WO2003103932A1 - Verfahren zum schichtweisen aufbau von modellen - Google Patents

Verfahren zum schichtweisen aufbau von modellen Download PDF

Info

Publication number
WO2003103932A1
WO2003103932A1 PCT/DE2003/001636 DE0301636W WO03103932A1 WO 2003103932 A1 WO2003103932 A1 WO 2003103932A1 DE 0301636 W DE0301636 W DE 0301636W WO 03103932 A1 WO03103932 A1 WO 03103932A1
Authority
WO
WIPO (PCT)
Prior art keywords
materials
binder
hardener
sand
mixture
Prior art date
Application number
PCT/DE2003/001636
Other languages
English (en)
French (fr)
Inventor
Ingo Ederer
Rainer Höchsmann
Original Assignee
Generis Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Generis Gmbh filed Critical Generis Gmbh
Priority to DE10393294T priority Critical patent/DE10393294D2/de
Priority to EP03756945.6A priority patent/EP1509382B1/de
Priority to AU2003243897A priority patent/AU2003243897A1/en
Priority to US10/516,386 priority patent/US7531117B2/en
Publication of WO2003103932A1 publication Critical patent/WO2003103932A1/de
Priority to US12/463,664 priority patent/US7955537B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C23/00Tools; Devices not mentioned before for moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/246Moulding high reactive monomers or prepolymers, e.g. by reaction injection moulding [RIM], liquid injection moulding [LIM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for the layered construction of models and / or shapes according to the preamble of patent claim 1.
  • Spray device sprayed a binder on the entire particle material in the finest possible distribution. Hardener is then metered onto selected areas, thereby solidifying desired areas of the particle material. After repeating this process several times, an individually shaped body can be provided from the bound particle material. This body is initially embedded in the surrounding, unbound particle material and can be removed from the particle bed after completion of the construction process.
  • quartz sand is used as the particle material and a furan resin as a binder
  • a casting mold - " can be produced with the aid of a sulfurous acid as a hardener - " which consists of materials that are usually used in mold production and are therefore known to those skilled in the art.
  • croning sands have a relatively high thermal stability, which, due to the relatively low casting temperatures in light metal casting, leads to poor core removal.
  • Croning sands with an increased proportion of binder are also required for selective laser sintering. The consequence of this are larger amounts of gas during pyrolysis of the binder at ??? of the cast and thus an increased risk of rejects due to cavities in the component.
  • selective laser sintering generally has the disadvantage that the laser requires a great deal of effort and, in addition, the exposure step is also relatively time-intensive.
  • a so-called 3D printing is known from US Pat. No. 5,204,055 and EP 0 431 924 B1.
  • Particle material is selectively bonded by the introduction of binder material.
  • This method has the advantage that it is based on cost-effective printing technology compared to selective laser sintering.
  • typical foundry binders can only be dosed with great technical effort due to the unfavorable material properties.
  • foundry materials can be used.
  • the disadvantages of this process are the complicated spray application of the binder, the inhomogeneous binder mixing and the high binder concentrations in the component.
  • Spraying process results in a high degree of contamination of the system.
  • One consequence of this is that time-consuming cleaning of the printhead is required, since otherwise the material on the nozzles hardens and leads to their destruction.
  • the object of the present invention to provide a method with which it is possible to carry out the layered construction of models in the most time-saving and cost-effective manner possible.
  • the process can be used for industrial use due to its reliability and ease of use.
  • This object is achieved with a method for building models in layers, a first material and then a second material being selectively applied in layers to a building platform, and these two application steps are always repeated until a desired model is obtained.
  • the two materials form a solid with a suitable mixing ratio.
  • the first material is a mixture of materials and is at least partially prepared before the respective application step.
  • This method has proven to be advantageous since it allows the processing times of the material mixture to be kept short and the volatile ingredients to remain in the binder material.
  • the preparation can be carried out as required during the application process.
  • Another advantage of this process compared to selective laser sintering is the use of inexpensive raw materials in contrast to expensive special sands.
  • the material mixture is prepared continuously. This means that the mixture is always about the same "old” and therefore has the same properties with regard to any evaporated components etc.
  • the material mixture is prepared in batches. Continuous mixing, as is customary in conventional molding processes, would also be possible, but would be technically complex due to the relatively low processing speed during layer build-up.
  • the material mixture preferably has a particle material and a reactive material.
  • the second material in the process according to the invention then has an activator, the components can be joined at room temperature by a chemical reaction.
  • the renewed layer application and the application of the second material preferably take place within the time required for the solidification of the two materials.
  • the second material is applied using the droplet generation technique.
  • This technology has proven to be very precise, reliable and simple.
  • the second material has a carrier liquid which is not involved in the hardening reaction, since the wetting of the material mixture of particulate material and the first reactive component can be set independently of the chemical ratio required for the reaction.
  • the hardener input per layer must be set, and this is best regardless of the chosen resolution of the hardener application.
  • a non-reactive carrier liquid is added to the hardener, with the aid of which the desired ratio can be set.
  • Ethanol is preferably used as the carrier liquid. However, other alcohols could also be used, even water could be used. Ethanol is advantageous because it is volatile. Before the casting, however, the complete carrier liquid should be volatilized as possible, since it can negatively influence a casting. In the process itself, a large part of the ethanol evaporates from layer to layer. The remaining content can be evaporated in a short oven process (1 h at more than 80 ° C).
  • Ethanol also has two other positive effects. The
  • Viscosity of the medium to be dosed is a limiting factor with the dod (drop-on-demand) print heads.
  • the viscosity of the hardener can be reduced with ethanol, so that the function of the print heads improves.
  • the amount of hardener to be metered in which is adapted to the chemical ratio, would be so small that one has to assume that the hardening is locally very limited. In addition, too much hardener input would occur at this point, which would adversely affect the chemical reaction and thus have negative effects on the strength of the components.
  • the amount. the carrier liquid can be determined by calculation:
  • the required quantity of hardener 1 is calculated as:
  • Quartz sand, silicate sand, chromite sand, zircon sand, olivine sand, chamotte sand, corundum sand and / or carbon sand good results can be achieved with the models.
  • Newer materials such as synthetic sands, for example Cerabeads, can have advantages in special applications and can also be used. These particle materials can be used individually or as a mixture.
  • the particle material comprises a polystyrene powder, a polyamide powder or other polymer particle materials or a mixture of these powders.
  • a furan resin and / or a phenolic resin is particularly suitable for the first reactive material.
  • the components produced according to the invention can preferably be used as molds for metal casting or for the production of cast-out models for metal casting.
  • the particle material preferably quartz sand
  • the particle material is mixed with a small proportion of synthetic resin (binder) and, in the case of furan and phenolic resins, with a hardener in a vox-specific ratio, either batchwise or continuously, and then processed into a mold.
  • synthetic resin binder
  • Typical mixing ratios are between 0.6 and 1.8% by weight of synthetic resin in the quartz sand.
  • the mold is usually produced in an automatic shot machine by taking a mold, in some cases the mold is also produced by hand.
  • the hardening that is, the bonding of the sand particles to a solid form is then carried out chemically or physically by hardening the binder.
  • the curing process can be supported by heat.
  • the mold When the mold is finished, it is prepared for casting. As a rule, several molded parts such as upper, lower box and cores are installed. If necessary, the molded parts are provided with size. The molten metal is then poured into the designated sprue. The high temperature of the melt leads to the cracking of the synthetic resin in the sand, especially in the edge zones towards the melt. The resulting gas is discharged to the outside via the porosity of the sand.
  • the binder concentration in the mold should be as low as possible his. However, the proportion of binder must be sufficient to ensure the mechanical stability of the mold even under the pressure of the molten metal. In addition, the particles should be bound until the metal has cooled at least in the edge area and forms a so-called cast skin.
  • the sand should ideally trickle out of the mold without the influence of further heat or mechanical aids.
  • the aim is therefore for the layer-by-layer manufacturing process according to the invention to keep the binder content in the particle material as small as possible but sufficient.
  • the foundry sand mixed with binder during the application steps is placed on a platform in a thin layer (approx. 0.15 - 0.3 mm layer thickness) applied.
  • the hardener is then selectively printed onto predetermined areas of the sand by means of a print head. This does not necessarily have to be done in this way, but could also be carried out via another dosage, such as with a screen printing process or the like.
  • a foundry synthetic resin from the family of furan resins is used as the binder according to the example.
  • Other resins such as phenolic resins or PU resins could also be used.
  • the binder material is mixed in batches during the construction process. Care should be taken to ensure that the batch is processed as promptly as possible due to the highly volatile but reactive components in the resin.
  • a large part of the synthetic resin consists of furfuryl alcohol, which has already been temperature has a very high vapor pressure. To avoid an unwanted reduction of these components in the resin, care is taken to ensure that they are processed promptly.
  • the amount of binder can be varied and is preferably in the range from 0.6 to 1.5% by weight of the untreated particle material.
  • a sulphurous acid is used as the hardener.
  • the proportion of the sulfurous acid should, in accordance with the specifications of the binder manufacturer, be in the range from 30% to 50% by weight of the binder proportion. With the binder weight proportions mentioned, approximately 0.18-0.75% by weight of the sand would have to be metered.
  • the percentages of hardener in the mixture have a not negligible influence in the process according to the invention. If too little hardener is applied to the sand layer premixed with the binder, the reaction is delayed or does not start if the minimum amount is undershot.
  • the component can over-harden. Even then, the strength of the manufactured component decreases rapidly.
  • the hardener reaches as many contact surfaces of the particles as possible and that the chemical reaction with the binder starts there. It is also crucial that the hardener is distributed well in the particle material. A local hardener overdose cannot be compensated for over the surface and leads to a reduction in strength. In this respect, it is important that the entire desired area is printed by the hardener to a sufficient extent and as evenly as possible.
  • the amount of hardener must therefore be adapted to the layer volume and the binder concentration. Quantity control via the DOD print heads can only be achieved within limits.
  • the drop size is determined relatively firmly by the design of the printer.
  • the drop diameter of the hardener can be selected in the range of 10 ⁇ m - approx. 200 ⁇ m.
  • the drops have a volume of 180 pl.
  • the number of drops is determined by the desired resolution. This means that if you adjust the hardener input by changing the number of drops, the quality of the components produced, which is largely determined by the print resolution, can suffer. In the worst case, the drops have to be placed so far apart that the homogeneity of the hardener entry is no longer sufficient to cover the binder over the entire desired
  • the hardener is admixed with a non-reactive carrier liquid, with the aid of which the desired quantitative ratio can be set more easily.
  • a non-reactive carrier liquid ethanol.
  • the amount of carrier liquid is calculated as follows:
  • the quartz sand weight per layer is 315 g;
  • the mass fraction of the binder in the quartz sand is 1.0% by weight ° - I •
  • the mass fraction of the hardener in the quartz sand X h is 0.5% by weight.
  • the desired print resolution r p is 150 dpi
  • the drop volume f, d is 180 pl
  • the construction area A is 1.125 m 2
  • the density of the hardener p ⁇ is 1.206 kg / 1.
  • a certain amount of untreated particle material 1 is removed from a so-called big bag 2 and fed to a mixer 4 via a conveyor section 3, for example a pneumatic conveyor. This mixes the particle material 1
  • the storage container 5 is equipped with a level sensor and triggers the mixing process when underfilled. If an electromechanical vibrator is additionally provided on the storage container, bridging in the quartz sand, which is a common problem, can be avoided or at least significantly reduced.
  • the now slightly sticky, pre-mixed particle material as described is conveyed to the coater 7 via a screw conveyor 6 'depending on the requirements of the coater.
  • This system described is characterized by complete automation and can be operated without interruption in continuous operation with a corresponding particle material supply.

