供給されるカソー ド電極と、
上記ァノード電極と上記カソード電極とに挟持される電解質膜とを有 する燃料電池であること
を特徴とする請求項 1記載の生成水処理システム。
3 . 上記力ソード電極に集電体が形成され、
上記集電体に上記カソード電極に酸素を供給するための開口部が形成 され、
上記開口部の周辺部に上記生成水吸収部材が形成されること を特徴とする請求項 2記載の生成水処理システム。
4 . 上記生成水吸収部材は、 上記開口部の周囲を囲んで上記開口部の 断面を覆い、 上記力ソード電極に至るように形成されること
を特徴とする請求項 3記載の生成水処理システム。
5 . 上記生成水吸収部材は、 長手方向に対して空隙領域が形成された 糸状の材料又は表面に凹部を有する多孔質の材料から構成されること を特徴とする請求項 1記載の生成水処理システム。
6 . 上記生成水吸収部材は、 上記発電体が装着される電子機器の表面 に延在して設けられること
を特徴とする請求項 1記載の生成水処理システム。
7 . 上記生成水吸収部材は、 凹凸部又は突設部を有すること
を特徴とする請求項 1記載の生成水処理システム。
8 . 上記生成水保水部材は、 上記生成水吸収部材と上記電子機器との 間に設けられること
を特徴とする請求項 6記載の生成水処理システム。
9 . 拡散層と集電体との間に、 少なく とも、 吸水性、 通気性、 及び導 電性を有する吸水層を備えること
を特徴とする請求項 1記載の生成水処理システム。
1 0 . 発電体による発電の際に生成される生成水を処理する生成水処 理方法であって、
上記生成水を毛細管現象を利用して回収して移動させ、 上記発電体の 外部へと処理する、 若しくは一時的に蓄積した後に上記発電体の外部へ と処理すること
を特徴とする生成水処理方法。
1 1 . 拡散層と集電体との間に設けられた、 少なく とも、 吸水性、 通 気性、 及び導電性を有する吸水層によって上記拡散層に存在する上記生 成水を吸水し、 上記吸水層によって吸水された上記生成水を、 当該吸水 層の一部に接触する生成水吸収部材によってさらに吸水すること
を特徴とする請求項 1 0記載の生成水処理方法。
1 2 . 燃料ガスと酸化剤ガスとを供給し、 上記燃料ガスと上記酸化剤 ガスとを電気化学的に反応させて電力を発生させる発電装置であって、 発電体に延在して設けられ、 上記発電体で生成される生成水を毛細管 現象を利用して回収して移動させる生成水吸収部材を備えること を特徴とする発電装置。
1 3 . 上記生成水を一時的に蓄積する生成水保水部材とを備えること を特徴とする請求項 1 2記載の発電装置。
1 4 . 拡散層と集電体との間に、 少なく とも、 吸水性、 通気性、 及び 導電性を有する吸水層を備えること
を特徴とする請求項 1 2記載の発電装置。
1 5 . 発電体による発電の際に生成される生成水を処理する生成水処 理システムであって、
第 1 の電極に対して燃料ガスを供給する燃料供給溝と第 2の電極に対 して酸化剤ガスを供給する酸化剤供給溝とが形成され、 上記発電体を挟 持するセパレー夕と、
少なく とも上記酸化剤供給溝の途中領域に設けられ、 上記生成水を処 理する生成水処理手段とを備えること
を特徴とする生成水処理システム。
1 6 . 上記生成水処理手段は、 上記生成水を吸水する吸水部材である こと
を特徴とする請求項 1 5記載の生成水処理システム。
1 7 . 上記吸水部材は、 少なく とも上記酸化剤供給溝の側壁の一部領 域に沿って設けられること
を特徴とする請求項 1 6記載の生成水処理システム。
1 8 . 上記吸水部材は、 さらに、 上記酸化剤供給溝が形成された面の 少なく とも一部を稷うように設けられること
を特徴とする請求項 1 7記載の生成水処理システム。
1 9 . 上記セパレー夕には、 上記発電体の放熱を行うための放熱部が 形成されており、
上記酸化剤供給溝が形成された面の少なく とも一部を覆うように設け られた上記吸水部材は、 上記放熱部が形成された面上から延在した所定 の形状を呈するように形成され、 上記所定の形状の領域が上記酸化剤供 給溝の少なく とも一部を覆うように配置されること
を特徴とする請求項 1 8記載の生成水処理システム。
2 0 . 上記吸水部材は、 毛細管現象を利用して上記生成水を吸水する ものであること
を特徴とする請求項 1 6記載の生成水処理システム。
2 1 . 上記吸水部材は、 長手方向に対して空隙領域が形成された糸状 の繊維の集合体であること
を特徴とする請求項 2 0記載の生成水処理システム。
2 2 . 上記吸水部材は、 吸放湿性を有する第 1の素材と、 吸水性を有 する第 2の素材とを貼り合わせた 2層構造からなる素材に対して、 所定 のテ一プ材を上記第 2の素材の下層に貼り合わせた 3層構造からなるも のであること
を特徴とする請求項 2 0記載の生成水処理システム。
2 3 . 上記第 2の素材は、 毛細管現象を利用して上記生成水を吸水す るものであること
を特徴とする請求項 2 2記載の生成水処理システム。
2 4 . 上記生成水処理手段として、 表面を粗面化した上記酸化剤供給 溝を用いること
を特徴とする請求項 1 5記載の生成水処理システム。
2 5 . 上記生成水処理手段として、 撥水性の高い領域を形成した上記 酸化剤供給溝を用いること
を特徴とする請求項 1 5記載の生成水処理システム。
2 6 . 上記生成水処理手段として、 親水性の高い領域を形成した上記 酸化剤供給溝を用いること を特徴とする請求項 1 5記載の生成水処理
2 7 . 上記燃料ガスは、 水素ガスであり、
上記酸化剤ガスは、 酸素を含む空気であること
を特徵とする請求項 1 5記載の生成水処理
2 8 . 上記発電体は、 上記第 1の電極と上記第 2の電極との間に所定 の電解質膜が設けられたものであること
を特徴とする請求項 1 5記載の生成水処理システム。 .
2 9 . 拡散層と上記セパレー夕との間に、 少なく とも、 吸水性、 通気 性、 及び導電性を有する吸水層を備えること
を特徴とする請求項 1 5記載の生成水処理システム。
3 0 . 発電体による発電の際に生成される生成水を処理する生成水処 理方法であって、
上記発電体を挟持するセパレー夕に形成された燃料供給溝を介して第 1 の電極に対して燃料ガスを供給するとともに、 上記セパレ一夕に形成 された酸化剤供給溝を介して第 2の電極に対して酸化剤ガスを供給し、 上記発電体による発電を行う発電工程と、
少なくとも上記酸化剤供給溝の途中領域に設けられた生成水処理手段 を用いて上記生成水を処理する生成水処理工程とを備えること
を特徴とする生成水処理方法。
3 1 . 上記生成水処理工程では、 拡散層と上記セパレー夕との間に設 けられた、 少なくとも、 吸水性、 通気性、 及び導電性を有する吸水層に よって上記拡散層に存在する上記生成水が吸水され、 上記吸水層によつ て吸水された上記生成水が、 当該吸水層の一部に接触する上記生成水処 理手段によってさらに吸水されること
を特徴とする請求項 3 0記載の生成水処理方法。
3 2 . 燃料ガスと酸化剤ガスとを供給し、 上記燃料ガスと上記酸化剤 ガスとを電気化学的に反応させて電力を発生させる発電装置であって、 第 1 の電極と第 2の電極との間に所定の電解質膜が設けられた発電体 と、
上記第 1 の電極に対して上記燃料ガスを供給する燃料供給溝と上記第 2の電極に対して上記酸化剤ガスを供給する酸化剤供給溝とが形成され 上記発電体を挟持するセパレ一夕と、
少なく とも上記酸化剤供給溝の途中領域に設けられ、 上記発電体によ る発電の際に生成される生成水を処理する生成水処理手段とを備えるこ と
を特徴とする発電装置。
3 3 . 上記生成水処理手段は、 上記生成水を吸水する吸水部材である こと
を特徴とする請求項 3 2記載の発電装置。
3 4 . 上記吸水部材は、 少なく とも上記酸化剤供給溝の側壁の一部領 域に沿って設けられること
を特徴とする請求項 3 3記載の発電装置。
3 5 . 上記吸水部材は、 さらに、 上記酸化剤供給溝が形成された面の ' 少なく とも一部を覆うように設けられること
を特徴とする請求項 3 4記載の発電装置。
3 6 . 上記セパレー夕には、 上記発電体の放熱を行うための放熱部が 形成されており、
上記酸化剤供給溝が形成された面の少なく とも一部を覆うように設け られた上記吸水部材は、 上記放熱部が形成された面上から延在した所定 の形状を呈するように形成され、 上記所定の形状の領域が上記酸化剤供 給溝の少なくとも一部を覆うように配置されること
を特徴とする請求項 3 5記載の発電装置。
3 7 . 上記吸水部材は、 毛細管現象を利用して上記生成水を吸水する ものであること
を特徴とする請求項 3 3記載の発電装置。
3 8 . 上記吸水部材は、 長手方向に対して空隙領域が形成された糸状 の繊維の集合体であること
を特徴とする請求項 3 7記載の発電装置。
3 9 . 上記吸水部材は、 吸放湿性を有する第 1の素材と、 吸水性を有 する第 2の素材とを貼り合わせた 2層構造からなる素材に対して、 所定 のテープ材を上記第 2の素材の下層に貼り合わせた 3層構造からなるも のであること
を特徴とする請求項 3 7記載の発電装置。
4 0 . 上記第 2の素材は、 毛細管現象を利用して上記生成水を吸水す るものであること
を特徴とする請求項 3 9記載の発電装置。
4 1 . 上記生成水処理手段として、 表面を粗面化した上記酸化剤供給 溝を用いること
を特徴とする請求項 3 2記載の発電装置。
4 2 . 上記生成水処理手段として、 撥水性の高い領域を形成した上記 酸化剤供給溝を用いること
を特徴とする請求項 3 2記載の発電装置。
4 3 . 上記生成水処理手段として、 親水性の高い領域を形成した上記 酸化剤供給溝を用いること
を特徴とする請求項 3 2記載の発電装置。
4 4 . 上記燃料ガスは、 水素ガスであり、
上記酸化剤ガスは、 酸素を含む空気であること
を特徴とする請求項 3 2記載の発電装置。
4 5 . 上記発電体を上記セパレ一タによって挟持した素子が複数積層 されたスタック構造を有する発電部を備えること
を特徴とする請求項 3 2記載の発電装置。
4 6 . 拡散層と上記セパレー夕との間に、 少なく とも、 吸水性、 通気 性、 及び導電性を有する吸水層を備えること
を特徴とする請求項 3 2記載の発電装置。
PCT/JP2003/005012 2002-04-19 2003-04-18 Systeme de traitement d'eau de formation et procede de traitement d'eau de formation, et generateur d'electricite WO2003090305A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/509,843 US7816043B2 (en) 2002-04-19 2003-04-18 Water disposal system, method of disposing water, and power generation apparatus
AU2003235279A AU2003235279A1 (en) 2002-04-19 2003-04-18 Formation water treating system and formation water treating method, and power generator

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002-117319 2002-04-19
JP2002117319 2002-04-19
JP2002-360491 2002-12-12
JP2002360491 2002-12-12
JP2003-73414 2003-03-18
JP2003073414A JP4281382B2 (ja) 2002-04-19 2003-03-18 生成水処理システム及び発電装置

Publications (1)

Publication Number Publication Date
WO2003090305A1 true WO2003090305A1 (fr) 2003-10-30

Family

ID=29255102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005012 WO2003090305A1 (fr) 2002-04-19 2003-04-18 Systeme de traitement d'eau de formation et procede de traitement d'eau de formation, et generateur d'electricite

Country Status (4)

Country Link
US (1) US7816043B2 (ja)
JP (1) JP4281382B2 (ja)
AU (1) AU2003235279A1 (ja)
WO (1) WO2003090305A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073849A1 (ja) * 2008-12-22 2010-07-01 シャープ株式会社 吸水部材を加熱する発熱源を含む燃料電池システムおよびそれを備えた電子機器
CN111370724A (zh) * 2018-12-25 2020-07-03 财团法人工业技术研究院 电极分隔板结构及其应用的燃料电池

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2409763B (en) 2003-12-31 2007-01-17 Intelligent Energy Ltd Water management in fuel cells
JP2006179470A (ja) * 2004-11-24 2006-07-06 Hitachi Ltd 燃料電池および燃料電池搭載電子機器
GB2422716B (en) 2005-01-26 2007-08-22 Intelligent Energy Ltd Multi-layer fuel cell diffuser
US7674549B2 (en) 2005-02-28 2010-03-09 Sanyo Electric Co., Ltd. Fuel cell power generation apparatus, fuel cartridge, and fuel cell system using the same
RU2369945C2 (ru) * 2005-05-13 2009-10-10 Кэнон Кабусики Кайся Электронное устройство, способ и программа управления им и аккумулятор для обеспечения работы электронного устройства
KR100708693B1 (ko) * 2005-06-24 2007-04-18 삼성에스디아이 주식회사 직접액체 연료전지 스택
WO2007031820A2 (en) * 2005-09-15 2007-03-22 More Energy Ltd. Anode assembly for a direct liquid fuel cell
JP2007095399A (ja) * 2005-09-28 2007-04-12 Hitachi Ltd 燃料電池及びこれを搭載した電子機器
KR101156530B1 (ko) * 2005-11-02 2012-06-20 삼성에스디아이 주식회사 직접액체 연료전지
JP2007207597A (ja) * 2006-02-02 2007-08-16 Hitachi Ltd 燃料電池用ウイッキング構造体
EP2041820B1 (en) * 2006-02-03 2012-06-13 Canon Kabushiki Kaisha Fuel cell
JP5354860B2 (ja) * 2006-02-03 2013-11-27 キヤノン株式会社 燃料電池セル、および燃料電池
JP5138583B2 (ja) * 2006-03-31 2013-02-06 京セラ株式会社 燃料電池及び当該燃料電池を備えた電子機器
JP4997863B2 (ja) * 2006-08-08 2012-08-08 カシオ計算機株式会社 電子機器の置き台
JP5003056B2 (ja) * 2006-08-17 2012-08-15 富士通株式会社 燃料電池
TW200814421A (en) * 2006-09-05 2008-03-16 Ind Tech Res Inst Fuel cell
US7862936B2 (en) * 2007-01-12 2011-01-04 Gm Global Technology Operations, Inc. Water removal channel for PEM fuel cell stack headers
US20080241624A1 (en) * 2007-03-28 2008-10-02 Sanyo Electric Co., Ltd. Fuel cell device
US8034502B2 (en) 2007-04-02 2011-10-11 GM Global Technology Operations LLC Water removal system for non-reactive regions in PEFMC stacks
JP4803532B2 (ja) * 2007-04-06 2011-10-26 Necカシオモバイルコミュニケーションズ株式会社 電子機器及び電子機器のプログラム
KR100821034B1 (ko) * 2007-04-24 2008-04-08 삼성에스디아이 주식회사 습도조절장치 겸용 캐소드 엔드 플레이트 및 이를 채용한공기호흡형 연료전지 스택
JP2008311166A (ja) * 2007-06-18 2008-12-25 Panasonic Corp 燃料電池システム
JP5349851B2 (ja) * 2007-08-02 2013-11-20 キヤノン株式会社 燃料電池セル、および燃料電池
US10608264B2 (en) * 2013-01-09 2020-03-31 Nissan Motor Co., Ltd. Fuel cell system and control method therefor
EP2814103B1 (en) * 2013-02-15 2017-12-06 LG Chem, Ltd. Electrode assembly and polymer secondary battery cell comprising same
JP2015526857A (ja) * 2013-02-15 2015-09-10 エルジー・ケム・リミテッド 電極組立体及びこれを含むポリマー二次電池セル
WO2016001938A1 (en) * 2014-07-03 2016-01-07 Council Of Scientific And Industrial Research Internal humidification in low temperature pem fuel cell by means of a wick
GB2538991A (en) * 2015-06-02 2016-12-07 Intelligent Energy Ltd Water management in an air-breathing fuel cell
KR102072861B1 (ko) * 2016-06-07 2020-02-03 현대자동차주식회사 연료 전지용 전극막 접합체

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258863A (ja) * 1984-06-06 1985-12-20 Hitachi Ltd 燃料電池
JPH02168565A (ja) * 1988-12-21 1990-06-28 Nippon Soken Inc 燃料電池
JPH05283094A (ja) * 1992-03-31 1993-10-29 Toshiba Corp 燃料電池
JPH07235324A (ja) * 1994-02-23 1995-09-05 Toyota Motor Corp 燃料電池の駆動装置
JPH10289723A (ja) * 1997-04-11 1998-10-27 Sanyo Electric Co Ltd 燃料電池
WO2000014819A1 (fr) * 1998-09-04 2000-03-16 Kabushiki Kaisha Toshiba Systeme de cellule a combustible du type a polymere solide
JP2001332274A (ja) * 2000-05-24 2001-11-30 Sony Corp 電気エネルギー発生装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350643A (en) * 1992-06-02 1994-09-27 Hitachi, Ltd. Solid polymer electrolyte type fuel cell
US5595834A (en) * 1995-09-01 1997-01-21 The Regents Of The University Of Calif. Annular feed air breathing fuel cell stack
JP4028603B2 (ja) 1996-02-05 2007-12-26 松下電器産業株式会社 機器搭載用燃料電池装置
JPH10162842A (ja) * 1996-11-29 1998-06-19 Matsushita Electric Works Ltd 固体高分子型燃料電池用セパレータ、及びこれを用いた固体高分子型燃料電池スタック
JPH1197041A (ja) 1997-09-22 1999-04-09 Sanyo Electric Co Ltd 固体高分子型燃料電池
KR100426094B1 (ko) * 1998-06-30 2004-04-06 마쯔시다덴기산교 가부시키가이샤 고체고분자전해질형 연료전지
JP2001011032A (ja) 1999-07-02 2001-01-16 Matsushita Electric Ind Co Ltd 含フッ素アルキルアミンおよびその製造方法
US6447945B1 (en) * 2000-12-12 2002-09-10 General Atomics Portable electronic device powered by proton exchange membrane fuel cell
US6660423B2 (en) * 2000-12-15 2003-12-09 Motorola, Inc. Direct methanol fuel cell including a water management system and method of fabrication
US6827747B2 (en) * 2002-02-11 2004-12-07 General Motors Corporation PEM fuel cell separator plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258863A (ja) * 1984-06-06 1985-12-20 Hitachi Ltd 燃料電池
JPH02168565A (ja) * 1988-12-21 1990-06-28 Nippon Soken Inc 燃料電池
JPH05283094A (ja) * 1992-03-31 1993-10-29 Toshiba Corp 燃料電池
JPH07235324A (ja) * 1994-02-23 1995-09-05 Toyota Motor Corp 燃料電池の駆動装置
JPH10289723A (ja) * 1997-04-11 1998-10-27 Sanyo Electric Co Ltd 燃料電池
WO2000014819A1 (fr) * 1998-09-04 2000-03-16 Kabushiki Kaisha Toshiba Systeme de cellule a combustible du type a polymere solide
JP2001332274A (ja) * 2000-05-24 2001-11-30 Sony Corp 電気エネルギー発生装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073849A1 (ja) * 2008-12-22 2010-07-01 シャープ株式会社 吸水部材を加熱する発熱源を含む燃料電池システムおよびそれを備えた電子機器
CN111370724A (zh) * 2018-12-25 2020-07-03 财团法人工业技术研究院 电极分隔板结构及其应用的燃料电池

Also Published As

Publication number Publication date
AU2003235279A1 (en) 2003-11-03
US20050158593A1 (en) 2005-07-21
JP2004241363A (ja) 2004-08-26
US7816043B2 (en) 2010-10-19
JP4281382B2 (ja) 2009-06-17

Similar Documents

Publication Publication Date Title
WO2003090305A1 (fr) Systeme de traitement d'eau de formation et procede de traitement d'eau de formation, et generateur d'electricite
JP4028603B2 (ja) 機器搭載用燃料電池装置
JP2006523936A (ja) 直接メタノール燃料電池における受動的水管理技術
JP2008060044A (ja) 燃料電池システム
JP2002367655A (ja) 燃料電池
CN101379640B (zh) 燃料电池
US20080138692A1 (en) Fuel cell apparatus
JP2004327089A (ja) 燃料電池スタック
JP2008311166A (ja) 燃料電池システム
JP5157144B2 (ja) 気液分離装置
JP2003323902A (ja) 燃料電池発電装置及びこれを用いた携帯機器
JP2007200837A (ja) 直接液体燃料電池システム
JP4839565B2 (ja) 燃料電池システム
JP3866534B2 (ja) 燃料電池
WO2007105458A1 (ja) 燃料電池システム
JP2006221868A (ja) 燃料電池
JP2003203668A (ja) 生成水回収装置、生成水回収方法、発電体、生成水排出装置、生成水排出方法、及び生成水回収システム
WO2012001839A1 (ja) 直接酸化型燃料電池システム
JP2008151390A (ja) 水蒸気交換膜リフレッシュシステム、加湿器、及び燃料電池システム
JP2000357530A (ja) 燃料電池システム
JP2007123163A (ja) 燃料電池及び電源供給システム
US7691517B2 (en) Fuel cell system with a water holding member
JP3118182U (ja) 燃料電池及び電源供給システム
JP2007257991A (ja) 燃料電池システム
JP2010049860A (ja) 燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10509843

Country of ref document: US

122 Ep: pct application non-entry in european phase