WO2004007577A1 - Peroxide curable fluoroelastomers - Google Patents

Peroxide curable fluoroelastomers Download PDF

Info

Publication number
WO2004007577A1
WO2004007577A1 PCT/US2003/021247 US0321247W WO2004007577A1 WO 2004007577 A1 WO2004007577 A1 WO 2004007577A1 US 0321247 W US0321247 W US 0321247W WO 2004007577 A1 WO2004007577 A1 WO 2004007577A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluoroelastomer
reactor
monomer
fluoromonomer
tetrafluoroethylene
Prior art date
Application number
PCT/US2003/021247
Other languages
French (fr)
Inventor
Donald Frederick Lyons
Original Assignee
Dupont Dow Elastomers L.L.C.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dupont Dow Elastomers L.L.C. filed Critical Dupont Dow Elastomers L.L.C.
Priority to JP2004521548A priority Critical patent/JP4795685B2/en
Priority to EP03751786A priority patent/EP1551889B1/en
Priority to DE60320285T priority patent/DE60320285T2/en
Publication of WO2004007577A1 publication Critical patent/WO2004007577A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene

Definitions

  • Fluoroelastomers having excellent heat resistance, oil resistance, and chemical resistance have been used widely for sealing materials, containers and hoses.
  • fluoroelastomers include copolymers comprising units of vinylidene fluoride (VF 2 ) and units of at least one other copolymerizable fluorine-containing major monomer such as hexafluoropropylene (HFP), tetrafluoroethylene (TFE), chlorotrifiuoroethylene (CTFE), vinyl fluoride (VF), and a fluorovinyl ether such as a perfluoro(alkyl vinyl ether) (PAVE).
  • HFP hexafluoropropylene
  • TFE tetrafluoroethylene
  • CTFE chlorotrifiuoroethylene
  • VF vinyl fluoride
  • PAVE perfluoro(alkyl vinyl ether
  • PAVE perfluoro(methyl vinyl ether), perfluoro(ethyl vinyl ether) and perfluoro(propyl vinyl ether).
  • fluoroelastomers include the copolymers of tetrafluoroethylene with a perfluoro(alkyl vinyl ether) such as perfluoro(methyl vinyl ether) (PMVE).
  • fluoroelastomers In order to develop the physical properties necessary for most end use applications, fluoroelastomers must be crosslinked.
  • a preferred curing system for many end uses is the combination of an organic peroxide and a multifunctional unsaturated coagent.
  • the coagent forms crosslinks by reacting with cure sites on the fluoroelastomer polymer chain.
  • a preferred cure site is an iodine atom bonded to a carbon atom on the fluoroelastomer chain.
  • the major challenge with the use of iodine-containing cure sites in fluoroelastomers is to balance sufficient heat resistance with acceptable processability and rheology. Sufficient heat resistance is conferred by synthesizing polymers with an average minimum of 2.5 iodine atoms per chain. Fewer than an average of 2.5 iodine atoms per polymer chain results in destruction of crosslink sites during heat aging, leading to excessive amounts of dangling polymer chains that do not contribute to network strength and weaken the tensile strength of the cured article (Flory, P. J. Principles of Polymer Chemistry, p 432, Georgia University Press, 1952).
  • One method of introducing iodine cure sites into the fluoroelastomer is by conducting the polymerization in the presence of a chain transfer agent containing iodine. In this manner, an iodine atom is attached to the resulting fluoroelastomer polymer chain at one or both terminal positions.
  • chain transfer agents typically have the formula Rl n , where R may be a C 1 -C 3 hydrocarbon, a C-i-C ⁇ fluorohydrocarbon or chlorofluorohydrocarbon, or a C 2 -C ⁇ perfluorocarbon, and n is 1 or 2 (U.S. Patent No. 4,243,770).
  • iodine atom cure sites onto a fluoroelastomer polymer chain is by copolymerizing a minor amount of an iodine-containing fluoroolefin or fluorovinyl ether cure site monomer along with the major monomers (e.g. VF 2) HFP, TFE, PAVE, etc.). In this manner, cure sites may be randomly distributed along the resulting fluoroelastomer polymer chain (U.S. Patent Nos. 4,529,759; 4,694,045). However, each iodine-containing cure site monomer that is introduced in this way itself acts as a chain transfer agent.
  • the resulting fluoroelastomers may be highly branched and show unacceptably poor rheology. In many cases the resulting fluoroelastomer will be branched to such a degree as to display insoluble gel (EP-A-0171290). While such polymers will display excellent physical properties such as compression set, their poor flow behavior precludes them from practical use and their gel content causes poor hot tear strength and poor demolding.
  • iodine cure sites may be introduced both along the fluoroelastomer polymer chain and at terminal positions by a combination of the above methods (EP-A-0171290; and U.S. Patent No. 5,717,036)
  • a highly branched polymer may similarly be obtained, albeit with lower overall molecular weight.
  • the fluoroelastomer molecular weight may be too low to displace trapped air during compression molding or may lead to mold fouling, poor tensile strength, or poor compression set.
  • Arcella et al. attempt to address this problem by use of a cure site in which the iodine is attached to a short length of hydrocarbon chain.
  • the cure site monomer does not serve as an active chain transfer agent during polymerization.
  • the reactivity of a -CH 2 CH 2 I site is less than that of a -CF 2 CF 2 I site and cure times are longer.
  • the presence of a -CH 2 CH 2 I group during polymerization is highly retarding and excessive amounts of polymerization initiator are required in order to maintain a desirable polymerization rate.
  • Another difficulty when using this class of cure site monomers in a batch process is that they are so highly retarding that polymerization times are prolonged to undesirable lengths.
  • the present invention provides a peroxide curable fluoroelastomer having excellent processability and wherein the cured fluoroelastomer has excellent tensile properties.
  • the fluoroelastomer comprises copolymerized units of (A) a first fluoromonomer selected from the group consisting of vinylidene fluoride and tetrafluoroethylene;
  • CH 2 CH-(CF2) n l, where n is an integer between 2 and 8; and (D) 0.01 to 1 weight percent, based on total weight of said fluoroelastomer, of iodine bound at terminal positions of fluoroelastomer polymer chains.
  • Another aspect of the present invention is a curable fluoroelastomer composition
  • a curable fluoroelastomer composition comprising:
  • Another aspect of the present invention is a semibatch polymerization process for the manufacture of the above fluoroelastomer comprising:
  • the present invention is directed to peroxide curable fluoroelastomers which have excellent processability and tensile properties.
  • the fluoroelastomers mold and de-mold well with very little, if any, sticking or mold fouling.
  • the fluoroelastomers of this invention comprise copolymerized units of a first major monomer which may be vinylidene fluoride (VF 2 ) or tetrafluoroethylene (TFE) and one or more additional major monomers, different from said first monomer, selected from the group consisting of fluorine-containing olefins, fluorine-containing ethers and mixtures thereof.
  • VF 2 vinylidene fluoride
  • TFE tetrafluoroethylene
  • the fluoroelastomers contain between 20 and 70 weight percent, based on the weight of the fluoroelastomer, of a first monomer and between 80 and 30 weight percent, total, of one or more additional major monomers.
  • major monomer is meant a monomer, other than a cure site monomer, that forms copolymerized units that make up the backbone of the fluoroelastomer polymer chain.
  • fluorine-containing olefins copolymerizable with the first monomer include, but are not limited to, vinylidene fluoride, hexafluoropropylene (HFP), tetrafluoroethylene (TFE), 1 ,2,3,3,3-pentafluoropropene (1-HPFP), chlorotrifiuoroethylene (CTFE) and vinyl fluoride.
  • the fluorine-containing ethers employed in the present invention include, but are not limited to perfluoro(alkyl vinyl ethers), perfluoro(alkyl alkenyl ethers) and perfluoro(alkoxy alkenylethers).
  • Perfluoro(alkyl vinyl ethers) (PAVE) suitable for use as monomers include those of the formula where R f and R f are different linear or branched perfluoroalkylene groups of 2-6 carbon atoms, m and n are independently 0-10, and R f is a perfluoroalkyl group of 1-6 carbon atoms.
  • a preferred class of perfluoro(alkyl vinyl ethers) includes compositions of the formula
  • CF 2 CFO(CF 2 CFXO) n Rf (II) where X is F or CF3, n is 0-5, and Rf is a perfluoroalkyl group of 1-6 carbon atoms.
  • a most preferred class of perfluoro(alkyl vinyl ethers) includes those ethers wherein n is 0 or 1 and R f contains 1-3 carbon atoms. Examples of such perfluorinated ethers include perfluoro(methyl vinyl ether) (PMVE) and perfluoro(propyl vinyl ether) (PPVE).
  • Other useful monomers include compounds of the formula
  • CF2 CFO[(CF2CF ⁇ CF3 ⁇ O)n(CF2CF2CF 2 O) m (CF2)p]C x F2 ⁇ + ⁇ (IV)
  • Perfluoro(alkyl alkenyl ethers) suitable for use as monomers include those of the formula VI
  • R f O(CF 2 ) n CF CF 2 (VI)
  • R f is a perfluorinated linear or branched aliphatic group containing 1-20, preferably 1-10, and most preferably 1-4 carbon atoms and n is an integer between 1 and 4. Specific examples include, but are not limited to perfluoro(propoxyallyl ether) and perfluoro(propoxybutenyl ether).
  • Perfluoro(alkoxy alkenyl ethers) differ from perfluoro(alkyl alkenyl ethers) in that R f in formula VI contains at least one oxygen atom in the aliphatic chain.
  • R f in formula VI contains at least one oxygen atom in the aliphatic chain.
  • a specific example includes, but is not limited to perfluoro(methoxyethoxyallyl ether).
  • the ether unit content generally ranges from 25 to 75 weight percent, based on the total weight of the fluoroelastomer. If perfluoro(methyl vinyl) ether is used, then the fluoroelastomer preferably contains between 30 and 55 wt.% copolymerized PMVE units.
  • n is 2 and the cure site monomer is 4-iodo-3,3,4,4-tetrafluorobutene-1 (ITFB).
  • Units of cure site monomer are typically present in fluoroelastomers at a level of 0.05 to 4 wt.%, preferably 0.1 to 2 wt.% and most preferably between 0.2 and 1 wt%.
  • iodine-containing endgroups are present at one or both of the fluoroelastomer polymer chain ends as a result of the use of chain transfer or molecular weight regulating agents during preparation of the fluoroelastomers.
  • the amount of chain transfer agent is calculated to result in an iodine level (not including iodine from the cure site monomer) in the fluoroelastomer in the range of 0.005 to 2 wt.%, preferably 0.05 to 1 wt.%, most preferably 0.075 to 0.5 wt.%.
  • the chain transfer agent is of the formula Rl ⁇ where R is a perfluoroalkyl or a chloroperfluoroalkyl group having 3 to 10 carbon atoms and x is 1 or 2.
  • the chain transfer agent employed may actually be a mixture of compounds having the latter general formula. Specific examples include, but are not limited to 1 ,3-diiodoperfluoropropane; 1 ,4- diiodoperfluorobutane; 1 ,6-diiodoperfluorohexane; 1 ,8- diiodoperfluorooctane; 1 ,10-diiodoperfluorodecane; and monoiodoperfluorobutane.
  • chain transfer agents such as those of formula RBr n l m (R is as defined above; n and m each are 1 or 2) may also be used. Particularly preferred are diiodinated perfluoroalkane chain transfer agents and mixtures thereof.
  • fluoroelastomers of this invention include fluoroelastomers comprising copolymerized units of i) 30 to 60 wt.% VF 2 / 15 to 30 wt.% TFE/ 25 to 45 wt.% HFP/ 0.1 to 0.4 wt.% ITFB and 0.05 to 0.40 wt.% I at chain ends; ii) 20 to 65 wt.% VF 2 / 5 to 30 wt.% TFE/ 30 to 45 wt.% PMVE/ 0.1 to 0.4 wt.% ITFB and 0.05 to 0.40 wt.% I at chain ends; and iii) 44 to 60 wt.% TFE/ 39 to 55 wt.% PMVE/ 0.1 to 0.4 wt.% ITFB and 0.05 to 0.40 wt.% I at chain ends.
  • the fluoroelastomers of this invention have a minimum number average molecular weight (Mn) of 70,000 and very little, if any, branching. Branching causes gel, a high molecular weight, insoluble portion of a fluoroelastomer gum.
  • Mn number average molecular weight
  • branching causes gel, a high molecular weight, insoluble portion of a fluoroelastomer gum.
  • the relative amount of branching in a polymer may be determined by measuring the weight percent (based on total weight of fluoroelastomer) of undissolved solids (i.e. gel) remaining from an otherwise dissolved fluoroelastomer.
  • An appropriate solvent for the vinylidene fluoride-containing fluoroelastomers of this invention is methyl ethyl ketone.
  • FluorinertTM FC-77 (available from 3M) may be used for the TFE/PMVE fluoroelastomers of this invention.
  • a 1 wt.% dispersion of fluoroelastomer in solvent is allowed to sit overnight at room temperature.
  • the dispersion is then separated by filtration or centrifugation and the solids measured directly by weighing, or indirectly by first determining the amount of dissolved fluoroelastomer in the filtrate or supernatant (U.S.
  • the fluoroelastomers of this invention contain less than 5 wt.% gel, preferably less than 2 wt.% gel, most preferably less than 1 wt.% gel. Due to such low gel levels, the fluoroelastomers of this invention have excellent hot tear strength and are easily removed from molds.
  • a gaseous major monomer mixture of a desired composition is introduced into a reactor which contains an aqueous solution.
  • the reactor is typically not completely filled with the aqueous solution, so that a vapor space remains.
  • the aqueous solution comprises a fluorosurfactant dispersing agent such as ammonium perfluorooctanoate, Zonyl® FS-62 (available from DuPont) or Forafac® 1033D (available from Atofina).
  • the aqueous solution may contain a pH buffer, such as a phosphate or acetate buffer for controlling the pH of the polymerization reaction.
  • a base such as NaOH may be used to control pH.
  • pH is controlled to between 1 and 7 (preferably 3-7), depending upon the type of fluoroelastomer being made.
  • pH buffer or base may be added to the reactor at various times throughout the polymerization reaction, either alone or in combination with other ingredients such as polymerization initiator, liquid cure site monomer or chain transfer agent.
  • the initial aqueous solution may contain a water-soluble inorganic peroxide polymerization initiator such as ammonium persulfate (or other persulfate salt), or the combination of an inorganic peroxide and a reducing agent such as the combination of ammonium persulfate and sodium sulfite.
  • the initial monomer charge contains a quantity of a first major monomer of either TFE or VF 2 and one or more additional major monomers which are different from the first monomer.
  • the amount of major monomer mixture contained in the initial charge is set so as to result in a reactor pressure between 0.5 and 10 MPa (preferably between 0.5 and 3.5 MPa).
  • the relative amount of each monomer is dictated by reaction kinetics and is set so as to result in a fluoroelastomer having the desired ratio of copolymerized monomer units (i.e. very slow reacting monomers must be present in a higher amount relative to the other monomers than is desired in the composition of the fluoroelastomer to be produced).
  • the major monomer mixture is dispersed in the aqueous medium and a chain transfer agent may also be introduced at this point while the reaction mixture is agitated, typically by mechanical stirring.
  • the chain transfer agent may be introduced at any point up to when 50% (preferably prior to 20%) of the total amount of incremental major monomer mixture (as defined hereinafter) has been fed to the reactor.
  • the entire amount of chain transfer agent may be added at one time, or addition may be spread out over time, up to the point when 100% of the incremental major monomer mixture has been added to the reactor.
  • the chain transfer agent is introduced to the reactor before polymerization begins, or shortly thereafter, and the entire amount of chain transfer agent is fed to the reactor by the time that 5% of the total amount of incremental major monomer mixture has been fed to the reactor.
  • the temperature of the semi-batch reaction mixture is maintained in the range of 25°C - 130°C, preferably 30°C - 90°C.
  • Polymerization begins when the initiator either thermally decomposes or reacts with reducing agent and the resulting radicals react with dispersed monomer. Additional quantities of the major monomers (referred to herein as incremental major monomer mixture feed) are added at a controlled rate throughout the polymerization in order to maintain a constant reactor pressure at a controlled temperature.
  • the relative ratio of major monomers contained in the incremental major monomer mixture feed is set to be approximately the same as the desired ratio of copolymerized monomer units in the resulting fluoroelastomer.
  • the incremental major monomer mixture feed contains between 20 and 70 weight percent, based on the total weight of the monomer mixture, of a first monomer of either TFE or VF 2 and 80 to 30 weight percent (total) of one or more additional major monomers that are different from the first monomer.
  • Additional chain transfer agent may also, optionally, be continued to be added to the reactor at any point during this stage of the polymerization.
  • Additional fluorosurfactant and polymerization initiator may also be fed to the reactor during this stage.
  • the amount of polymer formed is approximately equal to the cumulative amount of incremental major monomer mixture feed.
  • the molar ratio of monomers in the incremental major monomer mixture feed is not necessarily exactly the same as that of the desired copolymerized monomer unit composition in the resulting fluoroelastomer because the composition of the initial charge may not be exactly that required for the desired final fluoroelastomer composition, or because a portion of the monomers in the incremental major monomer mixture feed may dissolve into the polymer particles already formed, without reacting.
  • a stream of cure site monomer is begun to be fed to the reactor at a rate so as to result in the entire amount of cure site monomer being fed to the reactor by the time that 99% of the incremental major monomer mixture has been fed.
  • cure site monomer feed to the reactor is begun after 25% of the incremental major monomer mixture has been fed, most preferably, after 33% of the incremental major monomer mixture has been fed to the reactor.
  • cure site monomer is begun to be introduced to the reactor prior to when 10% of incremental major monomer mixture has been fed, the polymerization rate will be severely retarded or completely quenched. If cure site monomer is begun to be added after 90% of the incremental major monomer mixture has been fed, the resulting fluoroelastomer will have poor heat resistance, indicating poor incorporation of cure site monomer along the growing polymer chains. Surprisingly, desirable fluoroelastomer may be produced when cure site monomer feed is started any time between when 10% and 90% of the total amount of incremental major monomer mixture has been fed to the reactor. Those skilled in the art would predict that cure site monomer should be added from the beginning of the reaction in order to obtain polymer having desirable properties.
  • Total polymerization times in the range of from 2 to 30 hours are typically employed in this semi-batch polymerization process.
  • the resulting fluoroelastomer dispersion may be isolated, filtered, washed and dried by conventional techniques employed in the fluoroelastomer manufacturing industry.
  • Peroxide curable fluoroelastomer compositions of this invention comprise a) a fluoroelastomer of this invention (as defined above), b) an organic peroxide, and c) a coagent.
  • the compositions also contain an acid acceptor such as a divalent metal hydroxide, a divalent metal oxide, a strongly basic (i.e. pKa>10) organic amine such as ProtonSponge® (available from Aldrich), or a combination of any of the latter.
  • divalent metal oxides and hydroxides include CaO, Ca(OH) 2 and MgO.
  • Organic peroxides suitable for use include, but are not limited to 1 , 1 -bis(t-butylperoxy)-3,5,5-trimethylcyclohexane; 1 , 1 -bis(t- butylperoxy)cyclohexane; 2,2-bis(t-butylperoxy)octane; n-butyl-4, 4-bis(t- butylperoxy)valerate; 2,2-bis(t-butylperoxy)butane; 2,5-dimethylhexane- 2,5-dihydroxyperoxide; di-t-butyl peroxide; t-butylcumyl peroxide; dicumyl peroxide; alpha, alpha'-bis(t-butylperoxy-m-isopropyl)benzene; 2,5-dimethyl-2,5-di(t-butylperoxy)hexane; 2,5-dimethyl-2,5-di(t-butylperoxy)
  • organic peroxides include 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, dicumyl peroxide, and alpha, alpha'-bis(t-butylperoxy-m-isopropyl)benzene.
  • the amount compounded is generally in the range of 0.05-5 parts by weight, preferably in the range of 0.1-3 parts by weight per 100 parts by weight of the fluoroelastomer. This particular range is selected because if the peroxide is present in an amount of less than 0.05 parts by weight, the vulcanization rate is insufficient and causes poor mold release. On the other hand, if the peroxide is present in amounts of greater than 5 parts by weight, the compression set of the cured polymer becomes unacceptably high.
  • the organic peroxides may be used singly or in combinations of two or more types.
  • Coagents employed in the curable compositions of this invention are polyfunctional unsaturated compounds such as triallyl cyanurate, trimethacryl isocyanurate, triallyl isocyanurate, trimethallyl isocyanurate, triacryl formal, triallyl trimellitate, N.N'-m-phenylene bismaleimide, diallyl phthalate, tetraallylterephthalamide, tri(diallylamine)-s-triazine, triallyl phosphite, bis-olefins and N,N-diallylacrylamide.
  • the amount compounded is generally in the range of 0.1-10 parts by weight per 100 parts by weight of the fluoroelastomer.
  • This particular concentration range is selected because if the coagent is present in amounts less than 0.1 part by weight, crosslink density of the cured polymer is unacceptable. On the other hand, if the coagent is present in amounts above 10 parts by weight, it blooms to the surface during molding, resulting in poor mold release characteristics.
  • the preferable range of coagent is 0.2-6 parts by weight per 100 parts fluoroelastomer.
  • the unsaturated compounds may be used singly or as a combination of two or more types.
  • fillers such as carbon black, Austin black, graphite, thermoplastic fluoropolymer micropowders, silica, clay, diatomaceous earth, talc, wollastonite, calcium carbonate, calcium silicate, calcium fluoride, and barium sulfate
  • processing aides such as higher fatty acid esters, fatty acid calcium salts, fatty acidamides (e.g. erucamide), low molecular weight polyethylene, silicone oil, silicone grease, stearic acid, sodium stearate, calcium stearate, magnesium stearate, aluminum stearate, and zinc stearate
  • coloring agents such as titanium white and iron red may be used as compounding additives in the compositions of this invention.
  • the amount of such filler is generally in the range of 0.1-100 parts by weight, preferably 1-60 parts by weight, per 100 parts by weight of the fluoroelastomer. This range is selected because if the filler is present in amounts of less than 0.1 part by weight, there is little or no effect, while, on the other hand, if greater than 100 parts by weight are used, elasticity is sacrificed.
  • the amount of processing aid compounded is generally less than 10 parts by weight, preferably less than 5 parts by weight, per 100 parts by weight of the fluoroelastomer. If the amount used is above the limit, heat resistance is adversely affected.
  • the amount of a coloring agent compounded is generally less than 50 parts by weight, preferably less than 30 parts by weight per 100 parts by weight of the fluoroelastomer. If greater than 50 parts by weight is used, compression set suffers.
  • the fluoroelastomer, organic peroxide, coagent, and any other ingredients are generally incorporated into the curable compositions of the invention by means of an internal mixer or rubber mill.
  • the resulting composition may then be shaped (e.g. molded or extruded) and cured. Curing typically takes place at about 150°-200°C for 1 to 60 minutes.
  • Conventional rubber curing presses, molds, extruders, and the like provided with suitable heating and curing means can be used.
  • it is preferred to carry out a post curing operation wherein the molded or extruded article is heated in an oven or the like for an additional period of about 1-48 hours, typically from about 180°-275°C, generally in an air atmosphere.
  • the fluoroelastomers of this invention are useful in many industrial applications including seals, wire coatings, tubing and laminates.
  • TEST METHODS Mooney viscosity, ML (1 + 10), was determined according to ASTM D1646 with an L (large) type rotor at 121 °C (unless otherwise noted), using a preheating time of one minute and rotor operation time of 10 minutes.
  • Methyl ethyl ketone was employed as solvent (0.1 g polymer in 100 ml solvent) for fluoroelastomers that contained copolymerized units of vinylidene fluoride.
  • a mixed solvent of 60/40/3 volume ratio of heptafluoro-2,2,3- trichlorobutane, perfluoro( ⁇ -butyltetrahydrofuran) and ethylene glycol dimethyl ether was used (0.2 g polymer in 100 ml solvent) for fluoroelastomers containing copolymerized units of tetrafluoroethylene and perfluoro(methyl vinyl ether).
  • T B tensile strength in units of MPa (ISO 37)
  • E B elongation at break in units of % (ISO 37)
  • T g glass transition temperature was measured by differential scanning calorimetry using a 10°C/minute heating rate. Hardness (Shore A, ISO 868)
  • a 40 liter reactor was charged with a solution containing 290 grams of ammonium perfluorooctanoate and 24,710 grams of water. The solution was heated to 80°C. After removal of trace oxygen, the reactor was then charged with 732 grams of a mixture of 52.7 wt.% vinylidene fluoride (VF 2 ), 42.4 wt.% perfluoro(methyl vinyl ether) (PMVE), and 4.9 wt.% tetrafluoroethylene (TFE), bringing reactor pressure to 1453 kPa.
  • VF 2 vinylidene fluoride
  • PMVE 42.4 wt.% perfluoro(methyl vinyl ether)
  • TFE 4.9 wt.% tetrafluoroethylene
  • a 32.0 g mixture of 49.3 mol% 1 ,4-diiodoperfluorobutane, 34.8 mol% 1 ,6- diiodoperfluorohexane, 12.6 mol% 1 ,8-diiodoperfluorooctane, and 3.3 mol% 1 ,10-perfluorodecane was then charged to the reactor and the reactor was agitated for 60 minutes. The reactor was then charged with 50 ml of a buffered aqueous polymerization initiator solution containing 1 wt.% ammonium persulfate and 5 wt.% disodium phosphate.
  • the reactor was fed with a mixture (incremental feed) of 54.7 wt.% VF 2 , 34.8 wt.% PMVE and 10.5 wt.% TFE. Additional initiator solution was added to maintain polymerization rate. After 4000 grams of the latter monomer mixture had been fed, corresponding to 77 ml total initiator solution added, the liquid cure site monomer 4-iodo-3,3,4,4- tetrafluorobutene-1 (ITFB) was introduced to the reactor at a feed rate of 3.19 g ITFB per 1000 g monomer.
  • ITFB liquid cure site monomer 4-iodo-3,3,4,4- tetrafluorobutene-1
  • the resulting fluoroelastomer (Polymer 1 ) had an inherent viscosity of 0.99 dl/g, a ML (1 +10) at 121 °C of 78 and contained 53.6 wt.% copolymerized units of VF 2 , 33.3 wt.% PMVE, 13.0 wt.% TFE and 0.18 wt.% I.
  • the number average molecular weight (Mn) was 185,600 as determined by size exclusion chromatography.
  • the crumb was filtered, washed 4 times with deionized water and dried.
  • the resulting fluoroelastomer (Polymer 2) had an inherent viscosity of 0.31 dl/g, a ML(1 +10) at 149°C of 68 and contained 55.4 wt.% TFE, 44.5 wt.% PMVE and 0.22 wt.% I.
  • the fluoroelastomer had a glass transition temperature of 2.9°C.
  • the crumb was filtered, washed 4 times with deionized water and dried.
  • the resulting fluoroelastomer (Polymer 3) had an inherent viscosity of 0.43 dl/g, a ML (1+10) 121°C of 50 and contained 49.8 wt.% VF 2 , 19.5 wt.% TFE, 30.5 wt.% HFP and 0.20 wt.% I.
  • the fluoroelastomer had a Tg of -17°C.
  • the reactor was then charged with 650 g of a mixture of 43.0 wt.% VF 2 , 50.0 wt.% PMVE, and 7.0 wt.% TFE to a pressure of 1280 kPa. Then 40.0 ml of a 1 wt.% ammonium persulfate/5 wt.% disodium phosphate heptahydrate initiator aqueous solution was charged to the reactor to initiate polymerization. As the reactor pressure dropped due to monomer consumption, the reactor was fed with a mixture of 55.0 wt.% VF 2 , 35.0 wt.% PMVE, and 10.0 wt.% TFE to maintain the reactor pressure at 1280 kPa.
  • the resulting latex had a solids content of 26.17% and a pH of 3.96.
  • the latex was isolated by coagulation with potassium aluminum sulfate solution. The crumb was filtered, washed 4 times with deionized water and dried.
  • the resulting fluoroelastomer (Control Polymer A) had an inherent viscosity of 0.83 dl/g, a ML(1 +10) 121 °C of 64 and contained 54.0 wt.% VF2, 11.8 wt.% TFE, 34.1 wt.% HFP and 0.12 wt.% I.
  • the fluoroelastomer had a Tg of -29°C.
  • the reactor was charged with 732 g of a mixture of 42.2 wt. % VF 2 , 52.8 wt.% PMVE, and 5.0 wt.% TFE to a pressure of 1452 kPa. Then 50.0 ml of a 1 wt.% ammonium persulfate/5 wt.% disodium phosphate heptahydrate aqueous initiator solution was charged to the reactor to initiate polymerization. As the reactor pressure dropped due to monomer consumption, the reactor was fed with a mixture of 55.0 wt. % VF 2 , 35.0 wt.% PMVE, and 10.0 wt.% TFE to maintain the reactor pressure at 1452 kPa.
  • Additional initiator solution was added to maintain polymerization rate. After 6085 g of this monomer mixture had been fed, corresponding to the addition of 59 ml of additional initiator solution, 4-iodo-3,3,4,4- tetrafluorobutene-1 (ITFB) was introduced to the reactor at a feed rate of 6.38 g ITFB per 1000 g monomer. After a total of 8170 g monomer had been fed, corresponding to a total of 169 ml initiator solution, monomer and initiator feeds were discontinued and the reactor was cooled. The resulting latex had a solids content of 25.56% and a pH of 6.8. The latex was isolated by coagulation with potassium aluminum sulfate solution.
  • the crumb was filtered, washed 4 times with deionized water and dried.
  • the resulting fluoroelastomer (Polymer 4) had an inherent viscosity of 0.88 dl/g, a ML (1+10) 121 °C of 66 and contained 52.8 wt.% VF 2> 14.4 wt.% TFE, 32.7 wt.% HFP and 0.20 wt.% I.
  • the fluoroelastomer had a Tg of - 29°C.
  • Example 5 A curable composition of the invention (Sample 1 ) was made by mixing a fluoroelastomer of the invention prepared in Example 4 above (Polymer 4) with an organic peroxide, coagent and other ingredients on a conventional two-roll rubber mill, using standard mixing techniques employed in the elastomer industry.
  • a comparative curable composition (Comparative Sample A) was made by the same procedure except that a fluoroelastomer of the prior art (Control Polymer A prepared above), not containing ITFB cure site monomer units was used. The formulations are shown in Table I.
  • compositions were molded into slabs and press cured at 177°C for 7 minutes, followed by post curing at 232°C for 15 hours. Tensile properties were measured according to the Test Methods and are also shown in Table I. The slabs were then aged at 275°C in an air oven for 70 hours. The tensile properties of the aged slabs are shown in Table I.
  • the curable composition of the invention (Sample 1 ) that contains a fluoroelastomer of the invention having ITFB cure site monomer retained its tensile strength much better than the comparative composition whose fluoroelastomer lacked ITFB.

Abstract

Peroxide curable fluoroelastomers having copolymerized units of vinylidene fluoride or tetrafluoroethylene major monomer, at least one other fluorinated major monomer, a cure site monomer having the general formula CH2=CH-(CF2)nI, where n is an integer between 2 and 8, and iodine bound at the terminal positions of polymer chains, process well and have excellent tensile properties.

Description

TITLE
PEROXIDE CURABLE FLUOROELASTOMERS
FIELD OF THE INVENTION
This invention pertains to peroxide curable fluoroelastomers comprising copolymerized units of vinylidene fluoride or tetrafluoroethylene, at least one other fluorinated major monomer, and a cure site monomer having the general formula CH2=CH-(CF2)nl, where n is an integer between 2 and 8, and wherein said fluoroelastomer has iodine atoms at chain ends.
BACKGROUND OF THE INVENTION
Fluoroelastomers having excellent heat resistance, oil resistance, and chemical resistance have been used widely for sealing materials, containers and hoses. Examples of fluoroelastomers include copolymers comprising units of vinylidene fluoride (VF2) and units of at least one other copolymerizable fluorine-containing major monomer such as hexafluoropropylene (HFP), tetrafluoroethylene (TFE), chlorotrifiuoroethylene (CTFE), vinyl fluoride (VF), and a fluorovinyl ether such as a perfluoro(alkyl vinyl ether) (PAVE). Specific examples of PAVE include perfluoro(methyl vinyl ether), perfluoro(ethyl vinyl ether) and perfluoro(propyl vinyl ether). Other examples of fluoroelastomers include the copolymers of tetrafluoroethylene with a perfluoro(alkyl vinyl ether) such as perfluoro(methyl vinyl ether) (PMVE).
In order to develop the physical properties necessary for most end use applications, fluoroelastomers must be crosslinked. A preferred curing system for many end uses is the combination of an organic peroxide and a multifunctional unsaturated coagent. The coagent forms crosslinks by reacting with cure sites on the fluoroelastomer polymer chain. A preferred cure site is an iodine atom bonded to a carbon atom on the fluoroelastomer chain.
The major challenge with the use of iodine-containing cure sites in fluoroelastomers is to balance sufficient heat resistance with acceptable processability and rheology. Sufficient heat resistance is conferred by synthesizing polymers with an average minimum of 2.5 iodine atoms per chain. Fewer than an average of 2.5 iodine atoms per polymer chain results in destruction of crosslink sites during heat aging, leading to excessive amounts of dangling polymer chains that do not contribute to network strength and weaken the tensile strength of the cured article (Flory, P. J. Principles of Polymer Chemistry, p 432, Cornell University Press, 1952).
One method of introducing iodine cure sites into the fluoroelastomer is by conducting the polymerization in the presence of a chain transfer agent containing iodine. In this manner, an iodine atom is attached to the resulting fluoroelastomer polymer chain at one or both terminal positions. Such chain transfer agents typically have the formula Rln, where R may be a C1-C3 hydrocarbon, a C-i-Cβ fluorohydrocarbon or chlorofluorohydrocarbon, or a C2-Cβ perfluorocarbon, and n is 1 or 2 (U.S. Patent No. 4,243,770). However, use of an iodine-containing chain transfer agent alone in a fluoroelastomer polymerization will inevitably give rise to polymer chains containing less than two iodine atoms per chain. Therefore fluoroelastomers produced using this process have insufficient heat resistance for many applications. A solution to this difficulty is to use large amounts of iodine- containing chain transfer agents together with monomers containing two olefin moieties (U.S. Patent No. 5,585,449). The use of the diolefin- containing monomers crosslinks 2 short polymer chains during polymerization to give one larger chain that contains at least an average of 2.5 iodine atoms. However, the resulting polymer is branched and may show poor rheology and flow properties. Another common method of introducing iodine atom cure sites onto a fluoroelastomer polymer chain is by copolymerizing a minor amount of an iodine-containing fluoroolefin or fluorovinyl ether cure site monomer along with the major monomers (e.g. VF2) HFP, TFE, PAVE, etc.). In this manner, cure sites may be randomly distributed along the resulting fluoroelastomer polymer chain (U.S. Patent Nos. 4,529,759; 4,694,045). However, each iodine-containing cure site monomer that is introduced in this way itself acts as a chain transfer agent. During polymerization, these sites will serve as branch points. The resulting fluoroelastomers may be highly branched and show unacceptably poor rheology. In many cases the resulting fluoroelastomer will be branched to such a degree as to display insoluble gel (EP-A-0171290). While such polymers will display excellent physical properties such as compression set, their poor flow behavior precludes them from practical use and their gel content causes poor hot tear strength and poor demolding.
In addition, while iodine cure sites may be introduced both along the fluoroelastomer polymer chain and at terminal positions by a combination of the above methods (EP-A-0171290; and U.S. Patent No. 5,717,036), a highly branched polymer may similarly be obtained, albeit with lower overall molecular weight. In particular, the fluoroelastomer molecular weight may be too low to displace trapped air during compression molding or may lead to mold fouling, poor tensile strength, or poor compression set.
Arcella et al. (U.S. Patent No. 5,625,019) attempt to address this problem by use of a cure site in which the iodine is attached to a short length of hydrocarbon chain. In this case the cure site monomer does not serve as an active chain transfer agent during polymerization. However, during curing the reactivity of a -CH2CH2I site is less than that of a -CF2CF2I site and cure times are longer. In addition, the presence of a -CH2CH2I group during polymerization is highly retarding and excessive amounts of polymerization initiator are required in order to maintain a desirable polymerization rate.
Therefore it remains a general problem in the field of fluoroelastomers to provide a polymer that has high molecular weight, low or no branching, and contains sufficient iodine cure sites to confer adequate heat resistance.
A secondary problem in the field of fluoroelastomers is the use of monomers of the formula CH2=CH-(CF2)nl (n = 2 to 10) as cure sites. These monomers are easily prepared as described in J. Org. Chem.
42,1985-90 (1977) and are therefore of interest as a cure site monomer.
But as described in EP-A-0171290, their use in a continuous polymerization process leads to highly branched products and their use in a batch polymerization process leads to a non-uniform distribution along the polymer backbone and consequently poor physical properties.
Another difficulty when using this class of cure site monomers in a batch process is that they are so highly retarding that polymerization times are prolonged to undesirable lengths.
SUMMARY OF THE INVENTION
In one aspect, the present invention provides a peroxide curable fluoroelastomer having excellent processability and wherein the cured fluoroelastomer has excellent tensile properties. The fluoroelastomer comprises copolymerized units of (A) a first fluoromonomer selected from the group consisting of vinylidene fluoride and tetrafluoroethylene;
(B) at least one second fluoromonomer, different from said first fluoromonomer;
(C) 0.05 to 4 weight percent, based on total weight of said fluoroelastomer, of a cure site monomer having the general formula
CH2=CH-(CF2)nl, where n is an integer between 2 and 8; and (D) 0.01 to 1 weight percent, based on total weight of said fluoroelastomer, of iodine bound at terminal positions of fluoroelastomer polymer chains.
Another aspect of the present invention is a curable fluoroelastomer composition comprising:
(A) the above fluoroelastomer;
(B) an organic peroxide; and
(C) a coagent.
Another aspect of the present invention is a semibatch polymerization process for the manufacture of the above fluoroelastomer comprising:
(A) charging a reactor with a quantity of an aqueous solution comprising a surfactant;
(B) feeding to said reactor a quantity of an initial major monomer mixture to form a reaction medium, said initial major monomer mixture comprising i) from 10 to 70 weight percent, based on total weight of said monomer mixture, of a first monomer, said first monomer selected from the group consisting of vinylidene fluoride and tetrafluoroethylene, and ii) between 75 and 30 weight percent, based on total weight of said monomer mixture, of one or more additional copolymerizable monomers, different from said first monomer, wherein said additional monomer is selected from the group consisting of fluorine-containing olefins, fluorine-containing ethers, and mixtures thereof;
(C) polymerizing said monomers in the presence of a free radical initiator to form a fluoroelastomer dispersion while maintaining said reaction medium at a pH between 1 and 7, at a pressure between 0.5 and 10 MPa, and at a temperature between 25°C and 130°C; and
(D) feeding to said reactor a quantity of an incremental major monomer mixture to maintain constant pressure in said reactor, said incremental major monomer mixture comprising i) from 20 to 70 weight percent, based on total weight of said monomer mixture, of a first monomer, said first monomer selected from the group consisting of vinylidene fluoride and tetrafluoroethylene, and ii) between 80 and 30 weight percent, based on total weight of said monomer mixture, of one or more additional copolymerizable monomers, different from said first monomer, wherein said additional monomer is selected from the group consisting of fluorine-containing olefins, fluorine-containing ethers, and mixtures thereof; wherein, at a time between when 0% and 50% of said quantity of incremental major monomer mixture has been fed to said reactor, addition of a quantity of a chain transfer agent to said reactor is begun, said chain transfer agent having a formula Rlχ, where R is a perfluoroalkyl group containing 3 to 10 carbon atoms and x is 1 or 2, and wherein at a time between when 10% and 90% of said quantity of incremental major monomer mixture has been fed to said reactor, addition of a quantity of a cure site monomer to said reactor is begun, said cure site monomer having the general formula CH2=CH-(CF2)nl, where n is an integer between 2 and 8.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is directed to peroxide curable fluoroelastomers which have excellent processability and tensile properties. The fluoroelastomers mold and de-mold well with very little, if any, sticking or mold fouling.
The fluoroelastomers of this invention comprise copolymerized units of a first major monomer which may be vinylidene fluoride (VF2) or tetrafluoroethylene (TFE) and one or more additional major monomers, different from said first monomer, selected from the group consisting of fluorine-containing olefins, fluorine-containing ethers and mixtures thereof.
Preferably, the fluoroelastomers contain between 20 and 70 weight percent, based on the weight of the fluoroelastomer, of a first monomer and between 80 and 30 weight percent, total, of one or more additional major monomers. By "major monomer" is meant a monomer, other than a cure site monomer, that forms copolymerized units that make up the backbone of the fluoroelastomer polymer chain.
According to the present invention, fluorine-containing olefins copolymerizable with the first monomer include, but are not limited to, vinylidene fluoride, hexafluoropropylene (HFP), tetrafluoroethylene (TFE), 1 ,2,3,3,3-pentafluoropropene (1-HPFP), chlorotrifiuoroethylene (CTFE) and vinyl fluoride.
The fluorine-containing ethers employed in the present invention include, but are not limited to perfluoro(alkyl vinyl ethers), perfluoro(alkyl alkenyl ethers) and perfluoro(alkoxy alkenylethers).
Perfluoro(alkyl vinyl ethers) (PAVE) suitable for use as monomers include those of the formula
Figure imgf000008_0001
where Rf and Rf are different linear or branched perfluoroalkylene groups of 2-6 carbon atoms, m and n are independently 0-10, and Rf is a perfluoroalkyl group of 1-6 carbon atoms.
A preferred class of perfluoro(alkyl vinyl ethers) includes compositions of the formula
CF2=CFO(CF2CFXO)nRf (II) where X is F or CF3, n is 0-5, and Rf is a perfluoroalkyl group of 1-6 carbon atoms. A most preferred class of perfluoro(alkyl vinyl ethers) includes those ethers wherein n is 0 or 1 and Rf contains 1-3 carbon atoms. Examples of such perfluorinated ethers include perfluoro(methyl vinyl ether) (PMVE) and perfluoro(propyl vinyl ether) (PPVE). Other useful monomers include compounds of the formula
CF2=CFO[(CF2)mCF2CFZO]nRf (III) where Rf is a perfluoroalkyl group having 1-6 carbon atoms, m = 0 or 1 , n = 0-5, and Z = F or CF3. Preferred members of this class are those in which Rf is C3F , m = 0, and n = 1. Additional perfluoro(alkyl vinyl ether) monomers include compounds of the formula
CF2=CFO[(CF2CF{CF3}O)n(CF2CF2CF2O)m(CF2)p]CxF2χ+ι (IV) where m and n independently = 0-10, p = 0-3, and x = 1-5. Preferred members of this class include compounds where n = 0-1 , m = 0- 1 , and x = 1.
Other examples of useful perfluoro(alkyl vinyl ethers) include CF2=CFOCF2CF(CF3)O(CF2O)mCnF2n+ι (V) where n = 1-5, m = 1-3, and where, preferably, n = 1. Perfluoro(alkyl alkenyl ethers) suitable for use as monomers include those of the formula VI
RfO(CF2)nCF=CF2 (VI) where Rf is a perfluorinated linear or branched aliphatic group containing 1-20, preferably 1-10, and most preferably 1-4 carbon atoms and n is an integer between 1 and 4. Specific examples include, but are not limited to perfluoro(propoxyallyl ether) and perfluoro(propoxybutenyl ether).
Perfluoro(alkoxy alkenyl ethers) differ from perfluoro(alkyl alkenyl ethers) in that Rf in formula VI contains at least one oxygen atom in the aliphatic chain. A specific example includes, but is not limited to perfluoro(methoxyethoxyallyl ether).
If copolymerized units of a fluorine-containing ether are present in the fluoroelastomers of the invention, the ether unit content generally ranges from 25 to 75 weight percent, based on the total weight of the fluoroelastomer. If perfluoro(methyl vinyl) ether is used, then the fluoroelastomer preferably contains between 30 and 55 wt.% copolymerized PMVE units.
The fluoroelastomers of the present invention also contain copolymerized units of a cure site monomer of the general formula CH2=CH-(CF2)nl, where n is an integer between 2 and 8. Preferably, n is 2 and the cure site monomer is 4-iodo-3,3,4,4-tetrafluorobutene-1 (ITFB). Units of cure site monomer are typically present in fluoroelastomers at a level of 0.05 to 4 wt.%, preferably 0.1 to 2 wt.% and most preferably between 0.2 and 1 wt%.
Additionally, iodine-containing endgroups are present at one or both of the fluoroelastomer polymer chain ends as a result of the use of chain transfer or molecular weight regulating agents during preparation of the fluoroelastomers. The amount of chain transfer agent is calculated to result in an iodine level (not including iodine from the cure site monomer) in the fluoroelastomer in the range of 0.005 to 2 wt.%, preferably 0.05 to 1 wt.%, most preferably 0.075 to 0.5 wt.%. The chain transfer agent is of the formula Rlχ where R is a perfluoroalkyl or a chloroperfluoroalkyl group having 3 to 10 carbon atoms and x is 1 or 2. The chain transfer agent employed may actually be a mixture of compounds having the latter general formula. Specific examples include, but are not limited to 1 ,3-diiodoperfluoropropane; 1 ,4- diiodoperfluorobutane; 1 ,6-diiodoperfluorohexane; 1 ,8- diiodoperfluorooctane; 1 ,10-diiodoperfluorodecane; and monoiodoperfluorobutane. Other chain transfer agents such as those of formula RBrnlm (R is as defined above; n and m each are 1 or 2) may also be used. Particularly preferred are diiodinated perfluoroalkane chain transfer agents and mixtures thereof.
Specific examples of preferred fluoroelastomers of this invention include fluoroelastomers comprising copolymerized units of i) 30 to 60 wt.% VF2/ 15 to 30 wt.% TFE/ 25 to 45 wt.% HFP/ 0.1 to 0.4 wt.% ITFB and 0.05 to 0.40 wt.% I at chain ends; ii) 20 to 65 wt.% VF2/ 5 to 30 wt.% TFE/ 30 to 45 wt.% PMVE/ 0.1 to 0.4 wt.% ITFB and 0.05 to 0.40 wt.% I at chain ends; and iii) 44 to 60 wt.% TFE/ 39 to 55 wt.% PMVE/ 0.1 to 0.4 wt.% ITFB and 0.05 to 0.40 wt.% I at chain ends.
The fluoroelastomers of this invention have a minimum number average molecular weight (Mn) of 70,000 and very little, if any, branching. Branching causes gel, a high molecular weight, insoluble portion of a fluoroelastomer gum. Thus, the relative amount of branching in a polymer may be determined by measuring the weight percent (based on total weight of fluoroelastomer) of undissolved solids (i.e. gel) remaining from an otherwise dissolved fluoroelastomer. An appropriate solvent for the vinylidene fluoride-containing fluoroelastomers of this invention is methyl ethyl ketone. Fluorinert™ FC-77 (available from 3M) may be used for the TFE/PMVE fluoroelastomers of this invention. A 1 wt.% dispersion of fluoroelastomer in solvent is allowed to sit overnight at room temperature. The dispersion is then separated by filtration or centrifugation and the solids measured directly by weighing, or indirectly by first determining the amount of dissolved fluoroelastomer in the filtrate or supernatant (U.S.
Patent No. 4,320,216). The fluoroelastomers of this invention contain less than 5 wt.% gel, preferably less than 2 wt.% gel, most preferably less than 1 wt.% gel. Due to such low gel levels, the fluoroelastomers of this invention have excellent hot tear strength and are easily removed from molds.
In the semi-batch emulsion polymerization process of this invention, a gaseous major monomer mixture of a desired composition (initial major monomer charge) is introduced into a reactor which contains an aqueous solution. The reactor is typically not completely filled with the aqueous solution, so that a vapor space remains. The aqueous solution comprises a fluorosurfactant dispersing agent such as ammonium perfluorooctanoate, Zonyl® FS-62 (available from DuPont) or Forafac® 1033D (available from Atofina). Optionally, the aqueous solution may contain a pH buffer, such as a phosphate or acetate buffer for controlling the pH of the polymerization reaction. Instead of a buffer, a base, such as NaOH may be used to control pH. Generally, pH is controlled to between 1 and 7 (preferably 3-7), depending upon the type of fluoroelastomer being made. Alternatively, or additionally, pH buffer or base may be added to the reactor at various times throughout the polymerization reaction, either alone or in combination with other ingredients such as polymerization initiator, liquid cure site monomer or chain transfer agent. Also optionally, the initial aqueous solution may contain a water-soluble inorganic peroxide polymerization initiator such as ammonium persulfate (or other persulfate salt), or the combination of an inorganic peroxide and a reducing agent such as the combination of ammonium persulfate and sodium sulfite. The initial monomer charge contains a quantity of a first major monomer of either TFE or VF2 and one or more additional major monomers which are different from the first monomer. The amount of major monomer mixture contained in the initial charge is set so as to result in a reactor pressure between 0.5 and 10 MPa (preferably between 0.5 and 3.5 MPa). In the initial gaseous monomer charge, the relative amount of each monomer is dictated by reaction kinetics and is set so as to result in a fluoroelastomer having the desired ratio of copolymerized monomer units (i.e. very slow reacting monomers must be present in a higher amount relative to the other monomers than is desired in the composition of the fluoroelastomer to be produced).
The major monomer mixture is dispersed in the aqueous medium and a chain transfer agent may also be introduced at this point while the reaction mixture is agitated, typically by mechanical stirring. Alternatively, the chain transfer agent may be introduced at any point up to when 50% (preferably prior to 20%) of the total amount of incremental major monomer mixture (as defined hereinafter) has been fed to the reactor. The entire amount of chain transfer agent may be added at one time, or addition may be spread out over time, up to the point when 100% of the incremental major monomer mixture has been added to the reactor. Most preferably, the chain transfer agent is introduced to the reactor before polymerization begins, or shortly thereafter, and the entire amount of chain transfer agent is fed to the reactor by the time that 5% of the total amount of incremental major monomer mixture has been fed to the reactor.
The temperature of the semi-batch reaction mixture is maintained in the range of 25°C - 130°C, preferably 30°C - 90°C. Polymerization begins when the initiator either thermally decomposes or reacts with reducing agent and the resulting radicals react with dispersed monomer. Additional quantities of the major monomers (referred to herein as incremental major monomer mixture feed) are added at a controlled rate throughout the polymerization in order to maintain a constant reactor pressure at a controlled temperature. The relative ratio of major monomers contained in the incremental major monomer mixture feed is set to be approximately the same as the desired ratio of copolymerized monomer units in the resulting fluoroelastomer. Thus, the incremental major monomer mixture feed contains between 20 and 70 weight percent, based on the total weight of the monomer mixture, of a first monomer of either TFE or VF2 and 80 to 30 weight percent (total) of one or more additional major monomers that are different from the first monomer. Additional chain transfer agent may also, optionally, be continued to be added to the reactor at any point during this stage of the polymerization. Additional fluorosurfactant and polymerization initiator may also be fed to the reactor during this stage. The amount of polymer formed is approximately equal to the cumulative amount of incremental major monomer mixture feed. One skilled in the art will recognize that the molar ratio of monomers in the incremental major monomer mixture feed is not necessarily exactly the same as that of the desired copolymerized monomer unit composition in the resulting fluoroelastomer because the composition of the initial charge may not be exactly that required for the desired final fluoroelastomer composition, or because a portion of the monomers in the incremental major monomer mixture feed may dissolve into the polymer particles already formed, without reacting.
After 10% of the total amount of incremental major monomer mixture has been charged to the reactor, but prior to when 90% of the incremental major monomer mixture has been fed to the reactor, a stream of cure site monomer is begun to be fed to the reactor at a rate so as to result in the entire amount of cure site monomer being fed to the reactor by the time that 99% of the incremental major monomer mixture has been fed. Preferably, cure site monomer feed to the reactor is begun after 25% of the incremental major monomer mixture has been fed, most preferably, after 33% of the incremental major monomer mixture has been fed to the reactor.
If cure site monomer is begun to be introduced to the reactor prior to when 10% of incremental major monomer mixture has been fed, the polymerization rate will be severely retarded or completely quenched. If cure site monomer is begun to be added after 90% of the incremental major monomer mixture has been fed, the resulting fluoroelastomer will have poor heat resistance, indicating poor incorporation of cure site monomer along the growing polymer chains. Surprisingly, desirable fluoroelastomer may be produced when cure site monomer feed is started any time between when 10% and 90% of the total amount of incremental major monomer mixture has been fed to the reactor. Those skilled in the art would predict that cure site monomer should be added from the beginning of the reaction in order to obtain polymer having desirable properties.
Total polymerization times in the range of from 2 to 30 hours are typically employed in this semi-batch polymerization process.
The resulting fluoroelastomer dispersion may be isolated, filtered, washed and dried by conventional techniques employed in the fluoroelastomer manufacturing industry.
Peroxide curable fluoroelastomer compositions of this invention comprise a) a fluoroelastomer of this invention (as defined above), b) an organic peroxide, and c) a coagent. Preferably, the compositions also contain an acid acceptor such as a divalent metal hydroxide, a divalent metal oxide, a strongly basic (i.e. pKa>10) organic amine such as ProtonSponge® (available from Aldrich), or a combination of any of the latter. Examples of divalent metal oxides and hydroxides include CaO, Ca(OH)2 and MgO. Organic peroxides suitable for use include, but are not limited to 1 , 1 -bis(t-butylperoxy)-3,5,5-trimethylcyclohexane; 1 , 1 -bis(t- butylperoxy)cyclohexane; 2,2-bis(t-butylperoxy)octane; n-butyl-4, 4-bis(t- butylperoxy)valerate; 2,2-bis(t-butylperoxy)butane; 2,5-dimethylhexane- 2,5-dihydroxyperoxide; di-t-butyl peroxide; t-butylcumyl peroxide; dicumyl peroxide; alpha, alpha'-bis(t-butylperoxy-m-isopropyl)benzene; 2,5-dimethyl-2,5-di(t-butylperoxy)hexane; 2,5-dimethyl-2,5-di(t- butylperoxy)hexene-3; benzoyl peroxide, t-butylperoxybenzene; 2,5- dimethyl-2,5-di(benzoylperoxy)-hexane; t-butylperoxymaleic acid; and t- butylperoxyisopropylcarbonate. Preferred examples of organic peroxides include 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, dicumyl peroxide, and alpha, alpha'-bis(t-butylperoxy-m-isopropyl)benzene. The amount compounded is generally in the range of 0.05-5 parts by weight, preferably in the range of 0.1-3 parts by weight per 100 parts by weight of the fluoroelastomer. This particular range is selected because if the peroxide is present in an amount of less than 0.05 parts by weight, the vulcanization rate is insufficient and causes poor mold release. On the other hand, if the peroxide is present in amounts of greater than 5 parts by weight, the compression set of the cured polymer becomes unacceptably high. In addition, the organic peroxides may be used singly or in combinations of two or more types.
Coagents employed in the curable compositions of this invention are polyfunctional unsaturated compounds such as triallyl cyanurate, trimethacryl isocyanurate, triallyl isocyanurate, trimethallyl isocyanurate, triacryl formal, triallyl trimellitate, N.N'-m-phenylene bismaleimide, diallyl phthalate, tetraallylterephthalamide, tri(diallylamine)-s-triazine, triallyl phosphite, bis-olefins and N,N-diallylacrylamide. The amount compounded is generally in the range of 0.1-10 parts by weight per 100 parts by weight of the fluoroelastomer. This particular concentration range is selected because if the coagent is present in amounts less than 0.1 part by weight, crosslink density of the cured polymer is unacceptable. On the other hand, if the coagent is present in amounts above 10 parts by weight, it blooms to the surface during molding, resulting in poor mold release characteristics. The preferable range of coagent is 0.2-6 parts by weight per 100 parts fluoroelastomer. The unsaturated compounds may be used singly or as a combination of two or more types.
Optionally, other components, for example fillers such as carbon black, Austin black, graphite, thermoplastic fluoropolymer micropowders, silica, clay, diatomaceous earth, talc, wollastonite, calcium carbonate, calcium silicate, calcium fluoride, and barium sulfate; processing aides such as higher fatty acid esters, fatty acid calcium salts, fatty acidamides (e.g. erucamide), low molecular weight polyethylene, silicone oil, silicone grease, stearic acid, sodium stearate, calcium stearate, magnesium stearate, aluminum stearate, and zinc stearate; coloring agents such as titanium white and iron red may be used as compounding additives in the compositions of this invention. The amount of such filler is generally in the range of 0.1-100 parts by weight, preferably 1-60 parts by weight, per 100 parts by weight of the fluoroelastomer. This range is selected because if the filler is present in amounts of less than 0.1 part by weight, there is little or no effect, while, on the other hand, if greater than 100 parts by weight are used, elasticity is sacrificed. The amount of processing aid compounded is generally less than 10 parts by weight, preferably less than 5 parts by weight, per 100 parts by weight of the fluoroelastomer. If the amount used is above the limit, heat resistance is adversely affected. The amount of a coloring agent compounded is generally less than 50 parts by weight, preferably less than 30 parts by weight per 100 parts by weight of the fluoroelastomer. If greater than 50 parts by weight is used, compression set suffers.
The fluoroelastomer, organic peroxide, coagent, and any other ingredients are generally incorporated into the curable compositions of the invention by means of an internal mixer or rubber mill. The resulting composition may then be shaped (e.g. molded or extruded) and cured. Curing typically takes place at about 150°-200°C for 1 to 60 minutes. Conventional rubber curing presses, molds, extruders, and the like provided with suitable heating and curing means can be used. Also, for optimum physical properties and dimensional stability, it is preferred to carry out a post curing operation wherein the molded or extruded article is heated in an oven or the like for an additional period of about 1-48 hours, typically from about 180°-275°C, generally in an air atmosphere.
The fluoroelastomers of this invention are useful in many industrial applications including seals, wire coatings, tubing and laminates.
EXAMPLES
TEST METHODS Mooney viscosity, ML (1 + 10), was determined according to ASTM D1646 with an L (large) type rotor at 121 °C (unless otherwise noted), using a preheating time of one minute and rotor operation time of 10 minutes.
Inherent viscosities were measured at 30°C. Methyl ethyl ketone was employed as solvent (0.1 g polymer in 100 ml solvent) for fluoroelastomers that contained copolymerized units of vinylidene fluoride. A mixed solvent of 60/40/3 volume ratio of heptafluoro-2,2,3- trichlorobutane, perfluoro(α-butyltetrahydrofuran) and ethylene glycol dimethyl ether was used (0.2 g polymer in 100 ml solvent) for fluoroelastomers containing copolymerized units of tetrafluoroethylene and perfluoro(methyl vinyl ether).
Tensile Properties
The following physical property parameters were recorded; test methods are in parentheses: TB: tensile strength in units of MPa (ISO 37)
EB: elongation at break in units of % (ISO 37) Tg: glass transition temperature was measured by differential scanning calorimetry using a 10°C/minute heating rate. Hardness (Shore A, ISO 868)
The invention is further illustrated by, but is not limited to, the following examples.
Example 1
A 40 liter reactor was charged with a solution containing 290 grams of ammonium perfluorooctanoate and 24,710 grams of water. The solution was heated to 80°C. After removal of trace oxygen, the reactor was then charged with 732 grams of a mixture of 52.7 wt.% vinylidene fluoride (VF2), 42.4 wt.% perfluoro(methyl vinyl ether) (PMVE), and 4.9 wt.% tetrafluoroethylene (TFE), bringing reactor pressure to 1453 kPa. A 32.0 g mixture of 49.3 mol% 1 ,4-diiodoperfluorobutane, 34.8 mol% 1 ,6- diiodoperfluorohexane, 12.6 mol% 1 ,8-diiodoperfluorooctane, and 3.3 mol% 1 ,10-perfluorodecane was then charged to the reactor and the reactor was agitated for 60 minutes. The reactor was then charged with 50 ml of a buffered aqueous polymerization initiator solution containing 1 wt.% ammonium persulfate and 5 wt.% disodium phosphate. As reactor pressure dropped due to monomer consumption in the polymerization reaction, the reactor was fed with a mixture (incremental feed) of 54.7 wt.% VF2, 34.8 wt.% PMVE and 10.5 wt.% TFE. Additional initiator solution was added to maintain polymerization rate. After 4000 grams of the latter monomer mixture had been fed, corresponding to 77 ml total initiator solution added, the liquid cure site monomer 4-iodo-3,3,4,4- tetrafluorobutene-1 (ITFB) was introduced to the reactor at a feed rate of 3.19 g ITFB per 1000 g monomer. After a total incremental feed of 8170 grams of major monomer had been introduced to the reactor, corresponding to 131 ml initiator solution and 13.3 g ITFB, both the monomer and initiator feeds were discontinued and the reactor was cooled. The resulting dispersion had a solids content of 25.2 wt.% and a pH of 5.3. The fluoroelastomer was isolated by acidification to pH 3 with sulfuric acid and coagulation with potassium alum solution. The crumb was filtered, washed with deionized water and dried. The resulting fluoroelastomer (Polymer 1 ) had an inherent viscosity of 0.99 dl/g, a ML (1 +10) at 121 °C of 78 and contained 53.6 wt.% copolymerized units of VF2, 33.3 wt.% PMVE, 13.0 wt.% TFE and 0.18 wt.% I. The number average molecular weight (Mn) was 185,600 as determined by size exclusion chromatography.
Example 2
125.0 g of Forafac® 1033D surfactant solution and 27.7 g of disodium phosphate heptahydrate were added to 24,847 g of deionized water. This was charged to a 40 liter reactor and the solution heated to 80°C. Trace oxygen was removed from the reactor. The reactor was then charged with 2275 g of a mixture of 28.1 wt.% tetrafluoroethylene (TFE) and 71.9 wt.% perfluoro(methyl vinyl ether) (PMVE). This brought the reactor pressure to 2101 kPa. Then 40.0 ml of a 1 wt.% ammonium persulfate/5% disodium phosphate heptahydrate aqueous initiator solution was charged to the reactor to initiate polymerization. As the reactor pressure dropped due to monomer consumption, the reactor was fed with a mixture of 51.8 wt.% TFE and 48.2 wt.% PMVE to maintain the reactor pressure at 2101 kPa. After 90 g of this monomer mixture had been fed, 23.6 g of a mixture of 49.3 mol% 1 ,4-diiodoperfluorobutane, 34.8 mol% 1 ,6- diiodoperfluorohexane, 12.6 mol% 1 ,8-diiodoperfluorooctane, and 3.3 mol% 1 ,10-diiodoperfluorodecane was charged to the reactor. Additional initiator solution was added to maintain polymerization rate. After 4170 g of the latter monomer mixture had been fed, corresponding to the addition of 3 ml of initiator solution, 4-iodo-3,3,4,4-tetrafluorobutene-1 (ITFB) was introduced to the reactor at a feed rate of 4.59 g ITFB per 1000 g monomer. After a total of 8333 g incremental major monomer had been fed, corresponding to a total of 112 ml initiator solution and 19.1 g ITFB, monomer and initiator feed was discontinued and the reactor was cooled. The resulting latex had a solids content of 22.8% and a pH of 3.62. The latex was isolated by coagulation with aluminum sulfate solution. The crumb was filtered, washed 4 times with deionized water and dried. The resulting fluoroelastomer (Polymer 2) had an inherent viscosity of 0.31 dl/g, a ML(1 +10) at 149°C of 68 and contained 55.4 wt.% TFE, 44.5 wt.% PMVE and 0.22 wt.% I. The fluoroelastomer had a glass transition temperature of 2.9°C.
Example 3
110.0 g of Zonyl® FS-62 surfactant solution and 16.3 g of 20% sodium hydroxide solution were added to 27,373.7 g of deionized water. This was charged to a 40 liter reactor and the solution heated to 80°C. Trace oxygen was removed from the reactor. The reactor was then charged with 948 g of a mixture of 25.0 wt.% vinylidene fluoride, 72.8 wt.% hexafluoropropylene (HFP), and 2.2 wt.% tetrafluoroethylene to a pressure of 1618 kPa. Then 90.0 ml of a 1 wt.% ammonium persulfate initiator aqueous solution was charged to the reactor to initiate polymerization. As the reactor pressure dropped due to monomer consumption, the reactor was fed with a mixture of 50.0 wt.% VF2, 30.0 wt.% HFP, and 20.0 wt.% TFE to maintain the reactor pressure at 1618 kPa. After 90 g of monomer had been fed to the reactor, 38.7 g of a mixture of 49.3 mol% 1 ,4- diiodoperfluorobutane, 34.8 mol% 1 ,6-diiodoperfluorohexane, 12.6 mol% 1 ,8-diiodoperfluorooctane, and 3.3 mol% 1 ,10-diiodoperfluorodecane was charged to the reactor. Additional initiator solution was added to maintain polymerization rate. After 4625 g of the latter monomer mixture had been fed, corresponding to the addition of 62 ml of additional initiator solution, 4- iodo-3,3,4,4-tetrafluorobutene-1 (ITFB) was introduced to the reactor at a feed rate of 3.20 g ITFB per 1000 g monomer. After a total of 9250 g monomer had been fed, corresponding to a total of 194 ml initiator solution and 14.80 g ITFB, monomer and initiator feeds were discontinued and the reactor was cooled. The resulting latex had a solids content of 26.48% and a pH of 2.68. The latex was isolated by coagulation with aluminum sulfate solution. The crumb was filtered, washed 4 times with deionized water and dried. The resulting fluoroelastomer (Polymer 3) had an inherent viscosity of 0.43 dl/g, a ML (1+10) 121°C of 50 and contained 49.8 wt.% VF2, 19.5 wt.% TFE, 30.5 wt.% HFP and 0.20 wt.% I. The fluoroelastomer had a Tg of -17°C.
Control Example A
313.2 g of ammonium perfluorooctanoate surfactant solution were added to 24,686.6 g of deionized water. This was charged to a 40 liter reactor and the solution heated to 80°C. Trace oxygen was removed from the reactor. Then 32.0 g of a mixture of 49.3 mol% 1 ,4- diiodoperfluorobutane, 34.8 mol% 1 ,6-diiodoperfluorohexane, 12.6 mol% 1 ,8-diiodoperfluorooctane, and 3.3 mol% 1 ,10-diiodoperfluorodecane was charged to the reactor. The reactor was agitated for 15 minutes. The reactor was then charged with 650 g of a mixture of 43.0 wt.% VF2, 50.0 wt.% PMVE, and 7.0 wt.% TFE to a pressure of 1280 kPa. Then 40.0 ml of a 1 wt.% ammonium persulfate/5 wt.% disodium phosphate heptahydrate initiator aqueous solution was charged to the reactor to initiate polymerization. As the reactor pressure dropped due to monomer consumption, the reactor was fed with a mixture of 55.0 wt.% VF2, 35.0 wt.% PMVE, and 10.0 wt.% TFE to maintain the reactor pressure at 1280 kPa. Additional initiator solution was added to maintain polymerization rate. After a total of 8170 g monomer had been fed, corresponding to a total of 101 ml initiator solution, monomer and initiator feeds were discontinued and the reactor was cooled. The resulting latex had a solids content of 26.17% and a pH of 3.96. The latex was isolated by coagulation with potassium aluminum sulfate solution. The crumb was filtered, washed 4 times with deionized water and dried. The resulting fluoroelastomer (Control Polymer A) had an inherent viscosity of 0.83 dl/g, a ML(1 +10) 121 °C of 64 and contained 54.0 wt.% VF2, 11.8 wt.% TFE, 34.1 wt.% HFP and 0.12 wt.% I. The fluoroelastomer had a Tg of -29°C.
Example 4
313.2 g of ammonium perfluorooctanoate surfactant solution were added to 24,686.6 g of deionized water. This was charged to a 40 liter reactor and the solution heated to 80°C. Trace oxygen was removed from the reactor. Then 32.0 g of a mixture of 49.3 mol% 1 ,4- diiodoperfluorobutane, 34.8 mol% 1 ,6-diiodoperfluorohexane, 12.6 mol% 1 ,8-diiodoperfluorooctane, and 3.3 mol% 1 ,10-diiodoperfluorodecane was charged to the reactor. The reactor was agitated for 60 minutes. The reactor was charged with 732 g of a mixture of 42.2 wt. % VF2, 52.8 wt.% PMVE, and 5.0 wt.% TFE to a pressure of 1452 kPa. Then 50.0 ml of a 1 wt.% ammonium persulfate/5 wt.% disodium phosphate heptahydrate aqueous initiator solution was charged to the reactor to initiate polymerization. As the reactor pressure dropped due to monomer consumption, the reactor was fed with a mixture of 55.0 wt. % VF2, 35.0 wt.% PMVE, and 10.0 wt.% TFE to maintain the reactor pressure at 1452 kPa. Additional initiator solution was added to maintain polymerization rate. After 6085 g of this monomer mixture had been fed, corresponding to the addition of 59 ml of additional initiator solution, 4-iodo-3,3,4,4- tetrafluorobutene-1 (ITFB) was introduced to the reactor at a feed rate of 6.38 g ITFB per 1000 g monomer. After a total of 8170 g monomer had been fed, corresponding to a total of 169 ml initiator solution, monomer and initiator feeds were discontinued and the reactor was cooled. The resulting latex had a solids content of 25.56% and a pH of 6.8. The latex was isolated by coagulation with potassium aluminum sulfate solution. The crumb was filtered, washed 4 times with deionized water and dried. The resulting fluoroelastomer (Polymer 4) had an inherent viscosity of 0.88 dl/g, a ML (1+10) 121 °C of 66 and contained 52.8 wt.% VF2> 14.4 wt.% TFE, 32.7 wt.% HFP and 0.20 wt.% I. The fluoroelastomer had a Tg of - 29°C.
Example 5 A curable composition of the invention (Sample 1 ) was made by mixing a fluoroelastomer of the invention prepared in Example 4 above (Polymer 4) with an organic peroxide, coagent and other ingredients on a conventional two-roll rubber mill, using standard mixing techniques employed in the elastomer industry. A comparative curable composition (Comparative Sample A) was made by the same procedure except that a fluoroelastomer of the prior art (Control Polymer A prepared above), not containing ITFB cure site monomer units was used. The formulations are shown in Table I.
The compositions were molded into slabs and press cured at 177°C for 7 minutes, followed by post curing at 232°C for 15 hours. Tensile properties were measured according to the Test Methods and are also shown in Table I. The slabs were then aged at 275°C in an air oven for 70 hours. The tensile properties of the aged slabs are shown in Table I. The curable composition of the invention (Sample 1 ) that contains a fluoroelastomer of the invention having ITFB cure site monomer retained its tensile strength much better than the comparative composition whose fluoroelastomer lacked ITFB.
TABLE I
Figure imgf000024_0001
1 parts by weight per hundred parts rubber (i.e. fluoroelastomer)
2 2 4455 w wtt..%% 22,,55--dimethyl-2,5-di-(t-butylperoxy)hexane on an inert filler (available from Atofina)

Claims

WHAT IS CLAIMED IS:
1. A fluoroelastomer comprising copolymerized units of
(A) a first fluoromonomer selected from the group consisting of vinylidene fluoride and tetrafluoroethylene;
(B) at least one second fluoromonomer, different from said first fluoromonomer;
(C) 0.05 to 4 weight percent, based on total weight of said fluoroelastomer, of a cure site monomer having the general formula CH2=CH-(CF2)nl, where n is an integer between 2 and 8; and
(D) 0.01 to 1 weight percent, based on total weight of said fluoroelastomer, of iodine bound at terminal positions of fluoroelastomer polymer chains.
2. A fluoroelastomer of claim 1 wherein said cure site monomer is 4-iodo-3,3,4,4-tetrafluorobutene-1.
3. A fluoroelastomer of claim 1 wherein said first fluoromonomer is vinylidene fluoride.
4. A fluoroelastomer of claim 1 wherein said first fluoromonomer is vinylidene fluoride and wherein said second fluoromonomer is selected from the group consisting of fluorine-containing olefins, fluorine-containing ethers, and mixtures thereof.
5. A fluoroelastomer of claim 4 wherein said second fluoromonomer is selected from the group consisting of hexafluoropropylene, tetrafluoroethylene, 1 ,2,3,3,3-pentafluoropropene, chlorotrifiuoroethylene, vinyl fluoride and perfluoro(methyl vinyl ether).
6. A fluoroelastomer of claim 1 wherein said first fluoromonomer is tetrafluoroethylene.
7. A fluoroelastomer of claim 1 wherein said first fluoromonomer is tetrafluoroethylene and wherein said second fluoromonomer is selected from the group consisting of fluorine-containing olefins, fluorine-containing ethers, and mixtures thereof.
8. A fluoroelastomer of claim 7 wherein said second fluoromonomer is selected from the group consisting of hexafluoropropylene, vinylidene fluoride, 1 ,2,3,3,3-pentafluoropropene, chlorotrifiuoroethylene, vinyl fluoride and perfluoro(methyl vinyl ether).
9. A fluoroelastomer of claim 1 comprising copolymerized units of 30 to 60 wt.% vinylidene fluoride, 15 to 30 wt.% tetrafluoroethylene, 25 to 45 wt.% hexafluoropropylene, 0.1 to 0.4 wt.% 4-iodo-3,3,4,4- terafluorobutene-1 and 0.05 to 0.40 wt.% I at chain ends.
10. A fluoroelastomer of claim 1 comprising copolymerized units of 20 to 65 wt.% vinylidene fluoride, 5 to 30 wt.% tetrafluoroethylene, 30 to
45 wt.% perfluoro(methyl vinyl ether), 0.1 to 0.4 wt.% 4-iodo-3, 3,4,4- tetrafluorobutene-1 and 0.05 to 0.40 wt.% I at chain ends.
11. A fluoroelastomer of claim 1 comprising copolymerized units of 44 to 60 wt.% tetrafluoroethylene, 39 to 55 wt.% perfluoro(methyl vinyl ether), 0.1 to 0.4 wt.% 4-iodo-3,3,4,4-tetrafluorobutene-1 and 0.05 to 0.40 wt.% I at chain ends.
12. A curable fluoroelastomer composition comprising:
(A) a fluoroelastomer comprising (i) a first fluoromonomer selected from the group consisting of vinylidene fluoride and tetrafluoroethylene; (ii) at least one second fluoromonomer, different from said first fluoromonomer; (iii) 0.05 to 4 weight percent, based on total weight of said fluoroelastomer, of a cure site monomer having the general formula CH2=CH-(CF2)nl, where n is an integer between 2 and 8; and (iv) 0.01 to 1 weight percent, based on total weight of said fluoroelastomer, of iodine bound at terminal positions of fluoroelastomer polymer chains;
(B) an organic peroxide; and
(C) a coagent.
13. A curable fluoroelastomer composition of claim 12 further comprising (D) an acid acceptor.
14. A curable fluoroelastomer composition of claim 13 wherein said acid acceptor is selected from the group consisting of a divalent metal oxide, a divalent metal hydroxide, an organic amine having a pKa greater than 10, and mixtures thereof.
15. A curable fluoroelastomer composition of claim 12 wherein said fluoroelastomer cure site monomer is 4-iodo-3,3,4,4- tetrafluorobutene-1.
16. A curable fluoroelastomer composition of claim 12 wherein said first fluoromonomer in said fluoroelastomer is vinylidene fluoride.
17. A curable fluoroelastomer composition of claim 12 wherein said first fluoromonomer in said fluoroelastomer is vinylidene fluoride and wherein said second fluoromonomer is selected from the group consisting of fluorine-containing olefins, fluorine-containing ethers, and mixtures thereof.
18. A curable fluoroelastomer composition of claim 17 wherein said second fluoromonomer is selected from the group consisting of hexafluoropropylene, tetrafluoroethylene, 1 ,2,3,3,3-pentafluoropropene, chlorotrifiuoroethylene, vinyl fluoride and perfluoro(methyl vinyl ether).
19. A curable fluoroelastomer composition of claim 12 wherein said first fluoromonomer in said fluoroelastomer is tetrafluoroethylene.
20. A curable fluoroelastomer composition of claim 12 wherein said first fluoromonomer in said fluoroelastomer is tetrafluoroethylene and wherein said second fluoromonomer is selected from the group consisting of fluorine-containing olefins, fluorine-containing ethers, and mixtures thereof.
21. A curable fluoroelastomer composition of claim 20 wherein said second fluoromonomer is selected from the group consisting of hexafluoropropylene, vinylidene fluoride, 1 ,2,3,3,3-pentafluoropropene, chlorotrifiuoroethylene, vinyl fluoride and perfluoro(methyl vinyl ether).
22. A curable fluoroelastomer composition of claim 12 wherein said fluoroelastomer comprises copolymerized units of 30 to 60 wt.% vinylidene fluoride, 15 to 30 wt.% tetrafluoroethylene, 25 to 45 wt.% hexafluoropropylene, 0.1 to 0.4 wt.% 4-iodo-3,3,4,4-terafluorobutene-1 and 0.05 to 0.40 wt.% I at chain ends.
23. A curable fluoroelastomer composition of claim 12 wherein said fluoroelastomer comprises copolymerized units of 20 to 65 wt.% vinylidene fluoride, 5 to 30 wt.% tetrafluoroethylene, 30 to 45 wt.% perfluoro(methyl vinyl ether), 0.1 to 0.4 wt.% 4-iodo-3,3,4,4- tetrafluorobutene-1 and 0.05 to 0.40 wt.% I at chain ends.
24. A curable fluoroelastomer composition of claim 12 wherein said fluoroelastomer comprises copolymerized units of 44 to 60 wt.% tetrafluoroethylene, 39 to 55 wt.% perfluoro(methyl vinyl ether), 0.1 to 0.4 wt.% 4-iodo-3,3,4,4-tetrafluorobutene-1 and 0.05 to 0.40 wt.% I at chain ends.
25. A semibatch polymerization process for the manufacture of a fluoroelastomer comprising: (A) charging a reactor with a quantity of an aqueous solution comprising a surfactant;
(B) feeding to said reactor a quantity of an initial major monomer mixture to form a reaction medium, said initial major monomer mixture comprising i) from 10 to 70 weight percent, based on total weight of said monomer mixture, of a first monomer, said first monomer selected from the group consisting of vinylidene fluoride and tetrafluoroethylene, and ii) between 75 and 30 weight percent, based on total weight of said monomer mixture, of one or more additional copolymerizable monomers, different from said first monomer, wherein said additional monomer is selected from the group consisting of fluorine-containing olefins, fluorine-containing ethers, and mixtures thereof;
(C) polymerizing said monomers in the presence of a free radical initiator to form a fluoroelastomer dispersion while maintaining said reaction medium at a pH between 1 and 7, at a pressure between 0.5 and 10 MPa, and at a temperature between 25°C and 130°C; and (D) feeding to said reactor a quantity of an incremental major monomer mixture to maintain constant pressure in said reactor, said incremental major monomer mixture comprising i) from 20 to 70 weight percent, based on total weight of said monomer mixture, of a first monomer, said first monomer selected from the group consisting of vinylidene fluoride and tetrafluoroethylene, and ii) between 80 and 30 weight percent, based on total weight of said monomer mixture, of one or more additional copolymerizable monomers, different from said first monomer, wherein said additional monomer is selected from the group consisting of fluorine-containing olefins, fluorine-containing ethers, and mixtures thereof; wherein, at a time between when 0% and 50% of said quantity of incremental major monomer mixture has been fed to said reactor, addition of a quantity of a chain transfer agent to said reactor is begun, said chain transfer agent having a formula Rlχ, where R is a perfluoroalkyl group containing 3 to 10 carbon atoms and x is 1 or 2, and wherein at a time between when 10% and 90% of said quantity of incremental major monomer mixture has been fed to said reactor, addition of a quantity of a cure site monomer to said reactor is begun, said cure site monomer having the general formula CH2=CH-(CF2)nl, where n is an integer between 2 and 8.
26. A semibatch polymerization process of claim 25 wherein addition of a quantity of said chain transfer agent to said reactor is begun prior to when 20% of said quantity of incremental major monomer mixture has been fed to said reactor.
27. A semibatch polymerization process of claim 26 wherein addition of a quantity of said chain transfer agent to said reactor is begun prior to when 5% of said quantity of incremental major monomer mixture has been fed to said reactor.
28. A semibatch polymerization process of claim 25 wherein addition of a quantity of said cure site monomer to said reactor is begun after 25% of said quantity of incremental major monomer mixture has been fed to said reactor.
29. A semibatch polymerization process of claim 28 wherein addition of a quantity of said cure site monomer to said reactor is begun after 33% of said quantity of incremental major monomer mixture has been fed to said reactor.
30. A semibatch polymerization process of claim 25 wherein said cure site monomer is 4-iodo-3,3,4,4-tetrafluorobutene-1.
31. A semibatch polymerization process of claim 25 wherein said chain transfer agent is of formula Rb, where R is a perfluoroalkyl group containing 3 to 10 carbon atoms.
PCT/US2003/021247 2002-07-11 2003-07-02 Peroxide curable fluoroelastomers WO2004007577A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004521548A JP4795685B2 (en) 2002-07-11 2003-07-02 Peroxide curable fluoroelastomer
EP03751786A EP1551889B1 (en) 2002-07-11 2003-07-02 Peroxide curable fluoroelastomers
DE60320285T DE60320285T2 (en) 2002-07-11 2003-07-02 PEROXIDE-CURABLE FLUORELASTOMERS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/193,435 2002-07-11
US10/193,435 US6646077B1 (en) 2002-07-11 2002-07-11 Peroxide curable fluoroelastomers

Publications (1)

Publication Number Publication Date
WO2004007577A1 true WO2004007577A1 (en) 2004-01-22

Family

ID=29400912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/021247 WO2004007577A1 (en) 2002-07-11 2003-07-02 Peroxide curable fluoroelastomers

Country Status (8)

Country Link
US (2) US6646077B1 (en)
EP (1) EP1551889B1 (en)
JP (1) JP4795685B2 (en)
KR (1) KR101026908B1 (en)
CN (1) CN1297578C (en)
DE (1) DE60320285T2 (en)
TW (1) TWI291965B (en)
WO (1) WO2004007577A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2327730A1 (en) * 2003-01-24 2011-06-01 Daikin Industries, Limited Process for preparing vulcanizable fluorine-containing elastomer

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1751843E (en) * 2003-08-29 2012-11-30 Stanford Res Inst Int Electroactive polymer pre-strain
ATE413418T1 (en) * 2004-09-09 2008-11-15 3M Innovative Properties Co FLUOROPOLYMER FOR PRODUCING A FLUOROOELASTOMER
US7943685B2 (en) * 2005-04-13 2011-05-17 R.T. Vanderbilt Company, Inc. Composition and method for curing latex compounds
US8932706B2 (en) 2005-10-27 2015-01-13 Multi-Color Corporation Laminate with a heat-activatable expandable layer
CN100420701C (en) * 2005-12-23 2008-09-24 上海三爱富新材料股份有限公司 Fluorine elastomer and preparation method thereof
JP5602626B2 (en) 2007-06-29 2014-10-08 アーティフィシャル マッスル,インク. Electroactive polymer transducer for sensory feedback applications
WO2009036131A2 (en) * 2007-09-14 2009-03-19 3M Innovative Properties Company Ultra low viscosity iodine containing amorphous fluoropolymers
US20090227726A1 (en) * 2008-03-04 2009-09-10 Dupont Performance Elastomers L.L.C. Peroxide curable fluoroelastomer compositions and articles made therefrom
CN101981116B (en) 2008-03-27 2013-03-06 大金工业株式会社 Peroxide cross-linked fluorine-containing elastomer composition
US20090292094A1 (en) * 2008-05-21 2009-11-26 E. I. Dupont De Nemours And Company Fluoropolymer Composition
US8153198B2 (en) * 2008-05-21 2012-04-10 E I Du Pont De Nemours And Company Fluoropolymer solutions, coatings and coated articles
US20090291283A1 (en) * 2008-05-21 2009-11-26 E.I. Dupont De Nemours And Company Fluoropolymer films
TWI482784B (en) * 2009-02-13 2015-05-01 Solvay Solexis Spa Perfluoroelastomer
EP2373704A4 (en) * 2009-03-05 2012-10-17 Daikin Ind Ltd Fluoroelastomer, curable composition and cured rubber article
EP2239793A1 (en) 2009-04-11 2010-10-13 Bayer MaterialScience AG Electrically switchable polymer film structure and use thereof
TWI542269B (en) 2011-03-01 2016-07-11 拜耳材料科學股份有限公司 Automated manufacturing processes for producing deformable polymer devices and films
KR20140019801A (en) 2011-03-22 2014-02-17 바이엘 인텔렉쳐 프로퍼티 게엠베하 Electroactive polymer actuator lenticular system
US20130053519A1 (en) * 2011-08-31 2013-02-28 E. I. Du Pont De Nemours And Company Acid resistant fluoroelastomer compositions
US20130158154A1 (en) * 2011-12-15 2013-06-20 E.I.Du Pont De Nemours And Company Coagent for free radical curing fluoroelastomers
CN102558719B (en) * 2011-12-29 2014-07-02 中昊晨光化工研究院 Low-temperature-resistant elastic body containing fluorine and preparation method thereof
EP2828901B1 (en) 2012-03-21 2017-01-04 Parker Hannifin Corporation Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
WO2013192143A1 (en) 2012-06-18 2013-12-27 Bayer Intellectual Property Gmbh Stretch frame for stretching process
PL2909162T3 (en) 2012-10-17 2017-03-31 3M Innovative Properties Company Method of making alpha, omega-diiodoperfluoroalkanes
US9590193B2 (en) 2012-10-24 2017-03-07 Parker-Hannifin Corporation Polymer diode
WO2014099311A1 (en) 2012-12-19 2014-06-26 3M Innovative Properties Company Method of making fluoropolymers with a polyiodide, compositions and articles thereof
CN103342772B (en) * 2013-07-12 2015-08-05 中昊晨光化工研究院有限公司 A kind of preparation method of fluoroelastomer of available peroxide cure
CN103755856A (en) * 2013-12-16 2014-04-30 江苏梅兰化工有限公司 Production of peroxide sulfuration fluoroelastomer
CN103709306A (en) * 2013-12-30 2014-04-09 江苏梅兰化工有限公司 Nano emulsion of peroxide vulcanized fluororubber and polymerization method thereof
US9982091B2 (en) 2014-03-06 2018-05-29 3M Innovative Properties Company Highly fluorinated elastomers
WO2017011379A1 (en) 2015-07-13 2017-01-19 3M Innovative Properties Company Fluorinated block copolymers
JP6908604B2 (en) 2015-10-23 2021-07-28 スリーエム イノベイティブ プロパティズ カンパニー A composition containing an amorphous fluoropolymer and fluoroplastic particles and a method for producing the same.
US11078354B2 (en) 2016-01-26 2021-08-03 E.I. Deupont De Nemours And Company Fluoroelastomer compounds
CN109476875A (en) * 2016-06-13 2019-03-15 索尔维特殊聚合物意大利有限公司 Curable fluoroelastomer composition
EP3571247A4 (en) 2017-01-18 2020-11-11 3M Innovative Properties Company Fluorinated block copolymers
WO2018136332A1 (en) * 2017-01-18 2018-07-26 3M Innovative Properties Company Fluorinated block copolymers derived from cure-site monomers
JP2020504225A (en) 2017-01-18 2020-02-06 スリーエム イノベイティブ プロパティズ カンパニー Fluorinated block copolymers derived from nitrile cure site monomers
WO2018225789A1 (en) * 2017-06-06 2018-12-13 日本ゼオン株式会社 Rubber crosslinked product and method for manufacturing for same
JP7156309B2 (en) * 2017-12-06 2022-10-19 Agc株式会社 Fluorine-containing elastic copolymer and method for producing fluorine-containing elastic copolymer
CN111057178B (en) * 2019-12-31 2022-03-29 山东华夏神舟新材料有限公司 Preparation method of low-pressure-change fluorine-containing elastomer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171290A2 (en) * 1984-08-09 1986-02-12 E.I. Du Pont De Nemours And Company Improved fluoropolymer
US5674959A (en) * 1994-05-18 1997-10-07 Ausimont S.P.A. Peroxide curable fluoroelastomers, particularly suitable for manufacturing O-rings
US20010023280A1 (en) * 2000-02-17 2001-09-20 Frantz Duvalsaint Process for producing fluoroelastomers
US20020037985A1 (en) * 2000-09-22 2002-03-28 Lyons Donald F. Process for producing fluoroelastomers

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3839305A (en) * 1970-12-14 1974-10-01 Du Pont Method of making vinylidene fluoride copolymers
JPS53125491A (en) 1977-04-08 1978-11-01 Daikin Ind Ltd Fluorine-containing polymer easily curable and its curable composition
JPS6155238A (en) * 1984-08-27 1986-03-19 敷島紡績株式会社 Method for drawing out yarn end loom winder residual yarn wooden pipe
US4529759A (en) 1984-12-07 1985-07-16 E. I. Du Pont De Nemours And Company Peroxide-curable brominated or iodinated fluoroelastomer composition containing an N,N,N',N'-tetrasubstituted 1,8-diaminonaphthalene
US4694045A (en) 1985-12-11 1987-09-15 E. I. Du Pont De Nemours And Company Base resistant fluoroelastomers
DE3689832T2 (en) * 1985-07-12 1994-11-17 Du Pont Peroxide curable brominated fluoroelastomer blends.
US5384374A (en) * 1991-01-11 1995-01-24 Minnesota Mining And Manufacturing Company Curing fluorocarbon elastomers
JPH04288305A (en) 1991-03-15 1992-10-13 Nippon Mektron Ltd Production of peroxide-vulcanizable fluoroelastomer
US5214106A (en) 1991-05-22 1993-05-25 E. I. Du Pont De Nemours And Company Cured fluoroelastomer compositions
JP3259317B2 (en) 1992-02-14 2002-02-25 日本メクトロン株式会社 Method of producing peroxide-curable fluorine-containing elastomer
IT1265461B1 (en) 1993-12-29 1996-11-22 Ausimont Spa FLUOROELASTOMERS INCLUDING MONOMERIC UNITS ARISING FROM A BIS-OLEPHINE
JP3327016B2 (en) 1994-12-06 2002-09-24 ダイキン工業株式会社 Fluororubber copolymer excellent in low-temperature sealability and its curing composition
DE69617042T2 (en) * 1995-12-28 2002-06-06 Daikin Ind Ltd FLUORINE, ELASTIC COPOLYMERS, HARDENABLE COMPOSITION AND SEALANT MADE THEREOF
EP0845482B1 (en) 1996-11-29 2000-02-02 Nippon Mektron, Ltd. Process for producing fluorine-containing elastomer
US6191208B1 (en) * 1998-05-20 2001-02-20 Dupont Dow Elastomers L.L.S. Thermally stable perfluoroelastomer composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171290A2 (en) * 1984-08-09 1986-02-12 E.I. Du Pont De Nemours And Company Improved fluoropolymer
US5674959A (en) * 1994-05-18 1997-10-07 Ausimont S.P.A. Peroxide curable fluoroelastomers, particularly suitable for manufacturing O-rings
US20010023280A1 (en) * 2000-02-17 2001-09-20 Frantz Duvalsaint Process for producing fluoroelastomers
US20020037985A1 (en) * 2000-09-22 2002-03-28 Lyons Donald F. Process for producing fluoroelastomers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2327730A1 (en) * 2003-01-24 2011-06-01 Daikin Industries, Limited Process for preparing vulcanizable fluorine-containing elastomer
US8247505B2 (en) 2003-01-24 2012-08-21 Daikin Industries, Ltd. Process for preparing vulcanizable fluorine-containing elastomer

Also Published As

Publication number Publication date
EP1551889A1 (en) 2005-07-13
US20040092684A1 (en) 2004-05-13
EP1551889B1 (en) 2008-04-09
CN1665852A (en) 2005-09-07
DE60320285D1 (en) 2008-05-21
KR20050025335A (en) 2005-03-14
US6646077B1 (en) 2003-11-11
DE60320285T2 (en) 2009-05-14
KR101026908B1 (en) 2011-04-04
CN1297578C (en) 2007-01-31
TWI291965B (en) 2008-01-01
JP4795685B2 (en) 2011-10-19
JP2005532465A (en) 2005-10-27
TW200400977A (en) 2004-01-16

Similar Documents

Publication Publication Date Title
EP1551889B1 (en) Peroxide curable fluoroelastomers
EP0407937B1 (en) Fluoroelastomers with improved processability and process for preparing them
JP3103386B2 (en) Fluor elastic body and manufacturing method thereof
US4948852A (en) Peroxide-curable fluoroelastomers and chlorofluoroelastomers having bromine and iodine curesites and the preparation thereof
EP0784064B1 (en) Fluoroelastomers comprising monomeric units deriving from a bis-olefin
EP2041215B1 (en) (per)fluoroelastomeric compositions
EP2041203B1 (en) (per)fluoroelastomeric compositions
US20070100062A1 (en) Process for the manufacture of fluoroelastomers having bromine or lodine atom cure sites
KR101703372B1 (en) Low temperature curable amorphous fluoropolymers
EP1109844B1 (en) Fluoroelastomer composition having excellent processability and low temperature properties
US5639838A (en) Fluoroelastomers endowed with high resistance to polar solvents and to bases
EP0979832B1 (en) Fluoroelastomers
EP1709113A1 (en) Fluoroelastomers with improved low temperature property and method for making the same
JP2004514777A (en) Curable fluoroelastomer composition containing hydrosiloxane or hydrosilazane
US5077359A (en) Peroxide-curable fluoroelastomers and chlorofluoroelastomers having bromine and iodine curesites and the preparation
WO2002044263A1 (en) Fluoroelastomer composition having excellent processability and low temperature properties
US5219964A (en) Fluoroelastomers endowed with improved processability and process for preparing them
GB2517481A (en) Method of making peroxide fluoropolymers using non-fluorindated emulsifiers
JP4286775B2 (en) Curable base resistant fluoroelastomer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003751786

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004521548

Country of ref document: JP

Ref document number: 20038160153

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057000431

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057000431

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003751786

Country of ref document: EP