Abstract

Es wird ein Verfahren zum schichtweisen Aufbau von Modellen beschrieben, wobei auf eine Bauplattform ein erstes Material und daran anschliessend selektiv ein zweites Material jeweils schichtweise aufgetragen wird und diese beiden Auftragungsschritte wiederholt werden, bis ein gewünschtes Modell erhalten wird. Die beiden Materialien bilden bei einem geeigneten Mischungsverhältnis einen Festkörper und das erste Material stellt ein Materialgemisch dar. Das Materialgemisch wird zumindest teilweise vor dem jeweiligen Auftragungsschritt zubereitet.

Description

Verfahren zum schichtweisen Aufbau von Modellen
Die vorliegende Erfindung bezieht sich auf ein Verfahren zum schichtweisen Aufbau von Modellen oder/und Formen nach dem 0- berbegriff des Patentanspruches 1.
Aus dem Stand der Technik ist es bekannt bei der werkzeuglosen Herstellung von Gießformen oder Gussmodellen das Rapid- Prototyping-Verfahren zu verwenden.
Aus der DE 198 53 834 AI ist beispielsweise ein Rapid- Prototyping-Verfahren insbesondere zum Aufbauen von Gussmodellen bekannt. Bei diesem Verfahren wird unbehandeltes Partikelmaterial, wie Quarzsand, auf eine Bauplattform in einer dünnen Schicht aufgetragen. Danach wird mit Hilfe einer
Spray-Vorrichtung ein Bindemittel auf das gesamte Partikelmaterial in möglichst feiner Verteilung aufgesprüht. Anschließend wird darüber auf ausgewählte Bereiche Härter dosiert, wodurch erwünschte Bereiche des Partikelmaterials verfestigt werden. Nach mehrmaliger Wiederholung dieses Vorgangs kann ein individuell geformter Körper aus dem gebundenen Partikelmaterial bereitgestellt werden. Dieser Körper ist zunächst in dem umliegenden, ungebundenen Partikelmaterial eingebettet und kann nach Abschluss des Bauvorganges aus dem Partikelbett entnommen werden.
Wird beispielsweise bei einem derartigen Rapid-Prototyping- Verfahren als Partikelmaterial ein Quarzsand verwendet und als Bindemittel ein Furanharz, kann mit Hilfe einer schwefeligen Säure als Härter eine Gussform -"hergestellt werden, die aus üblicherweise bei der Formherstellung verwendeten und daher dem Fachmann bekannten Materialien besteht.
Bei derartigen Rapid-Protoyping-Verfahren muss, wie beschrieben wurde, zuerst das Partikelmaterial, dann das Bindemittel und daran anschließend der Härter aufgetragen werden. Dies erfordert für jede Schicht ein dreimaliges Auftragen von Ma- terialien und ist damit sehr zeitintensiv.
Es wurde schon seit längerer Zeit versucht, zumindest einen Beschichtungsschritt zum Verkürzen der Herstellungszeit des Modelies zu eliminieren.
So wird beispielsweise in der EP 0 711 213 Bl ein weiteres Rapid-Prototyping-Verfahren beschrieben, nämlich das selektive Lasersintern. Hierbei wird als Parikel aterial Croning- sand, das heißt warmumhüllter Gießereisand mit Resol- oder Novolack-Harz, verwendet. Das bedeutet, es muss nur das mit Harz versehene Partikelmaterial aufgetragen werden und die Auftragung des Bindemittels entfällt. Es können dabei ebenso gießereiübliche Materialien verwendet werden und damit aus üblichen, dem Fachmann gej-äufigen Materialien bestehende Gussmodelle hergestellt werden.
Allerdings weist dieses Herstellungsverfahren auch erhebliche Nachteile auf. So wird das Harz im Sand während des Belichtungs-Prozesses nicht vollständig gehärtet. Dies führt zu ei- ner geringeren sogenannten Grünteilfestigkeit der hergestellten Formen. Erst nach dem Entfernen des losen Sandes und einem anschließenden Ofenprozess wird die gewünschte Festigkeit erzielt. Neben dem zusätzlichen Verfahrensschritt im Ofen be- steht beim Entsanden und Handling der „Grünlinge eine hohe Bruchgefahr. Während des Ofenprozesses kann zudem ein unerwünschter Verzug der Bauteile auftreten.
Daneben weisen Croningsande eine relativ hohe thermische Stabilität auf, die bei den relativ geringen Gießtemperaturen beim Leichtmetallguss zu einer schlechten Entkernbarkeit führt.
Für das selektive Lasersintern sind zudem Croningsande mit erhöhtem Binderanteil erforderlich. Die Folge davon sind größere Gasmengen während der Pyrolyse des Binders beim ??? des Abgusses und damit eine erhöhte Ausschuss-Gefahr wegen Lunkern im Bauteil.
Darüber hinaus weist das selektive Lasersintern im Allgemeinen den Nachteil auf, dass der Laser einen hohen Aufwand erfordert und daneben der Belichtungssσhritt auch relativ zeit- intensiv ist.
Auch stehen für das selektive Lasersintern eine nur sehr eingeschränkte Auswahl an Sandsorten und Körnungen zur Verfügung so dass dieses Verfahren auch wenig flexibel ist.
Aus der US 5,204,055 beziehungsweise der EP 0 431 924 Bl ist ein sogenanntes 3D-Drucken bekannt. Hierbei wird Partikelmaterial durch den Eintrag von Bindermaterial selektiv verklebt. Dieses Verfahren weist den Vorteil auf, dass es gegen- über dem selektiven Lasersintern auf einer kostengünstigen Drucktechnologie basiert. Allerdings können typische gießereiübliche Binder wegen der ungünstigen Stoffeigenschaften nur unter hohem technischen Aufwand dosiert werden. Es besteht zudem die Gefahr, dass die Düsen zum Dosieren des Bindemittels verkleben und ausfallen.
Durch einen Tropfeneintrag des Bindemittels ist die Durchmischung des Binders im Bauteil sehr schlecht. Um zu vergleichbaren Festigkeiten wie bei konventionell angemischten Sanden zu kommen, müssen wesentlich höhere Bindermengen eindosiert werden, was wiederum zu Problemen beim Abguss aufgrund der erhöhten Gasmengen führt.
In der PCT/DE00/03324 wird ein weiteres 3D-Druckverfahren of- fenbart. Es handelt sich dabei um selektives Bedrucken von mit Binder vermischten Partikeln mit einem Aktivator, an das sich eine Gashärtung anschließt.
Vorteilhaft hierbei ist wiederum, dass gießereiübliche Mate- rialien verwendet werden können.
Allerdings ist die Gashärtung bei diesem Verfahren aufwändig. Zum Teil sind gesundheitsgefährdende Stoffe wie S02 notwendig, so dass der apparative Aufwand sehr hoch und das sichere Be- dienen der Vorrichtungen kostenintensiv wird.
Da vor dem Härtungsschritt nicht einmal ansatzweise eine Verfestigung des Bauteils stattfindet, kann es durch leichte Verschiebungen des Pulverbetts beim Beschichten zur Zerstö- rung des gesamten Bauteils kommen.
Ein weiteres 3D-Druckverfahren ist aus der DE 197 23 892 AI bekannt. Hierbei handelt es sich um ein selektives Bedrucken von mit Binder umhüllten Partikeln, sogenannten Croningsand, mit Moderiermittel. Daran schließt sich wieder eine Härtung an, die gemäß der Offenbarung dieser Druckschrift über Strahlung erfolgt. Auch bei diesem Verfahren können vorteilhafter Weise gießereiübliche Materialien verwendet werden. Jedoch ist auch bei diesem Verfahren das Härten der Bauteile sehr kompliziert, denn der notwendige eng tolerierte Temperaturwechsel erfordert einen hohen apparativen Aufwand.
Bei dem in der DE 198 53 834 AI offenbarten Verfahren, wiederum einem 3D-Druckverfahren, findet ein selektives Bedrucken von mit Binder besprühten Partikeln mit Härter statt . Auch hier können wieder flexibel gießereiübliche Materialien verwendet werden.
Die Nachteile dieses Verfahrens sind der komplizierte Sprühauftrag des Binders, die inhomogene Binderdurchmischung und die hohen Binderkonzentrationen im Bauteil.
Daneben ist aufgrund von Nebelbildung im Bauraum durch den
Sprühvorgang ein hoher Verschmutzungsgrad der Anlage die Folge. Eine Folge davon ist, dass eine aufwändige Reinigung am Druckkopf erforderlich ist, da sonst ein Aushärten des Materials an den Düsen erfolgt und zu deren Zerstörung führt.
Ähnliche Nachteile weist das in der WO 01/72502 AI beschriebene selektives Bedrucken von unbehandeltem Sand mit Binder und Härter auf.
Ausgehend hiervon ist es Aufgabe der vorliegenden Erfindung ein Verfahren bereitzustellen, mit dem es möglich ist, den schichtweisen Aufbau von Modellen in möglichst zeitsparender und kostengünstiger Art und Weise durchzuführen. Daneben soll das Verfahren für den industriellen Einsatz aufgrund seiner Zuverlässigkeit und Bedienungsfreundlichkeit einsetzbar sein. Diese Aufgabe wird gelöst mit einem Verfahren zum schichtweisen Aufbau von Modellen, wobei auf eine Bauplattform ein ers- tes Material und daran anschließend selektiv ein zweites Material jeweils schichtweise aufgetragen wird und diese beiden Auf ragsschritte immer wiederholt werden, bis ein gewünschtes Modell erhalten wird. Dazu bilden die beiden Materialien bei einem geeigneten Mischungsverhältnis einen Festkörper. Das erste Material stellt hierbei ein Materialgemisch dar und wird zumindest teilweise vor dem jeweiligen Auftragschritt zubereitet .
Dieses Verfahren hat sich als vorteilhaft erwiesen, da mit ihm die Verarbeitungszeiten des Materialgemisches kurz gehalten werden können und so die leicht flüchtigen Inhaltsstoffe im Bindermaterial enthalten bleiben. Die Aufbereitung kann dabei bedarfsgemäß während des Auftragungsprozesses erfolgen.
Es wäre aber ebenso möglich, die gesamte für das Verfahren notwendige Menge an Material vorher anzumischen, jedoch müss- te man dann geeignete, sehr aufwändige Maßnahmen ergreifen, um das Abdampfen flüchtiger Komponenten im Binder zu verhin- dern. Dieser hohe apparative Aufwand soll hierbei jedoch gerade vermieden werden.
Ein weiterer Vorteil dieser sogenannten „In-Prozess- Anmischung" besteht auch in der größeren Flexibilität. Es wird zum einen nur soviel Sand angemischt, wie tatsächlich gebraucht wird. Das bedeutet, dass falls der Prozess vorzeitig beendet wird, kein unnötiger Abfall entsteht. Sollte sich der Bauprozess durch Zuladen von Bauteilen verlängern, ent- steht nicht die Gefahr des Materialmangels aufgrund der anfänglich festgelegten Materialmenge. Zudem kann sogar während des Prozesses der Sand und die Rezeptur geändert werden. Der Nutzer muss sich damit nicht wie beim selektiven Lasersinter- Verfahren schon zu Beginn des Prozesses für eine Materialsorte für den gesamten Bauprozess entscheiden.
Ein weiterer Vorteil dieses Verfahrens im Vergleich zum selektiven Lasersintern ist die Verwendung von kostengünstigen Ausgangsstoffen im Gegensatz zu teuren Spezialsanden.
Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung wird das Materialgemisch kontinuierlich zubereitet. Das bedeutet, dass das Gemisch immer in etwa gleich "alt" ist und damit die gleichen Eigenschaften bezüglich eventuell ver- dampfter Komponenten usw. aufweist.
Gemäß einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das Materialgemisch chargenweise zubereitet. Eine kontinuierliche Anmischung, wie sie bei kon- ventionellen Formverfahren üblich ist, wäre zwar ebenfalls möglich, aufgrund der relativ geringen Verarbeitungsgeschwindigkeit während des Schichtaufbaus aber technisch aufwändig.
Vorzugsweise weist das Materialgemisch ein Partikelmaterial und ein reaktives Material auf.
Weist dann bei dem erfindungsgemäßen Verfahren das zweite Material gemäß einer weiteren bevorzugten Ausführungsform einen Aktivator auf, dann kann ein Verbinden der Komponenten bei Raumtemperatur durch eine chemische Reaktion erfolgen.
Hierfür wäre es möglich dass das Aushärten des Materialverbundes aufgrund einer chemischen Reaktion der Materialien er- folgt. Ebenso wäre aber auch eine Aushärtung durch einen physikalische Reaktion zwischen den Materialien denkbar.
Vorzugsweise erfolgt bei dem erfindungsgemäßen Verfahren der erneute Schichtauftrag und das Auftragen des zweiten Materials innerhalb der Zeit, die zur Verfestigung der beiden Materialien benötigt wird. Dadurch kann eine Verfestigung innerhalb der Teilfläche und zur darunter liegenden Schicht und damit ein besserer Schichtenverbund erzielt werden.
Besonders gute Ergebnisse konnten erreicht werden, wenn beim Zubereiten des Materialgemisches eine Restporosität bestehen bleibt, da damit eine erhöhte Gasdurchlässigkeit einhergeht, die sich beim Guss vorteilhaft auswirkt. Zudem erreicht das zweite Material dann auch tiefer liegende Partikel, was zu einer bessern Durchhärtung führt.
Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen
Verfahrens wird das zweite Material mittels Tropfchenerzeu- gungstechnik aufgetragen. Diese Technik hat sich als sehr exakt, zuverlässig und einfach erwiesen.
Ein Auftragen des zweiten Materials mittels Dispenstechnik wäre jedoch ebenfalls denkbar.
Besonders gute Ergebnisse konnten erzielt werden, wenn das zweite Material eine nicht an der Härtereaktion beteiligte Trägerflüssigkeit aufweist, da mit einer solchen die Benetzung des Materialgemisches aus Partikelmaterial und der ers- ten reaktiven Komponente unabhängig von dem zur Reaktion notwendigen chemischen Mengenverhältnis eingestellt werden kann. Weiterhin besteht der Wunsch, unterschiedliche Schichtstärken verarbeiten zu können. Das bedeutet auch, dass der Härtereintrag pro Schicht eingestellt werden muss und das am besten unabhängig von der gewählten Auflösung des Härterauftrages.
Aus diesem Grund wird dem Härter eine nicht reaktive Trägerflüssigkeit beigemischt, mit deren Hilfe das gewünschte Mengenverhältnis eingestellt werden kann.
Vorzugsweise wird als Trägerflüssigkeit Ethanol verwendet. Es könnte aber auch andere Alkohole verwendet werden, selbst Wasser wäre einsetzbar. Ethanol ist deshalb vorteilhaft, weil es leicht flüchtig ist. Vor dem Abguss sollte aber möglichst die komplette Trägerflüssigkeit verflüchtigt sein, da sie ei- nen Abguss negativ beeinflussen kann. Im Prozess selbst dampft bereits ein großer Teil des Ethanols von Schicht zu Schicht ab. Der Restgehalt kann in einem kurzen Ofenprozess (1 h bei mehr als 80 °C) verdampft werden.
Ethanol hat zudem noch zwei weitere positive Effekte. Die
Viskosität des zu dosierenden Mediums ist bei den dod (drop- on-demand) -Schreibköpfen ein beschränkender Faktor. Mit Ethanol kann die Viskosität des Härters herabgesetzt werden, so dass sich die Funktion der Druckköpfe verbessert.
Ohne einen Verdünner wäre eine dem chemischen Mengenverhältnis angepasste einzudosierende Härtermenge so gering, dass man von einer lokal stark begrenzten Härtung ausgehen muss. Zudem würde an dieser Stelle ein zu hoher Härtereintrag er- folgen, der die chemische Reaktion nachteilig beeinflussen würde und damit negative Auswirkungen auf die Festigkeit der Bauteile hätte. Die Menge. der Trägerflüssigkeit kann rechnerisch bestimmt werden:
Ist der gewünschte Massenanteil des Härters im Partikelmaterial Xh, das Partikelmaterialgewicht pro Schicht ms,ι dann berechnet sich die erforderliche Härtermenge 1 zu:
Ist zusätzlich die gewünschte Druckauflösung rp in dpi, das Volumen der Flüssigkeitstropfen vf,d, die Baufeldfläche Ab, die Dichte des Härters ph , dann berechnet sich der Volumenanteil der Trägerflüssigkeit xt
Figure imgf000012_0001
Wird als Partikelmaterial ein Formsand wie beispielsweise
Quarzsand, Silikatsand, Chromitsand, Zirkonsand, Olivinsand, Schamottsand, Korundsand oder/und Carbonsand verwendet, können gute Ergebnisse bei den Modellen erreicht werden. Neuere Materialien wie synthetische Sande, beispielsweise Cerabeads, können Vorteile bei Spezialanwendungen aufweisen und sind e- benso verwendbar. Diese Partikelmaterialien können einzeln o- der als Mischung eingesetzt werden.
Ebenso wäre es gemäß der Erfindung denkbar, dass das Parti- kelmaterial ein Polystyrolpulver , ein Polyamidpulver oder andere Polymer-Partikelmaterialien bzw. eine Mischung dieser Pulver aufweist.
Für das erste reaktive Material eignet sich besonders ein Fu- ranharz oder/und ein Phenolharz. Die erfindungsgemäß hergestellten Bauteile können vorzugsweise als Formen für den Metallguss oder zum Herstellen von Ausschmelzmodellen für den Metallguss verwendet werden.
Erfindungsgemäß wird das Partikelmaterial, vorzugsweise Quarzsand, mit einem geringen Anteil Kunstharz (Binder) und im Fall der Furan- und Phenolharze mit einem Härter im voxbe- stimmten Verhältnis entweder chargenweise oder kontinuierlich gemischt und anschließend zur einer Form verarbeitet. Typische Mischungsverhältnisse liegen zwischen 0,6 und 1,8 Gew.-% Kunstharzanteil im Quarzsand.
Konventionell erfolgt die Herstellung der Form üblicherweise in einem Schussautomaten durch Abformung von einem Werkzeug, teilweise erfolgt die Herstellung der Form auch von Hand. Die Härtung, das bedeutet das Verkleben der Sandpartikel zu einer festen Form erfolgt dann chemisch oder physikalisch durch Aushärten des Binders. Der Aushärteprozess kann durch Wärme unterstützt werden.
Ist die Form dann fertig gestellt, wird sie zum Guss vorbereitet. In der Regel werden mehrere Formteile wie Ober-, Unterkasten und Kerne montiert. Bei Bedarf werden die Formteile noch mit Schlichte versehen. Anschließend wird das flüssige Metall in den dafür vorgesehenen Einguss gegossen. Die hohe Temperatur der Schmelze führt zum Cracken des Kunstharzanteils im Sand, speziell in den Randzonen zur Schmelze hin. Das dabei entstehende Gas wird über die Porosität des Sandes nach außen abgeführt.
Damit unerwünschte Gaseinschlüsse vermieden werden, sollte die Binderkonzentration in der Form so gering wie möglich sein. Jedoch muss der Binderanteil ausreichen, um die mechanische Stabilität der Form auch unter dem Druck der Metallschmelze zu gewährleisten. Zudem sollen die Partikel solange gebunden werden, bis das Metall zumindest im Randbereich ab- gekühlt ist und eine sogenannte Gusshaut bildet.
Nach der Erstarrung des Metalls soll der Sand idealerweise möglichst ohne Einwirkung weiterer zugeführter Wärme oder mechanischer Hilfsmittel aus der Form rieseln.
Die Zielsetzung ist deshalb für den erfindungsgemäßen schichtweisen Herstellprozess ein möglichst kleiner aber ausreichender Bindergehalt im Partikelmaterial.
Weitere vorteilhafte Ausgestaltungen der vorliegenden Erfindung ergeben sich aus den Unteransprüchen sowie der nachfolgenden Beschreibung.
Zur näheren Erläuterung wird die Erfindung anhand bevorzugter Ausführungsbeispiele nachfolgend und unter Bezugnahme auf die Zeichnung näher beschrieben.
In der Zeichnung zeigt dabei die einzige Figur das Vormischen und Zuführen des vorgemischten Materials.
Beispielhaft soll im folgenden das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung für den Einsatz beim schichtweisen Aufbau von Gussmodellen aus Partikelmaterial, hier Gießereisand, Bindemittel und Härter bei einem Rapid- Prototyping-Verfahren erläutert werden.
Der mit Binder während der Auftragungsschritte angemischte Gießereisand wird auf eine Plattform in dünner Schicht (ca. 0,15 - 0,3 mm Schichtdicke) aufgetragen. Anschließend wird mittels eines Druckkopfs der Härter selektiv auf vorbestimmte Bereiche des Sandes aufgedruckt. Dies muss nicht notwendigerweise derart erfolgen, sondern könnte auch über eine andere Dosierung, wie zum Beispiel mit einem Siebdruckverfahren oder Ähnlichem durchgeführt werden.
Überall dort, wo der Härter in den Sand eindringt, startet eine chemische Reaktion und die Partikel verkleben miteinan- der lokal begrenzt, nämlich nur genau dort, wo Härter aufgebracht wurde. In den restlichen Bereichen findet keine Reaktion statt, mit Binder angemischter Quarzsand bleibt damit ungebunden. Im nächsten Schritt wird die Bauplattform um den entsprechenden Wert der Schichtstärke abgesenkt und der Pro- zess bestehend aus Auftragen des vorgemischten Sandes und Bedrucken mit Härter an ausgewählten Bereichen erfolgt von Neuem. Diese Prozess-Schleife wird solange wiederholt, bis die gewünschte Bauhöhe erreicht ist und das Bauteil fertig gestellt wurde. Dieses liegt nun eingebettet im ungehärteten Sand vor und muss lediglich vom umliegenden Sand befreit werden .
Als Binder wird gemäß des Beispiels ein gießereiübliches Kunstharz aus der Familie der Furanharze verwendet. Andere Harze wie zum Beispiel Phenolharze oder auch PU-Harze könnten ebenfalls eingesetzt werden.
Das Anmischen des mit Bindemittel versehenden Partikelmaterials erfolgt chargenweise während des Bauprozesses. Wobei dar- auf geachtet werden soll, dass die Charge aufgrund der leicht flüchtigen aber reaktionstreibenden Komponenten im Harz möglichst zeitnah verarbeitet wird. Ein großer Teil des Kunstharzes besteht aus Furfurylalkohol, der bereits bei Raumtem- peratur einen sehr hohen Dampfdruck aufweist. Um eine ungewollte Reduktion dieser Komponenten im Harz zu vermeiden, wird eben auf eine zeitnahe Verarbeitung geachtet.
Die Bindermenge kann variiert werden und liegt vorzugsweise im Bereich von 0,6 - 1,5 Gew.-% des unbehandelten Partikelmaterials .
Als Härter wird gemäß dem beschriebenen Beispiels eine schwe- feiige Säure verwendet. Für eine ideale chemische Reaktion mit dem Bindemittel sollte der Anteil der schwefeligen Säure entsprechend den Vorgaben des Bindemittelherstellers im Bereich von 30 % bis 50 Gew. % des Bindemittelanteils betragen. Bei den genannten Bindemittelgewichtsanteilen müssten somit ca. 0,18 - 0,75 Gew. % des Sandes dosiert werden.
Die prozentualen Anteile des Härters in der Mischung haben bei dem erfindungsgemäßen Verfahren einen nicht zu vernachlässigenden Einfluss. Wird zu wenig Härter auf die mit dem Bindemittel vorgemischte Sandschicht eingebracht, verzögert sich die Reaktion oder startet bei Unterschreiten einer Mindestmenge gar nicht.
Wird dagegen zuviel Härter eingebracht kann das Bauteil über- härten. Auch dann nimmt die Festigkeit des hergestellten Bauteils rapide ab.
Wichtig ist zudem, dass der Härter an möglichst viele Kontaktflächen der Partikel gelangt und dort die chemische Reak- tion mit dem Bindemittel startet. Zudem ist entscheidend, dass sich der Härter gut im Partikelmaterial verteilt. Eine lokale Härterüberdosierung kann nicht über die Fläche kompensiert werden und führt zur Verringerung der Festigkeit. Insofern ist es wichtig, dass der gesamte gewünschte Bereich von dem Härter in ausreichendem Maße und möglichst gleichmäßig bedruckt wird.
Die Härtermenge muss deshalb an das Schichtvolumen und die Binderkonzentration angepasst werden. Eine Mengensteuerung ü- ber die DOD-Druckköpfe ist nur in Grenzen erzielbar. Die Tropfengröße ist bei diesen Systemen nämlich relativ fest durch die Gestaltung Design des Druckers bestimmt. Typischerweise kann man den Tropfendurchmesser des Härters im Bereich von 10 μm - ca. 200 μm wählen. In unserem Fall weisen die Tropfen ein Volumen von 180 pl auf. Zudem wird die Anzahl der Tropfen durch die gewünschte Auflösung bestimmt. Das heißt, passt man den Härtereintrag durch Veränderung der Tropfenanzahl an, kann die Qualität der hergestellten Bauteile, die maßgeblich durch die Druckauflösung bestimmt wird, leiden. Im schlimmsten Fall müssen die Tropfen so weit voneinander platziert werden, dass die Homogenität des Härtereintrages nicht mehr ausreicht, um den Binder über die gesamte gewünschte
Fläche zu härten. Die Festigkeit des Bauteils würde sich dadurch deutlich verringern.
Die Problematik der Tropfengröße und Tropfenmenge wird durch den Wunsch verstärkt, unterschiedliche Schichtstärken verarbeiten zu können. Das bedeutet auch, dass der Härtereintrag pro Schicht eingestellt werden muss und das am besten unabhängig von der gewählten Auflösung.
Aus diesem Grund wird dem Härter eine nicht-reaktive Trägerflüssigkeit beigemischt, mit deren Hilfe das gewünschte Mengenverhältnis leichter eingestellt werden kann. Gemäß dem vorliegenden Beispiel ist die nicht-reaktive Trägerflüssigkeit Ethanol.
Im vorliegenden Beispiel errechnet sich die Menge Trägerflüs- 5 sigkeit wie folgt:
Das Quarzsandgewicht pro Schicht beträgt 315 g;
Der Massenanteil des Binders im Quarzsand beträgt 1,0 Gew.- e °- I•
10 Der Massenanteil des Härters im Quarzsand Xh beträgt 0,5 Gew.-
) s- ■
Daraus ergibt sich eine rechnerische Härtermenge in der Schicht von 1,58 g;
15 Die gewünschte Druckauflösung rp beträgt 150 dpi, das Tropfenvolumen f,d beträgt 180 pl, die Baufeldfläche A beträgt 1,125 m2 , die Dichte des Härters p^ beträgt 1,206 kg / 1, Damit ist der Volumenanteil des Härters an der Gesamtdosier-
20 menge 18,5 % .
Mit Bezug auf die Figur wird beschrieben, wie das Vormischen und das Zuführen des vorgemischten Materials zum Beschichter gemäß einer bevorzugten Ausführungsform erfolgen kann.
25
Dafür wird eine bestimmte Menge unbehandeltes Partikelmaterial 1 aus einem sogenannten Big-Bag 2 entnommen und über eine Förderstrecke 3, beispielsweise einem Pneumatikförderer, einem Mischer 4 zugeführt. Dieser mischt das Partikelmaterial 1
30 in der Mischkammer z.B. über ein rotierendes Flügelrad in gegebener Rezeptur mit dem Kunstharzbindemittel und führt die erhaltene Charge einem sogenannten Vorlagebehälter 5 zu. Der Vorlagebehälter 5 ist mit einem Füllstandssensor ausgestattet und löst den Mischvorgang bei Unterfüllung aus. Ist zusätzlich am Vorlagebehälter ein elektromechanischer Vibrator vorgesehen, so kann eine Brückenbildung im Quarzsand, die ein häufiges Problem darstellt, vermieden oder zumindest deutlich verringert werden.
Das nun leicht klebrige, wie beschrieben vorgemischte Partikelmaterial wird über einen Schneckenförderer 6' je nach Anforderung des Beschichters 7 zu diesem befördert.
Dieses beschriebene System zeichnet sich durch eine vollständige Automatisierung aus und kann bei einem entsprechenden Partikelmaterialvorrat unterbrechungslos im Dauerbetrieb betrieben werden.

Claims

Patentansprüche
1. Verfahren zum schichtweisen Aufbau von Modellen, wobei auf eine Bauplattform ein erstes Material und daran anschließend selektiv ein zweites Material jeweils schichtweise aufgetragen wird und diese beiden Auftragungsschritte wiederholt werden, bis ein gewünschtes Modell erhalten wird, die beiden Materialien bei einem geeigneten Mischungsverhältnis einen Festkörper bilden und das erste Material ein Materialgemisch darstellt, d a d u r c h g e k e n n z e i c h n e t, dass das Materialgemisch zumindest teilweise vor dem jeweiligen Auftragungsschritt zubereitet wird.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass das Materialgemisch kontinuierlich zubereitet wird.
3. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass das Materialgemisch chargenweise zubereitet wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass das Materialgemisch ein Partikelmaterial und eine erste reaktive Materialkomponente aufweist.
5. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass das zweite Material eine zweite reaktive Komponente, insbesondere einen Aktivator aufweist.
6. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h. n e t, dass ein erneutes Auftragen des ersten und zweiten Materials vor Ablauf einer Verfestigungszeit der beiden Materialien erfolgt.
7. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass beim Zubereiten des Materialgemisches eine Restporosität bestehen bleibt.
8. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass das zweite Material mittels Tröpfchenerzeugungstechnik aufgetragen wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass das zweite Material mittels Dispenstechnik aufgetragen wird.
10. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass das zweite Material eine Trägerflüssigkeit aufweist.
11. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass das Aushärten eines Verbundes aus den Materialien aufgrund einer chemischen Reaktion erfolgt.
12. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass das Aushärten des Verbundes aus den Materialien aufgrund eines physikalischen Vorganges erfolgt.
13.Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass das Partikelmaterial einen Formsand ausgewählt aus der Gruppe der Quarzsande, Zirkonsande, Olivinsande, oder/und Schamottsande aufweist.
14. erfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass das Partikelmaterial ein Polystyrolpulver oder/und ein Polyamidpulver und/oder ein anderes Polymerpulver aufweist.
15. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass das erste reaktive Material ein Furanharz oder/und ein Polyurethanharz aufweist.
16.Verwendung des Verfahrens nach einem der Ansprüche 1 bis 14 zum Herstellen von Bauteilen als Formen für den Metallguss.
17.Verwendung des Verfahrens nach einem der Ansprüche 1 bis 14 zum Herstellen von Ausschmelzmodellen für den Metallguss .
PCT/DE2003/001636 2002-06-05 2003-05-20 Verfahren zum schichtweisen aufbau von modellen WO2003103932A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE10393294T DE10393294D2 (de) 2002-06-05 2003-05-20 Verfahren zum schichtweisen Aufbau von Modellen
EP03756945.6A EP1509382B1 (de) 2002-06-05 2003-05-20 Verfahren zum schichtweisen aufbau von modellen
AU2003243897A AU2003243897A1 (en) 2002-06-05 2003-05-20 Method for constructing patterns in a layered manner
US10/516,386 US7531117B2 (en) 2002-06-05 2003-05-20 Method for constructing patterns in a layered manner
US12/463,664 US7955537B2 (en) 2002-06-05 2009-07-07 Method for constructing patterns in a layered manner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10224981A DE10224981B4 (de) 2002-06-05 2002-06-05 Verfahren zum schichtweisen Aufbau von Modellen
DE10224981.4 2002-06-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10516386 A-371-Of-International 2003-05-20
US12/463,664 Continuation US7955537B2 (en) 2002-06-05 2009-07-07 Method for constructing patterns in a layered manner

Publications (1)

Publication Number Publication Date
WO2003103932A1 true WO2003103932A1 (de) 2003-12-18

Family

ID=29718858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/001636 WO2003103932A1 (de) 2002-06-05 2003-05-20 Verfahren zum schichtweisen aufbau von modellen

Country Status (5)

Country Link
US (2) US7531117B2 (de)
EP (1) EP1509382B1 (de)
AU (1) AU2003243897A1 (de)
DE (2) DE10224981B4 (de)
WO (1) WO2003103932A1 (de)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7137431B2 (en) 2000-09-26 2006-11-21 Ingo Ederer Device for pattern building in layers
US7204684B2 (en) 2000-09-26 2007-04-17 Ingo Ederer Interchangeable container
US7665636B2 (en) 2002-05-20 2010-02-23 Ingo Ederer Device for feeding fluids
US7736578B2 (en) 2006-06-30 2010-06-15 Ingo Ederer Method for the construction of a laminated compound
US7748971B2 (en) 2002-04-11 2010-07-06 Voxeljet Technology Gmbh Method and device for applying fluids
US7767130B2 (en) 2004-05-24 2010-08-03 Voxeljet Technology Gmbh Method and device for production of a three-dimensional article
US7807077B2 (en) 2003-06-16 2010-10-05 Voxeljet Technology Gmbh Methods and systems for the manufacture of layered three-dimensional forms
US7879393B2 (en) 2001-04-10 2011-02-01 Ingo Ederer Method and device for applying fluids
US7955537B2 (en) 2002-06-05 2011-06-07 Ingo Ederer Method for constructing patterns in a layered manner
WO2011067319A1 (de) * 2009-12-02 2011-06-09 Prometal Rct Gmbh Rapid-prototyping-anlage mit einer mischeinheit
US8020604B2 (en) 2003-06-17 2011-09-20 Hoechsmann Rainer Method for the layered construction of models
US8096262B2 (en) 2004-02-19 2012-01-17 Ingo Ederer Method and device for applying fluids
US8349233B2 (en) 2007-10-11 2013-01-08 Voxeljet Gmbh Material system and method for changing properties of a plastic component
US8715832B2 (en) 2008-11-20 2014-05-06 Voxeljet Ag Method for the layered construction of plastic models
US8727672B2 (en) 2007-10-21 2014-05-20 Voxeljet Ag Method and device for conveying particulate material during the layer-wise production of patterns
US8741194B1 (en) 2000-09-25 2014-06-03 Voxeljet Ag Method for producing a part using a depostion technique
US8956140B2 (en) 2010-07-13 2015-02-17 Voxeljet Ag Apparatus for producing three-dimensional models by means of a layer build up technique
US8992205B2 (en) 2007-10-23 2015-03-31 Voxeijet AG Device for the layer-wise production of patterns
US9174392B2 (en) 2009-06-22 2015-11-03 Voxeljet Ag Method and device for switching a particulate material flow in the construction of models in layers
US9242413B2 (en) 2011-01-05 2016-01-26 Voxeljet Ag Device and method for constructing a laminar body comprising at least one position adjustable body defining the working area
US9505176B2 (en) 2007-07-18 2016-11-29 Voxeljet Ag Method for producing three-dimensional components
US9643360B2 (en) 2006-08-20 2017-05-09 Voxeljet Ag Self-hardening material and process for layerwise formation of models
WO2017092845A1 (de) * 2015-12-03 2017-06-08 Audi Ag Verfahren zum herstellen einer gussform
US10226919B2 (en) 2007-07-18 2019-03-12 Voxeljet Ag Articles and structures prepared by three-dimensional printing method
DE102020003562A1 (de) 2020-06-15 2021-12-16 Ask Chemicals Gmbh Verfahren zum schichtweisen Aufbau eines ausgehärteten dreidimensionalen Formkörpers, Formkörper, welcher dadurch erhalten werden kann, sowie dessen Verwendung
US11504879B2 (en) 2020-04-17 2022-11-22 Beehive Industries, LLC Powder spreading apparatus and system

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049043A1 (de) * 2000-10-04 2002-05-02 Generis Gmbh Verfahren zum Entpacken von in ungebundenem Partikelmaterial eingebetteten Formkörpern
GB0112675D0 (en) * 2001-05-24 2001-07-18 Vantico Ltd Three-dimensional structured printing
WO2007110091A1 (de) 2006-03-25 2007-10-04 Bayerische Motoren Werke Aktiengesellschaft Bindemittelsystem
US8137607B2 (en) * 2006-11-07 2012-03-20 Ford Motor Company Process for making reusable tooling
US20120288627A1 (en) * 2009-12-18 2012-11-15 Sri International Three-dimensional electromagnetic metamaterials and methods of manufacture
DE102010006939A1 (de) 2010-02-04 2011-08-04 Voxeljet Technology GmbH, 86167 Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010013732A1 (de) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010013733A1 (de) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010014969A1 (de) 2010-04-14 2011-10-20 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010015451A1 (de) 2010-04-17 2011-10-20 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte
DE102010056346A1 (de) 2010-12-29 2012-07-05 Technische Universität München Verfahren zum schichtweisen Aufbau von Modellen
DE102011105688A1 (de) 2011-06-22 2012-12-27 Hüttenes-Albertus Chemische Werke GmbH Verfahren zum schichtweisen Aufbau von Modellen
GB2493538A (en) * 2011-08-10 2013-02-13 Bae Systems Plc Forming a structure by added layer manufacture
GB2493537A (en) * 2011-08-10 2013-02-13 Bae Systems Plc Forming a layered structure
DE102011111498A1 (de) 2011-08-31 2013-02-28 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
DE102012004213A1 (de) 2012-03-06 2013-09-12 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102012004988A1 (de) * 2012-03-14 2013-09-19 Arburg Gmbh + Co. Kg Verfahren zur Ausbringung eines Volumenstroms
US9067299B2 (en) 2012-04-25 2015-06-30 Applied Materials, Inc. Printed chemical mechanical polishing pad
DE102012010272A1 (de) 2012-05-25 2013-11-28 Voxeljet Technology Gmbh Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen
DE102012012363A1 (de) 2012-06-22 2013-12-24 Voxeljet Technology Gmbh Vorrichtung zum Aufbauen eines Schichtenkörpers mit entlang des Austragbehälters bewegbarem Vorrats- oder Befüllbehälter
US8980406B2 (en) 2012-08-28 2015-03-17 3D Systems, Inc. Color stable inks and applications thereof
US9657186B2 (en) 2012-09-13 2017-05-23 3D Systems, Inc. Opaque inks and applications thereof
DE102012020000A1 (de) 2012-10-12 2014-04-17 Voxeljet Ag 3D-Mehrstufenverfahren
DE102013004940A1 (de) 2012-10-15 2014-04-17 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit temperiertem Druckkopf
DE102012022859A1 (de) 2012-11-25 2014-05-28 Voxeljet Ag Aufbau eines 3D-Druckgerätes zur Herstellung von Bauteilen
DE102013003303A1 (de) 2013-02-28 2014-08-28 FluidSolids AG Verfahren zum Herstellen eines Formteils mit einer wasserlöslichen Gussform sowie Materialsystem zu deren Herstellung
US10471497B2 (en) 2013-08-16 2019-11-12 The Exone Company Three-dimensional printed metal-casting molds and methods for making the same
JP6576244B2 (ja) * 2013-08-30 2019-09-18 旭有機材株式会社 積層鋳型の造型方法
DE102013018182A1 (de) 2013-10-30 2015-04-30 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem
US9421666B2 (en) 2013-11-04 2016-08-23 Applied Materials, Inc. Printed chemical mechanical polishing pad having abrasives therein
DE102013018031A1 (de) 2013-12-02 2015-06-03 Voxeljet Ag Wechselbehälter mit verfahrbarer Seitenwand
DE102013020491A1 (de) 2013-12-11 2015-06-11 Voxeljet Ag 3D-Infiltrationsverfahren
DE102013021091A1 (de) 2013-12-18 2015-06-18 Voxeljet Ag 3D-Druckverfahren mit Schnelltrockenschritt
EP2886307A1 (de) 2013-12-20 2015-06-24 Voxeljet AG Vorrichtung, Spezialpapier und Verfahren zum Herstellen von Formteilen
US9993907B2 (en) 2013-12-20 2018-06-12 Applied Materials, Inc. Printed chemical mechanical polishing pad having printed window
DE102013021891A1 (de) 2013-12-23 2015-06-25 Voxeljet Ag Vorrichtung und Verfahren mit beschleunigter Verfahrensführung für 3D-Druckverfahren
DE102014004692A1 (de) 2014-03-31 2015-10-15 Voxeljet Ag Verfahren und Vorrichtung für den 3D-Druck mit klimatisierter Verfahrensführung
DE102014106178A1 (de) 2014-05-02 2015-11-05 Ask Chemicals Gmbh Verfahren zum schichtweisen Aufbau von Körpern umfassend feuerfesten Formgrundstoff und Resole und Formen oder Kerne hergestellt nach diesem Verfahren
DE102014007584A1 (de) 2014-05-26 2015-11-26 Voxeljet Ag 3D-Umkehrdruckverfahren und Vorrichtung
US10946556B2 (en) 2014-08-02 2021-03-16 Voxeljet Ag Method and casting mold, in particular for use in cold casting methods
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US10399201B2 (en) 2014-10-17 2019-09-03 Applied Materials, Inc. Advanced polishing pads having compositional gradients by use of an additive manufacturing process
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
KR20240015167A (ko) 2014-10-17 2024-02-02 어플라이드 머티어리얼스, 인코포레이티드 애디티브 제조 프로세스들을 이용한 복합 재료 특성들을 갖는 cmp 패드 구성
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
MX2017006766A (es) 2014-11-24 2017-09-08 Ppg Ind Ohio Inc Materiales co-reactivos y metodos para la impresion tridimensional.
DE102014018579A1 (de) 2014-12-17 2016-06-23 Voxeljet Ag Verfahren zum Herstellen dreidimensionaler Formteile und Einstellen des Feuchtegehaltes im Baumaterial
DE102015006533A1 (de) 2014-12-22 2016-06-23 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Schichtaufbautechnik
DE102015003372A1 (de) 2015-03-17 2016-09-22 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Doppelrecoater
DE102015006363A1 (de) 2015-05-20 2016-12-15 Voxeljet Ag Phenolharzverfahren
DE102015011503A1 (de) 2015-09-09 2017-03-09 Voxeljet Ag Verfahren zum Auftragen von Fluiden
DE102015011790A1 (de) 2015-09-16 2017-03-16 Voxeljet Ag Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile
US10435535B2 (en) 2015-09-17 2019-10-08 3Dbotics, Inc. Material system and method for fabricating refractory material-based 3D printed objects
DE102015015353A1 (de) 2015-12-01 2017-06-01 Voxeljet Ag Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Bauteilen mittels Überschussmengensensor
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
KR20240015161A (ko) 2016-01-19 2024-02-02 어플라이드 머티어리얼스, 인코포레이티드 다공성 화학적 기계적 연마 패드들
JP6941618B2 (ja) 2016-03-09 2021-09-29 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 付加製造で製造される形状の補正
US10137634B2 (en) 2016-04-28 2018-11-27 Xerox Corporation Hybrid electrostatic 3-D printer using laser fusing
DE102016115947A1 (de) 2016-08-26 2018-03-01 Ask Chemicals Gmbh Verfahren zum schichtweisen Aufbau von Formkörpern mit einem Phenolharz-Polyurethan-basiertem Bindersystem
US11137243B2 (en) 2016-09-20 2021-10-05 Applied Materials, Inc. Two step curing of polishing pad material in additive manufacturing
US10773456B2 (en) 2016-09-22 2020-09-15 Freshmade 3D, LLC Process for strengthening porous 3D printed objects
US20180093411A1 (en) * 2016-09-30 2018-04-05 Applied Materials, Inc. Additive manufacturing of polishing pads on a conveyor
DE102016013610A1 (de) 2016-11-15 2018-05-17 Voxeljet Ag Intregierte Druckkopfwartungsstation für das pulverbettbasierte 3D-Drucken
US10596763B2 (en) 2017-04-21 2020-03-24 Applied Materials, Inc. Additive manufacturing with array of energy sources
US10967482B2 (en) 2017-05-25 2021-04-06 Applied Materials, Inc. Fabrication of polishing pad by additive manufacturing onto mold
US11084143B2 (en) 2017-05-25 2021-08-10 Applied Materials, Inc. Correction of fabricated shapes in additive manufacturing using modified edge
DE102017112681A1 (de) 2017-06-08 2018-12-13 Ask Chemicals Gmbh Verfahren zur Herstellung von dreidimensional geschichteten Formkörpern
DE102017006860A1 (de) 2017-07-21 2019-01-24 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Spektrumswandler
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11072050B2 (en) 2017-08-04 2021-07-27 Applied Materials, Inc. Polishing pad with window and manufacturing methods thereof
WO2019032286A1 (en) 2017-08-07 2019-02-14 Applied Materials, Inc. ABRASIVE DISTRIBUTION POLISHING PADS AND METHODS OF MAKING SAME
US10434704B2 (en) 2017-08-18 2019-10-08 Ppg Industries Ohio, Inc. Additive manufacturing using polyurea materials
DE102018221826B4 (de) 2017-12-14 2024-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen eines Kerns sowie nach dem Verfahren hergestellter Gießkern
WO2019169211A1 (en) * 2018-03-02 2019-09-06 Formlabs, Inc. Latent cure resins and related methods
EP3790706A4 (de) 2018-05-07 2022-02-16 Applied Materials, Inc. Chemisch-mechanische polierkissen mt einstellbarem hydrophilem und zeta-potenzial
EP3762217A4 (de) * 2018-06-04 2021-10-13 Hewlett-Packard Development Company, L.P. Kontrolle thermischer eigenschaften bei einem baumaterial
WO2019245519A1 (en) * 2018-06-18 2019-12-26 Hewlett-Packard Development Company, L. P. Additive manufacturing
CN112654655A (zh) 2018-09-04 2021-04-13 应用材料公司 先进抛光垫配方
DE102019000796A1 (de) 2019-02-05 2020-08-06 Voxeljet Ag Wechselbare Prozesseinheit
US11851570B2 (en) 2019-04-12 2023-12-26 Applied Materials, Inc. Anionic polishing pads formed by printing processes
DE102019005605A1 (de) 2019-08-09 2021-02-11 Ing3D Ug Verfahren zur Herstellung eines additiv gefertigten Produkts aus einem mineralischen Ausgangsmaterial mittels direkter Laserversinterung sowie ein nach diesem Verfahren hergestelltes Leichtbauteil
DE102019007595A1 (de) 2019-11-01 2021-05-06 Voxeljet Ag 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
US11878389B2 (en) 2021-02-10 2024-01-23 Applied Materials, Inc. Structures formed using an additive manufacturing process for regenerating surface texture in situ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387380A (en) * 1989-12-08 1995-02-07 Massachusetts Institute Of Technology Three-dimensional printing techniques
EP1163999A2 (de) * 2000-05-30 2001-12-19 DaimlerChrysler AG Materialsystem zur Verwendung beim 3D-Drucken
US20020026982A1 (en) * 1996-09-04 2002-03-07 Bredt James F. Three dimensional printing material system and method
US6401001B1 (en) * 1999-07-22 2002-06-04 Nanotek Instruments, Inc. Layer manufacturing using deposition of fused droplets
WO2002064354A1 (en) * 2001-02-15 2002-08-22 Vantico Gmbh Three-dimensional structured printing

Family Cites Families (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1772387C3 (de) 1967-05-25 1974-01-17 Kabushiki Kaisha Ricoh, Tokio Vorrichtung zur Entwicklung von Ladungsbildern mittels Pulverentwickler
US3616972A (en) 1969-09-18 1971-11-02 Daniel Lamar Christy Machine for dispensing and distributing dry flowable materials
GB1349981A (en) 1971-01-13 1974-04-10 Glacier Metal Co Ltd Apparatus for use in the manufacture of composite strip material
US3815527A (en) * 1972-09-05 1974-06-11 J Dobbins Roller, hopper, scatter shield and brake assembly for precision seeding
DE2261344C3 (de) * 1972-12-15 1979-05-31 Karl Becker Kg Maschinenfabrik, 3525 Oberweser Vorrichtung zum Ablegen von körnigem Saatgut im Erdreich in Verbindung mit Einzelkornsämaschinen
CH621597A5 (de) * 1978-02-13 1981-02-13 Epsi Brevets & Participations
DE2843371C2 (de) * 1978-10-05 1985-07-11 Zanders Feinpapiere AG, 5060 Bergisch Gladbach Verfahren zum Beschichten von laufenden Bahnen aus Papier oder Karton mit üblichen Pigmentdispersionen und Vorrichtung zum Einstellen des Naßauftragsgewichtes von Beschichtungen, insbesondere zur Durchführung des Verfahrens
US4247508B1 (en) * 1979-12-03 1996-10-01 Dtm Corp Molding process
FR2511149A1 (fr) * 1981-08-04 1983-02-11 Roussel Uclaf Dispositif et procede de dosage de quantites predeterminees d'au moins un produit
US4579252A (en) * 1983-05-05 1986-04-01 K-Tron International, Inc. Loss-in-weight gravimetric feeder
US4665492A (en) * 1984-07-02 1987-05-12 Masters William E Computer automated manufacturing process and system
US4575330A (en) * 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
US4630755A (en) 1984-12-11 1986-12-23 Spiral Systems, Inc. Apparatus for precisely dispensing free flowing solids
US4889433A (en) 1986-02-26 1989-12-26 Micro Chemical, Inc. Programmable apparatus and method for delivering microingredient feed additives to animals by weight
US4752352A (en) * 1986-06-06 1988-06-21 Michael Feygin Apparatus and method for forming an integral object from laminations
US5147587A (en) * 1986-10-17 1992-09-15 Board Of Regents, The University Of Texas System Method of producing parts and molds using composite ceramic powders
US5296062A (en) * 1986-10-17 1994-03-22 The Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US5017753A (en) * 1986-10-17 1991-05-21 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US5076869A (en) 1986-10-17 1991-12-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US4863538A (en) * 1986-10-17 1989-09-05 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
DE3750931T3 (de) * 1986-10-17 1999-12-02 Univ Texas Verfahren und vorrichtung zur herstellung von formkörpern durch teilsinterung.
US4944817A (en) * 1986-10-17 1990-07-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US5155324A (en) * 1986-10-17 1992-10-13 Deckard Carl R Method for selective laser sintering with layerwise cross-scanning
US5772947A (en) * 1988-04-18 1998-06-30 3D Systems Inc Stereolithographic curl reduction
AU4504089A (en) 1988-10-05 1990-05-01 Michael Feygin An improved apparatus and method for forming an integral object from laminations
JP2738017B2 (ja) * 1989-05-23 1998-04-08 ブラザー工業株式会社 三次元成形装置
GB2233928B (en) * 1989-05-23 1992-12-23 Brother Ind Ltd Apparatus and method for forming three-dimensional article
US5248456A (en) * 1989-06-12 1993-09-28 3D Systems, Inc. Method and apparatus for cleaning stereolithographically produced objects
US5216616A (en) * 1989-06-26 1993-06-01 Masters William E System and method for computer automated manufacture with reduced object shape distortion
US5134569A (en) * 1989-06-26 1992-07-28 Masters William E System and method for computer automated manufacturing using fluent material
JPH0336019A (ja) * 1989-07-03 1991-02-15 Brother Ind Ltd 三次元成形方法およびその装置
US5284695A (en) * 1989-09-05 1994-02-08 Board Of Regents, The University Of Texas System Method of producing high-temperature parts by way of low-temperature sintering
US5053090A (en) * 1989-09-05 1991-10-01 Board Of Regents, The University Of Texas System Selective laser sintering with assisted powder handling
US5156697A (en) 1989-09-05 1992-10-20 Board Of Regents, The University Of Texas System Selective laser sintering of parts by compound formation of precursor powders
US5182170A (en) * 1989-09-05 1993-01-26 Board Of Regents, The University Of Texas System Method of producing parts by selective beam interaction of powder with gas phase reactant
US5431967A (en) * 1989-09-05 1995-07-11 Board Of Regents, The University Of Texas System Selective laser sintering using nanocomposite materials
US5136515A (en) * 1989-11-07 1992-08-04 Richard Helinski Method and means for constructing three-dimensional articles by particle deposition
US5204055A (en) * 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
DE59101826D1 (de) * 1990-04-20 1994-07-14 Balzers Hochvakuum Vorrichtung zur Halterung und Kühlung nebeneinander angeordneter Werkstücke and Träger für mehrere Vorrichtungen.
US5127037A (en) * 1990-08-15 1992-06-30 Bynum David K Apparatus for forming a three-dimensional reproduction of an object from laminations
GB9022754D0 (en) 1990-10-19 1990-12-05 Pilkington Controlled Release Improvements in or relating to water dispersible moulds
US5740051A (en) * 1991-01-25 1998-04-14 Sanders Prototypes, Inc. 3-D model making
US5506607A (en) * 1991-01-25 1996-04-09 Sanders Prototypes Inc. 3-D model maker
DE4106964C2 (de) * 1991-03-05 1994-07-21 Peguform Werke Gmbh Vorrichtung und Verfahren zum Herstellen von Formhäuten und -körpern aus Kunststoff
US5252264A (en) 1991-11-08 1993-10-12 Dtm Corporation Apparatus and method for producing parts with multi-directional powder delivery
US5342919A (en) * 1992-11-23 1994-08-30 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therewith
US5352405A (en) 1992-12-18 1994-10-04 Dtm Corporation Thermal control of selective laser sintering via control of the laser scan
DE4300478C2 (de) 1993-01-11 1998-05-20 Eos Electro Optical Syst Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
US6146567A (en) 1993-02-18 2000-11-14 Massachusetts Institute Of Technology Three dimensional printing methods
DE4325573C2 (de) 1993-07-30 1998-09-03 Stephan Herrmann Verfahren zur Erzeugung von Formkörpern durch sukzessiven Aufbau von Pulverschichten sowie Vorichtung zu dessen Durchführung
US5518680A (en) * 1993-10-18 1996-05-21 Massachusetts Institute Of Technology Tissue regeneration matrices by solid free form fabrication techniques
US5490962A (en) * 1993-10-18 1996-02-13 Massachusetts Institute Of Technology Preparation of medical devices by solid free-form fabrication methods
US5433520A (en) * 1993-12-13 1995-07-18 Michigan Ash Sales Company Method and apparatus for continuously processing particulate cementitious material and fly ash solids and mixing them with a liquid to provide a liquid slurry of consistent proportions
DE4400523C2 (de) 1994-01-11 1996-07-11 Eos Electro Optical Syst Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
DE4440397C2 (de) 1994-11-11 2001-04-26 Eos Electro Optical Syst Verfahren zum Herstellen von Gußformen
ATE192367T1 (de) 1994-05-27 2000-05-15 Eos Electro Optical Syst Verfahren für den einsatz in der giessereitechnik
US5639402A (en) * 1994-08-08 1997-06-17 Barlow; Joel W. Method for fabricating artificial bone implant green parts
DE4433048A1 (de) * 1994-09-16 1996-03-21 Tzn Forschung & Entwicklung Verfahren und Vorrichtung zum kontinuierlichen Aufbringen einer Beschichtung auf eine Materialbahn
US5555176A (en) * 1994-10-19 1996-09-10 Bpm Technology, Inc. Apparatus and method for making three-dimensional articles using bursts of droplets
US5482659A (en) * 1994-12-22 1996-01-09 United Technologies Corporation Method of post processing stereolithographically produced objects
EP0807014B1 (de) * 1995-02-01 2002-05-02 3D Systems, Inc. Schnelles glättungsverfahren für schichtweise hergestellte dreidimensionale gegenstände
DE19511772C2 (de) 1995-03-30 1997-09-04 Eos Electro Optical Syst Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
DE19514740C1 (de) * 1995-04-21 1996-04-11 Eos Electro Optical Syst Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
US5582231A (en) 1995-04-28 1996-12-10 General Motors Corporation Sand mold member and method
JP2951233B2 (ja) * 1995-05-16 1999-09-20 不二製油株式会社 無機質成形体の製造方法
US5943235A (en) * 1995-09-27 1999-08-24 3D Systems, Inc. Rapid prototyping system and method with support region data processing
US6305769B1 (en) 1995-09-27 2001-10-23 3D Systems, Inc. Selective deposition modeling system and method
US5660621A (en) 1995-12-29 1997-08-26 Massachusetts Institute Of Technology Binder composition for use in three dimensional printing
DE19626428A1 (de) * 1996-07-01 1998-01-15 Heinzl Joachim Tröpfchenwolkenerzeuger
US6316060B1 (en) 1996-08-20 2001-11-13 Pacifica Papers Inc. Metering coatings
JPH10119066A (ja) 1996-10-24 1998-05-12 Shonan Design Kk 真空注型成形機
US6007318A (en) 1996-12-20 1999-12-28 Z Corporation Method and apparatus for prototyping a three-dimensional object
US7037382B2 (en) * 1996-12-20 2006-05-02 Z Corporation Three-dimensional printer
JP3750125B2 (ja) * 1996-12-26 2006-03-01 株式会社サタケ 衝撃式流量検出装置
DE29701279U1 (de) 1997-01-27 1997-05-22 Eos Electro Optical Syst Vorrichtung mit einer Prozeßkammer und einem in der Prozeßkammer hin und her bewegbaren Element
CA2288201A1 (en) * 1997-03-31 1998-10-08 Therics, Inc. Method for dispensing of powders
DE19715582B4 (de) * 1997-04-15 2009-02-12 Ederer, Ingo, Dr. Verfahren und System zur Erzeugung dreidimensionaler Körper aus Computerdaten
NL1006059C2 (nl) * 1997-05-14 1998-11-17 Geest Adrianus F Van Der Werkwijze en inrichting voor het vervaardigen van een vormlichaam.
DE19723892C1 (de) * 1997-06-06 1998-09-03 Rainer Hoechsmann Verfahren zum Herstellen von Bauteilen durch Auftragstechnik
US6258170B1 (en) * 1997-09-11 2001-07-10 Applied Materials, Inc. Vaporization and deposition apparatus
US6322728B1 (en) 1998-07-10 2001-11-27 Jeneric/Pentron, Inc. Mass production of dental restorations by solid free-form fabrication methods
US6476122B1 (en) 1998-08-20 2002-11-05 Vantico Inc. Selective deposition modeling material
DE19846478C5 (de) * 1998-10-09 2004-10-14 Eos Gmbh Electro Optical Systems Laser-Sintermaschine
DE19853834A1 (de) * 1998-11-21 2000-05-31 Ingo Ederer Verfahren zum Herstellen von Bauteilen durch Auftragstechnik
US6259962B1 (en) * 1999-03-01 2001-07-10 Objet Geometries Ltd. Apparatus and method for three dimensional model printing
FR2790418B1 (fr) * 1999-03-01 2001-05-11 Optoform Sarl Procedes De Prot Procede de prototypage rapide permettant l'utilisation de materiaux pateux, et dispositif pour sa mise en oeuvre
DE19911399C2 (de) 1999-03-15 2001-03-01 Joachim Heinzl Verfahren zum Ansteuern eines Piezo-Druckkopfes und nach diesem Verfahren angesteuerter Piezo-Druckkopf
US6165406A (en) 1999-05-27 2000-12-26 Nanotek Instruments, Inc. 3-D color model making apparatus and process
DE19948591A1 (de) * 1999-10-08 2001-04-19 Generis Gmbh Rapid-Prototyping - Verfahren und - Vorrichtung
EP1415792B1 (de) 1999-11-05 2014-04-30 3D Systems Incorporated Verfahren und Zusammenstellungen für dreidimensionales Drucken
WO2001034371A2 (en) * 1999-11-05 2001-05-17 Z Corporation Material systems and methods of three-dimensional printing
US6395811B1 (en) * 1999-11-11 2002-05-28 3D Systems, Inc. Phase change solid imaging material
US6133353A (en) 1999-11-11 2000-10-17 3D Systems, Inc. Phase change solid imaging material
GB9927127D0 (en) 1999-11-16 2000-01-12 Univ Warwick A method of manufacturing an item and apparatus for manufacturing an item
TWI228114B (en) * 1999-12-24 2005-02-21 Nat Science Council Method and equipment for making ceramic work piece
ES2230086T3 (es) * 2000-03-24 2005-05-01 Voxeljet Technology Gmbh Metodo y aparato para fabricar una pieza estructural mediante la tecnica de deposicion multi-capa y moldeo macho fabricado con el metodo.
US20010050031A1 (en) 2000-04-14 2001-12-13 Z Corporation Compositions for three-dimensional printing of solid objects
US6500378B1 (en) 2000-07-13 2002-12-31 Eom Technologies, L.L.C. Method and apparatus for creating three-dimensional objects by cross-sectional lithography
US6467525B2 (en) 2000-07-24 2002-10-22 Hormel Foods, Llc Gelatin coated sand core and method of making same
JP2002067174A (ja) * 2000-08-30 2002-03-05 Minolta Co Ltd データ処理装置及び方法、並びに三次元造形装置及び方法
DE10085198D2 (de) * 2000-09-25 2003-08-21 Generis Gmbh Verfahren zum Herstellen eines Bauteils in Ablagerungstechnik
DE10047615A1 (de) * 2000-09-26 2002-04-25 Generis Gmbh Wechselbehälter
DE10047614C2 (de) * 2000-09-26 2003-03-27 Generis Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
DE10049043A1 (de) * 2000-10-04 2002-05-02 Generis Gmbh Verfahren zum Entpacken von in ungebundenem Partikelmaterial eingebetteten Formkörpern
US20020111707A1 (en) * 2000-12-20 2002-08-15 Zhimin Li Droplet deposition method for rapid formation of 3-D objects from non-cross-linking reactive polymers
DE10117875C1 (de) 2001-04-10 2003-01-30 Generis Gmbh Verfahren, Vorrichtung zum Auftragen von Fluiden sowie Verwendung einer solchen Vorrichtung
JP2003052804A (ja) * 2001-08-09 2003-02-25 Ichiro Ono インプラントの製造方法およびインプラント
US6582613B2 (en) * 2001-08-16 2003-06-24 Mooneyham Phillip D. Engine coolant filter apparatus and method
US6841116B2 (en) * 2001-10-03 2005-01-11 3D Systems, Inc. Selective deposition modeling with curable phase change materials
GB2382798A (en) 2001-12-04 2003-06-11 Qinetiq Ltd Inkjet printer which deposits at least two fluids on a substrate such that the fluids react chemically to form a product thereon
DE10216013B4 (de) 2002-04-11 2006-12-28 Generis Gmbh Verfahren und Vorrichtung zum Auftragen von Fluiden
DE10222167A1 (de) * 2002-05-20 2003-12-04 Generis Gmbh Vorrichtung zum Zuführen von Fluiden
DE10224981B4 (de) 2002-06-05 2004-08-19 Generis Gmbh Verfahren zum schichtweisen Aufbau von Modellen
US7087109B2 (en) * 2002-09-25 2006-08-08 Z Corporation Three dimensional printing material system and method
US6742456B1 (en) * 2002-11-14 2004-06-01 Hewlett-Packard Development Company, L.P. Rapid prototyping material systems
US7497977B2 (en) 2003-01-29 2009-03-03 Hewlett-Packard Development Company, L.P. Methods and systems for producing an object through solid freeform fabrication by varying a concentration of ejected material applied to an object layer
US7807077B2 (en) * 2003-06-16 2010-10-05 Voxeljet Technology Gmbh Methods and systems for the manufacture of layered three-dimensional forms
DE102006030350A1 (de) * 2006-06-30 2008-01-03 Voxeljet Technology Gmbh Verfahren zum Aufbauen eines Schichtenkörpers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387380A (en) * 1989-12-08 1995-02-07 Massachusetts Institute Of Technology Three-dimensional printing techniques
US20020026982A1 (en) * 1996-09-04 2002-03-07 Bredt James F. Three dimensional printing material system and method
US6401001B1 (en) * 1999-07-22 2002-06-04 Nanotek Instruments, Inc. Layer manufacturing using deposition of fused droplets
EP1163999A2 (de) * 2000-05-30 2001-12-19 DaimlerChrysler AG Materialsystem zur Verwendung beim 3D-Drucken
WO2002064354A1 (en) * 2001-02-15 2002-08-22 Vantico Gmbh Three-dimensional structured printing

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10213938B2 (en) 2000-09-25 2019-02-26 Voxeljet Ag Method for producing a part using a deposition technique
US8741194B1 (en) 2000-09-25 2014-06-03 Voxeljet Ag Method for producing a part using a depostion technique
US9403324B2 (en) 2000-09-25 2016-08-02 Voxeljet Ag Method for producing a part using a deposition technique
US7204684B2 (en) 2000-09-26 2007-04-17 Ingo Ederer Interchangeable container
US7137431B2 (en) 2000-09-26 2006-11-21 Ingo Ederer Device for pattern building in layers
US7879393B2 (en) 2001-04-10 2011-02-01 Ingo Ederer Method and device for applying fluids
US7748971B2 (en) 2002-04-11 2010-07-06 Voxeljet Technology Gmbh Method and device for applying fluids
US7665636B2 (en) 2002-05-20 2010-02-23 Ingo Ederer Device for feeding fluids
US7955537B2 (en) 2002-06-05 2011-06-07 Ingo Ederer Method for constructing patterns in a layered manner
US8506870B2 (en) 2003-06-16 2013-08-13 Voxeljet Technology Gmbh Methods of manufacturing layered three-dimensional forms
US7807077B2 (en) 2003-06-16 2010-10-05 Voxeljet Technology Gmbh Methods and systems for the manufacture of layered three-dimensional forms
US8020604B2 (en) 2003-06-17 2011-09-20 Hoechsmann Rainer Method for the layered construction of models
US8122939B2 (en) 2003-06-17 2012-02-28 Rainer Hochsmann Method for the layered construction of models
US8096262B2 (en) 2004-02-19 2012-01-17 Ingo Ederer Method and device for applying fluids
US9463488B2 (en) 2004-02-19 2016-10-11 Voxeljet Ag Method for applying particle material including a metering system and leveling element
US7767130B2 (en) 2004-05-24 2010-08-03 Voxeljet Technology Gmbh Method and device for production of a three-dimensional article
US7927539B2 (en) 2006-06-30 2011-04-19 Ingo Ederer Method for the construction of a laminated compound
US7736578B2 (en) 2006-06-30 2010-06-15 Ingo Ederer Method for the construction of a laminated compound
US9676143B2 (en) 2006-08-10 2017-06-13 Voxeljet Ag Self-hardening material and process for layerwise formation of models
US9643360B2 (en) 2006-08-20 2017-05-09 Voxeljet Ag Self-hardening material and process for layerwise formation of models
US10226919B2 (en) 2007-07-18 2019-03-12 Voxeljet Ag Articles and structures prepared by three-dimensional printing method
US9505176B2 (en) 2007-07-18 2016-11-29 Voxeljet Ag Method for producing three-dimensional components
US10960655B2 (en) 2007-07-18 2021-03-30 Voxeljet Ag Articles and structures prepared by three-dimensional printing method
US8349233B2 (en) 2007-10-11 2013-01-08 Voxeljet Gmbh Material system and method for changing properties of a plastic component
US8727672B2 (en) 2007-10-21 2014-05-20 Voxeljet Ag Method and device for conveying particulate material during the layer-wise production of patterns
US9469074B2 (en) 2007-10-21 2016-10-18 Voxeljet Ag Method and device for conveying particulate material during the layer-wise production of patterns
US10099426B2 (en) 2007-10-21 2018-10-16 Voxeljet Ag Method and device for layer-wise production of patterns
US8992205B2 (en) 2007-10-23 2015-03-31 Voxeijet AG Device for the layer-wise production of patterns
US10799989B2 (en) 2007-10-23 2020-10-13 Voxeljet Ag Pre-assembled module for a device for the layer-wise production of patterns
US9757831B2 (en) 2007-10-23 2017-09-12 Voxeljet Ag Methods for assembling a device for the layer-wise production of patterns
US8715832B2 (en) 2008-11-20 2014-05-06 Voxeljet Ag Method for the layered construction of plastic models
US9174392B2 (en) 2009-06-22 2015-11-03 Voxeljet Ag Method and device for switching a particulate material flow in the construction of models in layers
US9931762B2 (en) 2009-06-22 2018-04-03 Voxeljet Ag Method and device for switching a particulate material flow in the construction of models in layers
WO2011067319A1 (de) * 2009-12-02 2011-06-09 Prometal Rct Gmbh Rapid-prototyping-anlage mit einer mischeinheit
US9149987B2 (en) 2010-07-13 2015-10-06 Voxeljet Ag Device for producing three-dimensional models by a layering technique
US8956140B2 (en) 2010-07-13 2015-02-17 Voxeljet Ag Apparatus for producing three-dimensional models by means of a layer build up technique
US9242413B2 (en) 2011-01-05 2016-01-26 Voxeljet Ag Device and method for constructing a laminar body comprising at least one position adjustable body defining the working area
US10513105B2 (en) 2011-01-05 2019-12-24 Voxeljet Ag Device and method for constructing a layer body
US10946636B2 (en) 2011-01-05 2021-03-16 Voxeljet Ag Device and method for constructing a layer body
US9649812B2 (en) 2011-01-05 2017-05-16 Voxeljet Ag Device and method for constructing a laminar body comprising at least one position-adjustable body defining the working area
US11407216B2 (en) 2011-01-05 2022-08-09 Voxeljet Ag Device and method for constructing a layer body
WO2017092845A1 (de) * 2015-12-03 2017-06-08 Audi Ag Verfahren zum herstellen einer gussform
US11504879B2 (en) 2020-04-17 2022-11-22 Beehive Industries, LLC Powder spreading apparatus and system
DE102020003562A1 (de) 2020-06-15 2021-12-16 Ask Chemicals Gmbh Verfahren zum schichtweisen Aufbau eines ausgehärteten dreidimensionalen Formkörpers, Formkörper, welcher dadurch erhalten werden kann, sowie dessen Verwendung
WO2021254953A1 (en) 2020-06-15 2021-12-23 Ask Chemicals Gmbh Method for the layer-by-layer production of a cured three-dimensional shaped body, shaped body obtainable by the method, and use thereof

Also Published As

Publication number Publication date
US20050167872A1 (en) 2005-08-04
DE10393294D2 (de) 2005-05-25
DE10224981B4 (de) 2004-08-19
AU2003243897A1 (en) 2003-12-22
EP1509382B1 (de) 2013-07-31
US7955537B2 (en) 2011-06-07
EP1509382A1 (de) 2005-03-02
US7531117B2 (en) 2009-05-12
US20090261497A1 (en) 2009-10-22
DE10224981A1 (de) 2004-01-08

Similar Documents

Publication Publication Date Title
DE10224981B4 (de) Verfahren zum schichtweisen Aufbau von Modellen
EP3148783B1 (de) 3d-umkehrdruckverfahren
EP2714354B1 (de) Verfahren zum herstellen eines formkörpers sowie vorrichtung
EP2906409B1 (de) 3d-mehrstufenverfahren
EP1324842B1 (de) Verfahren zum herstellen eines bauteils in ablagerungstechnik
EP1633509B1 (de) Verfahren zum schichtweisen aufbau von modellen
EP0882568B1 (de) Verfahren zum Herstellen von Bauteilen durch Auftragstechnik
DE60014714T2 (de) Verfahren zum Herstellen eines Bauteils in Ablagerunstechnik
DE102011053205B4 (de) Verfahren zum herstellen eines bauteils in ablagerungstechnik
EP0711213B1 (de) Verfahren für den einsatz in der giessereitechnik
DE4440397C2 (de) Verfahren zum Herstellen von Gußformen
EP3233432A1 (de) Verfahren zum herstellen dreidimensionaler formteile und einstellen des feuchtegehaltes im baumaterial
EP3062992A1 (de) Verfahren und vorrichtung zum herstellen von dreidimensionalen modellen mit bindersystem
DE19853834A1 (de) Verfahren zum Herstellen von Bauteilen durch Auftragstechnik
EP0909234A1 (de) Verfahren zum erzeugen eines dreidimensionalen körpers
DE102017009742A1 (de) 3d-druckverfahren und damit hergestellte lösliche form insbesondere zur verwendung in kaltguss- und laminierverfahren
DE3214858A1 (de) Blasformmaschine
WO2021083446A1 (de) 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat
EP4188680A1 (de) Verfahren zum herstellen eines 3d-formkörpers sowie vorrichtung unter verwendung einer siebplatte
WO2022247977A1 (de) 3d-druckverfahren und damit hergestelltes formteil unter verwendung von wasserglasbinder und ester

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003756945

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10516386

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003756945

Country of ref document: EP

REF Corresponds to

Ref document number: 10393294

Country of ref document: DE

Date of ref document: 20050525

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10393294

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP