WO2003096930A1 - Transobturator surgical articles and methods - Google Patents

Transobturator surgical articles and methods Download PDF

Info

Publication number
WO2003096930A1
WO2003096930A1 PCT/US2003/007992 US0307992W WO03096930A1 WO 2003096930 A1 WO2003096930 A1 WO 2003096930A1 US 0307992 W US0307992 W US 0307992W WO 03096930 A1 WO03096930 A1 WO 03096930A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
instrument
patient
sling
incision
Prior art date
Application number
PCT/US2003/007992
Other languages
French (fr)
Inventor
Kimberly A. Anderson
Brian P. Watschke
Georges Mellier
Johann J. Neisz
Original Assignee
Ams Research Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29408159&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2003096930(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US10/306,179 external-priority patent/US7070556B2/en
Application filed by Ams Research Corporation filed Critical Ams Research Corporation
Priority to AU2003228315A priority Critical patent/AU2003228315A1/en
Publication of WO2003096930A1 publication Critical patent/WO2003096930A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0004Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse
    • A61F2/0031Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra
    • A61F2/0036Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra implantable
    • A61F2/0045Support slings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0487Suture clamps, clips or locks, e.g. for replacing suture knots; Instruments for applying or removing suture clamps, clips or locks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B17/06066Needles, e.g. needle tip configurations
    • A61B17/06109Big needles, either gripped by hand or connectable to a handle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0482Needle or suture guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B17/06066Needles, e.g. needle tip configurations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/30Surgical pincettes without pivotal connections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3209Incision instruments
    • A61B17/3211Surgical scalpels, knives; Accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00805Treatment of female stress urinary incontinence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00946Material properties malleable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0417T-fasteners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B17/06004Means for attaching suture to needle
    • A61B2017/06009Means for attaching suture to needle having additional means for releasably clamping the suture to the needle, e.g. actuating rod slideable within the needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B17/06066Needles, e.g. needle tip configurations
    • A61B2017/06076Needles, e.g. needle tip configurations helically or spirally coiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B2017/320056Tunnelers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/30Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/02Devices for expanding tissue, e.g. skin tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30708Means for distinguishing between left-sided and right-sided devices, Sets comprising both left-sided and right-sided prosthetic parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0084Means for distinguishing between left-sided and right-sided devices; Sets comprising both left-sided and right-sided prosthetic parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/25Artificial sphincters and devices for controlling urinary incontinence

Definitions

  • Figures 4 through 10 are schematic views sequentially showing a surgical procedure in accordance with one aspect of the present invention, wherein:
  • Figure 19 is a perspective view of a surgical instrument particularly suitable for use on a left side of a patient's body, according to one aspect of the present invention.
  • Figure 21 is a front view of the needle of Fig. 19;
  • Figure 23 is a perspective view of a short dilator for use in accordance with an aspect of the present invention.
  • Figure 25 is sectional view of the dilator of Fig. 23 in accordance with an aspect of the present invention.
  • Figure 32 is a schematic illustration of the relative positions of the patient's pubic bone and a novel needle according to the present invention, after at least partially inserting the needle;
  • Figure 33 is a schematic illustration of the relative positions of the patient's pubic bone and a novel needle according to the present invention, after at least partially inserting the needle;
  • Figure 37 shows the sling assembly of Figure 36 after it is attached to the needle of Figure 36;
  • Figure 42 is a front view of the instrument of Fig. 39;
  • FIG. 55-57 sequentially illustrate use of the system of Fig. 54 wherein:
  • Figure 1 is a side view of a sling assembly guide or needle 60 according to one aspect of the present invention.
  • the needle 60 is preferably sized and shaped to be suitable for initial insertion through obturator fascia (see Figures 4 through 8).
  • the needle 60 has a length sufficient to extend from the initial incision 400 adjacent the anterior side of the pubic bone, through the obturator foramen 3 (e.g. see Figure 9) portion of the pubic bone to a position on the posterior side of the pubic bone, and to then emerge from a vaginal incision.
  • Figure 1 is a side view or a species of the present invention, the present invention is not limited to the particular shape disclosed. It is expressly understood that a large number of different sizes, shapes and dimensions of needles are suitable for the present invention.
  • the sheath 44 is made of polyethylene. Other materials including, without limitation, polypropylene, nylon, polyester or Teflon may also be used to construct the sheath 44.
  • the sheath 44 should also conveniently separate from the sling material 42 after the sling 42 is implanted without materially changing the position of the sling 42.
  • the dilator 54 comprises a body portion having first end portion 56 and second end portion 52 opposite the first end portion 56.
  • the first end portion 56 has surfaces for associating the dilator with a needle (e.g. region 58 of needle 60).
  • the second end portion 52 has sling association means for associating the article with a sling, sling assembly or component thereof.
  • the sling association means may comprise a hole 90.
  • the dilator 54 comprises a short article that dilates a needle track for ease of sling introduction and positioning within the patient.
  • Region 58 of the needle 60 is preferably keyed to allow for convenient, secure attachment of the needle 60 relative to the dilator 54.
  • the attachment is permanent.
  • the kit shown in Figure 3 includes two dilators 54.
  • the dilators 54 atraumatically create and/or expand the passageway through the tissues for sling assembly delivery.
  • the dilator 54 is preferably short relative to a needle 60 for ease of passage of the assembly and to reduce the overall amount of tissue that is deflected at one time.
  • the dilator is less than 2.5 inches in length, and more preferably, it is less than one inch in length, even more preferably, it is less than 0.7 inches in length.
  • the maximum radius of a dilator 54 is preferably less than 10 mm, more preferably less than 7.5 mm, even more preferably less than about 5 mm.
  • the system 200 comprises a needle 262 suitable for an outside-in approach on the left side of the patient's body and associated handle 264.
  • the system 200 also includes a sling assembly 246 comprising a sling 242, protective sheath 244 and dilator 254 at one region.
  • the dilator 254 is designed to mate with the region 258 of the needle 262.
  • a needle 265 may be permanently attached to the sling assembly 246.
  • the needle 265 is sized and shaped to be suitable for an inside-out approach on the right side of a patient's body.
  • the needle 265 includes a leading region 266 suitable for that purpose.
  • the leading region 206 may include a portion that is blunt or, alternatively somewhat sharpened.
  • the system 200 is particularly suitable for a surgeon that desires to initially pass needles with his or her dominant hand.
  • the depicted system 200 is suitable for a right-handed surgeon.
  • a mirror image or reverse system is particularly suitable for a left- handed surgeon that desires to initially pass a needle with his or her left hand.
  • a kit comprises two surgical instruments such as those shown in Figures 15-22, and a polypropylene sling mesh assembly with attached dilators as shown in Figure 28.
  • a kit may be provided for the placement of a pubourethral sling for the treatment of female stress urinary incontinence (SUI) resulting from urethral hypermobility and/or intrinsic sphincter deficiency.
  • SUPI female stress urinary incontinence
  • Figures 19 A, 20A, 21 A and 22A show another embodiment of novel needle 60L' that is similar, but not identical to the needle 60L.
  • the needle 60L' is also particularly suitable for passage on the left side of a patient's body, initially from an incision in the region of the patient's obturator foramen and subsequently emerging through a vaginal incision.
  • Sling tension may be tightened by placing a device, such as a clamp, across one or both ends of the sling 42. Generally, the surgeon grasps the mesh and tensioning filament together adjacent the incision 400 and pulls to increase the degree of tightness of the mesh.
  • a device such as a clamp
  • vaginal retraction If vaginal retraction has been used, it should be removed to adjust the tension of the sling.
  • the sling may be finely tensioned by placing a blunt instrument (e.g. a Metzenbaum scissors or small instrument) between the sling and urethra.
  • a blunt instrument e.g. a Metzenbaum scissors or small instrument

Abstract

Surgical articles, implants and components suitable for a transobturator surgical procedure are described.

Description

TRANSOBTURATOR SURGICAL ARTICLES AND METHODS
CROSS REFERENCE TO RELATED APPLICATIONS
[001] The present application claims priority to Continuation-In-Part Utility Application filed March 3, 2003; U.S. Utility Application Serial No. 10/306,179, filed November 27, 2002; U.S. Provisional Application Serial No. 60/380,797, filed May 14, 2002; and U.S. Provisional Application Serial No. 60/402,007, filed August 8, 2002; and U.S. Provisional Application Serial No. 60/414,865 filed September 30, 2002. The entire contents of all of the provisional patent applications are herein incorporated by reference.
BACKGROUND
[002] Urinary incontinence is a significant health concern worldwide. In the urology field, needles, suture passers and ligature carriers are utilized in a variety of procedures, many of which are designed to treat incontinence. Examples of such surgical instruments included Stamey needles, Raz needles, and Pereyra needles. See Stamey, Endoscopic Suspension of the Vesical Neck for Urinary Incontinence in Females, Ann. Surgery, pp. 465-471, October 1980; and Pereyra, A Simplified Surgical Procedure for the Correction of Stress Incontinence in Women, West. J. Surg., Obstetrics & Gynecology, pp. 243-246, July- August 1959.
[003] A pubovaginal sling procedure is a surgical method involving the placement of a sling to stabilize or support the bladder neck or urethra. There are a variety of different sling procedures. Descriptions of different sling procedures are disclosed in U.S. Pat. Nos. 5,112,344; 5,611,515; 5,842,478; 5,860,425; 5,899,909; 6,039,686; 6,042,534 and 6,110,101.
[004] Some pubovaginal sling procedures extend a sling from the rectus fascia in the abdominal region, to a position below the urethra, and back again to the rectus fascia. Although serious complications associated with sling procedures are infrequent, they do occur. Complications include urethral obstruction, prolonged urinary retention, bladder perforations, damage to surrounding tissue, and sling erosion.
[005] The Tension-free Vaginal Tape (TNT) procedure (available from Ethicon, of Ν.J.) utilizes a Prolene™ nonabsorbable, polypropylene mesh. Problems with the TNT procedure are documented in the literature and patents. Problems associated with the TNT procedures and the like are acknowledged and described in PCT publication nos. PCT WO 00/74613 and PCT WO 00/74594, U.S. Pat. Νos. 6,273,852; 6,406,423; and 6,478,727, and published U.S. Pat. Application Νos. 2002-0091373-A1, 2002-0107430-A1, 2002-0099258-A1 and US- 2002-0099259-A1. A cadaver study indicated that the TVT needle is placed in close proximity to sensitive tissue such as superficial epigastric vessels, inferior epigastric vessels, the external iliac vessel and the obturator. See, Walters, Mark D., Percutaneous Suburethral Slings: State of the Art, presented at the conference of the American Urogynecologic Society, Chicago (October 2001) and PCT International Publication No. WO 02/26108.
[006] Additional sling procedures are disclosed in Published U.S. Pat. Appl. No. US 2001/0018549A1, and PCT Publication Nos. WO 02/39890 and WO 02/069781.
[007] A significant percentage of pubovaginal sling procedures are conducted after previous pelvic surgery. A pubovaginal sling procedure can be particularly challenging if the patient has scarring as a result of previous pelvic surgeries or other anatomical problems. The additional complications presented by significant scarring present surgeons with a greater surgical challenge and may lead some surgeons to forego an otherwise beneficial sling procedure. Unfortunately, this reduces a patient's options for treating incontinence.
[008] Published U.S. Pat. Appl. No. 2002/0099260 discloses an implantable device or tape for use in correcting urinary incontinence. The tape includes sprayed polypropylene fibers that result in a strong implantable device. The tape also has a silicone-coated portion and tapered free ends. The procedure utilizes an Emmet needle that includes an eyelet. To create the eyelet, the distal portion of the Emmet needle is enlarged. A surgical procedure using an Emmet needle is believed to be described in the French publication D. Dargent, S. Bretones, P. George, and G. Mellier, Pose d'un ruban sous uretral oblique par voie obturatrice dans le traitement de V incontinence urinaire feminine, Gynecol. Obstet. Fertil. 2002; 30: 576-582. [009] In the procedure described in U.S. Pat. Appl. No. 2002/0099260, an incision is made in the perineal skin facing the obturator and in the groin. The Emmet needle is first inserted through the cutaneous incision. The Emmet needle is first introduced perpendicular to the perineum for about 15 mm (passing through the internal obturator muscle as far as just outside the ischiopubic branch). The Emmet needle is then allowed to describe its curvature. The free end of the tape is then slipped into the eyelet of the needle. The needle/tape connection is thus reversible as one merely needs to unthread the tape from the eyelet to separate the tape from the needle. Separation of the tape and needle while both are within the body is undesirable as it would require the needle to be repassed through the body.
[0010] The needle with the tape extending through the eyelet is then pulled back though the skin incision. The eyelet and threaded tape present a sudden discontinuity encountered by the tissue that can make tape and needle passage inconvenient and unnecessarily irritative or traumatic to tissue. Additionally, the final placement of the sling may not be optimum in this procedure.
[0011] SUMMARY OF THE INVENTION
[0012] In one aspect, the present invention comprises a novel surgical instrument for treating incontinence. The instrument comprises a handle portion, and a needle portion with a distal region. Unlike the Emmet needle of the prior art, the novel instrument has substantial structure in three dimensions. The needle portion is sized and shaped to extend between an incision substantially adjacent the patient's obturator foramen and a vaginal incision. The needle portion also has structure near the distal region for associating the instrument with an implantable material for treating the incontinence. Preferably, the needle portion includes a portion that is substantially helically shaped, more preferably, it is a variable helix shape. The structure for associating the instrument with an implantable material can comprise an eyelet or a dilator or other structure.
[0013] The handle portion is preferably elongate along a handle axis, the needle portion includes a substantially straight spacer portion along the handle axis, and a variable spiral portion extending from the spacer portion. The variable spiral portion preferably has a tissue clearance depth of greater than about 1.5 inches and less than about 2.5 inches, and a maximum width of greater than about 1.25 inches and less than about 3 inches.
[00 4] In one embodiment, the handle portion is elongate defining a mid plane, and the distal end of the novel needle includes a distal tip situated substantially near an extension of the mid plane that is spaced from the handle portion.
[0015] In another aspect, the present invention comprises a surgical instrument comprising first and second ends, the instrument having a portion that is sized and shaped to extend between a vaginal incision and an incision substantially adjacent the patient's obturator foramen. One of the ends has a handle, at least the other end having securement surfaces for snap fitting the instrument to another surgical component used to treat incontinence. The snap fit preferably provides a substantially permanent attachment between the instrument and the other surgical component. Preferably, the other surgical component comprises a dilator of a sling assembly. The instrument and the dilator preferably have complementary engagement surfaces for resisting separation of the instrument from the dilator once they are snap fitted together.
[0016] In another aspect, the novel instrument comprises a handle portion, a needle portion having an extension portion (e.g. a substantially straight portion) projecting from the handle portion and a variable spiral portion with a distal region. The variable spiral portion is sized and shaped to extend between an incision substantially adjacent the patient's obturator foramen and a vaginal incision. The needle portion has structure in the distal region for associating the instrument with an implantable material for treating incontinence.
[0017] In yet another aspect, the present invention comprises a surgical assembly for treating incontinence. The assembly includes a surgical instrument having a handle portion, a needle portion having substantial structure in three dimensions and a distal region. The needle portion has a portion that is sized and shaped to extend between an incision substantially adjacent a patient's obturator foramen and a vaginal incision. The assembly may also include an implantable synthetic material and a sheath situated about the implantable synthetic material. In this aspect, the needle portion has structure in the distal region for associating the instrument with the implantable synthetic material. The assembly may further including a dilator. Alternatively, needle may comprise an eyelet.
[0018] When the assembly includes a dilator, the dilator preferably has engagement surfaces for connecting the dilator to the instrument. The dilator is preferably operatively associated with the sheath and implantable material. The structure of the needle portion in the distal region comprises surfaces complementary with the engagement surfaces of the dilator for resisting separation of the instrument from the dilator once they are engaged. Preferably, the needle portion is sized and shaped for a predetermined side of a patient, and the handle portion includes indicia indicating the predetermined side of the patient.
[0019] In another aspect, the present invention comprises a surgical assembly comprising a first surgical instrument for use on a right side of a patient. The first surgical instrument comprises a handle portion and a needle portion having substantial structure in three dimensions and a distal region. The needle portion has a portion that is sized and shaped to extend between an incision substantially adjacent the obturator foramen on the patient's right side and a vaginal incision. The assembly also has a second surgical instrument for use on a left side of a patient. The second surgical instrument comprises a handle portion and a needle portion having substantial structure in three dimensions and a distal region. The needle portion of the second instrument has a portion that is sized and shaped to extend between an incision substantially adjacent the obturator foramen on the patient's left side and a vaginal incision.
[0020] Preferably, the handle portion of the first surgical instrument includes indicia indicating the first surgical instrument is for use on the right side of the patient, and the handle portion of the second surgical instrument includes indicia indicating the second surgical instrument is for use on the left side of the patient. The assembly may also include an implantable knitted polypropylene material, and a sheath situated about the implantable synthetic material. The first and second surgical instruments may include an eyelet for receiving a suture to tie the surgical instrument to the implantable material. Alternatively, the assembly can have first and second dilators for associating the first and second surgical instruments with the implantable material. [0021 ] In another aspect the present invention comprises a surgical instrument for treating incontinence comprising a needle sized and shaped to either a) initially extend through an incision substantially adjacent a patient's obturator foramen and then through a vaginal incision, or b) initially extend through a vaginal incision and subsequently through an incision substantially adjacent a patient's obturator foramen. Notably, such a surgical instrument need not have substantial structure in three dimensions. Preferably, the needle comprises a pair of ends having surfaces for affording association with either an implantable sling material or a removable handle. In one embodiment, the needle is sized and shaped for use on either the patient's right side or left side.
[0022] In another aspect, the present invention comprises methods for treating incontinence. Some methods may utilize substantially three dimensional needles, others need not require three dimension needles and other methods may utilize either three dimensional needles or substantially flat needles or both. One method comprises the steps of creating a vaginal incision, creating an incision substantially adjacent the patient's obturator foramen, providing an elongate surgical instrument comprising first and second regions, with at least one of the regions having securement surfaces, providing a sling assembly having an implantable sling for treating the incontinence, the sling assembly having surfaces complementary to the securement surfaces, passing the instrument between the incisions, then snap fitting the instrument to the sling assembly to provide a substantially permanent attachment between the instrument and the assembly, then passing the implantable material through tissue from the vaginal incision toward the incision substantially adjacent the patient's obturator foramen.
[0023] In another aspect a method comprises the steps of creating a vaginal incision, creating an incision substantially adjacent the patient's obturator foramen, providing an elongate surgical instrument comprising first and second regions, the instrument having substantial structure in three dimensions, providing an implant for treating the incontinence, passing the first region between the incisions, then associating the implant with the instrument, and passing the implant through tissue and through the patient's obturator foramen with the instrument. Preferably, the step of providing an elongate surgical instrument includes the step of providing an instrument with a portion that is substantially helically shaped, and the step of passing the implant through tissue includes the step of passing the implant along a substantially three dimensional or helical path. The step of providing an elongate surgical instrument preferably includes the step of providing an instrument with an elongate handle portion having an axis, and the step of passing the instrument between the incisions preferably includes the step of rolling the instrument about the axis of the handle portion.
[0024] In another aspect, the method comprises the steps of creating a vaginal incision, creating an incision substantially adjacent the patient's obturator foramen, providing an elongate surgical instrument comprising a handle portion, a needle portion having an extension portion projecting from the handle portion and a variable spiral portion with a distal end, providing an implant for treating the incontinence, passing at least a portion of the variable spiral portion between the incisions by initially passing the distal end through the incision substantially adjacent the patient's obturator foramen and then through the vaginal incision, then associating the implant with a portion of the instrument that has emerged from the vaginal incision, and then moving the distal region of the instrument with the implant associated therewith from the vaginal incision toward the patient's obturator foramen to pass the implant through tissue. Optionally, the step of associating the implant with a portion of the instrument that has emerged from the vaginal incision includes the step of using a suture to tie the implant to an eyelet in the distal region of the needle.
[0025] In yet another aspect, the method comprises the steps of creating a vaginal incision, creating an incision substantially adjacent the patient's obturator foramen, providing an elongate surgical instrument comprising first and second regions, providing an assembly having an implant for treating incontinence, initially passing the first region of the instrument initially through the vaginal incision toward the incision substantially adjacent the patient's obturator foramen in a path through the patient's obturator foramen until the first region of the instrument emerges from the incision substantially adjacent the patient's obturator foramen, leaving the second region of the needle projecting from the vaginal incision, then associating the second region of the instrument that projects from the vaginal incision with the assembly, and then moving the instrument out of the patient's body to pass the implant through tissue from the vaginal incision toward the incision substantially adjacent the patient's obturator foramen to place the implant in a therapeutically effective position.
[0026] In another aspect, the present invention comprises the ornamental design for a surgical instrument, as shown in Figures 39 through 45 and described in the Brief Description of the Drawings. Also, the present invention comprises the ornamental design for a surgical instrument, as shown in Figures 46 through 52 and described in the Brief Description of the Drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0027] Other features and advantages of the present invention will be seen as the following description of particular embodiments progresses in conjunction with the drawings, in which:
[0028] Figure 1 is a side view of a surgical needle according to one aspect of the present invention;
[0029] Figure 2 is a perspective view of a needle, sling and additional optional elements for use in a kit according to an aspect of the present invention;
[0030] Figure 3 is a top view of a kit according to one embodiment of the present invention;
[0031 ] Figures 4 through 10 are schematic views sequentially showing a surgical procedure in accordance with one aspect of the present invention, wherein:
[0032] Figure 4 shows a needle just passing an incision on the right side of a patient's body with the tip of the needle shown in dotted lines;
[0033] Fig. 4A is a schematic view of an alternate approach, presented as an alternative to the step shown in Fig. 4, showing an inside-out approach using the needle of Fig. 1, which may be preferred by some surgeon's whose dominant hand is the right hand, the handle shown being a detachable handle that is movable from one region of the needle to the other, with solid lines being used to show the initial position of the handle and dashed lines and an arrow used to show a second position of the handle; [0034] Figure 5 illustrates a needle just passing an incision on the left side of a patient's body with the tip of the needle and part of the surgeon's finger shown in dotted lines;
[0035] Figure 6 illustrates one side of a sling assembly and the needle of Figure 5 as it emerges from the patient's vagina;
[0036] Figure 7 shows the sling system of Figure 6 after it is attached to the needle of Figure 6;
[0037] Figure 8 is a perspective view of a sling assembly being pulled through the body by a needle in accordance with the present invention,
[0038] Figure 9 is a schematic view of the approximate relative positions of the pubic bone and the sling after the sling is inserted according to one aspect of the present invention;
[0039] Figure 10 is an enlarged schematic view showing portions of Figure 9;
[0040] Figure 11 is a schematic view of another embodiment of the present invention;
[0041] Figure 12 is a top view of another embodiment of sling for use in accordance with the present invention;
[0042] Figure 13 A is a front view of an optional handle suitable for use with the present invention;
[0043] Figure 13B is a side view of the handle of Fig 13 A;
[0044] Figure 14 is a perspective view of the handle of Figures 13A and 13B;
[0045] Figure 15 is a perspective view of a surgical instrument particularly suitable for use on a right side of a patient's body, according to one aspect of the present invention;
[0046] Figure 16 is an end view of the needle of Fig. 15;
[0047] Figure 17 is a front view of the needle of Fig. 15;
[0048] Figure 18 is a bottom view of the needle of Fig. 15; [0049] Figure 15A is a perspective view of a surgical instrument particularly suitable for use on a right side of a patient's body, which needle is similar, but not identical to the needle of Fig. 15;
[0050] Figure 16A is an end view of the needle of Fig. 15A;
[0051] Figure 17A is a front view of the needle of Fig. 15A;
[0052] Figure 18 A is a bottom view of the needle of Fig. 15 A;
[0053] Figure 19 is a perspective view of a surgical instrument particularly suitable for use on a left side of a patient's body, according to one aspect of the present invention;
[0054] Figure 20 is an end view of the needle of Fig. 19;
[0055] Figure 21 is a front view of the needle of Fig. 19;
[0056] Figure 22 is a bottom view of the needle of Fig. 19;
[0057] Figure 19A is a perspective view of a surgical instrument particularly suitable for use on a left side of a patient's body, which needle is similar, but not identical to the needle of Fig. 19;
[0058] Figure 20A is an end view of the needle of Fig. 19A;
[0059] Figure 20B is an end view of another embodiment of needle according to the present invention;
[0060] Figure 21 A is a front view of the needle of Fig. 19 A;
[0061] Figure 22A is a bottom view of the needle of Fig. 19A;
[0062] Figure 23 is a perspective view of a short dilator for use in accordance with an aspect of the present invention;
[0063] Figure 23 A is a sectional view of another embodiment of dilator in proximity with another embodiment of a needle. [0064] Figure 23B is a sectional view of another version of a dilator and the needle of Figure 23 A.
[0065] Figure 23 C is a sectional view of another embodiment of a dilator and needle combination.
[0066] Figure 24 is an enlarged, sectional view of an internal portion of the dilator of Fig. 23 in accordance with an aspect of the present invention;
[0067] Figure 25 is sectional view of the dilator of Fig. 23 in accordance with an aspect of the present invention;
[0068] Figure 25 A and 26 are another sectional view of the dilator of Fig. 23 illustrating different features;
[0069] Figure 26A is a sectional view illustrating a specially designed distal region of a needle inserted into the dilator of Figure 25;
[0070] Figure 27 is a side view of a distal region of a needle according to the present invention; showing a specially designed shape that is complementary to inner surfaces of the dilator of Fig. 23;
[0071] Figure 28 is a perspective view of one embodiment of a sling assembly according to the present invention;
[0072] Figure 29 is a side view of the sling assembly of Fig. 28;
[0073] Figure 30 is a side view of a sling and tensioning suture according to an aspect of the present invention;
[0074] Figure 31 is a schematic illustration of anatomical features, showing a pubic bone with dashed lines and incisions;
[0075] Figure 32 is a schematic illustration of the relative positions of the patient's pubic bone and a novel needle according to the present invention, after at least partially inserting the needle; [0076] Figure 33 is a schematic illustration of the relative positions of the patient's pubic bone and a novel needle according to the present invention, after at least partially inserting the needle;
[0077] Figures 34 through 38 are perspective views sequentially showing a surgical procedure in accordance with another aspect of the present invention, wherein:
[0078] Figure 34 shows a needle just passing an incision on the right side of a patient's body with the tip of the needle shown in dotted lines;
[0079] Figure 35 illustrates a needle just passing an incision on the left side of a patient's body with the tip of the needle and part of the surgeon's finger shown in dotted lines;
[0080] Figure 36 illustrates one side of a sling assembly and the needle of Figure 35 as it emerges from the patient's vagina;
[0081] Figure 37 shows the sling assembly of Figure 36 after it is attached to the needle of Figure 36;
[0082] Figure 38 is a perspective view of a sling assembly being pulled through the body by a needle in accordance with the present invention;
[0083] Figure 39 is a perspective view of a design of a surgical instrument according to another aspect of the present invention;
[0084] Figure 40 is a top view of the instrument of Fig. 39;
[0085] Figure 41 is a bottom view of the instrument of Fig. 39;
[0086] Figure 42 is a front view of the instrument of Fig. 39;
[0087] Figure 43 is a rear view of the instrument of Fig. 39;
[0088] Figure 44 is a right end view of the instrument of Fig. 39;
[0089] Figure 45 is a left end view of the instrument of Fig. 39; [0090] Figure 46 is a perspective view of a design of a instrument according to another aspect of the present invention;
[0091] Figure 47 is a top view of the instrument of Fig. 46;
[0092] Figure 48 is a bottom view of the instrument of Fig. 46;
[0093] Figure 49 is a front view of the instrument of Fig. 46;
[0094] Figure 50 is a rear view of the instrument of Fig. 46;
[0095] Figure 51 is a right end view of the instrument of Fig. 46;
[0096] Figure 52 is a left end view of the instrument of Fig. 46;
[0097] Figure 53 is a perspective view of a system for use in an inside out procedure according to the present invention that includes a portion that is at least partially reusable;
[0098] Figure 54 is a perspective view of a universal system capable of use in inside-out and outside in approaches according to the present invention, which system includes a needle having two regions capable of attachment to either a handle or a sling assembly;
[0099] Figures 55-57 sequentially illustrate use of the system of Fig. 54 wherein:
[00100] Figure 55 illustrates passage of the needles using inside-out approaches,
[00101] Figure 56 illustrates the needles after the handles have been removed, in preparation for attachment of a sling assembly on the regions of the needles previously occupied by the handles;
[00102] Figure 57 illustrates the system during implantation of the sling;
[00103] Figure 58 is a schematic illustration of the system of Fig. 54 used in an inside-out approach (the right side of the patient) and an outside-in (the left side of the patient) approach; [00104] Figures 59-61 sequentially illustrate the system of Fig. 54 used in outside-in approaches wherein:
[00105] Figure 59 illustrates the needles inserted initially through the patient's skin and thereafter emerging from a vaginal incision;
[00106] Figure 60 illustrates the system just prior to attachment of a sling assembly;
[00107] Figure 61 illustrates the system of Fig. 54 during implantation of the sling;
[00108] Figure 62 is a perspective view of another embodiment of surgical assembly according to the present invention, with a needle suitable for an outside-in approach (e.g. on the left side of the patient's body) and a sling assembly with a needle attached thereto suitable for an inside-out approach (e.g. through the right side of the patient's body);
[00109] Figure 63 is a perspective view of an alternative embodiment of sling assembly for use in accordance with the present invention;
[00110] Figure 64 is a perspective view of an alternative embodiment of sling assembly for use in accordance with the present invention, which assembly does not include a sheath;
[00111] Figure 65 is a perspective view of an alternative embodiment of sling assembly for use in accordance with the present invention;
[00112] Figure 66 is a top plan view of an alternative embodiment of sling assembly for use in accordance with the present invention; and
[00113] Figure 67 is a top plan view of an alternative embodiment of sling assembly for use in accordance with the present invention.
[00114] The broken line showing of structures on the design of the surgical instruments in Figures 39 through 52 are for illustrative purposes only and form no part of the claimed design. [00115] DETAILED DESCRIPTION
[00116] The following description is meant to be illustrative only and not limiting. Other embodiments of this invention will be apparent to those of ordinary skill in the art in view of this description.
[00117] The present invention is directed to surgical instruments, assemblies and implantable articles for treating pelvic floor disorders such as incontinence or stress urinary incontinence (SUI) in both men and women. The present invention is also directed to improved surgical procedures that utilize the surgical articles.
[00118] Figure 1 is a side view of a sling assembly guide or needle 60 according to one aspect of the present invention. The needle 60 is preferably sized and shaped to be suitable for initial insertion through obturator fascia (see Figures 4 through 8). The needle 60 has a length sufficient to extend from the initial incision 400 adjacent the anterior side of the pubic bone, through the obturator foramen 3 (e.g. see Figure 9) portion of the pubic bone to a position on the posterior side of the pubic bone, and to then emerge from a vaginal incision. While Figure 1 is a side view or a species of the present invention, the present invention is not limited to the particular shape disclosed. It is expressly understood that a large number of different sizes, shapes and dimensions of needles are suitable for the present invention.
[00119] There are many vulnerable, sensitive pelvic anatomical structures and tissues in the region of the obturator foramen 3, including the pudendal artery (internal), the pudendal canal (Alcock), and nerves (e.g. the perineal and labial). The needle 60 is preferably sized and shaped to pass through the obturator foramen 3 along a path that is substantially free of vascular and nerve structures. The size and shape of the needle 60 help avoid the sensitive structures. For example, in one embodiment, the path may be in a region between the superior pubic ramus and the inferior pubic ramus (see e.g. Figures 4 through 10). The tip of the needle is preferably substantially blunt to help avoid damage to the sensitive structures. Alternatively, the tip may be slightly sharpened to assist in the initial passage of the needle.
[00120] Preferably, the needle 60 comprises three substantial linear portions 60A, 60B and 60C; each situated at an angle relative to the other linear portions. Preferably, the angles are different. The needle 60 preferably includes a leading portion 60A, an intermediate portion 60B and a trailing portion 60C.
[00121] The leading portion 60A of the needle 60 is sized to extend through the initial incision 400. The cross-sectional shape of the needle 60 is preferably substantially circular, but other cross sectional shapes such as, but not limited to, elliptical, polygonal, square and triangular are also contemplated herein. The diameter of the leading portion 60 A is less than 5mm, more preferably less than 4 mm, and even more preferably less than 3.5mm to avoid damaging or displacing tissue. The sudden angle between the intermediate portion 60B of the needle and the leading portion 60 A helps the surgeon avoid sudden lurches of the needle after the region 58 passes through the obturator fascia, as the intermediate 60B or trailing 60C portions of the needle can be grasped or abut external portions of the patient to stop an undesirable, sudden lurch through tissue. The angle also helps the surgeon steer the needle 60 along a desired or predetermined path.
[00122] The angle between the intermediate portion 60B and the trailing portion 60C is preferably greater than ninety degrees, more preferably, it is greater than one hundred and twenty degrees. The length of the trailing portion 60C should be sufficient to allow the surgeon to leverage the end of region 58 of the needle and drive it along its predetermined, desired path. This geometry helps direct the end of the region 58 back toward the surgeon. This geometry also helps the surgeon pass the needle through this portion of the body and emerge from the vagina without undue tissue trauma.
[00123] Figure 3 illustrates a kit 15 according to an aspect of the present invention. The kit 15 preferably comprises an implantable material (e.g. a sling mesh provided as part of a sling assembly 46), at least one (preferably two) optional handle 64, and at least one (preferably two) needle 60.
[00124] The handle 64 is entirely optional. The handle may be removably attached to the needle, or it may be repositionably attached to the needle. Alternatively, the handle may be permanently attached to the needle 60. Figures 13 and 14 illustrate an optional shape of handle 64A suitable for permanent attachment to the needle 60. Other suitable handles are disclosed, for example, in U.S. Provisional Patent Application Nos. 60/347,494; 60/336,884 and 60/343,658.
[00125] The needle 60 is preferably made of a durable, biocompatable surgical instrument material such as, but not limited to, stainless steel (e.g. 316 stainless steel or 17-4 stainless steel), titanium, Nitinol, polymers, plastics and other materials, including combinations of materials. The needle 60 should have sufficient structural integrity to withstand the various forces (e.g. forces caused by dilator attachment, and penetration/passage of the needle 60 through the various tissues) without undergoing any significant structural deformation. Optionally, the needles 60 could be sufficiently malleable to allow a practitioner or user of the device to modify the needle 60 to a desired shape and, thereby, optimize the procedural approach.
[00126] Needles 60 may be disposable or reusable (e.g. sterilizable by steam sterilization procedures). In another aspect of the present invention, the needles 60 may be provided in a kit, such as any of the kits described in any of published U.S. Pat. Application Nos. 2002- 0151762-A1; 2002-0147382-A1; 2002-0107430-A1, US-2002-0099258-A1 and US-2002- 0099259-A1; and U.S. Provisional Application Serial Nos. 60/263,472, filed January 23, 2001; 60/269,829, filed February 20, 2001; 60/281,350, filed April 4, 2001; 60/295,068, filed June 1, 2001; 60/306,915, filed July 20, 2001, and U.S. Provisional Patent Application No. 60/332,330, filed November 20, 2001.
[00127] One embodiment of kit includes the needle 60 and other needles (not shown, but for example including the needles shown in published U.S. Pat. Application No. US-2002- 0099258-A1) designed for placing a sling from the abdominal rectus fascia, under the urethra, and then back to the rectus fascia. If a traditional pubovaginal sling procedure seems to be an option for a patient but, during or prior to the surgical procedure, it becomes apparent that excessive scar tissue (e.g. due to a previous surgery) exists and would render the traditional procedure less desirable or impossible, then the needle 60 may be used in an alternative approach. Since the needles 60 are also provided in a kit, the surgeon has the option of conducting an alternative surgical procedure with the needles 60. [00128] In another aspect of the present invention, a needle may optionally include the capacity to deliver a medicament (e.g. anesthesia) during the surgical procedure. For example, the needle 60 may be hollow with an open end. The needle may have a connector for associating with a medicament reservoir and delivery mechanism (e.g. a syringe).
[00129] The present invention may be utilized in conjunction with a wide variety of sling materials and sling assemblies. The sling may be integral, monolithic, or a composite of different components or segments of different components. Suitable non-synthetic materials include allografts, homografts, heterografts, autologous tissues, cadaveric fascia, autodermal grafts, dermal collagen grafts, autofascial heterografts, whole skin grafts, porcine dermal collagen, lyophilized aortic homografts, preserved dural homografts, bovine pericardium and fascia lata. Suitable synthetic materials for a sling include polymerics, metals and plastics and any combination of such materials.
[00130] Commercial examples of non-absorbable materials include Marlex™ (polypropylene) available from Bard of Covington, RI, Prolene™ (polypropylene) and Mersilene (polyethylene terphthalate) Hernia Mesh available from Ethicon, of New Jersey, Gore-Tex™ (expanded polytetrafluoroethylene) available from W. L. Gore and associates, Phoenix, Az., and the polypropylene sling available in the SPARC™ sling system, available from American Medical Systems, Inc. of Minnetonka, Minnesota. Commercial examples of absorbable materials include Dexon™ (polyglycolic acid) available from Davis and Geek of Danbury, CT, and Nicryl™ available from Ethicon. Other examples of suitable materials include those disclosed in U.S. Pat. Application No. 2002/0072694. More specific examples of synthetic sling materials include, but are not limited to polypropylene, cellulose, polyvinyl, silicone, polytetrafluoroethylene, polygalactin, Silastic, carbon-fiber, polyethylene, nylon, polyester (e.g. dacron) PLLA and PGA. The sling material maybe resorbable, absorbable or non-absorbable. Optionally, some portions may be absorbable and other portions may be non-absorbable.
[00131] The synthetic slings may be knitted, woven, sprayed or punched from a blank. Some slings may be sufficiently robust to be inserted without a protective sleeve. In other embodiments, some synthetic slings may have an associated protective sleeve (described in greater detail below) to assist with the implantation.
[00132] In one aspect of the invention, the sling may comprise a mesh material. The mesh material comprises one or more woven, knitted or inter-linked filaments or fibers that form multiple fiber junctions throughout the mesh. The fiber junctions may be formed via weaving, knitting, braiding, bonding, ultrasonic welding or other junction forming techniques, including combinations thereof. In addition, the size of the resultant openings or pores of the mesh maybe sufficient to allow tissue in-growth and fixation within surrounding tissue. As an example, not intended to be limiting, the holes may comprise polygonal shaped holes with diagonals of 0.132 inches and 0.076 inches.
[00133] The quantity and type of fiber junctions, fiber weave, pattern, and material type influence various sling properties or characteristics. As another example, not intended to be limiting, the mesh may be woven polypropylene monofilament, knitted with a warp tricot. The stitch count may be 27.5 courses/inch (+ or - 2 courses ) and 13 wales/inch (+ or - 2 wales). The thickness of this example is 0.024 inches. This embodiment of sling is preferably associated with a protective sleeve (described in greater detail below). Non-mesh sling configurations are also included within the scope of the invention.
[00134] Referring to figures 29 and 30, the sling mesh 42A is preferably elastic, as opposed to the substantially inelastic mesh available in Europe as Uratape® from Porges, and the tape described in Published U.S. Pat. Appl. No. 2002/0099260. As an example, a mesh may be tested to determine whether it is elastic using a series IX Automated Materials Testing System (an Instron), available from Instron Corporation. A 1cm wide sample of the mesh may be placed in the Instron with a crosshead speed set at 5 in/min and a gauge length of 1 inch. An elastic mesh exhibits at least a 7% elongation under a l/ι pound load, more preferably about a 10% elongation under a Vz pound load, and more preferably about 14% under the Vi pound load. An inelastic mesh exhibits less than an 7% elongation under a Vi pound load.
[00135] The mid-portion of the sling mesh (the portion designed to reside underneath the midurethra) is preferably substantially free of any silicone coatings. In yet another embodiment (e.g. shown in Fig. 28), the mid-portion of the sling may comprise a non- synthetic material, constructed according to the teachings of U.S. Provisional Patent Appl. No. 60/405,139, filed August 22, 2002. Other suitable synthetic slings are described in published U.S. Pat. No. 2002-0138025-A1, published September 26, 2002.
[00136] In another embodiment the sling material may have one or more substances associated therewith through a process such as coating or they may be incorporated into the raw material of the sling. Examples of appropriate substances include, without limitation, drugs, hormones, antibiotics, antimicrobial substances, dyes, silicone elastomers, polyurethanes, radiopaque filaments or substances, anti-bacterial substances, chemicals or agents, including any combinations thereof. The substances may be used to enhance treatment effects, reduce potential sling rejection by the body, reduce the chances of tissue erosion, enhance visualization, indicate proper sling orientation, resist infection or other effects.
[00137] While the slings are preferably rectangular for treating SUI in females, other shapes are also contemplated. Depending on the treatment addressed (e.g. to provide hammock support for the bladder or bladder neck, or to address a rectocele, enterocele or prolapse) the slings may be any of a wide variety of shapes. As an example, the sling may be of the general shape of the slings described and shown in Moir et al., The Gauze-Hammock Operation, Journal of Obstetrics and Gynaecology of the British Commonwealth, Volume 75, No. 1, Pps. 1-9 (1968).
[00138] Figure 12 shows a sling 90 with a shape other than a purely rectangular shape. This embodiment of sling 90 includes a mid portion that is wider than the remaining portions of the sling 90. The mid portion is preferably placed under the urethra 16, along the mid portion of the urethra.
[00139] Figure 2 illustrates a sling assembly 46 comprising sling 42 and sheath 44. Preferably, the overall dimensions of the sling assembly 46, including insertion sheath 44 and sling 42 are sufficient to extend from a superficial incision 400 near the obturator fascia (see Figures 4 through 8), to an undersurface of the urethra 16 and back to another incision 400 in obturator fascia that is opposite the first incision. The size of the sling can take into account the imprecision associated with the range of human anatomy sizes. In a preferred embodiment, the sheath length of the assembly of the present invention is approximately within the range of 10 cm to 50 cm, sheath width is approximately within the range of 1.0 cm to 2 cm, and sheath material thickness is approximately within the range of 0.127 mm to 0.203 mm, respectively. The associated sling 42 has a length, width and thickness approximately within the range of 7 cm to 50 cm; 1.0 cm to 2 cm; and 0.508 mm to 0.711 mm, respectively.
[00140] The sling 42 of the present invention can be implanted without the need for bone screws. The precise, final location of the sling 42 will depend on a variety of factors including the particular surgical procedure(s) performed, and any preconditions of the patient such as scar tissue or previous surgeries. For example, it may be preferred to place the sling 42 in close proximity to, but not in contact with, a mid portion of the urethra to treat incontinence. Alternatively, the sling may be placed near the bladder neck.
[00141] Preferably, the sling 42 has a tensioning filament or suture T as disclosed, for example, in U.S. Published Pat. Application No US-2002-0107430-A1. The tensioning suture T may be constructed from a permanent or absorbable material. Also preferably, the sling 42 comprises a substantially elastic, polypropylene sling such as a sling constructed from the polypropylene sling material available in the SPARC Sling System, available from American Medical Systems of Minnetonka, Minnesota.
[00142] Figure 30 illustrates an embodiment with the tensioning filament T extending along end portions, but not extending along a mid-portion of the sling. The sling 42 A comprises a polypropylene sling mesh 42A. It is constructed of polypropylene monofilament that is precut to about 1.1 cm width x 35 cm length. The tensioning filaments T in this embodiment are fixed at each end to the sling material (e.g. a polypropylene mesh) by welding (e.g. ultrasonic), knotting, anchoring, adhering (e.g. with and adhesive) or the like. Absorbable tensioning sutures T are threaded into the length of the sling mesh 42 A from each end to allow for tensioning adjustment of the sling mesh 42 A after placement in the patient is achieved. The mid portion of the sling mesh 42 A is preferably free of the tensioning sutures T. For example, approximately 5mm may separate the ends of the two tensioning sutures T. [00143] Two plastic sheaths 44A (see Fig. 29) that overlap in the center of the sling mesh cover the sling mesh and protect it during placement. The plastic covering over the mesh is designed to minimize the risk of contamination.
[00144] Referring to Fig. 2, a protective sheath 44 is preferred, especially when the sling 42 is elastic. A sheath is particularly desirable when the sling is elastic as the sheath 44 assists in introduction of the sling within tissue and avoids damage to the elastic sling material. The sheath 44 is used during insertion of a synthetic sling 42. After the sling 42 is implanted, the sheath 44 is removed and discarded. Preferably, the protective sheath 44 is constructed of a material that affords visual examination of the implantable sling material 42 and that affords convenient passage of the assembly 46 through tissue of the patient.
[00145] In a preferred embodiment, the sheath 44 is made of polyethylene. Other materials including, without limitation, polypropylene, nylon, polyester or Teflon may also be used to construct the sheath 44. The sheath 44 should also conveniently separate from the sling material 42 after the sling 42 is implanted without materially changing the position of the sling 42.
[00146] The sheath 44 may comprise two elongate, separable sections. Optionally, portions of the sheath 44 may detachably and telescopically overlap near the middle portion of the sling or it may be slit (e.g. longitudinally or perpendicular to the longitudinal axis) to afford convenient separation.
[00147] In another aspect, the present invention comprises a dilator 54 (Fig. 2) for use in a surgical sling procedure. Notably, the dilator is optional according to some aspects of the present invention as, for example, the sling and/or protective sheath may be directly connected to a novel needle of the present invention by virtue of an eyelet in the needle or other arrangements disclosed in greater detail below.
[00148] The dilator 54 comprises a body portion having first end portion 56 and second end portion 52 opposite the first end portion 56. The first end portion 56 has surfaces for associating the dilator with a needle (e.g. region 58 of needle 60). The second end portion 52 has sling association means for associating the article with a sling, sling assembly or component thereof. The sling association means may comprise a hole 90.
[00149] Preferably, the dilator 54 comprises a short article that dilates a needle track for ease of sling introduction and positioning within the patient. Region 58 of the needle 60 is preferably keyed to allow for convenient, secure attachment of the needle 60 relative to the dilator 54. Preferably the attachment is permanent.
[00150] The kit shown in Figure 3 includes two dilators 54. The dilators 54 atraumatically create and/or expand the passageway through the tissues for sling assembly delivery. The dilator 54 is preferably short relative to a needle 60 for ease of passage of the assembly and to reduce the overall amount of tissue that is deflected at one time. Preferably, the dilator is less than 2.5 inches in length, and more preferably, it is less than one inch in length, even more preferably, it is less than 0.7 inches in length. The maximum radius of a dilator 54 is preferably less than 10 mm, more preferably less than 7.5 mm, even more preferably less than about 5 mm. The tip or leading end of the dilator 54 is preferably blunt, as, in preferred embodiments, the leading tip of the dilator 54 will pass through tissue that has already been pierced by a needle 60. The dilator 54 may be made from a variety of biocompatible and sterilizable materials including, without limitation, acetal, polycarbonate, polypropylene, Delrin®, Acrylonitrile-Butadiene-Styrene (ABS), polyethylene, nylon and any combination of biocompatible materials.
[00151] The dilator 54 preferably includes means for associating with a surgical needle 60. In a preferred embodiment, the association means affords a permanent affixation between the dilator 54 and the needle 60. By "permanent affixation", it is meant that it would be very difficult to manually separate the dilator from the needle after they have become permanently affixed. After implantation of the sling 42, to separate the sling 42 from the dilator 54/needle 60, the surgeon cuts an end of the sling 42 as described more fully below. The association means preferably affords quick and convenient attachment of the dilator 54 to the needle 60 to avoid wasting time in the midst of a surgical procedure. The attachment should also be secure to avoid separation of the needle 60 and dilator 54 while the combination is passed through tissue. [00152] In one embodiment, the means comprises a shoulder surface on the needle and complementary slot surfaces on the dilator 54. Referring to the embodiment of dilator shown in Figure 2, the dilator 54 maybe approximately 3.1 cm (1.2 inches) in length. The dilator 54 preferably includes a gentle taper near its first end 56. The dilator is sized and shaped to provide atraumatic passage through body tissue. The taper and relatively smooth outer surface of the dilator 54 facilitate atraumatic passage of the dilator 54 and attached sling assembly 46 through the various tissues of the patient. The presence of the dilator 54 allows a gentle transition between the diameter of the needle, to the shape of the dilator, and finally to the sling assembly 46.
[00153] Preferably, the attachment of the dilator 54 to the needle 60 is a substantially linear fashion, as opposed to a twisting or screw-like attachment. Preferably, the attachment is a snap-fit attachment to save time during the surgical procedure.
[00154] The second end 52 of the dilator 54 associates the dilator with one end of a sling 42, or sheath 44 or sling assembly 46. The sheath 44 or sling 42 is preferably attached to the dilator 54 via a first opening or through-hole located near the second end 52 of the dilator 54. In this embodiment, the opening operates as a universal sling material or assembly attachment point which can receive a variety of materials, such as fascia, autologous materials, synthetics, biologic tissues and any other similar tissues, including any combinations.
[00155] In the embodiment shown in Figure 2, the end portion 48 or 50 of one end of the sheath 44 is threaded through the opening of the dilator 54 and secured to the sheath 44, thereby forming a loop. Alternatively, ends 48 or 50 may be fastened onto the sheath 44 via ultrasonic welding, bonding, melting, suturing, sealing or other attachment techniques. Further, the end 52 of the dilator 54 preferably includes a cut-away section to provide room to receive sling assembly material to reduce the overall profile of the sling assembly experienced by tissue during sling passage. Therefore, when the sheath is attached to the cut-away section, the additional sheath material is not apt to significantly increase the relative thickness, diameter or profile of the dilator 54. Unlike the showing in Figure 3, the dilator 54 is preferably preattached to the sling assembly 46. In one embodiment, the sling 42 itself may be attached to the dilator, e.g. with a suture threaded through the opening of the dilator and tied to the sling.
[00156] One or more longitudinal slots located on the outer surface of the dilator 54 allow the wall of the dilator 54 to expand in a radially outward direction when the first end of the needle 60 is inserted into the opening of the dilator 54. When a shoulder of the dilator 54 passes the recess of the needle 60, the wall of the dilator 54 collapses around the needle 60 as the shoulder seats into the recess, thereby securing the dilator 54 on the needle 60 and blocking separation of the dilator 54 and needle 60.
[00157] A portion of the dilator 54 includes a taper having a decreasing profile toward the second end 56 of the dilator 54. The taper preferably gently cams tissue out of the path of the sling assembly 46 as the sling assembly is inserted in the body. The taper is also sized and shaped to reduce the amount of friction or resistance as the device is drawn through the tissues of the patient. The amount of force required to manipulate the device through the tissues is thereby reduced. This in turn provides the user of the assembly with additional control over device insertion and maneuverability through tissue and within the patient. In addition to tapered profiles, other dilator profiles such as conical, flared, frusto-conical, pyramid-shaped, elliptical or other applicable profiles may also be used.
[00158] A surgical kit according to the present invention may optionally include additional accessories. For example, a surgical drape specifically designed for urological procedures such as a sling procedure may be included in a kit of the present invention. Such a drape is disclosed in published U.S. Pat. Appl. No. 2002-078964-A1. Alternatively, an article for objectively setting tension of the sling, such as one of the articles described in U.S. Pat. Application No. 09/968,239, filed October 1, 2001 maybe included in the kit.
[00159] The kits according to the present invention preferably include at least two needles, hi some instances the needles may be substantially identical, in other instances, they may be different. Two or more needles reduce the need to reuse a non-sterile needle at a different location with a patient, thereby eliminating cross contamination issues. Additional needles, handles, dilators and other elements may also be included for surgical convenience, for avoidance of contamination from one portion of the body to another, for ease of manufacturing or sterilization or for surgical requirements. For example, two different types of needles may be included in a kit. One type of needle may be suitable for an outside-in (e.g. from the skin incision toward a vaginal incision) approach. Another type may be suitable for an inside-out (e.g. from the vaginal incision toward a skin incision) approach. Surgeons that prefer an approach dictated by the surgeon's dominant hand may prefer this embodiment. Alternatively, a universal needle (e.g. one suitable for both an inside out and an outside in approach) may be utilized.
[00160] Fig. 53 illustrates a system 101 for use in an inside-out procedure. The system 101 comprises a pair of needles 109 that are sized and shaped for the inside-out approach. The system 101 also includes a sling assembly comprising a sling 111, and protective sheath 113. The sling assembly may be permanently attached to the needles 109 at regions 117. Alternatively, the needle 109 can include specially shaped structure (e.g. an eyelet) in region 117 that affords association between the needle 109 and sling or sling assembly after passage of the needle 109. The system 101 may optionally include releasable handle portions 119 that can be releasably attached to the needles 109 at ends 121. i
[00161] Fig. 54 illustrates a system 102 for use in either an inside-out procedure or an outside-in procedure. The system 102 comprises a sling assembly 146 having a sling material 142, a sheath 144 and dilators 154. The system includes a handle portion 164 that is at least partially reusable. Needles 162 are suitable for either an inside-out or outside in procedure. The regions 158 of the needles 162 may be attachable to either a dilator 154 or the handle portion 164. Alternatively, the needles maybe attachable to the implantable material itself or a sling and protective sleeve assembly without any dilator.
[00162] The system 102 allows the needles to be passed through tissue without requiring that they be attached to a sling or sling assembly. Thus, if the initial passage is not deemed to be optimum, the needles may be repassed without subjecting the sling or sling assembly to damage during the initial passage.
[00163] Figures 55-57 sequentially illustrate use of the system 102 using an inside-out approach. Figure 55 illustrates passage of the needles 162 using inside-out approaches. The handles 164 are optional. If they are used, they are removed once the needles 162 have emerged from the skin incision. Figure 56 illustrates the needles 162 after the handles 164 have been removed, in preparation for attachment of a sling assembly 146 on the regions 158 of the needles 162 previously occupied by the handles 164. Figure 57 illustrates the system 102 during implantation of the sling.
[00164] Figure 58 is a schematic illustration of the system 102 used in an inside-out approach (the right side of the patient) and an outside-in (the left side of the patient) approach. This combination may be utilized, by a right-handed surgeon who prefers to pass the leading edge of the needle with his or her dominant hand. Alternatively, the combination may be reversed for a left-handed surgeon. The remainder of the surgical procedure may be substantially identical to that depicted in Figures 56 and 57. Notably, the handle 164 utilized on the right side of the patient's body may optionally be placed on the other side of the needle after it emerges from the patient's body to conveniently assist the surgeon in moving the needle 162 and sling assembly 146 through the tissue.
[00165] Figures 59-61 sequentially illustrate the system 102 used in outside-in approaches. Figure 59 illustrates the needles 162 inserted initially through the patient's skin and thereafter emerging from a vaginal incision. Figure 60 illustrates the system 102 just prior to attachment of a sling assembly 146. Figure 61 illustrates the system 102 during implantation of the sling.
[00166] Referring to Fig. 62, there is shown another system 200 according to the present invention. The system 200 comprises a needle 262 suitable for an outside-in approach on the left side of the patient's body and associated handle 264. The system 200 also includes a sling assembly 246 comprising a sling 242, protective sheath 244 and dilator 254 at one region. The dilator 254 is designed to mate with the region 258 of the needle 262. At the other end of the sling assembly 246, a needle 265 may be permanently attached to the sling assembly 246. The needle 265 is sized and shaped to be suitable for an inside-out approach on the right side of a patient's body. The needle 265 includes a leading region 266 suitable for that purpose. The leading region 206 may include a portion that is blunt or, alternatively somewhat sharpened. The system 200 is particularly suitable for a surgeon that desires to initially pass needles with his or her dominant hand. The depicted system 200 is suitable for a right-handed surgeon. A mirror image or reverse system is particularly suitable for a left- handed surgeon that desires to initially pass a needle with his or her left hand.
[00167] Optionally, the system 200 could include a detachable handle for the needle 265 to assist in passage of the needle 265. Also optionally, the needle 264 may be omitted from the system. Instead, the needle 265 may be used to pass the sling initially using an outside-in approach on one side of the body and then continuing to insert the sling using an inside out approach on the other side of the body.
[00168] In a preferred embodiment, a kit comprises two surgical instruments such as those shown in Figures 15-22, and a polypropylene sling mesh assembly with attached dilators as shown in Figure 28. Such a kit may be provided for the placement of a pubourethral sling for the treatment of female stress urinary incontinence (SUI) resulting from urethral hypermobility and/or intrinsic sphincter deficiency.
[00169] In a further preferred embodiment, a dilator used for associating the sling with the surgical instrument is shown in Figure 23 A. Dilator 54 is shown having a diameter X that is substantially the same as the diameter x of the needle 60. By making the diameter of the dilator the substantially the same size as that of the needle, the system can avoid subjecting tissue to a sudden discontinuity as it moves through tissue. This low profile can assist in effectively and efficiently implanting the sling material. In Figure 23B, the dilator is shown having a diameter that matches the diameter of the needle at one end thereof, and gets larger towards the other end. In Figure 23 C, another low profile dialator and needle combination is shown. In this further low profile embodiment, any flats on the needle and on the mating surfaces within the connector have been removed. The removal of any flats allows the needle and connector to be quickly and easily connected without worrying about proper orientation of the connector relative to the needle. This embodiment also allows the connector to rotate during passage within the body and thus may decrease the resistance of the passage of the needle once the connector has been attached to the needle end. In addition, the needle end is recessed and the connector's leading edge may be hidden in this recess rather than extending beyond the diameter of the needle. This embodiment avoids any exposed edge or lip at the interface of the connector and needle. The smaller profile further provides less dilation by the connector during withdrawal and reduces the resistance to withdrawal of the needle once the connector has been attached. Still further, the smaller connector creates a smaller opening the body during passage which may aid in the anchoring of the sling into the area of deployment. The smaller channel that the sling is placed in may provide greater anchoring forces on the sling immediately after deployment and before ingrowth. Finally the overall amount of the connector that extends beyond the tip of the needle and the overall length of the connector is shortened in this embodiment. Because the connector is relatively straight, any amount that the connector extends beyond the tip of the needle may actually increase the resistance during withdrawal and may actually result in more trauma and dilation to the tissue than may be desired.
[00170] The individual elements of the kits of the present invention may be packaged together, separately or in subassemblies depending on a variety of factors such as shelf life and sterilization requirements. They may be assembled at the manufacturing location or at the healthcare location. Any suitable sterilization procedure may be utilized to sterilize the contents of a kit. Suitable sterilization techniques include, but are not limited to steam, ethylene oxide, electron beam, vapor (e.g. hydrogen peroxide or peracetic acid), gamma or plasma procedures. For example, the surgical instrument may be reusable or single use devices.
[00171] Figure 11 shows another embodiment of the present invention. The Figure is schematic and is not to scale. Some features are exaggerated or omitted to illustrate or emphasize other details. For example, the vaginal incision is only shown schematically and should not be interpreted as identifying a preferred size, shape or location of the incision.
[00172] In this embodiment, the needle 60 acts as a surgical guide needle (e.g. with a diameter of about 4 mm, or less, preferably about 3 mm) for a relatively larger sling transport needle 604 (e.g. with a diameter of about 5 mm or less). Preferably, the sling transport member has a sling assembly 610 (e.g. a sling mesh and insertion sheath) attached thereto. Alternatively, the sling transport needle 604 may have a more exaggerated hook shape, similar to the shape shown in PCT WO 02/39890. [00173] The guide needle 60 serves a different purpose than the surgical transport needle 604. The surgical guide needle 60 is preferably small and has a blunt tip. The blunt tip is initially inserted through incision 400 adjacent obturator fascia and then through a vaginal incision. Inserting a small, blunt needle in this fashion provides the surgeon with additional control in maneuvering through the anatomy of a patent and in avoiding sensitive tissue.
[00174] A surgical kit according to an aspect of the present invention may include a dilator 54 for placement on a tip of needle 60. The sling transport needle 604 may optionally include a sharp tip. The dilator 54 receives the tip of the needle 604. A technique of pushing sideways on the sling transport needle 604 with one hand while steering the tip of the needle 604 by holding guide needle 60 with the other hand may be used to implant the sling.
[00175] Alternatively, the dilator 54 may include surfaces for firmly engaging and attaching to needle 604. Those surfaces can include mechanical interlocking structures, grasping structures or interlocking structures. As a result, the needle 60 need not have specially shaped surfaces 58 for engaging the dilator and can instead have cylindrical surfaces adapted to be received within the dilator.
[00176] Referring to Figures 15, 16, 17 and 18, there is shown a novel needle 60R according to the present invention. The needle 60R is particularly suitable for passage on the right side of a patient's body, initially from an incision in the region of the patient's obturator foramen and subsequently emerging through a vaginal incision. The needle 60R includes a handle 64R and a leading region 62R. Referring to Fig. 27, the leading region 62R includes a substantially blunt distal tip 63 R and specially designed surfaces 67R and 65R suitable for mating with complementary surfaces on a dilator or connector (described in more detail below). Notably, in one aspect of the present invention, a novel needle of the present invention may utilize an eyelet in the distal region to afford a suture attachment to a sling or sling assembly without the use of a dilator.
[00177] As shown in Figures 15-18, the needle 60R has substantial structure in three dimensions, as opposed to, for example, the substantially flat needle shown in Figure 1 (or an Emmet needle) that only includes substantial structure in two dimensions. Having substantial structure in three dimensions helps the surgeon pass the needle through the obturator foramen and subsequently through a vaginal incision by affording greater surgeon control. The handle of the needle allows the surgeon to move the distal end of the needle with an ergonomic wrist roll action
[00178] Figures 15 A, 16A, 17A and 18A show another embodiment of novel needle 60R' that is similar, but not identical to the needle 60R. The needle 60R' is also particularly suitable for passage on the right side of a patient's body, initially from an incision in the region of the patient's obturator foramen and subsequently emerging through a vaginal incision.
[00179] Figures 19, 20, 21 and 22 show another novel needle 60L according to the present invention. The needle 60L is particularly suitable for passage on the left side of a patient's body, initially from an incision in the region of the patient's obturator foramen and subsequently emerging through a vaginal incision. The needle 60L includes a handle portion 64L and a leading region 62L. Like the needle 60R, the needle 60R includes substantial structure in three dimensions.
[00180] Figures 19 A, 20A, 21 A and 22A show another embodiment of novel needle 60L' that is similar, but not identical to the needle 60L. The needle 60L' is also particularly suitable for passage on the left side of a patient's body, initially from an incision in the region of the patient's obturator foramen and subsequently emerging through a vaginal incision.
[00181] The instruments in Figures 15-22 are shown with indicator marks 66, 68 and 70. The indicator marks may be used by the surgeon to determine how far the need has been advanced into the patient. The indicator marks may, as examples, be mechanically or laser etched into the needle portion of the instruments. Marks may be placed at even spacings (e.g. every millimeter) to provide a visual measure of the distance the needle has been advanced. As an alternative, different regions of the needle may be color coded to provide a further visual indication to the surgeon of how far the needle has advanced into the patient.
[00182] Yet another embodiment of novel needle is shown in Fig. 20B. The novel needle 64L" is substantially similar to the needle 64L', except that the tip T of the needle lies substantially in the plane P of the handle H of the needle 64L". It is believed that such an arrangement of the elements may assist some surgeons in conjuring a mental image of the location of the tip T of the needle 64L" relative to the body while the needle is being passed through a patient outside the surgeon's direct vision. The arrangement of the tip and the handle affords visual feedback concerning the approximate location of the tip of the needle when the tip is not under direct vision. Instead of a snap-in feature for connection to a dilator, this needle 64L" includes an eyelet E for threading a suture so that the needle 64L" can be tied to an implantable material or assembly such as a knitted polypropylene sling with an associated sheath.
[00183] Further, as can be seen by Figures 17, 17A, the handle of the instrument has been marked with an indicator 72 to provide a visual indication for the surgeon of the rotational location of the tip 62 of the needle. Here, the visual indication is the letter T on the side of the handle on which the needle ends.
[00184] Figures 63 through 67 show various embodiments of sling assemblies suitable for use in the present invention. These assemblies maybe used in systems that do not include a dilator. Figure 63 illustrates a sling assembly 300 having sutures 306 for threading through an eyelet of a needle to associate the assembly 300 with a needle. The assembly 300 may comprise a composite assembly with synthetic portions 308 and a non-synthetic mid portion 309 connected with fasteners 303.
[00185] Figure 64 shows a sling assembly 320 comprising only a synthetic mesh material 322. Sutures 6 may be threaded through an eyelet of a needle to associate the assembly 320 with a needle. Optionally, a sheath may be added to the assembly 320, especially when the mesh 322 is elastic.
[00186] Figure 65 illustrates a sling assembly 330 comprising a non-synthetic sling 332. Sutures 336 may be threaded through an eyelet of a needle to associate the assembly 330 with a needle. Optionally, suture anchors or pledgets may be utilized to avoid suture pull through.
[00187] Figure 66 illustrates a sling assembly 340 comprising a sling mesh 342 and a sheath 344. In this embodiment, the ends of the sling mesh 342 maybe attached to the ends of the sheath 340 by welding, suturing, or other suitable means. Sutures 346 may be tied about the ends of the sheath 344 to form a dilator-like structure for pushing tissue out of the way of the assembly 340 during implantation. The sutures 346 may be threaded through an eyelet of a needle to associate the assembly 340 with a needle. Fig. 66 also shows a tensioning suture, but this is optional and can be omitted.
[00188] Figure 67 illustrates another sling assembly 350 comprising a synthetic mesh 352 and a sheath 354. Sutures 356 may be threaded through an eyelet of a needle to associate the sling 352 with a needle. Sutures 358 may be tied about the ends of the sheath 354 to form a dilator-like structure for pushing tissue out of the way of the assembly 350 during implantation. Fig. 67 also shows a tensioning suture T', but this is optional and can be omitted.
[00189] Preferably, the handles of the surgical instruments shown in Fig.'s 15-20B includes indicia indicating the proper side of the patient. For example, the indicia may be any suitable information conveying word, symbol or depiction. The indicia may simply be "right" or "left." For those instruments designed for use on the right side of the patient, the indicia may include a drawing similar to Fig. 32. For the instruments designed for use on the left side of the patient, the indicia may include a drawing similar to Fig. 33.
[00190] The various embodiment of three dimensional needles described above preferably include a substantially straight spacer portion emerging from an end of the handle portion preferably along the handle axis. This helps afford convenient passage of the needle using an ergonomic wrist roll adopted by some surgeons. The three dimensional needles also include a structure that can be described as a variable spiral portion extending from the distal end of the straight spacer portion. As shown, the spiral portion is preferably variable as the angle of the spiral portion changes between the end of the extension portion and the distal end of the needle. The shape of the spiral portions help avoid over insertion of the needle into the body which helps avoid damage to the sensitive structures in this region of the body.
[00191] The variable spiral portions of the three dimensional needles have tissue clearance depth TCD of greater than about 0.5 inches and less than about 2.5 inches, more preferably the tissue clearance depth is between 0.75 inches and about 2.25 inches, more preferably it is between about 1.5 and 2 inches, and even more preferably it is about 2 inches. The tissue clearance depth TCD is the distance between the end of the extension portion and a point along an extension of the axis of the straight spacer portion which is defined by a line that is normal to the axis and that intersects the distal tip of the needle. The tissue clearance depth TCD helps space the distal tip of the needle from the distal end of the extension portion to reduce interference in needle passage by the distal end of the extension portion.
[00192] The variable spiral portions of the three dimensional needles have a maximum width MW that is preferably great enough to afford passage around the inferior pubic ramus and through the natural opening of the pubic bone, but small enough to avoid sensitive structure in this region of the body. Preferably, the maximum width MW is greater than about 1.25 inches and less than about 3 inches, more preferably, it is between about 2 and about 2.225 inches and more preferably, it is about 2.15 inches.
[00193] Referring to Figures 23, 24, 25, 25A and 26, there is shown a novel dilator 54S according to another aspect of the present invention. The dilator 54S includes a hole 90S for receiving a sling or a sheath or both in order to associate the dilator with a sheath.
[00194] Due to the more tortuous path associated with a transobturator route and the tighter radial passage, a shorter dilator is preferred to reduce tissue trauma and afford convenient, easy passage. Rotation of a helical needle can cause a substantially straight dilator to skid or plow through tissue instead of moving in a direction parallel to the longitudinal axis of the dilator. A shorter dilator will reduce tissue trauma associated with such plowing or skidding. Alternatively, a slightly curved or arcuate dilator may be used to reduce plowing or skidding.
[00195] The length L of a substantially straight dilator 54S is substantially short, preferably less than about 30 mm (1.2 inches) more preferably less than about 18 mm, 0.7 inches. The outermost diameter D of the dilator 54S is preferably less than about 6 mm 0.24 inches, more preferably less than about 5mm, even more preferably, less than about 4 mm. The dilator 54S preferably has surfaces 51S that provide a smooth transition between the needle (e.g. 60L) and the sling assembly. The angle theta is preferably less than about 15 degrees and more preferably less than about 12 degrees. [00196] In one embodiment of the present invention, one substantially straight dilator 54S may be used with either a left or a right side needle. Preferably, such a combination includes a distal region of the needle that is substantially straight. This length (e.g. L" in Fig. 26A) is preferably short, preferably less than 0.9 inches, more preferably less than 0.8 inches, more preferably about 0.42 inches. In one embodiment, the length L' in Fig. 25 maybe 0.3 inches.
[00197] It is noted that the dilator is preferably capable of being "permanently affixed" to the needle. Preferably, the needle is attached to the dilator without a suture. Fig. 26A illustrates one example of a permanently affixed needle and sling assembly. By "permanent affixation", it is meant that it would be very difficult to manually separate the dilator from the needle after they have become permanently affixed. After implantation of the sling, to separate the sling from the dilator/needle subassembly, the surgeon cuts an end of the sling assembly (e.g. a cut is made through the mesh and protective sleeve) to separate the mesh from the needle/dilator subassembly. The connection between the needle and dilator preferably affords quick and convenient attachment of the dilator to the needle to avoid wasting time in the midst of a surgical procedure. The attachment should also be secure to avoid separation of the needle and dilator while the combination is passed through tissue.
[00198] To accomplish the preferred attachment, the dilator 54S includes an internal stop surface 57S that is complementary with specially shaped surfaces on a needle (e.g. 62R, Fig. 27). As best seen in Fig. 26A, the stop surface 57S is designed to engage complementary shoulder surface (e.g. 65R, Fig. 27) to achieve the desired convenient, but permanent affixation.
[00199] Also preferably, the needle is attached to the dilator without any screw-type connector. Preferably, the connection is a snap-fit, quick connection for secure, convenient use by the surgeon. Also preferably, the connection is a press on connection that does not require substantial rotation of elements (especially elements that are within the body) as such a connection is less likely to displace a needle or otherwise injure the patient.
[00200] Referring to Fig. 28, the dilators 54S may form a portion of a sling assembly that includes synthetic sling end portions 42 A', sheaths 44A' covering at least some of the sling end portions 42 A' and a non-synthetic mid-portion 45'. A composite sling assembly may be assembled by the surgeon or provided preassembled using the teachings or components of published U.S. Pat. Application Nos. 2002-0147382- A 1 or 2002-0082619-A1, or U.S. Pat. Application No. 10/335,119, filed December 31, 2002.
[00201] In another aspect, the present invention comprises the ornamental design for a surgical instrument, as shown in Figures 39 through 45 and described in the Brief Description of the Drawings.
[00202] In another aspect, the present invention comprises the ornamental design for a surgical instrument, as shown in Figures 46 through 52 and described in the Brief Description of the Drawings.
[00203] The broken line showing in Figures 39-52 are for illustrative purposes only and form no part of the claimed design.
[00204] The above-described surgical instruments may be disposable or reusable. Optionally, portions of the surgical instrument maybe reusable (sterilizable) and other components may be disposable.
[00205] Examples of Surgical Procedures
[00206] Several methods are contemplated herein. Although the methods of use as disclosed herein generally relate to female incontinence conditions and treatments/procedures, male incontinence conditions and treatments/procedures are also included within the scope of the present invention. Further, the term "urethra," with respect to sling positioning, is used for brevity and reader convenience. It should be noted that the present invention is particularly suitable for placing a sling in a therapeutically effective position. The method may be utilized to support a variety of structures at different anatomical locations. Variations of these methods may occur due to individual surgeon's techniques or a patient's particular anatomy.
[00207] Referring to figures 4 through 10, a preferred embodiment of surgical procedure is disclosed. The present invention utilizes an obturator passage of the needle, preferably in a direction from the anterior to the posterior side of the pubic bone. An obturator approach affords a sling procedure where previous scarring in the region of the retropubic space or other anatomical features would prevent or restrict a traditional pubovaginal sling procedure. An obturator approach is also likely to avoid bladder perforations, a possible but rare complication with some prior art pubovaginal procedures. It may also be more convenient to conduct a concomitant repair (e.g. cystocele repair) with a sling inserted with a side approach as the sling is placed in a more horizontal position (e.g. see Fig's. 9 and 10) than the U- shaped sling procedures of the prior art.
[00208] Initially, the patient is placed under local, spinal or general anesthesia. A catheter 2 (e.g. Foley) may be inserted through the urethra 16. A small incision (e.g. a transverse incision) is made in the anterior vaginal wall 20 of a patient followed by a transurethral dissection. The amount of dissection may vary according to surgeon preference. Preferably, dissection is sufficient to allow the surgeon's finger to meet the end of the region 58 of the needle 60 just after it passes through the obturator fascia.
[00209] Two small stab incisions 400 are also made near the obturator fascia to afford needle entry. Notably, the precise location of the stab incisions 400 may vary according to surgeon preference. For example, some surgeons may place the incision adjacent the obturator opening of the pubic bone. Other surgeons may slightly offset the incision in order to use the bias provided by the patient's tissue to urge the tip of the needle in a direction toward the posterior surface of the pubic bone.
[00210] Referring to Figure 4, the end of region 58 of needle 60 is shown just passing an incision 400 on the patient's right side. The surgeon's finger is initially placed in the vaginal incision sufficient to meet the end of region 58 of the needle 60 after it passes through the obturator fascia and the obturator foramen 3 (see Fig. 9). A path for the needle 60 through the obturator foramen 3 that is substantially free of vascular and nerve passages is selected. To select the path, the surgeon preferably initially identifies the anatomical structures of the pelvis such as the ischial tuberosity and obturator foramen 3 by palpation of the tissue.
[00211 ] If optional handle 64 is used, it may be adjusted relative to needle 60 according to surgeon preference and securely associated with the end 62 of the needle 60. Figure 5 shows the end of region 58 of needle 60 just passing an incision 400 on the patient's left side. [00212] Preferably, the surgeon seeks to use the posterior portion of the patient's pubic bone as an anatomical guide to controllably move the tip of region 58 of the needle toward the vaginal incision and to help avoid damaging structures. The surgeon exploits the tactile feel provided by the posterior portion of the pubic bone to controllably pass the tip of the needle 60. This approach is preferred as it helps keep the needle 60 away from the bladder and other vulnerable tissues.
[00213] Figure 6 illustrates the needle of Figure 5 as it emerges from a vaginal incision. The shape and size of needles 60 help provide precise passage of the needles 60 to the vaginal incision. The steps described above are repeated as needed for both sides of the urethra 16. Figure 6 also illustrates one side of a sling assembly 46 prior to association with the needle 60.
[00214] Figure 7 is a perspective view of one side of a sling system after it is associated with needle 60. The dilators 54 of the sling assembly 46 are preferably snapped irreversibly into place on the needles 60 for a secure connection. Next, if a synthetic sling assembly is used, the plastic sheath 44 is oriented so that an optional center orientation indicia (e.g. a blue mark) is facing away from the surgical field, toward the surgeon.
[00215] After the dilators 54 are attached to the needles 60, the sling assembly 46 is properly oriented so that the sling assembly 46 is not twisted when attached to the dilators 54. After the dilators 54 and sling assembly 46 are properly positioned, dilators 54 and sling assembly 46 are pulled through the tissues of the patient.
[00216] Referring to Figure 8, once the dilators 54 are securely attached, the needles are pulled through the incisions 400, taking care to avoid contact with sensitive tissue. The sling is then clamped with surgical clamps (not shown). During this portion of the process, the attached dilators 54 and sling assembly 46 are atraumatically pulled through the needle paths, advancing the sling assembly 46 adjacent to and beneath the urethra 16 or target site. A portion of each end of the sling assembly 46 extending beyond the incisions 400 is clamped and then cut to release the needles 60 and attached dilators 54.
[00217] The sling is placed in a therapeutically effective position. Figures 9 and 10 show one example of a therapeutically effective position. Other positions are contemplated herein. The precise anatomical position will depend upon a variety of factors including the type and degree of anatomical damage or insufficiency, location of significant scar tissue, whether the sling procedure is combined with other procedures and other surgeon decisions. Typically, the sling is placed midurethra, without tension, but in position to support the midurethra. Alternatively, the sling could be placed to support the bladder neck and/or UV junction.
[00218] Once the sling assembly 46 is carefully positioned under the midurethra or target site to provide sufficient support to the target site, the overlapping portion of the sheath 44 located near the center of the sling assembly 46 and an optional tensioning member (i.e. tensioning filament) may then be used to center and properly position the sling assembly 46 under the midurethra. The sheath 44 is then removed.
[00219] Sling tension may be tightened by placing a device, such as a clamp, across one or both ends of the sling 42. Generally, the surgeon grasps the mesh and tensioning filament together adjacent the incision 400 and pulls to increase the degree of tightness of the mesh.
[00220] After the dilators 54 are trimmed off, the plastic sheath 44 is removed from the sling mesh 42 by pulling on both sides of the sheath 44, preferably one at a time. Optionally, to avoid overtightening the sling mesh 42 while removing the sheath 44, a forceps or other blunt instrument may be placed between the sling and the urethra.
[00221] Figures 9 and 10 illustrate one embodiment of the final placement of the sling 42 relative to anatomical structures such as the pubic bone, urethra and vagina. The sling is flatter than the U-shaped slings of the prior art which extend to the rectus fascia of the patient's abdomen.
[00222] In another embodiment of the invention, shown with reference to Figure 11 , a method includes the steps of providing a surgical kit comprising at least one guide needle 60 constructed for an obturator approach, and at least one sling transport needle 604 with a sharp tip, a sling 610 attached to the sling transport needle 604, and a dilator 54 having tip receiving surfaces for receiving the sharp tip of the sling transport needle 604. The needle 60 has a relatively small diameter (e.g. less than 4 mm). The method includes the steps of creating at least one vaginal incision, creating two obturator stab incisions, and initially passing a guide needle 60 through the obturator incision and then through the vaginal incision. The dilator 54 is then attached or associated with the needle 60.
[00223] Needles 604 are initially guided through a vaginal incision and toward one of the obturator incisions 400. Guiding the sharp tip of the large sling transport needle 604 in this fashion is believed to help avoid contact between the sharp tip of needle 604 and sensitive structures. Optionally the adapter with receiving surfaces may be integrally formed in the needle 604 to avoid the need to separately attach the adapter to the needle 604.
[00224] Figure 4A shows an alternative step according to an aspect of a method according to the present invention. This illustrates a method wherein the needle 60 of Fig. 1 is initially inserted through a vaginal incision and then emerges from a skin incision. In this embodiment, the sling assembly may then be attached to the end of the needle previously occupied by a removable and repositionable handle 64. The handle 64 may then optionally be placed on the other end of the needle 60 to assist the surgeon in passing the sling assembly and needle through the body. This is shown by the arrow in Fig. 4A adjacent the dotted line showing of the handle 64.
[00225] The method preferably includes the step of removing the handle 64 and attaching an end of the sling assembly to the region of the needle previously occupied by the handle 64. The needle tip and attached sling assembly are then passed completely through the body, in substantially the same direction as the initial insertion, to place one side of the sling assembly. As a result, it can be seen that the needle 60 is a universal needle (i.e. one that can be utilized for either an "outside-in" surgical approach or an "inside-out" approach).
[00226] Referring now to Figures 31-38, there is shown another embodiment of method according to the present invention. This embodiment is believed to be suitable for patients under local, regional or general anesthesia. This embodiment utilizes needles specially shaped for use on a predetermined side (e.g. right or left) of the patient.
[00227] A small incision may be made in the anterior vaginal wall followed by pariurethral dissection. Two small stab incisions are also made above the obturator foramen for instrument passage.
[00228] The patient is preferably placed in a modified lithotomy position with hips flexed, legs elevated. The bladder is emptied and a weighted vaginal retractor may be used.
[00229] The surgeon palpates the inferior portion of the ischiopubic ramus, palpates the edge of the bone and notes where the ischiopubic branch gets wider and the obturator membrane is tactily sensed. Just below this location and lateral to the bone is a preferred mark for the skin incisions. The surgeon preferably confirms that both marks lie in a straight line approximately at the level of the clitoris.
[00230] In the anterior wall of the vagina, the surgeon may draw a vertical mark approximately 0.5cm below the meatus. The incision may be approximately 2cm in length. An Allis forceps may be placed on the incision margin to expose the incision.
[00231 ] The surgeon incises the vaginal wall and extend the dissection laterally (pariurethral) with, for example, a Metzenbaum scissors. The surgeon then may dissect the pariurethral attachment to the vagina. The surgeon may then insert the tip of a blunt instrument (e.g. the Metzenbaum scissors laterally), spread and advance the scissors until the tip of the scissors touches the inferior portion of the bone (about 1 - 1.5cm). This may be accomplished bilaterally. The vaginal dissection is preferably large enough for a finger tip to enter in both directions.
[00232] The instrument is then passed through the obturator foramen. The surgeon preferably palpates the interior portion of the ischiopubic ramus, palpates the edge of the bone and preferably moves bis or her finger cephalad until muscle firmness is felt. Just below this location and lateral to the bone may be the mark for the skin incisions. The surgeon may confirm that both marks lie approximately in a straight line at the level of the clitoris.
[00233] The surgeon may then insert the index finger into the vaginal dissection and probe to the ipsilateral outer obturator foramen mark to confirm needle path. The surgeon makes a small vertical skin incision on the same side over the skin mark denoting the foramen. If patient side specific instruments are used (e.g. those shown in Figures 15-22), the instrument designated for the patients left side 60L may be removed from the package. The surgeon points the instrument tip perpendicular to the skin and proceeds to the level of the obturator fascia.
[00234] With a finger in vaginal incision, the surgeon moves the finger laterally to meet the needle tip (see Fig. 35). When passing the needle 60L on the patient's left side, the surgeon preferably keeps his or her right hand on the needle handle and left index finger in the vaginal incision. The surgeon's left thumb may optionally be on the outside curve of the needle 60L to control the needle movement. The surgeon's left thumb preferably pushes the needle through the muscles and obturator fascia. The needle tip preferably penetrates until resistance of the tissue stops - about 0.5 cm.
[00235] The surgeon then preferably immediately locates the ischial pubic ramus with the needle tip 62L and rotates the needle handle 64L (see Fig. 33) to allow the needle to follow the posterior ischial pubic ramus surface. The index finger tip should palpate the needle tip. If not, the surgeon should move the needle to meet the finger tip. If the needle tip cannot be located, then the needle should be withdrawn just behind the ischial pubic ramus and advanced again.
[00236] Using the index finger, the surgeon preferably guides the instrument tip medially towards the vaginal incision until the instrument tip extends through the incision (see Fig. 36).
[00237] The above steps are repeated on the patient's right side. See Figures 32 and 34. Cystoscopy may not be required but can be done at the surgeon's discretion.
[00238] The surgeon then attaches the dilating connectors (that are pre-attached to the sling mesh) to the regions of the instruments 60L and 60R that emerge from the vaginal incision. One dilating connector 54S should be attached to each of the instruments 60L and 60R on the regions protruding from the vagina. If optional colored markings or indices are used on the sling assembly, the surgeon orients these markings on the sheath facing outward, away from the urethra 16. The surgeon may use the markings to help ensure that the sling mesh lies flat and that the mesh is not twisted prior to attaching the second dilator 54S as the dilators cannot be removed once they are snapped into place. [00239] The surgeon then pulls the assembly through the lateral incision. This is shown for the left side of the patient's body in Fig. 37. Next the surgeon cuts the sling mesh just below the level of the connector and discards the needle and dilator. In Fig. 38, this has been accomplished for the portion of the system on the right side of the patient's body.
[00240] The surgeon preferably keeps the centering marks on the plastic sheath in the midline. This is repeated on the contralateral side.
[00241] If vaginal retraction has been used, it should be removed to adjust the tension of the sling. The sling may be finely tensioned by placing a blunt instrument (e.g. a Metzenbaum scissors or small instrument) between the sling and urethra.
[00242] The surgeon removes the plastic protective sheaths 44A and discards them.
[00243] Under spinal or regional anesthesia, the position of the sling can be improved by the cough test after filling up the bladder, at the discretion of the surgeon.
[00244] To loosen the mesh, the surgeon place an instrument (e.g. Metzenbaum clamp) between the sling mesh and the urethra. The surgeon ensures that both the mesh and the tensioning suture are located beneath the clamp. The clamp maybe used to pull down and loosen the sling mesh as desired.
[00245] To tighten the sling mesh, the surgeon places a clamp (e.g. hemostat) across the sling mesh at the lateral incisions 400. The surgeon ensures that both the tensioning suture and the complete width of the sling are captured within the clamp. The sling mesh may be rolled around the clamp to improve the grip. The surgeon pulls up to tighten the sling mesh as desired. If needed, this can be repeated on the contralateral side.
[00246] To complete the procedure, the surgeon trims the sling mesh at the level of the subcutaneous tissue. A multi-layer closure of the vaginal incision and the skin incisions may then be completed.
[00247] All patents, patent applications, and publications cited herein are hereby incorporated by reference in their entirety as if individually incorporated. [00248] Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.

Claims

What is claimed is:
1. A surgical instrument for implanting an implantable material to treat incontinence, the instrument comprising: a handle portion, a second portion having substantial structure in three dimensions and a distal region, the second portion including a needle portion having a portion that is sized and shaped to extend between an incision substantially adjacent the patient's obturator foramen and a vaginal incision; and the needle portion having structure in the distal region for associating the instrument with an implantable material for treating the incontinence.
2. A surgical instrument according to claim 1 wherein the needle portion includes a portion that is substantially helically shaped.
3. A surgical instrument according to claim 2 wherein the substantially helically shaped portion comprises a variable helix shape.
4. A surgical instrument according to claim 1 wherein the handle portion is elongate along a handle axis, the second portion includes a substantially straight spacer portion along the handle axis, and a variable spiral portion extending from the spacer portion.
5. A surgical instrument according to claim 4 wherein the variable spiral portion has a tissue clearance depth of greater than about 0.5 inches and less than about 2.5 inches.
6. A surgical instrument according to claim 4 wherein the variable spiral portion has a maximum width of greater than about 1.25 inches and less than about 3 inches.
7. A surgical instrument according to claim 1 wherein structure for associating the instrument with an implantable material comprises an eyelet.
8. A surgical instrument according to claim 1 wherein the handle portion is elongate defining a mid plane, and the distal end includes a distal tip situated substantially near an extension of the mid plane that is spaced from the handle portion.
9. A surgical instrument according to claim 1 wherein the needle portion includes a substantially circular cross sectional shape with a diameter less than about 4 mm.
10. A surgical instrument for treating incontinence, the instrument comprising: first and second ends, the instrument having a needle portion on the first end; the second end having a handle, at least the needle portion having a securement surface for snap fitting the instrument to another surgical component used to treat the incontinence, the snap fit providing a substantially permanent attachment between the instrument and the other surgical component.
11. A surgical instrument for treating incontinence according to claim 10 wherein the other surgical component comprises a dilator of a sling assembly for treating incontinence.
12. A surgical instrument for treating incontinence according to claim 11 wherein the instrument and the dilator have complementary engagement surfaces for resisting separation of the instrument from the dilator once they are snap fitted together.
13. A surgical instrument for implanting an implantable material to treat incontinence, the instrument comprising: a handle portion, a second portion having an extension portion projecting from the handle portion and a variable spiral portion with a distal region, the variable spiral portion being sized and shaped to extend between an incision substantially adjacent the patient's obturator foramen and a vaginal incision; and the second portion having structure near the distal region capable of associating the instrument with an implantable material.
14. A surgical instrument according to claim 13 wherein the variable spiral portion has a tissue clearance depth of greater than about 0.5 inches and less than about 2.5 inches.
15. A surgical instrument according to claim 13 wherein the variable spiral portion has a maximum width of greater than about 1.25 inches and less than about 3 inches.
16. A surgical assembly for treating incontinence comprising: a surgical instrument having a handle portion, a needle portion having substantial structure in three dimensions and a distal region, the needle portion having a portion that is sized and shaped to extend between an incision substantially adjacent a patient's obturator foramen and a vaginal incision; an implantable material and a sheath situated about the implantable synthetic material; and the needle portion having structure in the distal region that is sized and shaped to associate the instrument with the implantable material.
17. A surgical assembly according to claim 16 further including a dilator wherein the dilator has an overall length of less than about 0.7 inches.
18. A surgical assembly according to claim 16 wherein the structure of the needle portion in the distal region for associating the instrument with the implantable synthetic material comprises an eyelet.
19. A surgical assembly according to claim 16 further including a dilator with engagement surfaces for connecting the dilator to the instrument, the dilator operatively associated with the sheath and implantable material; wherein the structure of the needle portion near the distal region comprises surfaces complementary with the engagement surfaces of the dilator for resisting separation of the instrument from the dilator once they are engaged.
20. A surgical assembly according to claim 16 wherein the needle portion is sized and shaped for a predetermined side of a patient, and the handle portion includes indicia indicating the predetermined side of the patient.
21. A surgical assembly for inserting a implantable material to treat incontinence comprising: a first surgical instrument for use on a right side of a patient, the first surgical instrument comprising a handle portion and a needle portion having substantial structure in three dimensions and a distal region, the needle portion having a portion that is sized and shaped to extend between an incision substantially adjacent the obturator foramen on the patient's right side and a vaginal incision; and a second surgical instrument for use on a left side of a patient, the second surgical instrument comprising a handle portion and a needle portion having substantial structure in three dimensions and a distal region, the needle portion having a portion that is sized and shaped to extend between an incision substantially adjacent the obturator foramen on the patient's left side and a vaginal incision.
22. A surgical assembly according to claim 21 wherein the handle portion of the first surgical instrument includes indicia indicating the first surgical instrument is for use on the right side of the patient, and the handle portion of the second surgical instrument includes indicia indicating the second surgical instrument is for use on the left side of the patient.
23. Am assembly according to claim 21 further including an implantable material formed from knitted polypropylene , and a sheath situated about the implantable material.
24. A surgical assembly according to claim 21 wherein the first and second surgical instruments include an eyelet for receiving a suture to tie the surgical instrument to the implantable material.
25. A surgical assembly according to claim 21 further including an implantable material that includes polypropylene.
27. A universal surgical instrument for treating incontinence comprising: a needle sized and shaped to either a) initially extend through an incision substantially adjacent a patient's obturator foramen and then through a vaginal incision, or b) initially extend through a vaginal incision and subsequently through an incision substantially adjacent a patient's obturator foramen.
28. A surgical instrument according to claim 27 wherein the needle comprises a pair of ends having surfaces capable of affording association with either an implantable sling material or a removable handle.
29. A surgical assembly according to claim 27 wherein the needle is sized and shaped for use on either the patient's right side or left side.
30. A method of treating incontinence comprising the steps of: creating a vaginal incision, creating an incision substantially adjacent the patient's obturator foramen, providing an elongate surgical instrument comprising first and second regions, with at least one of the regions having a securement surface, providing a sling assembly having an implantable sling for treating the incontinence, the sling assembly having a surface complementary to the securement surface, passing the end region having the securement surface between the incisions, then associating the instrument at the securement surface with the sling assembly to provide a substantially permanent attachment between the instrument and the assembly, then passing the implantable material through tissue from the vaginal incision toward the incision substantially adjacent the patient's obturator foramen.
31. A method of treating incontinence comprising the steps of: creating a vaginal incision, creating an incision substantially adjacent the patient's obturator foramen, providing an elongate surgical instrument comprising first and second regions, the instrument having substantial structure in three dimensions, providing an implant for treating the incontinence, passing a portion of one of the regions between the incisions, then associating the implant with the instrument, and passing the implant through tissue and through the patient's obturator foramen with the instrument.
32. A method according to claim 31 wherein the step of providing an elongate surgical instrument includes the step of providing an instrument with a portion that is substantially helically shaped, and the step of passing the implant through tissue includes the step of passing the implant along a substantially three dimensional path.
33. A method according to claim 31 wherein the step of providing an elongate surgical instrument includes the step of providing an instrument with an elongate handle portion having an axis, and the step of passing a portion of one of the regions between the incisions includes the step of rolling the instrument about the axis of the handle portion.
34. A method of treating incontinence comprising the steps of: creating a vaginal incision, creating an incision substantially adjacent the patient's obturator foramen, providing an elongate surgical instrument comprising a handle portion, a needle portion having an extension portion projecting from the handle portion and a variable spiral portion with a distal region, providing an implant for treating the incontinence, passing at least a portion of the variable spiral portion between the incisions by initially passing the distal end through the incision substantially adjacent the patient's obturator foramen and then through the vaginal incision, then associating the implant with a portion of the instrument that has emerged from the vaginal incision, and then moving the distal region of the instrument with the implant associated therewith from the vaginal incision toward the patient's obturator foramen to pass the implant through tissue.
35. A method according to claim 34 wherein the step of associating the implant with a portion of the instrument that has emerged from the vaginal incision includes the step of using a suture to tie the implant to an eyelet in the distal region of the needle.
36. A method of treating incontinence comprising the steps of: creating a vaginal incision, creating an incision substantially adjacent the patient's obturator foramen, providing an elongate surgical instrument having first and second regions, providing an assembly having an implant for treating incontinence, initially passing the first region initially through the vaginal incision toward the incision substantially adjacent the patient's obturator foramen in a path through the patient's obturator foramen until the first region emerges from the incision substantially adjacent the patient's obturator foramen, leaving the second region projecting from the vaginal incision, then associating the first region with the assembly, and then moving the first region out of the patient's body to pass the implant through tissue from the vaginal incision toward the incision substantially adjacent the patient's obturator foramen to place the implant in a therapeutically effective position.
37. A surgical instrument for treating incontinence, the instrument comprising: a handle portion, a second portion having an extension portion projecting from the handle portion and a variable spiral portion with a distal region, the variable spiral portion being sized and shaped to extend between an incision substantially adjacent the patient's obturator foramen through the obturator foramen and a vaginal incision; and the needle portion having structure near the distal region associating the instrument with an implantable material for treating the incontinence.
38. A surgical instrument for treating incontinence, the instrument comprising: a handle portion; and
a second portion having a medial structure and a helical structure, the medial structure being associated with the handle portion and the helical structure having a distal region, the distal region having structure associating the instrument with an implantable material for treating the incontinence, the helical structure having a longitudinal axis, the handle portion lying substantially along the longitudinal axis.
39. A surgical tool for treating incontinence, the tool comprising:
a handle portion,
a second portion having a medial structure and a needle structure, the medial structure being associated with the handle portion and the needle structure having a distal region, the distal region having structure associating the instrument with an implantable material for treating the incontinence; and
a dilator for association with the implantable material for treating the incontinence and the needle structure, the dilator with having a diameter no greater than the needle.
40. A surgical instrument comprising: a handle portion, a second portion having a medial structure and a helical structure, the medial structure being associated with the handle portion and the helical structure having a distal tip, the helical structure having a visual indicator, the visual indicator being indicative of a distance from the visual indicator to the distal tip.
41. A surgical instrument comprising: a handle portion, a second portion having a medial structure and a helical structure, the medial structure being associated with the handle portion and the helical structure having a distal tip, the handle having a visual indicator, the visual indicator being indicative of a location of the distal tip.
PCT/US2003/007992 2002-05-14 2003-03-14 Transobturator surgical articles and methods WO2003096930A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003228315A AU2003228315A1 (en) 2002-05-14 2003-03-14 Transobturator surgical articles and methods

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US38079702P 2002-05-14 2002-05-14
US60/380,797 2002-05-14
US40200702P 2002-08-08 2002-08-08
US60/402,007 2002-08-08
US41486502P 2002-09-30 2002-09-30
US60/414,865 2002-09-30
US10/306,179 US7070556B2 (en) 2002-03-07 2002-11-27 Transobturator surgical articles and methods
US10/306,179 2002-11-27
US10/377,101 2003-03-03
US10/377,101 US6911003B2 (en) 2002-03-07 2003-03-03 Transobturator surgical articles and methods

Publications (1)

Publication Number Publication Date
WO2003096930A1 true WO2003096930A1 (en) 2003-11-27

Family

ID=29408159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/007992 WO2003096930A1 (en) 2002-05-14 2003-03-14 Transobturator surgical articles and methods

Country Status (4)

Country Link
US (6) US6911003B2 (en)
AU (1) AU2003228315A1 (en)
FR (1) FR2839639A1 (en)
WO (1) WO2003096930A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7637860B2 (en) 2005-11-16 2009-12-29 Boston Scientific Scimed, Inc. Devices for minimally invasive pelvic surgery
US8123671B2 (en) 2005-08-04 2012-02-28 C.R. Bard, Inc. Pelvic implant systems and methods
KR101126591B1 (en) 2005-02-04 2012-03-26 에이엠에스 리써치 코오포레이션 Needle design for male transobturator sling
US8480559B2 (en) 2006-09-13 2013-07-09 C. R. Bard, Inc. Urethral support system
US8574149B2 (en) 2007-11-13 2013-11-05 C. R. Bard, Inc. Adjustable tissue support member
US8845512B2 (en) 2005-11-14 2014-09-30 C. R. Bard, Inc. Sling anchor system
US9005222B2 (en) 2002-08-02 2015-04-14 Coloplast A/S Self-anchoring sling and introducer system
US9022920B2 (en) 2005-04-06 2015-05-05 Boston Scientific Scimed, Inc. Systems, devices, and methods for sub-urethral support
US9107659B2 (en) 2005-07-13 2015-08-18 Boston Scientific Scimed, Inc. Snap fit sling anchor system and related methods
US9113991B2 (en) 2011-05-12 2015-08-25 Boston Scientific Scimed, Inc. Anchors for bodily implants and methods for anchoring bodily implants into a patient's body
US9555168B2 (en) 2003-03-27 2017-01-31 Coloplast A/S System for delivery of medication in treatment of disorders of the pelvis
US9636201B2 (en) 2011-05-12 2017-05-02 Boston Scientific Scimed, Inc. Delivery members for delivering an implant into a body of a patient
US9675436B2 (en) 2005-07-25 2017-06-13 Boston Scientific Scimed, Inc. Pelvic floor repair system
US9918817B2 (en) 2000-10-12 2018-03-20 Coloplast A/S Method of post-operatively adjusting a urethral support in treating urinary incontinence of a woman
US9968430B2 (en) 2000-10-12 2018-05-15 Coloplast A/S Surgical device implantable to treat female urinary incontinence
US10064714B2 (en) 2004-05-21 2018-09-04 Coloplast A/S Implantable device configured to treat pelvic organ prolapse
US10076394B2 (en) 2000-10-12 2018-09-18 Coloplast A/S Method of treating urinary incontinence
US10682213B2 (en) 2001-03-30 2020-06-16 Coloplast A/S Surgical implant consisting of non-absorbable material

Families Citing this family (249)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69931797T2 (en) * 1998-10-06 2007-05-24 Bio Control Medical, Ltd. CHECKING DRY INCONTINENCE
IL127481A (en) * 1998-10-06 2004-05-12 Bio Control Medical Ltd Incontinence treatment device
US9522217B2 (en) 2000-03-15 2016-12-20 Orbusneich Medical, Inc. Medical device with coating for capturing genetically-altered cells and methods for using same
US8088060B2 (en) 2000-03-15 2012-01-03 Orbusneich Medical, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
WO2001093656A2 (en) * 2000-06-05 2001-12-13 Scimed Life Systems, Inc. Et.Al. Methods and devices for the treatment of urinary incontinence
FR2811218B1 (en) 2000-07-05 2003-02-28 Patrice Suslian IMPLANTABLE DEVICE FOR CORRECTING URINARY INCONTINENCE
US6641525B2 (en) 2001-01-23 2003-11-04 Ams Research Corporation Sling assembly with secure and convenient attachment
US9149261B2 (en) * 2001-03-09 2015-10-06 Boston Scientific Scimed, Inc. Systems, methods and devices relating to delivery of medical implants
US8915927B2 (en) * 2001-03-09 2014-12-23 Boston Scientific Scimed, Inc. Systems, methods and devices relating to delivery of medical implants
US20050131393A1 (en) * 2001-03-09 2005-06-16 Scimed Life Systems, Inc. Systems, methods and devices relating to delivery of medical implants
US7364541B2 (en) * 2001-03-09 2008-04-29 Boston Scientific Scimed, Inc. Systems, methods and devices relating to delivery of medical implants
US8033983B2 (en) 2001-03-09 2011-10-11 Boston Scientific Scimed, Inc. Medical implant
PT1487377E (en) 2002-03-01 2012-11-23 Ethicon Inc Apparatus for treating pelvic organ prolapses in female patients
US8968178B2 (en) 2002-03-07 2015-03-03 Ams Research Corporation Transobturator surgical articles and methods
CA2481275C (en) * 2002-04-11 2011-10-25 Gyne Ideas Limited Apparatus and method for treating female urinary incontinence
AU2003245470A1 (en) 2002-06-12 2003-12-31 Boston Scientific Limited Medical slings
US7371245B2 (en) * 2002-08-02 2008-05-13 C R Bard, Inc Transobturator introducer system for sling suspension system
WO2004016196A2 (en) 2002-08-14 2004-02-26 Boston Scientific Limited Systems, methods and devices relating to delivery of medical implants
US7611454B2 (en) * 2002-08-29 2009-11-03 Universite De Liege Surgical procedure for the treatment of female urinary incontinence: tension-free inside-out transobturator urethral suspension
US7361138B2 (en) 2003-07-31 2008-04-22 Scimed Life Systems, Inc. Bioabsorbable casing for surgical sling assembly
US7347812B2 (en) * 2003-09-22 2008-03-25 Ams Research Corporation Prolapse repair
EP1682009B1 (en) * 2003-10-03 2014-03-05 Boston Scientific Limited, an Irish company Systems for a delivering a medical implant to an anatomical location in a patient
US7104401B2 (en) * 2003-11-12 2006-09-12 Ethicon, Inc. Packaging assembly for surgical instruments
EP1696803B1 (en) 2003-11-17 2016-09-28 Boston Scientific Limited Systems relating to associating a medical implant with a delivery device
WO2005072626A1 (en) * 2004-01-23 2005-08-11 Ams Research Corporation Tissue fastening and cutting tool, and methods
US7979137B2 (en) 2004-02-11 2011-07-12 Ethicon, Inc. System and method for nerve stimulation
US8751003B2 (en) * 2004-02-11 2014-06-10 Ethicon, Inc. Conductive mesh for neurostimulation
US8165695B2 (en) 2004-02-11 2012-04-24 Ethicon, Inc. System and method for selectively stimulating different body parts
US7351197B2 (en) * 2004-05-07 2008-04-01 Ams Research Corporation Method and apparatus for cystocele repair
US7811222B2 (en) 2004-04-30 2010-10-12 Ams Research Corporation Method and apparatus for treating pelvic organ prolapse
CA2565251C (en) 2004-05-06 2013-06-25 Boston Scientific Scimed, Inc. Systems employing a push tube for delivering a urethral sling
US8439820B2 (en) 2004-05-06 2013-05-14 Boston Scientific Scimed, Inc. Systems and methods for sling delivery and placement
US8062206B2 (en) 2004-05-07 2011-11-22 Ams Research Corporation Method and apparatus for treatment of vaginal anterior repairs
FR2870450B1 (en) * 2004-05-18 2007-04-20 David Jean Marie Nocca ADJUSTABLE PROSTHETIC STRIP
AU2005254105B2 (en) 2004-06-14 2012-01-12 Boston Scientific Limited Systems, methods and devices relating to implantable supportive slings
US20050288708A1 (en) * 2004-06-25 2005-12-29 Kammerer Gene W Soft tissue fastener having integral biasing section
WO2006041861A2 (en) * 2004-10-05 2006-04-20 Ams Research Corporation Device and method for supporting vaginal cuff
US20070213734A1 (en) * 2006-03-13 2007-09-13 Bleich Jeffery L Tissue modification barrier devices and methods
US7738969B2 (en) 2004-10-15 2010-06-15 Baxano, Inc. Devices and methods for selective surgical removal of tissue
US7887538B2 (en) 2005-10-15 2011-02-15 Baxano, Inc. Methods and apparatus for tissue modification
US8617163B2 (en) 2004-10-15 2013-12-31 Baxano Surgical, Inc. Methods, systems and devices for carpal tunnel release
US9247952B2 (en) 2004-10-15 2016-02-02 Amendia, Inc. Devices and methods for tissue access
US20110190772A1 (en) 2004-10-15 2011-08-04 Vahid Saadat Powered tissue modification devices and methods
US7857813B2 (en) 2006-08-29 2010-12-28 Baxano, Inc. Tissue access guidewire system and method
US8430881B2 (en) 2004-10-15 2013-04-30 Baxano, Inc. Mechanical tissue modification devices and methods
US7555343B2 (en) * 2004-10-15 2009-06-30 Baxano, Inc. Devices and methods for selective surgical removal of tissue
US8048080B2 (en) 2004-10-15 2011-11-01 Baxano, Inc. Flexible tissue rasp
US8062300B2 (en) 2006-05-04 2011-11-22 Baxano, Inc. Tissue removal with at least partially flexible devices
US8221397B2 (en) 2004-10-15 2012-07-17 Baxano, Inc. Devices and methods for tissue modification
US7918849B2 (en) 2004-10-15 2011-04-05 Baxano, Inc. Devices and methods for tissue access
US9101386B2 (en) 2004-10-15 2015-08-11 Amendia, Inc. Devices and methods for treating tissue
US20100331883A1 (en) 2004-10-15 2010-12-30 Schmitz Gregory P Access and tissue modification systems and methods
US20080312660A1 (en) * 2007-06-15 2008-12-18 Baxano, Inc. Devices and methods for measuring the space around a nerve root
US7578819B2 (en) 2005-05-16 2009-08-25 Baxano, Inc. Spinal access and neural localization
US7938830B2 (en) 2004-10-15 2011-05-10 Baxano, Inc. Powered tissue modification devices and methods
US8257356B2 (en) 2004-10-15 2012-09-04 Baxano, Inc. Guidewire exchange systems to treat spinal stenosis
US8500624B2 (en) * 2004-10-25 2013-08-06 Boston Scientific Scimed, Inc. Systems and methods for sling delivery and placement
US7914437B2 (en) 2005-02-04 2011-03-29 Ams Research Corporation Transobturator methods for installing sling to treat incontinence, and related devices
US7393320B2 (en) * 2005-04-29 2008-07-01 Ams Research Corporation Pelvic floor health articles and procedures
US8588930B2 (en) * 2005-06-07 2013-11-19 Ethicon, Inc. Piezoelectric stimulation device
US8864650B2 (en) 2005-06-21 2014-10-21 Ams Research Corporation Methods and apparatus for securing a urethral sling to a pubic bone
WO2007002071A1 (en) * 2005-06-21 2007-01-04 Ams Research Corporation Apparatus for securing a urethral sling to pubic bone
US9248010B2 (en) * 2005-07-15 2016-02-02 Boston Scientific Scimed, Inc. Tension-adjustable surgical sling assembly
WO2007016083A1 (en) 2005-07-26 2007-02-08 Ams Research Corporation Methods and systems for treatment of prolapse
AU2006278522A1 (en) * 2005-08-04 2007-02-15 C.R. Bard, Inc. Systems for introducing implants
US7935046B2 (en) * 2005-08-11 2011-05-03 Boston Scientific Scimed, Inc. Systems, methods and devices relating to a removable sleeve for an implantable sling
US7815562B2 (en) * 2005-08-11 2010-10-19 Boston Scientific Scimed, Inc. Tubular implantable sling and related delivery systems, methods and devices
US20070055093A1 (en) * 2005-09-08 2007-03-08 Jean-Marc Beraud Implantable warp knitted fabric
US7878970B2 (en) * 2005-09-28 2011-02-01 Boston Scientific Scimed, Inc. Apparatus and method for suspending a uterus
US7909753B1 (en) 2005-10-05 2011-03-22 Ams Research Corporation Connector for mesh support insertion
US8062298B2 (en) 2005-10-15 2011-11-22 Baxano, Inc. Flexible tissue removal devices and methods
US20080051812A1 (en) * 2006-08-01 2008-02-28 Baxano, Inc. Multi-Wire Tissue Cutter
US8366712B2 (en) 2005-10-15 2013-02-05 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US8092456B2 (en) 2005-10-15 2012-01-10 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US20090221867A1 (en) 2005-11-11 2009-09-03 Ams Research Corporation Integral Sling Connection System and Method
US7513865B2 (en) * 2005-12-20 2009-04-07 Boston Scientific Scimed, Inc. Flattened tubular mesh sling and related methods
AU2006332514B2 (en) * 2005-12-28 2013-01-17 C.R. Bard, Inc. Apparatus and method for introducing implants
EP1978890A1 (en) * 2006-01-10 2008-10-15 Hallum, Alton, V Levator for repair of perineal prolapse
US8585577B2 (en) * 2006-01-10 2013-11-19 Ams Research Corporation Multi-leveled transgluteal tension-free levatorplasty for treatment of Rectocele
WO2007081954A1 (en) * 2006-01-10 2007-07-19 Beyer Roger D Apparatus for posterior pelvic floor repair
US9144483B2 (en) 2006-01-13 2015-09-29 Boston Scientific Scimed, Inc. Placing fixation devices
US8088138B2 (en) 2006-01-23 2012-01-03 Heartware, Inc. Surgical tool
US7763034B2 (en) * 2006-01-24 2010-07-27 Medtronic, Inc. Transobturator lead implantation for pelvic floor stimulation
US8059625B2 (en) * 2006-02-03 2011-11-15 Motorola Mobility, Inc. Distributed architecture and methods for broadcast/multicast service
ITMI20060228A1 (en) * 2006-02-09 2007-08-10 Torelli Donato Piroli SURGICAL INSTRUMENT FOR CORRECTION OF THE HYPERMOTILITY OF THE FEMALE URETHRA IN EFFORT URINARY INCONTINENCE
US7559885B2 (en) * 2006-02-14 2009-07-14 Coloplast A/S Implantable sling for the treatment of incontinence and method of using the same
AU2007217930B2 (en) 2006-02-16 2012-10-18 Boston Scientific Scimed, Inc. Surgical articles and methods for treating pelvic conditions
US8195296B2 (en) * 2006-03-03 2012-06-05 Ams Research Corporation Apparatus for treating stress and urge incontinence
EP1993473A4 (en) * 2006-03-15 2011-01-26 Bard Inc C R Implants for the treatment of pelvic floor disorders
CA2644983C (en) 2006-03-16 2015-09-29 Boston Scientific Limited System and method for treating tissue wall prolapse
US8900324B2 (en) * 2006-03-16 2014-12-02 Boston Scientific Scimed, Inc. System and method for treating tissue wall prolapse
US20090157091A1 (en) * 2006-04-04 2009-06-18 Ams Research Corporation Apparatus for Implanting Neural Stimulation Leads
US20070265675A1 (en) * 2006-05-09 2007-11-15 Ams Research Corporation Testing Efficacy of Therapeutic Mechanical or Electrical Nerve or Muscle Stimulation
WO2007137226A2 (en) 2006-05-19 2007-11-29 Ams Research Corporation Method and articles for treatment of stress urinary incontinence
AU2007258756B2 (en) 2006-06-05 2012-03-01 Ams Research Corporation Electrical muscle stimulation to treat fecal incontinence and/or pelvic prolapse
US20080009667A1 (en) * 2006-06-08 2008-01-10 Ams Research Corporation Methods and apparatus for prolapse repair and hysterectomy
AU2007257870B2 (en) * 2006-06-08 2013-08-15 Boston Scientific Scimed, Inc. Method and apparatus for levator distension repair
JP4971440B2 (en) 2006-06-16 2012-07-11 エーエムエス リサーチ コーポレイション Surgical implants, tools, and methods for treating pelvic disease
AU2007261254B2 (en) 2006-06-22 2013-12-12 Boston Scientific Scimed, Inc. Adjustable tension incontinence sling assemblies
US8617046B2 (en) * 2006-06-26 2013-12-31 Ams Research Corporation Floating sling for treatment of incontinence
US7828715B2 (en) * 2006-06-29 2010-11-09 Ams Research Corporation Method of treating anal incontinence
US8160710B2 (en) * 2006-07-10 2012-04-17 Ams Research Corporation Systems and methods for implanting tissue stimulation electrodes in the pelvic region
CA2653253C (en) 2006-07-25 2014-03-18 Ams Research Corporation Surgical articles and methods for treating pelvic conditions
US20080082105A1 (en) * 2006-10-03 2008-04-03 Boston Scientific Scimed, Inc. Systems, devices and methods for treating pelvic floor disorders
CA2665554A1 (en) 2006-10-18 2008-04-24 Coloplast A/S Implantable devices for the treatment of incontinence and methods of using the same
US8951185B2 (en) 2007-10-26 2015-02-10 Ams Research Corporation Surgical articles and methods for treating pelvic conditions
US8388514B2 (en) 2006-10-26 2013-03-05 Ams Research Corporation Surgical articles and methods for treating pelvic conditions
WO2008058163A2 (en) 2006-11-06 2008-05-15 Caldera Medical, Inc. Implants and procedures for treatment of pelvic floor disorders
US20110082328A1 (en) * 2007-01-03 2011-04-07 Christian Gozzi Methods for installing sling to treat fecal incontinence, and related devices
US8684907B2 (en) * 2007-02-26 2014-04-01 Jay S. Hortenstine Adjustable incontinence apparatus
JP5001382B2 (en) * 2007-03-02 2012-08-15 ユニベルシテ・ド・リエージュ Male urinary incontinence treatment tool
US20090192530A1 (en) 2008-01-29 2009-07-30 Insightra Medical, Inc. Fortified mesh for tissue repair
US8308725B2 (en) * 2007-03-20 2012-11-13 Minos Medical Reverse sealing and dissection instrument
WO2008121109A1 (en) * 2007-03-30 2008-10-09 Ams Research Corporation Methods and apparatus for monitoring battery charge depletion
WO2008124056A1 (en) * 2007-04-04 2008-10-16 Ams Research Corporation Kit for levator avulsion repair
US8954162B2 (en) * 2007-04-25 2015-02-10 Medtronic, Inc. Medical device implantation
US9399130B2 (en) 2007-04-25 2016-07-26 Medtronic, Inc. Cannula configured to deliver test stimulation
US9561053B2 (en) * 2007-04-25 2017-02-07 Medtronic, Inc. Implant tool to facilitate medical device implantation
US8986188B2 (en) * 2007-04-28 2015-03-24 The Board Of Trustees Of The Leland Stanford Junior University Dynamic and adjustable support devices
WO2008144451A1 (en) * 2007-05-15 2008-11-27 Generic Medical Devices, Inc. Needle instruments and implantable sling assembly; kits comprising these components; and methods for use
AU2008271061B2 (en) 2007-06-29 2013-11-14 Boston Scientific Scimed, Inc. Surgical articles and methods for treating pelvic conditions
US9427573B2 (en) 2007-07-10 2016-08-30 Astora Women's Health, Llc Deployable electrode lead anchor
US20100049289A1 (en) * 2007-07-10 2010-02-25 Ams Research Corporation Tissue anchor
US20100217070A1 (en) * 2007-07-16 2010-08-26 Steven Neil Peterson Surgical devices and methods for treating pelvic conditions
US8926646B2 (en) 2007-07-23 2015-01-06 Heartware, Inc. Surgical tool
CA2693198C (en) 2007-07-27 2014-10-14 Ams Research Corporation Pelvic floor treatments and related tools and implants
AU2008282204B2 (en) * 2007-07-30 2014-04-10 Boston Scientific Scimed, Inc. Apparatus and method for the treatment of stress urinary incontinence
JP2010536419A (en) 2007-08-14 2010-12-02 カラント, インコーポレイテッド Method and apparatus for supporting, raising or compressing a structure
WO2009032363A1 (en) 2007-09-06 2009-03-12 Baxano, Inc. Method, system and apparatus for neural localization
CA2698558C (en) 2007-09-21 2015-11-17 Ams Research Corporation Pelvic floor treatments and related tools and implants
US8352026B2 (en) 2007-10-03 2013-01-08 Ethicon, Inc. Implantable pulse generators and methods for selective nerve stimulation
WO2009075800A1 (en) * 2007-12-07 2009-06-18 Ams Research Corporation Pelvic floor treatments and related tools and implants
US8192436B2 (en) 2007-12-07 2012-06-05 Baxano, Inc. Tissue modification devices
US20090156891A1 (en) * 2007-12-12 2009-06-18 Ams Research Corporation Prolapse and Perineal Repair Concepts
US9439746B2 (en) * 2007-12-13 2016-09-13 Insightra Medical, Inc. Methods and apparatus for treating ventral wall hernia
US8940017B2 (en) 2008-07-31 2015-01-27 Insightra Medical, Inc. Implant for hernia repair
US9078728B2 (en) * 2007-12-28 2015-07-14 Boston Scientific Scimed, Inc. Devices and methods for delivering female pelvic floor implants
US8430807B2 (en) 2007-12-28 2013-04-30 Boston Scientific Scimed, Inc. Devices and methods for treating pelvic floor dysfunctions
US9282958B2 (en) * 2007-12-28 2016-03-15 Boston Scientific Scimed, Inc. Devices and method for treating pelvic dysfunctions
US8920306B2 (en) 2007-12-28 2014-12-30 Boston Scientific Scimed, Inc. Devices and methods for delivering a pelvic implant
US8585580B2 (en) * 2008-01-23 2013-11-19 Ams Research Corporation Inflatable medical implant system
US20090192528A1 (en) * 2008-01-29 2009-07-30 Biomet Biologics, Inc. Method and device for hernia repair
US20090216073A1 (en) * 2008-02-27 2009-08-27 Ralph Zipper Devices and Methods for Placing Slings and Other Materials
WO2009145911A1 (en) * 2008-05-29 2009-12-03 Ams Research Corporation Minimally invasive levator avulsion repair
US9314253B2 (en) 2008-07-01 2016-04-19 Amendia, Inc. Tissue modification devices and methods
US8398641B2 (en) 2008-07-01 2013-03-19 Baxano, Inc. Tissue modification devices and methods
US8409206B2 (en) 2008-07-01 2013-04-02 Baxano, Inc. Tissue modification devices and methods
CA2730732A1 (en) 2008-07-14 2010-01-21 Baxano, Inc. Tissue modification devices
US8727963B2 (en) 2008-07-31 2014-05-20 Ams Research Corporation Methods and implants for treating urinary incontinence
JP2012500712A (en) * 2008-08-25 2012-01-12 エーエムエス リサーチ コーポレイション Implants and methods with minimal invasion
US9017243B2 (en) 2008-08-25 2015-04-28 Ams Research Corporation Minimally invasive implant and method
US10603489B2 (en) 2008-10-09 2020-03-31 Virender K. Sharma Methods and apparatuses for stimulating blood vessels in order to control, treat, and/or prevent a hemorrhage
US9079028B2 (en) 2008-10-09 2015-07-14 Virender K. Sharma Method and apparatus for stimulating the vascular system
US8944990B2 (en) 2008-10-27 2015-02-03 Ams Research Corporation Surgical needle and anchor system with retractable features
US8696542B2 (en) 2008-12-23 2014-04-15 Ams Research Corporation Biased artificial sphincter cuff
CA2747608A1 (en) * 2009-01-05 2010-07-08 Caldera Medical, Inc. Implants and procedures for supporting anatomical structures
US20100191038A1 (en) * 2009-01-27 2010-07-29 Coloplast A/S Devices and tools for treatment of urinary incontinence
CA2748894C (en) * 2009-02-10 2018-11-13 Ams Research Corporation Surgical articles and methods for treating urinary incontinence
JP5582619B2 (en) 2009-03-13 2014-09-03 バクサノ,インク. Flexible nerve position determination device
US9539433B1 (en) 2009-03-18 2017-01-10 Astora Women's Health, Llc Electrode implantation in a pelvic floor muscular structure
US9125716B2 (en) 2009-04-17 2015-09-08 Boston Scientific Scimed, Inc. Delivery sleeve for pelvic floor implants
WO2011008167A1 (en) * 2009-07-17 2011-01-20 Milux Holding S.A. A surgical instrument
US8394102B2 (en) 2009-06-25 2013-03-12 Baxano, Inc. Surgical tools for treatment of spinal stenosis
US8298187B2 (en) 2009-07-07 2012-10-30 Cook Medical Technologies Llc Fluid injection device
US8277426B2 (en) 2009-09-30 2012-10-02 Wilcox Heather J Male urinary incontinence device
WO2011079222A2 (en) * 2009-12-23 2011-06-30 Boston Scientific Scimed, Inc. Less traumatic method of delivery of mesh-based devices into human body
WO2011082220A1 (en) 2009-12-30 2011-07-07 Ams Research Corporation Elongate implant system and method for treating pelvic conditions
WO2011082287A1 (en) 2009-12-30 2011-07-07 Ams Research Corporation Implant systems with tensioning feedback
WO2011082330A1 (en) * 2009-12-30 2011-07-07 Ams Research Corporation Implantable sling systems and methods
US9393091B2 (en) 2009-12-31 2016-07-19 Astora Women's Health, Llc Suture-less tissue fixation for implantable device
US8380312B2 (en) 2009-12-31 2013-02-19 Ams Research Corporation Multi-zone stimulation implant system and method
US9445881B2 (en) 2010-02-23 2016-09-20 Boston Scientific Scimed, Inc. Surgical articles and methods
CA2789786C (en) 2010-02-23 2019-04-16 Ams Research Corporation Surgical articles and methods
US8622886B2 (en) * 2010-03-16 2014-01-07 Ethicon, Inc. Surgical instrument and method for the treatment of urinary incontinence
US8449512B2 (en) 2010-04-09 2013-05-28 Davinci Biomedical Research Products Inc. Stoma stabilitating device and method
WO2011143572A1 (en) 2010-05-13 2011-11-17 Ams Research Corporation Implantable mechanical support
US8926636B2 (en) * 2010-06-10 2015-01-06 Boston Scientific Scimed, Inc. Dual offset arc needle for anchor placement of a male incontinence sling
US10028813B2 (en) 2010-07-22 2018-07-24 Boston Scientific Scimed, Inc. Coated pelvic implant device and method
US8911348B2 (en) 2010-09-02 2014-12-16 Boston Scientific Scimed, Inc. Pelvic implants and methods of implanting the same
US8784296B2 (en) * 2010-09-07 2014-07-22 Coloplast A/S Angled surgical introducer
CN105769378B (en) 2010-10-06 2017-11-28 Ams研究公司 For treating female pelvis illness, there is the graft of absorbability and nonabsorable feature
US9271754B2 (en) 2010-12-16 2016-03-01 Boston Scientific Scimed, Inc. Movable curved needle for delivering implants and methods of delivering implants
US9968428B2 (en) 2010-12-16 2018-05-15 Boston Scientific Scimed, Inc. Surgical tools, systems, and related implants and methods
US9474610B2 (en) 2010-12-21 2016-10-25 Boston Scientific Scimed, Inc. Adjustable length rear tip extender for penile prosthesis
US9572648B2 (en) 2010-12-21 2017-02-21 Justin M. Crank Implantable slings and anchor systems
US9775602B2 (en) 2011-01-25 2017-10-03 Isuturing, Llc Devices and methods for continuous surgical suturing
US8465504B2 (en) 2011-01-25 2013-06-18 Isuturing, Llc Devices and methods for continuous surgical suturing
US9381075B2 (en) 2011-01-31 2016-07-05 Boston Scientific Scimed, Inc. Deflection member for delivering implants and methods of delivering implants
WO2012119145A1 (en) * 2011-03-03 2012-09-07 Goldberg Roger P Systems and methods for treating urinary incontinence
AU2012238105B2 (en) 2011-03-28 2017-04-06 Boston Scientific Scimed, Inc. Implants, tools, and methods for treatments of pelvic conditions
US20120253108A1 (en) 2011-03-28 2012-10-04 Fischer Brian G Implants, tools, and methods for treatment of pelvic conditions
US8808162B2 (en) 2011-03-28 2014-08-19 Ams Research Corporation Implants, tools, and methods for treatment of pelvic conditions
US9492259B2 (en) * 2011-03-30 2016-11-15 Astora Women's Health, Llc Expandable implant system
AU2012236180B2 (en) 2011-03-30 2016-01-14 Boston Scientific Scimed, Inc. Implants, tools, and methods for treatment of pelvic conditions
US20120277583A1 (en) 2011-04-29 2012-11-01 Pneumoflex Systems, Llc System and method for testing the gastric valve
US9232917B2 (en) 2011-04-29 2016-01-12 Pneumoflex Systems, Llc Urinary catheter system for diagnosing a physiological abnormality such as stress urinary incontinence
US9220887B2 (en) 2011-06-09 2015-12-29 Astora Women's Health LLC Electrode lead including a deployable tissue anchor
US10058240B2 (en) 2011-06-29 2018-08-28 Boston Scientific Scimed, Inc. Systems, implants, tools, and methods for treatments of pelvic conditions
US9351723B2 (en) 2011-06-30 2016-05-31 Astora Women's Health, Llc Implants, tools, and methods for treatments of pelvic conditions
US9414903B2 (en) 2011-07-22 2016-08-16 Astora Women's Health, Llc Pelvic implant system and method
EP2734148B1 (en) 2011-07-22 2019-06-05 Boston Scientific Scimed, Inc. Pelvic implant system
WO2013020076A1 (en) 2011-08-03 2013-02-07 Ams Research Corporation Systems, methods, and implants for treating prolapse or incontinence
US9492191B2 (en) 2011-08-04 2016-11-15 Astora Women's Health, Llc Tools and methods for treatment of pelvic conditions
US20130035555A1 (en) 2011-08-05 2013-02-07 Alexander James A Systems, implants, tools, and methods for treatment of pelvic conditions
US9402704B2 (en) 2011-08-30 2016-08-02 Boston Scientific Scimed, Inc. Fecal incontinence treatment device and method
US10098721B2 (en) 2011-09-01 2018-10-16 Boston Scientific Scimed, Inc. Pelvic implant needle system and method
US9345472B2 (en) 2011-09-02 2016-05-24 Boston Scientific Scimed, Inc. Multi-arm tool for delivering implants and methods thereof
US9731112B2 (en) 2011-09-08 2017-08-15 Paul J. Gindele Implantable electrode assembly
US9168120B2 (en) 2011-09-09 2015-10-27 Boston Scientific Scimed, Inc. Medical device and methods of delivering the medical device
US10265152B2 (en) 2011-10-13 2019-04-23 Boston Scientific Scimed, Inc. Pelvic implant sizing systems and methods
US9370412B2 (en) * 2011-12-09 2016-06-21 Boston Scientific Scimed, Inc. Bodily implants and methods for delivery and placement of bodily implants into a patients body
US9084678B2 (en) 2012-01-20 2015-07-21 Ams Research Corporation Automated implantable penile prosthesis pump system
US9192458B2 (en) 2012-02-09 2015-11-24 Ams Research Corporation Implants, tools, and methods for treatments of pelvic conditions
US8706234B2 (en) 2012-02-21 2014-04-22 Virender K. Sharma System and method for electrical stimulation of anorectal structures to treat anal dysfunction
US9782583B2 (en) 2012-02-21 2017-10-10 Virender K. Sharma System and method for electrical stimulation of anorectal structures to treat urinary dysfunction
US10576278B2 (en) 2012-02-21 2020-03-03 Virender K. Sharma System and method for electrical stimulation of anorectal structures to treat urinary dysfunction
WO2013126130A1 (en) 2012-02-23 2013-08-29 Northwestern University Improved suture
US10278694B2 (en) 2012-02-23 2019-05-07 Northwestern University Indirect attachment of a needle to a mesh suture
EP2633876B1 (en) 2012-03-02 2014-09-24 Cook Medical Technologies LLC Dilation cap for endoluminal device
WO2013141119A1 (en) 2012-03-23 2013-09-26 テルモ株式会社 Puncture instrument and puncture device
US8911464B2 (en) 2012-03-23 2014-12-16 Terumo Kabushiki Kaisha Puncture apparatus
WO2013146220A1 (en) 2012-03-30 2013-10-03 テルモ株式会社 Puncture instrument and puncture device
US10159555B2 (en) * 2012-09-28 2018-12-25 Sofradim Production Packaging for a hernia repair device
AU2013334828A1 (en) 2012-10-22 2015-04-16 Ams Research Corporation System and method for treatment of anal and fecal incontinence
US9622775B2 (en) * 2012-10-24 2017-04-18 Arthrex, Inc. Methods and instruments for forming a posterior knee portal and for inserting a cannula
US10111651B2 (en) 2012-11-02 2018-10-30 Coloplast A/S System and method of anchoring support material to tissue
US9241779B2 (en) 2012-11-02 2016-01-26 Coloplast A/S Male incontinence treatment system
US20140188148A1 (en) 2012-12-27 2014-07-03 Pieter W.C.J. le Blanc Surgical tunneler
US9814555B2 (en) 2013-03-12 2017-11-14 Boston Scientific Scimed, Inc. Medical device for pelvic floor repair and method of delivering the medical device
WO2014146023A2 (en) 2013-03-15 2014-09-18 Ams Research Corporation Surgical implant system and method
WO2014162422A1 (en) * 2013-04-01 2014-10-09 テルモ株式会社 Puncture needle assembly
WO2014162425A1 (en) * 2013-04-01 2014-10-09 テルモ株式会社 Medical device
WO2014162430A1 (en) * 2013-04-01 2014-10-09 テルモ株式会社 Puncture device
WO2014162423A1 (en) * 2013-04-01 2014-10-09 テルモ株式会社 Medical device
EP2991580A1 (en) * 2013-05-02 2016-03-09 Mangesh Patankar Sling system with removable string
US9480546B2 (en) 2013-08-05 2016-11-01 Coloplast A/S Hysteropexy mesh apparatuses and methods
JP2015058323A (en) 2013-09-20 2015-03-30 テルモ株式会社 Method for placing implant
US9962251B2 (en) 2013-10-17 2018-05-08 Boston Scientific Scimed, Inc. Devices and methods for delivering implants
US9522000B2 (en) 2013-11-08 2016-12-20 Coloplast A/S System and a method for surgical suture fixation
US9861461B2 (en) * 2013-11-11 2018-01-09 Joye Lowman Stabilizer for the transvaginal placement of a midurethral sling
US9017357B1 (en) 2014-03-24 2015-04-28 Terumo Kabushiki Kaisha Puncture apparatus
US9011475B1 (en) 2014-03-24 2015-04-21 Terumo Kabushiki Kaisha Puncture apparatus
US9498210B2 (en) 2014-03-24 2016-11-22 Terumo Kabushiki Kaisha Puncture apparatus
USD760381S1 (en) 2014-06-25 2016-06-28 Donald Fox Orbital injection cannula
US10722691B2 (en) 2015-07-14 2020-07-28 Terumo Kabushiki Kaisha Puncture apparatus
US10420582B2 (en) 2015-07-14 2019-09-24 Terumo Kabushiki Kaisha Puncture apparatus
US10328271B2 (en) 2015-11-12 2019-06-25 Medtronic, Inc. Implantable electrical stimulator with deflecting tip lead
WO2018066921A2 (en) * 2016-10-06 2018-04-12 아주대학교 산학협력단 Device for supporting semilunar cartilage hoop stress
WO2020101625A2 (en) * 2018-11-13 2020-05-22 Soranus Arge Ve Danişmanlik Hi̇zmetleri̇ Sanayi̇ Ti̇caret A.Ş. Readjustable midurethral sling

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273852B1 (en) * 1999-06-09 2001-08-14 Ethicon, Inc. Surgical instrument and method for treating female urinary incontinence

Family Cites Families (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124136A (en) 1964-03-10 Method of repairing body tissue
US149440A (en) * 1874-04-07 Improvement in water-proof pastes
US2738790A (en) 1954-08-12 1956-03-20 George P Pilling & Son Company Suturing instrument
US3182662A (en) 1962-07-25 1965-05-11 Vithal N Shirodkar Plastic prosthesis useful in gynaecological surgery
US3384073A (en) 1964-04-21 1968-05-21 Ethicon Inc Surgical device for correction of urinary incontinence
US3311110A (en) 1964-07-15 1967-03-28 American Cyanamid Co Flexible composite suture having a tandem linkage
US3472232A (en) 1967-05-31 1969-10-14 Abbott Lab Catheter insertion device
US3580313A (en) 1969-01-07 1971-05-25 Mcknight Charles A Surgical instrument
US3763860A (en) 1971-08-26 1973-10-09 H Clarke Laparoscopy instruments and method for suturing and ligation
US3789828A (en) 1972-09-01 1974-02-05 Heyer Schulte Corp Urethral prosthesis
US3858783A (en) 1972-11-20 1975-01-07 Nikolai Nikolaevich Kapitanov Surgical instrument for stitching up tissues with lengths of suture wire
DE2305815A1 (en) 1973-02-07 1974-08-08 Kurt Seuberth DEVICE FOR SEPARATING SURGICAL FEEDS
US3924633A (en) 1974-01-31 1975-12-09 Cook Inc Apparatus and method for suprapubic catheterization
US4037603A (en) 1975-05-13 1977-07-26 Wendorff Erwin R Metallic surgical suture
US3995619A (en) 1975-10-14 1976-12-07 Glatzer Stephen G Combination subcutaneous suture remover, biopsy sampler and syringe
US4019499A (en) 1976-04-22 1977-04-26 Heyer-Schulte Corporation Compression implant for urinary incontinence
US4128100A (en) 1976-10-08 1978-12-05 Wendorff Erwin R Suture
SU715082A1 (en) 1977-01-24 1980-02-15 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing apparatus
US5633286B1 (en) 1977-03-17 2000-10-10 Applied Elastomerics Inc Gelatinous elastomer articles
US4172458A (en) 1977-11-07 1979-10-30 Pereyra Armand J Surgical ligature carrier
US4235238A (en) 1978-05-11 1980-11-25 Olympus Optical Co., Ltd. Apparatus for suturing coeliac tissues
US4246660A (en) 1978-12-26 1981-01-27 Queen's University At Kingston Artificial ligament
US4265231A (en) 1979-04-30 1981-05-05 Scheller Jr Arnold D Curved drill attachment for bone drilling uses
SU1342486A1 (en) 1982-06-29 1987-10-07 М.А. Мороз Needle holder
US4441497A (en) 1982-10-21 1984-04-10 Paudler Franklin T Universal suture passer
US4509516A (en) 1983-02-24 1985-04-09 Stryker Corporation Ligament tunneling instrument
SU1225547A1 (en) 1984-08-03 1986-04-23 Московский Городской Ордена Ленина И Ордена Трудового Красного Знамени Научно-Исследовательский Институт Скорой Помощи Им.Н.В.Склифосовского Surgical instrument
US4865031A (en) 1985-07-12 1989-09-12 Keeffe Paul J O Fabric and method of use for treatment of scars
US4632100A (en) 1985-08-29 1986-12-30 Marlowe E. Goble Suture anchor assembly
GB8525565D0 (en) 1985-10-17 1985-11-20 Speedhom B B Surgical replacement of ligaments
GB8611129D0 (en) 1986-05-07 1986-06-11 Annis D Prosthetic materials
US5386836A (en) 1986-10-14 1995-02-07 Zedlani Pty Limited Urinary incontinence device
ES2030732T3 (en) 1986-10-14 1992-11-16 Zedlani Pty. Limited DEVICE FOR URINARY INCONTINENCE.
EP0437481B1 (en) 1988-10-04 1995-03-15 PETROS Peter Emmanuel Surgical instrument prosthesis
US5123428A (en) 1988-10-11 1992-06-23 Schwarz Gerald R Laparoscopically implanting bladder control apparatus
US5013292A (en) * 1989-02-24 1991-05-07 R. Laborie Medical Corporation Surgical correction of female urinary stress incontinence and kit therefor
GB8924806D0 (en) 1989-11-03 1989-12-20 Neoligaments Ltd Prosthectic ligament system
US5256133A (en) 1990-09-05 1993-10-26 Spitz Robert M Device for correcting stress urinary incontinence
US5368595A (en) 1990-09-06 1994-11-29 United States Surgical Corporation Implant assist apparatus
US5053043A (en) 1990-09-28 1991-10-01 Vance Products Incorporated Suture guide and method of placing sutures through a severed duct
US5085661A (en) 1990-10-29 1992-02-04 Gerald Moss Surgical fastener implantation device
JPH06506366A (en) 1990-12-06 1994-07-21 ダブリュ.エル.ゴア アンド アソシエーツ,インコーポレイティド Implantable bioabsorbable components
WO1993010715A2 (en) 1991-12-03 1993-06-10 Vesitec Medical, Inc. Surgical treatment of stress urinary incontinence
US5439467A (en) 1991-12-03 1995-08-08 Vesica Medical, Inc. Suture passer
ATE176998T1 (en) 1991-12-03 1999-03-15 Boston Scient Ireland Ltd INSTRUMENT FOR PASSING A SEWING THREAD
US5935122A (en) 1991-12-13 1999-08-10 Endovascular Technologies, Inc. Dual valve, flexible expandable sheath and method
WO1993017635A1 (en) 1992-03-04 1993-09-16 C.R. Bard, Inc. Composite prosthesis and method for limiting the incidence of postoperative adhesions
US5403328A (en) 1992-04-22 1995-04-04 United States Surgical Corporation Surgical apparatus and method for suturing body tissue
US5188636A (en) 1992-05-07 1993-02-23 Ethicon, Inc. Purse string suture instrument
US5207694A (en) 1992-06-18 1993-05-04 Surgical Invent Ab Method for performing a surgical occlusion, and kit and applicator for carrying out the method
DE4220283C2 (en) 1992-06-20 1994-05-19 Singer Spezialnadelfab Surgical needle-thread combination
US6048351A (en) 1992-09-04 2000-04-11 Scimed Life Systems, Inc. Transvaginal suturing system
US5281237A (en) 1992-09-25 1994-01-25 Gimpelson Richard J Surgical stitching device and method of use
US5362294A (en) 1992-09-25 1994-11-08 Seitzinger Michael R Sling for positioning internal organ during laparoscopic surgery and method of use
US5337736A (en) 1992-09-30 1994-08-16 Reddy Pratap K Method of using a laparoscopic retractor
US5383904A (en) 1992-10-13 1995-01-24 United States Surgical Corporation Stiffened surgical device
DE4304353A1 (en) 1992-10-24 1994-04-28 Helmut Dipl Ing Wurster Suturing device used in endoscopic surgical operations - has helical needle with fixed non-traumatic thread held and rotated by rollers attached to instrument head extended into patients body.
US5250033A (en) 1992-10-28 1993-10-05 Interventional Thermodynamics, Inc. Peel-away introducer sheath having proximal fitting
US6406480B1 (en) * 1992-11-13 2002-06-18 American Med Syst Bone anchor inserter with retractable shield
US5972000A (en) 1992-11-13 1999-10-26 Influence Medical Technologies, Ltd. Non-linear anchor inserter device and bone anchors
IL103737A (en) 1992-11-13 1997-02-18 Technion Res & Dev Foundation Stapler device particularly useful in medical suturing
US5328077A (en) 1992-11-19 1994-07-12 Lou Ek Seng Method and apparatus for treating female urinary incontinence
US5540703A (en) 1993-01-06 1996-07-30 Smith & Nephew Richards Inc. Knotted cable attachment apparatus formed of braided polymeric fibers
US5336239A (en) 1993-01-15 1994-08-09 Gimpelson Richard J Surgical needle
AU6236794A (en) 1993-02-22 1994-09-14 Valleylab, Inc. A laparoscopic dissection tension retractor device and method
WO1994021197A1 (en) 1993-03-25 1994-09-29 C.R. Bard, Inc. Vascular graft
CA2105347A1 (en) * 1993-04-29 1994-10-30 Gwendolyn Elizabeth Simpson Modified lithotomy/pelviscopy surgical drape
US5520703A (en) 1993-06-07 1996-05-28 Essig; Mitchell N. Laparoscopic deschamp and associated suturing technique
BR9302774A (en) 1993-07-06 1995-02-14 Antoine Jean Henri Robert Adjustable peri-urethral expander
CA2124651C (en) 1993-08-20 2004-09-28 David T. Green Apparatus and method for applying and adjusting an anchoring device
AU1011595A (en) 1994-01-13 1995-07-20 Ethicon Inc. Spiral surgical tack
FR2720266B1 (en) 1994-05-27 1996-12-20 Cogent Sarl Prosthetic fabric.
US5582616A (en) 1994-08-05 1996-12-10 Origin Medsystems, Inc. Surgical helical fastener with applicator
US5899909A (en) 1994-08-30 1999-05-04 Medscand Medical Ab Surgical instrument for treating female urinary incontinence
US5562685A (en) 1994-09-16 1996-10-08 General Surgical Innovations, Inc. Surgical instrument for placing suture or fasteners
US5571139A (en) 1995-05-19 1996-11-05 Jenkins, Jr.; Joseph R. Bidirectional suture anchor
US5997554A (en) 1995-06-14 1999-12-07 Medworks Corporation Surgical template and surgical method employing same
US5591163A (en) 1995-06-14 1997-01-07 Incont, Inc. Apparatus and method for laparoscopic urethropexy
US5669935A (en) 1995-07-28 1997-09-23 Ethicon, Inc. One-way suture retaining device for braided sutures
US5662683A (en) 1995-08-22 1997-09-02 Ortho Helix Limited Open helical organic tissue anchor and method of facilitating healing
AUPN562295A0 (en) 1995-09-26 1995-10-19 Compton, Jeffrey Spencer Dr Easy load device for raney style scalp clips
WO1997016121A1 (en) 1995-10-31 1997-05-09 Karl Christopher Texler Surgical instruments
EP0950385A3 (en) 1995-12-14 1999-10-27 Prograft Medical, Inc. Stent-graft deployment apparatus and method
US6264676B1 (en) 1996-11-08 2001-07-24 Scimed Life Systems, Inc. Protective sheath for transvaginal anchor implantation devices
US6053935A (en) 1996-11-08 2000-04-25 Boston Scientific Corporation Transvaginal anchor implantation device
ES1035671Y (en) 1996-11-21 1997-11-16 Brucart Puig Ramon CORKSCREW WITH DOUBLE SUPPORT POINT.
AU6329598A (en) 1997-02-13 1998-09-08 Boston Scientific Ireland Limited, Barbados Head Office Stabilization sling for use in minimally invasive pelvic surgery
EP1006886B1 (en) 1997-02-13 2003-07-09 Boston Scientific Limited Dilator for minimally invasive pelvic surgery
EP1017321B1 (en) * 1997-02-13 2004-01-14 Boston Scientific Limited Percutaneous and hiatal devices for use in minimally invasive pelvic surgery
US6599235B2 (en) * 1997-03-18 2003-07-29 American Medical Systems Inc. Transvaginal bone anchor implantation device
US6039686A (en) * 1997-03-18 2000-03-21 Kovac; S. Robert System and a method for the long term cure of recurrent urinary female incontinence
US5934283A (en) 1997-04-15 1999-08-10 Uroplasty, Inc. Pubovaginal sling device
US6419624B1 (en) 1999-10-11 2002-07-16 Uromedica, Inc. Apparatus and method for inserting an adjustable implantable genitourinary device
US5988171A (en) 1997-06-26 1999-11-23 Influence Medical Technologies, Ltd. Methods and devices for the treatment of airway obstruction, sleep apnea and snoring
US5944732A (en) 1997-08-27 1999-08-31 Medical Components, Inc. Subcutaneous tunnelling device and methods of forming a subcutaneous tunnel
US5935138A (en) * 1997-09-24 1999-08-10 Ethicon, Inc. Spiral needle for endoscopic surgery
US6221005B1 (en) 1998-02-17 2001-04-24 Norman I. Bruckner Pubo-urethral support harness apparatus for percutaneous treatment of female stress urinary incontinence with urethal hypemobility
US6068591A (en) 1998-02-17 2000-05-30 Bruckner; Norman I. Pubo-urethral support harness apparatus for percutaneous treatment of female stress urinary incontinence
ES2154133B1 (en) 1998-02-17 2001-12-01 Puig Ramon Brucart MULTIPURPOSE SACACORCHOS.
US5992289A (en) * 1998-02-17 1999-11-30 Halliburton Energy Services, Inc. Firing head with metered delay
ES2149091B1 (en) 1998-03-10 2001-05-16 Gil Vernet Vila Jose Maria DEVICE FOR FIXING AND ADJUSTABLE SUPPORT AT HEIGHT OF INTERNAL ANATOMICAL ORGANS.
US6106545A (en) 1998-04-16 2000-08-22 Axya Medical, Inc. Suture tensioning and fixation device
US6382214B1 (en) * 1998-04-24 2002-05-07 American Medical Systems, Inc. Methods and apparatus for correction of urinary and gynecological pathologies including treatment of male incontinence and female cystocele
US6010447A (en) 1998-07-31 2000-01-04 Kardjian; Paul M. Bladder sling
US6042536A (en) 1998-08-13 2000-03-28 Contimed, Inc. Bladder sling
US6648903B1 (en) 1998-09-08 2003-11-18 Pierson, Iii Raymond H. Medical tensioning system
US6030393A (en) 1998-09-15 2000-02-29 Corlew; Earvin L. Needle and procedure for relieving urinary incontinence
US6302840B1 (en) 1998-09-21 2001-10-16 Theodore V. Benderev Surgical monitor
US6050937A (en) 1998-09-21 2000-04-18 Benderev; Theodore V. Surgical tension/pressure monitor
ES2252981T3 (en) 1998-10-01 2006-05-16 Burger, Nicolaas Daniel Lombard DISTENSIBLE SUSPENSION DEVICE FOR URINARY INCONTINENCE.
US6099538A (en) 1999-02-02 2000-08-08 T.A.G. Medical Products Set of surgical tools and surgical method for connecting soft bone parts to one another or to connective tissue
US6287316B1 (en) 1999-03-26 2001-09-11 Ethicon, Inc. Knitted surgical mesh
FR2792824B1 (en) 1999-04-27 2001-06-22 Sofradim Production DEVICE FOR TREATING PROLAPSUS BY VAGINAL SUSPENSION
IL130307A0 (en) 1999-06-04 2000-06-01 Influence Med Tech Ltd Bone suturing device
US7226407B2 (en) 1999-06-09 2007-06-05 Ethicon, Inc. Surgical instrument and method for treating female urinary incontinence
US7121997B2 (en) * 1999-06-09 2006-10-17 Ethicon, Inc. Surgical instrument and method for treating female urinary incontinence
US6932759B2 (en) 1999-06-09 2005-08-23 Gene W. Kammerer Surgical instrument and method for treating female urinary incontinence
EP1581162B1 (en) 1999-06-09 2011-04-20 Ethicon, Inc. Apparatus for adjusting flexible areal polymer implants
US6475139B1 (en) 1999-06-09 2002-11-05 Ethicon, Inc. Visually-directed surgical instrument and method for treating female urinary incontinence
US6168611B1 (en) 1999-09-08 2001-01-02 Syed Rizvi Suturing needle assemblies and methods of use thereof
AUPQ362199A0 (en) 1999-10-22 1999-11-18 Kaladelfos, George Intra-vaginal sling placement device
US6626917B1 (en) * 1999-10-26 2003-09-30 H. Randall Craig Helical suture instrument
US6599318B1 (en) 1999-11-30 2003-07-29 Shlomo Gabbay Implantable support apparatus and method of using same
US6306079B1 (en) 1999-12-07 2001-10-23 Arnaldo F. Trabucco Mesh pubovaginal sling
DE19961218A1 (en) * 1999-12-15 2001-07-05 Ethicon Gmbh Surgical needle for implanting a band
FR2802798B1 (en) 1999-12-22 2002-02-01 Promedon S A PAD STRAP FOR THE TREATMENT OF URINARY INCONTINENCE
US6406423B1 (en) * 2000-01-21 2002-06-18 Sofradim Production Method for surgical treatment of urinary incontinence and device for carrying out said method
GB2359256B (en) 2000-01-21 2004-03-03 Sofradim Production Percutaneous device for treating urinary stress incontinence in women using a sub-urethral tape
DE10004832A1 (en) 2000-01-31 2001-08-16 Ethicon Gmbh Flat implant with X-ray visible elements
US7131943B2 (en) * 2000-03-09 2006-11-07 Ethicon, Inc. Surgical instrument and method for treating organ prolapse conditions
CA2407001A1 (en) 2000-04-18 2001-10-25 Ran Oren Method and apparatus for suturing
US6482214B1 (en) 2000-04-27 2002-11-19 Medtronic, Inc. Intravascular seal with mesh reinforcement and method for using same
US6596001B2 (en) * 2000-05-01 2003-07-22 Ethicon, Inc. Aiming device for surgical instrument and method for use for treating female urinary incontinence
US6478803B1 (en) 2000-05-19 2002-11-12 Genzyme Corporation Device for delivery of surgical materials
US6638211B2 (en) * 2000-07-05 2003-10-28 Mentor Corporation Method for treating urinary incontinence in women and implantable device intended to correct urinary incontinence
FR2811218B1 (en) 2000-07-05 2003-02-28 Patrice Suslian IMPLANTABLE DEVICE FOR CORRECTING URINARY INCONTINENCE
US6494906B1 (en) 2000-07-25 2002-12-17 Advanced Cardiovascular Systems, Inc. Stent fold clip
US7025063B2 (en) * 2000-09-07 2006-04-11 Ams Research Corporation Coated sling material
US6592515B2 (en) * 2000-09-07 2003-07-15 Ams Research Corporation Implantable article and method
DE60140886D1 (en) 2000-09-26 2010-02-04 Ethicon Inc SURGICAL APPARATUS FOR DISPENSING A SLING IN THE TREATMENT OF HARNESS INCONTINENCE IN WOMEN
FR2814939B1 (en) 2000-10-05 2002-12-20 Sofradim Production SUB-URETRAL SUPPORT KIT FOR THE TREATMENT OF URINARY INCONTINENCE OF FEMALE EXERCISE
US7299803B2 (en) * 2000-10-09 2007-11-27 Ams Research Corporation Pelvic surgery drape
US6605097B1 (en) 2000-10-18 2003-08-12 Jorn Lehe Apparatus and method for treating female urinary incontinence
US6638209B2 (en) 2000-10-20 2003-10-28 Ethicon Gmbh System with a surgical needle and a handle
KR20030081323A (en) 2000-10-23 2003-10-17 에디컨인코포레이티드 Apparatus and method for measurement and assessment of sling-tension for treatment of female urinary incontinence
US6663633B1 (en) * 2000-10-25 2003-12-16 Pierson, Iii Raymond H. Helical orthopedic fixation and reduction device, insertion system, and associated methods
WO2002039914A1 (en) * 2000-11-15 2002-05-23 Scimed Life Systems, Inc. Device and method for treating female urinary incontinence
WO2002039890A2 (en) 2000-11-20 2002-05-23 Ethicon, Inc. Surgical instrument and method for treating female urinary incontinence
US20020128670A1 (en) 2000-11-22 2002-09-12 Ulf Ulmsten Surgical instrument and method for treating female urinary incontinence
US6582443B2 (en) * 2000-12-27 2003-06-24 Ams Research Corporation Apparatus and methods for enhancing the functional longevity and for facilitating the implantation of medical devices
USD458679S1 (en) * 2001-01-18 2002-06-11 Intratherapeutics, Inc. Handle
US7229453B2 (en) * 2001-01-23 2007-06-12 Ams Research Corporation Pelvic floor implant system and method of assembly
US20020147382A1 (en) 2001-01-23 2002-10-10 Neisz Johann J. Surgical articles and methods
US6641525B2 (en) 2001-01-23 2003-11-04 Ams Research Corporation Sling assembly with secure and convenient attachment
US6612977B2 (en) * 2001-01-23 2003-09-02 American Medical Systems Inc. Sling delivery system and method of use
US6652450B2 (en) 2001-01-23 2003-11-25 American Medical Systems, Inc. Implantable article and method for treating urinary incontinence using means for repositioning the implantable article
US6602260B2 (en) 2001-02-02 2003-08-05 Ams Research Corporation Powered bone screw device
CA2440153C (en) 2001-03-09 2011-09-20 Scimed Life Systems, Inc. System for implanting an implant and method thereof
EP1913896B1 (en) 2001-03-09 2012-12-26 Boston Scientific Limited Method for making a medical sling
AUPR406501A0 (en) 2001-03-28 2001-04-26 Kaladelfos, George Treatment of vault prolapse
US6595911B2 (en) * 2001-04-03 2003-07-22 Lovuolo Michael Method and device for anchor implantation and support of bodily structures
US6755781B2 (en) * 2001-07-27 2004-06-29 Scimed Life Systems, Inc. Medical slings
US7037255B2 (en) * 2001-07-27 2006-05-02 Ams Research Corporation Surgical instruments for addressing pelvic disorders
DE10138950A1 (en) 2001-08-03 2003-02-20 Aesculap Ag & Co Kg Strip for treating urinary incontinence, especially for women, by implantation in abdomen, is flexible and preferably consists (partly) of resorbable material, e.g. polyvinyl alcohol
US6648921B2 (en) * 2001-10-03 2003-11-18 Ams Research Corporation Implantable article
US6673010B2 (en) * 2001-10-22 2004-01-06 T. A. G. Medical Products Ltd. Biological vessel suspending assembly and systems and methods utilizing same
DE10211360A1 (en) 2002-03-14 2003-10-09 Ethicon Gmbh Implantate band and surgical needle system to support female urethra has distal end region of needle narrower than implantate band
US7094199B2 (en) 2002-07-23 2006-08-22 Sherwood Services Ag Ivs obturator instrument and procedure
FR2843014B1 (en) 2002-07-31 2005-06-10 Cousin Biotech DEVICE FOR TREATING FEMALE URINARY INCONTINENCE
WO2004016196A2 (en) 2002-08-14 2004-02-26 Boston Scientific Limited Systems, methods and devices relating to delivery of medical implants
CN100444805C (en) 2002-08-29 2008-12-24 列日大学 Devices for surgical treatment of female urinary incontinence

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273852B1 (en) * 1999-06-09 2001-08-14 Ethicon, Inc. Surgical instrument and method for treating female urinary incontinence

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10449025B2 (en) 2000-10-12 2019-10-22 Coloplast A/S Surgical device implantable to treat female urinary incontinence
US10076394B2 (en) 2000-10-12 2018-09-18 Coloplast A/S Method of treating urinary incontinence
US9968430B2 (en) 2000-10-12 2018-05-15 Coloplast A/S Surgical device implantable to treat female urinary incontinence
US9918817B2 (en) 2000-10-12 2018-03-20 Coloplast A/S Method of post-operatively adjusting a urethral support in treating urinary incontinence of a woman
US10682213B2 (en) 2001-03-30 2020-06-16 Coloplast A/S Surgical implant consisting of non-absorbable material
US9532861B2 (en) 2002-08-02 2017-01-03 Coloplast A/S Self-anchoring sling and introducer system
US9005222B2 (en) 2002-08-02 2015-04-14 Coloplast A/S Self-anchoring sling and introducer system
US9872750B2 (en) 2002-08-02 2018-01-23 Coloplast A/S Self-anchoring sling and introducer system
US9532862B2 (en) 2002-08-02 2017-01-03 Coloplast A/S Self-anchoring sling and introducer system
US9555168B2 (en) 2003-03-27 2017-01-31 Coloplast A/S System for delivery of medication in treatment of disorders of the pelvis
US10064714B2 (en) 2004-05-21 2018-09-04 Coloplast A/S Implantable device configured to treat pelvic organ prolapse
KR101126591B1 (en) 2005-02-04 2012-03-26 에이엠에스 리써치 코오포레이션 Needle design for male transobturator sling
US9022920B2 (en) 2005-04-06 2015-05-05 Boston Scientific Scimed, Inc. Systems, devices, and methods for sub-urethral support
US9107659B2 (en) 2005-07-13 2015-08-18 Boston Scientific Scimed, Inc. Snap fit sling anchor system and related methods
US10251738B2 (en) 2005-07-25 2019-04-09 Boston Scientific Scimed, Inc. Pelvic floor repair system
US9675436B2 (en) 2005-07-25 2017-06-13 Boston Scientific Scimed, Inc. Pelvic floor repair system
US8123671B2 (en) 2005-08-04 2012-02-28 C.R. Bard, Inc. Pelvic implant systems and methods
US8845512B2 (en) 2005-11-14 2014-09-30 C. R. Bard, Inc. Sling anchor system
US7637860B2 (en) 2005-11-16 2009-12-29 Boston Scientific Scimed, Inc. Devices for minimally invasive pelvic surgery
US8480559B2 (en) 2006-09-13 2013-07-09 C. R. Bard, Inc. Urethral support system
US8574149B2 (en) 2007-11-13 2013-11-05 C. R. Bard, Inc. Adjustable tissue support member
US10639138B2 (en) 2008-02-28 2020-05-05 Coloplast A/S Method for providing support to a urethra in treating urinary incontinence
US9113991B2 (en) 2011-05-12 2015-08-25 Boston Scientific Scimed, Inc. Anchors for bodily implants and methods for anchoring bodily implants into a patient's body
US9636201B2 (en) 2011-05-12 2017-05-02 Boston Scientific Scimed, Inc. Delivery members for delivering an implant into a body of a patient

Also Published As

Publication number Publication date
US7686760B2 (en) 2010-03-30
US8864648B2 (en) 2014-10-21
US20100191039A1 (en) 2010-07-29
FR2839639A1 (en) 2003-11-21
US8043204B2 (en) 2011-10-25
US9433487B2 (en) 2016-09-06
US20150038777A1 (en) 2015-02-05
US20120010458A1 (en) 2012-01-12
AU2003228315A1 (en) 2003-12-02
US20050143618A1 (en) 2005-06-30
US20030212305A1 (en) 2003-11-13
US6911003B2 (en) 2005-06-28
US20160367350A1 (en) 2016-12-22

Similar Documents

Publication Publication Date Title
CA2478448C (en) Transobturator surgical articles and methods
US9433487B2 (en) Transobturator surgical articles and methods
US7988615B2 (en) Transobturator surgical articles and methods
US8968178B2 (en) Transobturator surgical articles and methods
CA2434461C (en) Sling assembly with secure and convenient attachment
AU2002235239A1 (en) Sling assembly with secure and convenient attachment
AU2006210494A1 (en) Needle design for male transobturator sling

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP