WO2003095058A2 - Plasma-assisted multi-part processing - Google Patents

Plasma-assisted multi-part processing Download PDF

Info

Publication number
WO2003095058A2
WO2003095058A2 PCT/US2003/014034 US0314034W WO03095058A2 WO 2003095058 A2 WO2003095058 A2 WO 2003095058A2 US 0314034 W US0314034 W US 0314034W WO 03095058 A2 WO03095058 A2 WO 03095058A2
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
radiation
cavity
sub
regions
Prior art date
Application number
PCT/US2003/014034
Other languages
French (fr)
Other versions
WO2003095058A3 (en
Inventor
Devendra Kumar
Satyendra Kumar
Original Assignee
Dana Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dana Corporation filed Critical Dana Corporation
Priority to AU2003234474A priority Critical patent/AU2003234474A1/en
Publication of WO2003095058A2 publication Critical patent/WO2003095058A2/en
Publication of WO2003095058A3 publication Critical patent/WO2003095058A3/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/202Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means using microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32302Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32366Localised processing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6402Aspects relating to the microwave cavity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/806Apparatus for specific applications for laboratory use
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/4652Radiofrequency discharges using inductive coupling means, e.g. coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00211Control algorithm comparing a sensed parameter with a pre-set value
    • B01J2219/00213Fixed parameter value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/0024Control algorithm taking actions modifying the operating conditions other than of the reactor or heat exchange system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1248Features relating to the microwave cavity
    • B01J2219/1269Microwave guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/005Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys using plasma jets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/0203Protection arrangements
    • H01J2237/0206Extinguishing, preventing or controlling unwanted discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/336Changing physical properties of treated surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/338Changing chemical properties of treated surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/044Microwave heating devices provided with two or more magnetrons or microwave sources of other kind
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to methods and apparatus for plasma-assisted processing of multiple parts and, particularly, to processing multiple parts using various types of cavities and electromagnetic radiation supply configurations.
  • a plasma can be ignited by subjecting a gas to a sufficient amount of electromagnetic radiation. It is also known that radiation- induced plasmas may be used to process (e.g., join, heat-treat, etc.) parts within a plasma-processing cavity. When substantially simultaneous or sequential plasma- processing of multiple parts are desired, spatially uniform plasma ignition and processing can be difficult. Moreover, igniting and sustaining plasmas, however, can be slow, expensive, and energy-consuming, especially when pressures less than atmospheric pressure are used. Therefore, conventional plasma-assisted processing of multiple parts can limit manufacturing flexibility.
  • a method for processing multiple parts using a plasma induced by electromagnetic radiation.
  • the method can include placing a plurality of parts to be processed in a plurality of sub-regions of a cavity formed within a processing vessel, introducing a gas into the vessel, exposing the gas to electromagnetic radiation to form a plasma in the vessel, and modulating or sustaining the plasma in each of the sub-regions so that each of the plurality of parts is simultaneously exposed to plasma.
  • an apparatus for processing multiple parts using a radiation-induced plasma.
  • the apparatus can include a vessel in which a cavity is formed, wherein the cavity has a plurality of sub-regions each for containing at least one part to be processed.
  • At least one electromagnetic radiation source can be configured to direct the radiation into the vessel, such that the radiation and the gas cooperate to form a plasma in at least two of the sub-regions, the sub-regions being configured to enable each of the plurality of parts to be subjected to the plasma in a substantially simultaneous fashion.
  • the apparatus can also include a conduit for supplying the gas to the vessel.
  • each of the sub-regions can be defined by at least one internal cavity wall.
  • at least one plasma catalyst can be located in one or more of the sub-regions.
  • a plasma catalyst for initiating, modulating, and sustaining a plasma consistent with this invention is also provided.
  • the catalyst can be passive or active.
  • a passive plasma catalyst can include any object capable of inducing a plasma by deforming a local electric field (including an electromagnetic field) consistent with this invention, without necessarily adding additional energy.
  • An active plasma catalyst is any particle or high-energy wave packet capable of transferring a sufficient amount of energy to a gaseous atom or molecule to remove at least one electron from the gaseous atom or molecule in the presence of electromagnetic radiation. In both cases, a plasma catalyst can improve, or relax, the environmental conditions required to ignite a plasma.
  • Additional plasma catalysts, and methods and apparatus for igniting, modulating, and sustaining a plasma consistent with this invention are provided.
  • Additional cavity shapes, and methods and apparatus for plasma-processing of multiple parts using such cavity shapes, are also provided.
  • FIG. 1 shows a schematic diagram of an illustrative plasma system consistent with this invention
  • FIG. 2 shows an illustrative embodiment of a portion of a plasma system for adding a powder plasma catalyst to a plasma cavity for igniting, modulating, or sustaining a plasma in a cavity consistent with this invention
  • FIG. 3 shows an illustrative plasma catalyst fiber with at least one component having a concentration gradient along its length consistent with this invention
  • FIG. 4 shows an illustrative plasma catalyst fiber with multiple components at a ratio that varies along its length consistent with this invention
  • FIG. 5 shows another illustrative plasma catalyst fiber that includes a core underlayer and a coating consistent with this invention
  • FIG. 6 shows a cross-sectional view of the plasma catalyst fiber of FIG. 5, taken from line 6-6 of FIG. 5, consistent with this invention
  • FIG. 7 shows a cross-sectional view of an illustrative embodiment of another plasma-processing system, including an elongated plasma catalyst that extends through an ignition port consistent with this invention
  • FIG. 8 shows an illustrative embodiment of an elongated plasma catalyst that can be used in the system of FIG. 7 consistent with this invention
  • FIG. 9 shows another illustrative embodiment of an elongated plasma catalyst that can be used in the system of FIG. 7 consistent with this invention.
  • FIG. 10 shows a side cross-sectional view of an illustrative embodiment of a portion of a plasma-processing system for directing ionizing radiation into a plasma cavity consistent with this invention
  • FIG. 11 shows a plan cross-sectional view of a plasma-processing cavity formed in a vessel, as well as multiple parts that are to be processed, consistent with this invention
  • FIG. 12 shows a cross-sectional view of the plasma-processing cavity of FIG. 11 , taken along line 12-12 of FIG. 11 , consistent with this invention
  • FIG. 13 shows a cross-sectional view of an illustrative cavity with multiple sub-regions formed in a vessel, including parts that are to be processed, consistent with this invention
  • FIG. 14 shows a cross-sectional view of another illustrative cavity with multiple sub-regions using a single radiation source consistent with this invention
  • FIG. 15 shows a cross-sectional view of yet another illustrative cavity with multiple sub-regions formed in a vessel using separate, devoted radiation sources and a voltage supply consistent with this invention.
  • FIG. 16 shows a flow-chart illustrating an illustrative plasma-assisted multi-part processing method consistent with this invention.
  • This invention may relate to methods and apparatus for initiating, modulating, and sustaining plasmas and for plasma-assisted processing of multiple parts for a variety of applications, including, for example, heat-treating, synthesizing and depositing carbides, nitrides, borides, oxides, and other materials; doping, carburizing, nitriding, carbonitriding, sintering, joining, decrystallizing, ashing, sterilizing, cleaning, etc.
  • FIG. 1 shows illustrative plasma-assisted processing system 10 consistent with one aspect of this invention.
  • plasma- processing cavity 12 can be formed in vessel 13 that is positioned inside radiation chamber (i.e., applicator) 14 and multiple parts 11 can be located at least partially within cavity 12.
  • radiation chamber i.e., applicator
  • vessel 13 and radiation chamber 14 are the same, thereby eliminating the need for two separate components.
  • Vessel 13 can include one or more radiation-transmissive insulating layers to improve its thermal insulation properties without significantly shielding cavity 12 from the radiation used to form a plasma. As explained more fully below, more than one cavity can be formed in vessel 13. In one embodiment, multiple cavities can be formed in vessel 13 and those cavities can be in fluid communication with one another. At least one portion of each of parts 11 can be placed in cavity 12. Alternatively, multiple vessels can be placed in chamber 14 and each of the vessels can have multiple cavities, if desired.
  • a plasma-processing cavity is any localized volume capable of igniting, modulating, and/or sustaining a plasma consistent with this invention. It will be appreciated that a cavity consistent with this invention need not be completely closed, and may indeed be open. It is known that a plasma can be ignited by subjecting a gas to a sufficient amount of radiation. The plasma may then be modulated or sustained by direct absorption of the radiation, but may be assisted by a plasma catalyst as well. [032] In one embodiment, cavity 12 is formed in a vessel made of ceramic. Due to the extremely high temperatures that can be achieved with plasmas consistent with this invention, a ceramic capable of operating at, for example, about 3,000 degrees Fahrenheit can be used.
  • the ceramic material can include, by weight, 29.8% silica, 68.2% alumina, 0.4% ferric oxide, 1 % titania, 0.1% lime, 0.1% magnesia, 0.4% alkalies, which is sold under Model No. LW-30 by New Castle Refractories Company, of New Castle, Pennsylvania. It will be appreciated by those of ordinary skill in the art, however, that other materials, such as quartz, and those different from the one described above, can also be used consistent with the invention. It will also be appreciated that because the operating temperature can be different for different processing processes, the material used to make the vessel may only need to withstand temperatures substantially below 3,000 degree Fahrenheit, such as 2,500 or about 1 ,000 degrees Fahrenheit, or even lower.
  • a catalyzed processing plasma was formed in a partially open cavity inside a first brick and topped with a second brick.
  • the cavity had dimensions of about 2 inches by about 2 inches by about 1.5 inches.
  • At least two holes were also provided in the brick in communication with the cavity: one for viewing the plasma and at least one hole for providing the gas.
  • the size of the cavity can depend on the desired processing being performed. Also, the cavity can be configured to prevent the plasma from rising/floating away from the primary processing region.
  • cavity 12 can be connected to one or more gas sources 24 (e.g., a source of argon, nitrogen, hydrogen, xenon, krypton) by line 20 and control valve 22, which may be powered by power supply 28.
  • Gas sources 24 e.g., a source of argon, nitrogen, hydrogen, xenon, krypton
  • Line 20 may be tubing or any other device capable of delivering a gas.
  • the diameter of the tube is sufficiently small to prevent radiation leakage (e.g., between about 1/16 inch and about ⁇ A inch, such as about 1/8").
  • a vacuum pump (not shown) can be connected to the chamber to remove any undesirable fumes that may be generated during processing.
  • cavity 12 and chamber 14 can have one or more separate gas ports for removing gas.
  • a radiation leak detector (not shown) was installed near source 26 and waveguide 30 and connected to a safety interlock system to automatically turn off the radiation (e.g., microwave) power supply if a leak above a predefined safety limit, such as one specified by the FCC and/or OSHA (e.g., 5 mW/cm 2 ), was detected.
  • a safety interlock system to automatically turn off the radiation (e.g., microwave) power supply if a leak above a predefined safety limit, such as one specified by the FCC and/or OSHA (e.g., 5 mW/cm 2 ), was detected.
  • Radiation source 26 which may be powered by electrical power supply 28, can direct radiation energy into chamber 14 through one or more waveguides 30. It will be appreciated by those of ordinary skill in the art that source 26 can be connected directly to cavity 12 or chamber 14, thereby eliminating waveguide 30.
  • the radiation energy entering cavity 12 can be used to ignite a plasma within the cavity with the assistance of a plasma catalyst. This plasma can be substantially sustained and confined to the cavity by coupling additional radiation with the catalyst.
  • Radiation energy can be supplied through optional circulator 32 and tuner 34 (e.g., 3-stub tuner). Tuner 34 can be used to minimize the reflected power as a function of changing ignition or processing conditions, especially before the plasma has formed because radiation power, for example, will be strongly absorbed by the plasma.
  • tuner 34 e.g., 3-stub tuner.
  • the location of cavity 12 in chamber 14 may not be critical if chamber 14 supports multiple modes, and especially when the modes are continually or periodically mixed.
  • motor 36 can be connected to mode-mixer 38 for making the time-averaged radiation energy distribution substantially uniform throughout chamber 14.
  • window 40 e.g., a quartz window
  • temperature sensor 42 e.g., an optical pyrometer
  • the optical pyrometer output can increase from zero volts as the temperature rises to within the tracking range.
  • Sensor 42 can develop output signals as a function of the temperature or any other monitorable condition associated with work piece 11 within cavity 12 and provide the signals to controller 44. Dual temperature sensing and heating, as well as automated cooling rate and gas flow controls, can also be used. Controller 44 in turn can be used to control operation of power supply 28, which can have one output connected to source 26 as described above and another output connected to valve 22 to control gas flow into cavity 12. Although not shown in FIG. 1 , chamber 14 can have a separate gas port for removing gas.
  • the invention has been practiced with equal success employing microwave sources at both 915 MHz and 2.45 GHz provided by Communications and Power Industries (CPI), although radiation having any frequency less than about 333 GHz can be used.
  • the 2.45 GHz system provided continuously variable microwave power from about 0.5 kilowatts to about 5.0 kilowatts.
  • a 3-stub tuner allowed impedance matching for maximum power transfer and a dual directional coupler (not shown) was used to measure forward and reflected powers.
  • optical pyrometers were used for remote sensing of the sample temperature.
  • radiation having any frequency less than about 333 GHz can be used consistent with this invention.
  • frequencies such as power line frequencies (about 50 Hz to about 60 Hz)
  • the pressure of the gas from which the processing plasma is formed may be lowered to assist with plasma ignition.
  • any radio frequency or microwave frequency can be used consistent with this invention, including frequencies greater than about 100 kHz.
  • the gas pressure for such relatively high frequencies need not be lowered to ignite, modulate, or sustain a plasma, thereby enabling many plasma-processes to occur at atmospheric pressures and above.
  • the equipment was computer controlled using LabView 6i software, which provided real-time temperature monitoring and microwave power control. Noise was reduced by using sliding averages of suitable number of data points. Also, to improve speed and computational efficiency, the number of stored data points in the buffer array was limited by using shift registers and buffer sizing.
  • the pyrometer measured the temperature of a sensitive area of about 1 cm 2 , which was used to calculate an average temperature. The pyrometer sensed radiant intensities at two wavelengths and fit those intensities using Planck's law to determine the temperature.
  • Chamber 14 had several glass-covered viewing ports with radiation shields and one quartz window for pyrometer access. Several ports for connection to a vacuum pump and a gas source were also provided, although not necessarily used.
  • System 10 also included a closed-loop deionized water-cooling system (not shown) with an external heat exchanger cooled by tap water. During operation, the deionized water first cooled the magnetron, then the load-dump in the circulator (used to protect the magnetron), and finally the radiation chamber through water channels welded on the outer surface of the chamber.
  • a plasma catalyst consistent with this invention can include one or more different materials and may be either passive or active.
  • a plasma catalyst can be used, among other things, to ignite, modulate, and/or sustain a plasma at a gas pressure that is less than, equal to, or greater than atmospheric pressure.
  • One method of forming a processing plasma consistent with this invention can include subjecting a gas in a cavity to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a passive plasma catalyst.
  • a passive plasma catalyst consistent with this invention can include any object capable of inducing a plasma by deforming a local electric field (e.g., an electromagnetic field) consistent with this invention, without necessarily adding additional energy through the catalyst, such as by applying an electric voltage to create a spark.
  • a passive plasma catalyst consistent with this invention can be, for example, a nano-particle or a nano-tube.
  • the term "nano-particle” can include any particle having a maximum physical dimension less than about 100 nm that is at least electrically semi-conductive.
  • both single-walled and multi- walled carbon nano-tubes, doped and undoped can be particularly effective for igniting plasmas consistent with this invention because of their exceptional electrical conductivity and elongated shape.
  • the nano-tubes can have any convenient length and can be a powder fixed to a substrate. If fixed, the nano- tubes can be oriented randomly on the surface of the substrate or fixed to the substrate (e.g., at some predetermined orientation) while the plasma is ignited or sustained.
  • a passive plasma catalyst can also be a powder consistent with this invention, and need not comprise nano-particles or nano-tubes. It can be formed, for example, from fibers, dust particles, flakes, sheets, etc.
  • the catalyst can be suspended, at least temporarily, in a gas. By suspending the powder in the gas, the powder can be quickly dispersed throughout the cavity and more easily consumed, if desired.
  • the powder catalyst can be carried into the cavity and at least temporarily suspended with a carrier gas.
  • the carrier gas can be the same or different from the gas that forms the plasma.
  • the powder can be added to the gas prior to being introduced to the cavity.
  • radiation source 52 can supply radiation to radiation chamber 55, in which plasma cavity 60 is placed.
  • Powder source 65 can provide catalytic powder 70 into gas stream 75.
  • powder 70 can be first added to cavity 60 in bulk (e.g., in a pile) and then distributed in cavity 60 in any number of ways, including flowing a gas through or over the bulk powder.
  • the powder can be added to the gas for igniting, modulating, or sustaining a plasma by moving, conveying, drizzling, sprinkling, blowing, or otherwise feeding the powder into or within the cavity.
  • a processing plasma was ignited in a cavity by placing a pile of carbon fiber powder in a copper pipe that extended into the cavity. Although sufficient radiation was directed into the cavity, the copper pipe shielded the powder from the radiation and no plasma ignition took place. However, once a carrier gas began flowing through the pipe, forcing the powder out of the pipe and into the cavity, and thereby subjecting the powder to the radiation, a plasma was nearly instantaneously ignited in the cavity. Such instantaneous ignition can substantially eliminate potentially damaging radiation that could otherwise reflect back into the radiation source.
  • a powder plasma catalyst consistent with this invention can be substantially non-combustible, thus it need not contain oxygen or burn in the presence of oxygen.
  • the catalyst can include a metal, carbon, a carbon-based alloy, a carbon-based composite, an electrically conductive polymer, a conductive silicone elastomer, a polymer nano-composite, an organic- inorganic composite, and any combination thereof.
  • powder catalysts can be substantially uniformly distributed in the plasma cavity (e.g., when suspended in a gas), and plasma ignition can be precisely controlled within the cavity consistent with this invention. Uniform ignition can be important in certain applications, including those applications requiring brief plasma exposures, such as in the form of one or more bursts. Still, a certain amount of time can be required for a powder catalyst to distribute itself throughout a cavity, especially in complicated, multi-chamber cavities. Therefore, consistent with another aspect of this invention, a powder catalyst can be introduced into the cavity through a plurality of ignition ports to more rapidly obtain a more uniform catalyst distribution therein (see below).
  • a passive plasma catalyst consistent with this invention can include, for example, one or more microscopic or macroscopic fibers, sheets, needles, threads, strands, filaments, yarns, twines, shavings, slivers, chips, woven fabrics, tape, whiskers, or any combination thereof.
  • the plasma catalyst can have at least one portion with one physical dimension substantially larger than another physical dimension.
  • the ratio between at least two orthogonal dimensions should be at least about 1 :2, but could be greater than about 1 :5, or even greater than about 1 :10.
  • a passive plasma catalyst can include at least one portion of material that is relatively thin compared to its length.
  • a bundle of catalysts e.g., fibers
  • the number of fibers in and the length of a bundle are not critical to igniting, modulating, or sustaining the plasma. For example, satisfactory results have been obtained using a section of graphite tape about one-quarter inch long.
  • One type of carbon fiber that has been successfully used consistent with this invention is sold under the trademark Magnamite®, Model No. AS4C-GP3K, by the Hexcel Corporation, of Anderson, South Carolina.
  • silicon-carbide fibers have been successfully used.
  • a passive plasma catalyst consistent with another aspect of this invention can include one or more portions that are, for example, substantially spherical, annular, pyramidal, cubic, planar, cylindrical, rectangular or elongated.
  • the passive plasma catalysts discussed above include at least one material that is at least electrically semi-conductive.
  • the material can be highly electrically conductive.
  • a passive plasma catalyst consistent with this invention can include a metal, an inorganic material, carbon, a carbon-based alloy, a carbon-based composite, an electrically conductive polymer, a conductive silicone elastomer, a polymer nano-composite, an organic- inorganic composite, or any combination thereof.
  • Some of the possible inorganic materials that can be included in the plasma catalyst include carbon, silicon carbide, molybdenum, platinum, tantalum, tungsten, carbon nitride, and aluminum, although other electrically conductive inorganic materials are believed to work just as well.
  • a passive plasma catalyst consistent with this invention can include one or more additives (which need not be electrically conductive).
  • the additive can include any material that a user wishes to add to the plasma.
  • one or more dopants can be added to the plasma through the catalyst. See, e.g., commonly owned, concurrently filed
  • the catalyst can include the dopant itself, or it can include a precursor material that, upon decomposition, can form the dopant.
  • the plasma catalyst can include one or more additives and one or more electrically conductive materials in any desirable ratio, depending on the ultimate desired composition of the plasma and the process using the plasma.
  • the ratio of the electrically conductive components to the additives in a passive plasma catalyst can vary over time while being consumed.
  • the plasma catalyst could desirably include a relatively large percentage of electrically conductive components to improve the ignition conditions.
  • the catalyst could include a relatively large percentage of additives that may be desirable in a processing process. It will be appreciated by those of ordinary skill in the art that the component ratio of the plasma catalyst used to ignite and, later, to sustain the plasma, could be the same.
  • a predetermined ratio profile can be used to simplify many plasma processes.
  • the components within the plasma are added as necessary, but such addition normally requires programmable equipment to add the components according to a predetermined schedule.
  • the ratio of components in the catalyst can be varied, and thus the ratio of components in the plasma itself can be automatically varied. That is, the ratio of components in the plasma at any particular time can depend on which of the catalyst portions is currently being consumed by the plasma.
  • the catalyst component ratio can be different at different locations within the catalyst.
  • the current ratio of components in a plasma can depend on the portions of the catalyst currently and/or previously consumed, especially when the flow rate of a gas passing through the plasma chamber is relatively slow.
  • a passive plasma catalyst consistent with this invention can be homogeneous, inhomogeneous, or graded.
  • the plasma catalyst component ratio can vary continuously or discontinuously throughout the catalyst. For example, in FIG. 3, the ratio can vary smoothly forming a gradient along a length of catalyst 100.
  • Catalyst 100 can include a strand of material that includes a relatively low concentration of a component at section 105 and a continuously increasing concentration toward section 110.
  • the ratio can vary discontinuously in each portion of catalyst 120, which includes, for example, alternating sections 125 and 130 having different concentrations. It will be appreciated that catalyst 120 can have more than two section types. Thus, the catalytic component ratio being consumed by the plasma can vary in any predetermined fashion. In one embodiment, when the plasma is monitored and a particular additive is detected, further processing can be automatically commenced or terminated.
  • an automated system can include a device by which a consumable plasma catalyst is mechanically inserted before and/or during plasma igniting, modulating, and/or sustaining.
  • a passive plasma catalyst consistent with this invention can also be coated.
  • a catalyst can include a substantially non-electrically conductive coating deposited on the surface of a substantially electrically conductive material.
  • the catalyst can include a substantially electrically conductive coating deposited on the surface of a substantially electrically non-conductive material.
  • FIGS. 5 and 6, for example, show fiber 140, which includes underlayer 145 and coating 150.
  • a plasma catalyst including a carbon core is coated with nickel to prevent oxidation of the carbon.
  • a single plasma catalyst can also include multiple coatings. If the coatings are consumed during contact with the plasma, the coatings could be introduced into the plasma sequentially, from the outer coating to the innermost coating, thereby creating a time-release mechanism.
  • a coated plasma catalyst can include any number of materials, as long as a portion of the catalyst is at least electrically semi-conductive.
  • a plasma catalyst can be located entirely within a radiation cavity to substantially reduce or prevent radiation energy leakage.
  • the plasma catalyst does not electrically or magnetically couple with the vessel containing the cavity or to any electrically conductive object outside the cavity. This prevents sparking at the ignition port and can prevent radiation from leaking outside the cavity during the ignition and possibly later if the plasma is sustained.
  • the catalyst can be located at a tip of a substantially electrically non-conductive extender that extends through an ignition port.
  • FIG. 7, shows radiation chamber 160 in which plasma- processing cavity 165 is placed.
  • Plasma catalyst 170 can be elongated and extend through ignition port 175.
  • catalyst 170 can include electrically conductive distal portion 180 (which is placed in chamber 160) and electrically non-conductive portion 185 (which is placed substantially outside chamber 160, but can extend somewhat into chamber 160). This configuration can prevent an electrical connection (e.g., sparking) between distal portion 180 and chamber 160.
  • the catalyst can be formed from a plurality of electrically conductive segments 190 separated by and mechanically connected to a plurality of electrically non-conductive segments 195.
  • the catalyst can extend through the ignition port between a point inside the cavity and another point outside the cavity, but the electrically discontinuous profile significantly can prevent sparking and energy leakage.
  • Another method of forming a plasma consistent with this invention includes subjecting a gas in a cavity to electromagnetic radiation having a frequency less than about 333 GHz in the presence of an active plasma catalyst, which generates or includes at least one ionizing particle.
  • An active plasma catalyst consistent with this invention can be any particle or high-energy wave packet capable of transferring a sufficient amount of energy to a gaseous atom or molecule to remove at least one electron from the gaseous atom or molecule in the presence of electromagnetic radiation.
  • the ionizing particles can be directed into the cavity in the form of a focused or collimated beam, or they may be sprayed, spewed, sputtered, or otherwise introduced.
  • FIG. 10 shows radiation source 200 directing radiation into plasma cavity 210, which can be positioned inside of chamber 205.
  • Plasma cavity 210 may permit a gas to flow through it via ports 215 and 216, if desired.
  • Source 220 can direct ionizing particles 225 into cavity 210.
  • Source 220 can be protected, for example, by a metallic screen, which allows the ionizing particles to pass through but shields source 220 from radiation. If necessary, source 220 can be water-cooled.
  • Examples of ionizing particles consistent with this invention can include x-ray particles, gamma ray particles, alpha particles, beta particles, neutrons, protons, and any combination thereof.
  • an ionizing particle catalyst can be charged (e.g., an ion from an ion source) or uncharged and can be the product of a radioactive fission process.
  • the vessel in which the plasma cavity is formed could be entirely or partially transmissive to the ionizing particle catalyst.
  • the source can direct the fission products through the vessel to ignite the plasma.
  • the radioactive fission source can be located inside the radiation chamber to substantially prevent the fission products (i.e., the ionizing particle catalyst) from creating a safety hazard.
  • the ionizing particle can be a free electron, but it need not be emitted in a radioactive decay process.
  • the electron can be introduced into the cavity by energizing the electron source (such as a metal), such that the electrons have sufficient energy to escape from the source.
  • the electron source can be located inside the cavity, adjacent the cavity, or even in the cavity wall. It will be appreciated by those of ordinary skill in the art that the any combination of electron sources is possible.
  • a common way to produce electrons is to heat a metal, and these electrons can be further accelerated by applying an electric field.
  • free energetic protons can also be used to catalyze a plasma.
  • a free proton can be generated by ionizing hydrogen and, optionally, accelerated with an electric field.
  • a radiation waveguide, cavity, or chamber can be designed to support or facilitate propagation of at least one electromagnetic radiation mode.
  • the term "mode" refers to a particular pattern of any standing or propagating electromagnetic wave that satisfies Maxwell's equations and the applicable boundary conditions (e.g., of the cavity).
  • the mode can be any one of the various possible patterns of propagating or standing electromagnetic fields.
  • Each mode is characterized by its frequency and polarization of the electric field and/or the magnetic field vectors.
  • the electromagnetic field pattern of a mode depends on the frequency, refractive indices or dielectric constants, and waveguide or cavity geometry.
  • a transverse electric (TE) mode is one whose electric field vector is normal to the direction of propagation.
  • a transverse magnetic (TM) mode is one whose magnetic field vector is normal to the direction of propagation.
  • a transverse electric and magnetic (TEM) mode is one whose electric and magnetic field vectors are both normal to the direction of propagation.
  • a hollow metallic waveguide does not typically support a normal TEM mode of radiation propagation. Even though radiation appears to travel along the length of a waveguide, it may do so only by reflecting off the inner walls of the waveguide at some angle. Hence, depending upon the propagation mode, the radiation (e.g., microwave) may have either some electric field component or some magnetic field component along the axis of the waveguide (often referred to as the z-axis).
  • the actual field distribution inside a cavity or waveguide is a superposition of the modes therein.
  • Each of the modes can be identified with one or more subscripts (e.g., TE ⁇ 0 ("tee ee one zero").
  • the subscripts normally specify how many "half waves" at the guide wavelength are contained in the x and y directions. It will be appreciated by those skilled in the art that the guide wavelength can be different from the free space wavelength because radiation propagates inside the waveguide by reflecting at some angle from the inner walls of the waveguide.
  • a third subscript can be added to define the number of half waves in the standing wave pattern along the z-axis.
  • the size of the waveguide can be selected to be small enough so that it can support a single propagation mode.
  • the system is called a single-mode system (i.e., a single-mode applicator).
  • the TE ⁇ 0 mode is usually dominant in a rectangular single-mode waveguide.
  • the waveguide or applicator can sometimes support additional higher order modes forming a multi-mode system. When many modes are capable of being supported simultaneously, the system is often referred to as highly moded.
  • a simple, single-mode system has a field distribution that includes at least one maximum and/or minimum.
  • the magnitude of a maximum largely depends on the amount of radiation supplied to the system.
  • the field distribution of a single mode system is strongly varying and substantially non- uniform.
  • a multi-mode cavity can support several propagation modes simultaneously, which, when superimposed, results in a complex field distribution pattern. In such a pattern, the fields tend to spatially smear and, thus, the field distribution usually does not show the same types of strong minima and maxima field values within the cavity.
  • a mode-mixer can be used to "stir" or "redistribute” modes (e.g., by mechanical movement of a radiation reflector). This redistribution desirably provides a more uniform time-averaged field distribution within the cavity.
  • a multi-mode cavity consistent with this invention can support at least two modes, and may support many more than two modes. Each mode has a maximum electric field vector. Although there may be two or more modes, one mode may be dominant and has a maximum electric field vector magnitude that is larger than the other modes.
  • a multi-mode cavity may be any cavity in which the ratio between the first and second mode magnitudes is less than about 1 : 10, or less than about 1 :5, or even less than about 1 :2. It will be appreciated by those of ordinary skill in the art that the smaller the ratio, the more distributed the electric field energy between the modes, and hence the more distributed the radiation energy is in the cavity.
  • the distribution of plasma within a processing cavity may strongly depend on the distribution of the applied radiation. For example, in a pure single mode system, there may only be a single location at which the electric field is a maximum. Therefore, a strong plasma may only form at that single location. In many applications, such a strongly localized plasma could undesirably lead to non- uniform plasma treatment or heating (i.e., localized overheating and underheating).
  • the cavity in which the plasma is formed can be completely closed or partially open.
  • the cavity could be entirely closed. See, for example, commonly owned, concurrently filed U.S. Patent Application No. 10/ , (Attorney Docket No. 1837.0020), which is fully incorporated herein by reference.
  • a cavity containing a uniform plasma is desirable.
  • radiation can have a relatively long wavelength (e.g., several tens of centimeters)
  • obtaining a substantially uniform plasma distribution can be difficult to achieve.
  • the radiation modes in a multi-mode processing cavity can be mixed, or redistributed, over a period of time. Because the field distribution within the cavity must satisfy all of the boundary conditions set by the inner surface of the cavity, those field distributions can be changed by changing the position of any portion of that inner surface.
  • a movable reflective surface can be located inside the radiation cavity.
  • the shape and motion of the reflective surface should, when combined, change the inner surface of the cavity during motion.
  • an "L" shaped metallic object i.e., "mode-mixer”
  • mode-mixer when rotated about any axis will change the location or the orientation of the reflective surfaces in the cavity and therefore change the radiation distribution therein.
  • Any other asymmetrically shaped object can also be used (when rotated), but symmetrically shaped objects can also work, as long as the relative motion (e.g., rotation, translation, or a combination of both) causes some change in location or orientation of the reflective surfaces.
  • a mode-mixer can be a cylinder that is ratable about an axis that is not the cylinder's longitudinal axis.
  • Each mode of a multi-mode cavity may have at least one maximum electric field vector, but each of these vectors could occur periodically across the inner dimension of the cavity. Normally, these maxima are fixed, assuming that the frequency of the radiation does not change. However, by moving a mode-mixer such that it interacts with the radiation, it is possible to move the positions of the maxima.
  • mode-mixer 38 of FIG. 1 can be used to optimize the field distribution within cavity 12 such that the plasma ignition conditions and/or the plasma sustaining conditions are optimized.
  • the position of the mode-mixer can be changed to move the position of the maxima for a uniform time-averaged plasma process (e.g., heating).
  • mode-mixing can be useful during plasma ignition.
  • an electrically conductive fiber is used as a plasma catalyst, it is known that the fiber's orientation can strongly affect the minimum plasma-ignition conditions. It has been reported, for example, that when such a fiber is oriented at an angle that is greater than 60° to the electric field, the catalyst does little to improve, or relax, these conditions. By moving a reflective surface either in or near the cavity, however, the electric field distribution can be significantly changed.
  • Mode-mixing can also be achieved by launching the radiation into the applicator chamber through, for example, a rotating waveguide joint that can be mounted inside the applicator chamber.
  • the rotary joint can be mechanically moved (e.g., rotated) to effectively launch the radiation in different directions in the radiation chamber.
  • a changing field pattern can be generated inside the applicator chamber.
  • Mode-mixing can also be achieved by launching radiation in the radiation chamber through a flexible waveguide.
  • the waveguide can be mounted inside the chamber.
  • the waveguide can extend into the chamber.
  • the position of the end portion of the flexible waveguide can be continually or periodically moved (e.g., bent) in any suitable manner to launch the radiation (e.g., microwave radiation) into the chamber at different directions and/or locations.
  • This movement can also result in mode- mixing and facilitate more uniform plasma processing (e.g., heating) on a time- averaged basis. Alternatively, this movement can be used to optimize the location of a plasma for ignition or other plasma-assisted process.
  • the flexible waveguide is rectangular, a simple twisting of the open end of the waveguide will rotate the orientation of the electric and the magnetic field vectors in the radiation inside the applicator chamber. Then, a periodic twisting of the waveguide can result in mode-mixing as well as rotating the electric field, which can be used to assist ignition, modulation, or sustaining of a plasma.
  • mode-mixing can be useful during subsequent plasma processing to reduce or create (e.g., tune) "hot spots" in the chamber.
  • a processing cavity only supports a small number of modes (e.g., less than 5)
  • one or more localized electric field maxima can lead to "hot spots" (e.g., within cavity 12).
  • these hot spots could be configured to coincide with one or more separate, but simultaneous, plasma ignitions or processing events.
  • the plasma catalyst can be located at one or more of those ignition or subsequent processing positions.
  • a plasma can be ignited using multiple plasma catalysts at different locations.
  • multiple fibers can be used to ignite the plasma at different points within the cavity.
  • Such multi-point ignition can be especially beneficial when a uniform plasma ignition is desired. For example, when a plasma is modulated at a high frequency (i.e., tens of Hertz and higher), or ignited in a relatively large volume, or both, substantially uniform instantaneous striking and restriking of the plasma can be improved.
  • plasma catalysts when plasma catalysts are used at multiple points, they can be used to sequentially ignite a plasma at different locations within a plasma chamber by selectively introducing the catalyst at those different locations. In this way, a plasma ignition gradient can be controllably formed within the cavity, if desired.
  • each powder particle may have the effect of being placed at a different physical location within the cavity, thereby improving ignition uniformity within the cavity.
  • a dual-cavity arrangement can be used to ignite and sustain a processing plasma consistent with this invention.
  • a system includes at least an ignition cavity and a second cavity in fluid communication with the ignition cavity.
  • a gas in the ignition cavity can be subjected to electromagnetic radiation having a frequency less than about 333 GHz, optionally in the presence of a plasma catalyst.
  • electromagnetic radiation having a frequency less than about 333 GHz, optionally in the presence of a plasma catalyst.
  • the proximity of the first and second cavities may permit a plasma formed in the first cavity to ignite a plasma in the second cavity, which may be sustained with additional electromagnetic radiation.
  • the ignition cavity can be very small and designed primarily, or solely, for plasma ignition. In this way, very little radiation energy may be required to ignite the plasma, permitting easier ignition, especially when a plasma catalyst is used consistent with this invention.
  • the ignition cavity may be a substantially single mode cavity and the second cavity a multi-mode cavity.
  • the electric field distribution may strongly vary within the cavity, forming one or more precisely located electric field maxima.
  • maxima are normally the first locations at which plasmas ignite, making them ideal points for placing plasma catalysts. It will be appreciated, however, that when a plasma catalyst is used, it need not be placed in the electric field maximum and, many cases, need not be oriented in any particular direction.
  • a plasma-assisted processing refers to any operation, or combination of operations, that involves the use of a plasma.
  • a plasma-process can include, for example, heat-treating, synthesizing and depositing carbides, nitrides, borides, oxides, and other materials, doping, carburizing, nitriding, carbonitriding, sintering, joining, decrystallizing, ashing, sterilizing, cleaning, etc.
  • substantially simultaneous or sequential plasma-processing of multiple parts can be performed by placing those parts in different sub-regions of the same cavity.
  • Each sub-region may be defined by one or more internal cavity walls, although such walls are optional.
  • One radiation source, or several radiation sources combined, can supply radiation to each of the sub-regions to form a processing plasma in each sub- region.
  • At least one plasma catalyst (as described above) may also be placed within or near at least one, and optionally each, of the sub-regions to assist in the igniting, modulating, or sustaining of a plasma there, if desired.
  • each of the sub-regions and the location of the parts within the sub-regions may be adapted to achieve any desirable plasma distribution for any particular plasma- assisted process. For example, a substantially uniform plasma or a strongly varying plasma distribution can be formed. As explained more fully above, a mode- mixer can be used to "stir" or “redistribute” modes to provide a more uniform time- averaged field distribution (and therefore plasma distribution) within the cavity.
  • each sub-region may have at least one separate, devoted radiation source.
  • the radiation can be provided to the individual sub-regions through an appropriately shaped waveguide (e.g., a horn that connects the radiation source(s) to the individual cavities formed in a large ceramic block) or supplied directly without the use of a waveguide.
  • an appropriately shaped waveguide e.g., a horn that connects the radiation source(s) to the individual cavities formed in a large ceramic block
  • FIG. 11 shows a cross-sectional view of illustrative plasma- processing cavity 360 formed in vessel 313 consistent with this invention.
  • Vessel 313 can be radiation transmissive when located in a radiation chamber (such as chamber 14 of FIG. 1) or radiation-opaque, thereby eliminating the need to place vessel 313 in another chamber.
  • Vessel 313 can include a plurality of apertures 340, 342, and 344 through which parts 310, 312, and 314 can extend, respectively.
  • Parts 310, 312, and 314 can be joined to parts 320, 322, and 324, respectively, for example, as shown in FIG. 11. In this case, parts 320, 322, and 324 are located entirely within cavity 360, but portions of these parts may also extend outside of cavity 360. Parts 310, 312, and 314 can also be placed entirely within cavity 360, if desired.
  • the number of apertures and the number of parts extending therethrough can be more or less than three, and that these numbers need not be the same. That is, multiple parts can simultaneously extend through a single aperture, if desired. It will further be appreciated that parts 310, 312, and 314 need not be configured along a single wall of vessel 313 and may be configured in any convenient manner that permits the desired plasma-process to occur.
  • Parts 310, 312, 314, 320, 322, and 324 can be supported by one or more inner surfaces of cavity 360.
  • FIG. 12 shows a cross-sectional view of vessel 313 and parts 320, 322, and 324, taken along line 12-12 of FIG. 11.
  • parts 320, 322, and 324 can be supported on inner surface 335 in recesses 336, 337, and 338.
  • recesses are separate, they need not be and, in fact, the surface need not be recessed at all. In this case, the recesses permit parts 310, 312, and 314 to contact parts 320, 322, and 324, respectively, at predetermined locations.
  • recesses can be replaced with raised portions (not shown) or simply be flush with the rest of surface 335, if desired.
  • one or more additional mounting structures can be used to support the parts in any convenient position and orientation.
  • these recesses or raised portions can also be used to selectively form a plasma, or prevent formation of a plasma, within cavity 360.
  • a plasma can be formed in cavity 360 by subjecting a gas to electromagnetic radiation.
  • gas may be supplied and removed through one or more gas ports and, as shown schematically in FIG. 12, the radiation can be supplied by radiation source 326 through horn-shaped radiation waveguide 330 or a coaxial cable (not shown).
  • waveguide 330 can be eliminated if source 326 is mounted directly to vessel 313.
  • radiation source 326 can supply radiation, and is used to modulate or sustain a plasma for processing all of parts 310, 312, 314, 320, 322, and 324.
  • multiple radiation sources (not shown) can be used to direct radiation into cavity 360. As explained more fully below, each of the sources can also be used to modulate or sustain a plasma for one or more respective parts.
  • a plasma catalyst can be used to ignite, modulate, and/or sustain a plasma within cavity 360 at a gas pressure that is less than, equal to, or greater than atmospheric pressure.
  • the plasma catalyst can be active or passive.
  • FIG. 13 shows another illustrative embodiment of a plasma- processing cavity with multiple internal walls 430 and 432 forming separate sub- regions 460, 462, and 464 for processing multiple parts 410, 412, 414, 420, 422, and 424.
  • FIG. 13 does not show a radiation source.
  • one or more radiation sources can be used to supply radiation to each of the sub-regions.
  • separate gas ports are shown for each sub-region, it will be appreciated that one or more common gas ports can be used to supply a gas to all of the sub-regions and that each of those sub-regions need not be completely separated - that is, the sub-regions may be in fluid communication with each other (see, for example, FIG. 14).
  • Vessel 413 can be radiation transmissive when located in a radiation chamber (such as chamber 14 of FIG. 1) or radiation-opaque, thereby eliminating the need to place vessel 413 in another chamber.
  • Vessel 413 can include a plurality of apertures 440, 442, and 444 through which parts 410, 412, and 414 can extend, respectively.
  • Parts 410, 412, and 414 can be joined to parts 420, 422, and 424, for example, as shown in FIG. 13.
  • parts 420, 422, and 424 can be located entirely within sub-regions 460, 462, and 464, respectively, but portions of these parts may also extend outside of these sub-regions.
  • Parts 410, 412, and 414 can also be placed entirely within sub-regions 460, 462, and 464, if desired.
  • the number of apertures (or the number of sub-regions) and the number of parts extending therethrough can be more or less than three and that these numbers need not be the same. That is, multiple parts can be located within a single sub-region and simultaneously extend through a single aperture, if desired. It will further be appreciated that parts 410, 412, 414, 420, 422, and 424 need not be configured along a single wall of vessel 413 and may be configured in any convenient manner that permits the desired plasma- process to occur. Also, parts 410, 412, 414, 420, 422, and 424 can be supported by one or more inner surfaces of sub-regions 460, 462, and 464.
  • a plasma can be formed in sub-regions 460, 462, and 464 by subjecting a gas to electromagnetic radiation.
  • gas may be supplied and removed through one or more gas ports and, as shown schematically in FIG.14, the radiation can be supplied by radiation source 426 through radiation waveguide 430 with multiple branches 470, 472, and 474. It will be appreciated that source 426 can selectively or sequentially supply radiation to respective sub-regions 460, 462, and 464.
  • one or more control valves may be installed in respective channels 470, 472, and 474. These control valves can partially or entirely block the radiation through respective channels 470, 472, and 474, if desired, in any type of timing sequence. It will be appreciated that these valves may be powered by a power supply (such as power supply 28 of FIG. 1). It will also be appreciated that a controller (such as controller 44 of FIG. 1) may control the operation of the control valves. It will further be appreciated that by controlling the operation of the control valves, selective, simultaneous, or sequential plasma processing within respective sub-regions may be achieved. Alternatively, a single distributor or multiplexer can be used before branches 470, 472, and 474 to distribute radiation into the various cavities as needed.
  • FIG. 14 schematically shows a single radiation source supplying radiation to each of the sub-regions through separate channels 470, 472, and 474
  • the source can also be used to supply radiation to all of the sub-regions without separate channels, such as when vessel 413 is radiation-transmissive and located in a radiation chamber.
  • multiple radiation sources (not shown) can be used to direct radiation into individual sub- regions.
  • Each of the sources can also be used to modulate or sustain a plasma for one or more of the respective sub-regions.
  • a plasma catalyst can be used to ignite, modulate, and/or sustain a plasma within sub-regions at a gas pressure that is less than, equal to, or greater than atmospheric pressure.
  • the plasma catalyst can be active or passive.
  • FIG. 15 shows a cross-sectional view of yet another illustrative embodiment of a plasma-processing cavity with multiple internal walls forming separate sub-regions 560, 562, and 564 for processing multiple parts 510, 512, and 514.
  • multiple radiation sources 526, 527, and 528 can be used to direct radiation into sub-regions 560, 562, and 564 through horn-shaped waveguides 530, 532, and 534, respectively.
  • FIG. 15 schematically shows each of the multiple radiation sources supplying radiation to one respective sub-region through separate waveguides 530, 532, and 534, these waveguides can be eliminated if sources 526, 527, and 528 are mounted directly to vessel 513.
  • FIG. 15 schematically shows each of the multiple radiation sources supplying radiation to one sub-region
  • each of the sources can be used to modulate or sustain a plasma for more than one sub- regions (See, e.g., FIG. 14).
  • more than one radiation sources can be combined, and can supply radiation to one cavity or sub-region.
  • radiation can be directed into respective sub-regions 560, 562, and 564 substantially simultaneously.
  • radiation can be directed into respective sub-regions 560, 562, and 564 sequentially, if desired, using one or more control signals (not shown).
  • An electric bias may be applied to the any of the parts during a plasma-assisted processing consistent with the invention.
  • FIG. 15 shows how voltage supply 580 may apply an electric bias to parts 510, 512, and 514.
  • a bias may facilitate heating of the parts as well as promote deposition by accelerating charged particles in the plasma toward the parts, which may encourage uniform processing.
  • the bias applied to the parts may be, for example, AC, DC, pulsed, continuous, or periodic or preprogrammed.
  • the magnitude of the bias may be selected according to the particular application. For example, the magnitude of the voltage may range from about 0.1 volts to about 100 volts, or even several hundred or thousands of volts, depending on the desired rate of attraction of the charged particles. Further, the bias may be positive or negative, or alternate therebetween.
  • the parts may be placed on an electrically conductive plate (not shown) and a potential bias may be applied to the plate during a plasma-assisted process consistent with the invention.
  • FIG. 16 shows a flow chart of an illustrative plasma-assisted multipart process method consistent with this invention.
  • the process can include, for example, heat-treating, synthesizing and depositing carbides, nitrides, borides, oxides, and other materials, doping, carburizing, nitriding, carbonitriding, sintering, joining, decrystallizing, ashing, sterilizing, cleaning, etc. It will be appreciated that a plurality of different types of heat treatments can be conducted substantially simultaneously.
  • multiple parts can be placed in or near a plurality of sub- regions of a cavity formed within a processing vessel.
  • an electric bias may be applied to the any of the parts during a plasma- assisted processing consistent with the invention.
  • Each sub-region may be defined by one or more internal cavity walls, although such walls are optional.
  • the walls may be layers of a material that are substantially radiation transmissive or opaque.
  • At least one plasma catalyst (as described above) may also be placed within (or near) at least one, and optionally each, of the sub-regions to assist in the igniting, modulating, or sustaining of a plasma there, if desired.
  • a gas can be introduced into the vessel, and therefore into the sub-regions, through one or more gas inlets.
  • the gas can be introduced through at least one gas inlet.
  • Each sub-region may have at least one separate gas inlet and each gas inlet may be connected to a gas flow controller, such that each of the sub-regions has an independently controllable amount of gas flowing therethrough.
  • the gas may flow into a processing cavity through the same aperture in which a part is located.
  • the gas can be exposed to electromagnetic radiation to form a plasma in the vessel and therefore the sub-regions.
  • One radiation source, or several radiation sources combined, can supply radiation to each of the sub- regions to form a processing plasma in each sub-region.
  • each sub- region may have at least one separate, devoted radiation source.
  • a mode-mixer can be used to "stir" or “redistribute” modes to provide a more uniform time-averaged radiation distribution (and therefore plasma distribution) within the cavity and any sub-regions.
  • Plasma formation can be prevented by shielding a portion of the part's surface with a substantially radiation opaque material, if desired.
  • the plasma can be sustained in each of the sub-regions so that each of the plurality of parts can be exposed to a plasma.
  • the plasma can be sustained in the cavity or sub-regions by continued absorption of radiation until the plasma-assisted process is over or until a predetermined temperature indicative of a particular process status is attained.

Abstract

Methods and apparatus for plasma-assisted processing of multiple parts are provided. Multi-part processing may include, for example, placing a plurality of parts (11) to be processed in or near a plurality of sub-regions of a cavity (12) formed within a processing vessel (14), introducing a gas into the vessel (14), exposing the gas to electromagnetic radiation to form a plasma in the vessel (14), and modulating or sustaining the plasma in each of the sub-regions so that each of the plurality of parts (11) is exposed to a respective plasma. Plasma catalysts, and methods and apparatus for igniting, modulating, and sustaining a plasma are provided. Additional cavity shapes, and methods and apparatus for directing radiation into the cavity (12), are also provided.

Description

PLASMA-ASSISTED MULTI-PART PROCESSING
CROSS-REFERENCE OF RELATED APPLICATIONS
[001] Priority is claimed to U.S. Provisional Patent Application No. 60/378,693, filed May 8, 2002, No. 60/430,677, filed December 4, 2002, and No. 60/435,278, filed December 23, 2002, all of which are fully incorporated herein by reference.
FIELD OF THE INVENTION
[002] This invention relates to methods and apparatus for plasma-assisted processing of multiple parts and, particularly, to processing multiple parts using various types of cavities and electromagnetic radiation supply configurations.
BACKGROUND
[003] It is known that a plasma can be ignited by subjecting a gas to a sufficient amount of electromagnetic radiation. It is also known that radiation- induced plasmas may be used to process (e.g., join, heat-treat, etc.) parts within a plasma-processing cavity. When substantially simultaneous or sequential plasma- processing of multiple parts are desired, spatially uniform plasma ignition and processing can be difficult. Moreover, igniting and sustaining plasmas, however, can be slow, expensive, and energy-consuming, especially when pressures less than atmospheric pressure are used. Therefore, conventional plasma-assisted processing of multiple parts can limit manufacturing flexibility.
BRIEF SUMMARY OF A FEW ASPECTS OF THE INVENTION
[004] Methods and apparatus for plasma-assisted processing of multiple parts are provided. In one embodiment consistent with this invention, a method can be provided for processing multiple parts using a plasma induced by electromagnetic radiation. The method can include placing a plurality of parts to be processed in a plurality of sub-regions of a cavity formed within a processing vessel, introducing a gas into the vessel, exposing the gas to electromagnetic radiation to form a plasma in the vessel, and modulating or sustaining the plasma in each of the sub-regions so that each of the plurality of parts is simultaneously exposed to plasma.
[005] In another embodiment consistent with this invention, an apparatus is provided for processing multiple parts using a radiation-induced plasma. The apparatus can include a vessel in which a cavity is formed, wherein the cavity has a plurality of sub-regions each for containing at least one part to be processed. At least one electromagnetic radiation source can be configured to direct the radiation into the vessel, such that the radiation and the gas cooperate to form a plasma in at least two of the sub-regions, the sub-regions being configured to enable each of the plurality of parts to be subjected to the plasma in a substantially simultaneous fashion. The apparatus can also include a conduit for supplying the gas to the vessel.
[006] In yet another embodiment consistent with this invention, each of the sub-regions can be defined by at least one internal cavity wall. In addition, at least one plasma catalyst can be located in one or more of the sub-regions.
[007] A plasma catalyst for initiating, modulating, and sustaining a plasma consistent with this invention is also provided. The catalyst can be passive or active. A passive plasma catalyst can include any object capable of inducing a plasma by deforming a local electric field (including an electromagnetic field) consistent with this invention, without necessarily adding additional energy. An active plasma catalyst, on the other hand, is any particle or high-energy wave packet capable of transferring a sufficient amount of energy to a gaseous atom or molecule to remove at least one electron from the gaseous atom or molecule in the presence of electromagnetic radiation. In both cases, a plasma catalyst can improve, or relax, the environmental conditions required to ignite a plasma.
[008] Additional plasma catalysts, and methods and apparatus for igniting, modulating, and sustaining a plasma consistent with this invention are provided. Additional cavity shapes, and methods and apparatus for plasma-processing of multiple parts using such cavity shapes, are also provided.
BRIEF DESCRIPTION OF THE DRAWINGS
[009] Further aspects of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
[010] FIG. 1 shows a schematic diagram of an illustrative plasma system consistent with this invention;
[011] FIG. 2 shows an illustrative embodiment of a portion of a plasma system for adding a powder plasma catalyst to a plasma cavity for igniting, modulating, or sustaining a plasma in a cavity consistent with this invention;
[012] FIG. 3 shows an illustrative plasma catalyst fiber with at least one component having a concentration gradient along its length consistent with this invention;
[013] FIG. 4 shows an illustrative plasma catalyst fiber with multiple components at a ratio that varies along its length consistent with this invention;
[014] FIG. 5 shows another illustrative plasma catalyst fiber that includes a core underlayer and a coating consistent with this invention;
[015] FIG. 6 shows a cross-sectional view of the plasma catalyst fiber of FIG. 5, taken from line 6-6 of FIG. 5, consistent with this invention;
[016] FIG. 7 shows a cross-sectional view of an illustrative embodiment of another plasma-processing system, including an elongated plasma catalyst that extends through an ignition port consistent with this invention;
[017] FIG. 8 shows an illustrative embodiment of an elongated plasma catalyst that can be used in the system of FIG. 7 consistent with this invention;
[018] FIG. 9 shows another illustrative embodiment of an elongated plasma catalyst that can be used in the system of FIG. 7 consistent with this invention;
[019] FIG. 10 shows a side cross-sectional view of an illustrative embodiment of a portion of a plasma-processing system for directing ionizing radiation into a plasma cavity consistent with this invention;
[020] FIG. 11 shows a plan cross-sectional view of a plasma-processing cavity formed in a vessel, as well as multiple parts that are to be processed, consistent with this invention;
[021] FIG. 12 shows a cross-sectional view of the plasma-processing cavity of FIG. 11 , taken along line 12-12 of FIG. 11 , consistent with this invention;
[022] FIG. 13 shows a cross-sectional view of an illustrative cavity with multiple sub-regions formed in a vessel, including parts that are to be processed, consistent with this invention;
[023] FIG. 14 shows a cross-sectional view of another illustrative cavity with multiple sub-regions using a single radiation source consistent with this invention;
[024] FIG. 15 shows a cross-sectional view of yet another illustrative cavity with multiple sub-regions formed in a vessel using separate, devoted radiation sources and a voltage supply consistent with this invention; and
[025] FIG. 16 shows a flow-chart illustrating an illustrative plasma-assisted multi-part processing method consistent with this invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS
[026] This invention may relate to methods and apparatus for initiating, modulating, and sustaining plasmas and for plasma-assisted processing of multiple parts for a variety of applications, including, for example, heat-treating, synthesizing and depositing carbides, nitrides, borides, oxides, and other materials; doping, carburizing, nitriding, carbonitriding, sintering, joining, decrystallizing, ashing, sterilizing, cleaning, etc.
[027] The following commonly owned, concurrently filed U.S. patent applications are hereby incorporated by reference in their entireties: U.S. Patent
Application No. 10/ (Atty. Docket No. 1837.0008), No. 10/ J (Atty.
Docket No. 1837.0009), No. 10/ , (Atty. Docket No. 1837.0010),
No. 10/ , (Atty. Docket No. 1837.0011), No. 10/ (Atty. Docket
No. 1837.0012), No. 10/ , (Atty. Docket No. 1837.0013), No. 10/ , (Atty. Docket No. 1837.0015), No. 10/ , (Atty. Docket No. 1837.0017),
No. 10/ , (Atty. Docket No. 1837.0018), No. 10/ , (Atty. Docket
No. 1837.0020), No. 10/ , (Atty. Docket No. 1837.0021), No. 10/
(Atty. Docket No. 1837.0023), No. 10/ , (Atty. Docket No. 1837.0024),
No. 10/ (Atty. Docket No. 1837.0025), No. 10/ , (Atty. Docket
No. 1837.0026), No. 10/ , (Atty. Docket No. 1837.0027), No. 10/ ,_
(Atty. Docket No. 1837.0028), No. 10/ , (Atty. Docket No. 1837.0029),
No. 10/ , (Atty. Docket No. 1837.0030), No. 10/ , (Atty. Docket
No. 1837.0032), and No. 10/ , (Atty. Docket No. 1837.0033).
[028] Illustrative Plasma System
[029] FIG. 1 shows illustrative plasma-assisted processing system 10 consistent with one aspect of this invention. In this embodiment, plasma- processing cavity 12 can be formed in vessel 13 that is positioned inside radiation chamber (i.e., applicator) 14 and multiple parts 11 can be located at least partially within cavity 12. In another embodiment (not shown), vessel 13 and radiation chamber 14 are the same, thereby eliminating the need for two separate components.
[030] Vessel 13 can include one or more radiation-transmissive insulating layers to improve its thermal insulation properties without significantly shielding cavity 12 from the radiation used to form a plasma. As explained more fully below, more than one cavity can be formed in vessel 13. In one embodiment, multiple cavities can be formed in vessel 13 and those cavities can be in fluid communication with one another. At least one portion of each of parts 11 can be placed in cavity 12. Alternatively, multiple vessels can be placed in chamber 14 and each of the vessels can have multiple cavities, if desired.
[031] As used herein, a plasma-processing cavity is any localized volume capable of igniting, modulating, and/or sustaining a plasma consistent with this invention. It will be appreciated that a cavity consistent with this invention need not be completely closed, and may indeed be open. It is known that a plasma can be ignited by subjecting a gas to a sufficient amount of radiation. The plasma may then be modulated or sustained by direct absorption of the radiation, but may be assisted by a plasma catalyst as well. [032] In one embodiment, cavity 12 is formed in a vessel made of ceramic. Due to the extremely high temperatures that can be achieved with plasmas consistent with this invention, a ceramic capable of operating at, for example, about 3,000 degrees Fahrenheit can be used. The ceramic material can include, by weight, 29.8% silica, 68.2% alumina, 0.4% ferric oxide, 1 % titania, 0.1% lime, 0.1% magnesia, 0.4% alkalies, which is sold under Model No. LW-30 by New Castle Refractories Company, of New Castle, Pennsylvania. It will be appreciated by those of ordinary skill in the art, however, that other materials, such as quartz, and those different from the one described above, can also be used consistent with the invention. It will also be appreciated that because the operating temperature can be different for different processing processes, the material used to make the vessel may only need to withstand temperatures substantially below 3,000 degree Fahrenheit, such as 2,500 or about 1 ,000 degrees Fahrenheit, or even lower.
[033] In one experiment, a catalyzed processing plasma was formed in a partially open cavity inside a first brick and topped with a second brick. The cavity had dimensions of about 2 inches by about 2 inches by about 1.5 inches. At least two holes were also provided in the brick in communication with the cavity: one for viewing the plasma and at least one hole for providing the gas. The size of the cavity can depend on the desired processing being performed. Also, the cavity can be configured to prevent the plasma from rising/floating away from the primary processing region.
[034] As shown in FIG. 1 , for example, cavity 12 can be connected to one or more gas sources 24 (e.g., a source of argon, nitrogen, hydrogen, xenon, krypton) by line 20 and control valve 22, which may be powered by power supply 28. Line 20 may be tubing or any other device capable of delivering a gas. In one embodiment, the diameter of the tube is sufficiently small to prevent radiation leakage (e.g., between about 1/16 inch and about ΛA inch, such as about 1/8"). Also, if desired, a vacuum pump (not shown) can be connected to the chamber to remove any undesirable fumes that may be generated during processing. Although not shown in FIG. 1 , cavity 12 and chamber 14 can have one or more separate gas ports for removing gas.
[035] A radiation leak detector (not shown) was installed near source 26 and waveguide 30 and connected to a safety interlock system to automatically turn off the radiation (e.g., microwave) power supply if a leak above a predefined safety limit, such as one specified by the FCC and/or OSHA (e.g., 5 mW/cm2), was detected.
[036] Radiation source 26, which may be powered by electrical power supply 28, can direct radiation energy into chamber 14 through one or more waveguides 30. It will be appreciated by those of ordinary skill in the art that source 26 can be connected directly to cavity 12 or chamber 14, thereby eliminating waveguide 30. The radiation energy entering cavity 12 can be used to ignite a plasma within the cavity with the assistance of a plasma catalyst. This plasma can be substantially sustained and confined to the cavity by coupling additional radiation with the catalyst.
[037] Radiation energy can be supplied through optional circulator 32 and tuner 34 (e.g., 3-stub tuner). Tuner 34 can be used to minimize the reflected power as a function of changing ignition or processing conditions, especially before the plasma has formed because radiation power, for example, will be strongly absorbed by the plasma.
[038] As explained more fully below, the location of cavity 12 in chamber 14 may not be critical if chamber 14 supports multiple modes, and especially when the modes are continually or periodically mixed. As also explained more fully below, motor 36 can be connected to mode-mixer 38 for making the time-averaged radiation energy distribution substantially uniform throughout chamber 14. Furthermore, as shown in FIG. 1 , for example, window 40 (e.g., a quartz window) can be disposed in one wall of chamber 14 adjacent to cavity 12, permitting temperature sensor 42 (e.g., an optical pyrometer) to be used to view a process inside cavity 12. In one embodiment, the optical pyrometer output can increase from zero volts as the temperature rises to within the tracking range.
[039] Sensor 42 can develop output signals as a function of the temperature or any other monitorable condition associated with work piece 11 within cavity 12 and provide the signals to controller 44. Dual temperature sensing and heating, as well as automated cooling rate and gas flow controls, can also be used. Controller 44 in turn can be used to control operation of power supply 28, which can have one output connected to source 26 as described above and another output connected to valve 22 to control gas flow into cavity 12. Although not shown in FIG. 1 , chamber 14 can have a separate gas port for removing gas.
[040] The invention has been practiced with equal success employing microwave sources at both 915 MHz and 2.45 GHz provided by Communications and Power Industries (CPI), although radiation having any frequency less than about 333 GHz can be used. The 2.45 GHz system provided continuously variable microwave power from about 0.5 kilowatts to about 5.0 kilowatts. A 3-stub tuner allowed impedance matching for maximum power transfer and a dual directional coupler (not shown) was used to measure forward and reflected powers. Also, optical pyrometers were used for remote sensing of the sample temperature.
[041] As mentioned above, radiation having any frequency less than about 333 GHz can be used consistent with this invention. For example, frequencies, such as power line frequencies (about 50 Hz to about 60 Hz), can be used, although the pressure of the gas from which the processing plasma is formed may be lowered to assist with plasma ignition. Also, any radio frequency or microwave frequency can be used consistent with this invention, including frequencies greater than about 100 kHz. In most cases, the gas pressure for such relatively high frequencies need not be lowered to ignite, modulate, or sustain a plasma, thereby enabling many plasma-processes to occur at atmospheric pressures and above.
[042] The equipment was computer controlled using LabView 6i software, which provided real-time temperature monitoring and microwave power control. Noise was reduced by using sliding averages of suitable number of data points. Also, to improve speed and computational efficiency, the number of stored data points in the buffer array was limited by using shift registers and buffer sizing. The pyrometer measured the temperature of a sensitive area of about 1 cm2, which was used to calculate an average temperature. The pyrometer sensed radiant intensities at two wavelengths and fit those intensities using Planck's law to determine the temperature.
[043] It will be appreciated, however, that other devices and methods for monitoring and controlling temperature are also available and can be used consistent with this invention. For example, control software that can be used consistent with this invention is described in commonly owned, concurrently filed
U.S. Patent Application No. 10/ , (Attorney Docket No. 1837.0033), which is hereby incorporated by reference in its entirety.
[044] Chamber 14 had several glass-covered viewing ports with radiation shields and one quartz window for pyrometer access. Several ports for connection to a vacuum pump and a gas source were also provided, although not necessarily used.
[045] System 10 also included a closed-loop deionized water-cooling system (not shown) with an external heat exchanger cooled by tap water. During operation, the deionized water first cooled the magnetron, then the load-dump in the circulator (used to protect the magnetron), and finally the radiation chamber through water channels welded on the outer surface of the chamber.
[046] Plasma Catalysts
[047] A plasma catalyst consistent with this invention can include one or more different materials and may be either passive or active. A plasma catalyst can be used, among other things, to ignite, modulate, and/or sustain a plasma at a gas pressure that is less than, equal to, or greater than atmospheric pressure.
[048] One method of forming a processing plasma consistent with this invention can include subjecting a gas in a cavity to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a passive plasma catalyst. A passive plasma catalyst consistent with this invention can include any object capable of inducing a plasma by deforming a local electric field (e.g., an electromagnetic field) consistent with this invention, without necessarily adding additional energy through the catalyst, such as by applying an electric voltage to create a spark.
[049] A passive plasma catalyst consistent with this invention can be, for example, a nano-particle or a nano-tube. As used herein, the term "nano-particle" can include any particle having a maximum physical dimension less than about 100 nm that is at least electrically semi-conductive. Also, both single-walled and multi- walled carbon nano-tubes, doped and undoped, can be particularly effective for igniting plasmas consistent with this invention because of their exceptional electrical conductivity and elongated shape. The nano-tubes can have any convenient length and can be a powder fixed to a substrate. If fixed, the nano- tubes can be oriented randomly on the surface of the substrate or fixed to the substrate (e.g., at some predetermined orientation) while the plasma is ignited or sustained.
[050] A passive plasma catalyst can also be a powder consistent with this invention, and need not comprise nano-particles or nano-tubes. It can be formed, for example, from fibers, dust particles, flakes, sheets, etc. When in powder form, the catalyst can be suspended, at least temporarily, in a gas. By suspending the powder in the gas, the powder can be quickly dispersed throughout the cavity and more easily consumed, if desired.
[051] In one embodiment, the powder catalyst can be carried into the cavity and at least temporarily suspended with a carrier gas. The carrier gas can be the same or different from the gas that forms the plasma. Also, the powder can be added to the gas prior to being introduced to the cavity. For example, as shown in FIG. 2, radiation source 52 can supply radiation to radiation chamber 55, in which plasma cavity 60 is placed. Powder source 65 can provide catalytic powder 70 into gas stream 75. In an alternative embodiment, powder 70 can be first added to cavity 60 in bulk (e.g., in a pile) and then distributed in cavity 60 in any number of ways, including flowing a gas through or over the bulk powder. In addition, the powder can be added to the gas for igniting, modulating, or sustaining a plasma by moving, conveying, drizzling, sprinkling, blowing, or otherwise feeding the powder into or within the cavity.
[052] In one experiment, a processing plasma was ignited in a cavity by placing a pile of carbon fiber powder in a copper pipe that extended into the cavity. Although sufficient radiation was directed into the cavity, the copper pipe shielded the powder from the radiation and no plasma ignition took place. However, once a carrier gas began flowing through the pipe, forcing the powder out of the pipe and into the cavity, and thereby subjecting the powder to the radiation, a plasma was nearly instantaneously ignited in the cavity. Such instantaneous ignition can substantially eliminate potentially damaging radiation that could otherwise reflect back into the radiation source.
[053] A powder plasma catalyst consistent with this invention can be substantially non-combustible, thus it need not contain oxygen or burn in the presence of oxygen. Thus, as mentioned above, the catalyst can include a metal, carbon, a carbon-based alloy, a carbon-based composite, an electrically conductive polymer, a conductive silicone elastomer, a polymer nano-composite, an organic- inorganic composite, and any combination thereof.
[054] Also, powder catalysts can be substantially uniformly distributed in the plasma cavity (e.g., when suspended in a gas), and plasma ignition can be precisely controlled within the cavity consistent with this invention. Uniform ignition can be important in certain applications, including those applications requiring brief plasma exposures, such as in the form of one or more bursts. Still, a certain amount of time can be required for a powder catalyst to distribute itself throughout a cavity, especially in complicated, multi-chamber cavities. Therefore, consistent with another aspect of this invention, a powder catalyst can be introduced into the cavity through a plurality of ignition ports to more rapidly obtain a more uniform catalyst distribution therein (see below).
[055] In addition to powder, a passive plasma catalyst consistent with this invention can include, for example, one or more microscopic or macroscopic fibers, sheets, needles, threads, strands, filaments, yarns, twines, shavings, slivers, chips, woven fabrics, tape, whiskers, or any combination thereof. In these cases, the plasma catalyst can have at least one portion with one physical dimension substantially larger than another physical dimension. For example, the ratio between at least two orthogonal dimensions should be at least about 1 :2, but could be greater than about 1 :5, or even greater than about 1 :10.
[056] Thus, a passive plasma catalyst can include at least one portion of material that is relatively thin compared to its length. A bundle of catalysts (e.g., fibers) may also be used and can include, for example, a section of graphite tape. In one experiment, a section of tape having approximately thirty thousand strands of graphite fiber, each about 2-3 microns in diameter, was successfully used. The number of fibers in and the length of a bundle are not critical to igniting, modulating, or sustaining the plasma. For example, satisfactory results have been obtained using a section of graphite tape about one-quarter inch long. One type of carbon fiber that has been successfully used consistent with this invention is sold under the trademark Magnamite®, Model No. AS4C-GP3K, by the Hexcel Corporation, of Anderson, South Carolina. Also, silicon-carbide fibers have been successfully used.
[057] A passive plasma catalyst consistent with another aspect of this invention can include one or more portions that are, for example, substantially spherical, annular, pyramidal, cubic, planar, cylindrical, rectangular or elongated.
[058] The passive plasma catalysts discussed above include at least one material that is at least electrically semi-conductive. In one embodiment, the material can be highly electrically conductive. For example, a passive plasma catalyst consistent with this invention can include a metal, an inorganic material, carbon, a carbon-based alloy, a carbon-based composite, an electrically conductive polymer, a conductive silicone elastomer, a polymer nano-composite, an organic- inorganic composite, or any combination thereof. Some of the possible inorganic materials that can be included in the plasma catalyst include carbon, silicon carbide, molybdenum, platinum, tantalum, tungsten, carbon nitride, and aluminum, although other electrically conductive inorganic materials are believed to work just as well.
[059] In addition to one or more electrically conductive materials, a passive plasma catalyst consistent with this invention can include one or more additives (which need not be electrically conductive). As used herein, the additive can include any material that a user wishes to add to the plasma. For example, in doping semiconductors and other materials, one or more dopants can be added to the plasma through the catalyst. See, e.g., commonly owned, concurrently filed
U.S. Patent Application No. (Atty. Docket No. 1837.0026), which is hereby incorporated by reference in its entirety. The catalyst can include the dopant itself, or it can include a precursor material that, upon decomposition, can form the dopant. Thus, the plasma catalyst can include one or more additives and one or more electrically conductive materials in any desirable ratio, depending on the ultimate desired composition of the plasma and the process using the plasma.
[060] The ratio of the electrically conductive components to the additives in a passive plasma catalyst can vary over time while being consumed. For example, during ignition, the plasma catalyst could desirably include a relatively large percentage of electrically conductive components to improve the ignition conditions. On the other hand, if used while modulating or sustaining the plasma, the catalyst could include a relatively large percentage of additives that may be desirable in a processing process. It will be appreciated by those of ordinary skill in the art that the component ratio of the plasma catalyst used to ignite and, later, to sustain the plasma, could be the same.
[061] A predetermined ratio profile can be used to simplify many plasma processes. In many conventional plasma processes, the components within the plasma are added as necessary, but such addition normally requires programmable equipment to add the components according to a predetermined schedule. However, consistent with this invention, the ratio of components in the catalyst can be varied, and thus the ratio of components in the plasma itself can be automatically varied. That is, the ratio of components in the plasma at any particular time can depend on which of the catalyst portions is currently being consumed by the plasma. Thus, the catalyst component ratio can be different at different locations within the catalyst. And, the current ratio of components in a plasma can depend on the portions of the catalyst currently and/or previously consumed, especially when the flow rate of a gas passing through the plasma chamber is relatively slow.
[062] A passive plasma catalyst consistent with this invention can be homogeneous, inhomogeneous, or graded. Also, the plasma catalyst component ratio can vary continuously or discontinuously throughout the catalyst. For example, in FIG. 3, the ratio can vary smoothly forming a gradient along a length of catalyst 100. Catalyst 100 can include a strand of material that includes a relatively low concentration of a component at section 105 and a continuously increasing concentration toward section 110.
[063] Alternatively, as shown in FIG. 4, the ratio can vary discontinuously in each portion of catalyst 120, which includes, for example, alternating sections 125 and 130 having different concentrations. It will be appreciated that catalyst 120 can have more than two section types. Thus, the catalytic component ratio being consumed by the plasma can vary in any predetermined fashion. In one embodiment, when the plasma is monitored and a particular additive is detected, further processing can be automatically commenced or terminated.
[064] Another way to vary the ratio of components in a sustained plasma is by introducing multiple catalysts having different component ratios at different times or different rates. For example, multiple catalysts can be introduced at approximately the same location or at different locations within the cavity. When introduced at different locations, the plasma formed in the cavity can have a component concentration gradient determined by the locations of the various catalysts. Thus, an automated system can include a device by which a consumable plasma catalyst is mechanically inserted before and/or during plasma igniting, modulating, and/or sustaining.
[065] A passive plasma catalyst consistent with this invention can also be coated. In one embodiment, a catalyst can include a substantially non-electrically conductive coating deposited on the surface of a substantially electrically conductive material. Alternatively, the catalyst can include a substantially electrically conductive coating deposited on the surface of a substantially electrically non-conductive material. FIGS. 5 and 6, for example, show fiber 140, which includes underlayer 145 and coating 150. In one embodiment, a plasma catalyst including a carbon core is coated with nickel to prevent oxidation of the carbon.
[066] A single plasma catalyst can also include multiple coatings. If the coatings are consumed during contact with the plasma, the coatings could be introduced into the plasma sequentially, from the outer coating to the innermost coating, thereby creating a time-release mechanism. Thus, a coated plasma catalyst can include any number of materials, as long as a portion of the catalyst is at least electrically semi-conductive.
[067] Consistent with another embodiment of this invention, a plasma catalyst can be located entirely within a radiation cavity to substantially reduce or prevent radiation energy leakage. In this way, the plasma catalyst does not electrically or magnetically couple with the vessel containing the cavity or to any electrically conductive object outside the cavity. This prevents sparking at the ignition port and can prevent radiation from leaking outside the cavity during the ignition and possibly later if the plasma is sustained. In one embodiment, the catalyst can be located at a tip of a substantially electrically non-conductive extender that extends through an ignition port.
[068] FIG. 7, for example, shows radiation chamber 160 in which plasma- processing cavity 165 is placed. Plasma catalyst 170 can be elongated and extend through ignition port 175. As shown in FIG. 8, and consistent with this invention, catalyst 170 can include electrically conductive distal portion 180 (which is placed in chamber 160) and electrically non-conductive portion 185 (which is placed substantially outside chamber 160, but can extend somewhat into chamber 160). This configuration can prevent an electrical connection (e.g., sparking) between distal portion 180 and chamber 160.
[069] In another embodiment, shown in FIG. 9, the catalyst can be formed from a plurality of electrically conductive segments 190 separated by and mechanically connected to a plurality of electrically non-conductive segments 195. In this embodiment, the catalyst can extend through the ignition port between a point inside the cavity and another point outside the cavity, but the electrically discontinuous profile significantly can prevent sparking and energy leakage.
[070] Another method of forming a plasma consistent with this invention includes subjecting a gas in a cavity to electromagnetic radiation having a frequency less than about 333 GHz in the presence of an active plasma catalyst, which generates or includes at least one ionizing particle.
[071] An active plasma catalyst consistent with this invention can be any particle or high-energy wave packet capable of transferring a sufficient amount of energy to a gaseous atom or molecule to remove at least one electron from the gaseous atom or molecule in the presence of electromagnetic radiation. Depending on the source, the ionizing particles can be directed into the cavity in the form of a focused or collimated beam, or they may be sprayed, spewed, sputtered, or otherwise introduced.
[072] For example, FIG. 10 shows radiation source 200 directing radiation into plasma cavity 210, which can be positioned inside of chamber 205. Plasma cavity 210 may permit a gas to flow through it via ports 215 and 216, if desired. Source 220 can direct ionizing particles 225 into cavity 210. Source 220 can be protected, for example, by a metallic screen, which allows the ionizing particles to pass through but shields source 220 from radiation. If necessary, source 220 can be water-cooled.
[073] Examples of ionizing particles consistent with this invention can include x-ray particles, gamma ray particles, alpha particles, beta particles, neutrons, protons, and any combination thereof. Thus, an ionizing particle catalyst can be charged (e.g., an ion from an ion source) or uncharged and can be the product of a radioactive fission process. In one embodiment, the vessel in which the plasma cavity is formed could be entirely or partially transmissive to the ionizing particle catalyst. Thus, when a radioactive fission source is located outside the cavity, the source can direct the fission products through the vessel to ignite the plasma. The radioactive fission source can be located inside the radiation chamber to substantially prevent the fission products (i.e., the ionizing particle catalyst) from creating a safety hazard.
[074] In another embodiment, the ionizing particle can be a free electron, but it need not be emitted in a radioactive decay process. For example, the electron can be introduced into the cavity by energizing the electron source (such as a metal), such that the electrons have sufficient energy to escape from the source. The electron source can be located inside the cavity, adjacent the cavity, or even in the cavity wall. It will be appreciated by those of ordinary skill in the art that the any combination of electron sources is possible. A common way to produce electrons is to heat a metal, and these electrons can be further accelerated by applying an electric field.
[075] In addition to electrons, free energetic protons can also be used to catalyze a plasma. In one embodiment, a free proton can be generated by ionizing hydrogen and, optionally, accelerated with an electric field.
[076] Multi-mode Radiation Cavities
[077] A radiation waveguide, cavity, or chamber can be designed to support or facilitate propagation of at least one electromagnetic radiation mode. As used herein, the term "mode" refers to a particular pattern of any standing or propagating electromagnetic wave that satisfies Maxwell's equations and the applicable boundary conditions (e.g., of the cavity). In a waveguide or cavity, the mode can be any one of the various possible patterns of propagating or standing electromagnetic fields. Each mode is characterized by its frequency and polarization of the electric field and/or the magnetic field vectors. The electromagnetic field pattern of a mode depends on the frequency, refractive indices or dielectric constants, and waveguide or cavity geometry.
[078] A transverse electric (TE) mode is one whose electric field vector is normal to the direction of propagation. Similarly, a transverse magnetic (TM) mode is one whose magnetic field vector is normal to the direction of propagation. A transverse electric and magnetic (TEM) mode is one whose electric and magnetic field vectors are both normal to the direction of propagation. A hollow metallic waveguide does not typically support a normal TEM mode of radiation propagation. Even though radiation appears to travel along the length of a waveguide, it may do so only by reflecting off the inner walls of the waveguide at some angle. Hence, depending upon the propagation mode, the radiation (e.g., microwave) may have either some electric field component or some magnetic field component along the axis of the waveguide (often referred to as the z-axis).
[079] The actual field distribution inside a cavity or waveguide is a superposition of the modes therein. Each of the modes can be identified with one or more subscripts (e.g., TEι0 ("tee ee one zero"). The subscripts normally specify how many "half waves" at the guide wavelength are contained in the x and y directions. It will be appreciated by those skilled in the art that the guide wavelength can be different from the free space wavelength because radiation propagates inside the waveguide by reflecting at some angle from the inner walls of the waveguide. In some cases, a third subscript can be added to define the number of half waves in the standing wave pattern along the z-axis.
[080] For a given radiation frequency, the size of the waveguide can be selected to be small enough so that it can support a single propagation mode. In such a case, the system is called a single-mode system (i.e., a single-mode applicator). The TEι0 mode is usually dominant in a rectangular single-mode waveguide.
[081] As the size of the waveguide (or the cavity to which the waveguide is connected) increases, the waveguide or applicator can sometimes support additional higher order modes forming a multi-mode system. When many modes are capable of being supported simultaneously, the system is often referred to as highly moded.
[082] A simple, single-mode system has a field distribution that includes at least one maximum and/or minimum. The magnitude of a maximum largely depends on the amount of radiation supplied to the system. Thus, the field distribution of a single mode system is strongly varying and substantially non- uniform.
[083] Unlike a single-mode cavity, a multi-mode cavity can support several propagation modes simultaneously, which, when superimposed, results in a complex field distribution pattern. In such a pattern, the fields tend to spatially smear and, thus, the field distribution usually does not show the same types of strong minima and maxima field values within the cavity. In addition, as explained more fully below, a mode-mixer can be used to "stir" or "redistribute" modes (e.g., by mechanical movement of a radiation reflector). This redistribution desirably provides a more uniform time-averaged field distribution within the cavity.
[084] A multi-mode cavity consistent with this invention can support at least two modes, and may support many more than two modes. Each mode has a maximum electric field vector. Although there may be two or more modes, one mode may be dominant and has a maximum electric field vector magnitude that is larger than the other modes. As used herein, a multi-mode cavity may be any cavity in which the ratio between the first and second mode magnitudes is less than about 1 : 10, or less than about 1 :5, or even less than about 1 :2. It will be appreciated by those of ordinary skill in the art that the smaller the ratio, the more distributed the electric field energy between the modes, and hence the more distributed the radiation energy is in the cavity.
[085] The distribution of plasma within a processing cavity may strongly depend on the distribution of the applied radiation. For example, in a pure single mode system, there may only be a single location at which the electric field is a maximum. Therefore, a strong plasma may only form at that single location. In many applications, such a strongly localized plasma could undesirably lead to non- uniform plasma treatment or heating (i.e., localized overheating and underheating).
[086] Whether or not a single or multi-mode cavity is used consistent with this invention, it will be appreciated by those of ordinary skill in the art that the cavity in which the plasma is formed can be completely closed or partially open. For example, in certain applications, such as in plasma-assisted furnaces, the cavity could be entirely closed. See, for example, commonly owned, concurrently filed U.S. Patent Application No. 10/ , (Attorney Docket No. 1837.0020), which is fully incorporated herein by reference. In other applications, however, it may be desirable to flow a gas through the cavity, and therefore the cavity must be open to some degree. In this way, the flow, type, and pressure of the flowing gas can be varied over time. This may be desirable because certain gases with lower ionization potentials, such as argon, are easier to ignite but may have other undesirable properties during subsequent plasma processing.
[087] Mode-mixing
[088] For many applications, a cavity containing a uniform plasma is desirable. However, because radiation can have a relatively long wavelength (e.g., several tens of centimeters), obtaining a substantially uniform plasma distribution can be difficult to achieve. As a result, consistent with one aspect of this invention, the radiation modes in a multi-mode processing cavity can be mixed, or redistributed, over a period of time. Because the field distribution within the cavity must satisfy all of the boundary conditions set by the inner surface of the cavity, those field distributions can be changed by changing the position of any portion of that inner surface.
[089] In one embodiment consistent with this invention, a movable reflective surface can be located inside the radiation cavity. The shape and motion of the reflective surface should, when combined, change the inner surface of the cavity during motion. For example, an "L" shaped metallic object (i.e., "mode-mixer") when rotated about any axis will change the location or the orientation of the reflective surfaces in the cavity and therefore change the radiation distribution therein. Any other asymmetrically shaped object can also be used (when rotated), but symmetrically shaped objects can also work, as long as the relative motion (e.g., rotation, translation, or a combination of both) causes some change in location or orientation of the reflective surfaces. In one embodiment, a mode-mixer can be a cylinder that is ratable about an axis that is not the cylinder's longitudinal axis.
[090] Each mode of a multi-mode cavity may have at least one maximum electric field vector, but each of these vectors could occur periodically across the inner dimension of the cavity. Normally, these maxima are fixed, assuming that the frequency of the radiation does not change. However, by moving a mode-mixer such that it interacts with the radiation, it is possible to move the positions of the maxima. For example, mode-mixer 38 of FIG. 1 can be used to optimize the field distribution within cavity 12 such that the plasma ignition conditions and/or the plasma sustaining conditions are optimized. Thus, once a plasma is excited, the position of the mode-mixer can be changed to move the position of the maxima for a uniform time-averaged plasma process (e.g., heating).
[091] Thus, consistent with this invention, mode-mixing can be useful during plasma ignition. For example, when an electrically conductive fiber is used as a plasma catalyst, it is known that the fiber's orientation can strongly affect the minimum plasma-ignition conditions. It has been reported, for example, that when such a fiber is oriented at an angle that is greater than 60° to the electric field, the catalyst does little to improve, or relax, these conditions. By moving a reflective surface either in or near the cavity, however, the electric field distribution can be significantly changed.
[092] Mode-mixing can also be achieved by launching the radiation into the applicator chamber through, for example, a rotating waveguide joint that can be mounted inside the applicator chamber. The rotary joint can be mechanically moved (e.g., rotated) to effectively launch the radiation in different directions in the radiation chamber. As a result, a changing field pattern can be generated inside the applicator chamber.
[093] Mode-mixing can also be achieved by launching radiation in the radiation chamber through a flexible waveguide. In one embodiment, the waveguide can be mounted inside the chamber. In another embodiment, the waveguide can extend into the chamber. The position of the end portion of the flexible waveguide can be continually or periodically moved (e.g., bent) in any suitable manner to launch the radiation (e.g., microwave radiation) into the chamber at different directions and/or locations. This movement can also result in mode- mixing and facilitate more uniform plasma processing (e.g., heating) on a time- averaged basis. Alternatively, this movement can be used to optimize the location of a plasma for ignition or other plasma-assisted process.
[094] If the flexible waveguide is rectangular, a simple twisting of the open end of the waveguide will rotate the orientation of the electric and the magnetic field vectors in the radiation inside the applicator chamber. Then, a periodic twisting of the waveguide can result in mode-mixing as well as rotating the electric field, which can be used to assist ignition, modulation, or sustaining of a plasma.
[095] Thus, even if the initial orientation of the catalyst is perpendicular to the electric field, the redirection of the electric field vectors can change the ineffective orientation to a more effective one. Those skilled in the art will appreciate that mode-mixing can be continuous, periodic, or preprogrammed.
[096] In addition to plasma ignition, mode-mixing can be useful during subsequent plasma processing to reduce or create (e.g., tune) "hot spots" in the chamber. When a processing cavity only supports a small number of modes (e.g., less than 5), one or more localized electric field maxima can lead to "hot spots" (e.g., within cavity 12). In one embodiment, these hot spots could be configured to coincide with one or more separate, but simultaneous, plasma ignitions or processing events. Thus, the plasma catalyst can be located at one or more of those ignition or subsequent processing positions.
[097] Multi-location Ignition
[098] A plasma can be ignited using multiple plasma catalysts at different locations. In one embodiment, multiple fibers can be used to ignite the plasma at different points within the cavity. Such multi-point ignition can be especially beneficial when a uniform plasma ignition is desired. For example, when a plasma is modulated at a high frequency (i.e., tens of Hertz and higher), or ignited in a relatively large volume, or both, substantially uniform instantaneous striking and restriking of the plasma can be improved. Alternatively, when plasma catalysts are used at multiple points, they can be used to sequentially ignite a plasma at different locations within a plasma chamber by selectively introducing the catalyst at those different locations. In this way, a plasma ignition gradient can be controllably formed within the cavity, if desired. [099] Also, in a multi-mode joining cavity, random distribution of the catalyst throughout multiple locations in the cavity increases the likelihood that at least one of the fibers, or any other passive plasma catalyst consistent with this invention, is optimally oriented with the electric field lines. Still, even where the catalyst is not optimally oriented (not substantially aligned with the electric field lines), the ignition conditions are improved.
[0100] Furthermore, because a catalytic powder can be suspended in a gas, it is believed that each powder particle may have the effect of being placed at a different physical location within the cavity, thereby improving ignition uniformity within the cavity.
[0101] Dual-Cavity Plasma Igniting/Sustaining
[0102] A dual-cavity arrangement can be used to ignite and sustain a processing plasma consistent with this invention. In one embodiment, a system includes at least an ignition cavity and a second cavity in fluid communication with the ignition cavity. To ignite a plasma, a gas in the ignition cavity can be subjected to electromagnetic radiation having a frequency less than about 333 GHz, optionally in the presence of a plasma catalyst. In this way, the proximity of the first and second cavities may permit a plasma formed in the first cavity to ignite a plasma in the second cavity, which may be sustained with additional electromagnetic radiation.
[0103] In one embodiment of this invention, the ignition cavity can be very small and designed primarily, or solely, for plasma ignition. In this way, very little radiation energy may be required to ignite the plasma, permitting easier ignition, especially when a plasma catalyst is used consistent with this invention.
[0104] In one embodiment, the ignition cavity may be a substantially single mode cavity and the second cavity a multi-mode cavity. When the ignition cavity only supports a single mode, the electric field distribution may strongly vary within the cavity, forming one or more precisely located electric field maxima. Such maxima are normally the first locations at which plasmas ignite, making them ideal points for placing plasma catalysts. It will be appreciated, however, that when a plasma catalyst is used, it need not be placed in the electric field maximum and, many cases, need not be oriented in any particular direction. [0105] Illustrative Plasma-Assisted Processing of Multiple Parts
[0106] As used herein, the term "plasma-assisted processing", or simply "plasma-processing," refers to any operation, or combination of operations, that involves the use of a plasma. Thus, a plasma-process can include, for example, heat-treating, synthesizing and depositing carbides, nitrides, borides, oxides, and other materials, doping, carburizing, nitriding, carbonitriding, sintering, joining, decrystallizing, ashing, sterilizing, cleaning, etc.
[0107] In one embodiment consistent with this invention, substantially simultaneous or sequential plasma-processing of multiple parts can be performed by placing those parts in different sub-regions of the same cavity. Each sub-region may be defined by one or more internal cavity walls, although such walls are optional. One radiation source, or several radiation sources combined, can supply radiation to each of the sub-regions to form a processing plasma in each sub- region. At least one plasma catalyst (as described above) may also be placed within or near at least one, and optionally each, of the sub-regions to assist in the igniting, modulating, or sustaining of a plasma there, if desired. The shape of each of the sub-regions and the location of the parts within the sub-regions may be adapted to achieve any desirable plasma distribution for any particular plasma- assisted process. For example, a substantially uniform plasma or a strongly varying plasma distribution can be formed. As explained more fully above, a mode- mixer can be used to "stir" or "redistribute" modes to provide a more uniform time- averaged field distribution (and therefore plasma distribution) within the cavity.
[0108] In another embodiment, each sub-region may have at least one separate, devoted radiation source. The radiation can be provided to the individual sub-regions through an appropriately shaped waveguide (e.g., a horn that connects the radiation source(s) to the individual cavities formed in a large ceramic block) or supplied directly without the use of a waveguide.
[0109] FIG. 11 shows a cross-sectional view of illustrative plasma- processing cavity 360 formed in vessel 313 consistent with this invention. Vessel 313 can be radiation transmissive when located in a radiation chamber (such as chamber 14 of FIG. 1) or radiation-opaque, thereby eliminating the need to place vessel 313 in another chamber. Vessel 313 can include a plurality of apertures 340, 342, and 344 through which parts 310, 312, and 314 can extend, respectively. Parts 310, 312, and 314 can be joined to parts 320, 322, and 324, respectively, for example, as shown in FIG. 11. In this case, parts 320, 322, and 324 are located entirely within cavity 360, but portions of these parts may also extend outside of cavity 360. Parts 310, 312, and 314 can also be placed entirely within cavity 360, if desired.
[0110] It will be appreciated that the number of apertures and the number of parts extending therethrough can be more or less than three, and that these numbers need not be the same. That is, multiple parts can simultaneously extend through a single aperture, if desired. It will further be appreciated that parts 310, 312, and 314 need not be configured along a single wall of vessel 313 and may be configured in any convenient manner that permits the desired plasma-process to occur.
[0111] Parts 310, 312, 314, 320, 322, and 324 can be supported by one or more inner surfaces of cavity 360. For example, FIG. 12 shows a cross-sectional view of vessel 313 and parts 320, 322, and 324, taken along line 12-12 of FIG. 11. As shown in FIG. 12, parts 320, 322, and 324 can be supported on inner surface 335 in recesses 336, 337, and 338. Although these recesses are separate, they need not be and, in fact, the surface need not be recessed at all. In this case, the recesses permit parts 310, 312, and 314 to contact parts 320, 322, and 324, respectively, at predetermined locations. Alternatively, recesses can be replaced with raised portions (not shown) or simply be flush with the rest of surface 335, if desired. In yet another embodiment, one or more additional mounting structures can be used to support the parts in any convenient position and orientation. As described more fully in commonly owned, concurrently filed U.S. Patent
Application 10/ , (Attorney Docket No. 1837.0028), which is incorporated by reference in its entirety, these recesses or raised portions can also be used to selectively form a plasma, or prevent formation of a plasma, within cavity 360.
[0112] A plasma can be formed in cavity 360 by subjecting a gas to electromagnetic radiation. As shown schematically in FIG. 11 , gas may be supplied and removed through one or more gas ports and, as shown schematically in FIG. 12, the radiation can be supplied by radiation source 326 through horn-shaped radiation waveguide 330 or a coaxial cable (not shown). Alternatively, waveguide 330 can be eliminated if source 326 is mounted directly to vessel 313. In this case, radiation source 326 can supply radiation, and is used to modulate or sustain a plasma for processing all of parts 310, 312, 314, 320, 322, and 324. Alternatively, multiple radiation sources (not shown) can be used to direct radiation into cavity 360. As explained more fully below, each of the sources can also be used to modulate or sustain a plasma for one or more respective parts.
[0113] As described more fully above, a plasma catalyst can be used to ignite, modulate, and/or sustain a plasma within cavity 360 at a gas pressure that is less than, equal to, or greater than atmospheric pressure. The plasma catalyst can be active or passive.
[0114] FIG. 13 shows another illustrative embodiment of a plasma- processing cavity with multiple internal walls 430 and 432 forming separate sub- regions 460, 462, and 464 for processing multiple parts 410, 412, 414, 420, 422, and 424. For illustrative simplicity, FIG. 13 does not show a radiation source. However, one or more radiation sources can be used to supply radiation to each of the sub-regions. Also, although separate gas ports are shown for each sub-region, it will be appreciated that one or more common gas ports can be used to supply a gas to all of the sub-regions and that each of those sub-regions need not be completely separated - that is, the sub-regions may be in fluid communication with each other (see, for example, FIG. 14).
[0115] Vessel 413 can be radiation transmissive when located in a radiation chamber (such as chamber 14 of FIG. 1) or radiation-opaque, thereby eliminating the need to place vessel 413 in another chamber. Vessel 413 can include a plurality of apertures 440, 442, and 444 through which parts 410, 412, and 414 can extend, respectively. Parts 410, 412, and 414 can be joined to parts 420, 422, and 424, for example, as shown in FIG. 13. In this case, parts 420, 422, and 424 can be located entirely within sub-regions 460, 462, and 464, respectively, but portions of these parts may also extend outside of these sub-regions. Parts 410, 412, and 414 can also be placed entirely within sub-regions 460, 462, and 464, if desired.
[0116] It will be appreciated that the number of apertures (or the number of sub-regions) and the number of parts extending therethrough can be more or less than three and that these numbers need not be the same. That is, multiple parts can be located within a single sub-region and simultaneously extend through a single aperture, if desired. It will further be appreciated that parts 410, 412, 414, 420, 422, and 424 need not be configured along a single wall of vessel 413 and may be configured in any convenient manner that permits the desired plasma- process to occur. Also, parts 410, 412, 414, 420, 422, and 424 can be supported by one or more inner surfaces of sub-regions 460, 462, and 464.
[0117] A plasma can be formed in sub-regions 460, 462, and 464 by subjecting a gas to electromagnetic radiation. As shown schematically in FIG. 13, gas may be supplied and removed through one or more gas ports and, as shown schematically in FIG.14, the radiation can be supplied by radiation source 426 through radiation waveguide 430 with multiple branches 470, 472, and 474. It will be appreciated that source 426 can selectively or sequentially supply radiation to respective sub-regions 460, 462, and 464.
[0118] For example, one or more control valves (not shown) may be installed in respective channels 470, 472, and 474. These control valves can partially or entirely block the radiation through respective channels 470, 472, and 474, if desired, in any type of timing sequence. It will be appreciated that these valves may be powered by a power supply (such as power supply 28 of FIG. 1). It will also be appreciated that a controller (such as controller 44 of FIG. 1) may control the operation of the control valves. It will further be appreciated that by controlling the operation of the control valves, selective, simultaneous, or sequential plasma processing within respective sub-regions may be achieved. Alternatively, a single distributor or multiplexer can be used before branches 470, 472, and 474 to distribute radiation into the various cavities as needed.
[0119] Although FIG. 14 schematically shows a single radiation source supplying radiation to each of the sub-regions through separate channels 470, 472, and 474, it will be appreciated that the source can also be used to supply radiation to all of the sub-regions without separate channels, such as when vessel 413 is radiation-transmissive and located in a radiation chamber. Alternatively, multiple radiation sources (not shown) can be used to direct radiation into individual sub- regions. Each of the sources can also be used to modulate or sustain a plasma for one or more of the respective sub-regions.
[0120] As described more fully above, a plasma catalyst can be used to ignite, modulate, and/or sustain a plasma within sub-regions at a gas pressure that is less than, equal to, or greater than atmospheric pressure. The plasma catalyst can be active or passive.
[0121] FIG. 15 shows a cross-sectional view of yet another illustrative embodiment of a plasma-processing cavity with multiple internal walls forming separate sub-regions 560, 562, and 564 for processing multiple parts 510, 512, and 514. In this case, multiple radiation sources 526, 527, and 528 can be used to direct radiation into sub-regions 560, 562, and 564 through horn-shaped waveguides 530, 532, and 534, respectively. Although FIG. 15 schematically shows each of the multiple radiation sources supplying radiation to one respective sub-region through separate waveguides 530, 532, and 534, these waveguides can be eliminated if sources 526, 527, and 528 are mounted directly to vessel 513.
[0122] Although FIG. 15 schematically shows each of the multiple radiation sources supplying radiation to one sub-region, it will be appreciated that each of the sources can be used to modulate or sustain a plasma for more than one sub- regions (See, e.g., FIG. 14). Alternatively, more than one radiation sources can be combined, and can supply radiation to one cavity or sub-region. It will also be appreciated that radiation can be directed into respective sub-regions 560, 562, and 564 substantially simultaneously. It will further be appreciated that radiation can be directed into respective sub-regions 560, 562, and 564 sequentially, if desired, using one or more control signals (not shown).
[0123] An electric bias may be applied to the any of the parts during a plasma-assisted processing consistent with the invention. For example, FIG. 15 shows how voltage supply 580 may apply an electric bias to parts 510, 512, and 514. Such a bias may facilitate heating of the parts as well as promote deposition by accelerating charged particles in the plasma toward the parts, which may encourage uniform processing. The bias applied to the parts may be, for example, AC, DC, pulsed, continuous, or periodic or preprogrammed. The magnitude of the bias may be selected according to the particular application. For example, the magnitude of the voltage may range from about 0.1 volts to about 100 volts, or even several hundred or thousands of volts, depending on the desired rate of attraction of the charged particles. Further, the bias may be positive or negative, or alternate therebetween. It will be appreciated that the parts may be placed on an electrically conductive plate (not shown) and a potential bias may be applied to the plate during a plasma-assisted process consistent with the invention.
[0124] FIG. 16 shows a flow chart of an illustrative plasma-assisted multipart process method consistent with this invention. The process can include, for example, heat-treating, synthesizing and depositing carbides, nitrides, borides, oxides, and other materials, doping, carburizing, nitriding, carbonitriding, sintering, joining, decrystallizing, ashing, sterilizing, cleaning, etc. It will be appreciated that a plurality of different types of heat treatments can be conducted substantially simultaneously.
[0125] In step 600, multiple parts can be placed in or near a plurality of sub- regions of a cavity formed within a processing vessel. As explained more fully above, an electric bias may be applied to the any of the parts during a plasma- assisted processing consistent with the invention. Each sub-region may be defined by one or more internal cavity walls, although such walls are optional. The walls may be layers of a material that are substantially radiation transmissive or opaque. At least one plasma catalyst (as described above) may also be placed within (or near) at least one, and optionally each, of the sub-regions to assist in the igniting, modulating, or sustaining of a plasma there, if desired.
[0126] In step 610, a gas can be introduced into the vessel, and therefore into the sub-regions, through one or more gas inlets. The gas can be introduced through at least one gas inlet. Each sub-region may have at least one separate gas inlet and each gas inlet may be connected to a gas flow controller, such that each of the sub-regions has an independently controllable amount of gas flowing therethrough. Alternatively, the gas may flow into a processing cavity through the same aperture in which a part is located.
[0127] In step 620, the gas can be exposed to electromagnetic radiation to form a plasma in the vessel and therefore the sub-regions. One radiation source, or several radiation sources combined, can supply radiation to each of the sub- regions to form a processing plasma in each sub-region. Alternatively, each sub- region may have at least one separate, devoted radiation source. As explained more fully above, a mode-mixer can be used to "stir" or "redistribute" modes to provide a more uniform time-averaged radiation distribution (and therefore plasma distribution) within the cavity and any sub-regions. Plasma formation can be prevented by shielding a portion of the part's surface with a substantially radiation opaque material, if desired.
[0128] In step 630, the plasma can be sustained in each of the sub-regions so that each of the plurality of parts can be exposed to a plasma. The plasma can be sustained in the cavity or sub-regions by continued absorption of radiation until the plasma-assisted process is over or until a predetermined temperature indicative of a particular process status is attained.
[0129] In the foregoing described embodiments, various features are grouped together in a single embodiment for purposes of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the following claims are hereby incorporated into this Detailed Description of Embodiments, with each claim standing on its own as a separate preferred embodiment of the invention.

Claims

WE CLAIM:
1. An apparatus for multipart processing: a vessel in which a cavity is formed, wherein the cavity has a plurality of sub- regions each for containing at least one part to be processed; at least one electromagnetic radiation source that is configured to direct radiation into the vessel, wherein the radiation has a frequency less than about 333 GHz, such that the radiation and the gas cooperate to cause a plasma to form in at least two of the sub-regions, the sub-regions being configured to enable each of the plurality of parts to be subjected to the plasma; and a conduit for supplying a gas to the vessel, wherein the gas is capable of forming a plasma in the presence of the radiation.
2. The apparatus of claim 1 , further comprising a waveguide for directing the radiation from the at least one source to the cavity.
3. The apparatus of claim 1 , further comprising a region in the vessel configured to contain a plasma catalyst.
4. The apparatus of claim 1 , further comprising at least one of an active plasma catalyst and a passive plasma catalyst located in the presence of the radiation.
5. The apparatus of claim 4, wherein the active catalyst comprises at least one of an ionizing particle and a radioactive fission product.
6. The apparatus of claim 4, wherein the passive catalyst comprises a material that is at least electrically semi-conductive.
7. The apparatus of claim 6, wherein the catalyst comprises at least one of metal, inorganic material, carbon, carbon-based alloy, carbon-based composite, electrically conductive polymer, conductive silicone elastomer, polymer nanocomposite, and an organic-inorganic composite.
8. The apparatus of claim 7, wherein the catalyst is in the form of at least one of a nano-particle, a nano-tube, a powder, a dust, a flake, a fiber, a sheet, a needle, a thread, a strand, a filament, a yarn, a twine, a shaving, a sliver, a chip, a woven fabric, a tape, and a whisker.
9. The apparatus of claim 8, wherein the catalyst comprises carbon fiber.
10. The apparatus of claim 6, wherein the catalyst is in the form of at least one of a nano-particle, a nano-tube, a powder, a dust, a flake, a fiber, a sheet, a needle, a thread, a strand, a filament, a yarn, a twine, a shaving, a sliver, a chip, a woven fabric, a tape, and a whisker.
11. The apparatus of claim 4, wherein the plasma catalyst enables plasma formation at about atmospheric pressure.
12. The apparatus of claim 1 , further comprising at least one temperature sensor for monitoring a temperature in the cavity.
13. The apparatus of claim 1 , further comprising at least one controller for adjusting a power level of the at least one source as a function of a temperature in the cavity.
14. The apparatus of claim 1 , further comprising at least one mode-mixer positioned such that, during operation, it redistributes the radiation within the cavity.
15. The apparatus of claim 1 , further comprising at least one shield for at least partially covering at least one of the plurality of parts.
16. The apparatus of claim 1 , wherein the vessel is configured to permit at least one of the plurality of parts to be located partially external to the vessel.
17. The apparatus of claim 1 , wherein the vessel is configured such that the plasma is substantially uniform proximate to each of the work pieces exposed to the plasma.
18. The apparatus of claim 1 , wherein each of the sub-regions is defined by at least one internal cavity wall.
19. The apparatus of claim 18, further comprising a plurality of plasma catalysts, wherein at least one of the plurality of plasma catalysts is located in each of the sub-regions.
20. The apparatus of claim 19, wherein the shape of each of the sub- regions is adapted and each of the work pieces positioned within each of the sub- regions is exposed to a substantially similar amount of plasma to achieve a substantially uniform heating during processing.
21. The apparatus of claim 18, further comprising a waveguide manifold for separately directing the radiation from the at least one radiation source into each of the sub-regions.
22. The apparatus of claim 18, further comprising at least one temperature sensor that monitors at least one physical condition associated with at least one of the cavities, wherein the physical condition is selected from a group consisting of a temperature, radiation energy absorbed in the cavity, and a combination thereof.
23. The apparatus of claim 18, further comprising at least one controller that adjusts the power level of radiation from the at least one radiation source in response to at least one of the temperature and the radiation energy absorbed in at least one of the cavities.
24. The apparatus of claim 18, further comprising at least one shield that at least partially covers at least one of the plurality of parts.
25. The apparatus of claim 18, wherein the cavity has a shape such that only a first portion of each of the plurality of parts is located inside a respective one of the sub-regions and a second portion of each of the plurality of parts is located outside the respective one of the sub-regions during processing.
26. The apparatus of claim 1 , wherein the processing is selected from a group consisting of heat-treating, synthesizing and depositing carbides, nitrides, borides, oxides, and other materials, doping, carburizing, nitriding, carbonitriding, sintering, joining, decrystallizing, ashing, sterilizing, cleaning, and any combination thereof.
27. The apparatus of claim 26, wherein a plurality of different types of the processing are performed at about the same time.
28. The apparatus of claim 1 , further comprising a plurality of waveguides for directing the radiation from the at least one source to a respective one of the sub-regions.
29. The apparatus of claim 28, wherein the at least one radiation source comprises a plurality of radiation sources, and wherein each of the waveguides directs the radiation from one of the plurality of radiation sources into one of the cavities.
30. A method of multipart processing comprising: placing a plurality of parts to be processed in a plurality of sub-regions of a cavity formed within a processing vessel; introducing a gas into the vessel; exposing the gas to electromagnetic radiation having a frequency less than about 333 GHz to form a plasma in the vessel; and sustaining the plasma in each of the sub-regions so that each of the plurality of parts is exposed to plasma.
31. The method of claim 30, further comprising forming the plasma in the presence of a plasma catalyst.
32. The method of claim 31 , wherein the catalyst comprises at least one of metal, inorganic material, carbon, carbon-based alloy, carbon-based composite, electrically conductive polymer, conductive silicone elastomer, polymer nanocomposite, and an organic-inorganic composite.
33. The method of claim 32, wherein the catalyst is in the form of at least one of a nano-particle, a nano-tube, a powder, a dust, a flake, a fiber, a sheet, a needle, a thread, a strand, a filament, a yarn, a twine, a shaving, a sliver, a chip, a woven fabric, a tape, and a whisker.
34. The method of claim 33, wherein the catalyst comprises carbon fiber.
35. The method of claim 31 , wherein the catalyst is in the form of at least one of a nano-particle, a nano-tube, a powder, a dust, a flake, a fiber, a sheet, a needle, a thread, a strand, a filament, a yarn, a twine, a shaving, a sliver, a chip, a woven fabric, a tape, and a whisker.
36. The method of claim 30, further comprising distributing the radiation between the sub-regions in a substantially uniform manner.
37. The method of claim 30, further comprising at least partially shielding at least one of the parts from the radiation.
38. The method of claim 30, wherein the plurality of parts are exposed to the plasma to achieve at least one of heat-treating, synthesizing and depositing carbides, nitrides, borides, oxides, and other materials, doping, carburizing, nitriding, carbonitriding, sintering, joining, decrystallizing, ashing, sterilizing, and cleaning.
39. The method of claim 38, wherein a plurality of different types of heat treatments occur substantially simultaneously.
40. The method of claim 39, further comprising monitoring at least one of a temperature and a radiation energy absorbed in a cavity in the vessel.
41. The method of claim 30, wherein the sub-regions are formed and the parts positioned within the sub-regions such that each of the parts is exposed to the plasma for substantially the same amount of time or power to achieve a substantially uniform plasma exposure.
42. The method of claim 31 , further comprising forming the plurality of sub-regions by forming at least one wall inside the cavity.
43. The method of claim 42, wherein the forming comprises forming the at least one wall by placing the plurality of parts between layers of a material that are substantially radiation transmissive.
44. The method of claim 43, wherein the introducing comprises introducing the gas through multiple gas inlets.
45. The method of claim 44, wherein each of the gas inlets is connected to a gas flow controller, such that each of the sub-regions has an independently controllable amount of gas flowing therethrough.
46. The method of claim 30, wherein the sustaining comprises directing the radiation into each of the sub-regions.
47. The method of claim 30, wherein a mode-mixer is moved relative to the plurality of parts to make the time-averaged radiation power more uniformly distributed in the sub-regions.
48. The method of claim 47, further comprising at least partially shielding at least one of the parts from the radiation during the sustaining.
49. The method of claim 30, wherein the sustaining comprises supplying radiation to each of the sub-regions by a plurality of radiation sources.
50. The method of claim 30, further comprising applying an electric bias at least one of the parts.
51. The method of claim 50, wherein the electric bias is in the form of at least one of AC, DC, pulsed, continuous, periodic, pregrogrammed, and any combination thereof.
52. The method of claim 30, further comprising: placing the first and second parts on an electrically conductive plate; and applying an electric bias to the plate.
53. The method of claim 52, wherein the electric bias is in the form of at least one of AC, DC, pulsed, continuous, periodic, preprogrammed, and any combination thereof.
PCT/US2003/014034 2002-05-08 2003-05-07 Plasma-assisted multi-part processing WO2003095058A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003234474A AU2003234474A1 (en) 2002-05-08 2003-05-07 Plasma-assisted multi-part processing

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US37869302P 2002-05-08 2002-05-08
US60/378,693 2002-05-08
US43067702P 2002-12-04 2002-12-04
US60/430,677 2002-12-04
US43527802P 2002-12-23 2002-12-23
US60/435,278 2002-12-23

Publications (2)

Publication Number Publication Date
WO2003095058A2 true WO2003095058A2 (en) 2003-11-20
WO2003095058A3 WO2003095058A3 (en) 2004-04-29

Family

ID=29424519

Family Applications (21)

Application Number Title Priority Date Filing Date
PCT/US2003/014038 WO2003096771A1 (en) 2002-05-08 2003-05-07 Plasma generation and processing with multiple radiation sources
PCT/US2003/014054 WO2003095130A1 (en) 2002-05-08 2003-05-07 Plasma-assisted sintering
PCT/US2003/014053 WO2003096773A1 (en) 2002-05-08 2003-05-07 Plasma-assisted joining
PCT/US2003/014124 WO2003095699A1 (en) 2002-05-08 2003-05-07 Plasma-assisted enhanced coating
PCT/US2003/014123 WO2003096774A1 (en) 2002-05-08 2003-05-07 Plasma catalyst
PCT/US2003/014137 WO2003096383A2 (en) 2002-05-08 2003-05-07 Cavity shapes for plasma-assisted processing
PCT/US2003/014034 WO2003095058A2 (en) 2002-05-08 2003-05-07 Plasma-assisted multi-part processing
PCT/US2003/014134 WO2003096369A1 (en) 2002-05-08 2003-05-07 Plasma-assisted gas production
PCT/US2003/014133 WO2003096747A2 (en) 2002-05-08 2003-05-07 Plasma heating apparatus and methods
PCT/US2003/014055 WO2003096381A2 (en) 2002-05-08 2003-05-07 Plasma-assisted processing in a manufacturing line
PCT/US2003/014130 WO2003095591A1 (en) 2002-05-08 2003-05-07 Plasma-assisted doping
PCT/US2003/014052 WO2003095090A1 (en) 2002-05-08 2003-05-07 Plasma-assisted carburizing
PCT/US2003/014121 WO2003096768A1 (en) 2002-05-08 2003-05-07 Plasma assisted dry processing
PCT/US2003/014036 WO2003096380A2 (en) 2002-05-08 2003-05-07 Plasma-assisted nitrogen surface-treatment
PCT/US2003/014122 WO2003096370A1 (en) 2002-05-08 2003-05-07 Methods and apparatus for forming and using plasma jets
PCT/US2003/014040 WO2003095089A1 (en) 2002-05-08 2003-05-07 Plasma-assisted formation of carbon structures
PCT/US2003/014135 WO2003096382A2 (en) 2002-05-08 2003-05-07 Methods and apparatus for plasma processing control
PCT/US2003/014037 WO2003096770A1 (en) 2002-05-08 2003-05-07 Plasma-assisted coating
PCT/US2003/014039 WO2003096772A1 (en) 2002-05-08 2003-05-07 Plasma-assisted decrystallization
PCT/US2003/014035 WO2003095807A1 (en) 2002-05-08 2003-05-07 Plasma-assisted engine exhaust treatment
PCT/US2003/014136 WO2003096749A1 (en) 2002-05-08 2003-05-07 Plasma-assisted heat treatment

Family Applications Before (6)

Application Number Title Priority Date Filing Date
PCT/US2003/014038 WO2003096771A1 (en) 2002-05-08 2003-05-07 Plasma generation and processing with multiple radiation sources
PCT/US2003/014054 WO2003095130A1 (en) 2002-05-08 2003-05-07 Plasma-assisted sintering
PCT/US2003/014053 WO2003096773A1 (en) 2002-05-08 2003-05-07 Plasma-assisted joining
PCT/US2003/014124 WO2003095699A1 (en) 2002-05-08 2003-05-07 Plasma-assisted enhanced coating
PCT/US2003/014123 WO2003096774A1 (en) 2002-05-08 2003-05-07 Plasma catalyst
PCT/US2003/014137 WO2003096383A2 (en) 2002-05-08 2003-05-07 Cavity shapes for plasma-assisted processing

Family Applications After (14)

Application Number Title Priority Date Filing Date
PCT/US2003/014134 WO2003096369A1 (en) 2002-05-08 2003-05-07 Plasma-assisted gas production
PCT/US2003/014133 WO2003096747A2 (en) 2002-05-08 2003-05-07 Plasma heating apparatus and methods
PCT/US2003/014055 WO2003096381A2 (en) 2002-05-08 2003-05-07 Plasma-assisted processing in a manufacturing line
PCT/US2003/014130 WO2003095591A1 (en) 2002-05-08 2003-05-07 Plasma-assisted doping
PCT/US2003/014052 WO2003095090A1 (en) 2002-05-08 2003-05-07 Plasma-assisted carburizing
PCT/US2003/014121 WO2003096768A1 (en) 2002-05-08 2003-05-07 Plasma assisted dry processing
PCT/US2003/014036 WO2003096380A2 (en) 2002-05-08 2003-05-07 Plasma-assisted nitrogen surface-treatment
PCT/US2003/014122 WO2003096370A1 (en) 2002-05-08 2003-05-07 Methods and apparatus for forming and using plasma jets
PCT/US2003/014040 WO2003095089A1 (en) 2002-05-08 2003-05-07 Plasma-assisted formation of carbon structures
PCT/US2003/014135 WO2003096382A2 (en) 2002-05-08 2003-05-07 Methods and apparatus for plasma processing control
PCT/US2003/014037 WO2003096770A1 (en) 2002-05-08 2003-05-07 Plasma-assisted coating
PCT/US2003/014039 WO2003096772A1 (en) 2002-05-08 2003-05-07 Plasma-assisted decrystallization
PCT/US2003/014035 WO2003095807A1 (en) 2002-05-08 2003-05-07 Plasma-assisted engine exhaust treatment
PCT/US2003/014136 WO2003096749A1 (en) 2002-05-08 2003-05-07 Plasma-assisted heat treatment

Country Status (12)

Country Link
US (7) US7132621B2 (en)
EP (15) EP1501631A4 (en)
JP (5) JP5209174B2 (en)
KR (3) KR20050026387A (en)
CN (15) CN100425106C (en)
AT (1) ATE536086T1 (en)
AU (21) AU2003267104A1 (en)
BR (6) BR0309815A (en)
CA (1) CA2485195A1 (en)
IL (2) IL164824A0 (en)
MX (1) MXPA04010875A (en)
WO (21) WO2003096771A1 (en)

Families Citing this family (215)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207646B1 (en) * 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7212860B2 (en) * 1999-05-21 2007-05-01 Cardiac Pacemakers, Inc. Apparatus and method for pacing mode switching during atrial tachyarrhythmias
EP1361437A1 (en) * 2002-05-07 2003-11-12 Centre National De La Recherche Scientifique (Cnrs) A novel biological cancer marker and methods for determining the cancerous or non-cancerous phenotype of cells
US20060057016A1 (en) * 2002-05-08 2006-03-16 Devendra Kumar Plasma-assisted sintering
US7498066B2 (en) * 2002-05-08 2009-03-03 Btu International Inc. Plasma-assisted enhanced coating
DE60223726T2 (en) * 2002-05-08 2008-10-30 Leonhard Kurz Stiftung & Co. Kg METHOD OF DECORATING A BIG, THREE-DIMENSIONAL PLASTIC OBJECT
US7560657B2 (en) * 2002-05-08 2009-07-14 Btu International Inc. Plasma-assisted processing in a manufacturing line
US20050233091A1 (en) * 2002-05-08 2005-10-20 Devendra Kumar Plasma-assisted coating
AU2003267104A1 (en) * 2002-05-08 2003-11-11 Dana Corporation Plasma-assisted processing in a manufacturing line
US20060233682A1 (en) * 2002-05-08 2006-10-19 Cherian Kuruvilla A Plasma-assisted engine exhaust treatment
US7465362B2 (en) * 2002-05-08 2008-12-16 Btu International, Inc. Plasma-assisted nitrogen surface-treatment
US20060062930A1 (en) * 2002-05-08 2006-03-23 Devendra Kumar Plasma-assisted carburizing
US7494904B2 (en) * 2002-05-08 2009-02-24 Btu International, Inc. Plasma-assisted doping
US7638727B2 (en) * 2002-05-08 2009-12-29 Btu International Inc. Plasma-assisted heat treatment
US20060228497A1 (en) * 2002-05-08 2006-10-12 Satyendra Kumar Plasma-assisted coating
US7497922B2 (en) * 2002-05-08 2009-03-03 Btu International, Inc. Plasma-assisted gas production
CN101076221B (en) * 2002-05-08 2011-08-31 Btu国际公司 Multiple radiation sources plasma generating and processing
US7445817B2 (en) * 2002-05-08 2008-11-04 Btu International Inc. Plasma-assisted formation of carbon structures
US20060237398A1 (en) * 2002-05-08 2006-10-26 Dougherty Mike L Sr Plasma-assisted processing in a manufacturing line
US7189940B2 (en) * 2002-12-04 2007-03-13 Btu International Inc. Plasma-assisted melting
US7511246B2 (en) * 2002-12-12 2009-03-31 Perkinelmer Las Inc. Induction device for generating a plasma
US20040216845A1 (en) * 2003-05-02 2004-11-04 Czeslaw Golkowski Non-thermal plasma generator device
JP2005024539A (en) * 2003-06-10 2005-01-27 Hitachi Ltd Charged particle detector and sensing device using the same
US20050067098A1 (en) * 2003-09-30 2005-03-31 Tokyo Electron Limited Method and system for introduction of an active material to a chemical process
JP4324078B2 (en) 2003-12-18 2009-09-02 キヤノン株式会社 Carbon-containing fiber, substrate using carbon-containing fiber, electron-emitting device, electron source using the electron-emitting device, display panel using the electron source, and information display / reproduction device using the display panel, And production methods thereof
FR2871478B1 (en) * 2004-06-15 2006-12-22 Arash Mofakhami CATION-ELECTRON INTRUSION AND COLLISION SYSTEM IN NON-CONDUCTIVE MATERIAL
US7517215B1 (en) * 2004-07-09 2009-04-14 Erc Incorporated Method for distributed ignition of fuels by light sources
US20080129208A1 (en) * 2004-11-05 2008-06-05 Satyendra Kumar Atmospheric Processing Using Microwave-Generated Plasmas
CN101443483B (en) * 2004-11-24 2012-05-30 诺瓦森特里克斯公司 Electrical, plating and catalytic uses of metal nanomaterial compositions
EP1701598B1 (en) * 2005-03-09 2010-05-05 Askair technologies AG Method of operating a flow-through plasma device
AU2006223254B2 (en) 2005-03-11 2012-04-26 Perkinelmer U.S. Llc Plasmas and methods of using them
US20090212015A1 (en) * 2005-03-18 2009-08-27 Dougherty Sr Mike L Plasma-Assisted Processing in a Manufacturing Line
US7742167B2 (en) * 2005-06-17 2010-06-22 Perkinelmer Health Sciences, Inc. Optical emission device with boost device
US8622735B2 (en) * 2005-06-17 2014-01-07 Perkinelmer Health Sciences, Inc. Boost devices and methods of using them
JP2008547163A (en) * 2005-06-17 2008-12-25 ビーティーユー インターナショナル インコーポレイテッド Microwave plasma cooking
CN102291921B (en) * 2005-06-17 2014-09-17 魄金莱默有限公司 Boost devices and methods of using them
JP4732057B2 (en) * 2005-07-29 2011-07-27 株式会社日立ハイテクノロジーズ Plasma processing apparatus and processing method
KR100689037B1 (en) * 2005-08-24 2007-03-08 삼성전자주식회사 micrewave resonance plasma generating apparatus and plasma processing system having the same
US20070051233A1 (en) * 2005-09-06 2007-03-08 Duge Robert T Radiant electromagnetic energy management
JP5531240B2 (en) * 2005-09-20 2014-06-25 イマジニアリング株式会社 Ignition device, internal combustion engine, spark plug, and plasma device
US8945686B2 (en) * 2007-05-24 2015-02-03 Ncc Method for reducing thin films on low temperature substrates
JP4699235B2 (en) * 2006-02-20 2011-06-08 株式会社サイアン Plasma generating apparatus and work processing apparatus using the same
JP4846392B2 (en) * 2006-02-28 2011-12-28 株式会社東芝 Underwater repair welding method
US20070278199A1 (en) * 2006-04-14 2007-12-06 Ewa Environmental, Inc. Particle burning in an exhaust system
US7714248B2 (en) * 2006-05-24 2010-05-11 Kuan-Jiuh Lin Microwave plasma generator
EP1867386A1 (en) * 2006-06-02 2007-12-19 Thomas Wendling Method for the production of nanoparticles
US7722778B2 (en) * 2006-06-28 2010-05-25 Lam Research Corporation Methods and apparatus for sensing unconfinement in a plasma processing chamber
US20110064605A1 (en) * 2006-07-05 2011-03-17 Thermapure, Inc. Method for treating an object contaminated with harmful biological organisms or chemical substances utilizing electromagnetic waves
US7541561B2 (en) * 2006-09-01 2009-06-02 General Electric Company Process of microwave heating of powder materials
US7326892B1 (en) 2006-09-21 2008-02-05 General Electric Company Process of microwave brazing with powder materials
US7524385B2 (en) * 2006-10-03 2009-04-28 Elemetric, Llc Controlled phase transition of metals
US9446087B2 (en) * 2006-10-24 2016-09-20 David W. Krempin Anti-resorptive and bone building dietary supplements and methods of use
US7775416B2 (en) * 2006-11-30 2010-08-17 General Electric Company Microwave brazing process
US8409318B2 (en) * 2006-12-15 2013-04-02 General Electric Company Process and apparatus for forming wire from powder materials
US7946467B2 (en) * 2006-12-15 2011-05-24 General Electric Company Braze material and processes for making and using
US8574686B2 (en) * 2006-12-15 2013-11-05 General Electric Company Microwave brazing process for forming coatings
US8342386B2 (en) * 2006-12-15 2013-01-01 General Electric Company Braze materials and processes therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US8158217B2 (en) 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US9806273B2 (en) * 2007-01-03 2017-10-31 The United States Of America As Represented By The Secretary Of The Army Field effect transistor array using single wall carbon nano-tubes
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
DE102007011310B4 (en) * 2007-03-06 2015-06-18 Biotronik Crm Patent Ag Medical implant and method of making the same
FR2921388B1 (en) * 2007-09-20 2010-11-26 Air Liquide HIGH ATMOSPHERIC PRESSURE PLASMA ASSISTED CVD DEPOSITION DEVICE AND METHOD AND APPLICATIONS THEREOF
US20090139607A1 (en) * 2007-10-28 2009-06-04 General Electric Company Braze compositions and methods of use
US8115135B2 (en) * 2008-02-14 2012-02-14 Adventix Technologies Inc. Plasma assisted oxygen decontaminant generator and sprayer
US20090295509A1 (en) * 2008-05-28 2009-12-03 Universal Phase, Inc. Apparatus and method for reaction of materials using electromagnetic resonators
JP2011522381A (en) 2008-05-30 2011-07-28 コロラド ステート ユニバーシティ リサーチ ファンデーション Plasma-based chemical source apparatus and method of use thereof
WO2011123124A1 (en) 2010-03-31 2011-10-06 Colorado State University Research Foundation Liquid-gas interface plasma device
US8994270B2 (en) 2008-05-30 2015-03-31 Colorado State University Research Foundation System and methods for plasma application
JP2011521735A (en) 2008-05-30 2011-07-28 コロラド ステート ユニバーシティ リサーチ ファンデーション System, method and apparatus for generating plasma
US8410712B2 (en) * 2008-07-09 2013-04-02 Ncc Nano, Llc Method and apparatus for curing thin films on low-temperature substrates at high speeds
US8128788B2 (en) 2008-09-19 2012-03-06 Rf Thummim Technologies, Inc. Method and apparatus for treating a process volume with multiple electromagnetic generators
US8760520B2 (en) 2008-11-10 2014-06-24 Eduard Levin System and method for tracking and monitoring personnel and equipment
CN101579617B (en) * 2009-01-20 2012-05-30 江苏工业学院 Microwave chemical reactor
US9186742B2 (en) * 2009-01-30 2015-11-17 General Electric Company Microwave brazing process and assemblies and materials therefor
WO2010144161A2 (en) 2009-02-17 2010-12-16 Lockheed Martin Corporation Composites comprising carbon nanotubes on fiber
BRPI1008131A2 (en) 2009-02-27 2016-03-08 Applied Nanostructured Sols "low temperature carbon nanotube growth using gas preheat method".
US20100224129A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation System and method for surface treatment and barrier coating of fibers for in situ cnt growth
WO2010120810A1 (en) 2009-04-14 2010-10-21 Rf Thummim Technologies, Inc. Method and apparatus for excitation of resonances in molecules
US8325079B2 (en) 2009-04-24 2012-12-04 Applied Nanostructured Solutions, Llc CNT-based signature control material
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
JP5744008B2 (en) 2009-04-27 2015-07-01 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc CNT-based resistive heating for deicing composite structures
EP2453716B1 (en) * 2009-07-10 2016-08-24 Panasonic Corporation Microwave heating device and microwave heating control method
EP2461953A4 (en) 2009-08-03 2014-05-07 Applied Nanostructured Sols Incorporation of nanoparticles in composite fibers
US8222822B2 (en) 2009-10-27 2012-07-17 Tyco Healthcare Group Lp Inductively-coupled plasma device
KR20120120172A (en) 2009-11-23 2012-11-01 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Cnt-tailored composite sea-based structures
CA2775619A1 (en) 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
JP2013520328A (en) 2009-12-14 2013-06-06 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー Flame retardant composite materials and products containing carbon nanotube leached fiber materials
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
US20110180385A1 (en) * 2010-01-28 2011-07-28 Raytheon Company Control of Catalytic Chemical Processes
KR101906262B1 (en) 2010-02-02 2018-10-10 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Fiber containing parallel-aligned carbon nanotubes
US9410539B2 (en) * 2010-02-08 2016-08-09 Microspace Rapid Pte Ltd Micro-nozzle thruster
JP2013521656A (en) 2010-03-02 2013-06-10 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー Electrical device wound around spiral including carbon nanotube leaching electrode material, production method and production apparatus thereof
AU2011223743A1 (en) 2010-03-02 2012-08-30 Applied Nanostructured Solutions,Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US9295968B2 (en) 2010-03-17 2016-03-29 Rf Thummim Technologies, Inc. Method and apparatus for electromagnetically producing a disturbance in a medium with simultaneous resonance of acoustic waves created by the disturbance
CA2794902A1 (en) 2010-03-31 2011-10-06 Colorado State University Research Foundation Liquid-gas interface plasma device
WO2011127248A1 (en) * 2010-04-08 2011-10-13 Ncc Nano, Llc Apparatus for curing thin films on a moving substrate
US10422578B2 (en) * 2010-04-08 2019-09-24 Ncc Nano, Pllc Apparatus for curing thin films on a moving substrate
CN101940902A (en) * 2010-05-04 2011-01-12 姚光纯 Processing method for improving efficiency of catalytic chemical reaction by impulse wave
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
JP2013540683A (en) 2010-09-14 2013-11-07 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー Glass substrate having grown carbon nanotube and method for producing the same
AU2011305809A1 (en) 2010-09-22 2013-02-28 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
AU2011305751A1 (en) 2010-09-23 2012-06-21 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
US8755165B2 (en) 2010-10-18 2014-06-17 Veeco Instruments, Inc. Fault tolerant ion source power system
CN102476954A (en) * 2010-11-22 2012-05-30 鸿富锦精密工业(深圳)有限公司 Stainless steel and silicon nitride connection method, and the manufactured connection member
CN102093915B (en) * 2010-12-17 2013-05-01 南通海鹰机电集团有限公司 Reforming reaction kettle for biomass power generation system
CN102172833B (en) * 2011-02-21 2012-10-03 南京航空航天大学 Controllable and ablated non-conductive engineering ceramic grinding method based on discharge induction
JP2014510896A (en) * 2011-03-11 2014-05-01 インダージット・シン Method and apparatus for plasma assisted laser cooking of food products
CN102794354A (en) * 2011-05-26 2012-11-28 昆山市瑞捷精密模具有限公司 Nickel-based superalloy stamping die with high-temperature-resistant coating
CN102806270A (en) * 2011-05-30 2012-12-05 昆山市瑞捷精密模具有限公司 Ferrite stainless steel die with high temperature resistance coating
CN102343394A (en) * 2011-06-14 2012-02-08 昆山市瑞捷精密模具有限公司 Preparation method of nickel-based superheat resisting die with hard film structure
CN102343391A (en) * 2011-06-14 2012-02-08 昆山市瑞捷精密模具有限公司 Nickel-based superheat resisting alloy stamping die with hard film structure
CN102343392A (en) * 2011-06-14 2012-02-08 昆山市瑞捷精密模具有限公司 Preparation method of ferritic stainless steel die with hard film structure
CN102389922A (en) * 2011-06-16 2012-03-28 昆山市瑞捷精密模具有限公司 Nickel-based superheat-resisting alloy stamping mould with self-lubricating coating
CN102825135A (en) * 2011-06-16 2012-12-19 昆山市瑞捷精密模具有限公司 Ferrite stainless steel stamping die with self-lubricating coating
JP5490192B2 (en) * 2011-12-28 2014-05-14 東京エレクトロン株式会社 Microwave heat treatment apparatus and treatment method
CN103199215B (en) * 2012-01-05 2016-12-21 三星Sdi株式会社 Equipment for Heating Processing
CA2862678C (en) * 2012-01-27 2020-07-21 N/C Quest Inc. Carbon nanotube production method to stimulate soil microorganisms and plant growth produced from the emissions of internal combustion
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
WO2014011919A2 (en) 2012-07-13 2014-01-16 Perkinelmer Health Sciences, Inc. Torches and methods of using them
CN102961787B (en) * 2012-12-13 2015-06-03 北京大学 Iron-based composite material used for full-degradation cardiovascular support and preparation method thereof
US9374853B2 (en) 2013-02-08 2016-06-21 Letourneau University Method for joining two dissimilar materials and a microwave system for accomplishing the same
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
US9947515B2 (en) 2013-03-14 2018-04-17 Tokyo Electron Limited Microwave surface-wave plasma device
US9505503B2 (en) * 2013-03-27 2016-11-29 Lockheed Martin Corporation Reactants sprayed into plasma flow for rocket propulsion
US9934974B2 (en) 2013-06-19 2018-04-03 Tokyo Electron Limited Microwave plasma device
US9512766B2 (en) 2013-08-16 2016-12-06 Ford Global Technologies, Llc Multi-cell structure for automotive catalyst support
CN103495730B (en) * 2013-10-12 2015-06-10 宝鸡正微金属科技有限公司 Vacuum plasma powder metallurgy sintering technology
TWI553700B (en) 2013-11-06 2016-10-11 東京威力科創股份有限公司 Multi-cell resonator microwave surface-wave plasma apparatus
CN103647095B (en) * 2013-11-20 2016-01-20 江苏大学 A kind of Laser-alkaline fuel cell
CN104649247A (en) * 2013-11-22 2015-05-27 中国科学院苏州纳米技术与纳米仿生研究所 Method for formation of nitrogen doped single-walled carbon nanotube
KR102437125B1 (en) * 2014-06-27 2022-08-25 어플라이드 머티어리얼스, 인코포레이티드 Plasma corrosion resistive heater for high temperature processing
CN104176949A (en) * 2014-08-18 2014-12-03 苏州宏久航空防热材料科技有限公司 Preparation method of high-infrared-absorption glass fiber
CA2973123A1 (en) * 2015-01-12 2016-07-21 Shouguo Wang Plasma generating device and method for treating skin
US10153133B2 (en) * 2015-03-23 2018-12-11 Applied Materials, Inc. Plasma reactor having digital control over rotation frequency of a microwave field with direct up-conversion
DE102015111555B3 (en) * 2015-07-16 2016-09-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Arrangement for the treatment of materials with microwaves
US10244613B2 (en) * 2015-10-04 2019-03-26 Kla-Tencor Corporation System and method for electrodeless plasma ignition in laser-sustained plasma light source
US20180346372A1 (en) * 2015-11-30 2018-12-06 The Board Of Regents For Oklahoma State University Microwave processing of thermoelectric materials and use of glass inclusions for improving the mechanical and thermoelectric properties
US11148202B2 (en) 2015-12-16 2021-10-19 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
US20200403555A1 (en) * 2016-01-19 2020-12-24 Brilliant Light Power, Inc. Thermophotovoltaic electrical power generator
US9831066B1 (en) * 2016-05-27 2017-11-28 Mks Instruments, Inc. Compact microwave plasma applicator utilizing conjoining electric fields
CN106435519A (en) * 2016-09-18 2017-02-22 北京工业大学 Method for improving uniformity of tungsten coating prepared on inner wall of long pipe through CVD method
US9812295B1 (en) 2016-11-15 2017-11-07 Lyten, Inc. Microwave chemical processing
EP3542036B1 (en) * 2016-11-17 2020-11-04 Eprotech S.R.L. Device for abatement of liquid, gaseous and/or solid pollutant substances of various kind, contained into the exhaust smokes, and process for treatment and abatement of such pollutant substances
CN106631086A (en) * 2017-01-16 2017-05-10 青岛大学 Analysis method for microwave joining of ceramic materials in multi-mode sintering cavity
CN106744676A (en) * 2017-01-23 2017-05-31 上海朗研光电科技有限公司 The device and its synthetic method of glow discharge synthesizing nano-particle
US9767992B1 (en) 2017-02-09 2017-09-19 Lyten, Inc. Microwave chemical processing reactor
US9997334B1 (en) 2017-02-09 2018-06-12 Lyten, Inc. Seedless particles with carbon allotropes
WO2018169889A1 (en) 2017-03-16 2018-09-20 Lyten, Inc. Carbon and elastomer integration
US10920035B2 (en) 2017-03-16 2021-02-16 Lyten, Inc. Tuning deformation hysteresis in tires using graphene
CN106861912B (en) * 2017-03-21 2018-08-17 哈尔滨工程大学 A kind of enhancing plasma density improves the device and method of efficiency of dust collection
US11424104B2 (en) 2017-04-24 2022-08-23 Applied Materials, Inc. Plasma reactor with electrode filaments extending from ceiling
CN107029645A (en) * 2017-05-12 2017-08-11 武汉喜玛拉雅光电科技股份有限公司 A kind of continuous microwave synthesizer and the method that platinum carbon catalyst is prepared with it
US11358869B2 (en) 2017-08-08 2022-06-14 H Quest Vanguard, Inc. Methods and systems for microwave assisted production of graphitic materials
US10434490B2 (en) 2017-08-08 2019-10-08 H Quest Vanguard, Inc. Microwave-induced non-thermal plasma conversion of hydrocarbons
US9987611B1 (en) 2017-08-08 2018-06-05 H Quest Vanguard, Inc. Non-thermal plasma conversion of hydrocarbons
US11358113B2 (en) 2017-08-08 2022-06-14 H Quest Vanguard, Inc. Non-thermal micro-plasma conversion of hydrocarbons
US20190061005A1 (en) * 2017-08-30 2019-02-28 General Electric Company High Quality Spherical Powders for Additive Manufacturing Processes Along With Methods of Their Formation
JP6591030B2 (en) * 2017-11-15 2019-10-16 日本発條株式会社 Joint and automobile seat frame
WO2019126196A1 (en) 2017-12-22 2019-06-27 Lyten, Inc. Structured composite materials
WO2019136181A1 (en) * 2018-01-04 2019-07-11 Lyten, Inc. Resonant gas sensor
EP3508334A1 (en) * 2018-01-08 2019-07-10 CL Schutzrechtsverwaltungs GmbH Apparatus for additively manufacturing of three-dimensional objects
WO2019143559A1 (en) 2018-01-16 2019-07-25 Lyten, Inc. Microwave transparent pressure barrier
EP3581371B1 (en) * 2018-06-14 2021-04-14 Fundació Institut de Ciències Fotòniques A method and a system for self-repairing an object
CN112654444A (en) 2018-06-19 2021-04-13 6K有限公司 Method for producing spheroidized powder from raw material
CN109186216B (en) * 2018-08-23 2023-08-22 绍兴市质量技术监督检测院 Leak-proof microwave quick drying device
DE102018121897A1 (en) 2018-09-07 2020-03-12 Infineon Technologies Ag SEMICONDUCTOR DEVICE WITH A AREA CONTAINING SILICON AND NITROGEN AND PRODUCTION METHOD
EP3488851A1 (en) * 2018-10-03 2019-05-29 AVM Biotechnology, LLC Immunoablative therapies
EP3671511B1 (en) 2018-12-19 2022-07-06 Rohde & Schwarz GmbH & Co. KG Communication system and method
KR102217086B1 (en) * 2018-12-28 2021-02-18 금오공과대학교 산학협력단 Automotive Rear Lamp Cutting and Plasma Surface Treatment System
CN109570739A (en) * 2019-02-12 2019-04-05 黄山学院 A kind of new equipment deformed for controlling Friction Stir Welding
CN110289115B (en) * 2019-02-22 2022-08-30 中国工程物理研究院核物理与化学研究所 High-strength silicone rubber-based flexible neutron shielding material and preparation method thereof
US20200286757A1 (en) * 2019-03-08 2020-09-10 Dsgi Technologies, Inc. Apparatus for annealing semiconductor integrated circuit wafers
EP3962862A4 (en) 2019-04-30 2023-05-31 6K Inc. Lithium lanthanum zirconium oxide (llzo) powder
CN114007782A (en) 2019-04-30 2022-02-01 6K有限公司 Mechanically alloyed powder feedstock
US11158561B2 (en) * 2019-05-01 2021-10-26 Micron Technology, Inc. Memory device with low density thermal barrier
CN110064291B (en) * 2019-05-07 2021-09-24 中冶华天工程技术有限公司 Integrated low-concentration stink waste gas treatment device
CN110557853B (en) * 2019-07-18 2022-08-09 武汉纺织大学 Method for manufacturing high-temperature sintered body capable of generating heat by electrifying, product and application method
CN112404713B (en) * 2019-08-23 2022-10-14 大族激光科技产业集团股份有限公司 OLED laser welding system and temperature control method
CN110385020B (en) * 2019-09-02 2024-01-30 浙江大学城市学院 Multi-needle coaxial discharge removal method and reactor for removing nitrogen oxides
CN110735691B (en) * 2019-11-13 2021-07-30 燕山大学 Automobile exhaust purifying equipment based on plasma
CA3153254A1 (en) 2019-11-18 2021-06-17 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
CN112899617B (en) * 2019-12-04 2023-03-31 中微半导体设备(上海)股份有限公司 Method, device, component and plasma processing device for forming plasma-resistant coating
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
KR20220152325A (en) 2020-03-24 2022-11-15 에펜코 오우 Nanoscale Ceramic Plasma Catalysts to Stabilize and Assist Plasma Combustion
CN111250916B (en) * 2020-03-25 2021-06-29 荆门诺恒科技有限公司 Water bucket assembly welding annealing tool of aero-engine experimental pulley
CN111545148B (en) * 2020-04-07 2022-06-07 华东交通大学 Chiral catalysis method and catalytic device thereof
CN111420834A (en) * 2020-04-11 2020-07-17 张新旺 Cable semi-conductive graphite coating equipment
CN113539076B (en) * 2020-04-20 2022-12-13 Oppo广东移动通信有限公司 Terminal device and folding display screen thereof
CN111479375B (en) * 2020-05-08 2022-12-02 高维等离子体源科技(孝感)有限公司 Surface coupling induced ionization technology and corresponding plasma and plasma device
WO2021226741A1 (en) * 2020-05-09 2021-11-18 张麟德 Surface coupling induced ionization technology, and plasma and plasma device corresponding thereto
TWI755749B (en) * 2020-06-08 2022-02-21 馬思正 Internal combustion engine waste reduction and energy saving equipment
JP2023532457A (en) 2020-06-25 2023-07-28 シックスケー インコーポレイテッド Fine composite alloy structure
CN111850489B (en) * 2020-07-29 2023-01-24 江苏集萃先进金属材料研究所有限公司 Intermediate material of target material, forming method thereof and device for realizing forming method
CN111992161A (en) * 2020-09-04 2020-11-27 江西科技学院 Photocatalytic degradation device for copper slag pollutants and use method thereof
EP4237174A1 (en) 2020-10-30 2023-09-06 6K Inc. Systems and methods for synthesis of spheroidized metal powders
CN112675648B (en) * 2020-12-02 2022-04-15 杨振华 Energy-saving air purification equipment and use method thereof
CN112594031A (en) * 2020-12-08 2021-04-02 上研动力科技江苏有限公司 Diesel engine with flue gas treatment and reutilization device
CN112759408B (en) * 2021-01-04 2022-12-23 苏州第一元素纳米技术有限公司 Boron carbide ceramic and preparation method and application thereof
CN112985064A (en) * 2021-02-05 2021-06-18 陕西翼飞航智能科技有限公司 Sintering device and sintering method based on plasma hot blast stove
CN113218190B (en) * 2021-04-01 2022-09-27 青海湘和有色金属有限责任公司 Oxygen supply device for stabilizing oxygen supply of oxygen-enriched side-blown converter and use method thereof
CN112996209B (en) * 2021-05-07 2021-08-10 四川大学 Structure and array structure for microwave excitation of atmospheric pressure plasma jet
CN113244866B (en) * 2021-05-14 2022-05-06 昆明理工大学 Device and method for synthesizing light hydrocarbon through microwave-assisted gas catalysis
CN113245901B (en) * 2021-06-28 2022-03-04 浙江重力智能装备有限公司 Coolant liquid cleaning device for digit control machine tool
CN114234239A (en) * 2021-12-13 2022-03-25 哈尔滨工业大学 Combustion system and method based on cooperation of metal-based particles and microwaves
CN114199032B (en) * 2021-12-21 2023-11-28 清华大学深圳国际研究生院 Plasma-assisted ceramic sintering device and ceramic sintering method
CN117387368A (en) * 2022-01-19 2024-01-12 福建华清电子材料科技有限公司 Gas distribution system of graphite furnace
CN114873561A (en) * 2022-05-12 2022-08-09 哈尔滨工业大学 Packed bed type reforming hydrogen production reactor with variable catalyst particle size and reaction method
CN115275507A (en) * 2022-08-09 2022-11-01 南木纳米科技(北京)有限公司 Dry method diaphragm coating machine
CN115121388A (en) * 2022-08-09 2022-09-30 南木纳米科技(北京)有限公司 Dry-method battery pole piece primary coating machine
CN116609189B (en) * 2023-07-21 2023-10-20 镇江华浩通信器材有限公司 Quick detection device of radio frequency coaxial cable connector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339326A (en) * 1979-11-22 1982-07-13 Tokyo Shibaura Denki Kabushiki Kaisha Surface processing apparatus utilizing microwave plasma
US5304766A (en) * 1991-01-25 1994-04-19 Prolabo Methods and apparatus for simultaneously treating a plurality of samples in a moist medium
US6153868A (en) * 1996-01-19 2000-11-28 Groupe Danone Microwave application device, particularly for baking products on a metal carrier

Family Cites Families (213)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU432371B2 (en) 1967-07-13 1973-02-06 Commonwealth Scientific And Industrial Research Organization Plasma sintering
US3612686A (en) 1968-01-03 1971-10-12 Iit Res Inst Method and apparatus for gas analysis utilizing a direct current discharge
US3731047A (en) * 1971-12-06 1973-05-01 Mc Donnell Douglas Corp Plasma heating torch
US4004934A (en) 1973-10-24 1977-01-25 General Electric Company Sintered dense silicon carbide
JPS5823349B2 (en) * 1975-08-11 1983-05-14 新日本製鐵株式会社 Tai Kabutunoshiyouketsuhouhou
JPS5378170A (en) 1976-12-22 1978-07-11 Toshiba Corp Continuous processor for gas plasma etching
US4025818A (en) 1976-04-20 1977-05-24 Hughes Aircraft Company Wire ion plasma electron gun
CA1080562A (en) * 1977-02-10 1980-07-01 Frederick D. King Method of and apparatus for manufacturing an optical fibre with plasma activated deposition in a tube
US4307277A (en) 1978-08-03 1981-12-22 Mitsubishi Denki Kabushiki Kaisha Microwave heating oven
US4213818A (en) 1979-01-04 1980-07-22 Signetics Corporation Selective plasma vapor etching process
JPS55131175A (en) 1979-03-30 1980-10-11 Toshiba Corp Surface treatment apparatus with microwave plasma
US4230448A (en) 1979-05-14 1980-10-28 Combustion Electromagnetics, Inc. Burner combustion improvements
FR2480552A1 (en) 1980-04-10 1981-10-16 Anvar PLASMA GENERATOR
US4404456A (en) 1981-03-26 1983-09-13 Cann Gordon L Micro-arc welding/brazing of metal to metal and metal to ceramic joints
JPS5825073A (en) * 1981-08-07 1983-02-15 Mitsubishi Electric Corp Electrodeless discharge lamp
US4479075A (en) 1981-12-03 1984-10-23 Elliott William G Capacitatively coupled plasma device
US4500564A (en) 1982-02-01 1985-02-19 Agency Of Industrial Science & Technology Method for surface treatment by ion bombardment
US4504007A (en) 1982-09-14 1985-03-12 International Business Machines Corporation Solder and braze fluxes and processes for using the same
FR2533397A2 (en) 1982-09-16 1984-03-23 Anvar IMPROVEMENTS IN PLASMA TORCHES
US4664937A (en) 1982-09-24 1987-05-12 Energy Conversion Devices, Inc. Method of depositing semiconductor films by free radical generation
JPS59103348A (en) * 1982-12-06 1984-06-14 Toyota Central Res & Dev Lab Inc Manufacture of semiconductor device
JPS59169053A (en) * 1983-03-16 1984-09-22 Toshiba Corp Electrodeless electric-discharge lamp
DD222348A1 (en) * 1983-12-27 1985-05-15 Erste Maschinenfabrik K Marx S METHOD OF INTENSIVATING THE INFLUENCING OF MATERIAL IN THERMAL-CHEMICAL TREATMENT OF MATERIALS
US4504564A (en) * 1984-01-03 1985-03-12 Xerox Corporation Method for the preparation of photoconductive compositions
US4666775A (en) 1985-04-01 1987-05-19 Kennecott Corporation Process for sintering extruded powder shapes
US4637895A (en) * 1985-04-01 1987-01-20 Energy Conversion Devices, Inc. Gas mixtures for the vapor deposition of semiconductor material
US4624738A (en) 1985-07-12 1986-11-25 E. T. Plasma, Inc. Continuous gas plasma etching apparatus and method
US4687560A (en) 1985-08-16 1987-08-18 The United States Of America As Represented By The United States Department Of Energy Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides
SE448297B (en) 1985-09-27 1987-02-09 Stiftelsen Inst Mikrovags METHOD AND DEVICE FOR HEATING GLASSES
JPS6311580A (en) 1986-06-30 1988-01-19 株式会社豊田中央研究所 Ceramics joining equipment
US4767902A (en) 1986-09-24 1988-08-30 Questech Inc. Method and apparatus for the microwave joining of ceramic items
DE3632684A1 (en) 1986-09-26 1988-03-31 Philips Patentverwaltung METHOD AND DEVICE FOR THE INTERNAL COATING OF TUBES
JPH0689456B2 (en) * 1986-10-01 1994-11-09 キヤノン株式会社 Functional deposited film forming apparatus by microwave plasma CVD method
IT1213433B (en) 1986-12-23 1989-12-20 Eniricerche S P A Agip S P A PROCEDURE FOR OLIGOMERIZING LIGHT OLEFINS
US4919077A (en) 1986-12-27 1990-04-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor producing apparatus
US4792348A (en) 1987-03-02 1988-12-20 Powerplex Technologies, Inc. Method of forming glass bonded joint of beta-alumina
JPH0754759B2 (en) 1987-04-27 1995-06-07 日本電信電話株式会社 Plasma processing method and apparatus, and mode converter for plasma processing apparatus
US4883570A (en) 1987-06-08 1989-11-28 Research-Cottrell, Inc. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves
FR2616614B1 (en) * 1987-06-10 1989-10-20 Air Liquide MICROWAVE PLASMA TORCH, DEVICE COMPRISING SUCH A TORCH AND METHOD FOR MANUFACTURING POWDER USING THE SAME
JPH0623430B2 (en) 1987-07-13 1994-03-30 株式会社半導体エネルギ−研究所 Carbon production method
US4891488A (en) 1987-07-16 1990-01-02 Texas Instruments Incorporated Processing apparatus and method
US4963709A (en) 1987-07-24 1990-10-16 The United States Of America As Represented By The Department Of Energy Method and device for microwave sintering large ceramic articles
EP0329338A3 (en) 1988-02-16 1990-08-01 Alcan International Limited Process and apparatus for heating bodies at high temperature and pressure utilizing microwave energy
US4893584A (en) 1988-03-29 1990-01-16 Energy Conversion Devices, Inc. Large area microwave plasma apparatus
JP2805009B2 (en) 1988-05-11 1998-09-30 株式会社日立製作所 Plasma generator and plasma element analyzer
DE3820237C1 (en) 1988-06-14 1989-09-14 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften Ev, 3400 Goettingen, De
DE3830249A1 (en) 1988-09-06 1990-03-15 Schott Glaswerke PLASMA PROCESS FOR COATING LEVEL SUBSTRATES
US5122431A (en) * 1988-09-14 1992-06-16 Fujitsu Limited Thin film formation apparatus
US4877589A (en) * 1988-09-19 1989-10-31 Hare Louis R O Nitrogen fixation by electric arc and catalyst
US4956590A (en) 1988-10-06 1990-09-11 Techco Corporation Vehicular power steering system
US5131993A (en) 1988-12-23 1992-07-21 The Univeristy Of Connecticut Low power density plasma excitation microwave energy induced chemical reactions
US5015349A (en) * 1988-12-23 1991-05-14 University Of Connecticut Low power density microwave discharge plasma excitation energy induced chemical reactions
JP2994652B2 (en) 1989-01-26 1999-12-27 キヤノン株式会社 Deposition film forming apparatus by microwave plasma CVD method
US4888088A (en) * 1989-03-06 1989-12-19 Tegal Corporation Ignitor for a microwave sustained plasma
US5103715A (en) 1989-03-17 1992-04-14 Techco Corporation Power steering system
DE3912568A1 (en) * 1989-04-17 1990-10-18 Siemens Ag GAS LASER, ESPECIALLY CO (DOWN ARROW) 2 (DOWN ARROW) LASER
US5227695A (en) 1989-06-05 1993-07-13 Centre National De La Recherche Scientifique Device for coupling microwave energy with an exciter and for distributing it therealong for the purpose of producing a plasma
EP0476004B1 (en) * 1989-06-07 1993-05-26 MOSHAMMER, Wolfgang, Dipl.-Ing. Process and device for irradiating material containing or mixed with water with microwave energy
EP0406690B1 (en) 1989-06-28 1997-03-12 Canon Kabushiki Kaisha Process for continuously forming a large area functional deposited film by microwave PCVD method and an apparatus suitable for practicing the same
US5130170A (en) 1989-06-28 1992-07-14 Canon Kabushiki Kaisha Microwave pcvd method for continuously forming a large area functional deposited film using a curved moving substrate web with microwave energy with a directivity in one direction perpendicular to the direction of microwave propagation
US5114770A (en) 1989-06-28 1992-05-19 Canon Kabushiki Kaisha Method for continuously forming functional deposited films with a large area by a microwave plasma cvd method
US5037666A (en) * 1989-08-03 1991-08-06 Uha Mikakuto Precision Engineering Research Institute Co., Ltd. High-speed film forming method by microwave plasma chemical vapor deposition (CVD) under high pressure
US4946547A (en) 1989-10-13 1990-08-07 Cree Research, Inc. Method of preparing silicon carbide surfaces for crystal growth
CA2031927A1 (en) * 1989-12-27 1991-06-28 Imperial Oil Limited Method for improving the activity maintenance of a plasma initiator
US5023056A (en) * 1989-12-27 1991-06-11 The United States Of America As Represented By The Secretary Of The Navy Plasma generator utilizing dielectric member for carrying microwave energy
EP0435591A3 (en) * 1989-12-27 1991-11-06 Exxon Research And Engineering Company Conversion of methane using microwave radiation
US5277773A (en) * 1989-12-27 1994-01-11 Exxon Research & Engineering Co. Conversion of hydrocarbons using microwave radiation
US5074112A (en) 1990-02-21 1991-12-24 Atomic Energy Of Canada Limited Microwave diesel scrubber assembly
KR910016054A (en) 1990-02-23 1991-09-30 미다 가쓰시게 Surface Treatment Apparatus and Method for Microelectronic Devices
US5164130A (en) 1990-04-20 1992-11-17 Martin Marietta Energy Systems, Inc. Method of sintering ceramic materials
US5120567A (en) * 1990-05-17 1992-06-09 General Electric Company Low frequency plasma spray method in which a stable plasma is created by operating a spray gun at less than 1 mhz in a mixture of argon and helium gas
JPH0462716A (en) 1990-06-29 1992-02-27 Matsushita Electric Ind Co Ltd Crystalline carbonaceous thin-film and its deposition method
JPH0474858A (en) * 1990-07-16 1992-03-10 Asahi Chem Ind Co Ltd Production of nitride film
US5058527A (en) 1990-07-24 1991-10-22 Ricoh Company, Ltd. Thin film forming apparatus
US5307892A (en) 1990-08-03 1994-05-03 Techco Corporation Electronically controlled power steering system
US5072650A (en) 1990-08-03 1991-12-17 Techco Corporation Power steering system with improved stability
JPH0779102B2 (en) * 1990-08-23 1995-08-23 富士通株式会社 Method for manufacturing semiconductor device
US5085885A (en) * 1990-09-10 1992-02-04 University Of Delaware Plasma-induced, in-situ generation, transport and use or collection of reactive precursors
DE4029270C1 (en) 1990-09-14 1992-04-09 Balzers Ag, Balzers, Li
JP2958086B2 (en) * 1990-09-18 1999-10-06 奈良精機株式会社 Melting device for injection needle
JPH04144992A (en) * 1990-10-01 1992-05-19 Idemitsu Petrochem Co Ltd Microwave plasma-generating device and method for producing diamond film with the same
US5282338A (en) * 1990-10-12 1994-02-01 British Aerospace Public Limited Company Sealing structure
US5087272A (en) 1990-10-17 1992-02-11 Nixdorf Richard D Filter and means for regeneration thereof
JPH084103Y2 (en) * 1990-10-24 1996-02-07 新日本無線株式会社 Microwave plasma equipment
JP2714247B2 (en) 1990-10-29 1998-02-16 キヤノン株式会社 Method and apparatus for continuously forming large-area functional deposited film by microwave plasma CVD
JP2994814B2 (en) * 1990-11-09 1999-12-27 キヤノン株式会社 Liquid crystal device
JP2824808B2 (en) 1990-11-16 1998-11-18 キヤノン株式会社 Apparatus for continuously forming large-area functional deposited films by microwave plasma CVD
US5202541A (en) 1991-01-28 1993-04-13 Alcan International Limited Microwave heating of workpieces
EP0502269A1 (en) 1991-03-06 1992-09-09 Hitachi, Ltd. Method of and system for microwave plasma treatments
US5397558A (en) * 1991-03-26 1995-03-14 Semiconductor Energy Laboratory Co., Ltd. Method of forming diamond or diamond containing carbon film
US5349154A (en) 1991-10-16 1994-09-20 Rockwell International Corporation Diamond growth by microwave generated plasma flame
US5223308A (en) 1991-10-18 1993-06-29 Energy Conversion Devices, Inc. Low temperature plasma enhanced CVD process within tubular members
US5321223A (en) 1991-10-23 1994-06-14 Martin Marietta Energy Systems, Inc. Method of sintering materials with microwave radiation
US5521360A (en) 1994-09-14 1996-05-28 Martin Marietta Energy Systems, Inc. Apparatus and method for microwave processing of materials
US5961871A (en) * 1991-11-14 1999-10-05 Lockheed Martin Energy Research Corporation Variable frequency microwave heating apparatus
US5311906A (en) * 1992-02-04 1994-05-17 Techco Corporation Preload mechanism for power steering apparatus
US5316043A (en) 1992-02-04 1994-05-31 Techco Corporation Preload mechanism for power steering apparatus
DE4204650C1 (en) * 1992-02-15 1993-07-08 Hoffmeister, Helmut, Dr., 4400 Muenster, De
EP0586708B1 (en) * 1992-03-06 2001-09-26 Omron Corporation Image processor and method therefor
US5222448A (en) 1992-04-13 1993-06-29 Columbia Ventures Corporation Plasma torch furnace processing of spent potliner from aluminum smelters
US5366764A (en) 1992-06-15 1994-11-22 Sunthankar Mandar B Environmentally safe methods and apparatus for depositing and/or reclaiming a metal or semi-conductor material using sublimation
US5330800A (en) * 1992-11-04 1994-07-19 Hughes Aircraft Company High impedance plasma ion implantation method and apparatus
US5271963A (en) 1992-11-16 1993-12-21 Materials Research Corporation Elimination of low temperature ammonia salt in TiCl4 NH3 CVD reaction
JP2738251B2 (en) 1993-01-20 1998-04-08 松下電器産業株式会社 Filter regeneration device for internal combustion engine
US5307766A (en) * 1993-03-12 1994-05-03 Westinghouse Electric Corp. Temperature control of steam for boilers
US5370525A (en) 1993-03-22 1994-12-06 Blue Pacific Environments Corporation Microwave combustion enhancement device
US5449887A (en) 1993-03-25 1995-09-12 Martin Marietta Energy Systems, Inc. Thermal insulation for high temperature microwave sintering operations and method thereof
JP3365511B2 (en) * 1993-04-05 2003-01-14 セイコーエプソン株式会社 Method and apparatus for joining with brazing material
JP2803017B2 (en) 1993-06-07 1998-09-24 工業技術院長 Antithrombotic medical material and medical device, and their manufacturing method, manufacturing apparatus, and plasma processing apparatus
US5755097A (en) * 1993-07-29 1998-05-26 Techco Corporation Bootstrap power steering systems
US5435698A (en) 1993-07-29 1995-07-25 Techco Corporation Bootstrap power steering systems
JPH09502236A (en) 1993-07-29 1997-03-04 テクコ・コーポレイション Improved bootstrap power steering system
US5505275A (en) * 1993-09-09 1996-04-09 Techo Corporation Power steering system
US6342195B1 (en) * 1993-10-01 2002-01-29 The Penn State Research Foundation Method for synthesizing solids such as diamond and products produced thereby
US5671045A (en) 1993-10-22 1997-09-23 Masachusetts Institute Of Technology Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams
ZA95482B (en) * 1994-01-31 1995-10-09 Atomic Energy South Africa Treatment of a chemical
JPH07245193A (en) 1994-03-02 1995-09-19 Nissin Electric Co Ltd Plasma generating device and plasma processing device
DE4423471A1 (en) 1994-07-05 1996-01-11 Buck Chem Tech Werke Device for the plasma treatment of fine-grained goods
GB9414561D0 (en) * 1994-07-19 1994-09-07 Ea Tech Ltd Method of and apparatus for microwave-plasma production
JPH0891951A (en) * 1994-09-22 1996-04-09 Sumitomo Electric Ind Ltd Aluminum-silicon nitride conjugate and its production
JP3339200B2 (en) * 1994-09-28 2002-10-28 ソニー株式会社 Plasma generator, plasma processing method, and thin film transistor manufacturing method
JPH08217558A (en) * 1995-02-15 1996-08-27 Mitsubishi Heavy Ind Ltd Ceramic bonding device
US5536477A (en) 1995-03-15 1996-07-16 Chang Yul Cha Pollution arrestor
US5794113A (en) 1995-05-01 1998-08-11 The Regents Of The University Of California Simultaneous synthesis and densification by field-activated combustion
US5689949A (en) 1995-06-05 1997-11-25 Simmonds Precision Engine Systems, Inc. Ignition methods and apparatus using microwave energy
US5793013A (en) * 1995-06-07 1998-08-11 Physical Sciences, Inc. Microwave-driven plasma spraying apparatus and method for spraying
SE504795C2 (en) * 1995-07-05 1997-04-28 Katator Ab Network-based combustion catalyst and production thereof
US6139656A (en) * 1995-07-10 2000-10-31 Ford Global Technologies, Inc. Electrochemical hardness modification of non-allotropic metal surfaces
US6132550A (en) * 1995-08-11 2000-10-17 Sumitomo Electric Industries, Ltd. Apparatuses for desposition or etching
US5848348A (en) * 1995-08-22 1998-12-08 Dennis; Mahlon Denton Method for fabrication and sintering composite inserts
US5980999A (en) * 1995-08-24 1999-11-09 Nagoya University Method of manufacturing thin film and method for performing precise working by radical control and apparatus for carrying out such methods
US5796080A (en) 1995-10-03 1998-08-18 Cem Corporation Microwave apparatus for controlling power levels in individual multiple cells
US5859404A (en) * 1995-10-12 1999-01-12 Hughes Electronics Corporation Method and apparatus for plasma processing a workpiece in an enveloping plasma
US5712000A (en) * 1995-10-12 1998-01-27 Hughes Aircraft Company Large-scale, low pressure plasma-ion deposition of diamondlike carbon films
JP3150056B2 (en) * 1995-10-19 2001-03-26 東京エレクトロン株式会社 Plasma processing equipment
DE19542352A1 (en) * 1995-11-14 1997-05-15 Fraunhofer Ges Forschung Microwave bonding of ceramic to ceramic or metal
GB9525543D0 (en) * 1995-12-14 1996-02-14 Central Research Lab Ltd A single mode resonant cavity
US5847355A (en) * 1996-01-05 1998-12-08 California Institute Of Technology Plasma-assisted microwave processing of materials
US6376021B1 (en) * 1996-02-12 2002-04-23 Polymer Alloys Llc Heat treatment of polyphenylene oxide-coated metal
AU729396B2 (en) * 1996-04-04 2001-02-01 Mitsubishi Heavy Industries, Ltd. Apparatus and method for treating exhaust gas and pulse generator used therefor
US5828338A (en) * 1996-05-23 1998-10-27 Hughes Electronics Thyratron switched beam steering array
JP3895000B2 (en) * 1996-06-06 2007-03-22 Dowaホールディングス株式会社 Carburizing, quenching and tempering method and apparatus
JPH1081971A (en) * 1996-07-10 1998-03-31 Suzuki Motor Corp Formation of sic thin coating on high polymer substrate by plasma cvd and device therefor
US6011248A (en) * 1996-07-26 2000-01-04 Dennis; Mahlon Denton Method and apparatus for fabrication and sintering composite inserts
JP3670452B2 (en) * 1996-07-31 2005-07-13 株式会社東芝 Coil unit for magnetic field generation and coil winding method
US5711147A (en) * 1996-08-19 1998-01-27 The Regents Of The University Of California Plasma-assisted catalytic reduction system
US6038854A (en) * 1996-08-19 2000-03-21 The Regents Of The University Of California Plasma regenerated particulate trap and NOx reduction system
US6248206B1 (en) * 1996-10-01 2001-06-19 Applied Materials Inc. Apparatus for sidewall profile control during an etch process
US5734501A (en) 1996-11-01 1998-03-31 Minnesota Mining And Manufacturing Company Highly canted retroreflective cube corner article
JP2001511937A (en) * 1996-11-01 2001-08-14 エッチ. マイリー、ジョージ Plasma jet source using inertial electrostatic confinement discharge plasma
US5715677A (en) 1996-11-13 1998-02-10 The Regents Of The University Of California Diesel NOx reduction by plasma-regenerated absorbend beds
FR2757082B1 (en) * 1996-12-13 1999-01-15 Air Liquide PROCESS FOR DEPURING A PLASMAGEN GAS AND INSTALLATION FOR THE IMPLEMENTATION OF SUCH A PROCESS
WO1998032312A1 (en) * 1997-01-17 1998-07-23 California Institute Of Technology Microwave technique for brazing materials
US6189482B1 (en) * 1997-02-12 2001-02-20 Applied Materials, Inc. High temperature, high flow rate chemical vapor deposition apparatus and related methods
US6616767B2 (en) * 1997-02-12 2003-09-09 Applied Materials, Inc. High temperature ceramic heater assembly with RF capability
US6039834A (en) * 1997-03-05 2000-03-21 Applied Materials, Inc. Apparatus and methods for upgraded substrate processing system with microwave plasma source
US5998774A (en) * 1997-03-07 1999-12-07 Industrial Microwave Systems, Inc. Electromagnetic exposure chamber for improved heating
US6287988B1 (en) * 1997-03-18 2001-09-11 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method, semiconductor device manufacturing apparatus and semiconductor device
EP0979595B1 (en) * 1997-04-10 2007-07-04 Nucon Systems Inc. Process and apparatus for microwave joining thick-walled ceramic parts
FR2762748B1 (en) * 1997-04-25 1999-06-11 Air Liquide SURFACE WAVE PLASMA GAS EXCITATION DEVICE
US5952671A (en) * 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
JPH1154773A (en) * 1997-08-01 1999-02-26 Canon Inc Photovoltaic element and its manufacture
US6284202B1 (en) * 1997-10-03 2001-09-04 Cha Corporation Device for microwave removal of NOx from exhaust gas
CN1102087C (en) * 1997-10-15 2003-02-26 东京电子株式会社 Apparatus and method for adjusting density distribution of a plasma
US5868670A (en) * 1997-11-03 1999-02-09 Werner A. Randell, Sr. Article of manufacture for a biomedical electrode and indicator
US6183689B1 (en) * 1997-11-25 2001-02-06 Penn State Research Foundation Process for sintering powder metal components
CN1078264C (en) * 1997-12-11 2002-01-23 中国科学院物理研究所 Synthesis method of crystalline phase carbonitride film by microwave plasma chemical gas-phase deposition
US6028393A (en) * 1998-01-22 2000-02-22 Energy Conversion Devices, Inc. E-beam/microwave gas jet PECVD method and apparatus for depositing and/or surface modification of thin film materials
US20020034461A1 (en) * 1998-01-29 2002-03-21 Segal David Leslie Plasma assisted processing of gas
US6892669B2 (en) * 1998-02-26 2005-05-17 Anelva Corporation CVD apparatus
DE19814812C2 (en) * 1998-04-02 2000-05-11 Mut Mikrowellen Umwelt Technol Plasma torch with a microwave transmitter
US6228773B1 (en) * 1998-04-14 2001-05-08 Matrix Integrated Systems, Inc. Synchronous multiplexed near zero overhead architecture for vacuum processes
JP4037956B2 (en) * 1998-04-28 2008-01-23 東海カーボン株式会社 Chamber inner wall protection member
US6214372B1 (en) * 1998-05-04 2001-04-10 Con Lin Co., Inc. Method of using isomer enriched conjugated linoleic acid compositions
US6368678B1 (en) * 1998-05-13 2002-04-09 Terry Bluck Plasma processing system and method
JP4014300B2 (en) * 1998-06-19 2007-11-28 東京エレクトロン株式会社 Plasma processing equipment
JP2000021871A (en) * 1998-06-30 2000-01-21 Tokyo Electron Ltd Plasma treating method
JP4024389B2 (en) * 1998-07-14 2007-12-19 東京エレクトロン株式会社 Plasma processing equipment
WO2000005124A1 (en) * 1998-07-21 2000-02-03 Techco Corporation Feedback and servo control for electric power steering systems
JP2991192B1 (en) * 1998-07-23 1999-12-20 日本電気株式会社 Plasma processing method and plasma processing apparatus
US6362449B1 (en) * 1998-08-12 2002-03-26 Massachusetts Institute Of Technology Very high power microwave-induced plasma
JP3293564B2 (en) * 1998-08-20 2002-06-17 株式会社村田製作所 Manufacturing method of electronic device
US6204606B1 (en) * 1998-10-01 2001-03-20 The University Of Tennessee Research Corporation Slotted waveguide structure for generating plasma discharges
TW383500B (en) * 1998-10-03 2000-03-01 United Semiconductor Corp Manufacturing method for lower electrode of capacitor using hemisphere grain polysilicon
US6186090B1 (en) * 1999-03-04 2001-02-13 Energy Conversion Devices, Inc. Apparatus for the simultaneous deposition by physical vapor deposition and chemical vapor deposition and method therefor
US6237526B1 (en) * 1999-03-26 2001-05-29 Tokyo Electron Limited Process apparatus and method for improving plasma distribution and performance in an inductively coupled plasma
SE516722C2 (en) * 1999-04-28 2002-02-19 Hana Barankova Process and apparatus for plasma gas treatment
JP2000348898A (en) * 1999-06-03 2000-12-15 Nisshin:Kk Method for generating surface wave excited plasma
JP2000349081A (en) * 1999-06-07 2000-12-15 Sony Corp Method for formation of oxide film
US6149985A (en) * 1999-07-07 2000-11-21 Eastman Kodak Company High-efficiency plasma treatment of imaging supports
FR2797372B1 (en) * 1999-08-04 2002-10-25 Metal Process METHOD FOR PRODUCING ELEMENTARY PLASMAS WITH A VIEW TO CREATING A UNIFORM PLASMA FOR A USING SURFACE AND DEVICE FOR PRODUCING SUCH A PLASMA
JP3471263B2 (en) * 1999-09-22 2003-12-02 株式会社東芝 Cold cathode electron-emitting device and method of manufacturing the same
WO2001030118A1 (en) * 1999-10-18 2001-04-26 The Penn State Research Foundation Microwave processing in pure h fields and pure e fields
EP1102299A1 (en) * 1999-11-05 2001-05-23 Iljin Nanotech Co., Ltd. Field emission display device using vertically-aligned carbon nanotubes and manufacturing method thereof
JP2001149771A (en) * 1999-11-30 2001-06-05 Japan Organo Co Ltd Microwave plasma device
JP3595233B2 (en) * 2000-02-16 2004-12-02 株式会社ノリタケカンパニーリミテド Electron emission source and method of manufacturing the same
US6367412B1 (en) * 2000-02-17 2002-04-09 Applied Materials, Inc. Porous ceramic liner for a plasma source
DE10009569C2 (en) * 2000-02-29 2003-03-27 Schott Glas Method and device for comminuting glass bodies by means of microwave heating
US6345497B1 (en) * 2000-03-02 2002-02-12 The Regents Of The University Of California NOx reduction by electron beam-produced nitrogen atom injection
JP2001257097A (en) * 2000-03-09 2001-09-21 Toshiba Corp Plasma generating device
WO2001082332A1 (en) * 2000-04-26 2001-11-01 Cornell Research Foundation, Inc. Lamp utilizing fiber for enhanced starting field
KR100341407B1 (en) * 2000-05-01 2002-06-22 윤덕용 A Crystall ization method of lithium transition metal oxide thin films by plasma treatm ent
US7056479B2 (en) * 2000-05-11 2006-06-06 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Process for preparing carbon nanotubes
JP4523118B2 (en) * 2000-06-14 2010-08-11 東京エレクトロン株式会社 Plasma processing equipment
JP2001357999A (en) * 2000-06-15 2001-12-26 Yoshihiko Otsuki Plasma generation device
JP2002025425A (en) * 2000-07-07 2002-01-25 Hitachi Ltd Electron emitter, its manufacturing method and electron beam device
JP3865289B2 (en) * 2000-11-22 2007-01-10 独立行政法人科学技術振興機構 Microwave plasma generator
US6512216B2 (en) * 2001-01-17 2003-01-28 The Penn State Research Foundation Microwave processing using highly microwave absorbing powdered material layers
JP2002280196A (en) * 2001-03-15 2002-09-27 Micro Denshi Kk Plasma generating device using microwave
US6503846B1 (en) * 2001-06-20 2003-01-07 Texas Instruments Incorporated Temperature spike for uniform nitridization of ultra-thin silicon dioxide layers in transistor gates
JP2003075077A (en) * 2001-09-05 2003-03-12 Natl Inst For Fusion Science Microwave calcination furnace, and microwave calcination method
AU2003267104A1 (en) * 2002-05-08 2003-11-11 Dana Corporation Plasma-assisted processing in a manufacturing line
US7097782B2 (en) * 2002-11-12 2006-08-29 Micron Technology, Inc. Method of exposing a substrate to a surface microwave plasma, etching method, deposition method, surface microwave plasma generating apparatus, semiconductor substrate etching apparatus, semiconductor substrate deposition apparatus, and microwave plasma generating antenna assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339326A (en) * 1979-11-22 1982-07-13 Tokyo Shibaura Denki Kabushiki Kaisha Surface processing apparatus utilizing microwave plasma
US5304766A (en) * 1991-01-25 1994-04-19 Prolabo Methods and apparatus for simultaneously treating a plurality of samples in a moist medium
US6153868A (en) * 1996-01-19 2000-11-28 Groupe Danone Microwave application device, particularly for baking products on a metal carrier

Also Published As

Publication number Publication date
WO2003096383A3 (en) 2004-07-22
WO2003096749A1 (en) 2003-11-20
CN1304103C (en) 2007-03-14
WO2003096383A2 (en) 2003-11-20
CN1653870A (en) 2005-08-10
AU2003230267A1 (en) 2003-11-11
AU2003234474A1 (en) 2003-11-11
US20060249367A1 (en) 2006-11-09
WO2003096381A2 (en) 2003-11-20
US7227097B2 (en) 2007-06-05
CN100436763C (en) 2008-11-26
CN1653205A (en) 2005-08-10
EP1501649A1 (en) 2005-02-02
AU2003234475A1 (en) 2003-11-11
US20040118816A1 (en) 2004-06-24
WO2003096768A1 (en) 2003-11-20
WO2003095807A1 (en) 2003-11-20
BR0309814A (en) 2005-03-01
AU2003234476A8 (en) 2003-11-11
AU2003245264A1 (en) 2003-11-11
EP1502480A4 (en) 2009-07-01
EP1502489B1 (en) 2013-10-23
BR0309811A (en) 2007-04-10
CN1324931C (en) 2007-07-04
IL164824A0 (en) 2005-12-18
WO2003096774A1 (en) 2003-11-20
CN1653574A (en) 2005-08-10
BR0309810A (en) 2007-04-10
WO2003096382A2 (en) 2003-11-20
CN1652889A (en) 2005-08-10
CN1653869A (en) 2005-08-10
WO2003095699A1 (en) 2003-11-20
KR20050026387A (en) 2005-03-15
EP1502012A1 (en) 2005-02-02
AU2003228881A1 (en) 2003-11-11
AU2003228882A8 (en) 2003-11-11
US20040001295A1 (en) 2004-01-01
EP1502274A1 (en) 2005-02-02
CN1653867A (en) 2005-08-10
EP1504464A2 (en) 2005-02-09
WO2003096747A3 (en) 2004-02-19
WO2003095090A1 (en) 2003-11-20
EP1502486A1 (en) 2005-02-02
EP1502480A1 (en) 2005-02-02
JP2005524962A (en) 2005-08-18
CN100441732C (en) 2008-12-10
CN1653851A (en) 2005-08-10
JP5209174B2 (en) 2013-06-12
EP1501632A4 (en) 2009-07-29
WO2003096380A3 (en) 2004-07-08
WO2003096370A1 (en) 2003-11-20
WO2003095089A1 (en) 2003-11-20
EP1502486B1 (en) 2011-11-30
AU2003234477A1 (en) 2003-11-11
CN100338976C (en) 2007-09-19
CN1653161A (en) 2005-08-10
WO2003096380A2 (en) 2003-11-20
EP1501959A4 (en) 2009-07-22
EP1501632A1 (en) 2005-02-02
IL164824A (en) 2010-04-15
US6870124B2 (en) 2005-03-22
US20040004062A1 (en) 2004-01-08
US20040107896A1 (en) 2004-06-10
AU2003234499A1 (en) 2003-11-11
WO2003095130A1 (en) 2003-11-20
CN1653868A (en) 2005-08-10
MXPA04010875A (en) 2005-07-14
AU2003234500A8 (en) 2003-11-11
AU2003234476A1 (en) 2003-11-11
CN100336156C (en) 2007-09-05
BR0309813A (en) 2005-03-01
KR101015744B1 (en) 2011-02-22
CN1652893A (en) 2005-08-10
BR0309812A (en) 2005-03-01
CN100505976C (en) 2009-06-24
AU2003267104A8 (en) 2003-11-11
CN1302843C (en) 2007-03-07
AU2003234500A1 (en) 2003-11-11
US20050061446A1 (en) 2005-03-24
US7214280B2 (en) 2007-05-08
CN1653866A (en) 2005-08-10
US7608798B2 (en) 2009-10-27
US7309843B2 (en) 2007-12-18
AU2003245263A1 (en) 2003-11-11
WO2003096381A3 (en) 2004-07-08
AU2003234474A8 (en) 2003-11-11
KR20050028913A (en) 2005-03-23
WO2003096747A2 (en) 2003-11-20
CN1652866A (en) 2005-08-10
CN1653248A (en) 2005-08-10
EP1501959A1 (en) 2005-02-02
JP2005524963A (en) 2005-08-18
WO2003096773A1 (en) 2003-11-20
AU2003267104A1 (en) 2003-11-11
EP1502490A1 (en) 2005-02-02
AU2003230264A1 (en) 2003-11-11
CA2485195A1 (en) 2003-11-20
WO2003096382A3 (en) 2004-07-15
EP1502012A4 (en) 2009-07-01
KR20050025173A (en) 2005-03-11
BR0309815A (en) 2005-03-01
CN100588305C (en) 2010-02-03
CN100455144C (en) 2009-01-21
AU2003230266A1 (en) 2003-11-11
US20070164680A1 (en) 2007-07-19
JP2005524799A (en) 2005-08-18
EP1502488A1 (en) 2005-02-02
WO2003095058A3 (en) 2004-04-29
AU2003234501A1 (en) 2003-11-11
AU2003234479A1 (en) 2003-11-11
EP1502489A1 (en) 2005-02-02
AU2003230265A1 (en) 2003-11-11
AU2003228882A1 (en) 2003-11-11
JP2005526359A (en) 2005-09-02
WO2003095591A1 (en) 2003-11-20
WO2003096772A1 (en) 2003-11-20
CN1652867A (en) 2005-08-10
WO2003096771A1 (en) 2003-11-20
CN1324114C (en) 2007-07-04
AU2003267863A1 (en) 2003-11-11
AU2003234478A1 (en) 2003-11-11
ATE536086T1 (en) 2011-12-15
EP1501649A4 (en) 2009-07-15
CN100505975C (en) 2009-06-24
CN100425106C (en) 2008-10-08
US7592564B2 (en) 2009-09-22
WO2003096770A1 (en) 2003-11-20
CN100447289C (en) 2008-12-31
EP1502287A2 (en) 2005-02-02
EP1501911A1 (en) 2005-02-02
EP1502487A1 (en) 2005-02-02
EP1501631A4 (en) 2009-07-22
JP2005525234A (en) 2005-08-25
AU2003228880A1 (en) 2003-11-11
WO2003096369A1 (en) 2003-11-20
AU2003230266B2 (en) 2008-03-13
AU2003228881A8 (en) 2003-11-11
US7132621B2 (en) 2006-11-07
CN1653204A (en) 2005-08-10
EP1501631A1 (en) 2005-02-02
AU2003267860A1 (en) 2003-11-11

Similar Documents

Publication Publication Date Title
AU2003230266B2 (en) Plasma catalyst
US7432470B2 (en) Surface cleaning and sterilization
US20060057016A1 (en) Plasma-assisted sintering
ZA200408532B (en) Plasma Catalyst.
US20060062930A1 (en) Plasma-assisted carburizing
WO2003096766A1 (en) Plasma control using phase and/or frequency of multiple radiation sources

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP