WO2003092890A2 - Ensemble catalytique pour hydrosilylation, son procede de preparation et compositions silicone l'incorporant - Google Patents

Ensemble catalytique pour hydrosilylation, son procede de preparation et compositions silicone l'incorporant Download PDF

Info

Publication number
WO2003092890A2
WO2003092890A2 PCT/FR2003/001305 FR0301305W WO03092890A2 WO 2003092890 A2 WO2003092890 A2 WO 2003092890A2 FR 0301305 W FR0301305 W FR 0301305W WO 03092890 A2 WO03092890 A2 WO 03092890A2
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
inhibitor
formula
radical
linear
Prior art date
Application number
PCT/FR2003/001305
Other languages
English (en)
Other versions
WO2003092890A3 (fr
Inventor
Sébastien STERIN
Rémi THIRIA
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0205380A external-priority patent/FR2838985B1/fr
Priority claimed from FR0215161A external-priority patent/FR2847900B1/fr
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Priority to EP03747466A priority Critical patent/EP1499660A2/fr
Priority to KR1020047017516A priority patent/KR100648880B1/ko
Priority to CN03812541.2A priority patent/CN1688635B/zh
Priority to AU2003246862A priority patent/AU2003246862A1/en
Priority to US10/512,977 priority patent/US20060089455A1/en
Publication of WO2003092890A2 publication Critical patent/WO2003092890A2/fr
Publication of WO2003092890A3 publication Critical patent/WO2003092890A3/fr
Priority to US12/146,974 priority patent/US7750171B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1608Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes the ligands containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/185Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/1865Phosphonites (RP(OR)2), their isomeric phosphinates (R2(RO)P=O) and RO-substitution derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2291Olefins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0086Platinum compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/828Platinum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds

Definitions

  • the invention relates to new catalyst inhibitors for hydrosilylation reactions involving polyorganosiloxanes (POS) carrying Si-H units and POSs carrying ethylenic and / or acetylenic unsaturation (s), hereinafter referred to as POS carrying Si- [ethylenic or acetylenic unsaturation] units and to the catalytic units obtained from the mixture of these inhibitors and catalysts.
  • POS polyorganosiloxanes
  • POSs ethylenic and / or acetylenic unsaturation
  • the invention also relates to monocomponent silicone compositions crosslinking by hydrosilylation reactions and comprising such an inhibitor or catalytic unit.
  • the invention also relates to specific methods for using inhibitors of hydrosilylation catalysts, to methods for preparing mixtures of inhibitors and catalysts, to methods for preparing monocomponent silicone compositions and to compositions capable of 'be obtained by the implementation of these processes.
  • the Karstedt complex can be prepared by bringing 1, 3-divinyltetramethyldisiloxane into contact with chloroplatinic acid (H 2 PtCI 6 ), in the presence of NaHCO 3 and an aqueous-alcoholic solvent (eg isopropanol).
  • chloroplatinic acid H 2 PtCI 6
  • NaHCO 3 aqueous-alcoholic solvent
  • aqueous-alcoholic solvent eg isopropanol
  • FR-A-2 801 887 discloses metal complexes useful as hydrosilylation catalysts, of formula:
  • R 3 represents a hydrogen atom; an (C ⁇ -Cs) alkyl group; or a group
  • T 1 and T 2 are identical and represent (C ⁇ -C ⁇ ) alkyl or (C 3 -C 8 ) cycloalkyl;
  • R d and R e are identical and represent (d-CsJalkyle or (C 3 -C 8 ) cycloalkyle;
  • US-A-3 188 300 describes the use of various phosphine or phosphite ligands of formula:
  • R 1 , R 2 and R 3 are alkyl, aryl, aralkyl, alkaryl, alkoxy, aryloxy, aralkoxy, alkaryloxy radicals.
  • US-A-5 380 812 proposes di- and trihydrocarbylphosphines, di- and trihydrocarbylphosphine oxides, di- and triorganophosphites of formula
  • R 1 is a substituted or unsubstituted monovalent hydrocarbon radical, for example alkyl, aralkyl, alkaryl, and a is 2 or 3.
  • the phosphines make it possible to instantaneously inhibit platinum but their affinity for platinum is such that the catalytic system finally obtained exhibits poor reactivity.
  • the phosphites exhibit a more interesting inhibition / reactivity compromise.
  • the properties of the catalytic systems can depend on the conditions of their implementation and on the dispersion of the inhibitor / catalyst couple in the silicone material.
  • organophosphorus compounds are generally little or not soluble in silicone oils, which is likely to cause poor dispersion of these compounds.
  • the complexation of platinum, and therefore its inhibition can be long to obtain with such a process, which therefore exposes to non-optimal homogeneity and to premature crosslinking of the final composition.
  • inhibitors which make it possible to reconcile a high inhibitory power and a good catalytic activity, and which make it possible to prepare monocomponent compositions having a satisfactory pot life (“pot-life”), eg from 1 day to several months. It would also be interesting to have efficient methods of implementing these inhibitors / catalysts.
  • the present invention therefore aims to meet this need by proposing new inhibitors and more particularly a new catalytic assembly comprising a catalyst and an inhibitor, the catalytic activity being inhibited (not detectable) at room temperature.
  • Another objective of the invention is to propose methods for implementing inhibitor / catalyst pairs which make it possible to ensure, under the best conditions, the catalyst / inhibitor coupling and / or the dispersion of the catalyst, of the inhibitor and of the catalytic assemblies. in a silicone composition.
  • Yet another objective of the invention is to provide catalytic assemblies having improved ease of implementation, in particular for their mixing with silicone compositions.
  • Yet another objective of the invention is to provide a silicone composition crosslinkable by hydrosilylation and comprising, as catalyst, such a catalytic assembly having activity inhibited at room temperature, so as to allow the production of monocomponent compositions comprising the catalyst and suitable compounds to react hot by hydrosilylation of unsaturated units (eg POS SiH / POS Si-alkenyl), while being stable at room temperature for long periods (eg 1 d to several months).
  • unsaturated units eg POS SiH / POS Si-alkenyl
  • composition or catalytic assembly comprising a metal catalyst capable of catalyzing a hydrosilylation reaction and an inhibitor corresponding to the following formula (I):
  • R, R, R, R and R identical or different, represent a linear, branched or cyclic alkyl radical, or a substituted or unsubstituted aryl radical, in particular:
  • - a linear or branched alkyl radical, in particular having from 2 to 30 carbon atoms (C), preferably from 2 to 12 C, - an alkyl radical comprising one or more rings, in particular 1 or 2, a ring which may in particular have 4 to 14 C, preferably 5 to 8 C, or
  • an aryl or alkylaryl radical comprising one or more adjoining or non-adjoining aromatic rings, in particular 1 or 2 rings, a cycle possibly comprising from 4 to 14 C, preferably from 6 to 8 C, optionally substituted by 1 or several, in particular from 1 to 2, linear or branched alkyl (s), in particular having from 1 to 12 C, preferably from 4 to 12 C, composition or assembly in which the inhibitor inhibits the action catalytic converter.
  • the catalytic action is inhibited at room temperature, but can be restored by heating (e.g. between 50 and 200 ° C, more particularly between 100 and 150 ° C).
  • inhibitor and catalyst are complexed.
  • inhibition covers a so-called complete inhibition, due to the incorporation of a sufficient amount of inhibitor (in particular with 1 atom or preferably more than 1 atom of phosphorus P for a metal atom of the catalyst).
  • the term also covers a so-called incomplete inhibition, if the quantity of inhibitor incorporated is not sufficient. In the latter case in particular, it may be supplemented by the separate incorporation of the same type of inhibitor or by another inhibitor.
  • the composition comprises, as solvent, an organosilicon compound, such as a silane, a siloxane, a silicone oil and / or a silicone gum.
  • the composition can thus comprise one or more unsaturated silanes and / or one or more unsaturated siloxanes comprising one or more siloxane units (eg from 2 to 200, preferably from 2 to 30). They are preferably vinylsilanes and / or vinylsiloxanes. More than details as to their nature will be given later.
  • the silanes and siloxanes described in US-A3 775452 and US-A-3,715,334, to which reference is made later, are possible methods.
  • the composition can also comprise one or more oils or silicone gums such as those which are described below, and which cover alkenylated species, in particular vinylated, and species which are not (eg based on units corresponding to the formula ( V) defined below).
  • the invention relates to a catalytic composition or assembly comprising, optionally in an organosilicon solvent as described above, the metal catalyst capable of catalyzing a hydrosilylation reaction and an inhibitor of formula (I), in which : R, R 1 , R 2 , R 3 and R 4 , identical or different, represent a linear, branched or cyclic alkyl radical, or a substituted or unsubstituted aryl radical, in particular:
  • - a linear or branched alkyl radical having from 2 to 30 carbon atoms (C), preferably from 2 to 12 C, an alkyl radical comprising one or more rings, in particular 1 or 2, a ring which may in particular have from 4 to 14 C, preferably 5 to 8 C, or
  • R is advantageously a cyclic alkyl radical, and even better an alryl radical, in particular bi-phenyl.
  • R 1 , R 2 , R 3 and R 4 are advantageously cyclic alkyl radicals, and even better aryl radicals and more preferably alkylaryl radicals, in particular substituted phenyl, eg tert-butyl-phenyl.
  • R 1 , R 2 , R 3 and R 4 are preferably identical.
  • compounds with aryl or cyclic alkyl radicals are preferred for their inhibitory activity of longer duration than compounds with linear or branched alkyl radicals.
  • radicals R which are identical or different, preferably identical, are linear or branched alkyls, having in particular from 1 to 12 C, preferably from 4 to 12 C.
  • the preferred inhibitor corresponds to formula (III):
  • the metal molar ratios of the catalyst to the inhibitor can be between 1 / 0.5 and 1/10, preferably between 1/1 and 1/5.
  • the catalysts targeted by the invention include all the catalysts useful for the hydrosilylation of POS carrying Si-H units and of POS carrying Si- [ethylenic or acetylenic unsaturation] units. They can therefore be platinum, rhodium, iridium, nickel, ruthenium and / or palladium compounds. They are more particularly compounds of iridium or better still of platinum.
  • the platinum compound can be any complex of platinum and an organic product, eg those described in patents US-A-3,159,601, US-A-3,159,602, US-A-3,220,972 and European patents EP-A-0 057 459, EP-A-0 188 978 and EP-A-0 190 530, or any complex of platinum and vinylated organosiloxanes, eg those described in patents US-A-3,419,593, US -A-3,715,334, US-A-3,377,432 and US-A-3,814,730.
  • chloroplatinic acid Mention may be made of chloroplatinic acid, a chloroplatinic acid modified by an alcohol, or alternatively a complex of chloroplatinic acid with an olefin, an aldehyde or a vinylsiloxane among others.
  • the patent US-A-2 823 218 discloses a hydrosilylation catalyst of the chloroplatinic acid type and the patent US-A-3419 593 relates to catalysts formed by chloroplatinic acid and organosilicone complexes of the vinylsiloxane type.
  • Platinum and hydrocarbon complexes useful as hydrosilylation catalyst are disclosed by US-A-3,159,601 and 3,159,602.
  • US-A-3,723,497 describes a platinum acetylacetonate and US patent A-3,220,972 relates to catalysts based on platinum alcoholate.
  • the invention relates more particularly to the platinum / unsaturated siloxane complexes, in particular the platinum / vinylsiloxane complexes, in particular those obtained by reaction between a platinum halide and an unsaturated organosilicon material such as an unsaturated silane or an unsaturated siloxane, eg according to the invention.
  • the invention preferably applies to solutions or complexes from Karstedt.
  • the catalytic assembly according to the invention comprises a mixture of the catalyst and the inhibitor leading to a new complex species between these two compounds.
  • the new species (I ') has a structure of the type:
  • the subject of the present invention is also: - these new species,
  • a metal catalyst in particular of platinum, in particular hydrosilylation catalyst, in particular in a monocomponent silicone composition crosslinking by hydrosilylation reaction
  • the catalyst is inhibited by the inhibitor at room temperature. Its activation can be induced by temperature rise.
  • the inhibitors according to the invention are soluble in unsaturated silanes, in particular vinylated ones such as vinyltrimethoxysilane (VTMO) and in unsaturated siloxanes, eg vinylsiloxanes and in solutions platinum / unsaturated silane and platinum / unsaturated siloxane, eg platinum / vinyisiloxane.
  • unsaturated silanes in particular vinylated ones such as vinyltrimethoxysilane (VTMO) and in unsaturated siloxanes, eg vinylsiloxanes and in solutions platinum / unsaturated silane and platinum / unsaturated siloxane, eg platinum / vinyisiloxane.
  • VTMO vinyltrimethoxysilane
  • platinum / unsaturated silane and platinum / unsaturated siloxane eg platinum / vinyisiloxane.
  • the catalyst solution and the inhibitor can be mixed until the inhibitor is completely dissolved.
  • the inhibitor is added to the catalyst solution.
  • An additive or catalytic assembly in which catalyst and inhibitor are present in the form of a complex, is first prepared.
  • the catalyst is thus inhibited at room temperature.
  • This additive is intended to be added to the single-component silicone composition under conditions ensuring a fine and homogeneous dispersion.
  • the present invention therefore also relates to a process for the preparation of an additive or catalytic assembly (or catalytic composition) comprising an inhibitor / catalyst pair.
  • R is an alkylaryl radical having in particular from 7 to 31 carbon atoms, preferably substituted phenyl radicals, eg substituted by linear or branched alkyls, preferably identical, having in particular from 1 to 12 C, preferably from 4 to 12 C, for example t-Bu.
  • R 2 , R 4 and R 5 represent H and R 1 and R 3 represent preferably identical aliphatic radicals, eg t-Bu.
  • this ratio can be between 1/1 and 1/10, preferably between 1/2 and 1/5.
  • At least one inhibitor of formula (I) and at least one inhibitor of formula (VIII) are used (e.g. an inhibitor of formula
  • the amounts of inhibitors can be determined in order to substantially maintain the P ratio of the inhibitor / Pt of the catalyst resulting from the application of the ratios set out above. above.
  • the respective amounts of inhibitors are chosen to ensure a metal to catalyst ratio of phosphorus of between 1/1 and 1/10.
  • a solution comprising the catalyst and the inhibitor is prepared, by mixing the organophosphorus inhibitor in the catalyst.
  • an unsaturated silane eg vinylsilane, or unsaturated siloxane, preferably unsaturated siloxane such as vinylsiloxane, eg in the platinum / unsaturated siloxane solution, especially in the platinum / vinyisiloxane solution, preferably in the Karstedt solution.
  • the inhibitors of formula (I), in particular the inhibitors of formula (II) and (III), are soluble in silanes and unsaturated siloxanes, which allows easy and rapid dissolution of these inhibitors in a catalytic solution, in particular of the siloxane type, eg in the Karstedt solution, and rapid and effective inhibition of the catalyst.
  • the catalyst-inhibitor solution can comprise from 0.1 to 15%, preferably from 5 to 10%, by weight of platinum metal.
  • the mixing can be carried out by any conventional stirring means, e.g. with a paddle stirrer.
  • the method comprises the dispersion of the organophosphorus inhibitor in an oil and / or a silicone gum,
  • the oil or the silicone gum is heated to the appropriate temperature before, during and / or after the addition of the organophosphorus derivative.
  • the organophosphorus compound is first dispersed in the oil or gum maintained at a temperature below the melting point, then the composition is heated to a temperature above the melting or softening temperature of the organo compound. -phosphorus.
  • the organophosphorus compound disperses quickly, efficiently and homogeneously in silicone oil or gum. It can generally be considered that a duration of dispersion greater than a few minutes, in particular of the order of 5 min to 1 h, preferably from 15 min to 30 min, is sufficient.
  • the silicone material is preferably brought to a temperature higher than 1 to 50 ° C, in particular 5 to 20 ° C, preferably 10 to 20 ° C, above the melting or softening temperature of the organo-compound. phosphorus used.
  • stirring of the mixture of silicone material and inhibitor is maintained, for a sufficient time to ensure good fusion of the dispersed organophosphorus compound. It can generally be considered that a heating and stirring period greater than a few minutes, in particular of the order of 5 min to 1 h, preferably from 15 min to 30 min, is sufficient.
  • the catalyst can then be added to the composition previously obtained. To avoid denaturing the catalyst, when necessary, the above composition is cooled to a temperature below the denaturation point of the catalyst.
  • the previous composition it is preferable to bring the previous composition to room temperature, eg of the order of 25 ° C.
  • the Karstedt solution or complex is added and the whole is mixed.
  • the mixing is continued until homogeneous dispersion of the catalyst in the silicone material and the formation of an inhibitor / catalyst complex generated in situ is obtained, remarkably dispersed in a fine and homogeneous manner in the silicone gum or oil.
  • the silicone gum or oil, or a mixture, used to form this solution is chosen to be compatible with the final silicone composition.
  • an oil, gum or mixture with a viscosity close to or identical to that of the final silicone composition or of the portion of the latter in which the inhibitor-catalyst solution will first be mixed is used.
  • PDMS polydimethylsiloxane gum
  • the viscosity of these non-vinylated (non-alkenylated) oils or gums can range from a few mPa / s to a few million mPa / s, the choice possibly depending in particular on the type of final silicone composition, eg RTV, LSR or EVC, of which it is question below.
  • the mixing of the ingredients at the different stages is carried out using a mixing device adapted to the viscosity of the oil or gum used. For rather high viscosities, as in the case of oils or gums used in EVCs, it is possible to use a roller mixer or an arm mixer.
  • both modes 1 and 2 it may be useful to add to the composition each time obtained, one or more ingredients intended to facilitate mixing with the final silicone composition. It may in particular be a question of adapting the viscosity, in order to bring it closer to that of the constituent or of the mixture of constituents of the final silicone material in which the additive is provided. It can in particular be an oil or silicone gum having a viscosity compatible with POS A. Depending on the silicone composition, the person skilled in the art is perfectly capable of choosing a suitable oil or gum, especially suitable in terms of viscosity, for diluting the inhibitor composition. catalyst previously obtained. According to a particular method, an oil or gum is used in particular chosen from the oils or gums C defined above, in particular PDMS, or also from the POS A described with regard to the silicone composition.
  • the additive obtained according to mode 1 or mode 2 after possible dilution in an oil or gum, comprises from 0.001 to 10%, better still from 0.01 to 1% by weight of platinum metal.
  • the additive thus obtained is a simple pasting intended to be then added to the silicone composition proper.
  • this additive constitutes a fraction of the final single-component silicone composition.
  • the pasting is based on one of the constituents of this composition and in particular based on POS A, or based on PDMS.
  • compositions, or additives or catalytic assemblies obtained by implementing the methods of preparation which have just been described also constitute objects of the present invention. They preferably comprise at least one inhibitor of formula (I), (II), (III), (VIII) or (IX) and a catalyst according to the invention.
  • the catalytic composition comprises the catalyst, the inhibitor, and an unsaturated silane, or an unsaturated siloxane, comprising one or more siloxane units (eg from 2 to 200, preferably from 2 to 30), particular according to the teaching of the patents US-A-3,775,452 and US-A-3,715,334 mentioned above. They are preferably vinylsilanes and / or vinylsiloxanes.
  • the composition is obtained from a solution of unsaturated platinum / silane or unsaturated platinum / siloxane, in particular a solution of platinum / vinyisiloxane, in particular obtained by reaction between a platinum halide and an unsaturated organosilicon material such as an unsaturated silane or an unsaturated siloxane, eg the Karstedt solution or complex.
  • the catalytic composition comprises the catalyst, the inhibitor, a silicone gum or oil, and optionally a silane or a siloxane as just described.
  • the oil or gum is preferably identical to or close to one or more of the compounds of the final silicone composition.
  • an oil or an eraser with an alkenyl group, preferably vinylated, such as POS A according to the invention, and even more preferably POS A used in the targeted monocomponent silicone composition is used.
  • a polyorganosiloxane C oil or gum eg a PDMS.
  • the catalytic composition comprises at least one inhibitor of formula (I), (II) or (III), optionally combined with an inhibitor of formula (VIII) or (IX), and an oil or gum with an alkenyl group , preferably vinylated, preferably POS A, and / or a polyorganosiloxane C oil or gum, preferably PDMS.
  • the catalytic composition comprises, or essentially consists of, at least one inhibitor of formula (VIII) or (IX), and a polyorganosiloxane C oil or gum, preferably PDMS.
  • the inhibitor inhibits the catalytic action of the catalyst at room temperature.
  • the inhibitor and the catalyst are complexed.
  • the invention particularly relates to such an additive, in which the catalyst + inhibitor assembly represents from 0.001 to 40% by weight, preferably from 0.01 to 30%, better still from 0.1 to 20%.
  • the subject of the present invention is also a silicone composition crosslinkable by hydrosilylation, comprising at least one PolyOrganoSiloxane (POS) having ethylenic and / or acetylenic unsaturation (s), at least one hydrogenated polyorganosiloxane B (ci -after POS B), as well as (a) a hydrosilylation catalyst and an inhibitor of formula (I), (II) or (III), or (b) a catalytic assembly obtained as just described.
  • POS PolyOrganoSiloxane
  • s ethylenic and / or acetylenic unsaturation
  • ci -after POS B hydrogenated polyorganosiloxane B
  • a silicone composition or an additive or catalytic assembly comprises such or such inhibitor of formula (I), (II), (III), (VIII) or (IX), it is meant free inhibitor, inhibitor complexed with the catalyst, or a mixture of these two species.
  • the composition comprises an additive or catalytic unit according to the invention, preferably provided in the form of a mash prepared according to one of the modes of preparation 1 and 2 defined above.
  • the catalyst and the inhibitor are added separately to the silicone composition. It is therefore preferable to add them in the
  • POS A or in a composition containing POS A and one or more other ingredients, with the exception of POS B.
  • POS B is incorporated after a thorough mixing of POS A, the catalyst and the inhibitor and advantageously after a certain latency.
  • the inhibitor can advantageously be in solution in a vinylsiloxane.
  • the invention is aimed both at polyaddition silicone compositions which can be vulcanized at RTV ambient temperature (and whose crosslinking can be accelerated when hot) as well as those known as EVC hot vulcanizable elastomers.
  • the POS A can in particular be formed from siloxyl units of formula: ⁇ a Z b SiQ (4, a, b) (IV)
  • Y is a C 2 -C 6 alkenyl, preferably vinyl
  • Z is a monovalent hydrocarbon group having no adverse action on the activity of the catalyst
  • Z is generally chosen from alkyl groups having 1 with 8 carbon atoms included such as methyl, ethyl, propyl and 3,3,3-trifluoropropyl and aryl groups such as xylyl, tolyl and phenyl
  • a is 1 or 2
  • b is 0, 1 or 2
  • a + b is between 1 and 3, possibly all the other units being units of average formula:
  • POS B can in particular be formed from siloxyl units of formula:
  • W is a monovalent hydrocarbon group having no unfavorable action on the activity of the catalyst and corresponding to the same definition as Z, d is 1 or 2, e is 0, 1 or 2, d + a value between 1 and 3, possibly all the other units being units of average formula:
  • g has a value between 0 and 3.
  • POS A & B are for example respectively a polyorganovinylsiloxane and a polyorganohydrogensiloxane.
  • the organic substituents other than the vinyl and hydrogen reactive groups are, for example, methyls or cyclohexyls.
  • T [- (R) SiO-].
  • These hydrogenated or vinyl M, D units each have one or more H or Vinyl, preferably only one.
  • the number of SiH or SiVi units per molecule is preferably greater than or equal to 2. This can in particular represent from 0.01% to 10% (preferably
  • Suitable POS B are polymethylhydrogensiloxanes with -Si (CH 3 ) 3 ends and polydimethylsiloxanes with -Si (CH 3 ) 2H ends, methylhydrogenodimethylsiloxane copolymers with -Si (CH 3 ) 2H ends, methylhydrogenomethyloctylsiloxane copolymers, and methylhydroxyiloxanes
  • POS A & B have an average molecular weight of between 1.1O 2 and 1.1O 7 (g / mol).
  • POS A this includes in particular, in terms of dynamic viscosity at 25 ° C: o in the case of silicone compositions which can be vulcanized hot (EVC) by polyaddition, POS A having in particular a viscosity at least equal to 5.10 5 mPa.
  • POS A having in particular a viscosity preferably comprised 1.10 4 and 5.10 5 mPa.s, and o in the case of silicone compositions vulcanizable at room temperature (vulcanization being accelerated while hot) by polyaddition or RTV, POS A having in particular a viscosity of between 100 and 10 4 mPa.s , preferably between 1000 and 5000 mPa.s.
  • the POS B generally have a viscosity between 10 and 10,000 mPa.s, preferably between 50 and 1000 mPa.s.
  • the silicone compositions concerned are POSs which can be vulcanized hot (EVC) by polyaddition and in which the POS A can in practice have a viscosity at 25 ° C. of eg 1.10 6 to 5.10 6 mPa.s and POS B from 10 to 5000 mPa.s, in particular from 50 to 1000 mPa.s (eg 300 mPa.s).
  • EMC vulcanized hot
  • POS B from 10 to 5000 mPa.s, in particular from 50 to 1000 mPa.s (eg 300 mPa.s).
  • the viscosity is measured using a BROOKFIELD viscometer according to the indications in AFNOR NFT 76 106 of May 1982.
  • an inhibitor of formula (I), (II) or (III) can be added, in particular by solution in a vinylsiloxane, and / or another crosslinking inhibitor, for example of formula (VIII) or (IX), an acetylenic alcohol (FR-A-2 372 874, FR-A-1 528 464), a compound of maleate type (US-A-4,256,870 and US-A-4,530,989) or an acetylene dicarboxylate compound (US-A-4,504,645 and US-A-4,347,346).
  • the silicone compositions of the invention can also comprise usual functional additives.
  • usual functional additives mention may be made of: fillers, hydroxylated POS oils useful as compatibilizers, adhesion promoters, "adhesion modulators, thermal resistance additives additives to increase the consistency of pigments, additives for thermal resistance, resistance to oils, to fire (for example metal oxides).
  • the charges possibly provided are preferably mineral. They can in particular be siliceous.
  • siliceous materials they can play the role of reinforcing or semi-reinforcing filler.
  • the reinforcing siliceous fillers are chosen from colloidal silicas, combustion and precipitation silica powders or their mixtures. These powders have an average particle size generally less than 0.1 ⁇ m and a BET specific surface greater than 50 m / g, preferably between 150 and 350 m 2 / g.
  • Semi-reinforcing siliceous fillers such as diatomaceous earth or ground quartz can also be used.
  • non-siliceous mineral materials they can act as a semi-reinforcing or tamping mineral filler.
  • non-siliceous fillers which can be used alone or as a mixture are carbon black, titanium dioxide, aluminum oxide, hydrated alumina, expanded vermiculite, unexpanded vermiculite, calcium carbonate, l zinc oxide, mica, talc, iron oxide, barium sulfate and slaked lime. These fillers have a particle size generally between 0.001 and 300 ⁇ m and a BET surface area of less than 100 m 2 / g.
  • the fillers used can be a mixture of quartz and silica.
  • the charges can be treated with any suitable product.
  • an amount of filler of between 10 and 50% by weight, preferably between 20 and 40% by weight relative to all of the constituents of the composition. More generally, quantitatively, the compositions according to the invention refer to standard proportions in the technical field under consideration, knowing that the intended application must also be taken into account.
  • a subject of the invention is also a process for the preparation of a single-component silicone composition crosslinkable by hydrosilylation, comprising at least one PolyOrganoSiloxane (POS) With ethylenic and / or acetylenic unsaturation (s) carrier, at least a hydrogenated polyorganosiloxane B (hereinafter POS B), at least one hydrosilylation catalyst and at least one inhibitor of formula (I), (II), (III), (VIII) and / or (IX), process in which brings the inhibitor and the catalyst in the form of an additive or catalytic assembly previously prepared according to the invention, preferably a mash formed of the premix of the inhibitor and the catalyst.
  • POS B PolyOrganoSiloxane
  • s ethylenic and / or acetylenic unsaturation
  • the catalyst is introduced in its inhibited form, combined with the inhibitor.
  • the inhibition may relate to all or part of the catalyst molecules, depending on the amount of inhibitor present in the additive.
  • the inhibition is preferably complete.
  • This additive can be added to the rest of the silicone composition or to any fraction thereof, in particular in a fraction containing or consisting of POS A, POS B or a mixture of POS A and B. It is possible to also define the process as incorporating the production of the additive as described above, then the provision of this additive in the silicone composition.
  • an additive prepared according to mode 1 described above (with or without dilution) is added.
  • the additive is therefore derived from the dispersion of the inhibitor in a solution of the catalyst in an unsaturated silane or siloxane, preferably vinylsiloxane.
  • an additive prepared according to mode 2 described above (with or without dilution) is added.
  • the additive is then obtained from the mixture of the inhibitor in a silicone oil or gum at a temperature higher than the melting or softening temperature of the inhibitor, then addition of the catalyst.
  • the additive can be added before, during or after addition of the other ingredients such as mineral filler, crosslinking inhibitor, hydroxylated POS oil, or other usual functional additives such as those described above.
  • the additives or catalytic units according to the invention can be easily mixed in this silicone composition.
  • the various mixing means usually used in the silicone industry can be used, and in particular arm mixers and cylinder mixers when the viscosity requires it, in particular in the case of EVCs.
  • the mixing operation is continued to obtain an optimal dispersion of the additive or catalytic unit. Those skilled in the art are capable of determining the optimal conditions.
  • a further subject of the invention is the single-component silicone compositions which can be obtained by implementing the preparation process which has just been described, compositions which are characterized in particular by a remarkably fine and homogeneous dispersion of the catalyst / inhibitor couple.
  • Another object of the invention consists of a process for hydrosilylation of one or more POS A using one or more POS B, characterized in that it consists in using a silicone composition such as defined above and to heat it to the crosslinking temperature, generally between 50 and 200 ° C., more particularly between 100 and 150 ° C.
  • a silicone composition such as defined above and to heat it to the crosslinking temperature, generally between 50 and 200 ° C., more particularly between 100 and 150 ° C.
  • the crosslinking temperature generally between 50 and 200 ° C., more particularly between 100 and 150 ° C.
  • humans those skilled in the art have no difficulty in determining the optimum temperature for triggering hydrosilylation.
  • the relative amount of unsaturated compound and compound having an Si-H unit can be controlled so as to ensure the reaction of all unsaturations with Si-H bonds.
  • the molar ratio of unsaturations to Si-H bonds varies between 1: 10 and 10: 1.
  • the hydrosilylation reaction is carried out in the presence of a catalytic amount of the catalyst according to the invention.
  • catalytic amount means less than a molar equivalent of platinum relative to the amount of unsaturations present in the reaction medium.
  • the compounds of formula (I,) (II) or (III) can be obtained in the usual manner by reaction between (i) a di-halogenated compound XRX (X for a halogen atom), R having the meaning given above with regard to formulas (I), (II) and (III), and (ii) an excess of PCI 3 , then by reaction of the compound obtained in the preceding step with the 4 alcohol molecules R'OH, making it possible to form the groups R 1 to R 4 of formulas (I), (II) and (III).
  • the product obtained can then be purified using conventional techniques known to those skilled in the art. They can also be prepared according to the teaching of US-A-5 109 043.
  • reaction mixture is kept stirring for a few minutes.
  • a catalytic solution is obtained containing 8.4% of Platinum by weight. This clear, homogeneous and easily handled solution is used in the following examples.
  • the reaction mixture is heterogeneous. It remains heterogeneous even after several minutes of agitation. After 3 hours of agitation, the reaction mixture becomes heterogeneous in white color. Stopping the agitation causes the white solid to settle at the bottom of the bottle.
  • Example 3 Composition according to the invention (all parts are given by weight).
  • an EVC 1 base is prepared by mixing for 2 hours at room temperature (23 ° C):
  • a sample of catalyzed elastomer is compressed in a sealed chamber under a given pressure and at a given temperature.
  • test chamber is formed by two half-chambers, one of which is subjected to low linear or rotary (disc) oscillations.
  • This action produces in the test piece an alternating sinusoidal deformation, linear or in torsion, and a sinusoidal shear force or torque which depend on the rigidity (shear modulus) of the elastomer.
  • the rigidity of the test piece increases as the vulcanization or polyaddition reaction takes place.
  • the measurement as a function of the time of the torque necessary for the oscillation of the disc makes it possible to obtain, at the end of the measurement, the vulcanization characteristics of the elastomer.
  • Vmax maximum vulcanization speed reached.
  • Example 4 In-situ preparation. by a hot process, an additive based on a silicone matrix, Karstedt platinum and the inhibitor (III).
  • Karstedt catalyst platinum with zero oxidation degree in solution in a vinyl silicone oil (10% by mass of platinum) (10% by mass of platinum) is then added, either on a cylinder mixer or in an arm mixer.
  • an EVC 2 base consisting of: - 50 parts of vinyl polydimethylorganosiloxane containing in the chain 720 ppm of vinyl groups and having a viscosity of 5 million mPa.s at 25 ° C,
  • Comparative Example 5 Preparation on a cylinder mixer, by a cold process, of an additive based on a silicone matrix.
  • Karstedt platinum and inhibitor (lin. 1.305 g of inhibitor (III) powdered in 500 g of EVC 2 base of hardness 35 are added to a cylinder mixer. 1.755 g of Karstedt catalyst are added dropwise.
  • Comparative Example 6 Preparation in an arm mixer, by a cold process, of an additive based on a silicone matrix, Karstedt platinum and inhibitor (HP.
  • Example 5 The same type of additive, described in Example 5, was produced using an arm mixer. 6a / 1, 048 g of powdered inhibitor are added to 400 g of the base
  • composition of this EVC formulation is as follows: for each 100 g of an EVC 1 base according to Example 3, 0.94 parts of oil at -SiH are added, using a cylinder mixer. 440 meq - SiH / 100 g of oil, viscosity 250 mPa.s). After incorporation, then the completion of 15 passages between the two cylinders (improvement of the dispersion of the additives), 0.037 parts of an additive composed of the base EVC 2 of hardness 35 and of inhibitor (III) are added according to Examples 4a and 6a.
  • Example 9 Stability of the additives prepared according to Example 4
  • Example 11 Evaluation of the quality of inhibition provided by C1 and C2
  • a reaction system is prepared by mixing 20 grams of an organovinylpolysiloxane of viscosity 230 mPa.s and containing 0.61% of vinyls by weight, the catalyst mixture C1 or C2 so as to obtain 80 ppm by weight of platinum in the final mixture; then 5.4 grams of an organohydrogensiloxane with a viscosity of 300 mPa.s and containing 0.17% by weight of hydrogen are added. This final reaction mixture is homogenized by stirring for 5 minutes. To assess the quality of the inhibition, the gel time t ge ⁇ corresponding to the setting time of the reaction mixture is measured at room temperature. The comparative reactivity of the two systems is evaluated by DSC (Differential Scanning Calorimetry).
  • a reaction system is prepared by mixing 20 grams of an organovinylpolysiloxane with a viscosity of 230 mPa.s and containing 0.61% of vinyl by weight, the amount of organophosphorus inhibitor (III) or (X) required to obtain a ratio P / Pt of 1.2, then the Karstedt catalyst (14.3% platinum solution in the DVTMS) so as to obtain 80 ppm by weight of platinum in the final mixture.
  • This mixture is stirred for 10 minutes at ambient temperature, then 5.4 grams of an organohydrogensiloxane of viscosity 300 mPa.s and containing 0.17% by weight of hydrogen are added. This final reaction mixture is homogenized by stirring for a few minutes. To assess the quality of the inhibition, the gel time corresponding to the setting time of the reaction mixture is measured at room temperature.

Abstract

Procédé de préparation d'ensembles catalytiques par mélange d'un catalyseur métallique apte ô catalyser une réaction d'hydrosilylation et d'un inhibiteur organo-phosphoré répondant à la formule (I) ou de formule (VIII) P(OR)3, soit par mélange de l'inhibiteur dans une solution de catalyseur dans un silane ou siloxane insaturé, soit par mélange de l'inhibiteur dans une gomme ou huile, à une température supérieure à la température de fusion ou de ramollissement du composé organo-phosphoré, puis mélange du catalyseur. Ensembles catalytiques, procédé de préparation de compositions silicone monocomposantes et compositions obtenues.

Description

ENSEMBLE CATALYTIQUE POUR HYDROSILYLATION, SON PROCEDE DE PREPARATION ET COMPOSITIONS SILICONE L'INCORPORANT
L'invention est relative à de nouveaux inhibiteurs des catalyseurs des réactions d'hydrosilylation impliquant des polyorganosiloxanes (POS) porteurs de motifs Si-H et des POS porteurs d'insaturation(s) éthylénique(s) et/ou acétylénique(s), ci-après dénommés POS porteurs de motifs Si-[insaturation éthylénique ou acétylénique] et aux ensembles catalytiques obtenus à partir du mélange de ces inhibiteurs et catalyseurs. L'invention concerne aussi des compositions silicone monocomposantes réticulant par des réactions d'hydrosilylation et comprenant un tel inhibiteur ou ensemble catalytique.
L'invention est également relative à des procédés particuliers de mise en œuvre d'inhibiteurs des catalyseurs d'hydrosilylation, à des procédés de préparation de mélanges d'inhibiteurs et catalyseurs, à des procédés de préparation de compositions silicone monocomposantes et aux compositions susceptibles d'être obtenues par la mise en œuvre de ces procédés.
Classiquement les réactions d'hydrosilylation permettant aux silicones de réticuler, sont catalysées par des catalyseurs au platine (US-A-2 823 218, US-A-2 970 150). En pratique, à ce jour, la plupart des réactions industrielles d'hydrosilylation sont catalysées par la solution de Karstedt qui est constituée par des complexes de platine au degré d'oxydation 0 (US-A-3 775452 et US 3 715 334. La formule générale idéale du complexe de Karstedt est Pt2(tétraméthyldivinylsiloxane)3:
Figure imgf000002_0001
où Me représente méthyle. Le complexe de Karstedt peut être préparé par mise en contact de 1 ,3- divinyltétraméthyldisiloxane avec de l'acide chloroplatinique (H2PtCI6), en présence de NaHCO3 et d'un solvant hydroalcoolique (e.g. isopropanol). La très forte activité catalytique de ce type de catalyseur, même à température ambiante, est un inconvénient majeur dans le cadre de son utilisation dans les EVC polyaddition, car la réticulation de l'élastomère débute dès que l'ensemble des composants est mis en contact.
Des complexes métalliques Pt/carbène plus stables ont été proposés. Ainsi, FR-A-2 801 887 divulgue des complexes métalliques utiles comme catalyseurs d'hydrosilylation, de formule :
Figure imgf000003_0001
dans laquelle : R3 représente un atome d'hydrogène ; un groupe (Cι-Cs)alkyle ; ou un groupe
(C3-C8)cycloalkyle éventuellement substitué par (Cι-C4)alkyle ;
T1 et T2 sont identiques et représentent (Cι-Cδ)alkyle ou (C3-C8)cycloalkyle ;
Rd et Re sont identiques et représentent (d-CsJalkyle ou (C3-C8)cycloalkyle;
(de préférence Tι = T2 = Rd = Re = méthyle). Classiquement, pour augmenter la stabilité au stockage à température ambiante (durée de vie en pot) des compositions silicone monocomposantes réticulables par réaction d'hydrosilylation, on a recours à des inhibiteurs de la réticulation qui agissent en masquant l'activité du catalyseur à la température ambiante. L'activité du catalyseur est restituée lorsque l'on augmente la température. Des composés organophosphorés ont été proposés.
Ainsi US-A-3 188 300 décrit l'utilisation de divers ligands phosphine ou phosphite de formule :
Figure imgf000003_0002
dans laquelle R1, R2 et R3, identiques ou différents, sont des radicaux alkyl, aryl, aralkyl, alkaryl, alcoxy, aryloxy, aralkoxy, alkaryloxy. US-A-5 380 812 propose des di- et trihydrocarbylphosphines, des oxydes de di- et trihydrocarbylphosphines, des di- et triorganophosphites de formule
<Rl°->a (3-a)P et des oxydes de phospholène. Dans la formule ci-dessus, R1 est un radical hydrocarboné monovalent substitué ou non substitué, par exemple alkyl, aralkyl, alkaryl, et a est 2 ou 3.
On peut encore citer US-A-4 593 084, US-A-5 654 455 et US-A-6 300 455. Ce dernier décrit des ligands phosphites de formule P(OR)3 dans laquelle R est un radical en C7-C31 ou un radical alkylaryl. Les ligands préférés sont de formule :
Figure imgf000004_0001
Les phosphines permettent d'inhiber de façon instantanée le platine mais leur affinité pour le platine est telle que le système catalytique finalement obtenu présente une réactivité médiocre. Les phosphites présentent un compromis inhibition/réactivité plus intéressant. Au delà du choix d'un couple inhibiteur/catalyseur, les propriétés des systèmes catalytiques peuvent dépendre des conditions de leur mise en œuvre et de la dispersion du couple inhibiteur/catalyseur dans la matière silicone.
Dans US 6,300,455 l'inhibiteur organo-phosphoré (composé d) est ajouté dans l'huile silicone vinylée (composé a) avant addition du catalyseur d'hydrosilylation (composé c), puis le polyhydrogénosiloxane (composé b) est ajouté à son tour.
Mais les composés organo-phosphorés sont de façon générale peu ou pas solubles dans les huiles silicones, ce qui est de nature à engendrer une mauvaise dispersion de ces composés. Il en résulte que la complexation du platine, donc son inhibition, peut être longue à obtenir avec un tel procédé, ce qui expose donc à une homogénéité non optimale et à une réticulation prématurée de la composition finale. Il serait intéressant de disposer de d'inhibiteurs permettant de concilier un pouvoir inhibiteur élevé et une bonne activité catalytique, et permettant de préparer des compositions monocomposantes ayant une durée de vie en pot (« pot-life ») satisfaisante, e.g. de 1 jour à plusieurs mois. Il serait également intéressant de disposer de modes de mise en œuvre de ces inhibiteurs/catalyseurs, qui soient performants.
La présente invention a donc pour objectif de répondre à ce besoin en proposant de nouveaux inhibiteurs et plus particulièrement un nouvel ensemble catalytique comprenant un catalyseur et un inhibiteur, l'activité catalytique étant inhibée (non détectable) à température ambiante
Un autre objectif de l'invention est de proposer des procédés de mise en oeuvre de couples inhibiteurs/catalyseurs permettant d'assurer dans les meilleures conditions le couplage catalyseur/inhibiteur et/ou la dispersion du catalyseur, de l'inhibiteur et des ensembles catalytiques dans une composition silicone.
Un autre objectif encore de l'invention est de proposer des ensembles catalytiques présentant une facilité de mise en œuvre améliorée, notamment pour leur mélange à des compositions silicone.
Un autre objectif encore de l'invention est de proposer une composition silicone réticulable par hydrosilylation et comportant à titre de catalyseur un tel ensemble catalytique ayant activité inhibée à température ambiante, de façon à permettre la réalisation de compositions monocomposantes comprenant le catalyseur et des composés aptes à réagir à chaud par hydrosilylation de motifs insaturés (e.g. POS SiH/POS Si-alcényle), tout en étant stables à température ambiante pendant de longues périodes (e.g. 1j à plusieurs mois).
La présente invention a donc pour objet une composition ou ensemble catalytique comprenant un catalyseur métallique apte à catalyser une réaction d'hydrosilylation et un inhibiteur répondant à la formule (I) suivante :
Figure imgf000005_0001
dans laquelle : R, R , R , R et R , identiques ou différents, représentent un radical alkyl linéaire, ramifié ou cyclique, ou un radical aryl substitué ou non, notamment :
- un radical alkyl linéaire ou ramifié, ayant notamment de 2 à 30 atomes de carbone (C), de préférence de 2 à 12 C, - un radical alkyl comportant un ou plusieurs cycles, notamment 1 ou 2, un cycle pouvant avoir notamment de 4 à 14 C, de préférence de 5 à 8 C, ou
- un radical aryl ou alkylaryl, comprenant un ou plusieurs cycles aromatiques accolés ou non accolés, notamment 1 ou 2 cycles, un cycle pouvant comprendre de 4 à 14 C, de préférence de 6 à 8 C, éventuellement substitué(s) par 1 ou plusieurs, notamment de 1 à 2, alkyle(s) linéaire(s) ou ramifié(s), notamment ayant de 1 à 12 C, de préférence de 4 à 12 C, composition ou ensemble dans lequel l'inhibiteur inhibe l'action catalytique du catalyseur. Notamment, l'action catalytique est inhibée à température ambiante, mais peut être restituée par chauffage (e.g. entre 50 et 200° C, plus particulièrement entre 100 et 150° C). Dans la composition ou ensemble, inhibiteur et catalyseur sont complexés. Sans vouloir être lié par la théorie, on pense que la complexation résulte d'interactions entre P et Pt, comme cela sera illustré plus loin. Dans la présente invention, le terme inhibition recouvre une inhibition dite complète, du fait de l'incorporation d'une quantité suffisante d'inhibiteur (notamment avec 1 atome ou de préférence plus d'1 atome de phosphore P pour un atome de métal du catalyseur). Le terme recouvre aussi une inhibition dite incomplète, si la quantité d'inhibiteur incorporée n'est pas suffisante. Dans ce dernier cas notamment, elle pourra être complétée par l'incorporation séparée d'inhibiteur de même nature ou par un autre inhibiteur.
Suivant une mode de réalisation préféré, la composition comprend, en tant que solvant, un composé organosilicique, tel qu'un silane, un siloxane, une huile silicone et/ou une gomme silicone. La composition peut ainsi comprendre un ou plusieurs silanes insaturés et/ou un ou plusieurs siloxanes insaturés comprenant un ou plusieurs motifs siloxane (e.g. de 2 à 200, de préférence de 2 à 30). Il s'agit de préférence de vinylsilanes et/ou de vinylsiloxanes. Plus de détails quant à leur nature seront donnés plus loin. Les silanes et siloxanes décrits dans US-A3 775452 et US-A-3 715 334, auxquels il est fait référence plus loin, sont des modalités possibles. La composition peut aussi comprendre une ou plusieurs huiles ou gommes silicone telles que celles qui sont décrites plus loin, et qui recouvrent des espèces alcénylées, notamment vinylées, et des espèces qui ne le sont pas (e.g. à base de motifs répondant à la formule (V) définie plus loin).
Suivant une modalité particulière, l'invention concerne une composition ou ensemble catalytique comprenant, éventuellement dans un solvant organosilicique tel que décrit ci-dessus, le catalyseur métallique apte à catalyser une réaction d'hydrosilylation et un inhibiteur de formule (I), dans laquelle : R, R1, R2, R3 et R4, identiques ou différents, représentent un radical alkyl linéaire, ramifié ou cyclique, ou un radical aryl substitué ou non, notamment :
- un radical alkyl linéaire ou ramifié ayant de 2 à 30 atomes de carbone (C), de préférence de 2 à 12 C, un radical alkyl comportant un ou plusieurs cycles, notamment 1 ou 2, un cycle pouvant avoir notamment de 4 à 14 C, de préférence de 5 à 8 C, ou
- un radical aryl ou alkylaryl, comprenant un ou plusieurs cycles aromatiques accolés ou non accolés, notamment 1 ou 2 cycles, un cycle pouvant comprendre de 4 à 14 C, de préférence de 6 à 8 C, éventuellement substitué(s) par 1 ou plusieurs, notamment de 1 à 2, alkyle(s) linéaire(s) ou ramifié(s), notamment ayant de 1 à 12 C, de préférence de 4 à 12 C. Ce qui suit s'applique aux différents modes de réalisation et modalités définis ci-dessus. Dans la formule (I), R est avantageusement un radical alkyl cyclique, et encore mieux un radical alryl, notamment le bi-phényl.
R1, R2, R3 et R4 sont avantageusement des radicaux alkyl cycliques, et encore mieux des radicaux aryl et de manière plus préférée des radicaux alkylaryl, notamment phényl substitué, e.g. tertio-butyl-phényl. R1, R2, R3 et R4 sont de préférence identiques. Comme inhibiteur, on préfère les composés à radicaux aryl ou alkyl cycliques pour leur activité inhibitrice de plus longue durée que les composés à radicaux alkyl linéaires ou ramifiés.
Les inhibiteurs préférés répondent à la formule (II) :
Figure imgf000008_0001
dans laquelle les radicaux R , identiques ou différents, de préférence identiques, sont des alkyles linéaires ou ramifiés, ayant notamment de 1 à 12 C, de préférence de 4 à 12 C.
L'inhibiteur préféré répond à la formule (III) :
Figure imgf000008_0002
n° de CAS : 38613-77-3
Les ratios molaires métal du catalyseur sur inhibiteur peuvent être compris entre 1/0,5 et 1/10, de préférence entre 1/1 et 1/5.
Les catalyseurs visés par l'invention comprennent tous les catalyseurs utiles pour l'hydrosilylation de POS porteurs de motifs Si-H et de POS porteurs de motifs Si-[insaturation éthylénique ou acétylénique]. Il peut donc s'agir de composés du platine, du rhodium, de l'iridium, du nickel, du ruthénium et/ou du palladium. Il s'agit plus particulièrement de composés de l'iridium ou encore mieux du platine. Le composé du platine peut être tout complexe du platine et d'un produit organique, e.g. ceux décrits dans les brevets US-A-3 159 601 , US-A-3 159 602, US-A-3 220 972 et les brevets européens EP-A-0 057 459, EP-A-0 188 978 et EP-A-0 190 530, ou tout complexe du platine et d'organosiloxanes vinylés, e.g. ceux décrits dans les brevets US-A-3 419 593, US-A-3 715 334, US-A-3 377 432 et US-A-3 814 730.
On peut citer l'acide chloroplatinique, un acide chloroplatinique modifié par un alcool, ou encore un complexe de l'acide chloroplatinique avec une oléfine, un aldéhyde ou un vinylsiloxane entre autres. Le brevet US-A-2 823 218 divulgue un catalyseur d'hydrosilylation du type acide chloroplatinique et le brevet US-A-3419 593 est relatif à des catalyseurs formés par des complexes d'acide chloroplatinique et d'organosilicone du type vinylsiloxane. Des complexes de platine et d'hydrocarbures utiles comme catalyseur d'hydrosilylation sont divulgués par les brevets US-A-3 159 601 et 3 159 602. Le brevet US-A-3 723 497 décrit un acétylacétonate de platine et le brevet US-A-3 220 972 a pour objet des catalyseurs à base d'alcoolate de platine.
L'invention vise plus particulièrement les complexes platine/siloxane insaturé, en particulier les complexes platine/vinylsiloxane, notamment ceux obtenus par réaction entre un halogénure de platine et un matériau organosilicique insaturé tel qu'un silane insaturé ou un siloxane insaturé, e.g. selon l'enseignement de US-A-3 775 452 et de US-A-3 715 334 auquel l'homme du métier peut se reporter. L'invention s'applique de préférence aux solutions ou complexes de Karstedt.
L'ensemble catalytique selon l'invention comprend un mélange du catalyseur et de l'inhibiteur conduisant à une nouvelle espèce complexe entre ces deux composés. Sans vouloir être lié à la théorie, on pense qu'à partir du complexe de Karstedt et d'un inhibiteur de formule (I), l'espèce nouvelle (I') présente une structure du type :
R, R , R , R et R ayant les significations données au regard de la formule (I).
Avec les inhibiteurs de formule (II) et (III), sans vouloir être lié à la théorie, on pense que les espèces nouvelles (II') et (III') ont respectivement les structures suivantes :
Figure imgf000010_0002
Figure imgf000010_0003
Dans les formules (I'), (II') et (III'), les flèches représentent les interactions entre les orbitales des atomes de P et de Pt.
La présente invention a aussi pour objet : - ces espèces nouvelles,
- l'utilisation d'un composé de formule (I), notamment (II) et de préférence (III), comme inhibiteur d'un catalyseur métallique, notamment au platine, en particulier catalyseur d'hydrosilylation, notamment dans une composition silicone monocomposante réticulant par réaction d'hydrosilylation, et l'utilisation des mélanges catalyseur et inhibiteur selon l'invention et de ces espèces nouvelles comme catalyseur dans des compositions catalysées notamment par le platine, en particulier compositions silicone réticulant par des réactions d'hydrosilylation, et plus particulièrement encore les compositions monocomposantes selon l'invention.
Comme expliqué ailleurs, le catalyseur est inhibé par l'inhibiteur à température ambiante. Son activation peut être induite par élévation de température.
Très avantageusement, les inhibiteurs selon l'invention, e.g. les inhibiteurs de formule (II) et (III) sont solubles dans les silanes insaturés, notamment vinylés tels que le vinyltriméthoxysilane (VTMO) et dans les siloxanes insaturés, e.g. les vinylsiloxanes et dans les solutions platine/silane insaturé et platine/siloxane insaturé, e.g. platine/vinyisiloxane. Il en résulte une plus grande facilité de mise en œuvre lors du mélange avec des huiles silicones. Pour la préparation d'une telle solution catalytique, on peut mélanger la solution de catalyseur et l'inhibiteur jusqu'à dissolution complète de l'inhibiteur. De préférence, on ajoute l'inhibiteur dans la solution de catalyseur.
Afin de conférer aux compositions silicone monocomposantes les meilleures propriétés possibles en termes d'inhibition de la réaction d'hydrosilylation et de durée de vie en pot contrôlée, la demanderesse a mis au point un processus d'élaboration particulier. Un additif ou ensemble catalytique (ou composition catalytique), dans lequel catalyseur et inhibiteur sont présents sous forme de complexe, est d'abord préparé. Le catalyseur se retrouve ainsi inhibé à température ambiante. Cet additif est destiné à être ajouté dans la composition silicone monocomposante dans des conditions assurant une dispersion fine et homogène. La présente invention a donc également pour objet un procédé de préparation d'un additif ou ensemble catalytique (ou composition catalytique) comprenant un couple inhibiteur/catalyseur. Ce procédé s'applique aux inhibiteurs de formule (I) et leurs déclinaisons décrites, ainsi qu'à d'autres composés organo-phosphorés efficaces, et en particulier aux inhibiteurs de formule générale (VIII) P(OR)3, dans laquelle R est un radical alkylaryle ayant notamment de 7 à 31 atomes de carbone, de préférence des radicaux phényl substitués, e.g. substitués par des alkyles linéaires ou ramifiés, de préférence identiques, ayant notamment de 1 à 12 C, de préférence de 4 à 12 C, par exemple t-Bu.
Parmi les composés de formule (VIII), ceux répondant à la formule (IX) suivante sont préférés :
Figure imgf000012_0001
dans laquelle R1, R2, R3, R4, R5, identiques ou différents, représentent H, un radical aliphatique, linéaire ou ramifié, saturé de formule CnH2n+ι ou insaturé de formule CmH2m-ι, ou un radical de formule CnF2n+ι, avec n = 1 à 15, et m = 3 à 15, l'ensemble de ces radicaux ne pouvant représenter tous ensemble H. De préférence, R2, R4 et R5 représentent H et R1 et R3 représentent des radicaux aliphatiques de préférence identiques, e.g. t-Bu. Pour les quantités à mettre en œuvre, on peut raisonner en ratio métal du catalyseur sur inhibiteur. Pour les inhibiteurs de type (I), ce ratio peut être compris entre 1/0,5 et 1/10, de préférence entre 1/1 et 1/5. Pour les inhibiteurs de type
(VIII), ce ratio peut être compris entre 1/1 et 1/10, de préférence entre 1/2 et 1/5.
Suivant une modalité particulière, on utilise au moins un inhibiteur de formule (I) et au moins un inhibiteur de formule (VIII) (e.g. un inhibiteur de formule
(II), notamment (III) et un inhibiteur de formule (IX)). Les quantités d'inhibiteurs peuvent être déterminées pour conserver substantiellement le rapport P de l'inhibiteur/Pt du catalyseur résultant de l'application des ratios énoncés ci- dessus. Par exemple, les quantités respectives des inhibiteurs sont choisies pour assurer un ratio métal du catalyseur sur phosphore compris entre 1/1 et 1/10.
Dans un premier mode de réalisation du procédé de l'invention (ci-après mode 1 ), on procède à la préparation d'une solution comprenant le catalyseur et l'inhibiteur, par mélange de l'inhibiteur organo-phosphoré dans le catalyseur en solution dans un silane insaturé, e.g. vinylsilane, ou siloxane insaturé, de préférence siloxane insaturé tel que vinylsiloxane, e.g. dans la solution platine/siloxane insaturé, notamment dans la solution platine/vinyisiloxane, de préférence dans la solution de Karstedt. US-A-3 775 452, auquel l'homme du métier peut se référer, décrit des silanes insaturés et des siloxanes insaturés sous les formules (1), respectivement (2) à (5). US-A-3 715 334, auquel l'homme du métier peut se référer, décrit des vinylsilanes et des vinylsiloxanes sous les formules (1), respectivement (2) à (5). Le contenu de ces brevets US, et notamment la description de leurs formules (1) à (5) décrivant des silanes et siloxanes qui conviennent bien à l'invention, est incorporé ici par référence.
Comme on l'a vu ci-dessus, les inhibiteurs de formule (I), notamment les inhibiteurs de formule (II) et (III), sont solubles dans les silanes et siloxanes insaturés, ce qui permet une solubilisation facile et rapide de ces inhibiteurs dans une solution catalytique, notamment de type siloxanique, e.g. dans la solution de Karstedt, et une inhibition rapide et efficace du catalyseur.
Dans le cas des inhibiteurs de formule (VIII), par exemple (IX), ceux-ci n'étant pas solubles, l'inhibiteur est seulement dispersé dans la solution catalytique. L'inhibition du catalyseur est un peu plus longue à obtenir.
De manière générale, la solution de catalyseur-inhibiteur peut comporter de 0,1 à 15%, de préférence de 5 à 10 %, en poids de platine métal. Le mélange peut être effectué par tout moyen d'agitation classique, e.g. avec un agitateur à pales.
La complexation, c'est-à-dire la formation in situ du complexe inhibiteur/catalyseur, est très rapide, notamment de l'ordre de quelques minutes. Dans un deuxième mode de réalisation (ci-après mode 2), le procédé comprend - la dispersion de l'inhibiteur organo-phosphoré dans une huile et/ou une gomme silicone,
- le chauffage de l'huile ou de la gomme silicone à une température supérieure à la température de fusion ou de ramollissement de l'inhibiteur, - l'ajout et le mélange du catalyseur.
L'huile ou la gomme silicone est chauffée à la température adéquate avant, pendant et/ou après l'addition du dérivé organo-phosphoré. Suivant une modalité préférée, le composé organo-phosphoré est d'abord dispersé dans l'huile ou gomme maintenue à température inférieure au point de fusion, puis la composition est chauffée à une température supérieure à la température de fusion ou de ramollissement du composé organo-phosphoré.
Le composé organo-phosphoré se disperse rapidement, de façon efficace et homogène dans l'huile ou gomme silicone. On peut généralement considérer qu'une durée de dispersion supérieure à quelques minutes, notamment de l'ordre de 5 min à 1 h, de préférence de 15 min à 30 min, est suffisante.
On porte de préférence la matière silicone à une température supérieure de 1 à 50 ° C, notamment de 5 à 20° C, de préférence de 10 à 20° C, au-dessus de la température de fusion ou de ramollissement du composé organo-phosphoré utilisé. A la température choisie, on maintient une agitation du mélange matière silicone et inhibiteur, pendant une durée suffisante pour assurer une bonne fusion du composé organo-phosphoré dispersé. On peut généralement considérer qu'une durée de chauffage et d'agitation supérieure à quelques minutes, notamment de l'ordre de 5 min à 1 h, de préférence de 15 min à 30 min, est suffisante. Le catalyseur peut ensuite être ajouté à la composition précédemment obtenue. Pour éviter de dénaturer le catalyseur, lorsque cela est nécessaire, la composition précédente est refroidie à une température inférieure au point de dénaturation du catalyseur. De façon générale, on préfère ramener la composition précédente à la température ambiante, e.g. de l'ordre de 25° C. Suivant une disposition préférée de ce mode de préparation, après refroidissement de la composition précédente, notamment à la température ambiante, la solution ou complexe de Karstedt est additionnée et l'on procède au mélange de l'ensemble.
Le mélange est poursuivi jusqu'à dispersion homogène du catalyseur dans la matière silicone et l'on obtient la formation d'un complexe inhibiteur/catalyseur généré in situ, remarquablement dispersé de manière fine et homogène dans la gomme ou huile silicone.
La gomme ou huile silicone, ou un mélange, utilisé pour former cette solution est choisi pour être compatible avec la composition silicone finale. Suivant une modalité préférée, on utilise une huile, gomme ou mélange de viscosité proche ou identique à celle de la composition silicone finale ou de la portion de cette dernière dans laquelle la solution inhibiteur-catalyseur va être d'abord mélangée. On peut notamment utiliser une huile ou gomme identique à ou proche de l'un ou des composés de la composition silicone finale. Ainsi, on peut utiliser une huile ou une gomme à groupe alcényle (alcénylée), de préférence vinylée, telle que du POS A selon l'invention, et plus préférentiellement encore du POS A entrant dans la composition silicone monocomposante visée. On peut aussi utiliser une huile ou une gomme polyorganosiloxane C formée de motifs siloxyle répondant à la formule (V) définie plus loin. Il peut notamment s'agir d'huile ou de gomme polydiméthylsiloxane (PDMS). La viscosité de ces huiles ou gommes non vinylées (non alcénylées) peut aller de quelques mPa/s à quelques millions de mPa/s, le choix pouvant notamment dépendre du type de la composition silicone finale, e.g. RTV, LSR ou EVC, dont il est question infra. Le mélange des ingrédients aux différents stades est réalisé à l'aide d'un dispositif de mélange adapté à la viscosité de l'huile ou gomme utilisée. Pour des viscosités plutôt élevées, comme dans le cas des huiles ou gommes utilisées dans les EVC, il est possible de recourir à un mélangeur à cylindres ou un mélangeur à bras.
Dans les deux modes 1 et 2, il peut être utile d'ajouter à la composition chaque fois obtenue, un ou des ingrédients destinés à faciliter le mélange avec la composition silicone finale. Il peut notamment s'agir d'adapter la viscosité, afin de la rapprocher de celle du constituant ou du mélange de constituants de la matière silicone finale dans lequel on apporte l'additif. Il peut notamment s'agir d'une huile ou gomme silicone ayant une viscosité compatible avec le POS A. En fonction de la composition silicone, l'homme du métier est parfaitement capable de choisir une huile ou gomme adaptée, notamment adaptée en termes de viscosité, pour diluer la composition d'inhibiteur-catalyseur précédemment obtenue. Suivant une modalité particulière, on emploie une huile ou gomme notamment choisie parmi les huiles ou gommes C définies plus haut, notamment PDMS, ou encore parmi les POS A décrits à propos de la composition silicone.
De préférence, l'additif obtenu selon le mode 1 ou le mode 2, après éventuelle dilution dans une huile ou gomme, comporte de 0,001 à 10 %, mieux de 0,01 à 1 % en poids de platine métal.
De préférence, l'additif ainsi obtenu (mode 1 ou 2) est un simple empâtage destiné à être ensuite ajouté à la composition silicone proprement dite. En d'autres termes, cet additif constitue une fraction de la composition silicone monocomposante finale. Suivant un mode de réalisation avantageux, l'empâtage est à base de l'un des constituants de cette composition et en particulier à base du POS A, ou à base de PDMS.
Les compositions, ou additifs ou ensembles catalytiques obtenus par la mise en œuvre des modes de préparation qui viennent d'être décrits constituent également des objets de la présente invention. Ils comprennent de préférence au moins un inhibiteur de formule (I), (II), (III), (VIII) ou (IX) et un catalyseur conforme à l'invention.
Suivant un premier mode de réalisation, la composition catalytique comprend le catalyseur, l'inhibiteur, et un silane insaturé, ou un siloxane insaturé, comprenant un ou plusieurs motifs siloxane (e.g. de 2 à 200, de préférence de 2 à 30), en particulier selon l'enseignement des brevets US-A-3 775 452 et US-A-3 715 334 susvisés. Il s'agit de préférence de vinylsilanes et/ou de vinylsiloxanes. Suivant une disposition particulière, la composition est obtenue à partir d'une solution platine/silane insaturé ou platine/siloxane insaturé, en particulier une solution platine/vinyisiloxane, notamment obtenue par réaction entre un halogénure de platine et un matériau organosilicique insaturé tel qu'un silane insaturé ou un siloxane insaturé, e.g. la solution ou complexe de Karstedt. Suivant un deuxième mode de réalisation, la composition catalytique comprend le catalyseur, l'inhibiteur, une gomme ou huile silicone, et éventuellement un silane ou un siloxane comme il vient d'être décrit. L'huile ou gomme est de préférence identique à ou proche de l'un ou des composés de la composition silicone finale. De préférence, on utilise une huile ou une gomme à groupe alcényle, de préférence vinylée, telle que du POS A selon l'invention, et plus préférentiellement encore du POS A entrant dans la composition silicone monocomposante visée. On peut aussi avoir une huile ou gomme polyorganosiloxane C, e.g. un PDMS. Suivant une première modalité, la composition catalytique comporte au moins un inhibiteur de formule (I), (II) ou (III), éventuellement associé à un inhibiteur de formule (VIII) ou (IX), et une huile ou gomme à groupe alcényle, de préférence vinylée, de préférence POS A, et/ou une huile ou gomme polyorganosiloxane C, de préférence PDMS. Suivant une deuxième modalité, la composition catalytique comporte, ou est essentiellement constituée de, au moins un inhibiteur de formule (VIII) ou (IX), et une huile ou gomme polyorganosiloxane C, de préférence PDMS.
Dans la composition catalytique, l'inhibiteur inhibe l'action catalytique du catalyseur à température ambiante. En particulier, inhibiteur et catalyseur sont complexés.
L'invention a notamment pour objet un tel additif, dans lequel l'ensemble catalyseur + inhibiteur représente de 0,001 à 40 % en poids, de préférence de 0,01 à 30 %, mieux encore de 0,1 à 20 %.
La présente invention a aussi pour objet une composition silicone réticulable par hydrosilylation, comprenant au moins un PolyOrganoSiloxane (POS) A porteur d'insaturation(s) éthylénique(s) et/ou acétylénique(s), au moins un polyorganosiloxane B hydrogéné (ci-après POS B), ainsi que (a) un catalyseur d'hydrosilylation et un inhibiteur de formule (I), (II) ou (III), ou (b) un ensemble catalytique obtenu comme il vient d'être décrit. Par définition, dans toute la présente description, lorsqu'il est dit qu'une composition silicone ou qu'un additif ou ensemble catalytique comprend tel ou tel inhibiteur de formule (I), (II), (III), (VIII) ou (IX), il faut entendre de l'inhibiteur libre, de l'inhibiteur complexé au catalyseur, ou un mélange de ces deux espèces.
Suivant la modalité préférée de l'invention, la composition comprend un additif ou ensemble catalytique selon l'invention, de préférence apporté sous la forme d'un empâtage préparé suivant l'un des modes de préparation 1 et 2 définis ci-dessus.
En variante moins préférée, le catalyseur et l'inhibiteur sont ajoutés séparément à la composition silicone. Il est alors préférable de les ajouter dans le
POS A ou dans une composition contenant le POS A et un ou plusieurs autres ingrédients, à l'exception du POS B. Le POS B est incorporé après un mélange minutieux du POS A, du catalyseur et de l'inhibiteur et avantageusement après un certain temps de latence. Pour son incorporation, l'inhibiteur peut avantageusement être en solution dans un vinylsiloxane.
L'invention vise aussi bien les compositions silicone de polyaddition vulcanisables à température ambiante RTV (et dont la réticulation peut être accélérée à chaud) que celles dites élastomères vulcanisables à chaud EVC.
Elles sont bien connues de l'homme du métier qui peut se référer par exemple aux brevets US-A-3 220 972, US-A-3 284 406, US-A-3 346 366, US-A-3 697 473 et US-A-4 340 730. Comme cela est connu en soi, le POS A peut être notamment formé de motifs siloxyle de formule : γ aZbSiQ(4,a,b) (IV)
2 dans laquelle Y est un alcényle en C2-C6, de préférence vinyle, Z est un groupe hydrocarboné monovalent n'ayant pas d'action défavorable sur l'activité du catalyseur, Z est généralement choisi parmi les groupes alkyles ayant de 1 à 8 atomes de carbone inclus tels que les groupes méthyle, éthyie, propyle et 3,3,3- trifluoropropyle et les groupes aryle tels que xylyle, tolyle et phényle, a est 1 ou 2, b est 0, 1 ou 2 et a + b est compris entre 1 et 3, éventuellement tous les autres motifs étant des motifs de formule moyenne :
ZcSiO4,c (V) ~ ~ dans laquelle Z a la même signification que ci-dessus et c a une valeur comprise entre 0 et 3.
Comme cela est connu en soi, le POS B peut être notamment formé de motifs siloxyle de formule :
H W e SiO4_d.e
(VI)
dans laquelle W est un groupe hydrocarboné monovalent n'ayant pas d'action défavorable sur l'activité du catalyseur et répondant à la même définition que Z, d est 1 ou 2, e est 0, 1 ou 2, d + e a une valeur comprise entre 1 et 3, éventuellement tous les autres motifs étant des motifs de formule moyenne :
W«Si0-^ (VII)
dans laquelle W a la même signification que ci-dessus, g a une valeur comprise entre 0 et 3.
Ces POS A & B sont par exemple respectivement un polyorganovinylsiloxane et un polyorganohydrogénosiloxane. Les substituants organiques autres que les groupements réactifs vinyle et hydrogène, sont par exemple des méthyles ou des cyclohexyles. Les hydrogènes et les vinyles sont portés par des motifs siloxyles M = [R3SiO-] et/ou D = [-(R)2SiO-] et/ou
T = [-(R)SiO-]. Ces motifs M, D hydrogénés ou vinyles comportent respectivement chacun un ou plusieurs H ou Vinyle, de préférence un seul. Le nombre de motifs SiH ou SiVi par molécule est de préférence supérieur ou égal à 2. Cela peut notamment représenter de 0,01% à 10 % ( de préférence
0,1 à 2 % ) de vinyle en poids pour le POS A et de 0,001 % à 5 % ( de préférence
0,05 à 2 %) d'hydrogène en poids pour le POS B.
Des POS B appropriés sont les polyméthylhydrogénosiloxanes à extrémités -Si(CH3)3 et les polydiméthylsiloxanes à extrémités -Si(CH3)2H, les copolymères méthylhydrogénodiméthylsiloxanes à extrémités -Si(CH3)2H, les copolymères méthylhydrogénométhyloctylsiloxanes, et les polymères méthylhydrogénocyclosiloxanes En général, les POS A & B ont une masse moléculaire moyenne comprise entre 1.1O2 et 1.1O7 (g/mol).
Pour le POS A, cela englobe notamment, en termes de viscosité dynamique à 25°C : o dans le cas de compositions silicones vulcanisables à chaud (EVC) par polyaddition, des POS A ayant notamment une viscosité au moins égale à 5.105 mPa.s, de préférence comprise entre 1.106 et 1.107 mPa.s, et même davantage, o dans le cas de compositions silicones vulcanisables à chaud par polyaddition de type élastomères silicones liquides (LSR), des POS A ayant notamment une viscosité de préférence comprise 1.104 et 5.105 mPa.s, et o dans le cas de compositions silicones vulcanisables à température ambiante (la vulcanisation étant accélérée à chaud) par polyaddition ou RTV, des POS A ayant notamment une viscosité comprise entre 100 et 104 mPa.s, de préférence entre 1000 et 5000 mPa.s. Les POS B ont en général une viscosité comprise entre 10 et 10 000 mPa.s, de préférence entre 50 et 1000 mPa.s. Suivant une modalité préférée de l'invention, les compositions silicones concernées sont des POS vulcanisables à chaud (EVC) par polyaddition et dans lesquelles les POS A peuvent avoir en pratique une viscosité à 25°C de e.g. 1.106 à 5.106 mPa.s et les POS B de 10 à 5000 mPa.s, notamment de 50 à 1000 mPa.s (e.g. 300 mPa.s). La viscosité est mesurée à l'aide d'un viscosimètre BROOKFIELD selon les indications de la norme AFNOR NFT 76 106 de mai 1982.
Toutes les viscosités dont il est question dans le présent exposé correspondent à une grandeur de viscosité dynamique à 25°C dite
"Newtonienne", c'est-à-dire la viscosité dynamique qui est mesurée, de manière connue en soi, à un gradient de vitesse de cisaillement suffisamment faible pour que la viscosité mesurée soit indépendante du gradient de vitesse. Suivant une modalité particulière de l'invention, à la composition silicone comprenant les POS A et B et l'ensemble catalytique selon l'invention, on peut rajouter un inhibiteur de formule (I), (II) ou (III), notamment en solution dans un vinylsiloxane, et/ou un autre inhibiteur de réticulation, par exemple de formule (VIII) ou (IX), un alcool acétylénique (FR-A-2 372 874, FR-A-1 528 464), un composé de type maléate (US-A-4 256 870 et US-A-4 530 989) ou un composé de type acétylène dicarboxylate (US-A-4 504 645 et US-A-4 347 346).
Les compositions silicones de l'invention peuvent en outre comprendre des additifs fonctionnels usuels. Comme familles d'additifs fonctionnels usuels, on peut citer : les charges, les huiles POS hydroxylées utiles comme compatibilisant, les promoteurs d'adhérence, " les modulateurs d'adhérence, les additifs de tenue thermique les additifs pour augmenter la consistance les pigments, les additifs de tenue thermique, de tenue aux huiles, au feu (par exemple les oxydes métalliques).
Les charges éventuellement prévues sont de préférence minérales. Elles peuvent être notamment siliceuses.
S'agissant des matières siliceuses, elles peuvent jouer le rôle de charge renforçante ou semi-renforçante. Les charges siliceuses renforçantes sont choisies parmi les silices colloïdales, les poudres de silice de combustion et de précipitation ou leurs mélanges. Ces poudres présentent une taille moyenne de particule généralement inférieure à 0,1 μm et une surface spécifique BET supérieure à 50 m /g, de préférence comprise entre 150 et 350 m2/g. Les charges siliceuses semi-renforçantes telles que des terres de diatomées ou du quartz broyé, peuvent être également employées. En ce qui concerne les matières minérales non siliceuses, elles peuvent intervenir comme charge minérale semi-renforçante ou de bourrage. Des exemples de ces charges non siliceuses utilisables seules ou en mélange sont le noir de carbone, le dioxyde de titane, l'oxyde d'aluminium, l'alumine hydratée, la vermiculite expansée, la vermiculite non expansée, le carbonate de calcium, l'oxyde de zinc, le mica, le talc, l'oxyde de fer, le sulfate de baryum et la chaux éteinte. Ces charges ont une granulométrie généralement comprise entre 0,001 et 300 μm et une surface BET inférieure à 100 m2/g.
De façon pratique mais non limitative, les charges employées peuvent être un mélange de quartz et de silice.
Les charges peuvent être traitées par tout produit approprié. Sur le plan pondéral, on préfère mettre en oeuvre une quantité de charge comprise entre 10 et 50 % en poids, de préférence entre 20 et 40 % en poids par rapport à l'ensemble des constituants de la composition. Plus généralement, sur le plan quantitatif, les compositions selon l'invention renvoient à des proportions standards dans le domaine technique considéré, sachant que l'on doit tenir compte également de l'application visée.
L'invention a aussi pour objet un procédé de préparation d'une composition silicone monocomposante réticulable par hydrosilylation, comprenant au moins un PolyOrganoSiloxane (POS) A porteur d'insaturation(s) éthylénique(s) et ou acétylénique(s), au moins un polyorganosiloxane B hydrogéné (ci-après POS B), au moins un catalyseur d'hydrosilylation et au moins un inhibiteur de formule (I), (II), (III), (VIII) et/ou (IX), procédé dans lequel on apporte l'inhibiteur et le catalyseur sous la forme d'un additif ou ensemble catalytique préalablement préparé selon l'invention, de préférence un empâtage formé du pré-mélange de l'inhibiteur et du catalyseur. En d'autres termes, le catalyseur est introduit sous sa forme inhibée, combinée à l'inhibiteur. Conformément à ce qui a été décrit supra, l'inhibition peut concerner tout ou partie des molécules de catalyseur, selon la quantité d'inhibiteur présent dans l'additif. L'inhibition est de préférence complète. Cet additif peut être apporté dans le reste de la composition silicone ou dans toute fraction de celle-ci, notamment dans une fraction contenant ou constituée par le POS A, le POS B ou un mélange des POS A et B. On peut aussi définir le procédé comme incorporant la réalisation de l'additif comme décrit supra, puis l'apport de cet additif dans la composition silicone.
Suivant un premier mode de réalisation de l'invention, on ajoute un additif préparé suivant le mode 1 décrit plus haut (avec ou sans dilution). L'additif est donc issu de la dispersion de l'inhibiteur dans une solution du catalyseur dans un silane ou siloxane insaturé, de préférence vinylsiloxane.
Suivant un deuxième mode de réalisation, on ajoute un additif préparé suivant le mode 2 décrit plus haut (avec ou sans dilution). L'additif est alors issu du mélange de l'inhibiteur dans une huile ou gomme silicone à une température supérieure à la température de fusion ou de ramollissement de l'inhibiteur, puis ajout du catalyseur.
L'additif peut être ajouté avant, pendant ou après addition des autres ingrédients tels que charge minérale, inhibiteur de réticulation, huile POS hydroxylée, ou autres additifs fonctionnels usuels tels que ceux décrits plus haut. Les additifs ou ensembles catalytiques selon l'invention peuvent être facilement mélangés dans cette composition silicone. On peut utiliser les différents moyens de mélange habituellement utilisés dans l'industrie silicone, et notamment les mélangeurs à bras et les mélangeurs à cylindres lorsque la viscosité le nécessite, notamment dans le cas des EVC. L'opération de mélange est poursuivie pour obtenir une dispersion optimale de l'additif ou ensemble catalytique. L'homme du métier est capable de déterminer les conditions optimales.
L'invention a encore pour objet les compositions silicone monocomposantes susceptibles d'être obtenues par la mise en œuvre du procédé de préparation qui vient d'être décrit, compositions qui se caractérisent notamment par une dispersion remarquablement fine et homogène du couple catalyseur/inhibiteur.
Un autre objet de l'invention est constitué par un procédé d'hydrosilylation d'un ou plusieurs POS A à l'aide d'un ou plusieurs POS B, caractérisé en ce qu'il consiste à mettre en oeuvre une composition silicone telle que définie ci-dessus et à la chauffer à la température de réticulation, généralement entre 50 et 200° C, plus particulièrement entre 100 et 150° C. En fonction de la composition, l'homme du métier n'a aucune difficulté à déterminer la température optimale pour déclencher l'hydrosilylation.
La quantité relative de composé insaturé et de composé à motif Si-H peut être contrôlée de façon à assurer la réaction de toutes les insaturations avec des liaisons Si-H.
Généralement, le rapport molaire des insaturations aux liaisons Si-H varie entre 1 :10 et 10:1.
Selon l'invention la réaction d'hydrosilylation est réalisée en présence d'une quantité catalytique du catalyseur selon l'invention. Par quantité catalytique on entend moins d'un équivalent molaire de platine par rapport à la quantité d'insaturations présentes dans le milieu réactionnel.
De façon générale il suffit d'introduire dans le milieu réactionnel moins de 1000 ppm, de préférence moins de 100 ppm, mieux encore moins de 50 ppm de platine calculé par rapport à la masse totale du composé insaturé et du composé à motifs Si-H.
Les POS A & B, le catalyseur, les composés de formule (I), (II), (III) (VIII) et (IX), ainsi que les autres additifs classiques telles que les charges, sont des commodités parfaitement disponibles accessibles à l'homme du métier.
Les composés de formule (I,) (II) ou (III) peuvent être obtenus de manière usuelle par réaction entre (i) un composé di-halogéné X-R-X (X pour un atome d'halogène), R ayant la signification donnée plus haut au regard des formules (I), (II) et (III), et (ii) un excès de PCI3, puis par réaction du composé obtenu à l'étape précédente avec les 4 molécules d'alcool R'OH, permettant de former les groupements R1 à R4 des formules (I), (II) et (III). Le produit obtenu peut ensuite être purifié en utilisant les techniques classiques connues de l'homme du métier. Ils peuvent aussi être préparés suivant l'enseignement de US-A-5 109 043.
L'invention va être maintenant décrite à l'aide d'exemples non limitatifs.
EXEMPLES Exemple 1 : préparation d'une solution catalytique avant un ratio Inhibiteur (HlVPt = 0,75 (soit P/Pt = 1.5)
10 g d'une solution de platine de Karstedt contenant 12,6% de Pt en poids (6,46 mmol de Platine) sont placés dans un flacon muni d'une agitation magnétique.
5,01 g (4,85 mmol soit 0,75 équivalent) de l'Inhibiteur (III) selon l'invention sont ajoutés sur la solution précédente sous agitation.
A la fin de l'addition, le mélange réactionnel est maintenu sous agitation quelques minutes. Une solution catalytique est obtenue contenant 8,4 % de Platine en poids. Cette solution limpide homogène et facilement manipulable est utilisée dans les exemples suivants.
L'analyse RMN de ce mélange réactionnel montre la disparition totale du catalyseur de Karstedt.
Exemple 2 : préparation d'un ensemble catalytique avant un ratio Inhibiteur (IVVPt = 1 ,5 (soit P/Pt = 1 ,5)
10 g d'une solution de platine de Karstedt contenant 12,6% de Pt en poids (6,46 mmol de Platine) sont placés dans un flacon muni d'une agitation magnétique. 6,27 g (9,69 mmol soit 1 ,5 équivalent) d'un inhibiteur selon US-A-6 300 455 sont ajoutés sur la solution précédente sous agitation. Cet inhibiteur de formule (IX) ci- dessus répond plus précisément à la formule (X)ci-dessous :
Figure imgf000025_0001
A la fin de l'addition, le mélange réactionnel est hétérogène. Il reste hétérogène même après plusieurs minutes d'agitation. Après 3h d'agitation, le mélange réactionnel devient hétérogène de couleur blanche. L'arrêt de l'agitation entraîne la décantation du solide blanc au fond du flacon.
L'analyse RMN de ce mélange réactionnel montre la disparition totale du catalyseur de Karstedt.
Exemple 3 : Composition selon l'invention (toutes les parties sont données en poids).
A/Préparation Dans un pétrin malaxeur à bras en Z, on prépare une base EVC 1 en mélangeant pendant 2 heures à température ambiante (23°C) :
• 100 parties d'un polydiméthylorganosiloxane vinyle contenant dans la chaîne 720 ppm de groupes Vi, et ayant une viscosité de 5 millions de mPa.s à 25°C,
• 33 parties de silice de combustion traitée en surface, de surface spécifique de 60 m2 / g, • 13 parties d'une silice non traitée de surface spécifique de 150 m2 / g
• 6 parties d'un agent de compatibilisation qui est une huile polyorganosiloxane hydroxylée.
A cette préparation, sont additionnés sur cylindres : • 0,604 partie d'une huile polydiméthylorganosiloxane contenant 30 % en poids de groupements -SiH, et ayant une viscosité de 30 mPa.s à 25°C
• 2,5 ppm de platine métal apporté sous la forme de l'ensemble catalytique de l'exemple 1.
• 6,25 ppm d'inhibiteur (III) en solution dans un vinylsiloxane.
B/Caractérisation de la composition : • Une fraction de la masse homogène obtenue est utilisée pour mesurer les propriétés rhéométriques de l'élastomère silicone au cours de la vulcanisation à 140° C de la composition polyorganosiloxane. • Cette caractérisation est réalisée suivant les normes NF T43015 et ISO
6502. Une éprouvette d'élastomère catalysé est comprimée dans une chambre étanche sous une pression et à une température données. La 26
chambre est formée de deux demi-chambres, l'une étant soumise à des oscillations de faible amplitude linéaires ou rotatives (disque). Cette action produit dans l'éprouvette une déformation sinusoïdale alternative, linéaire ou en torsion, et une force ou un couple de cisaillement sinusoïdal qui dépendent de la rigidité (module de cisaillement) de l'élastomère. La rigidité de l'éprouvette augmente à mesure que se fait la réaction de vulcanisation ou de polyaddition. La mesure en fonction du temps du couple nécessaire à l'oscillation du disque permet d'obtenir à la fin de la mesure les caractéristiques de vulcanisation de l'élastomère.
Propriétés rhéométriques enregistrées à 140° C :
- ts2 : temps de grillage (Cmin + 2 points) correspondant au temps de vulcanisation
- t50 : temps nécessaire pour obtenir 50 % de la valeur de Cmax
- t90 : temps nécessaire pour obtenir 90 % de la valeur de Cmax
- Cmin : couple élastique minimal appliqué (aussi appelé S'Mini)
- Cmax : couple élastique maximal appliqué (aussi appelé S' Maxi)
- Vmax : vitesse maximale de vulcanisation atteinte.
Figure imgf000027_0001
Durée de vie en pot
Après 4 semaines de vieillissement à température ambiante, le mélange n'est toujours pas réticulé. L'ensemble de ces résultats montre que le nouvel ensemble catalytique revendiqué se caractérise par une grande facilité d'utilisation et des propriétés catalytiques (mesurées par rhéométrie) performantes.
Exemple 4 : Préparation in-situ. par un procédé à chaud, d'un additif à base d'une matrice silicone, de platine de Karstedt et de l'inhibiteur (III).
4a/ Dans un mélangeur à bras, sont additionné 0,261 g d'inhibiteur (III) dans 100 g d'une base EVC 2 de dureté 35. Après mélangeage pendant 10 minutes, la température du milieu réactionnel est portée à au moins 100° C, température supérieure à la température de ramollissement 75-95° C de l'inhibiteur (III). Après mélangeage pendant 10 minutes, on laisse refroidir le milieu réactionnel à 25° C. Une observation du mélange ne met pas en évidence la présence d'agglomérats dans la matrice élastomère.
4b/ On additionne alors, soit sur mélangeur à cylindres, soit dans un mélangeur à bras, 0,375 g de catalyseur de Karstedt (platine au degré d'oxydation zéro en solution dans une huile silicone vinylée) (10 % en masse de platine).
Remarque : pour l'ensemble des exemples 4 à 10, on a utilisé une base EVC 2 constituée de : - 50 parties de polydiméthylorganosiloxane vinyle contenant dans la chaîne 720 ppm de groupes vinyles et ayant une viscosité de 5 millions de mPa.s à 25 °C,
- 50 parties de polydiméthylorganosiloxane vinyle contenant dans la chaîne 120 ppm de groupes vinyles et ayant une viscosité de 5 millions de mPa.s à 25 °C,
- 30 parties de silice de combustion traitée en surface, de surface spécifique de 55 m2/g,
- 1 ,22 parties d'un agent de compatibilisation qui est une huile polyorganosiloxane hydroxylée.
Exemple comparatif 5 : Préparation sur un mélangeur à cylindres, par un procédé à froid, d'un additif à base d'une matrice silicone. de platine de Karstedt et d'inhibiteur (lin. Sur un mélangeur à cylindres, sont additionnés 1 ,305 g d'inhibiteur (III) en poudre dans 500 g de la base EVC 2 de dureté 35. Après incorporation, sont additionnés au goutte à goutte 1 ,875 g de catalyseur de Karstedt.
Exemple comparatif 6 : Préparation dans un mélangeur à bras, par un procédé à froid, d'un additif à base d'une matrice silicone, de platine de Karstedt et d'inhibiteur (HP.
Le même type d'additif, décrit dans l'exemple 5, a été réalisé en utilisant un mélangeur à bras. 6a/ 1 ,048 g d'inhibiteur en poudre sont additionnés dans 400 g de la base
EVC 2 de dureté 35. Le mélange est poursuivi pendant 20 minutes.
6b/ 1 ,5 g de catalyseur de Karstedt sont ensuite ajoutés au milieu réactionnel.
Exemples 7 et 8 : Evaluation des différents additifs préparés selon les exemples 4 et 6
Les différents additifs décrits dans les exemples 4 et 6 ont été testés dans une formulation EVC pour l'application monocomposant de polyaddition.
La composition de cette formulation EVC est la suivante : pour 100 g d'une base EVC 1 selon l'exemple 3, sont additionnées, à l'aide d'un mélangeur à cylindres, 0,94 partie d'huile à -SiH (440 meq - SiH/100 g d'huile, viscosité 250 mPa.s). Après incorporation, puis la réalisation de 15 passages entre les deux cylindres (amélioration de la dispersion des additifs), est additionné 0,037 partie d'un additif composé de la base EVC 2 de dureté 35 et d'inhibiteur (III) selon les exemples 4a et 6a. Après incorporation, puis la réalisation de 15 passages de la composition entre les deux cylindres, 0,267 partie de l'additif composé de la base EVC, d'inhibiteur (III) et de platine de Karstedt (exemples 4 et 6 ci-dessus) est additionné. La quantité en platine est de 1 ppm. Les 15 passages entre les deux cylindres sont également réalisés. Les résultats en terme d'aspect à cru des formulations réalisées, des caractéristiques cinétiques et de l'évolution de la formulation après 3 mois à 25° C sont reportés dans le tableau 2. Exemple 9 : Stabilité des additifs préparés selon l'exemple 4
Afin de suivre la stabilité de ces additifs et la cinétique de complexation entre la platine de Karstedt, on a évalué, en fonction du temps, les additifs préparés selon l'exemple 4. Au travers d'une formulation EVC pour l'application monocomposant de polyaddition identique à celle décrite l'exemple 7, on a suivi, au travers de mesures déterminées par rhéométrie, la complexation du platine par l'inhibiteur et la stabilité de cet additif (tableau 3).
Discussion des résultats obtenus avec les exemples 4 à 9 Les additifs préparés à froid à partir de l'inhibiteur (III) et du platine de
Karstedt (exemples 5 et 6) présentent des agglomérats dont les diamètres moyens varient suivant le type d'outil utilisé (tableau 1). Il en résulte que ces additifs ne sont pas aussi performants que l'additif préparé à chaud selon l'exemple 4 (tableau 2). Ces formulations EVC monocomposantes additivées selon les exemples 5, 6 restent cependant stables après trois mois de vieillissement.
Pour l'additif préparé selon l'exemple 4, on ne note pas de problème dû à l'incorporation de l'inhibiteur, puis du platine de Karstedt. L'additif à cru est homogène. Il ne présente pas de défauts (tableau 1). La formulation EVC monocomposante additivée par ces additifs est stable après 3 mois de vieillissement et on n'observe pas d'altération de la qualité des pièces (tableau 2). Le suivi, par rhéométrie, de la complexation entre l'inhibiteur et le platine de Karstedt montre que cette complexation est extrêmement rapide. Les valeurs obtenues à 0 jour sont du même ordre que celles obtenues après 18 jours. D'ailleurs, les valeurs sur cette période sont homogènes, ce qui indique une stabilité de l'additif (tableau 3).
Conclusion :
La mise en œuvre du procédé à chaud permet d'obtenir des additifs dont les espèces actives sont parfaitement dispersées. La bonne qualité de ces additifs va de paire avec une bonne qualité et une bonne stabilité des formulations EVC monocomposantes finales. Tableau 1 : caractéristiques, à cru, des additifs réalisés
Figure imgf000031_0001
Tableau 2 : caractéristiques des formulations EVC monocomposantes selon les exemples
Figure imgf000031_0002
Figure imgf000032_0001
Tableau 3 : Evolution de l'additif préparé selon l'exemple 4 Evaluation des formulations EVC monocomposantes correspondantes
Figure imgf000032_0002
Exemple 10 : Préparation de complexes catalyseur-inhibiteur (III) ou (X)
Catalyseur 1 :
A 3,6 g de catalyseur de Karstedt à 12 % en poids de platine dans le divinyltétraméthyldisiloxane (DVTMS) sont ajoutés à la spatule sous agitation magnétique vigoureuse 1,32 g du composé (III) (de telle sorte que le ratio molaire P/Pt = 1 ,2). Après quelques minutes, une solution fluide homogène (C1) facilement manipulable est obtenue. Elle contient 7,65 % de platine en poids et elle est utilisée directement dans les exemples qui suivent.
Catalyseur 2 :
A 4,3 g de catalyseur de Karstedt à 10 % en poids de platine dans le DVTMS sont ajoutés à la spatule sous agitation magnétique 1 ,7 g du composé (X) (de telle sorte que le ratio molaire P/Pt = 1 ,2). Après quelques minutes, un mélange réactionnel hétérogène (C2) est obtenu. Il contient 7,2 % de platine en poids et il est utilisé directement dans les exemples qui suivent.
Exemple 11 : Evaluation de la qualité d'inhibition procurée par C1 et C2 Un système réactionnel est préparé en mélangeant 20 grammes d'un organovinylpolysiloxane de viscosité 230 mPa.s et contenant 0,61 % de vinyles en poids, le mélange catalyseur C1 ou C2 de façon à obtenir 80 ppm en poids de platine dans le mélange final ; puis 5,4 grammes d'un organohydrogénosiloxane de viscosité 300 mPa.s et contenant 0,17 % en poids d'hydrogène sont ajoutés. Ce mélange réactionnel final est homogénéisé par agitation pendant 5 minutes. Pour apprécier la qualité de l'inhibition, le temps de gel tgeι correspondant au temps de prise en masse du mélange réactionnel est mesuré à température ambiante. La réactivité comparée des deux systèmes est évaluée par DSC (Differential Scanning Calorimetry).
Figure imgf000033_0001
Exemple comparatif 12 :
Un système réactionnel est préparé en mélangeant 20 grammes d'un organovinylpolysiloxane de viscosité 230 mPa.s et contenant 0,61 % de vinyl en poids, la quantité d'inhibiteur organo-phosphoré (III) ou (X) requise pour obtenir un ratio P/Pt de 1 ,2, puis le catalyseur de Karstedt (solution à 14,3 % de platine dans le DVTMS) de façon à obtenir 80 ppm en poids de platine dans le mélange final. Ce mélange est agité pendant 10 minutes à température ambiante, puis 5,4 grammes d'un organohydrogénosiloxane de viscosité 300 mPa.s et contenant 0,17 % en poids d'hydrogène sont ajoutés. Ce mélange réactionnel final est homogénéisé par agitation pendant quelques minutes. Pour apprécier la qualité de l'inhibition, le temps de gel correspondant au temps de prise en masse du mélange réactionnel est mesuré à température ambiante.
Figure imgf000034_0001
Les exemples 11 et 12 montrent que :
• pour obtenir une inhibition performante, il est préférable d'incorporer le platine sous une forme pré-complexée plutôt que de réaliser cette complexation directement dans le mélange réactionnel final. • L'inhibiteur de type (III) conduit à des systèmes catalytiques homogènes dans le DVTMS ce qui facilite grandement leur utilisation.
• Les réactivités des deux systèmes catalytiques sont comparables.
II doit être bien compris que l'invention définie par les revendications annexées n'est pas limitée aux modes de réalisation particuliers indiqués dans la description ci-dessus, mais en englobe les variantes qui ne sortent ni du cadre ni de l'esprit de la présente invention.

Claims

REVENDICATIONS
1. Procédé de préparation d'une composition silicone monocomposante, réticulable par hydrosilylation, comprenant au moins un polyorganosiloxane
(POS) A porteur d'insaturation(s) éthylénique(s) et/ou acétylénique(s), au moins un polyorganohydrogénosiloxane (POS) B, un catalyseur d'hydrosilylation et un inhibiteur qui est un composé organo-phosphoré inhibant l'action du catalyseur à température ambiante, caractérisé en ce que l'on apporte l'inhibiteur et le catalyseur sous la forme d'un additif formé du prémélange du catalyseur d'hydrosilylation et de l'inhibiteur, et en ce que l'inhibiteur répond à la formule (I) suivante :
Figure imgf000035_0001
dans laquelle : R, R1, R2, R3 et R4, identiques ou différents, représentent un radical alkyl linéaire, ramifié ou cyclique, ou un radical aryl substitué ou non, notamment : i. un radical alkyl linéaire ou ramifié, ayant notamment de 2 à 30 atomes de carbone (C), de préférence de 2 à 12 C, ii. un radical alkyl comportant un ou plusieurs cycles, notamment 1 ou
2, un cycle pouvant avoir notamment de 4 à 14 C, de préférence de 5 à 8 C, ou iii. un radical aryl ou alkylaryl, comprenant un ou plusieurs cycles aromatiques accolés ou non accolés, notamment 1 ou 2 cycles, un cycle pouvant comprendre de 4 à 14 C, de préférence de 6 à 8 C, éventuellement substitué(s) par 1 ou plusieurs, notamment de 1 à 2, alkyle(s) linéaire(s) ou ramifié(s), notamment ayant de 1 à 12 C, de préférence de 4 à 12 C, ou bien l'inhibiteur répond à la formule (VIII) P(OR)3 dans laquelle R est un radical alkylaryl ayant notamment de 7 à 31 atomes de carbone, de préférence des radicaux phényl substitués.
2. Procédé selon la revendication 1 , caractérisé en ce que dans la formule (I) R est un radical alkyl cyclique ou un radical alryl, de préférence le bi- phényl.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce dans la formule (I) que R1, R2, R3 et R4 sont des radicaux alkyl cycliques, des radicaux aryl ou des radicaux alkylaryl, de préférence des radicaux phényl substitués.
4. Procédé selon la revendication 1 , caractérisé en ce que l'inhibiteur répond à la formule (II) :
Figure imgf000036_0001
dans laquelle les radicaux R , identiques ou différents, de préférence identiques, sont des alkyles linéaires ou ramifiés, ayant notamment de 1 à 12 C, de préférence de 4 à 12 C, et de préférence représentent t-Bu.
5. Procédé selon la revendication 1 , caractérisé en ce que l'inhibiteur répond à la formule (IX) :
Figure imgf000037_0001
dans laquelle R1, R2, R3, R4, R5, identiques ou différents, représentent H, un radical aliphatique, linéaire ou ramifié, saturé de formule CnH n+ι ou insaturé de formule CmH2m-ι, ou un radical de formule CnF2n+ι, avec n = 1 à 15, et m = 3 à 15, l'ensemble de ces radicaux ne pouvant représenter tous ensemble H.
6. Procédé selon la revendication 12, caractérisé en ce que l'inhibiteur est :
Figure imgf000037_0002
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le catalyseur est un complexe platine/siloxane insaturé, notamment platine/vinyle siloxane, de préférence un complexe de Karstedt.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'additif est issu de la dispersion de l'inhibiteur dans une solution du catalyseur dans un silane ou un siloxane insaturé, de préférence vinylsiloxane.
9. Procédé selon la revendication 8, caractérisé en ce que l'additif est issu de la dispersion de l'inhibiteur dans une solution catalytique platine/siloxane insaturée, en particulier platine/vinyisiloxane, de préférence solution de Karstedt.
10. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'additif est issu du mélange de l'inhibiteur dans une huile ou gomme silicone à une température supérieure à la température de fusion ou de ramollissement de l'inhibiteur, puis ajout du catalyseur.
11 Procédé de préparation d'un additif ou ensemble catalytique comportant un catalyseur métallique d'hydrosilylation et un composé organo- phosphoré inhibant l'action catalytique du catalyseur à la température ambiante, caractérisé en ce que le composé organo-phosphoré est ajouté dans une huile ou gomme silicone, et la dispersion du composé organo- phosphoré dans cette huile ou gomme silicone est réalisée à une température supérieure à la température de fusion ou de ramollissement du composé organo-phosphoré, puis le catalyseur est mélangé dans la composition obtenue précédemment.
12. Procédé selon la revendication 11 , caractérisé en ce que le composé organo-phosphoré est d'abord dispersé dans l'huile ou gomme, puis le mélange est chauffé à une température supérieure à la température de fusion ou de ramollissement du composé organo-phosphoré.
13. Procédé selon la revendication 11 ou 12, caractérisé en ce que le catalyseur est mélangé à la composition formée de l'huile ou gomme silicone et de l'inhibiteur organo-phosphoré, après refroidissement de cette composition, notamment à la température ambiante.
14. Procédé de préparation d'un additif ou ensemble catalytique comportant un catalyseur métallique d'hydrosilylation et un composé organo- phosphoré inhibant l'activité catalytique du catalyseur à la température ambiante, dans lequel le catalyseur se présente sous la forme d'une solution ou dispersion du catalyseur métallique dans un silane ou siloxane insaturé, de préférence vinylsiloxane, caractérisé en ce que l'on mélange le composé organo-phosphoré dans cette solution de catalyseur métallique.
15. Procédé selon l'une quelconque des revendications 11 à 14, caractérisé en ce que le catalyseur est une solution platine/silane insaturé ou platine/siloxane insaturé, en particulier platine/vinyisiloxane et de préférence la solution de Karstedt.
16 Procédé selon l'une quelconque des revendications 11 à 15, caractérisé en ce que le composé organo-phosphoré est choisi parmi les composés organo-phosphorés de formule (I) :
R1O /OR3
R2 0 X \OR4 dans laquelle :
R, R1, R2, R3 et R4, identiques ou différents, représentent un radical alkyl linéaire, ramifié ou cyclique, ou un radical aryl substitué ou non, notamment : iv. un radical alkyl linéaire ou ramifié, ayant notamment de 2 à 30 atomes de carbone (C), de préférence de 2 à 12 C, v. un radical alkyl comportant un ou plusieurs cycles, notamment 1 ou 2, un cycle pouvant avoir notamment de 4 à 14 C, de préférence de 5 à 8 C, ou vi. un radical aryl ou alkylaryl, comprenant un ou plusieurs cycles aromatiques accolés ou non accolés, notamment 1 ou 2 cycles, un cycle pouvant comprendre de 4 à 14 C, de préférence de 6 à 8 C, éventuellement substitué(s) par 1 ou plusieurs, notamment de 1 à 2, alkyle(s) linéaire(s) ou ramifié(s), notamment ayant de 1 à 12 C, de préférence de 4 à 12 C, ou bien l'inhibiteur répond à la formule (VIII) P(OR)3 dans laquelle R est un radical alkylaryl ayant notamment de 7 à 31 atomes de carbone, de préférence des radicaux phényl substitués.
17. Procédé selon la revendication 16, caractérisé en ce que l'inhibiteur répond à la formule (IX) suivante :
Figure imgf000040_0001
dans laquelle R1, R2, R3, R4, R5, identiques ou différents, représentent H, un radical aliphatique, linéaire ou ramifié, saturé de formule CnH n+ι ou insaturé de formule CmH2m-ι. ou un radical de formule CnF2n+ι, avec n = 1 à 15, et m = 3 à 15, l'ensemble de ces radicaux ne pouvant représenter tous ensemble H.
18. Procédé selon la revendication 17, caractérisé en ce que l'inhibiteur répond à la formule (X) suivante :
Figure imgf000040_0002
19. Additif comportant un catalyseur d'hydrosilylation et un composé organo- phosphoré inhibant l'action catalytique du catalyseur à la température ambiante, susceptible d'être obtenu par la mise en œuvre du procédé selon l'une quelconque des revendications 11 à 18.
0. Ensemble catalytique comprenant, dans un solvant organosilicique tel qu'un silane insaturé, un siloxane insaturé, une huile silicone ou une gomme silicone, un catalyseur métallique apte à catalyser une réaction d'hydrosilylation et un inhibiteur répondant à la formule (I) suivante :
Figure imgf000041_0001
dans laquelle :
R, R1, R2, R3 et R4, identiques ou différents, représentent un radical alkyl linéaire, ramifié ou cyclique, ou un radical aryl substitué ou non, notamment : i. un radical alkyl linéaire ou ramifié, ayant notamment de 2 à 30 atomes de carbone (C), de préférence de 2 à 12 C, ii. un radical alkyl comportant un ou plusieurs cycles, notamment 1 ou
2, un cycle pouvant avoir notamment de 4 à 14 C, de préférence de 5 à 8 C, ou iii. un radical aryl ou alkylaryl, comprenant un ou plusieurs cycles aromatiques accolés ou non accolés, notamment 1 ou 2 cycles, un cycle pouvant comprendre de 4 à 14 C, de préférence de 6 à 8 C, éventuellement substitué(s) par 1 ou plusieurs, notamment de 1 à 2, alkyle(s) linéaire(s) ou ramifié(s), notamment ayant de 1 à 12 C, de préférence de 4 à 12 C, dans lequel l'inhibiteur inhibe l'action catalytique du catalyseur à la température ambiante.
21 Ensemble catalytique selon la revendication 20, caractérisé en ce que
R est un radical alkyl cyclique ou un radical alryl, de préférence le bi- phényl.
22. Ensemble catalytique selon la revendication 20 ou 21 , caractérisé en ce que R1, R2, R3 et R4 sont des radicaux alkyl cycliques, des radicaux aryl ou des radicaux alkylaryl, de préférence des radicaux phényl substitués.
23. Ensemble catalytique selon la revendication 20, caractérisé en ce que l'inhibiteur répond à la formule (II) :
Figure imgf000042_0001
dans laquelle les radicaux R5, identiques ou différents, de préférence identiques, sont des alkyles linéaires ou ramifiés, ayant notamment de 1 à 12 C, de préférence de 4 à 12 C.
24. Ensemble catalytique selon la revendication 20, caractérisé en ce que l'inhibiteur répond à la formule (III) :
Figure imgf000042_0002
25 Ensemble catalytique selon l'une quelconque des revendications 20 à 24 caractérisé en ce que les ratios molaires métal du catalyseur sur inhibiteur sont compris entre 1/0,5 et 1/10, de préférence entre 1/1 et 1/5. 26 Ensemble catalytique selon l'une quelconque des revendications 20 à 25, caractérisé en ce que le catalyseur est un catalyseur au platine.
27 Ensemble catalytique selon la revendication 26, caractérisé en ce que le catalyseur est un complexe platine/siloxane insaturé, de préférence platine/vinyisiloxane.
28 Ensemble catalytique selon la revendication 26, caractérisé en ce que le catalyseur est un complexe de Karstedt.
29 Ensemble catalytique comprenant l'espèce chimique suivante
Figure imgf000043_0001
dans laquelle :
R, R1, R2, R3 et R4, identiques ou différents, représentent un radical alkyl linéaire, ramifié ou cyclique, ou un radical aryl substitué ou non, notamment : iv. un radical alkyl linéaire ou ramifié, ayant notamment de 2 à 30 atomes de carbone (C), de préférence de 2 à 12 C, v. un radical alkyl comportant un ou plusieurs cycles, notamment 1 ou
2, un cycle pouvant avoir notamment de 4 à 14 C, de préférence de
5 à 8 C, ou vi. un radical aryl ou alkylaryl, comprenant un ou plusieurs cycles aromatiques accolés ou non accolés, notamment 1 ou 2 cycles, un cycle pouvant comprendre de 4 à 14 C, de préférence de 6 à 8 C, éventuellement substitué(s) par 1 ou plusieurs, notamment de 1 à 2, alkyle(s) linéaire(s) ou ramifié(s), notamment ayant de 1 à 12 C, de préférence de 4 à 12 C.
Ensemble catalytique comprenant l'espèce chimique suivante :
Figure imgf000044_0001
dans laquelle les radicaux R , identiques ou différents, de préférence identiques, sont des alkyles linéaires ou ramifiés, ayant notamment de 1 à 12 C, de préférence de 4 à 12 C.
Ensemble catalytique comprenant l'espèce chimique suivante :
Figure imgf000044_0002
Composition silicone réticulable par hydrosyilylation, comprenant au moins un polyorganosiloxane (POS) A porteur d'insaturation(s) éthylénique(s) et/ou acétylénique(s), au moins un polyorganohydrogénosiloxane (POS) B, un catalyseur d'hydrosilylation et un inhibiteur de formule (I) :
Figure imgf000045_0001
dans laquelle : R, R1, R2, R3 et R4, identiques ou différents, représentent un radical alkyl linéaire, ramifié ou cyclique, ou un radical aryl substitué ou non, notamment : vii. un radical alkyl linéaire ou ramifié, ayant notamment de 2 à 30 atomes de carbone (C), de préférence de 2 à 12 C, viii. un radical alkyl comportant un ou plusieurs cycles, notamment 1 ou
2, un cycle pouvant avoir notamment de 4 à 14 C, de préférence de 5 à 8 C, ou un radical aryl ou alkylaryl, comprenant un ou plusieurs cycles aromatiques accolés ou non accolés, notamment 1 ou 2 cycles, un cycle pouvant comprendre de 4 à 14 C, de préférence de 6 à 8 C, éventuellement substitué(s) par 1 ou plusieurs, notamment de 1 à 2, alkyle(s) linéaire(s) ou ramifié(s), notamment ayant de 1 à 12 C, de préférence de 4 à 12 C.
33 Composition selon la revendication 32, caractérisée en ce qu'elle comporte un catalyseur et un inhibiteur tels que décrits dans l'une quelconque des revendications 20 à 31.
34 Composition selon la revendication 32 ou 33, caractérisée en ce que la composition silicone est du type composition vulcanisable à chaud ou du type vulcanisable à température ambiante.
35 Composition selon la revendication 32 ou 33, caractérisée en ce que le POS A a une viscosité au moins égale à 5.105 mPa.s, de préférence comprise entre 1.10e et 1.107 mPa.s, à 25° C. Composition selon la revendication 32 ou 33, caractérisée en ce que le POS A a une viscosité comprise entre 1.104 et 5.105 mPa.s.
Composition selon la revendication 32 ou 33, caractérisée en ce qquuee llee PPOOSS AA aa uunnee vviissccoossiittéé ccoommpprriissee eennttrree 100 et 104 mPa.s, de préférence entre 1000 et 5000 mPa.s, à 25° C
Composition selon la revendication 32 ou 33, caractérisée en ce que le POS B a une viscosité comprise entre 10 et 10 000 mPa.s à
25° C, de préférence entre 50 et 1000 mPa.s.
PCT/FR2003/001305 2002-04-29 2003-04-24 Ensemble catalytique pour hydrosilylation, son procede de preparation et compositions silicone l'incorporant WO2003092890A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP03747466A EP1499660A2 (fr) 2002-04-29 2003-04-24 Ensemble catalytique pour hydrosilylation, son procede de preparation et compositions silicone l incorporant
KR1020047017516A KR100648880B1 (ko) 2002-04-29 2003-04-24 히드로실릴화용 조립체, 이의 제조 방법 및 이를 포함하는실리콘 조성물
CN03812541.2A CN1688635B (zh) 2002-04-29 2003-04-24 氢硅烷化的催化剂、其制备方法和结合这种催化剂的有机硅组合物
AU2003246862A AU2003246862A1 (en) 2002-04-29 2003-04-24 Assembly for hydrosylilation, method for preparing same and silicone compositions incorporating same
US10/512,977 US20060089455A1 (en) 2002-04-29 2003-04-25 Assembly for hydrosylilation, method for preparing same and silicone compositions incorporating same
US12/146,974 US7750171B2 (en) 2002-04-29 2008-06-26 Catalyst assembly for hydrosilylation, process for preparing it and silicone compositions incorporating it

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR02/05380 2002-04-29
FR0205380A FR2838985B1 (fr) 2002-04-29 2002-04-29 Ensemble catalytique pour hydrosilylation et compositions silicone l'incorporant
FR02/15161 2002-12-02
FR0215161A FR2847900B1 (fr) 2002-12-02 2002-12-02 Ensemble catalytique pour hydrosilylation, son procede de preparation et composition silicone l'incorporant

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10512977 A-371-Of-International 2003-04-24
US12/146,974 Continuation US7750171B2 (en) 2002-04-29 2008-06-26 Catalyst assembly for hydrosilylation, process for preparing it and silicone compositions incorporating it

Publications (2)

Publication Number Publication Date
WO2003092890A2 true WO2003092890A2 (fr) 2003-11-13
WO2003092890A3 WO2003092890A3 (fr) 2004-04-22

Family

ID=29404172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/001305 WO2003092890A2 (fr) 2002-04-29 2003-04-24 Ensemble catalytique pour hydrosilylation, son procede de preparation et compositions silicone l'incorporant

Country Status (5)

Country Link
US (2) US20060089455A1 (fr)
EP (1) EP1499660A2 (fr)
KR (1) KR100648880B1 (fr)
AU (1) AU2003246862A1 (fr)
WO (1) WO2003092890A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004061003A1 (fr) * 2002-12-04 2004-07-22 Rhodia Chimie Composition elastomere silicone, adhesive, monocomposante et reticulable par polyaddition
US8052836B2 (en) 2008-11-26 2011-11-08 Corning Cable Systems Llc Laser-based methods of stripping fiber optic cables
US9791624B2 (en) 2014-11-07 2017-10-17 Corning Optical Communications LLC Methods for stripping an optical fiber coating using blue or blue-violet radiation
US9891384B2 (en) 2014-11-07 2018-02-13 Corning Optical Communications LLC Systems and methods for multiple-pass stripping of an optical fiber coating
EP3225662A4 (fr) * 2014-11-25 2018-07-18 Shin-Etsu Chemical Co., Ltd. Composition de silicone durcissable par addition à un seul constituant, procédé permettant de stocker ladite composition, et procédé pour son durcissement

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308581A (ja) * 2006-05-18 2007-11-29 Shin Etsu Chem Co Ltd 付加硬化型シリコーンゴム組成物の硬化方法及び付加硬化型シリコーンゴム組成物
US20080033136A1 (en) * 2006-07-13 2008-02-07 Rinard Chauncey J Selective hydrosilylation conditions
US7259220B1 (en) * 2006-07-13 2007-08-21 General Electric Company Selective hydrosilylation method
JP5057078B2 (ja) * 2007-03-12 2012-10-24 信越化学工業株式会社 ヒドロシリル化反応制御剤、ヒドロシリル化触媒組成物、及び硬化性組成物
JP2009091403A (ja) * 2007-10-04 2009-04-30 Shin Etsu Chem Co Ltd 付加硬化型シリコーンゴム組成物及びその硬化方法
JP2009220384A (ja) * 2008-03-17 2009-10-01 Shin Etsu Chem Co Ltd シリコーンゴム薄膜被覆層の形成方法、及びシリコーンゴム薄膜被覆物品
CN106582846A (zh) * 2016-11-18 2017-04-26 南昌大学 一种高效抗中毒Karstedt催化剂及合成和在硅氢加成反应中的应用
TWI762649B (zh) * 2017-06-26 2022-05-01 日商杜邦東麗特殊材料股份有限公司 黏晶用固化性矽組合物
CN112961192A (zh) * 2021-02-26 2021-06-15 畅的新材料科技(上海)有限公司 一种高稳定性硅氢加成用铂金催化剂的制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645815A (en) * 1985-10-31 1987-02-24 General Electric Company Heat curable organopolysiloxane compositions
US5125998A (en) * 1989-11-03 1992-06-30 Dow Corning Corporation Process for improving the bath life and cure time of heat-curable silicone compositions
US5380812A (en) * 1994-01-10 1995-01-10 Dow Corning Corporation One part curable compositions containing deactivated hydrosilation catalyst and method for preparing same
WO1999033911A1 (fr) * 1997-12-26 1999-07-08 Rhodia Chimie Stabilisation des moules en elastomere silicone
US6300455B1 (en) * 1996-12-30 2001-10-09 Ge Bayer Silicones Gmbh & Co. Kg Cross-linkable mixtures and method for producing same
WO2002006381A1 (fr) * 2000-07-13 2002-01-24 Rhodia Chimie Stabilisation de compositions polymeriques, organosiliciques ou silicone

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL129346C (fr) * 1966-06-23
GB1372528A (en) * 1970-10-22 1974-10-30 Sandoz Ltd Benzene phosphonous acid compounds their production and use as stabilizers for organic materials
US3715334A (en) * 1970-11-27 1973-02-06 Gen Electric Platinum-vinylsiloxanes
JPS5277164A (en) * 1975-12-24 1977-06-29 Toshiba Silicone Method of vulcanization of silicone rubber
DE2654893A1 (de) * 1976-12-03 1978-06-15 Wacker Chemie Gmbh Verfahren zum herstellen von klebrige stoffe abweisenden ueberzuegen
US4394317A (en) * 1981-02-02 1983-07-19 Sws Silicones Corporation Platinum-styrene complexes which promote hydrosilation reactions
FR2575085B1 (fr) * 1984-12-20 1987-02-20 Rhone Poulenc Spec Chim Complexe platine-triene comme catalyseur de reaction d'hydrosilylation et son procede de preparation
FR2575086B1 (fr) * 1984-12-20 1987-02-20 Rhone Poulenc Spec Chim Complexe platine-alcenylcyclohexene comme catalyseur de reaction d'hydrosilylation et son procede de preparation
JPS6469659A (en) * 1987-09-10 1989-03-15 Shinetsu Chemical Co Organopolysiloxane composition
JPH01236249A (ja) * 1988-03-16 1989-09-21 Shin Etsu Chem Co Ltd 発泡性シリコーンゴム組成物
DE58900821D1 (de) * 1988-12-21 1992-03-19 Hoechst Ag Verfahren zur herstellung von phosphororganischen derivaten des 2,4-di-t-butylphenols, der 4,4'-dihalogenmagnesium-verbindungen des biphenyls und die verwendung der phosphororganischen derivate zur stabilisierung von kunststoffen, insbesondere in polyolefinformmassen.
IT1231769B (it) * 1989-08-02 1991-12-21 Himont Inc Procedimento per la stabilizzazione di poliolefine e prodotti da esso ottenuti.
US5326803A (en) * 1993-01-27 1994-07-05 General Electric Company Organohydrogen polysiloxane coated phosphites
US5385961A (en) * 1993-01-27 1995-01-31 General Electric Company Amino silicone/phosphite compositions
US6593485B1 (en) * 1994-10-06 2003-07-15 Clariant Finance (Bvi) Limited Stabilizer composition
US5696210A (en) * 1996-10-09 1997-12-09 Dow Corning Corporation Flowable adhesive
DE19757221A1 (de) * 1997-12-22 1999-06-24 Ge Bayer Silicones Gmbh & Co Vernetzbare Mischungen, ein Verfahren zu deren Herstellung und deren Verwendung
DE19837855A1 (de) * 1998-08-20 2000-02-24 Wacker Chemie Gmbh Härtbare Organopolysiloxanmassen
DE19856565A1 (de) * 1998-12-08 2000-06-15 Basf Ag Verfahren zur Stabilisierung von wenigstens eine ethylenisch ungesättigte Bindung aufweisenden chemischen Verbindungen gegen unerwünschte radikalische Polymerisation
DE19938841A1 (de) * 1999-08-17 2001-02-22 Basf Ag Inhibitorkomposition zur Stabilisierung von radikalisch polymerisierbaren Substanzen
FR2801887B1 (fr) * 1999-12-07 2002-10-11 Rhodia Chimie Sa Complexes metalliques appropries a la catalyse de reactions d'hydrosilylation, composition catalytique les contenant et leur utilisation
US6417293B1 (en) * 2000-12-04 2002-07-09 Dow Corning Corporation Thermoplastic silicone elastomers formed from polyester resins
FR2848215B1 (fr) * 2002-12-04 2006-08-04 Rhodia Chimie Sa Composition elastomere silicone, adhesive, monocomposante et reticulable par polyaddition
US7067570B2 (en) * 2002-12-10 2006-06-27 Shin-Etsu Chemical Co., Ltd. One-part organopolysiloxane gel composition
JP4530147B2 (ja) * 2004-08-25 2010-08-25 信越化学工業株式会社 一液型オルガノポリシロキサンゲル組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645815A (en) * 1985-10-31 1987-02-24 General Electric Company Heat curable organopolysiloxane compositions
US5125998A (en) * 1989-11-03 1992-06-30 Dow Corning Corporation Process for improving the bath life and cure time of heat-curable silicone compositions
US5380812A (en) * 1994-01-10 1995-01-10 Dow Corning Corporation One part curable compositions containing deactivated hydrosilation catalyst and method for preparing same
US6300455B1 (en) * 1996-12-30 2001-10-09 Ge Bayer Silicones Gmbh & Co. Kg Cross-linkable mixtures and method for producing same
WO1999033911A1 (fr) * 1997-12-26 1999-07-08 Rhodia Chimie Stabilisation des moules en elastomere silicone
WO2002006381A1 (fr) * 2000-07-13 2002-01-24 Rhodia Chimie Stabilisation de compositions polymeriques, organosiliciques ou silicone

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MANOJILOVIC-MUIR L ET AL: "PLATINUM(II) COMPLEXES WITH LIGANDS (RO)2PCH2P(OR)22(R=ME,ET,PH,OR C6H4ME-4);CRYSTAL STRUCTURE OF CIS,CIS-[PT2MEäMU-(ETO)2PCH2P(OET)2ü2]" JOURNAL OF THE CHEMICAL SOCIETY, DALTON TRANSACTIONS, CHEMICAL SOCIETY. LETCHWORTH, GB, no. 9, 1987, pages 2117-2124, XP002227384 ISSN: 1472-7773 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004061003A1 (fr) * 2002-12-04 2004-07-22 Rhodia Chimie Composition elastomere silicone, adhesive, monocomposante et reticulable par polyaddition
US7494694B2 (en) 2002-12-04 2009-02-24 Rhodia Chimie Single-component adhesive silicone elastomer composition which can be crosslinked by polyaddition
US8052836B2 (en) 2008-11-26 2011-11-08 Corning Cable Systems Llc Laser-based methods of stripping fiber optic cables
US9791624B2 (en) 2014-11-07 2017-10-17 Corning Optical Communications LLC Methods for stripping an optical fiber coating using blue or blue-violet radiation
US9891384B2 (en) 2014-11-07 2018-02-13 Corning Optical Communications LLC Systems and methods for multiple-pass stripping of an optical fiber coating
EP3225662A4 (fr) * 2014-11-25 2018-07-18 Shin-Etsu Chemical Co., Ltd. Composition de silicone durcissable par addition à un seul constituant, procédé permettant de stocker ladite composition, et procédé pour son durcissement
US11041072B2 (en) 2014-11-25 2021-06-22 Shin-Etsu Chemical Co., Ltd. One-pack addition curable silicone composition, method for storing same, and method for curing same

Also Published As

Publication number Publication date
WO2003092890A3 (fr) 2004-04-22
KR20050007356A (ko) 2005-01-17
EP1499660A2 (fr) 2005-01-26
US20060089455A1 (en) 2006-04-27
US7750171B2 (en) 2010-07-06
AU2003246862A8 (en) 2003-11-17
KR100648880B1 (ko) 2006-11-24
AU2003246862A1 (en) 2003-11-17
US20080262170A1 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
EP0792322B2 (fr) Polyorganosiloxanes fonctionnalises et l&#39;un de leurs procedes de preparation
EP1499660A2 (fr) Ensemble catalytique pour hydrosilylation, son procede de preparation et compositions silicone l incorporant
CA2744667C (fr) Composes a structure guanidine et leurs utilisations comme catalyseurs de polycondensation d&#39;organopolysiloxanes
EP3215556B1 (fr) Nouveaux catalyseurs de réticulation de compositions silicones
EP1401964B1 (fr) Composition silicone reticulable en elastomere par hydrosilylation, en presence de catalyseurs metalliques a base de carbenes, et catalyseurs de ce type
EP1141109B1 (fr) Composition silicone pour l&#39;enduction de substrats en matiere textile
WO1999021918A1 (fr) Composition silicone reticulable en gel adhesif et amortisseur avec microspheres
EP1639030B1 (fr) Composition silicone reticulable par deshydrogenocondensation en presence d un catalyseur metallique
FR2727119A1 (fr) Polyorganosiloxanes fonctionnalises et l&#39;un de leurs procedes de preparation
FR2831548A1 (fr) Composition silicone adhesive reticulable comprenant comme agent thixotropant un compose a fonction amine cyclique portee par une chaine siloxanique
FR2509737A1 (fr) Procede de preparation d&#39;une composition organo-silicique avec inhibiteur de durcissement produit in situ et composition ainsi produite
EP0907685A1 (fr) Utilisation de complexes du platine notamment a titre de catalyseurs d&#39;hydrosilylation homogenes et thermoactivables
EP0750623A1 (fr) Complexes du platine et catalyseurs d&#39;hydrosilylation photoactivables les contenant
FR2714073A1 (fr) Compositions adhésives de silicone durcissables par réaction d&#39;addition et promoteurs d&#39;adhésion de type N-[tris-(alcoxyl)silylalkyl]-aminoacétate de tris-alcoxy)-silylalkyle utilisés dans ces compositions.
FR2591916A1 (fr) Catalyseur d&#39;hydrosilylation, son procede de preparation et son utilisation
FR2847900A1 (fr) Ensemble catalytique pour hydrosilylation, son procede de preparation et composition silicone l&#39;incorporant
EP3559088B1 (fr) Compose du cobalt utile comme catalyseur d&#39;hydrosilylation, de silylation deshydrogenante et de reticulation de compositions silicones
WO2019138194A1 (fr) Catalyseurs de nanoparticules de complexes co de métaux zerovalents pour l&#39;hydrosilylation] et la silylation deshydrogenante
FR2838985A1 (fr) Ensemble catalytique pour hydrosilylation et compositions silicone l&#39;incorporant
FR2642763A1 (fr) Composition organopolysiloxane reticulable par reaction de polyaddition en un elastomere autoadherant et/ou hydrophile et/ou organophile

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003747466

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047017516

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038125412

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047017516

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003747466

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006089455

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10512977

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10512977

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP