WO2004010172A1 - カラーフィルター用緑色顔料、緑色顔料分散体、感光性着色組成物、カラーフィルター、及び、液晶パネル - Google Patents

カラーフィルター用緑色顔料、緑色顔料分散体、感光性着色組成物、カラーフィルター、及び、液晶パネル Download PDF

Info

Publication number
WO2004010172A1
WO2004010172A1 PCT/JP2003/009344 JP0309344W WO2004010172A1 WO 2004010172 A1 WO2004010172 A1 WO 2004010172A1 JP 0309344 W JP0309344 W JP 0309344W WO 2004010172 A1 WO2004010172 A1 WO 2004010172A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
green
color filter
color
green pigment
Prior art date
Application number
PCT/JP2003/009344
Other languages
English (en)
French (fr)
Inventor
Masahiro Tatsuzawa
Shunsuke Sega
Akitaka Nishio
Arata Kudou
Eiichi Kiuchi
Hiroshi Katsube
Original Assignee
Dai Nippon Printing Co., Ltd.
Dainippon Ink And Chemicals, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003275222A external-priority patent/JP4368158B2/ja
Priority claimed from JP2003275219A external-priority patent/JP4368157B2/ja
Application filed by Dai Nippon Printing Co., Ltd., Dainippon Ink And Chemicals, Incorporated filed Critical Dai Nippon Printing Co., Ltd.
Priority to US10/520,321 priority Critical patent/US7781129B2/en
Publication of WO2004010172A1 publication Critical patent/WO2004010172A1/ja
Priority to US12/835,235 priority patent/US8211599B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a green pigment for a color filter, a pigment for a color filter containing the green pigment.
  • the present invention relates to a dispersion and a photosensitive resin composition, and a color filter and a liquid crystal panel using the same.
  • Landscape technology A liquid crystal panel has a structure in which a display-side substrate and a liquid-crystal-drive-side substrate are opposed to each other, and a liquid crystal compound is sealed between them to form a thin liquid crystal layer.
  • the amount of transmitted light or reflected light from the display side substrate is selectively controlled by electrically controlling the liquid crystal alignment in the liquid crystal layer by the liquid crystal driving side substrate of the liquid crystal panel. Display is made by changing to.
  • liquid crystal panels such as a static drive system, a simple matrix system, and an active matrix system.
  • active-matrix or simple-matrix LCDs have been used as flat displays for personal computers and personal digital assistants.
  • Color liquid crystal display devices using panels are rapidly spreading.
  • Each driving method has several driving modes.For example, in the case of the active matrix method, there are driving modes such as TN, IPS and VA, and the layer configuration of the color filter changes depending on the driving mode. .
  • Figure 1 shows an example of the configuration of an active matrix type liquid crystal panel.
  • the liquid crystal panel 101 is provided with a gap portion 3 of about 1 to 10 O / im by opposing a color filter 11 as a display side substrate and a ⁇ FT array substrate 2 as a liquid crystal drive side substrate.
  • the liquid crystal L is filled in the part 3 and the periphery thereof is sealed with a sealing material 4.
  • the color filter 1 includes a black matrix layer 6 formed in a predetermined pattern on a transparent substrate 5 to shield the boundary between pixels from light, and a plurality of colors (usually red ( R), green (G), and blue (B) (the three primary colors) are arranged in a predetermined order, and a pixel unit 7 or, more recently, a hologram-based pixel unit is stacked in this order from the side closer to the transparent substrate. It has a structure.
  • each pixel is formed by applying a photosensitive colored resin composition in which a coloring material is dispersed and Z or dissolved in a photosensitive resin composition onto a substrate, and is formed into a pattern by photolithography.
  • the photosensitive colored resin composition may be either a positive type or a negative type.
  • a transparent electrode film 9 is provided on the pixel portion 7 or the protective film 8.
  • the protective film 8 is provided on the pixel portion, and the transparent electrode film 9 may be formed on the surface of the transparent substrate 5 opposite to the pixel portion 7.
  • a resin black matrix is required for the black matrix layer.
  • a transparent electrode is formed on the pixel portion 7 or the protective film 8, and the transparent electrode may be patterned.
  • a protrusion called a protollation is formed on the transparent electrode 9.
  • the TFT array substrate 2 has a structure in which TFT elements are arranged on a transparent substrate and a transparent electrode film is provided (not shown). Further, an alignment film 10 is provided on the inner surface side of the color filter 11 and the TFT array substrate 2 facing the color filter.
  • a backlight is installed as a light source on the outer surface side of the TFT array substrate 2.
  • the liquid crystal layer behind the pixels colored in each color controls the light transmittance from the pack light to obtain a color image.
  • a fluorescent tube or LED called a three-wavelength tube is mainly used.
  • Fig. 7 shows the wavelength distribution of the F10 light source, which is one of the light sources using a three-wavelength tube, together with the wavelength distribution of the standard light source C.
  • a large number of spherical or rod-shaped particulate spacers 11 of a certain size made of glass, alumina, plastic, or the like are scattered in the gap 3 as shown in FIG. Then, the color filter 1 and the TFT array substrate 2 are bonded together, and the liquid crystal is injected.
  • a columnar spacer 12 having a height corresponding to the cell gap is formed on the inner surface side of one filter and in a region overlapping with the position where the black matrix layer 6 is formed.
  • a color image is obtained by controlling the light transmittance of a liquid crystal layer behind each of the pixels arranged in a predetermined pattern and colored.
  • LCDs Liquid crystal displays
  • the color gamut of a multimedia monitor is determined by the chromaticity of the three primary colors (the three primary colors) of the receiver.
  • the three primary colors of the LCD monitor of the RGB standard are defined for the chromaticity coordinates X and y in the XYZ color system as follows.
  • Imaging color camera
  • transmission color receiving
  • image receiving receiveriver
  • the shape, movement, and hue of the subject are reproduced on the image screen, and the hue is included.
  • Image signal transmission systems have been standardized. Typical examples of this method include the NTS C (National Television System Committee) and the EBU (European Bro adcasting Union).
  • NTS C National Television System Committee
  • EBU European Bro adcasting Union
  • NTSC has been adopted as a method and standard for television broadcasting in Japan, the United States, Canada, etc.
  • EBU European Bro adcasting Union
  • the color gamut of a color television is determined by the chromaticity of the three primary colors of the receiver (the three primary colors of the image), and the spectral characteristics that a color camera should have are also determined by this.
  • the NTSC standard three primary colors are defined as follows for chromaticity coordinates X and y in the XYZ color system.
  • the three primary colors of the receiving image of the EBU standard are defined as follows.
  • x X / (X + Y + Z)
  • y YZ (X + Y + Z)
  • X, YZ are tristimulus values in the XYZ color system.
  • the light source spectrum has a different emission line position for each pack light manufacturer, but it has a peak at approximately 545 nm, and secondary emission lines exist at wavelengths before and after that. others Therefore, pigments with high transmittance at 545 nm and its surroundings are required for high transmission color filters. For high-purity color filters, pigments with a narrow half-value width that have transmittance only for the main emission line are required. For this reason, there are two development elements and demands for a color filter, one for high transmission and one for a wide color reproduction range.
  • the green pixel of the color filter it is required that green with strong yellowish color can be developed in order to secure high transmittance in a wide color reproduction range.
  • the sRGB standard for multimedia monitors requires a particularly yellowish green pixel. Green pixels with strong yellow color are also required in the NTSC and EBU standards for TVs, but they are more bluish green compared to the sRGB standard.
  • no matter which display standard is adopted it is extremely difficult to form a green pixel close to the three primary colors of green and having high lightness to a level that can secure a sufficient color reproduction range with only one kind of green pigment. is there.
  • the transmission of the sub-emission line is suppressed low, and high transparency is achieved mainly with a green pigment having high transmission around 545 nm, which is the green wavelength. It is desirable to use a combination of yellow pigments to develop sufficient color, and to form highly transparent pixels with high coloring power while suppressing the total amount of pigment used.
  • the green pixels of the color filter have been used as green pigments, mainly C. made of chlorinated copper phthalocyanine pigment and C. Pigment Green 7 (hereinafter referred to as PG 7) and C. made of brominated copper phthalocyanine pigment.
  • Green 36 (hereinafter PG 36) is used.
  • PG 7 has a high coloring power as green but has too much blue tint, so it is necessary to mix a large amount of yellow to make the pixels of s RG B.
  • PG 36 shows a spectral transmittance spectrum that is relatively yellowish, and has a wide half-value width and a wide spectral transmittance near the peak top. Very high transmittance but low tinting strength. Therefore, if it is attempted to form a green pixel that displays a region having high coloring power (high-density region) on the color coordinates, the amount of the PG36 pigment used is large, and the transmittance of the pixel is low. In order to ensure high transmittance, increase the density of the yellow pigment and adjust the color coordinates to yellow. There is also a method of shifting the color, but the total amount of pigment used increases because the amount of yellow pigment used increases. Therefore, conventional halogenated copper phthalocyanine pigments such as PG7 and PG36 (replacement pigments have been required).
  • the content of the pigment in the photosensitive coloring composition increases, the transparency of the pixel decreases, and it becomes difficult to increase the transmittance.
  • the proportion of the pigment in the photosensitive color composition for forming a color filter is increased, the proportion of the dispersant is also increased, and the proportion of components such as a binder and a developing component that are involved in the film forming property is relatively reduced.
  • the amount of the binder or the developing component is reduced, there is a problem that a fine pattern forming ability and physical properties of a pixel are adversely affected.
  • the proportion of the pigment in the photosensitive coloring composition is reduced, the film must be colored with a large film thickness. Even when the film thickness is large, there is a problem that the fine pattern forming ability and physical properties of the pixel are adversely affected.
  • the term “residual” refers to a colored material remaining in a portion that should not remain after development, and is likely to occur when the developability is poor due to a large amount of pigment or dispersant.
  • the foreign matter is generated due to a lack of a hardened component in the photosensitive coloring composition, a lack of a part of a pixel, a small amount of a developing component, and adhesion of a colored piece generated by peeling development.
  • color filters In order to improve resolution, color filters have become more and more curved and have many corners, unlike conventional stripe patterns, due to advances in liquid crystal drive systems. It must be formed exactly.
  • the shape after development becomes an inverted trapezoidal shape (an inverted tapered shape) when the photosensitive color composition has poor photosensitivity. If the shape after development becomes an inverted trapezoid, the upper portion of the pixel is likely to be chipped by water pressure during development, which causes the above-described foreign matter. Further, in the case of the inverted trapezoidal film, if the heat resistance is low, the portion protruding like a scallop may hang down by heat and form voids after post bake. This void reduces display quality. Not only reduce the resolution. Also, when heat is applied to the liquid crystal panel assembly and the holes rupture, the liquid crystal is contaminated.
  • Thickness uniformity is not a major issue at the individual pixel level.
  • the substrate size has been steadily expanding and is now being applied to the meter class. In this case, if the film thickness differs between the center and the edge of the glass, the color will vary, resulting in a defective product.
  • Elution of impurities from pixels causes liquid crystal contamination. Since the liquid crystal does not function as a switch even if a small amount of conductive impurities are mixed, it is important that the conductive molecules do not dissolve into the liquid crystal layer from the color filter. However, pigments and dispersants used for pixels often contain conductive molecules as impurities. Therefore, it is important to suppress the elution of impurities by increasing the crosslink density of the membrane and capturing molecules with a dense network.
  • Japanese Patent Application Laid-Open No. 2002-131315 discloses that the central metal is VO, AI—Z, or In—Z (Z represents a halogen atom, a hydroxyl group, an alkoxy group, or an aryloxy group)
  • a composition for a color filter containing at least one phthalocyanine pigment is described.
  • Japanese Patent Application Laid-Open No. 2002-162515 discloses CI Pigment Green 7 and Z or CI Pigment Green as coloring materials. 36.
  • a phthalocyanine pigment having a maximum transmittance wavelength longer than that of Pigment Green 7 and Pigment Green 36 is contained in C. and C. contained in the composition.
  • a composition for a color filter is described, but the phthalocyanine pigment is used by mixing C.I. Pigment Green 7 and / or C. with Pigment Green 36.
  • Japanese Patent Application Laid-Open No. 2002-250812 discloses that a copper halide phthalocyanine pigment and a central metal are composed of Mg, AI, Si, Ti, V, Mn, Fe, Co, Ni, and Zn.
  • a green colorant comprising at least one halogenated heterometallic phthalocyanine pigment selected from the group consisting of Ge and Sn, and wherein the content of the halogenated heterometallic phthalocyanine pigment is based on the total amount of the green colorant.
  • a coloring composition for a color filter having a content of 1 to 80 mol% is disclosed, but the halogenated heterometallic phthalocyanine pigment is also used by being mixed with a halogenated copper phthalocyanine.
  • JP-A-2003-161821 discloses a pigment and one or two kinds selected from the group consisting of a phthalocyanine compound having a central metal other than copper and a phthalocyanine compound having a central metal other than copper. Although the composition for a color filter containing the above phthalocyanine compound is described, it is described that the phthalocyanine compound is used in a relatively small amount.
  • Japanese Patent Application Laid-Open No. 2003-161627 discloses that a green pixel portion is composed of (1) a metal halide in which 8 to 16 halogen atoms per one phthalocyanine molecule are bonded to a benzene ring at the meridian of phthalocyanine.
  • a color filter containing a phthalocyanine pigment and (2) exhibiting a maximum transmittance of 520 to 590 nm in a spectral transmission spectrum in the entire visible light range is described. .
  • a green pigment having excellent coloring power and high transmittance, and a photosensitive coloring composition, which sufficiently satisfy the purpose of forming a color filter having a wide color reproduction range and high transmittance, have not yet been known.
  • the present invention has been accomplished in view of such circumstances, and a first object of the present invention is to display chromaticity coordinates that cannot be displayed by a conventional green pigment, to have excellent coloring power as a green color, and to have a strong blue tint. And green pigments for color filters with high transmittance.
  • a second object of the present invention is to provide a photosensitive coloring composition which can form a color filter having a wide color reproduction range and a high transmittance by using the green pigment.
  • a third object of the present invention is to provide a photosensitive coloring composition which uses the above-mentioned green pigment, approaches a green pixel of each standard with a relatively small amount of pigment, has a high mixing ratio of a reactive component, and is excellent in plate-making properties. Is to provide.
  • a fourth object of the present invention is to provide a photosensitive coloring composition which can form a green pixel having a green coloring property having a sufficiently yellowish green color even if the amount of the yellow pigment is small, using the green pigment. Is to provide.
  • a fifth object of the present invention is to provide a photosensitive coloring composition which can achieve the above-mentioned second to fourth objects with a thinner film thickness by using a combination of the above-mentioned green pigment and a more specific green pigment. To provide.
  • a sixth object of the present invention is to provide a pigment dispersion suitable for preparing the photosensitive coloring composition using the green pigment.
  • a seventh object of the present invention is to provide a color filter having a wide color reproduction range and a high transmittance, in which a green pixel is formed using the photosensitive coloring composition, and a liquid crystal panel using the color filter.
  • the green pigment according to the present invention is composed of a phthalocyanine green pigment, and is XY chromaticity surrounded by the following equations 1, 2 and 3 in the CIE XYZ color system when measured by a F10 light source by itself. It is characterized in that a coordinate area can be displayed.
  • Equation 3 0.180 ⁇ ⁇ 0.350
  • the phthalocyanine green pigment preferably has a wavelength (Tmax) at which the transmittance of the spectral transmittance spectrum at 380 to 780 nm becomes maximum is 500 to 520 nm.
  • the green pigment composed of brominated zinc phthalocyanine can display the xy chromaticity coordinate region surrounded by the above equations 1, 2 and 3, and is preferably used as the green pigment of the present invention.
  • the brominated zinc phthalocyanine preferably contains an average of less than 13 bromine atoms in one molecule from the viewpoint of displaying the xy chromaticity coordinate area surrounded by the above equations 1, 2 and 3.
  • the green pigment according to the present invention When the green pigment according to the present invention is coated with the green pigment alone and measured with a F10 light source, the Xy chromaticity coordinates surrounded by the above equations 1, 2 and 3 in the CIE XYZ color system. It is possible to display an area, and to emit green in the chromaticity coordinate area that could not be displayed with the conventional green pigment, and to expand the color reproduction area as compared with the case of using the conventional green pigment. Further, since the green pigment of the present invention is excellent in tinting strength, it can be brought close to the green specified in the standard with a smaller amount as compared with the case of using a conventional brominated copper phthalocyanine pigment (PG 36).
  • PG 36 brominated copper phthalocyanine pigment
  • the thickness can be reduced, the plate making property is improved, and a fine shape can be easily formed by photolithography.
  • the green pigment of the present invention has a high transmittance, when a color filter is formed using the green pigment of the present invention, the color filter is compared with the case of using a chlorinated copper phthalocyanine pigment (PG 7). Strong light is required, so a strong backlight is required This eliminates liquid crystal panel costs and increases power consumption.
  • the green pigment of the present invention may be prepared into a pigment dispersion in advance, and the obtained pigment dispersion and the photosensitive component may be mixed.
  • a green brominated zinc phthalocyanine pigment having an average primary particle diameter of 0.01 to 0.1 m is used as the green pigment of the present invention, the dispersibility in a coloring resin or the like is particularly good.
  • the photosensitive coloring composition for a color filter according to the present invention contains a reactive component involved in a curing reaction, and one or more coloring components including the green pigment of the present invention.
  • the photosensitive coloring composition preferably uses the green pigment for a color filter according to the present invention as a main pigment in order to obtain sufficient color developability with a small amount of pigment, and the color filter according to the present invention is included in the coloring component. It is preferable to contain more than 30% by mass of a green pigment for use. Further, it is preferable that the green pigment for the color filter is contained in an amount of 50% by mass or more based on the total amount of the green pigment in the coloring component.
  • the photosensitive coloring composition for a color filter according to the present invention comprises a reactive component involved in a curing reaction, a phthalocyanine green pigment as a first green pigment, and a CIE when measured with a F10 light source alone.
  • a reactive component involved in a curing reaction a phthalocyanine green pigment as a first green pigment
  • a CIE when measured with a F10 light source alone.
  • a green pigment for a color filter capable of displaying an Xy chromaticity coordinate area surrounded by the following equations 1, 2 and 3
  • a phthalocyanine green pigment as a second green pigment.
  • the color pigment is selected from green pigments for color filters that can display the Xy chromaticity coordinate area surrounded by the following equations 4, 5, and 6 in the CIE's XYZ color system when measured with the F10 light source by itself 1 Contains a coloring component containing at least seeds.
  • Equation 1 0.180 ⁇ X ⁇ 0.230
  • the second green pigment When the second green pigment is coated with the green pigment alone, the Xy chromaticity coordinate area enclosed by the above equations 4, 5, and 6 in the 0 £ £ ⁇ ⁇ color system should be displayed. It develops a green color with high tinting strength and high transmittance while being strongly yellowish.
  • the second green pigment can develop a green color having a strong yellow tint in a chromaticity coordinate region that cannot be displayed by the conventional halogenated copper phthalocyanine pigment.
  • the color reproduction range can be widened, and the amount of yellow pigment for toning can be reduced. Further, since the second green pigment has a higher coloring power than PG36, the second green pigment can approach the green specified in the standard in a smaller amount than when PG36 is used.
  • a photosensitive color composition that can form a color filter having a wide color reproduction range and a high transmittance, or ,
  • a photosensitive coloring composition capable of forming a green pixel having a strong taste and a green color developing property can be achieved with a thinner film thickness.
  • the central metal of the phthalocyanine green pigment is the same and has good compatibility.
  • the first green pigment and the second green pigment be zinc bromide phthalocyanine from the viewpoint of increasing coloring power and transmittance.
  • the brominated zinc phthalocyanine of the first green pigment contains less than 13 bromine on average per molecule
  • the brominated zinc phthalocyanine of the second green pigment contains 13 bromine on average per molecule. It is preferable to contain the above, and among them, the average primary particle diameter of the brominated zinc phthalocyanine is preferably from 0.01 to 0.1 m.
  • the mass ratio (bZa) of the non-reactive component (b) other than the coloring component to the reactive component (a) is 0.45 or less. Is preferred.
  • the color pigment according to the present invention since the color pigment according to the present invention is used, sufficient color developability can be obtained with a small amount of the pigment, so that the amount of the pigment and the dispersant for dispersing the pigment is reduced, and The amount of the reactive component can be increased. As a result, the photocurability becomes good, and the cured film hardness, cured film elasticity, film thickness uniformity, suppression of pixel pattern loss during development, residue reduction, developability improvement, and cured coating A green pixel with excellent physical properties such as improved film cross-linking density and thinner coating film can be obtained.
  • the above-mentioned photosensitive coloring composition has a pigment vehicle ratio of 0.25 to 1.0, and as a high-concentration photosensitive coloring composition, it is possible to obtain a color that can sufficiently cope with a high-concentration type even with a very small amount of pigment. Thus, a green pixel having high density and high transparency can be formed.
  • the photosensitive coloring composition may contain at least a yellow pigment together with a green pigment.
  • the mass ratio of the yellow pigment to the green pigment is 1.6 or less, sufficient coloring properties can be obtained, and the amount of yellow pigment used is also reduced. That's a thing.
  • the color filter according to the present invention is provided with a green pixel containing the green pigment of the present invention.
  • This green pixel can be formed using the above-described photosensitive coloring composition of the present invention.
  • the green pixel has a film thickness of 2.7 jtm or less, and a single pixel measures the color with an F10 light source.
  • the x coordinate of the CIE XYZ color system is 0.21 ⁇ x ⁇ 0.30
  • the y coordinate is 0.55 ⁇ y ⁇ 0.71
  • the stimulus value Y is 29 ⁇ Y
  • the space can be displayed. Therefore, a wide color reproduction area can be secured by combining with pixels of other colors, and the transmittance is very large even if the film thickness is small.
  • the green pixel can have a strong yellowish tint only by mixing a small amount of the yellow pigment, and the mass ratio of the yellow pigment to the green pigment including the green pigment of the present invention in the pixel (yellow pigment ⁇ green Even if the pigment is 1.6 or less, the X coordinate of CI ⁇ X ⁇ ⁇ color system is 0.2 1 ⁇ ⁇ ⁇ 0.3. Can display the xy chromaticity coordinate area in the range of 0.55 ⁇ y ⁇ 0.71.
  • the above-mentioned green pixel is composed of at least a phthalocyanine-lean pigment as the first green pigment, and in the CIE XYZ color system when measured with a F10 light source by itself, the following equations 1, 2 and One type selected from green pigments for color filters that can display the XY chromaticity coordinate area surrounded by 3, and a phthalocyanine green pigment as the second green pigment, when measured with a single F10 light source In the CIE XYZ color system, an Xy chromaticity coordinate area surrounded by the following equations 4, 5 and 6 can be displayed.
  • the film thickness is less than 2.5 ⁇ m when measured with the F10 light source, and the X coordinate in the XYZ color system of the CIE is less than 25 ⁇ x ⁇ 0.32, and the y coordinate is 0.55 ⁇ Color space with y ⁇ 0.75 and stimulus value Y within 30 ⁇ Y can be displayed
  • the green pixel may include a green pigment including the first and second green pigments and a yellow pigment, wherein a mass ratio of the yellow pigment to the green pigment (yellow pigment ⁇ green pigment) is 1.6 or less.
  • a mass ratio of the yellow pigment to the green pigment (yellow pigment ⁇ green pigment) is 1.6 or less.
  • the X coordinate is 0.25 ⁇ ⁇ ⁇ 0.32
  • the y coordinate is 0.55 ⁇ y ⁇ 0
  • a range of 75 xy chromaticity coordinates can be displayed.
  • the green pixel has a high crosslinking density, the hardness thereof is 500 NZmm 2 or more or the elastic deformation rate is 20% or more, and it is difficult to deform.
  • the above-mentioned green pixel does not have a reverse tapered shape during development, but is The ratio of the length of the upper base to the length of the bottom (upper base Z lower base) is formed in a tapered shape of less than 1, and the pattern shape is good.
  • a liquid crystal panel according to the present invention has the above-described color filter of the present invention and a liquid crystal driving side substrate opposed to each other, and has liquid crystal sealed between the two.
  • the coloring power of the color coordinates such as the display standard of a multimedia monitor such as s RGBB or the display standard of a color television such as NTSC or EBU can be obtained. It is possible to manufacture a liquid crystal display device that can satisfy a high region (high concentration region).
  • FIG. 1 is a schematic sectional view of an example of a liquid crystal panel.
  • FIG. 2 is a schematic sectional view of another example of the liquid crystal panel.
  • FIG. 3 is a view showing an Xy chromaticity coordinate area (area A) in which the green pigment according to the present invention can be expressed.
  • FIG. 4 is a diagram showing an area A, an area B, and an area C on the xy chromaticity coordinate area.
  • FIG. 5 is a view showing a monochromatic spectral transmittance spectrum of the green pigment according to the present invention and a conventional green pigment.
  • FIG. 6 is a view showing a monochromatic spectral transmittance spectrum of a green pigment capable of displaying the region C and a conventional green pigment.
  • FIG. 7 is a diagram showing the wavelength distribution of the F10 light source and the wavelength distribution of the C light source.
  • the meanings of the reference numerals in each drawing are as follows.
  • Liquid crystal panel (101) Liquid crystal panel (102); Color filter (1): Electrode substrate (2); Gap (3): Sealing material (4): Transparent substrate (5); Black matrix Layer (6); Pixel portion (7R, 7G, 7B); Protective film (8); Transparent electrode film (9); Alignment film (10); Pearl (11); Columnar spacer (1) 2) BEST MODE FOR CARRYING OUT THE INVENTION
  • (meth) acryl means either an acryl group or a methacryl group
  • (meth) acryloyl means either an acryloyl group or a methacryloyl group.
  • Light includes electromagnetic waves and radiation having wavelengths in the visible and non-visible regions, and radiation includes, for example, microwaves and electron beams.Specifically, electromagnetic waves having a wavelength of 5 jUm or less, and electrons Refers to a line.
  • the green pigment for a color filter provided by the present invention is composed of a phthalocyanine lean pigment, and is expressed by the following equations 1, 2, and 3 in the CIE XYZ color system when measured by itself with an F10 light source.
  • the xy chromaticity coordinate area (area A) enclosed by equations 1, 2 and 3 is characterized in that the xy chromaticity coordinate area (area AJ) enclosed can be displayed. Shown in
  • Equation 1 0.180 ⁇ X ⁇ 0.230
  • Equation 3 0.180 ⁇ x ⁇ 0.350
  • the above equation is a representation in the CIE XYZ color system when colorimetry is performed with an F10 light source.
  • the F10 light source is a light source specified in JISZ 87 19 (1 1984) for televisions. It has a spectral spectrum similar to the light source of the backlight.
  • the colorimetry can be performed using a microspectrophotometer (for example, OSP-SP200 microspectrophotometer manufactured by Olympus Corporation). Even in the xy chromaticity coordinate area (area A) surrounded by equations 1, 2 and 3, it is surrounded by the following equations 7, 8 and 9 in the CIE's XYZ color system when the color is measured with the F10 light source by itself.
  • the green pigment that can display the xy chromaticity coordinate area does not have too strong a bluish tint and does not decrease the transmittance. It is particularly preferable because the coloring power is not reduced.
  • area B The xy chromaticity coordinate area (area B) surrounded by the following equations 7, 8 and 9 is shown in FIG.
  • Equation 7 0.210 ⁇ X ⁇ 0.220
  • Equation 9 0210 ⁇ x ⁇ 0.350
  • the phthalocyanine green pigment used in the present invention has a wavelength (Tm in) at which the transmittance of the spectral transmittance spectrum is minimized to 5% from the viewpoint that the xy chromaticity coordinate area in the above range can be displayed.
  • Tm in the wavelength at which the transmittance of the spectral transmittance spectrum is minimized to 5% from the viewpoint that the xy chromaticity coordinate area in the above range can be displayed.
  • the wavelength (Tmax) at which the transmittance of the spectral transmittance spectrum at 380 to 780 nm becomes maximum is preferably 500 to 520 nm.
  • the transmittance at the wavelength (Tma X) is preferably 90% or more, particularly preferably 93 ⁇ 1 ⁇ 2 or more.
  • the phthalocyanine green pigment used in the present invention has a transmittance of the spectral transmittance spectrum at 435 nm, which is a wavelength of a blue light source of F10 light source, of 45% or less, particularly 40% or less.
  • the transmittance of the spectral transmittance spectrum at 610 nrr which is the wavelength of the red light source of the F10 light source, is preferably 20% or less, more preferably 10% or less.
  • the spectral transmittance spectrum was measured using a microspectrophotometer (for example, OS P-L manufactured by Olympus Corporation). SP 200 microspectrophotometer).
  • Examples of the central metal of the phthalocyanine green pigment used in the present invention include Zn, Mg, Al, Si, Ti, V, Mn, Fe, Co, Ni, Ge, Sn, and the like.
  • Zn (zinc) is preferable because it has high coloring power and transmittance and can display the Xy chromaticity coordinate area in the above range.
  • Zinc is used to display green in areas with high coloring power (high-density areas) in color coordinates, such as the display standards of multimedia monitors such as sRGB and the display standards of color televisions such as NTSC and EBU. It is particularly suitable for displaying green in NTSC and EBU standards for televisions.
  • Zinc phthalocyanine has 16 hydrogen atoms in one molecule, and if these hydrogen atoms are replaced with bromine and chlorine atoms, the number of bromine atoms is 0 to 16, and the number of chlorine atoms is 0. In the range of 1 to 16 and the number of hydrogen atoms in the range of 0 to 16, a total of 13 6 types of substituted products can be produced theoretically. Above all, a green pigment composed of brominated zinc phthalocyanine can display the xy chromaticity coordinate area surrounded by the above equations 1, 2 and 3, and is preferably used as the green pigment for a color filter of the present invention.
  • brominated zinc phthalocyanines which has an average of 8 or more and less than 13 bromine atoms in one molecule, has good coloring power as a green color, has a strong blue tint, and has a high transmittance. It is green and is very suitable for forming green pixels of color filters.
  • brominated zinc phthalocyanine having an average of 10 to 12 bromine atoms in one molecule particularly brominated zinc phthalocyanine having an average of 10 to 11 bromine atoms in one molecule is preferred.
  • Such a brominated zinc phthalocyanine pigment can be produced by a known production method disclosed in Japanese Patent Application Laid-Open No. Sho 50-130816.
  • a method of synthesizing a pigment by using, as an appropriate starting material, phthalic nitrile phthalate in which part or all of the hydrogen atoms of an aromatic ring is substituted with a halogen atom such as chlorine in addition to bromine.
  • a catalyst such as ammonium molybdate may be used as necessary.
  • zinc phthalocyanine is converted to bromine in a melt of about 110 to 170 ° C, which is a mixture of aluminum chloride, sodium chloride, sodium bromide, and the like.
  • the brominated zinc phthalocyanine pigment is dry-milled in a pulverizer such as an attritor, ball mill, vibrating mill, vibrating ball mill or the like, if necessary.
  • a brominated zinc phthalocyanine pigment having excellent dispersibility and coloring power and developing a green color with high lightness can be obtained.
  • the pigmentation method is not particularly limited. Pigmentation may be carried out simultaneously with dispersing zinc bromide phthalocyanine in the dispersion medium, but it may be carried out by solvent treatment in which a large amount of organic solvent is heated and stirred with zinc bromide phthalocyanine. However, it is preferable to employ a solvent salt milling treatment in that crystal growth can be easily suppressed and pigment particles having a large specific surface area can be obtained.
  • This solvent salt milling means kneading and milling of a brominated zinc phthalocyanine, which is a crude pigment immediately after synthesis, an inorganic salt, and an organic solvent. Specifically, a crude pigment, an inorganic salt, and an organic solvent that does not dissolve the pigment are charged into a kneader, and kneading and milling are performed therein.
  • a kneader at this time for example, a kneader-mix muller can be used.
  • a water-soluble inorganic salt can be suitably used.
  • an inorganic salt such as sodium chloride, potassium chloride, and sodium sulfate. It is more preferable to use an inorganic salt having an average particle size of 0.5 to 50 jtm. Such an inorganic salt can be easily obtained by pulverizing a usual inorganic salt.
  • the amount of the inorganic salt used is The amount is preferably 5 to 20 parts by mass, more preferably 7 to 15 parts by mass with respect to the parts by mass.
  • the average particle diameter of the primary particles in the present invention is defined as the average particle diameter of the particles in the field of view taken with a transmission electron microscope JEM-210 (manufactured by JEOL Ltd.). The longer diameter (longer diameter) of each of the 50 primary pigment particles constituting the above is determined, and the average value is obtained.
  • the pigment which is a sample, is ultrasonically dispersed in a solvent and photographed with a microscope. Further, a scanning electron microscope may be used instead of the transmission electron microscope.
  • an organic solvent that can suppress crystal growth is preferably used.
  • a water-soluble organic solvent can be suitably used.
  • the amount of the water-soluble organic solvent is not particularly limited, but is preferably 0.01 to 5 parts by mass with respect to 1
  • the crude pigment may be subjected to solvent salt milling, but it is also possible to carry out solvent salt milling using a combination of a brominated zinc phthalocyanine and a phthalocyanine derivative.
  • the phthalocyanine derivative may be added at the time of synthesis of the crude pigment or after the pigmentation, but more preferably before the pigmentation step such as solvent salt milling.
  • phthalocyanine derivatives any known and commonly used ones can be used. However, phthalocyanine pigment derivatives of the following general formula (I) or (II) are preferred.
  • P represents a residue having no central metal or having a central metal and excluding n hydrogens of an unsubstituted or halogenated phthalocyanine ring.
  • Y represents a primary to tertiary amino group
  • carboxylic acid A represents a divalent linking group
  • Z represents a residue obtained by removing at least one hydrogen on a nitrogen atom of a primary or secondary amino group
  • m represents 1-4 and n represents 1-4.
  • Examples of the central metal include divalent to trivalent metals such as copper, zinc, cobalt, manganese, and aluminum.
  • Examples of the primary and secondary amino groups include, for example, a monomethylamino group, a dimethylamino group, and a acetylamino group. And the like.
  • Examples of the base or metal that forms a salt with the carboxylic acid group ⁇ sulfonic acid group include organic salts such as ammonium, dimethylamine, getylamine, and triethylamine; potassium, sodium, calcium, strontium, and aluminum.
  • divalent linking group of a for example, an alkylene group having a carbon number 1 ⁇ 3, - C0 2 -, -S 0 2 -, one S 0 2 NH (CH 2) m - , such as two And a valent linking group.
  • Z include a phthalimid group, a monoalkylamino group, a dialkylamino group and the like.
  • the amount of the phthalocyanine derivative to be added is usually 0.01 to 0.3 parts by mass per 1 part by mass of the crude pigment.
  • the total amount of the crude pigment and the phthalocyanine derivative is regarded as the amount of the crude pigment used, and the amount of the inorganic salt used is selected from the above range.
  • the temperature at the time of solvent salt milling is preferably from 30 to 150 ° C, more preferably from 80 to 120 ° C.
  • the solvent salt milling time is preferably 5 to 20 hours, more preferably 6 to 18 hours.
  • the brominated zinc phthalocyanine pigment, inorganic salt, A mixture containing an organic solvent as the main component is obtained.
  • the organic solvent and inorganic salts are removed from the mixture, and if necessary, a solid mainly composed of a brominated zinc phthalocyanine pigment is washed, filtered, dried, milled, etc.
  • a powder of a brominated zinc phthalocyanine pigment can be obtained.
  • washing either washing with water or washing with hot water can be adopted. The number of washings can be repeated in the range of 1 to 5 times.
  • the organic solvent and the inorganic salt can be easily removed by washing with water.
  • the above-mentioned filtration and drying after purification include, for example, a batch type in which the pigment is dehydrated and Z or desolvent is removed by heating at 80 to 120 ° C by a heating source installed in a dryer. Or, there may be mentioned continuous drying, etc.
  • the dryer include a box dryer, a band dryer, a spray dryer and the like. Crushing after drying is not an operation to reduce the average particle size of the primary particles having a large specific surface area, but rather, for example, a method in which a pigment is radiated by a lamp such as a box-type dryer or a band dryer. This is performed in order to dissolve the pigment when it becomes in the form of powder, and to pulverize the powder. Examples thereof include mortar, hammer mill, disk mill, pin mill, and jet mill.
  • the green pigment of the present invention typified by the brominated zinc phthalocyanine pigment can be used for any of known and commonly used applications.
  • pigments having an average primary particle diameter of 0.01 to 0.1 ju rn are: Dispersibility in a synthetic resin or the like to be colored becomes better.
  • the above-mentioned brominated zinc phthalocyanine pigment has a weaker cohesive force of primary particles than conventional pigments, and has a property that it is more easily disintegrated. Electron micrographs cannot be observed with conventional pigments, but individual pigment primary particles that constitute aggregates can be observed.
  • the primary particles have an aspect ratio of 1 to 3, the viscosity characteristics are improved in each application field, and the fluidity is further increased.
  • the aspect ratio first, the pigment particles in the field of view are photographed with a transmission electron microscope or a scanning electron microscope as in the case of determining the average particle diameter of the primary particles. Then, the average value of the longer diameter (longer diameter) and the shorter diameter (shorter diameter) of the 50 primary pigment particles constituting the aggregate on the two-dimensional image is calculated, and these values are used. calculate.
  • the green pigment according to the present invention When the green pigment according to the present invention is formed into a coating film using the green pigment alone, the Xy chromaticity coordinate area surrounded by the above equations 1, 2 and 3 can be displayed in the XYZ color system of CIE. It has excellent coloring power, is not bluish, and develops a green color that cannot be displayed with conventional green pigments having a high transmittance, and can extend the color reproduction area as compared with the case of using conventional green pigments. As a result, the green pigment according to the present invention is a pigment having the advantages of the conventional chlorinated copper phthalocyanine pigment (PG7) and brominated copper phthalocyanine pigment (PG36).
  • PG7 chlorinated copper phthalocyanine pigment
  • PG36 brominated copper phthalocyanine pigment
  • the green pigment of the present invention Since the green pigment of the present invention has excellent coloring power, it can be brought closer to the green specified in the standard in a smaller amount than in the case of using conventional PG36, so that the film thickness can be reduced and plate making can be achieved. Performance is improved, and it becomes easier to form fine shapes by photolithography. Further, since the green pigment of the present invention does not have too strong blue tint, even if the amount of the yellow pigment is small, a green pixel having a green color with a sufficiently strong yellow tint or a thin or highly transparent color is obtained. Green pixels with excellent purity can be formed, and the color reproduction range can be expanded with a thinner film thickness than when a conventional green pigment is used.
  • the green pigment of the present invention has a high transmittance
  • the film thickness is smaller than in the conventional art even in a region where the coloring power of the color coordinates is high (high concentration region).
  • a conventional photosensitive coloring composition using PG 7 since the light transmittance of the color filter is increased, a strong backlight is necessary.
  • the green pigment according to the present invention which can suppress the increase in the cost and power consumption of the liquid crystal panel, emits a green color with a relatively strong bluish color. Especially suitable for NTSC and EBU standards for TV.
  • the green pigment according to the present invention is made of a brominated zinc phthalocyanine pigment, the transmittance is high, and the transmittance of the spectral transmittance spectrum at a wavelength of 435 nm is 45% or less, particularly, It is 40% or less, and a pigment with less unnecessary blue tint that must be erased by toning can be obtained. Further, the transmittance of the spectral transmittance spectrum at 60 nm becomes 20% or less, particularly 10% or less, and a pigment having a small reddish color even when toned can be obtained.
  • a coating liquid is prepared by blending an appropriate dispersant, a binder component, and a solvent with the green pigment, and coating is performed on a transparent substrate. Then dry and cure if necessary.
  • a binder component a non-curable thermoplastic resin composition may be used, or a photo-curable (photosensitive) or thermo-curable resin composition, as long as a transparent coating film capable of performing colorimetry can be formed. May be used.
  • a coating film containing only the green pigment according to the present invention is formed as a pigment, and colorimetry is performed. You can also.
  • a green pixel of a recolor filter can be formed by a known method using the green pigment of the present invention.
  • a green pigment according to the present invention is mixed with a photosensitive component such as a photopolymerizable compound or a photopolymerization initiator to prepare a photosensitive colored composition, and this is mixed with a transparent substrate.
  • a green pixel can be formed by coating on the substrate, exposing it to a predetermined pattern, and developing.
  • a color filter may be manufactured by forming a green pattern by an electrodeposition method, a transfer method, a micelle electrolysis method, or a PVED (Photovoltaic Electrodeposition) method. The red pattern and the blue pattern can be formed by a similar method using a known pigment.
  • a green pigment Before preparing the photosensitive coloring composition, a green pigment may be prepared in a pigment dispersion in advance, and the obtained pigment dispersion and the photosensitive component may be mixed. In this case, a photosensitive coloring composition having good pigment dispersibility can be obtained. Further, the green pigment for a color filter of the present invention can be used alone as a coloring component, but usually, it is prepared in combination with another pigment such as a yellow pigment at the stage of preparing a pigment dispersion or a photosensitive coloring composition. Be colored. The green pigment for a color filter of the present invention has excellent coloring power as a green color, is not too bluish, and has a high transmittance.
  • the main component of the coloring component in the pigment dispersion for a color filter or the photosensitive coloring composition is It can be suitably used as a pigment and as a main pigment of a green pigment in a coloring component.
  • the green pigment of the present invention is more than 30% by mass based on the total amount of coloring components in the photosensitive coloring composition. further 3 9 mass 0/0 or more, it is good preferable to contain more particularly 5 0 wt% Yori.
  • the green pigment of the present invention is preferably contained in an amount of 50% by mass or more, more preferably 60% by mass or more, based on the total amount of the green pigment in the coloring component in the photosensitive coloring composition. Further, depending on the target color coordinates, it may be sufficient even if the amount of other green pigments is extremely small, and the blending amount of the green pigment of the present invention is 80% by mass or more based on the total amount of the green pigments. Further, even at 100% by mass, it is possible to adjust to the target color coordinates.
  • At least one kind selected from the green pigments for a color filter according to the present invention as the first green pigment and the second green pigment are more yellowish than the first green pigment in the coloring component. It preferably contains a strong green pigment.
  • the first green pigment is selected from the green pigments for a color filter according to the present invention.
  • a green pigment capable of displaying the region B may reduce the transmittance without being too bluish. It is more preferably used since it has no yellowishness and does not reduce the coloring power as green.
  • the second green pigment which is more yellowish than the first green pigment, has a wavelength (T max) at which the transmittance of the spectral transmittance spectrum at 380 to 780 nm becomes maximum.
  • T max the wavelength at which the transmittance of the spectral transmittance spectrum at 380 to 780 nm becomes maximum.
  • the second green pigment may be selected from the green pigments for color filters according to the present invention, and may be used when a green pixel having a wide color gamut or a strong yellow color is required. May be selected from green pigments having a stronger yellow tint than the green pigment for color filters of the present invention.
  • the green pigment having a stronger yellow tint than the green pigment for a color filter of the present invention does not display the xy chromaticity coordinate area surrounded by the above equations 1, 2 and 3, and has
  • the wavelength (Tmax) at which the transmittance of the spectral transmittance spectrum at 780 nm is maximized is preferably greater than 515 nm and 535 nm or less.
  • the wavelength (TmaX) is more preferably from 520 nm to 535 nm or less.
  • a reactive component involved in a curing reaction and a phthalocyanine green pigment as a first green pigment, and a CIE of a single color measured by an F10 light source.
  • a phthalocyanine green pigment as a first green pigment
  • a CIE of a single color measured by an F10 light source In the XYZ color system, one type selected from green pigments for color filters capable of displaying the Xy chromaticity coordinate area surrounded by the following equations 1, 2 and 3; and a phthalocyanine green pigment as the second green pigment.
  • the CIE's XYZ color system when measuring colors with the F10 light source, one selected from the color filter green pigment that can display the Xy chromaticity coordinate area surrounded by the following equations 4, 5, and 6 It is preferable to include at least a coloring component.
  • the Xy chromaticity coordinate area (area C) surrounded by the following equations 4, 5 and 6 is shown in Fig. 4 together with the Xy chromaticity
  • Equation 1 0.180 ⁇ X ⁇ 0230
  • Equation 3 0.180 ⁇ x ⁇ 0.350
  • the green pigment capable of displaying the above-mentioned region C can produce a strong yellowish green color in the chromaticity coordinate region, which cannot be displayed by the conventional halogenated copper phthalocyanine pigment.
  • the color reproduction range can be extended to the yellowish region, and the amount of yellow pigment for toning can be reduced. Further, since the green pigment capable of displaying the region C has a higher coloring power than PG 36, the green pigment can approach the green defined in the standard with a smaller amount than when PG 36 is used.
  • the first green pigment is selected from green pigments capable of displaying the above-mentioned region A and the second green pigment is appropriately selected from green pigments capable of displaying the region C and used in combination, a smaller amount of pigment is used.
  • the color of the green pixel specified in each standard can be approached, and as a result, the film thickness can be made thinner when forming the pixel of the color filter, and the plate making performance is improved and photolithography is improved. At the same time, it becomes easier to form a fine shape.
  • the mixing amount of the yellow pigment is small, green It can form green pixels with coloring and Z or thin and transparent green pixels with excellent color purity, and can extend the color reproduction range with a thinner film thickness than when using conventional green pigments. .
  • both the green pigment capable of displaying the area A and the green pigment capable of displaying the area C have high transmittance, the coloring power of the color coordinates is high when a green pixel is formed in combination with the yellow pigment. Even in the region (high concentration region), the transmittance can be increased with a thinner film thickness. Therefore, when a color filter is formed by appropriately selecting and combining a green pigment capable of displaying the region A and a green pigment capable of displaying the region C to form a color filter, the color reproduction range is wider with a smaller film thickness. Highly efficient color filters can be formed.
  • the light transmittance of the color filter is increased, so that a strong pack light is not required.
  • the cost of the LCD panel and the increase in power consumption can be suppressed.
  • the green pigment that can display the above-mentioned area C which is used as the second green pigment, has a spectral transmittance spectrum at 380 to 780 nm when the wavelength (Tmin) at which the transmittance of the spectrum is minimized is 5%.
  • the wavelength (Tmax) at which the transmittance of the transmittance spectrum is maximized is preferably 520 to 535 nm.
  • the transmittance at the wavelength (Tmax) is preferably 90% or more, particularly preferably 930/0 or more.
  • the phthalocyanine green pigment used in the present invention has a transmittance of the spectral transmittance spectrum at 435 nm, which is a wavelength of a blue light source of F10 light source, of 40% or less, particularly
  • It is preferably 35% or less, and is a sub-wavelength of the tri-wavelength tube of the F10 light source.
  • the transmittance of the spectral transmittance spectrum at 490 nm is preferably 85% or less, particularly preferably 80% or less. Further, the transmittance of the spectral transmittance spectrum at 610 nrri, which is the wavelength of the red light source of the F10 light source, is preferably 30% or less, particularly preferably 25% or less.
  • the center metals of the phthalocyanine line pigment used as the first green pigment and the second green pigment include Zn, Mg, Al, Si, Ti, V, Mn, Fe, C o, Ni, Ge, Sn and the like.
  • the first green pigment and the second green pigment Although the center metal of the phthalocyanine green pigment may be different, it is preferable that the center metal is the same, so that the compatibility is good. Is preferably used in the present invention, since the color development becomes good and the color development becomes good.
  • the central metal of the phthalocyanine green pigment is both Zn (zinc)
  • Zinc is well suited for displaying the sRGB standard for multimedia monitors, or its surrounding chromaticity region, and the green color of the NTSC.EBU standard for televisions.
  • a green pigment made of brominated zinc phthalocyanine can display the above-mentioned region A and the above-mentioned region C, and is preferably used as the first green pigment and the second green pigment.
  • the first green pigment may be contained in one molecule.
  • a brominated zinc phthalocyanine having an average of 8 or more and less than 13 bromine atoms has a good coloring power as a green color, is not too bluish, and develops a green color with a high transmittance, and has a green color pixel of a color filter. Preferred because it is very suitable for forming. Among them, brominated zinc phthalocyanine having an average of 10 to 11 bromine atoms in one molecule is preferable.
  • a brominated zinc phthalocyanine having an average of 13 or more bromine atoms in one molecule produces a green color with high tinting strength and high transmittance while giving a strong yellowish color. This is preferable because it is very suitable for forming a green pixel.
  • brominated zinc phthalocyanine which has an average of 13 to 16 bromine atoms in one molecule and does not contain chlorine or has an average of three or less in one molecule, is particularly preferable.
  • a brominated zinc phthalocyanine having an average of 14 to 16 bromine atoms and containing no chlorine or an average of 2 or less in one molecule is preferred.
  • the first green pigment and the second green pigment have an average primary particle diameter in the range of 0.01 to 0.1 m, pigment aggregation is relatively weak, and the pigment dispersion It is easy to disperse the pigment in the composition, and the color filter has high clarity and transmittance. More easily, and the light-shielding property at 365 nm, which is often used when curing colored compositions, is reduced.There is no decrease in the photocuring sensitivity of the resist. This is also preferable because it hardly occurs.
  • first green pigment and the second green pigment are preferred if the primary particles have an aspect ratio of 1 to 3, since the viscosity characteristics are improved and the fluidity becomes higher.
  • the brominated zinc phthalocyanine pigment used as the second green pigment can also be produced by the above-mentioned production method.
  • the first green pigment is a kind selected from a color filter green pigment capable of displaying the area B
  • the second green pigment is a color filter capable of displaying the area C.
  • green pigments especially from the viewpoint of approaching the color of the green pixel of each standard with a relatively small amount of pigment used, increasing the transmittance, reducing the film thickness, and expanding the color reproduction range preferable.
  • the first green pigment is used. It is preferable that the amount of the green pigment is larger than the amount of the second green pigment. Preferably, the amount is greater than the amount of the first green pigment.
  • the above-described sufficient effect can be obtained even if the green pigment is constituted only by the first and second green pigments.
  • a plurality of pigments may be further contained as a green pigment such as a fourth green pigment.
  • the third and higher green pigments are located between the first green pigment and the second green pigment on the xy chromaticity coordinate area because the effect of expanding the color reproduction range is enhanced.
  • Are preferably separated from each other. Specifically, when each pigment is fixed at y 0.50 on the Xy chromaticity coordinates, each X is 0.02 or more, preferably 0. It is preferable that they are apart by 0.3 to 0.05.
  • the third or more green pigments may be selected from the regions A and C or may be selected from another region.
  • the green pigment of the present invention When the second green pigment is selected from green pigments capable of displaying the area C, Even if the green pigment of the present invention is not contained as the first green pigment in an amount of more than 30% by mass based on the total amount of the coloring components in the photosensitive coloring composition, the green pigment of the present invention may be contained in the photosensitive coloring composition. Even if it is not contained in an amount of 50% by mass or more based on the total amount of the green pigment in the coloring component of the product, a photosensitive coloring composition capable of sufficiently achieving the effects of the present invention can be obtained.
  • the total blending amount of the green pigment for the color filter that includes the first and second green pigments and that can display the region A and the region C that may include the third or more green pigments according to the present invention In the photosensitive color composition, it is more than 30% by mass, more than 39% by mass, and more than 50% by mass depending on the target color coordinates based on the total amount of the coloring components in the photosensitive color composition. This is preferable in that green pixels of a color filter having high transmittance are formed.
  • the total amount of the green pigment for a color filter that can display the region A and the region C that include the first and second green pigments and, in some cases, the third or more green pigments is determined by the coloring in the photosensitive coloring composition. It is preferable that the green pigment is contained in an amount of 50% by mass or more, more preferably 60% by mass or more based on the total amount of the green pigment in the component, from the viewpoint of forming a green pixel of a color filter having a wide color reproduction range and high transmittance. Further, depending on the target color coordinates, the addition amount of the green pigment that does not belong to the region A and the region C may be sufficient even if it is extremely small or not, and the first and second green pigments may be included. The total amount of the green pigments for the color filter that can display the areas A and C containing the green pigments is 80% by mass or more based on the total amount of the green pigments. Color coordinates can be adjusted.
  • yellow pigments include C. pigment yellow (PY) 1, 2, 3, 4, 5, 6, 10, 12, 12, 13, 14, 15, 15, 16, 17, and 18 , 24, 3 1, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37: 1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 83, 93, 94, 95, 97, 98, 100, 101, 104, 106, 108, 109, 1 1 0, 1 1 3, 1 1 4, 1 1 5, 1 1 6 1 1 7, 1 1 8, 1 9, 1 20, 1 2 6, 1 27, 1 2 8, 1 2 9, 1 3 8, 1 39, 1 5 0, 1 5 1, 1 5 2, 1 5 3, 1 54, 1 5 5, 1 56, 1 61, 1 62, 1 6 4, 1 66, 1 6 7,
  • the green pigment of the present invention has a lower spectral transmittance spectrum transmittance at a wavelength of 380 to 470 nm than the conventional green pigment, and has a relatively yellowish component while being sufficiently colored as green. Therefore, when forming green pixels of the color filter, the amount of yellow pigment used can be reduced.
  • the green pigment of the present invention is contained, and in some cases, a second or more green pigment is contained. Even when the mixing ratio of the yellow pigment is set to preferably 1.6 or less, more preferably 0.8 or less in terms of mass ratio (yellow pigment / green pigment), transmission of the spectral transmittance spectrum at a wavelength of 380 to 470 nm is achieved. The rate can be reduced sufficiently.
  • both of these spectral components at wavelengths of 380 to 470 nm are used. Since the transmittance of the transmittance vector is low, the transmittance can be sufficiently reduced even when a highly transparent yellow pigment is combined. When a highly transparent yellow pigment is combined, the transmittance of the pixel after toning can be increased.
  • the green pigment according to the present invention has excellent coloring power and high transmittance, a sufficient amount of coloration can be obtained even in a small amount of the pigment itself.
  • the amount of pigment used can be reduced, the amount of pigment used as a whole is reduced, and green pixels having high transparency and excellent color purity can be formed.
  • many yellow pigments have poor heat resistance and light resistance, the amount of yellow pigment used is reduced. Therefore, the resistance of the green pixel is also improved.
  • the green pigment capable of displaying the region C When a green pigment capable of displaying the region C is further used as the second green pigment, the green pigment capable of displaying the region C also has excellent coloring power, high transmittance, and a strong yellow tint. Therefore, when these are used in combination, a strong yellowish green color can be sufficiently developed even with a small amount of the pigment used.
  • the green pigment of the present invention and the green pigment capable of displaying the region C are toned with the center of the coloring component, the use amount of the yellow pigment combined as described above can be reduced, and the use amount of the entire pigment is reduced.
  • a photosensitive coloring composition which is further reduced and which can form green pixels having high transparency and excellent color purity can be obtained.
  • a photosensitive coloring composition having a very large pigment ratio (a high-density type photosensitive Coloring composition).
  • the high-concentration type photosensitive coloring composition contains a large proportion of the pigment, the effect on the optical performance such as transparency other than the color density, the ability to form a fine pattern, and the physical properties of the film when forming a pixel is particularly high. It will be serious.
  • the green pigment of the present invention is used, even a very small amount of pigment as a high-concentration type photosensitive coloring composition can produce a color that can sufficiently cope with a high-concentration type.
  • the pigment (P) Z vehicle (V) ratio (mass ratio) is in the range of 0.25 to 1.0, preferably 0.25 to 0.8, a green image having high density and high transparency is obtained. Element can be formed.
  • the pigment (P) having a P / V ratio is the total amount of the coloring components contained in the photosensitive coloring composition according to the present invention, that is, the total amount of the pigment, and is the yellow color mixed with the green pigment. It contains other pigments such as pigments, and the vehicle means a non-volatile component excluding the pigment in the photosensitive coloring composition, and a liquid monomer component is also included in the vehicle.
  • the amount of the dispersant used to disperse the pigment can also be reduced, so that components such as the pigment and the dispersant that do not participate in the curing reaction (non-reactive components) and light
  • a photosensitive coloring composition composed of components (reactive components) involved in the curing reaction of a curable resin, an initiator, a thermosetting resin, etc.
  • the proportion of the non-reactive components is And the proportion of reactive components increases.
  • the photosensitive coloring composition according to the present invention can reduce the mass ratio (bZa) of the non-reactive component (b) other than the coloring component to the reactive component (a) to 0.45 or less. High reactivity is obtained.
  • the non-reactive components other than the coloring components are mainly composed of a dispersant. Therefore, if sufficient pigment dispersibility can be obtained, the smaller the mass ratio (bZa) is, the smaller the amount of the dispersant used is, and the proportion of the reactive component in the photosensitive coloring composition is increased. As a result, the photocurability becomes good and the cured film hardness, cured film elasticity, cured film thickness uniformity, pixel pattern loss during development, reduced residue, improved developability, cured film Green pixels with excellent physical properties such as improved crosslink density and thinner coating film can be obtained.
  • bZa mass ratio
  • the proportion of the reactive component in the photosensitive coloring composition is increased.
  • the photocurability becomes good and the cured film hardness, cured film elasticity, cured film thickness uniformity, pixel pattern loss during development, reduced residue, improved developability, cured film Green pixels with excellent physical properties such as improved crosslink density and thinner coating film can be obtained.
  • the dispersant for preparing the pigment dispersion the following polymer dispersants, that is, (meth) acrylic acid-based (co) polymer polyflow No.75, No.90, No.95 (Kyoei) Yasu Kagaku Kogyo), Megafac F171, F172, F173 (Dainippon Ink and Chemicals), Florad FG430, FC431 (Sumitomo 3LEM), Solsperse 13240, 20000, 24000, 26000, 28000, etc.
  • Dispersing agents manufactured by Avicia
  • Dice Pervic 111, 161, 162, 163, 164, 182, 2000, 2001 manufactured by Big Chemie
  • Azispar PB711, PB41K PB11K PB82K PB822 manufactured by Ajinomoto Fine-Techno
  • Surfactants such as cationic, anionic, nonionic, amphoteric, silicone, and fluorine can also be used as dispersants.
  • polymer surfactants as exemplified below, namely, polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, and polyoxyethylene oleyl ether; Polyoxyethylene alkyl phenyl ethers such as ethylene octyl phenyl ether and polyoxyethylene nonyl phenyl ether; Polyethylene glycol gesters such as polyethylene glycol dilaurate and polyethylene glycol distearate; sorbitan fatty acid esters Classes: fatty acid-modified polyesters: Polymer surfactants such as tertiary amine-modified polyurethanes are preferably used.
  • the mixing ratio of the dispersant is usually 100 parts by mass of the pigment (the total of the green pigment and the other pigment).
  • the amount is usually 100 parts by mass or less, preferably 30 parts by mass or less.
  • a solvent (dispersion solvent) for preparing a pigment dispersion various organic solvents used as a diluting solvent for preparing a photosensitive coloring composition described later can be used.
  • the dispersing solvent is usually in a proportion of 100 to 100 parts by mass, preferably 200 to 900 parts by mass, based on 100 parts by mass of the pigment (total of the green pigment and other pigments). Used in
  • the pigment dispersion is prepared by mixing a green pigment, other pigments, dispersants, and other components as necessary with a solvent in any order, and jet-mill, kneader, roll-mill, attritor, super-mill, dissolver And a known dispersing machine such as a homomixer or a sand mill.
  • the green pigment of the present invention may be prepared as a dispersion separately from other pigments, or may be prepared as a dispersion by mixing with other pigments.
  • the photosensitive coloring composition contains, together with a green pigment, other pigments and a dispersing agent, a component that participates in photocuring, such as a photopolymerizable compound or a photopolymerization initiator, that is, a photosensitive component. It is prepared by appropriate dilution.
  • the photopolymerizable compound is a compound that is cured by direct irradiation with light or by the action of an initiator activated by light irradiation or by the action of an initiator activated by light irradiation.
  • the reaction type of the photopolymerizable compound may be any of radical polymerization, anion polymerization, and cationic polymerization, but the photopolymerizable compound is usually a radical polymerizable monomer or oligomer having an ethylenically unsaturated bond. A polymer is used.
  • a polyfunctional acrylate-based monomer or oligomer is preferably used.
  • At least a part of the monomer or oligomer preferably has two or more radically polymerizable groups, and particularly preferably three or more, in order to obtain a sufficient crosslink density.
  • polymer having an ethylenically unsaturated bond examples include a polymer of the above polyvalent acrylate monomer or a monomer having another functional group such as a hydroxyl group or a carboxy group together with the ethylenically unsaturated bond.
  • a polymer having an ethylenically unsaturated bond introduced using another functional group such as a hydroxyl group or a carboxyl group present in the polymer molecule as a scaffold can be used.
  • a polymerizable polymer in order to obtain a sufficient film-forming property, and it is preferable to use a polymerizable monomer or oligomer in order to obtain a sufficient cross-linking density. Preferably, it is used.
  • the polymerizable or non-polymerizable polymer and the binder resin comprising a polymerizable or non-polymerizable monomer and Z or an oligomer are usually contained in the photosensitive coloring composition in a solid content ratio of 5 to 15% by mass, preferably 5 to 15% by mass. Is contained in an amount of 7 to 10% by mass.
  • the photopolymerization initiator a compound that generates an active species that initiates a polymerization reaction such as radical polymerization, anion polymerization, or cation polymerization by light irradiation can be used. Depending on the type of reaction of the photopolymerizable compound, Select those that generate appropriate active species.
  • the photo-radical initiator ultraviolet, ionizing radiation, visible light, or a compound that generates free radicals at other wavelengths, particularly at an energy ray of 365 nm or less is used, for example, benzoin, benzophenone, etc.
  • Benzophenone derivatives or derivatives thereof such as esters: xanthone and thioxanthone derivatives: chlorosulfonyl, chloromethyl polynuclear aromatic compounds, chloromethyl heterocycle Formula compounds, halogen-containing compounds such as chloromethylbenzophenones; triazines: fluorenones; haloalkanes; redox couples of a photoreducing dye with a reducing agent; organic sulfur compounds: peroxides.
  • irgacure — 1 84, irgacure 1 369, irgacure 1 651, irgacure 1 907 all Ciba's Specialty I.
  • the photo-radical initiator is contained in the photosensitive coloring composition in a solid content ratio of usually 0.05 to 18% by mass, preferably 0.1 to 13% by mass. If the amount of the photo-radical initiator is less than 0.05% by mass, the photo-curing reaction does not proceed, and the residual film ratio, heat resistance, chemical resistance, and the like tend to decrease. On the other hand, if the amount exceeds 18% by mass, the solubility in the base resin reaches saturation, and crystals of the initiator precipitate during spin coating or film repelling, so that the uniformity of the film surface cannot be maintained. As a result, the problem of film roughening occurs.
  • the photopolymerization initiator may be added to the photosensitive coloring composition according to the present invention from the beginning, but when stored for a relatively long time, It is preferable to disperse or dissolve in the photosensitive resin composition immediately before use. Further, the photosensitive coloring composition of the present invention aims to improve heat resistance, adhesion, and chemical resistance (particularly alkali resistance). For the purpose, if necessary, a compound having two or more epoxy groups in the molecule (epoxy resin) can be blended.
  • Examples of the compound having two or more epoxy groups in the molecule include bisphenol A-type epoxy resin such as Epicoat 1001, 1002, 1003, 1004, 1007, 10009, 10010 ( Bisphenol F-type epoxy resin, such as Epicoate 807 (made by Yuka Shell), and phenol nopolak-type epoxy resin.
  • EOCN 102, 103 S, 104 as cresol novolac type epoxy resin, such as EPPN 201, 202 (Nippon Kayaku), Epico 1 54 (Yukaka Shell), etc. S, 102, 100, 125, 107 (made by Nippon Kayaku), Epikote 180 S (made by Yuka Shell) and the like can be exemplified.
  • a cycloaliphatic epoxy resin and an aliphatic polyglycidyl ether can also be exemplified.
  • Such an epoxy resin is usually contained in the photosensitive coloring composition in a solid content ratio of 0 to 60% by mass, preferably 5 to 40% by mass.
  • various additives such as a silane coupling agent may be added to the above-mentioned photosensitive coloring composition in addition to the above components.
  • the above-mentioned photosensitive coloring composition generally has good solubility in components such as a photopolymerizable compound, a polyvalent radical polymerizable compound, and a photopolymerization initiator in consideration of coating properties and coating suitability, and However, a solvent having a relatively high boiling point is contained so as to improve the spin coating property.
  • a solvent having a relatively high boiling point is contained so as to improve the spin coating property.
  • usable solvents include alcohol solvents such as methyl alcohol, ethyl alcohol, N-propyl alcohol, and i-propyl alcohol: cellosolve solvents such as methoxy alcohol and ethoxy alcohol; methoxy alcohol and ethoxy alcohol.
  • I-yl solvents such as ethoxyethanol
  • ester solvents such as ethyl acetate, butyl acetate, methyl methoxypropionate, ethyl ethoxypropionate, and ethyl lactate: acetone, methyl isobutyl ketone, Ketone solvents such as cyclohexanone
  • cellosolp acetate solvents such as methoxethyl acetate, ethoxyxethyl acetate, and ethyl acetate solve solvent: methoxyethoxyxethyl acetate, ethoxyethoxyethyl acetate Mosquitoes ruby!
  • ether solvents such as getyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and tetrahydrofuran; N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone
  • Aprotic amide solvents lactone solvents such as butyrolactone: unsaturated hydrocarbon solvents such as benzene, toluene, xylene and naphthalene; saturations such as N-heptane, N-hexane and N-octane
  • Organic solvents such as hydrocarbon solvents can be exemplified.
  • cellosolve acetate-based solvents such as methoxhetyl acetate, ethoxyxyl acetate, and ethyl sorbate
  • Solvents Ether solvents such as ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and propylene glycol dimethyl ether
  • Non-protonic amide solvents such as N, N-dimethylacetamide
  • methyl methoxypropionate, ethyl ethoxypropionate Ester solvents such as ethyl lactate are particularly preferably used.
  • N, N-dimethyl ⁇ Seto Ami de, MB A (acetate over 3 main Tokishibuchiru, CH 3 CH (OCH 3) CH 2 CH 2 0 COCH 3), P GM EA ( propylene glycol monomethyl ether acetate, CH 3 OCH 2 CH (CH 3 ) O CO CH 3 ), DM DG (diethylene glycol dimethyl ether, H 3 COC 2 H 4 OCH 3 ), or a mixture thereof can be used.
  • P GM EA propylene glycol monomethyl ether acetate, CH 3 OCH 2 CH (CH 3 ) O CO CH 3 )
  • DM DG diethylene glycol dimethyl ether, H 3 COC 2 H 4 OCH 3
  • the green pigment of the present invention another pigment, a dispersant, a photopolymerizable compound, a photopolymerization initiator, and other components are added to a suitable solvent, A pigment dispersion composed of a green pigment, other pigments, a dispersant, and the like, and a photosensitive component such as a photopolymerizable compound and a photopolymerization initiator and other components are charged into a solvent, and the resulting mixture is applied to a paint shaker, a bead mill, and sand.
  • a green pixel of a color filter can be formed using the photosensitive coloring composition thus obtained.
  • the color filter includes a black matrix formed in a predetermined pattern on a transparent substrate, and a pixel portion formed in a predetermined pattern on the black matrix, and is formed so as to cover the pixel portion as necessary.
  • Protective film provided.
  • a transparent electrode for driving the liquid crystal may be formed on the protective film as needed. In some cases, a spacer is formed on the transparent electrode plate, the pixel portion, or the protective film in accordance with the region where the black matrix layer is formed.
  • red, green, and blue pixels are mosaic, stripe, and A black matrix layer, which is not arranged in a desired pattern such as an angle type or a four-pixel arrangement type, is provided between pixel patterns and in a predetermined region outside a pixel portion formation region.
  • the photosensitive coloring composition containing the green pigment of the present invention is applied to one surface of a transparent substrate, exposed by irradiating light through a photomask, alkali-developed, and then heat-cured in a clean oven or the like.
  • Pixels of other colors and colored layers such as a black matrix layer are preferably formed by a pigment dispersion method as in the case of green pixels, but may be formed by other methods such as a dyeing method, a printing method, and an electrodeposition method. You can do it.
  • the black matrix layer may be formed by chromium evaporation or the like.
  • the pixel portion is usually formed to a thickness of about 2.0 m.
  • the protective film can be formed by applying a coating solution of a transparent photosensitive resin composition by a method such as a spin coater, a roll coater, a spray, and printing.
  • the protective film is formed to a thickness of about 2 / m, for example.
  • a spin coater When a spin coater is used, the number of rotations is set within the range of 500 to "! 500 rotations.
  • the coating film of the photosensitive resin composition is exposed by light irradiation through a photomask. After alkali development, it is cured by heating in a clean oven or the like to form a protective film.
  • the transparent electrode on the protective film is formed by sputtering, vacuum evaporation, indium tin oxide (ITO), zinc oxide (Zr> O), tin oxide (SnO), or an alloy thereof. It is formed by a general method such as a CVD method or the like, and is formed into a predetermined pattern by etching using a photoresist or using a jig as necessary.
  • the thickness of this transparent electrode can be about 20 to 500 nm, preferably about 100 to 300 nm.
  • the spacer on the transparent electrode is also coated with a coating solution of the photosensitive resin composition by a method such as spin coater, roll coater, spray, printing, etc., and is exposed by light irradiation through a photomask. It can be formed by heating and curing in a clean oven or the like.
  • the spacer is preferably a columnar spacer having a height corresponding to the cell gap.
  • the columnar spacer is formed, for example, at a height of about 5 jUm.
  • the rotation speed of the spin coater is also It should be set within the range of 500 to 1,500 revolutions.
  • the alignment film is coated with a coating solution containing a resin such as polyimide resin on the inner surface of the color filter by a known method such as spin coating, dried, and, if necessary, cured by heat or light. After that, it can be formed by rubbing.
  • a resin such as polyimide resin
  • the color filter obtained in this manner includes a transparent substrate, a pixel portion formed on the transparent substrate, and, if necessary, a black matrix layer, a protective film covering the coloring layer, and A spacer may be provided at a position overlapping with the non-display part in order to maintain a distance from the electrode substrate to be formed, and a green pixel of the pixel part contains the green pigment of the present invention. Things.
  • This green pixel has a film thickness of 2.7 jtm or less, preferably 2.5 im or less, and when a single pixel measures color with an F10 light source, the X coordinate in the CIE XYZ color system is 0. 2 1 ⁇ X ⁇ 0.30, y coordinate is 0.55 ⁇ y ⁇ 0.71, and stimulus value Y is 29 ⁇ Y, more preferably 50 ⁇ Y A wide color reproduction area can be ensured by combining with the above pixels, and the transmittance is very large even if the film thickness is small.
  • the green pixel can have a strong yellow tint only by mixing a small amount of yellow pigment, and the mass ratio of the yellow pigment to the green pigment in the pixel (yellow pigment ⁇ green pigment) is 1.6 or less.
  • the X coordinate is 0.21 ⁇ ⁇ 0.30 and the y coordinate is 0.55 ⁇ y in the X ⁇ ⁇ color system of C ⁇
  • the xy chromaticity coordinate area in the range of ⁇ 0.71 can be displayed.
  • the green pixel contains at least one kind selected from green pigments capable of displaying the area A as a first green pigment, and a green pigment capable of displaying the area C as a second green pigment
  • the X coordinate in the XYZ color system of the CIE is 0.25 ⁇ x ⁇ 0.32
  • y It can display a color space whose coordinates are 0.55 ⁇ y ⁇ 0.75 and stimulus value Y is 30 ⁇ Y, more preferably 40 ⁇ ⁇ , and even more preferably 50 ⁇ ⁇ .
  • the green pixel contains at least one kind selected from green pigments capable of displaying the area A as a first green pigment, and a green pigment capable of displaying the area C as a second green pigment.
  • the yellow tint can be enhanced by simply mixing a small amount of the yellow pigment, and when the mass ratio of the yellow pigment to the total amount of the green pigment in the pixel (yellow pigment Z green pigment) is 1.6 or less.
  • the X coordinate of the CIE XYZ color system is 0.25 ⁇ x ⁇ 0.32, and the y coordinate is 0.55 ⁇ y ⁇ 0.
  • the green pixels reduce the amount of non-reactive components such as pigments and dispersants, and are curable components other than photosensitive components such as photopolymerizable compounds and photopolymerization initiators, and thermosetting resins. Since the compounding ratio of the developable component such as Alkyri soluble pinda can be increased, the photocurability, the ability to form a fine pattern, and the physical properties after pixel formation are good. Good, no residue left, no foreign matter left, high degree of development, accurate shape after development, pixel cross section trapezoidal, uniform film thickness. In addition, since the obtained pixels have a high crosslinking density, they are excellent in hardness and elasticity, and the impurities are hardly dissolved.
  • the tapered shape when the coating film of the photosensitive coloring composition is sufficiently cured to the lower side of the coating film when the coating film is exposed from the upper surface, the tapered shape does not become reverse tapered during development, and the length of the lower bottom of the pixel cross section is reduced. It is formed in a tapered shape with the ratio of the length of the upper base to the height (upper bottom lower bottom) being less than 1, and the pattern shape is good.
  • the obtained pixels have a hardness of at least 500 NZm m 2 or an elastic deformation rate of at least 20%, and green pixels that are difficult to deform can be obtained.
  • the maximum hardness of the Vickers indenter is 2 OmN (loading speed: 2 m NZ seconds, the maximum load is maintained for 5 seconds using an ultra-micro hardness tester (WIN-HCU manufactured by Fischer Instruments) It is specified as the universal hardness (surface area of the Vickers indenter under test load Z test load: N / mm 2 ) when the surface hardness is measured under the condition that the unloading speed is 2 m NZ seconds.
  • the elastic deformation rate was determined by measuring the amount of elastic deformation and the amount of plastic deformation in the above test, and was calculated as the ratio of the amount of elastic deformation to the total amount of deformation, which is the sum of the amount of elastic deformation and the amount of plastic deformation. Specified.
  • liquid crystal color televisions require high-speed response to support moving images.
  • a sufficient amount of the curing component can be used by using the green pigment of the present invention, so that the elution of impurities is reduced, and a color filter excellent in voltage holding ratio and the like is manufactured. Applicable to LCD color TV.
  • a liquid crystal panel is obtained by causing the color filter manufactured in this way to face a liquid crystal driving side substrate as a mating member, filling the gap with liquid crystal and sealing.
  • a liquid crystal panel can be suitably applied as a display device for a flat display such as a personal computer.
  • the present invention can be applied to an active type color filter irrespective of a driving mode such as TN, IPS and VA.
  • the present invention is not limited to the active type, and can be applied to various driving type color filters, for example, a simple matrix type, and the like.
  • it can be applied to the color filter of EL (Electro-Mouth Luminescence) device.
  • EL devices can display full-color images by arranging EL elements of each color of RGB in a matrix and controlling the emission of each color. However, by arranging a color filter on the light extraction side (viewer side) of the EL element The display performance can be improved by modulating the color light, and the color filter can also protect the EL element from external light, thereby contributing to a longer life.
  • Example A Synthesis of green pigment
  • Zinc phthalocyanine was manufactured from phthalodinitrile and zinc chloride.
  • the 1-chloronaphthalene solution has light absorption between 600 and 700 nm.
  • 3.1 parts by mass of sulfuryl chloride, 3.parts of anhydrous aluminum chloride, 0.46 parts by mass of sodium chloride and 1 part by mass of zinc phthalocyanine are mixed at 40 ° C, and 2.2 parts by mass of bromine are added dropwise. I went.
  • the reaction was carried out at 80 ° C for 15 hours, and then the reaction mixture was poured into water to precipitate a crude brominated zinc phthalocyanine pigment.
  • the aqueous slurry was filtered, washed with hot water at 80 ° C., and dried at 90 ° C. to obtain 2.6 parts by mass of a purified crude zinc bromide phthalocyanine pigment.
  • the resulting brominated zinc phthalocyanine pigment is from halogen content analysis by mass spectrometry, by the average composition Z n P c B r 10 CI 4 H 2 (P c; phthalocyanine), the average 1 0 of in a molecule It contained bromine.
  • the average primary particle size measured with a transmission electron microscope (JEM-2010 manufactured by JEOL Ltd.) was 0.065 im.
  • Zinc phthalocyanine was manufactured from phthalodinitrile and zinc chloride. This 1-chloronaphthalene solution had light absorption at 600-700 nm ⁇ halogenated: 3.1 parts by mass of sulfuryl chloride, 3.7 parts by mass of anhydrous aluminum chloride, 0.46% of sodium chloride Parts by mass and 1 part by mass of zinc phthalocyanine were mixed at 40 ° C, and 2.63 parts by mass of bromine was added dropwise. The reaction was carried out at 80 ° C. for 15 hours, and then the reaction mixture was poured into water to precipitate a crude brominated zinc phthalocyanine pigment. The aqueous slurry was filtered, washed with hot water at 60 ° C, and dried at 90 ° C to obtain 2.8 parts by mass of a purified crude zinc bromide phthalocyanine pigment.
  • a brominated zinc phthalocyanine pigment (hereinafter, referred to as pigment composition (2)) Got.
  • the resulting brominated zinc phthalocyanine pigment is from halogen content analysis by mass spectrometry, by the average composition Z n P c B r, 2 CI 3 H (P c; phthalocyanine), the average 1 two in one molecule It contained bromine.
  • the average primary particle size measured with a transmission electron microscope was 0.065.
  • the monochromatic spectral transmittance spectrum at which the wavelength (Tmin) at which the transmittance becomes minimum becomes 5% is shown in FIG. 5 together with the monochromatic spectral transmittance spectra of the conventional green pigments PG7 and PG36. Shown in
  • the monochromatic spectral transmittance spectrum was measured using an OSP-SP200 microspectrophotometer manufactured by Olympus Corporation.
  • the measurement conditions are as follows: the light source is F10 light source, the illumination magnification is 20 times, and the pinhole No. 7 (50 / im).
  • the viscosity at 23.5 ° C was measured using a rotary vibration type viscometer (Viscomate VM-1G, manufactured by Yamaichi Electric Co., Ltd.).
  • 0.1 parts by mass of the pigment dispersion was diluted with 9.9 parts by mass of a PGMEA solvent, and the particle size distribution was measured using a Microtrack UPA particle size distribution analyzer (manufactured by Kikkiso Co., Ltd.).
  • the pigment composition (2) synthesized in Synthesis Example 2 was used.
  • a brominated zinc phthalocyanine pigment dispersion (2) was prepared in the same manner as in Dispersion Example 1 except for using 46, and evaluated in the same manner as in Dispersion Example 1.
  • Table 1 shows the results of each evaluation.
  • the monochromatic spectral transmittance spectrum in which the wavelength (Tmin) at which the transmittance becomes minimum is 5 ⁇ 1 ⁇ 2 is replaced with the monochromatic spectral transmittance spectrum of the conventional green pigments PG7 and PG36. Fig. 5 together with this.
  • a chlorinated copper phthalocyanine pigment dispersion was prepared in the same manner as in Dispersion Example 1 except that Pigment Green 7 (chlorinated copper phthalocyanine pigment) was used instead of the pigment composition (1). Evaluation was performed in the same manner as in Example 1. Table 1 shows the results of each evaluation.
  • a brominated copper phthalocyanine pigment dispersion was prepared in the same manner as in Dispersion Example 1 except that Pigment Green 36 (brominated copper phthalocyanine pigment) was used instead of the pigment composition (1). Evaluation was performed in the same manner as in Example 1. Table 1 shows the results of each evaluation.
  • the transmittance of the spectral transmittance spectrum at 435 nm which is the wavelength of the blue light source of the F10 light source, is lower than that of PG7, It became clear that the blue component to be eliminated was reduced. Furthermore, the transmittance at 490 nm, which is the sub-wavelength of the three-wavelength tube of the F10 light source, is lower than that of PG7 and PG36, and because it does not transmit through the subwavelength light source of the F10 light source, the coloring power is high as green. It turned out to be.
  • the transmittance at 545 nm was higher than that of PG7, and it became clear that the transmittance was high near 545 nm, which is the green wavelength.
  • the transmittance at 610 nm was lower than that of PG36, and it became clear that the reddish component was reduced.
  • the chromaticity coordinate area between PG 7 and PG 36 can be displayed, and that the Y value is relatively high, that is, the lightness is high. Became.
  • the viscosity was lower than that of 07 and 036, and the dispersibility was good.
  • the average particle size (50% particle size) is smaller than that of PG 7 and PG 36, so that they are finely divided and have good dispersibility. I found it.
  • a green pigment for a color filter which is used for the photosensitive green composition and has a stronger yellow tint than the green pigment of the present invention and can display the region c, was produced.
  • zinc phthalocyanine was manufactured from lid mouth dinitrile and zinc chloride. This one-channel naphthalene solution had light absorption between 600 and 700 nm.
  • 3.1 parts by weight of sulfuryl chloride, 3.7 parts by weight of anhydrous aluminum chloride, 0.46 parts by weight of sodium chloride and 1 part by weight of zinc phthalocyanine are mixed at 40 ° C, and 4.4 parts by weight of bromine Was performed dropwise. The mixture was reacted at 80 ° C.
  • the reaction mixture was poured into water to precipitate a crude brominated zinc phthalocyanine pigment.
  • This aqueous slurry was filtered, washed with hot water at 80 ° C., and dried at 90 ° C. to obtain 3.0 parts by weight of a purified crude zinc bromide phthalocyanine pigment.
  • the other components were charged into the brominated zinc phthalocyanine crude pigment with the same composition as in Synthesis Example 1 above, and a kneader was used in the same manner.
  • Pigmentation yielded a brominated zinc phthalocyanine pigment (hereinafter, referred to as pigment composition (Y)).
  • the resulting brominated zinc phthalocyanine pigment is from halogen content analysis by mass spectrometry, the average composition Z n P c B r 14 CI 2; was (P c phthalocyanine).
  • a PY83 pigment dispersion was prepared in the same manner as in Dispersion Example 1 except that PY83 was used instead of the pigment composition (1).
  • Pigment Dispersion (Y) was prepared in the same manner as in Dispersion Example 1 except that the pigment composition (1) was replaced with the pigment composition (Y) having a yellower color than the green pigment of the present invention. did.
  • Fig. 6 shows the monochromatic spectral transmittance spectrum at which the wavelength (Tmin) at which the transmittance is minimized is 5%, together with the monochromatic spectral transmittance spectra of the conventional green pigments PG7 and PG36. Show.
  • an alkali-soluble photoreactive polymer 70 parts of MMA, 15 parts of BzMA, 15 parts of MAA, and 100 parts of PGMEA were charged into a flask, and the mixture was heated at 93 ° C under a nitrogen atmosphere for 7 hours. Polymerized. The solid concentration of this reaction solution was adjusted to 40.2% with PGMEA. The acid value of the obtained polymer was 104 mg KOH, and the weight average molecular weight Mw in terms of polystyrene was 24,700.
  • brominated zinc phthalocyanine pigment dispersion (1), PY83 pigment dispersion, alkali-soluble photoreactive polymer, dipentaerythritol pentaacrylate (hereinafter referred to as DPPA), irgacure 365 (trade name) ) And PGEA were mixed at room temperature at room temperature, stirred, and filtered to prepare photosensitive green composition A.
  • a PY150 pigment dispersion was prepared in the same manner as in Dispersion 1, except that PY150 was used instead of the pigment composition (1).
  • a photosensitive green composition H was prepared by stirring at room temperature and filtering the following mixture of -Pentaacrylate (hereinafter referred to as DPPA), Irgaki Yua 369 (trade name) and PGMEA.
  • Photosensitive green compositions I to M were prepared in the same manner as in the photosensitive green composition Example 4 except that the ingredients were changed as shown in Table 3.
  • Green pixels were prepared using the photosensitive green compositions A to C of the examples and the photosensitive green compositions D to G of the comparative examples, and the following items were evaluated. Table 3 shows the evaluation results.
  • the photosensitive green composition was applied on a 10 cm glass substrate with a spin coater (manufactured by MIKASA, type 1H-DX2) and dried to form a coating film.
  • This coating film was heated on a hot plate at 90 ° C. for 3 minutes.
  • a UV aligner made by Dainippon Screen, model MA1200
  • an ultra-high-pressure mercury lamp of O kW passes through a photomask with an intensity of 10 Om JZcm 2 (405 nm illuminance conversion). And irradiated with ultraviolet light.
  • the coating film was dried in a clean oven (manufactured by Oshitari Research Laboratory Co., Ltd., SCO V—250 Hy-So) at 230 ° C. for 30 minutes to obtain a cured film.
  • the color filter pixels thus formed were measured with an OSP-SP200 microspectrophotometer manufactured by Olympus Corporation.
  • the measurement conditions were as follows: F10 light source, illumination magnification of 20 times, pinhole No. 7 (50 im).
  • the hardness of the obtained cured film was measured using an ultra-micro hardness tester (WIN-H CU manufactured by Fischer Instruments) under conditions where the maximum load of the Vickers indenter was 2 OmN.
  • the universal hardness (test load Z surface area of pickers indenter under test load: NZmm 2 ) was evaluated.
  • Elastic deformation rate 100-(deformation amount after release of load Deformation amount at maximum load) X 100, the elastic deformation rate was calculated.
  • Ultraviolet light including each wavelength of 36 nm was irradiated at an exposure dose of 300 mJcm 2 .
  • 50 ⁇ 30 Om JZcm t then obtained by varying the exposure amount in the second range, 0.5 mass 0 1 minute using a potassium hydroxide solution of 23 ° C each substrate, After developing with a spin developing machine, the substrate was washed with pure water for 1 minute and dried.
  • the unexposed part of the substrate surface was wiped 10 times with a lens cleaner (trade name: Torayishi, manufactured by Toray Industries, Inc.) containing ethanol, and the lens cleaner was checked for coloring and evaluated according to the following criteria.
  • a lens cleaner trade name: Torayishi, manufactured by Toray Industries, Inc.
  • ⁇ O The lens cleaner does not color at all.
  • the lens cleaner is colored.
  • the minimum exposure amount at which a line and space of 20 jtm adhered was measured, and evaluated according to the following criteria.
  • the minimum line width of a line and space of 1 / m to 50 m was measured without contact after the development process, and evaluated according to the following criteria.
  • the time when the unexposed portions were completely dissolved was measured and evaluated according to the following criteria.
  • the pixels fabricated on the substrates in Examples 1 to 3 and Comparative Examples 1 to 4 were cut together with the glass substrate perpendicularly to the line & space, and cross-sectional photographs from right besides were taken with a scanning electron microscope. .
  • the magnification was 100,000 times.
  • the lengths of the upper and lower bases of the pixel cross section were measured on the photograph taken, and the ratio of the upper base length to the lower base length (upper base Z lower base) was determined. The obtained ratio was evaluated based on the following criteria.
  • the film thickness was as thin as 2.49 and 2.61 ⁇ m, and the CIE of a single pixel measured with an F10 light source was small.
  • the X coordinate was 0.257 and the y coordinate was 0.693, and the stimulus value Y was 31-5, 29.5, and the transmittance was high.
  • Example 3 in which the green pigment according to the present invention was used in combination with a green pigment having a stronger yellow tint than the green pigment of the present invention and capable of displaying the region C, the film thickness was 2.45 m, It is thin and can realize the X coordinate of 0.257 and the y coordinate of 0.693 in the XYZ color system of CIE when the color is measured with the F10 light source with a single pixel, and the stimulus value Y is 31.1. 9 and the transmittance was even higher.
  • a pixel having a small film thickness and excellent in hardness, elastic deformation ratio, residue, sensitivity, adhesion, developability, and shape was obtained.
  • Comparative Examples 3 and 4 which used a combination of PG7 and PG36 as green pigments, the film thickness was improved over PG36 in order to achieve the same chromaticity (x, y) as in the example. However, it was necessary to increase the thickness, and the transmittance was also improved as compared with PG7, which was inferior to the examples. In addition, due to the large thickness, residues, developability, and shape were inferior.
  • Green pixels were prepared using the photosensitive green compositions H and I of Examples and the photosensitive green compositions J to M of Comparative Examples, and the same items as in Example 1 were evaluated in the same manner.
  • Examples 4 and 5 which are photosensitive coloring compositions according to the present invention, have a film thickness as thin as 1.85 m and 2.15 m, and have a single pixel when measured with an F10 light source.
  • the X coordinate was 0.310 and the y coordinate was 0.630, and the irradiance Y was 55.7 and 56.2, and the transmittance was high. Even when the mass ratio of the yellow pigment to the green pigment (yellow pigment green pigment) is 1.6 or less, the X coordinate in the XYZ color system of the CIE is 0.31 when the color is measured with an F10 light source using a single pixel.
  • the xy chromaticity coordinate area with the 0, y coordinate in the range of 0.630 was displayed.
  • Examples 4 and 5 which are the photosensitive coloring compositions according to the present invention, have a film thickness as thin as 1.85 ⁇ m and 2.15 m, and have hardness, elastic deformation rate, residue, sensitivity, adhesion, and developability. Pixels excellent in shape and shape were obtained.
  • a photosensitive black resin CK-12000 (trade name, manufactured by Fuji Hunt Technology Co., Ltd.) is applied on a 1.1 mm thick glass substrate (AL material, manufactured by Asahi Glass Co., Ltd.) using a spin coater. It was dried at a temperature of 3 ° C. for 3 minutes to form a light-shielding layer having a thickness of 1.0 m. After exposing the light-shielding layer to a light-shielding pattern using an ultra-high pressure mercury lamp, developing with a 0.5 wt% aqueous solution of potassium hydroxide, and then leaving the substrate in an atmosphere at 230 ° C for 30 minutes. A black matrix was formed in a region where a light-shielding portion was to be formed by performing a heat treatment.
  • the photosensitive red composition CR-2000 (trade name, manufactured by Fuji Hunt Technology Co., Ltd.) was applied by spin coating (coating thickness: 2.0 m). Then, it was dried in an oven at 70 ° C. for 30 minutes.
  • a photomask is placed at a distance of 100 / m from the coating of the photosensitive red composition. Then, only a region corresponding to the region where the colored layer was formed was irradiated with ultraviolet rays for 10 seconds using a 2.0 kW ultra-high pressure mercury lamp by a proximity liner. Next, the film was immersed in a 0.5 wt% aqueous solution of hydroxylated lime (liquid temperature: 23 ° C.) for 1 minute and developed by immersion to remove only the uncured portion of the coating film. Thereafter, the substrate was left in an atmosphere of 230 ° C. for 30 minutes to perform a reheating process to form a red relief pattern in a region where a red pixel was to be formed.
  • a green relief pattern was formed in a region where a green pixel was to be formed in the same process as the formation of the red relief pattern.
  • a photosensitive blue resin composition CB-2000 (trade name of Fuji Hunt Technology Co., Ltd.)
  • a blue relief pattern is formed in a region where a blue pixel is to be formed in the same process as the formation of a red relief pattern.
  • a colored layer composed of three colors of red (R), ⁇ (G), and blue (B) was formed, and a color filter was obtained.
  • a clear resist (trade name: Optoma-I SS 6917, manufactured by JSR Corporation) was applied by a spin coating method, and dried to form a coating film having a dry film thickness of 2 m.
  • a photomask was placed at a distance of 100 m from this coating film, and ultraviolet light was applied only to the area corresponding to the area where the coloring layer was formed by using a 2.0 kW ultra-high pressure mercury lamp by a proxy liner. Irradiated for seconds.
  • the film was immersed in a 0.5 wt 0/0 aqueous solution of potassium hydroxide (solution temperature: 23 ° C.) for 1 minute and developed with an alkali to remove only the uncured portion of the coating film. Thereafter, the substrate was left in an atmosphere of 200 ° C. for 30 minutes to perform a heat treatment to form a protective film, thereby obtaining a color filter having a colored layer and a protective film.
  • aqueous solution of potassium hydroxide solution temperature: 23 ° C.
  • a pillar resist having the following composition (Fuji Film Lin Co., Ltd., trade name: Color Mosaic, product number: CK-12000) is applied by spin coating, dried, and dried to a thickness of 5 ju. An m coating film was formed. A photomask is placed at a distance of 100 m from this coating film and the proximity mask is used. A super-high-pressure mercury lamp of 2.0 kW is used to form a spacer on the black matrix. Ultraviolet rays were applied only to the active area for 10 seconds.
  • the film was immersed in a 0.5 wt% aqueous solution of potassium hydroxide (solution temperature: 23 ° C.) for 1 minute and alkali-developed to remove only the uncured portion. Thereafter, the substrate was left in an atmosphere of 230 ° C. for 30 minutes to perform a heat treatment to form a fixed spacer, thereby obtaining a color filter having a colored layer and a spacer.
  • the obtained color filter was a color filter having a wide color reproduction range and a high transmittance.
  • Color filter having a colored layer and a protective film, and a colored layer in the same manner as in Example 1 of the color filter except that the photosensitive green composition B was used in place of the photosensitive green composition A to form a green pixel. And a color filter having a spacer.
  • the obtained color filter was a color filter having a wide color reproduction range and a high transmittance.
  • a transparent electrode film was formed on the surface of the color filter obtained in the above example, including the fixed spacer, by using argon and oxygen as discharge gases at a substrate temperature of 200 ° C., and using ITO as a target by DC magnetron sputtering. Was formed. Thereafter, an alignment film made of polyimide was further formed on the transparent electrode film.
  • the green pigment according to the present invention can display color coordinates that cannot be displayed by the conventional green pigment, has excellent coloring power as green, does not have a too strong bluish color, and has high transmittance. Since the ratio is high, it is suitably used for forming a green pixel of a color filter.
  • the green pigment according to the present invention can produce a sufficient color with a relatively small amount of pigment, And the amount of yellow pigments or strongly yellowish green pigments mixed for toning can be reduced, resulting in thinner, more transparent, higher color purity. Excellent green pixels can be formed.
  • the photosensitive coloring composition according to the present invention uses the above-described green pigment of the present invention, it can approach the color of the green pixel specified in each standard with a small amount of the pigment used.
  • the film thickness can be reduced, plate making performance is improved, and a fine shape can be easily formed by photolithography.
  • a green pixel having a green coloring property with a sufficiently strong yellow tint and a green pixel having Z or a thin, transparent and excellent color purity can be formed.
  • the color reproduction range can be expanded with a thinner film thickness than when a green pigment is used.
  • the green pigment of the present invention has a high transmittance, when forming a green pixel in combination with a yellow pigment, even in a region where the coloring power of the color coordinates is high (high-density region), the film thickness is smaller than before. Can increase the transmittance. Therefore, when a color filter is formed using the photosensitive coloring composition according to the present invention, a color filter having a wide color reproduction range and a high transmittance can be formed.
  • the light emitted from the color filter is smaller than when the color filter is formed using a conventional photosensitive coloring composition using a halogenated copper phthalocyanine pigment. This increases the transparency of the LCD panel, eliminating the need for a strong backlight, thus reducing the cost of LCD panels and increasing power consumption.
  • the photosensitive coloring composition according to the present invention has a thinner film thickness, is close to a green pixel of each standard, has a high mixing ratio of a reactive component, and is excellent in plate making properties. As a result, a color filter having a wide color reproduction range and high transmittance can be formed.
  • the mixing ratio of the green pigment and the yellow pigment used is reduced, and accordingly, the amount of the dispersant used is also reduced. Increases the hardness, elasticity, shape, film thickness uniformity, etc. A green pixel excellent in various physical properties can be obtained.
  • Such a green pixel using the green pigment according to the present invention has a wide color reproduction region, a high transmittance, and is excellent in various physical properties, and thus has a high display performance including the green pixel.
  • a color filter and a liquid crystal panel it can also be used for areas where the coloring power of color coordinates is high (high-density area), such as the display standard of multimedia monitors such as RGB or the display standard of color television such as NTSC and EBU.
  • a satisfactory liquid crystal display device can be manufactured.

Description

明 細 書 カラーフィルター用緑色顔料、 緑色顔料分散体、 感光性着色組成物、 カラー フィルター、 及び、 液晶パネル 技術分野 本発明は、 カラーフィルター用緑色顔料、 当該緑色顔料を含有するカラーフィ ルター用の顔料分散体及び感光性樹脂組成物、 及び、 それらを用いたカラーフィ ルター及び、 液晶パネルに関する。 景技術 液晶パネルは表示側基板と液晶駆動側基板とを対向させ、 両者の間に液晶化合 物を封入して薄い液晶層を形成した構造をとる。 このような液晶パネルを組み込 んだ液晶表示装置は、 液晶パネルの液晶駆動側基板により液晶層内の液晶配列を 電気的に制御して表示側基板の透過光又は反射光の量を選択的に変化させるこ とによって表示を行う。
液晶パネルには、 スタティック駆動方式、 単純マトリックス方式、 アクティブ マトリックス方式など種々の駆動方式があるが、 近年、 パーソナルコンピュータ 一や携帯情報端末などのフラッ卜ディスプレーとして、 アクティブマトリックス 方式又は単純マトリックス方式の液晶パネルを用いたカラー液晶表示装置が急 速に普及してきている。 各駆動方式には、 それぞれ幾つかの駆動モードがあり、 例えばアクティブマトリックス方式の場合には、 T N、 I P S , V A等の駆動モ -ドが存在し、 駆動モードによってカラーフィルターの層構成は変化する。
図 1は、 アクティブマトリックス方式の液晶パネルの一構成例である。 液晶パ ネル 1 0 1は、 表示側基板であるカラーフィルタ一 1 と液晶駆動側基板である τ F Tアレイ基板 2とを対向させて 1〜1 O /i m程度の間隙部 3を設け、 当該間隙 部 3内に液晶 Lを充填し、 その周囲をシール材 4で密封した構造をとつている。 カラ一フィルター 1は、 透明基板 5上に、 画素間の境界部を遮光するために所定 のパターンに形成されたブラックマトリックス層 6と、 各画素を形成するために 複数の色 (通常、 赤 (R ) 、 緑 (G ) 、 青 (B ) の 3原色) を所定順序に配列し た画素部 7又は最近ではホログラムを利用した画素部とが、 透明基板に近い側か らこの順に積層された構造をとつている。 通常、 各画素は、 色材を感光性樹脂組 成物に分散及び Z又は溶解させた感光性着色樹脂組成物を基板上に塗布し、 フォ 卜リソグラフィ一によりパターン形成される。 この場合、 この感光性着色樹脂組 成物は、 ポジ型でもネガ型であってもどちらでも良い。 T Nモードでは画素部 7 又は保護膜 8の上に透明電極膜 9が設けられる。 I P Sモードでは画素部の上に 保護膜 8が設けられ、 透明電極膜 9は透明基板 5の画素部 7とは反対面に形成さ れることがある。 また、 I P Sモードでは、 ブラックマトリックス層は樹脂ブラ ックマトリックスが必須となる。 V Aモードでは画素部 7又は保護膜 8上に透明 電極が形成され、 この透明電極はパターン形成されている場合もある。 特に M V Aモードでは、 プロトリユージョンと呼ばれる突起物が透明電極 9上に形成され る。
一方、 T F Tアレイ基板 2は、 透明基板上に T F T素子を配列し、 透明電極膜 を設けた構造をとっている (図示せず) 。 また、 カラーフィルタ一 1及びこれと 対向する T F Tアレイ基板 2の内面側には配向膜 1 0が設けられる。 通常、 T F Tアレイ基板 2の外面側に光源としてバックライ 卜が設置される。 そして、 各色 に着色された画素の背後にある液晶層が、 パックライ 卜からの光透過率を制御す ることによってカラー画像が得られる。 バックライ 卜には、 主として 3波長管と 呼ばれる蛍光管や L E Dが使われる。 3波長管を使用した光源の 1つである F 1 0光源の波長分布を標準光源 Cの波長分布と共に図 7に示す。
セルギャップを維持する方法としては、 図 1に示すように間隙部 3内にスぺー サ一としてガラス、 アルミナ又はプラスチック等からなる一定サイズの球状又は 棒状の粒子状スぺーサー 1 1を多数散在させ、 カラ一フィルター 1 と T F Tァレ ィ基板 2とを貼り合わせ、 液晶を注入する方法、 或いは図 2に示すように、 カラ 一フィルターの内面側であってブラックマトリックス層 6が形成されている位 置と重り合う領域に、 セルギャップに対応する高さを有する柱状スぺーサー 1 2 を形成する方法がある。
上記構造のカラーフィルターを組み込んだ液晶表示装置においては、 各色に着 色され、 所定のパターンに配置された画素それぞれの背後にある液晶層の光透過 率を制御することによってカラー画像が得られる。
液晶表示装置 (LC D) は省エネ、 省スペースと言う利点を有することから、 従来の CRTモニターに代わるディスプレーとして注目され、 OA機器やパーソ ナルコンピューターのモニターとして現在、 急速に普及しつつある。
インターネットゃ携帯電話の普及により、 文字情報のみならず、 映像や画像が 配信されることによって、 パーソナルコンピュータ一のモニター、 プリンタ一、 デジタルカメラ、 スキャナ一等のメディアを通して画像のやり取りをするように なり、 各アプリケーションの適合性をとつた色空間 ·色再現の共通の規格が必要 になった。この画像信号伝送方式の規格化の代表的なものとしては、 s RGB (国 際標準規格 I EC6 1 966— 2— 1 ) がある。
マルチメディアモニターの色再現域を決定するのは受像機の三原色 (受像三原 色) の色度である。 s RG B規格の液晶モニターの三原色は、 X YZ表色系にお ける色度座標 X及び yについて下記のように定められている。
赤: x = 0. 64 ; y = 0. 33
緑: x = 0. 30 ; y = 0. 60
青: x = 0. 1 5 ; y = 0. 06
また、 近年では液晶パネルの値下がリから液晶カラーテレビの普及が加速して いる。 しかしながら現状では、 CRTに匹敵する表示性能を液晶カラーテレビに 持たせることは非常に困難である。
カラーテレビでは、 ( 1 ) 撮像 (カラーカメラ) 、 (2) 伝送、 (3) 受像 (受 像機) のプロセスを通じて、 被写体の形、 動き、 色相が画像画面上に再現され、 色相も含めた画像信号の伝送方式が規格化されている。 この方式の代表的なもの に N TS C (National Television System Committee) と EBU (European Bro adcasting Union) がある。 N TS Cは日本、 アメリカ、 カナダ等においてテレ ビ放送を行う方式、 規格として採用されており、 EBUはヨーロッパにおいて採 用されている。
カラーテレビの色再現域を決定するのは受像機の三原色 (受像三原色) の色度 であり、 カラーカメラが持つべき分光特性もこれによって定まる。 NTS C規格 の受像三原色は、 X Y Z表色系における色度座標 X及び yについて下記のように 定められている。
赤: x = 0. 67 ; y = 0. 33
綠: x =0. 2 1 ; y = 0. 7 1
青: x =0. 1 4 ; y = 0. 08
一方、 EBU規格の受像三原色は、 下記のように定められている。
赤 : X = 0 · 64 ; y =0. 33
緑: x =0. 29 ; y =0. 60
青: x =0. 1 5 ; y =0. 06
なお、 x = X/ (X + Y+Z) であり、 y =YZ (X + Y + Z) であり、 X, Y. Zは X Y Z表色系における 3刺激値である。
しかしながら、 カラーテレビが優れた表示性能を発揮するためには色再現域が 上記規格を満たしていると共に画面が明るいことも必要であり、 透過率が充分に 高いことが求められる。 CRTの蛍光体では、 色再現域を広げすぎると透過率が 極端に低下する。 そのため、 現状の CRTカラーテレビでは、 必要な透過率を確 保するために色再現域を犠牲にしておリ、 NTS C規格の表示可能空間と比較し て 75%程度に抑えられている。
液晶カラーテレビに CRT並みの表示性能をもたせるためには、 やはり、 色再 現域が力ラーテレビの表示規格を満たしていると共に、 透過率も充分であること が求められる。 広い色再現域と高透過率を実現するためには、 光源の分光特性及 びカラーフィルターの色再現能力の組み合わせが重要である。
光源スぺク トルはパックライトメーカーごとに輝線位置が異なるが、 おおよそ 545 nmにピークを持っており、 副輝線がその前後の波長に存在する。 このた め高透過カラーフィルターでは 54 5 n m及びその周辺の透過率が高い顔料が 求められる。 高色純度カラーフィルターでは主輝線のみに透過率を持っているよ うな半値幅が狭い顔料が求められる。このため、カラ一フィルタ一にも高透過用、 広色再現域用という二つの開発要素及び需要がある。
カラーフィルターの緑色画素に関しては、 広い色再現域において高い透過率を 確保するために、黄味が強い緑を発色できることが求められる。各規格の中では、 マルチメディアモニター対応の s R G B規格では特に黄味が強い緑色画素が求 められる。 テレビ対応の N T S C、 E BU規格でも黄味が強い緑色画素が求めら れるが、 s RG B規格に比べると青味寄りの緑色の設定になっている。ところが、 どの表示規格を採用する場合でも、 一種類の緑色顔料だけで、 充分な色再現域を 確保できるレベルまで三原色の緑色に近く且つ明度の高い綠色画素を形成する ことは、 非常に困難である。 そこで、 充分な色再現域において、 充分な透過率を 確保するためには、 副輝線の透過を低く抑え、 緑色の波長である 545 n m付近 に高い透過を持つ緑色顔料を中心に透明性の高い黄色顔料を組み合わせて用い て充分に発色させ、 顔料の総使用量を抑えながらも高い着色力で、 透明性の高い 画素を形成することが望まれる。
カラーフィルターの緑色画素には、 従来より緑色顔料として、 主に、 塩素化銅 フタロシアニン顔料からなる C. に ビグメントグリーン 7 (以下、 P G 7) と 臭素化銅フタロシアニン顔料からなる C. に ビグメントグリーン 36 (以下、 P G 36) が用いられている。 P G 7は、 緑としての着色力が高いが青味が強す ぎるため、 s RG B. N T S C, E BU規格の画素の緑色にするには多量の黄色 を混色する必要がある上、 透過率が低いため、 P G 7を中心に緑色画素を形成す ると暗いカラーフィルタ一となる。 一方、 PG 36は、 比較的黄味よりの分光透 過率スぺク トルを示し、 半値幅が広くピークトップ付近の分光透過率幅が広いた め、 副波長領域の輝線も透過することから非常に高い透過率を示すが、 着色力が 低い。 従って、 色座標上の着色力が高い領域 (高濃度領域) を表示する緑色画素 を形成しょうとすると、 P G 3 6の顔料使用量が多くなリ、 画素としては透過率 が低くなる。 高透過率を確保するために黄色顔料を高濃度にして色座標を黄色方 向へずらす方法もあるが、 黄色顔料の使用量が多くなるため、 顏料の総使用量が 多くなる。 従って、 P G 7や P G 3 6のような従来のハロゲン化銅フタロシア二 ン顏料 (こ替わる顔料が求められていた。
一般的に、 感光性着色組成物 (感光性着色レジスト) 中の顔料配合割合が増え ると、 画素の透明度が落ち、 透過率を上げにく くなる。 また、 カラーフィルター 形成用感光性着色組成物中の顔料配合割合が増えると、 分散剤の配合割合も増え、 バインダーや現像成分等の製膜性に関与する成分の配合割合が相対的に少なく なる。 バインダーや現像成分が少なくなると、 画素の微細パターン形成能や物性 に悪影響を招くという問題がある。 また、 着色力が低い顔料を用いる場合には、 感光性着色組成物中の顔料配合割合を抑えると、 膜厚を厚くして着色しなければ ならない。 膜厚が厚くなる場合にも、 画素の微細パターン形成能や物性に悪影響 を招くという問題がある。
例えば、 画素の微細パターンをいわゆる顔料分散法で作製する場合には、 微細 パターン形成能に関して、 残さが無いこと、 異物が残らないこと、 解像度が高い こと、 現像後形状が正確であること、 膜厚が均一であること等の性能が求められ る。
残さとは、 現像後に本来残ってはならない部分に残った着色物のことであり、 顔料や分散剤が多い等の理由で現像性が悪い場合に生じやすい。 異物は、 感光性 着色組成物中の硬化成分が少ない場合に画素の一部が欠けたり、 現像成分が少な く剥離現像で生じた着色片が付着する等の原因で生じる。 解像度を向上させるた めに、 液晶駆動方式の進歩からカラーフィルターにも従来のストライプパターン 等と異なり曲線部分や角が多いパターンが登場しており、 このような複雑なバタ ーンであっても正確に形成する必要がある。
現像後形状は、 感光性着色組成物の感光性が悪い場合には逆台形 (逆テーパー 形) になるという問題がある。 現像後形状が逆台形になると、 現像時の水圧等で 画素上部が欠けやすくなるために上記した異物の発生原因となる。 さらに、 逆台 形の皮膜は、 耐熱性が低い場合には、 ヒサシ状に張り出た部分が熱で垂れ下がつ てポストべイク後に空孔を形成する場合がある。 この空孔は、 表示品質を落とす のみならず、 解像度を下げる。 また、 液晶パネル組みで熱がかかって空孔の部分 が破裂すると液晶を汚染する。
膜厚の均一性は、 個々の画素レベルでは大きな問題にならない。 しかし、 コス ト削減の目的で基板サイズは拡大の一途をたどっておリメ一トルクラスにも適 用されるようになってきた。 その場合、 ガラス中央と端部で膜厚が異なると色が ばらつくために不良品となる。
また、 出来あがった画素の物性に関しては、 硬度、 弾性、 不純物の溶出性等の 性能が求められる。
高色純度液晶表示装置を形成するためには、 表示品質を落とす球状スぺーサー を用いずに、 開口部領域に選択的に柱状スぺーサーを設けることが望ましい。 し かし、 いく ら高硬度の柱状スぺ一サーを形成しても画素やブラックマトリックス の硬度や弾性率が劣っていると、 下地の変形によってセルギャップの均一性が損 なわれてしまう。
このため、 画素といえども硬度や弾性率が高いことが求められる。 しかし、 感 光性着色組成物中の顔料配合や分散剤の配合割合が大きくなリ、 それに伴ってパ インダ一量が少なくなると、 画素に充分な硬度や弾性率を持たせることができな い。
画素からの不純物溶出は、 液晶汚染を招く原因となる。 液晶は少量の導電性不 純物が混じるだけでスィツチ機能を果たさなくなるため、 カラーフィルターから 導電性分子が液晶層に溶け出さないことが重要である。 しかし、 画素に用いる顏 料や分散剤には導電性分子が不純物として含まれていることが多い。 そのため膜 の架橋密度を上げて緻密な網目で分子を捕獲することで不純物の溶出を抑える ことが重要である。
一方、 特開 2 0 0 2 - 1 3 1 5 2 1号公報には、 中心金属が V O、 A I — Z、 又は I n— Z ( Zはハロゲン原子、 水酸基、 アルコキシ基又はァリールォキシ基 を表す) のフタロシアニン系顔料を少なくとも 1種類含有するカラーフィルター 用組成物が記載されている。 また、 特開 2 0 0 2 - 1 6 2 5 1 5号公報には、 色 材として C . I . ビグメントグリーン 7及び Z又は C . I . ビグメントグリーン 3 6を含有するカラーフィルター用組成物において、 さらに、 該組成物に含まれ る C. に ビグメントグリーン 7及び C. に ビグメントグリーン 36より長波 長の最大透過率波長を有するフタロシアニン系顔料を含むカラーフィルター用 組成物が記載されているが、 上記フタロシアニン顔料は、 C. I . ピグメントグ リーン 7及び 又は C. に ビグメントグリーン 3 6に混合して用いられるもの である。
また、 本願の最先の優先日よりも後に公開されたものとして、 以下の 3件の特 許文献がある。 特開 2002— 2 508 1 2号公報には、 ハロゲン化銅フタロシ ァニン顔料及び中心金属が M g、 A I、 S i 、 T i 、 V、 M n、 F e、 C o、 N i 、 Z n、 G e、 S nからなる群から選ばれる少なくとも 1種のハロゲン化異種 金属フタロシアニン顔料からなる緑色着色料を含み、 且つ該ハロゲン化異種金属 フタロシアニン顔料の含有量が緑色着色料の全量を基準として 1 ~8 0モル% である、 カラーフィルター用着色組成物が開示されているが、 上記ハロゲン化異 種金属フタ口シァニン顔料もハロゲン化銅フタロシアニンに混合して用いられ るものである。
特開 2003— 1 6 1 82 1号公報には、 顔料と、 更に中心金属のないフタ口 シァニン系化合物及び銅以外の中心金属を有するフタロシアニン系化合物よリ なる群から選ばれる 1種又は 2種以上のフタロシアニン系化合物を含有する力 ラーフィルター用組成物が記載されているが、 上記フタロシアニン系化合物は比 較的少量用いられることが記載されている。
特開 2003— 1 6 1 827号公報には、 緑色画素部が ( 1 ) フタロシアニン 分子 1個当たリ 8 ~ 1 6個のハロゲン原子がフタ口シァニン分午のベンゼン環 に結合したハロゲン化金属フタロシアニン顔料を含有し、 且つ (2) 可視光の全 域での分光透過スぺク トルにおいて 52 0 ~ 5 90 n mに最大透過率を示すこ とを特徴とするカラーフィルタ一が記載されている。
しかしながら、 色再現域が広く且つ透過率が高いカラーフィルターを形成する 目的を充分に満足する、 着色力に優れ且つ透過率が高い緑色顔料、 及び感光性着 色組成物は未だ知られていない。 本発明は、 かかる事情を考慮して成し遂げられたものであり、 その第一の目的 は、 従来の緑色顔料では表示できない色度座標を表示でき、 緑色としての着色力 に優れ青味が強すぎず、 且つ透過率が高いカラーフィルター用緑色顔料を提供す る《_と I— ¾> 。
また、 本発明の第二の目的は、 上記緑色顔料を用いて、 色再現域が広く、 且つ 透過率が高いカラーフィルターを形成できる感光性着色組成物を提供すること にめる。
また、 本発明の第三の目的は、 上記緑色顔料を用いて、 比較的少量の顔料で各 規格の緑色画素に近づけ、 反応性成分の配合割合が高く、 製版性に優れる感光性 着色組成物を提供することにある。
また、 本発明の第四の目的は、 上記緑色顔料を用いて、 黄色顔料の混合量が少 なくても充分に黄味が強い緑色の発色性を有する緑色画素を形成できる感光性 着色組成物を提供することにある。
また、 本発明の第五の目的は、 上記緑色顔料と更に特定の緑色顔料を組み合わ せて用いて、 より薄い膜厚で上記第二から第四の目的を達成できる感光性着色組 成物を提供することにある。
また、 本発明の第六の目的は、 上記緑色顔料を用いて、 上記感光性着色組成物 を調製するのに適した顔料分散体を提供することにある。
また、 本発明の第七の目的は、 上記感光性着色組成物を用いて緑色画素を形成 した、 色再現域が広く且つ透過率の高いカラーフィルター及び、 当該カラ一フィ ルターを用いた液晶パネルを提供することにある。 発明の開示 本発明に係る緑色顔料はフタロシアニングリーン顔料からなり、 単体で F 1 0 光源で測色した時の C I Eの X Y Z表色系において下記方程式 1 、 2及び 3で囲 まれる X y色度座標領域を表示できることを特徴とする。
(方程式 1 ) y =2.640 x x +0.080
但し方程式 1において、 0.180く x <0.230
(方程式 2)
y =5261.500 X4— 6338.700x x3 + 2870.400 x2-580.730 x +44.810 但し方程式 2において、 0.230< x <0.350
(方程式 3)
y =—36.379 x x 3+37.410 x x2-13.062x x +1.907
但し方程式 3において、 0.180< χ <0.350
前記フタロシアニングリーン顔料は、 3 80〜7 80 nmにおける分光透過率 スぺク トルの透過率が最大となる波長 (Tma x) が 500~ 520 n mである ことが好ましい。
臭素化亜鉛フタロシアニンからなる緑色顔料は、 上記方程式 1、 2及び 3で囲 まれる X y色度座標領域を表示することができ、 本発明の緑色顔料として好まし く用いられる。
前記臭素化亜鉛フタロシアニンは、 上記方程式 1、 2及び 3で囲まれる x y色 度座標領域を表示する点から、 1分子中に臭素を平均 1 3個未満含有することが 好ましい。
上記本発明に係る緑色顔料は、 当該緑色顔料単独で塗膜化し、 F 1 0光源で測 色する時に、 C I Eの X Y Z表色系において上記方程式 1、 2及び 3で囲まれる X y色度座標領域を表示することができ、 従来の緑色顔料では表示できなかった 色度座標領域の緑色を発色し、 従来の緑色顔料を用いる場合よリも色再現領域を 広げることができる。 また、 本発明の緑色顔料は着色力に優れるので、 従来の臭 素化銅フタロシアニン顔料 (P G 36) を用いる場合と比べて、 少ない量で規格 に定められた緑色に近づけることができるため、 膜厚を薄くすることができ、 製 版性が向上してフォトリソグラフィ一で微細形状を形成しやすくなる。 また、 本 発明の緑色顔料は透過率が高いので、 本発明の緑色顔料を用いてカラーフィルタ 一を形成する場合には、 塩素化銅フタロシアニン顔料 (P G 7) を用いる場合と 比べて、 カラーフィルターの光の透過性が上がるため、 強いバックライ トが必要 なくなり、 液晶パネルのコストアップや消費電力の増加を抑えることができる。 感光性着色組成物を調製する前に、 上記本発明の緑色顔料を予め顔料分散体に 調製し、 得られた顔料分散体と感光性成分を混合してもよい。 本発明の緑色顔料 として、 平均一次粒子径が 0. 0 1〜0. 1 mの臭素化亜鉛フタロシアニン緑 色顔料を用いる場合には、 着色樹脂等への分散性が特に良好である。
本発明に係るカラーフィルター用感光性着色組成物は、 硬化反応に関与する反 応性成分、 上記本発明の緑色顔料を含む 1又は 2以上の着色成分を含有する。 上記感光性着色組成物は、 少ない顔料で充分な発色性が得るために上記本発明 に係るカラーフィルター用緑色顔料を主顔料として用いることが好ましく、 上記 着色成分中に上記本発明に係るカラーフィルター用緑色顔料を 3 0質量%よリ 多く含むことが好ましい。 また、 上記着色成分中の緑色顔料の全量を基準として 前記カラーフィルタ一用緑色顔料を 50質量%以上含むことが好ましい。
また、 本発明に係るカラーフィルター用感光性着色組成物は、 硬化反応に関与 する反応性成分、 第一の緑色顔料としてフタロシアニングリーン顔料からなり、 単体で F 1 0光源で測色した時の C I Eの X Y Z表色系において下記方程式 1、 2及び 3で囲まれる X y色度座標領域を表示できるカラーフィルター用緑色顔 料から選択される 1種、 及び第二の緑色顔料としてフタロシアニングリーン顔料 からなリ、 単体で F 1 0光源で測色した時の C I Eの X Y Z表色系において下記 方程式 4、 5及び 6で囲まれる X y色度座標領域を表示できるカラーフィルター 用緑色顔料から選択される 1種を少なくとも含む着色成分を含有する。
(方程式 1 )
y =2.640 X +0.080
但し方程式 1において、 0.180< X <0.230
(方程式 2)
y =5261.500 X χ 4— 6338.700 x x 3 + 2870.400 x x 2— 580.730 x x +44.810 但し方程式 2において、 0.230< x <0.350
(方程式 3)
y =—36.379 x x3+37.410x x 2— 13.062 x x +1.907 但し方程式 3において、 0.180< X <0.350
(方程式 4)
y =8.000x x— 1.513
但し方程式 4において、 0.260< X <0.270
(方程式 5)
y =-1051.300x χ 4+1176.900 x x3— 450.880 x x 2 + 62.131 x x一 0.836 但し方程式 5において、 0.260< χ <0,350
(方程式 6)
y =5746.700 X 4— 7310.300 x x 3 + 3493.200 x x2-744.610x χ +60.251 但し方程式 6において、 0.270< X <0.350
上記第二の緑色顔料は、 当該緑色顔料単独で塗膜化する時に、 0 1 £の乂丫ヱ 表色系において上記方程式 4、 5及び 6で囲まれる X y色度座標領域を表示する ことができ、 強い黄みを帯びながら着色力が高く、 且つ透過率が高い緑色を発色 する。 上記第二の緑色顔料は、 従来のハロゲン化銅フタロシアニン顔料では表示 できなかった色度座標領域の黄味が強い緑色を発色することができるため、 従来 の緑色顔料を用いる場合よりも黄味領域へ色再現域を広げることができ、 調色の ための黄色顔料の量を減らすことができる。 更に、 上記第二の緑色顔料は PG 3 6に比べて着色力が高いので、 PG 36を用いる場合と比べて少ない量で規格に 定められた緑色に近づけることができる。
従って、 上記第一の緑色顔料と上記第二の緑色顔料を適宜選択して組み合わせ て用いると、 色再現域が広く、 且つ透過率が高いカラーフィルターを形成できる 感光性着色組成物、及びノ又は、比較的少量の顔料で各規格の緑色画素に近づけ、 反応性成分の配合割合が高く、 製版性に優れる感光性着色組成物、 及び Z又は、 黄色顔料の混合量が少なくても充分に黄味が強い緑色の発色性を有する緑色画 素を形成できる感光性着色組成物を、 より薄い膜厚で達成することができる。 中でも、 上記第一の緑色顔料及び上記第二の緑色顔料において、 フタロシア二 ングリーン顔料の中心金属が同じであること力 相性が良い、 すなわち、 同様の 分散剤系にすることができるため混合したときに分散安定性が良好になり、 発色 が良好になる点から好ましく、 更に上記第一の緑色顔料及び上記第二の緑色顔料 が臭素化亜鉛フタロシアニンであることが着色力及び透過率が高くなる点から 好ましい。 特に、 前記第一の緑色顔料の臭素化亜鉛フタロシアニンが 1分子中に 臭素を平均 1 3個未満含有し、 前記第二の緑色顔料の臭素化亜鉛フタロシアニン が 1分子中に臭素を平均 1 3個以上含有することが好ましく、 中でも前記臭素化 亜鉛フタロシアニンの平均一次粒子径が 0 . 0 1 ~ 0 . 1 mであることが好ま しい。
本発明に係るカラーフィルター用感光性着色組成物は、 前記反応性成分 (a ) に対する前記着色成分以外の非反応性成分 (b ) の質量比 (b Z a ) が 0 . 4 5 以下であることが好ましい。
上記感光性着色組成物は、 上記本発明に係る綠色顔料を用いるため少ない顔料 で充分な発色性が得られるので、 顔料及び顔料を分散させるための分散剤の使用 量を減量し、 相対的に反応性成分の量を多くすることができる。 そのため、 光硬 化性が良好となって、 硬化後の塗膜硬度、 硬化後の塗膜弾性、 膜厚均一性、 現像 時の画素パターン欠損抑制、残渣減少、現像性改善、硬化後の塗膜架橋密度向上、 塗膜の薄膜化等の諸物性に優れた緑色画素が得られる。
上記感光性着色組成物は、 顔料 ビヒクル比が 0 . 2 5〜 1 . 0というような 高濃度型感光性着色組成物としては非常に少ない顔料でも充分に高濃度型に対 応できる発色が得られ、 高濃度で且つ透明性の高い緑色画素を形成できる。
また、緑色画素を形成するために、上記感光性着色組成物には緑色顔料と共に、 少なくとも黄色顔料を含有させることができる。 この場合、 緑色顔料に対する黄 色顔料の質量比 (黄色顔料 Z緑色顔料) を 1 . 6以下というような黄色顔料の少 ない条件でも充分な発色性が得られるので、 黄色顔料の使用量も減らすことがで さる。
本発明に係るカラーフィルターには、 上記本発明の緑色顏料を含有する緑色画 素が設けられる。 この緑色画素は、 上記本発明の感光性着色組成物を用いて作成 できる。
上記緑色画素は、 膜厚が 2 . 7 jt m以下にして単一画素で F 1 0光源で測色し た時に、 C I Eの X Y Z表色系において x座標が 0. 2 1≤x≤0. 30、 y座 標が 0. 55≤ y≤0. 7 1及び刺激値 Yが 29≤Yの範囲の色空間を表示でき る。 従って、 他の色の画素と組み合わせることによって広い色再現領域を確保で きると共に、 膜厚が薄くても透過率が非常に大きい。
また、 上記緑色画素は、 少量の黄色顔料を混合するだけで黄味を強くすること ができ、 画素中の前記本発明の緑色顔料を含む緑色顔料に対する前記黄色顔料の 質量比 (黄色顔料 Ζ緑色顔料) が 1. 6以下の場合でも、 単一画素で F 1 0光源 で測色した時に C I Εの X Υ Ζ表色系において X座標が 0. 2 1≤χ≤0. 30、 y座標が 0. 55≤ y≤0. 7 1の範囲の x y色度座標領域を表示することがで きる。
また、 上記緑色画素は、 少なくとも第一の緑色顔料としてフタロシアニングリ ーン顏料からなり、 単体で F 1 0光源で測色した時の C I Eの XY Z表色系にお いて下記方程式 1、 2及び 3で囲まれる X y色度座標領域を表示できるカラーフ ィルター用緑色顔料から選択される 1種、 及び第二の緑色顔料としてフタロシア ニングリーン顔料からなり、 単体で F 1 0光源で測色した時の C I Eの X Y Z表 色系において下記方程式 4、 5及び 6で囲まれる X y色度座標領域を表示できる カラ一フィルター用緑色顔料から選択される 1種を含有する場合には、 単一画素 で F 1 0光源で測色した時に膜厚が 2. 5〃m以下であり、 且つ、 C I Eの X Y Z表色系において X座標がひ. 25≤ x≤0. 32、 y座標が 0. 55≤ y≤0. 75及び刺激値 Yが 30≤Yの範囲の色空間を表示することができる。
また、 上記緑色画素は、 前記第一及び第二の緑色顔料を含む緑色顔料及び黄色 顔料を、 前記緑色顔料に対する前記黄色顔料の質量比 (黄色顔料 Ζ緑色顔料) が 1. 6以下となる割合で含有し、 単一画素で F 1 0光源で測色した時に C I Εの X Υ Ζ表色系において X座標が 0. 25≤ χ≤0. 32、 y座標が 0. 55≤ y ≤0. 75の範囲の X y色度座標領域を表示することができる。
また、 上記緑色画素は、 架橋密度が高いので、 硬度が 500 NZmm2以上又は 弾性変形率が 20%以上に達し、 変形し難い。
また、 上記緑色画素は、 現像する時に逆テーパー状にはならず、 画素断面の下 底の長さに対する上底の長さの比 (上底 Z下底) が 1未満のテーパー状に形成さ れ、 パターンの形状が良好である。
本発明に係る液晶パネルは、 上記本発明のカラーフィルターと液晶駆動側基板 とを対向させ、 両者の間に液晶を封入してなるものである。 本発明のカラーフィ ルター及び液晶パネルを用いて、 s RG B等のマルチメディアモニターの表示規 格、 或いは、 N TS C、 EBU等のカラ一テレビの表示規格のような色座標の着 色力が高い領域 (高濃度領域) をも満足し得る液晶表示装置を製造することが可 能となる。 図面の簡単な説明 第 1図は、 液晶パネルの一例についての模式的断面図である。
第 2図は、 液晶パネルの別の例についての模式的断面図である。
第 3図は、 本発明に係る緑色顔料が表現できる X y色度座標領域 (領域 A) を 示す図である。
第 4図は、 x y色度座標領域上で、 領域 A、 領域 B、 及び領域 Cを示す図であ る。
第 5図は、 本発明に係る緑色顔料及び従来の緑色顔料の単色分光透過率スぺク トルを示す図である。
第 6図は、 領域 Cを表示できる緑色顔料及び従来の緑色顔料の単色分光透過率 スぺク 卜ルを示す図である。
第 7図は、 F 1 0光源の波長分布と C光源の波長分布を示す図である。 なお、 各図中の符号の意味は以下の通りである。
液晶パネル (1 0 1 ) :液晶パネル (1 02) ; カラーフィルタ一 ( 1 ) : 電 極基板 (2) ; 間隙部 (3) : シール材 (4) :透明基板 (5) ; ブラックマト リックス層(6) ;画素部(7 R、 7 G、 7 B) ; 保護膜( 8 ) ;透明電極膜(9) ; 配向膜 ( 1 0) ;パール ( 1 1 ) ;柱状スぺーサー ( 1 2) 発明を実施するための最良の形態 以下において本発明を詳しく説明する。 なお、 本発明において (メタ) ァクリ ルとはアクリル基又はメタクリル基のいずれかであることを意味し、 (メタ) ァ クリロイルとはァクリロイル基又はメタクリロイル基のいずれかであることを 意味する。 また、 光とは、 可視及び非可視領域の波長の電磁波及び放射線が含ま れ、 放射線には例えばマイクロ波、 電子線が含まれ、 具体的には、 波長 5 jU m以 下の電磁波、 及び電子線をいう。
本発明により提供されるカラーフィルター用緑色顔料は、 フタロシアニングリ ーン顔料からなり、 単体で F 1 0光源で測色した時の C I Eの X Y Z表色系にお いて下記方程式 1 、 2及び 3で囲まれる X y色度座標領域 (以下、 「領域 AJ と いうことがある) を表示できることを特徴とする。 方程式 1 、 2及び 3で囲まれ る x y色度座標領域 (領域 A) を図 3に示す。
(方程式 1 )
y =2.640 X +0.080
但し方程式 1において、 0.180< X <0.230
(方程式 2)
y =5261.500x X4— 6338.700x x3 + 2870.400 x2— 580.730 x x +44.810 但し方程式 2において、 0.230< x <0.350
(方程式 3)
y =—36.379 x x 3 + 37.410x x 2— 13· 062 x x +1.907
但し方程式 3において、 0.180< x <0.350
なお、 上記方程式は F 1 0光源で測色した時の C I Eの X Y Z表色系における 表示であり、 F 1 0光源とは、 J I S Z 87 1 9 ( 1 9 84) に定められる 光源で、 テレビ用バックライ トの光源に類似する分光スペク トルを持つ。 また、 測色は顕微分光測光装置 (例えばォリンパス (株) 製 OS P— S P 200顕微分 光測光装置) を用いて行うことができる。 方程式 1、 2及び 3で囲まれる x y色度座標領域 (領域 A) の中でも、 単体で F 1 0光源で測色した時の C I Eの X Y Z表色系において下記方程式 7、 8及び 9で囲まれる X y色度座標領域 (以下、 「領域 B」 ということがある) を表示で きる緑色顔料は、 青味が強すぎず透過率を低下させることがなく、 黄味が強すぎ ず緑色としての着色力を低下させることがない点から特に好ましい。 下記方程式 7、 8及び 9で囲まれる X y色度座標領域 (領域 B) を前記領域 Aと共に図 4に 示す。
(方程式 7)
y =4.000 一 0.270
但し方程式 7において、 0.210< X <0.220
(方程式 8)
y =3849.200 X X 4— 4595.600x x3 + 2056.300x x2-409.710x x +31.138 但し方程式 8において、 0·220< X <0.350
(方程式 9)
y =737462.022 x 6-1267177.816 x χ 5 + 904622.642 x x 4— 343495.090 x x 3 + 73187.274 x x 2— 8299.969 x x +392.073
但し方程式 9において、 0·210< x <0.350
本発明に用いられるフタロシアニングリーン顔料は、 上記範囲の X y色度座標 領域を表示可能とする点から、 分光透過率スぺク トルの透過率が最小となる波長 (Tm i n ) を 5%とした時、 3 80〜7 80 n mにおける分光透過率スぺク卜 ルの透過率が最大となる波長 (Tma x) が 500~5 20 nmであることが好 ましい。 更に、 前記波長 (Tma X ) における透過率が 90%以上、 特に 93<½ 以上であることが好ましい。 また、 本発明に用いられるフタロシアニングリーン 顔料は、 F 1 0光源の青色光源の波長である 43 5 nmにおける前記分光透過率 スぺク トルの透過率が 45%以下、特に 40%以下であることが好ましく、更に、 F 1 0光源の赤色光源の波長である 6 1 0 nrrにおける前記分光透過率スぺク トルの透過率が 20%以下、 特に 1 0%以下であることが好ましい。 なお、 分光 透過率スペクトルは、 顕微分光測光装置 (例えば、 ォリンパス (株) 製 OS P— S P 200顕微分光測光装置) を用いて測定することができる。
本発明に用いられるフタロシアニングリーン顔料の中心金属としては、 Z n、 M g、 A l、 S i、 T i 、 V、 M n、 F e、 C o、 N i 、 G e、 S n等が挙げら れるが、 中でも、 着色力及び透過率が高く、 上記範囲の X y色度座標領域を表示 可能である点から、 Z n (亜鉛) が好ましい。 亜鉛は、 s RG B等のマルチメデ ィァモニターの表示規格、 或いは、 N T S C、 EBU等のカラーテレビの表示規 格のような色座標の着色力が高い領域 (高濃度領域) の緑色を表示するのに適し ており、 特にテレビ用の N T S C, E BU規格の緑色を表示するのに非常に適し ている。
亜鉛フタロシアニンは 1分子中に 1 6個の水素原子を有しているため、 これら の水素原子を、 臭素原子及び塩素原子で置換すると、 臭素原子数が 0〜 1 6個、 塩素原子数が 0〜 1 6個、 水素原子数が 0~ 1 6個の範囲で、 理論上では合計 1 3 6種類の置換体を製造できる。 中でも、 臭素化亜鉛フタロシアニンからなる緑 色顔料は、 上記方程式 1、 2及び 3で囲まれる X y色度座標領域を表示すること ができ、 上記本発明のカラーフィルター用緑色顔料として好ましく用いられる。 臭素化亜鉛フタロシアニンのうち、 1分子中に臭素原子を平均 8個以上 1 3個未 満有する臭素化亜鉛フタロシアニンは、 緑色としての着色力が良好で青味が強す ぎず、 且つ透過率が高い緑色を発色し、 カラ一フィルターの緑色画素を形成する のに非常に適している。 中でも、 更に 1分子中に臭素原子を平均 1 0〜 1 2個有 する臭素化亜鉛フタロシアニン、 特に 1分子中に臭素原子を平均 1 0〜 1 1個有 する臭素化亜鉛フタロシアニンが好ましい。
このような臭素化亜鉛フタロシアニン顔料は、 特開昭 50— 1 308 1 6号公 報等に開示されている公知の製造方法で製造できる。 例えば、 芳香環の水素原子 の一部または全部が臭素の他、 塩素等のハロゲン原子で置換されたフタル酸ゃフ タロジ二トリルを適宜出発原料として使用して、 顔料を合成する方法が挙げられ る。この場合、必要に応じてモリブデン酸アンモニゥム等の触媒を用いてもよし、。 他の方法としては、 塩化アルミニウム、 塩化ナトリウム、 臭化ナトリウム等の 混合物からなる 1 1 0〜 1 70°C程度の溶融物中で、 亜鉛フタロシアニンを臭素 ガスで臭素化する方法が挙げられる。 この方法においては、 溶融塩中の塩化物と 臭化物の比率を調節したり、 塩素ガスの導入量や反応時間を変化させたりするこ とによって、 臭素含有量の異なる種々の臭素化亜鉛フタロシアニンの比率を任意 にコン卜ロールすることができる。
反応終了後、 得られた混合物を塩酸等の酸性水溶液中に投入すると、 生成した 臭素化亜鉛フタロシアニンが沈殿する。 その後、 濾過、 洗浄、 乾燥等の後処理を 行って、 臭素化亜鉛フタロシアニンを得る。
そしてこの臭素化亜鉛フタロシアニン顔料を、 必要に応じてアトライタ一、 ボ ールミル、 振動ミル、 振動ボールミル等の粉砕機内で乾式摩碎し、 ついで、 ソル ベントソルトミリング法やソルベン卜ボイリング法等で顔料化することによつ て、 分散性や着色力に優れ、 かつ、 明度の高い緑色を発色する臭素化亜鉛フタ口 シァニン顔料が得られる。 顔料化方法には特に制限はなく、 臭素化亜鉛フタロシ ァニンを分散媒に分散させると同時に顔料化を行ってもよいが、 多量の有機溶剤 中で臭素化亜鉛フタロシアニンを加熱撹拌するソルベント処理よリも、 容易に結 晶成長を抑制でき、 かつ比表面積の大きい顔料粒子が得られる点で、 ソルベント ソルトミリング処理を採用するのが好ましい。
このソルベントソル卜ミリングとは、 合成直後の粗顔料である臭素化亜鉛フタ ロシアニンと、 無機塩と、 有機溶剤とを混練摩碎することを意味する。 具体的に は、 粗顔料と、 無機塩と、 それを溶解しない有機溶剤とを混練機に仕込み、 その 中で混練摩砕を行う。 この際の混練機としては、 例えばニーダーゃミックスマー ラー等が使用できる。
上記無機塩としては、水溶性無機塩が好適に使用でき、例えば塩化ナ卜リゥム、 塩化カリウム、 硫酸ナトリウム等の無機塩を用いることが好ましい。 また、 平均 粒子径 0 . 5〜5 0 jt mの無機塩を用いることがより好ましい。 この様な無機塩 は、 通常の無機塩を微粉砕することにより容易に得られる。
一次粒子の平均粒子径が 0 . 0 1 〜0 . 1 mの臭素化亜鉛フタロシアニン顏 料を得るに当たっては、 ソルベントソルトミリングにおける粗顔料使用量に対す る無機塩使用量を高くするのが好ましい。 即ち当該無機塩の使用量は、 粗顔料 1 質量部に対して 5 ~ 2 0質量部とするのが好ましく、 7 ~ 1 5質量部とするのが より好ましい。 なお、 本発明における一次粒子の平均粒子径とは、 透過型電子顕 微鏡 J E M— 2 0 1 0 (日本電子株式会社製) で視野内の粒子を撮影し、 二次元 画像上の、 凝集体を構成する顔料一次粒子の 5 0個につき、 その長い方の径 (長 径) を各々求め、 それを平均した値である。 この際、 試料である顔料は、 これを 溶媒に超音波分散させてから顕微鏡で撮影する。 また、 透過型電子顕微鏡の代わ リに走査型電子顕微鏡を使用してもよい。
有機溶剤としては、 結晶成長を抑制し得る有機溶剤を使用することが好ましく, このような有機溶媒としては水溶性有機溶剤が好適に使用でき、 例えばジェチレ ングリコール、 グリセリン、 エチレングリコール、 プロピレングリコール、 液体 ポリエチレングルコール、 液体ポリプロピレングリコール、 2— (メ トキシメ ト キシ) エタノール、 2—ブトキシエタノール、 2— (イソペンチルォキシ) エタ ノール、 2— (へキシルォキシ) エタノール、 ジエチレングリコールモノメチル エーテル、 ジエチレングルコールモノェチルエーテル、 ジエチレングリコールモ ノブチルェ一テル、 トリエチレングリコール、 トリエチレングリコールモノメチ ルエーテル、 1—メ トキシー 2—プロパノール、 1 _エトキシ一 2—プロパノー ル、 ジプロピレングリコール、 ジプロピレングリコールモノメチルエーテル、 ジ プロピレングリコールモノメチルエーテル、 ジプロピレングリコール等を用いる ことができる。当該水溶性有機溶剤の使用量は、特に限定されるものではないが、 粗顔料 1質量部に対して 0 . 0 1 ~ 5質量部が好ましい。
臭素化亜鉛フタロシアニン顔料を製造する方法においては、 粗顔料のみをソル ベントソルトミリングしても良いが、 臭素化亜鉛フタロシアニンとフタロシア二 ン誘導体とを併用してソルベントソルトミリングすることもできる。 また、 フタ ロシアニン誘導体は、 粗顔料の合成時や顔料化の後に加えてもよいが、 ソルベン 卜ソルトミリングなどの顔料化工程の前に加えることがよリ好ましい。 フタロシ ァニン誘導体を加えることによってカラーフィルター用レジス卜インキの粘度 特性の向上と分散安定性の向上が達成できる。
このようなフタロシアニン誘導体としては、 公知慣用のものがいずれも使用出 来るが、 下記一般式 ( I ) または ( I I ) のフタロシアニン顔料誘導体が好まし い。
一般式 ( I ) : P— (Y) m
一般式 ( I I ) : P— (A- Z) n
(式中、 Pは中心金属を有さないまたは中心金属を有する無置換またはハロゲ ン化フタロシアニン環の n個の水素を除いた残基を表す。 Yは第 1 ~3級ァミノ 基、 カルボン酸基、 スルホン酸基またはそれと塩基或いは金属との塩を表す。 A は二価の連結基を、 Zは第 1〜 2級ァミノ基の窒素原子上の水素の少なくとも 1 つを除いた残基、 又は窒素を含む複素環の窒素原子上の水素の少なくとも 1つを 除いた残基を表す。 そして mは 1〜4、 nは 1〜4を表す。 )
前記中心金属としては、 例えば、 銅、 亜鉛、 コバルト、 マンガン、 アルミニゥ 厶等の二〜三価金属が挙げられ、 前記第 1〜2級ァミノ基としては、 例えばモノ メチルァミノ基、 ジメチルァミノ基、 ジェチルァミノ基等が挙げられる。 また、 前記カルボン酸基ゃスルホン酸基と塩を形成する塩基や金属としては、 例えばァ ンモニァや、 ジメチルァミン、 ジェチルァミン、 トリェチルァミンの様な有機塩 基、 カリウム、 ナトリウム、 カルシウム、 ストロンチウム、 アルミニウムの様な 金属が挙げられ、 Aの二価の連結基としては、 例えば炭素数 1〜 3のアルキレン 基、 — C02—、 —S 02—, 一 S 02N H (C H2) m—等の二価の連結基が挙げら れる。 そして、 Zとしては、 例えばフタルイミ ド基、 モノアルキルアミノ基、 ジ アルキルアミノ基等が挙げられる。
加えるフタロシアニン誘導体は、 通常、 粗顔料 1質量部当たり 0. 0 1 ~0. 3質量部である。 フタロシアニン誘導体を用いる場合には、 粗顔料とフタロシア ニン誘導体との合計量を粗顔料の使用量と見なして、 無機塩の使用量等は、 前記 した範囲から選択する。
ソルベントソルトミリング時の温度は、 30〜 1 50°Cが好ましく、 80~ 1 20°Cがより好ましい。 ソルベントソル卜ミリングの時間は、 5時間から 20時 間が好ましく、 6~ 1 8時間がより好ましい。
このソルベントソルトミリングによリ臭素化亜鉛フタロシアニン顔料、 無機塩, 有機溶剤を主成分として含む混合物が得られるが、 この混合物から有機溶剤と無 機塩を除去し、 必要に応じて臭素化亜鉛フタロシアニン顔料を主体とする固形物 を洗浄、 濾過、 乾燥、 粉碎等をすることにより、 臭素化亜鉛フタロシアニン顔料 の粉体を得ることが出来る。 洗浄としては、 水洗、 湯洗のいずれも採用できる。 洗浄回数は、 1 〜5回の範囲で繰り返すことも出来る。 水溶性無機塩及び水溶性 有機溶剤を用いた前記混合物の場合は、 水洗することで容易に有機溶剤と無機塩 を除去することが出来る。
上記した濾別、 冼浄後の乾燥としては、 例えば、 乾燥機に設置した加熱源によ る 8 0〜 1 2 0 °Cの加熱等により、 顔料の脱水及び Z又は脱溶剤をする回分式あ るいは連続式の乾燥等が挙げられ、 乾燥機としては一般に箱型乾燥機、 バンド乾 燥機、 スプレードライア一等がある。 また、 乾燥後の粉碎は、 比表面積を大きく したリー次粒子の平均粒子径を小さくするための操作ではなく、 例えば箱型乾燥 機、 バンド乾燥機を用いた乾燥の場合のように顔料がランプ状等となった際に顔 料を解して粉末化するために行うものであり、 例えば、 乳鉢、 ハンマーミル、 デ イスクミル、 ピンミル、 ジヱットミル等による粉砕等が挙げられる。
こうして、 一次粒子の平均粒子径が 0 . 0 1 〜0 . 1 U mの臭素化亜鉛フタ口 シァニン顔料が得られる。
この臭素化亜鉛フタロシアニン顔料に代表される本発明の緑色顔料は公知慣 用の用途にいずれも使用できるが、 特に一次粒子の平均粒子径が 0 . 0 1 ~ 0 . 1 ju rnの顔料は、 着色すべき合成樹脂等への分散性がより良好となる。 尚、 上記 臭素化亜鉛フタロシアニン顔料は、 従来の顔料に比べて一次粒子の凝集力が弱く, より解れやすい性質を持つ。 電子顕微鏡写真により、 従来の顔料では観察できな し、、 凝集体を構成する個々の顔料一次粒子を観察することができる。
また、 カラーフィルターに使用する場合においては、 特に一次粒子の平均粒子 径が 0 . 0 1 〜0 . 1 mの範囲であると、 顔料凝集も比較的弱く、 カラーフィ ルター用レジストインキへの顔料分散が容易であり、 鮮明度と透過率とのいずれ もが高いカラーフィルターがより簡便に得られ、 また、 カラーフィルター用レジ ストインキを硬化する際に多用される 3 6 5 n mにおける遮光性は低下し、 レジ ス卜の光硬化感度の低下がなく、 現像時の膜ヘリやパターン流れも起こリ難くな るので好ましい。
本発明の緑色顔料は、 一次粒子の縦横ァスぺク ト比が 1〜 3であると、 各用途 分野において粘度特性が向上し、 流動性がより高くなる。 ァスぺク ト比を求める には、 まず、 一次粒子の平均粒子径を求める場合と同様に、 透過型電子顕微鏡ま たは走査型電子顕微鏡で視野内の顔料粒子を撮影する。そして、二次元画像上の、 凝集体を構成する顔料一次粒子の 5 0個につき長い方の径 (長径) と、 短い方の 径 (短径) の平均値を求め、 これらの値を用いて算出する。
上記本発明に係る緑色顔料は、 当該緑色顔料単独で塗膜化する時に、 C I Eの X Y Z表色系において上記方程式 1、 2及び 3で囲まれる X y色度座標領域を表 示することができ、 着色力に優れ青味が強すぎず、 透過率が高い従来の緑色顔料 では表示できなかった緑色を発色し、 従来の緑色顔料を用いる場合よりも色再現 領域を広げることができる。 その結果、 上記本発明に係る緑色顔料は従来の塩素 化銅フタロシアニン顔料 (P G 7 ) と臭素化銅フタロシアニン顔料 (P G 3 6 ) の長所を兼ね備えた顔料となっている。
本発明の緑色顔料は着色力に優れるので、 従来の P G 3 6を用いる場合と比べ て、 少ない量で規格に定められた緑色に近づけることができるため、 膜厚を薄く することができ、 製版性が向上して、 フォトリソグラフィ一で微細形状を形成し やすくなる。 また、 本発明の緑色顔料は青味が強すぎないので、 黄色顔料の混合 量が少なくても充分に黄味が強い緑色の発色性を有する緑色画素及びノ又は薄 くて透明性の高い色純度に優れた緑色画素を形成でき、 更に、 従来の緑色顔料を 用いる場合よりも薄い膜厚で色再現域を広げることができる。 また、 本発明の緑 色顔料は透過率が高いので、 さらに黄色顔料と組合せて緑色画素を形成する場合 に、 色座標の着色力が高い領域 (高濃度領域) においても従来よりも薄い膜厚で 透過率を高くできる。 従って、 本発明の緑色顏料を用いてカラーフィルターを形 成する場合には、 色再現域が広く、 且つ透過率が高いカラーフィルターを形成す ることができる。 P G 7を用いた従来の感光性着色組成物を用いて形成する場合 と比べて、 カラーフィルターの光の透過性が上がるため、 強いバックライ 卜が必 要なくなり、 液晶パネルのコストアップや消費電力の増加を抑えることができる c 本発明に係る緑色顔料は、 比較的青味が強い緑色を発色するため、 比較的青味が 強い緑色画素が求められるテレビ用 N T S C、 E B U規格に特に適している。 また、 本発明に係る緑色顔料が臭素化亜鉛フタロシアニン顔料からなる場合に は、 透過率が高く、 また、 波長 4 3 5 n mにおける前記分光透過率スぺクトルの 透過率が 4 5 %以下、 特に 4 0 %以下となり、 調色により消さなければならない 余計な青味が少ない顔料が得られる。 また、 6 1 0 n mにおける前記分光透過率 スぺク トルの透過率が 2 0 %以下、 特に 1 0 %以下となり、 調色しても赤味が少 ない顔料が得られる。
本発明に係る緑色顔料を単体で塗膜化して測色するためには、 当該緑色顔料に 適当な分散剤、 バインダー成分及び溶剤を配合して塗工液を調製し、 透明基板上 に塗工して乾燥し、 必要に応じて硬化させればよい。 バインダー成分としては、 測色を行い得る透明な塗膜を形成できる限り、 非硬化性の熱可塑性樹脂組成物を 用いても良いし、光硬化性(感光性)又は熱硬化性の樹脂組成物を用いても良い。 また、 後述する本発明の感光性着色樹脂組成物から他の顔料を除いた組成物を用 いることで、 顔料としては本発明に係る緑色顔料のみ含有する塗膜を形成し、 測 色を行うこともできる。
本発明の緑色顔料を用い公知の方法によリカラーフィルターの緑色画素を形 成することができる。 緑色画素の製造方法としては、 例えば、 本発明に係る緑色 顔料を光重合性化合物や光重合開始剤等の感光性成分と混合して感光性着色組 成物を調製し、 これを透明基材の上に塗布し、 所定のパターンに露光して現像す ることによって緑色画素を形成できる。その他、電着法、転写法、 ミセル電解法、 P V E D (Photovo l ta i c E l ectrodepos i t i on) 法の方法で緑色パターンを形成し て、 カラーフィルターを製造してもよい。 なお、 赤色パターンおよび青色パター ンも公知の顔料を使用して、 同様の方法で形成できる。
感光性着色組成物を調製する前に、 緑色顔料を予め顔料分散体に調製し、 得ら れた顏料分散体と感光性成分を混合してもよい。 この場合には、 顔料分散性の良 好な感光性着色組成物が得られる。 また、 本発明のカラーフィルター用緑色顔料は、 着色成分として単独で用いる ことも可能だが、 通常、 顔料分散体又は感光性着色組成物を調製する段階で黄色 顔料等の他の顔料と組み合わせて調色される。 本発明のカラーフィルター用緑色 顔料は、 緑色としての着色力に優れ青味が強すぎず、 且つ透過率が高いため、 力 ラーフィルター用顔料分散体又は感光性着色組成物における着色成分中の主顔 料、 更に着色成分中の緑色顔料の主顔料として好適に用いることができる。 広い 色再現域で且つ高透過率のカラーフィルターの緑色画素を形成する点から、 本発 明の緑色顔料は、 感光性着色組成物における着色成分の全量を基準として 3 0質 量%より多く、 更に 3 9質量0 /0以上、 特に 5 0質量%ょリ多く含まれることが好 ましい。
また、 本発明の緑色顔料は、 感光性着色組成物における着色成分中の緑色顔料 の全量を基準として 5 0質量%以上、 更に 6 0質量%以上含まれることが好まし い。 更に、 目標とする色座標によっては他の緑色顔料の添加量が極めて少なくて も充分な場合があり、 本発明の緑色顔料の配合量は、 緑色顔料の全量を基準とし て 8 0質量%以上、 更に 1 0 0質量%であっても目標とする色座標に調整するこ とが可能である。
顔料分散体又は感光性着色組成物を調製する場合に、 比較的少ない顔料使用量 で各規格の緑色画素の色に近づける、 透過率を高くする、 膜厚を薄くする、 及び 色再現域を広げる点から、 前記着色成分中に少なくとも、 第一の緑色顔料として 前記本発明に係るカラーフィルター用緑色顔料から選ばれる 1種、 及び第二の緑 色顔料として第一の緑色顔料よリも黄味が強い緑色顔料を含有することが好ま しい。
第一の緑色顔料は、 前記本発明に係るカラーフィルター用緑色顔料から選ばれ るが、 中でも、 前記領域 Bを表示できる緑色顔料であることが、 青味が強すぎず 透過率を低下させることがなく、 黄味が強すぎず緑色としての着色力を低下させ ることがない点から、 より好適に用いられる。
第一の緑色顔料よリも黄味が強い第二の緑色顔料は、 3 8 0〜 7 8 0 n mにお ける分光透過率スぺク トルの透過率が最大となる波長 (T m a x ) が第一の緑色 顔料よりも長波長であるものであるが、 更に、 X y色度座標領域上で第一の緑色 顔料と第二の緑色顔料の間が、 y = 0. 50で固定にした時に Xが 0. 02以上、 好ましくは 0. 02〜0. 05離れているものであることが、 比較的少ない顔料 使用量で各規格の緑色画素の色に近づけ、 且つ色再現域を広げる効果が高い点か ら好ましい。 上述の条件を満たせば、 第二の緑色顔料は、 上記本発明に係るカラ ーフィルター用緑色顔料から選ばれても良いし、 更に広色域や黄味が強い緑色画 素を必要とする場合には、 本発明のカラーフィルター用緑色顔料よりも黄味が強 い緑色顔料から選ばれても良い。
この場合に、 本発明のカラーフィルター用緑色顔料よリも黄味が強い緑色顔料 としては、 上記方程式 1、 2及び 3で囲まれる X y色度座標領域を表示しないも のであって、 380〜 7 80 n mにおける分光透過率スぺク トルの透過率が最大 となる波長 (Tma X ) が 5 1 5 nmよりも大きく 53 5 nm以下であることが 好ましい。 中でも波長 (Tm a X ) が 5 20 n m〜53 5 n m以下であることが 更に好ましい。
更に、本発明の感光性着色組成物においては、硬化反応に関与する反応性成分、 及び、 第一の緑色顔料としてフタロシアニングリーン顔料からなり、 単体で F 1 0光源で測色した時の C I Eの X Y Z表色系において下記方程式 1、 2及び 3で 囲まれる X y色度座標領域を表示できるカラーフィルター用緑色顔料から選択 される 1種、 及び第二の緑色顔料としてフタロシアニングリーン顔料からなり、 単体で F 1 0光源で測色した時の C I Eの X Y Z表色系において下記方程式 4、 5及び 6で囲まれる X y色度座標領域を表示できるカラーフィルター用緑色顏 料から選択される 1種を少なくとも含む着色成分を含有することが好ましい。 下 記方程式 4、 5及び 6で囲まれる X y色度座標領域 (領域 C) を下記方程式 1、 2及び 3で囲まれる X y色度座標領域 (領域 A) と共に図 4に示す。
(方程式 1 )
y =2.640 X +0.080
但し方程式 1において、 0.180< X <0·230
(方程式 2) y =5261.500 x x 4— 6338.700 x x3 + 2870.400 x 2— 580.730 x x +44.810 但し方程式 2において、 0.230< x <0.350
(方程式 3)
y =—36.379 x x 3 + 37.410 x x2-13.062x x +1.907
但し方程式 3において、 0.180< x <0.350
(方程式 4)
y =8.000x x -1.513
但し方程式 4において、 0.260< x <0·270
(方程式 5)
y =-1051.300x χ4+1176.900 x χ3-450.880 x χ2+62.131 χ -0.836 但し方程式 5において、 0,260< χ <0.350
(方程式 6)
y =5746.700 X4— 7310.300X χ 3 + 3493.200 x x2-744.610x x +60.251 但し方程式 6において、 0.270< x <0.350
単体で F 1 0光源で測色したときに上記領域 Cを表示できる緑色顔料は、 強い 黄みを帯びながら着色力が高く、 且つ透過率が高い緑色を発色する。 上記領域 C を表示できる緑色顔料は、 従来のハロゲン化銅フタロシアニン顔料では表示でき なかった色度座標領域の黄味が強い緑色を発色することができるため、 従来の緑 色顔料を用いる場合よりも黄味領域へ色再現域を広げることができ、 調色のため の黄色顔料の量を減らすことができる。 更に、 上記領域 Cを表示できる緑色顔料 は、 P G 36に比べて着色力が高いので、 P G 36を用いる場合と比べて少ない 量で規格に定められた緑色に近づけることができる。
従って、 第一の緑色顔料として上記領域 Aを表示できる緑色顔料から選択し、 第二の緑色顔料として領域 Cを表示できる緑色顔料から適宜選択して組み合わ せて用いると、 よリ少ない顔料使用量で各規格に定められた緑色画素の色に近づ けることができ、 その結果、 カラーフィルターの画素を形成する場合に膜厚をよ リ薄くすることができ、 製版性が向上してフォトリソグラフィ一で微細形状を形 成しやすくなる。 また、 黄色顔料の混合量が少なくても充分に黄味が強い緑色の 発色性を有する緑色画素及び Z又は薄くて透明性の高い色純度に優れた緑色画 素を形成でき、 更に、 従来の緑色顔料を用いる場合よりも薄い膜厚で色再現域を 広げることができる。
また、 上記領域 Aを表示できる緑色顔料及び上記領域 Cを表示できる緑色顔料 はいずれも透過率が高いため、 さらに黄色顔料と組合せて緑色画素を形成する場 合に、 色座標の着色力が高い領域 (高濃度領域) においてもより薄い膜厚で透過 率を高くできる。 従って、 領域 Aを表示できる緑色顔料と領域 Cを表示できる緑 色顔料から適宜選択して組み合わせて用い、 カラ一フィルターを形成する場合に は、 より薄い膜厚で色再現域が広く、 且つ透過率が高いカラーフィルターを形成 することができる。 P G 7や P G 36等のハロゲン化銅フタロシアニン顔料を用 いた従来の感光性着色組成物を用いて形成する場合と比べて、 カラーフィルター の光の透過性が上がるため、 強いパックライ 卜が必要なくなり、 液晶パネルのコ ストアップや消費電力の増加を抑えることができる。
第二の緑色顔料として用いられる上記領域 Cを表示できる緑色顔料は、 分光透 過率スペク トルの透過率が最小となる波長 (Tm i n) を 5%とした時、 380 〜7 80 nmにおける分光透過率スぺク トルの透過率が最大となる波長 (Tm a X ) が 520〜 535 nmであることが好ましい。 更に、 前記波長 (Tma x) における透過率が 90%以上、 特に 930/0以上であることが好ましい。 また、 本 発明に用いられるフタロシアニングリーン顔料は、 F 1 0光源の青光源の波長で ある 435 n mにおける前記分光透過率スぺク トルの透過率が 40%以下、 特に
35%以下であることが好ましく、 更に、 F 1 0光源の三波長管の副波長である
49 0 n mにおける前記分光透過率スぺク トルの透過率が 8 5 %以下、 特に 8 0%以下であることが好ましい。 更に、 F 1 0光源の赤光源の波長である 6 1 0 nrriにおける前記分光透過率スぺクトルの透過率が 30%以下、 特に 2 5 %以下 であることが好ましい。
第一の緑色顔料、 及び第二の緑色顔料として用いられるフタロシアニングリ一 ン顏料の中心金属としては、 Z n、 M g、 A l 、 S i 、 T i 、 V、 M n、 F e、 C o、 N i 、 G e、 S n等が挙げられる。 第一の緑色顔料と第二の緑色顔料にお いて、 フタロシアニングリーン顔料の中心金属は異なっていても良いが、 中心金 属が同じであることが、 相性が良い、 すなわち同様の分散剤系にすることができ るため混合したときに分散安定性が良好になり、 発色が良好になる点から本発明 において好適に用いられる。
中でも、 第一の緑色顔料と第二の緑色顔料において、 フタロシアニングリーン 顔料の中心金属がいずれも Z n (亜鉛) である場合には、 着色力及び透過率が高 い点から、 好ましい。 亜鉛は、 マルチメディアモニター用 s R G B規格、 又はそ の周辺色度領域、 及びテレビ用の N T S C . E B U規格の緑色を表示するのに、 非常に適している。 中でも、 臭素化亜鉛フタロシアニンからなる緑色顔料は、 上 記領域 A、 及び上記領域 Cを表示することができ、 上記第一の緑色顔料、 及び第 二の緑色顔料として好ましく用いられる。
第一の緑色顏料として上記領域 Aを表示できる緑色顔料を用い、 第二の緑色顔 料として上記領域 Cを表示できる緑色顔料を用いる場合に、 第一の緑色顔料とし ては、 1分子中に臭素原子を平均 8個以上 1 3個未満有する臭素化亜鉛フタロシ ァニンが、 緑色としての着色力が良好で青味が強すぎず、 且つ透過率が高い緑色 を発色し、 カラーフィルターの緑色画素を形成するのに非常に適している点から, 好ましい。 中でも、 更に 1分子中に臭素原子を平均 1 0〜 1 1個有する臭素化亜 鉛フタロシアニンが好ましい。 第二の緑色顔料としては、 1分子中に臭素原子を 平均 1 3個以上有する臭素化亜鉛フタロシアニンが、 強い黄味を帯びながら着色 力が高く、 且つ透過率が高い緑色を発色し、 カラーフィルターの緑色画素を形成 するのに非常に適している点から、 好ましい。 中でも、 更に 1分子中に臭素原子 を平均 1 3〜 1 6個有し、 且つ 1分子中に塩素を含まないか又は平均 3個以下有 する臭素化亜鉛フタ口シァニンが好ましく、 特に 1分子中に臭素原子を平均 1 4 〜 1 6個有し、 且つ 1分子中に塩素を含まないか又は平均 2個以下有する臭素化 亜鉛フタロシアニンが好ましい。
また、上記第一の緑色顔料及び第二の緑色顔料は、一次粒子の平均粒子径が 0 . 0 1 - 0 . 1 mの範囲であると、 顔料凝集も比較的弱く、 顔料分散体や着色組 成物への顔料分散が容易であり、 鮮明度と透過率とのいずれもが高いカラーフィ ルターがより簡便に得られ、 また、 着色組成物を硬化する際に多用される 3 6 5 n mにおける遮光性は低下し、 レジストの光硬化感度の低下がなく、 現像時の膜 ヘリやパターン流れも起こリ難くなるので好ましい。
更に、 第一の緑色顔料及び第二の緑色顔料は、 一次粒子の縱横ァスぺク ト比が 1〜3であると、 粘度特性が向上し、 流動性がより高くなるので好ましい。 第二 の緑色顔料として用いられる臭素化亜鉛フタロシアニン顔料も、 前述のような製 造方法で製造できる。
上記の組み合わせの中でも、 第一の緑色顔料が、 前記領域 Bを表示できるカラ 一フィルター用緑色顔料から選ばれる一種であって、 第二の緑色顔料が、 前記領 域 Cを表示できるカラーフィルター用緑色顔料から選ばれる一種であることが、 比較的少ない顔料使用量で各規格の緑色画素の色に近づける、 透過率を高くする, 膜厚を薄くする、 及び色再現域を広げる点から、 特に好ましい。
また、 第二の緑色顔料として上記領域 Cを表示できるフタロシアニングリーン 顔料を用いる場合に、 N T S C、 E B U規格のような青味が強く広い色再現域の 緑色画素を表示する場合には、 第一の緑色顔料の量を第二の緑色顔料の量よリも 多くすることが好ましく、 s R G B規格のような黄味が強く高透過率の緑色画素 を表示する場合には、 第二の緑色顔料の量を第一の緑色顔料の量よリも多くする ことが好ましい。
本発明の着色成分中の緑色顔料としては、 前記第一及び第二の緑色顔料のみで 構成されても上述のような充分な効果が得られるが、 着色成分中には第三の緑色 顔料、 第四の緑色顔料等、 緑色顔料として更に複数の顔料を含有しても良い。 そ の場合であっても、 色再現域を広げる効果が高くなる点から、 第三以上の緑色顏 料は X y色度座標領域上で第一の緑色顔料や第二の緑色顔料との間が離れてい ることが好ましく、 具体的には、 X y色度座標上で顔料各々を y = 0 . 5 0で固 定にした時に、 各々の Xが 0 . 0 2以上、 好ましくは 0 . 0 3〜0 . 0 5離れて いることが好ましい。 第三以上の緑色顔料は上記領域 A及び Cから選択されても 良いし、 別の領域から選択されても良い。
第二の緑色顔料が上記領域 Cを表示できる緑色顔料から選択される場合には、 第一の緑色顔料として本発明の緑色顔料が感光性着色組成物における着色成分 の全量を基準として 30質量%より多く含まれていなくても、 また、 本発明の緑 色顔料が感光性着色組成物における着色成分中の緑色顔料の全量を基準として 50質量%以上含まれていなくても、 本発明の効果を充分に達成し得る感光性着 色組成物を得ることができる。 この場合には、 第一及び第二の緑色顔料を含み、 場合によって第三以上の緑色顔料を含む領域 A及び領域 Cを表示できるカラ一 フィルター用緑色顔料の合計配合量が、 本発明に係る感光性着色組成物における 着色成分の全量を基準として 30質量%より多く、 更に 3 9質量%以上、 目標と する色座標によっては 50質量%よリ多く含まれることが、 広い色再現域で且つ 高透過率のカラーフィルターの緑色画素を形成する点から、 好ましい。
また、 第一及び第二の緑色顔料を含み、 場合によって第三以上の緑色顔料を含 む領域 A及び領域 Cを表示できるカラーフィルター用緑色顔料の合計配合量は、 感光性着色組成物における着色成分中の緑色顔料の全量を基準として 5 0質 量%以上、 更に 60質量%以上含まれることが、 広い色再現域で且つ高透過率の カラーフィルターの緑色画素を形成する点から、 好ましい。 更に、 目標とする色 座標によっては領域 A及び領域 Cに属しない緑色顔料の添加量が極めて少ない か無くても充分な場合があり、 第一及び第二の緑色顔料を含み、 場合によって第 三以上の緑色顔料を含む領域 A及び領域 Cを表示できるカラーフィルター用緑 色顔料の合計配合量は、 緑色顔料の全量を基準として 80質量%以上、 更に 1 0 0質量%であっても目標とする色座標に調整することが可能である。
また、 本発明の緑色顔料に黄色顔料を組み合わせることによって、 波長 380 〜4 7 0 n mにおける分光透過率スぺク トルの透過率を低下させることが可能 である。黄色顔料としては、例えば C. に ビグメントイエロー (P Y) 1、 2、 3、 4、 5、 6、 1 0、 1 2、 1 3、 1 4、 1 5、 1 6、 1 7、 1 8、 24、 3 1、 32、 34、 35、 3 5 : 1、 36、 36 : 1、 37、 3 7 : 1、 40、 4 2、 43、 53、 55、 60、 6 1、 62、 63、 65、 73、 74、 7 7、 8 1、 8 3、 9 3、 94、 95、 9 7、 9 8、 1 00、 1 0 1、 1 04、 1 06、 1 08、 1 0 9、 1 1 0、 1 1 3、 1 1 4、 1 1 5、 1 1 6、 1 1 7、 1 1 8、 1 1 9、 1 20、 1 2 6、 1 27、 1 2 8、 1 2 9、 1 3 8、 1 39、 1 5 0、 1 5 1、 1 5 2、 1 5 3、 1 54、 1 5 5、 1 5 6、 1 6 1、 1 62、 1 6 4、 1 66、 1 6 7、 1 6 8、 1 6 9、 1 7 0、 1 7 1、 1 7 2、 1 7 3、 1 7 4、 1 7 5、 1 7 6、 1 7 7、 1 7 9、 1 8 0、 1 8 1、 1 82、 1 8 5、 1 8 7、 1 99等が挙げられるが、 透過率が高い、 又は、 顔料が少量で済み薄膜化に適し ている点から、 P Y 83、 1 3 8、 1 39、 1 50、 1 8 5が好ましく、 特に Ρ Υ 1 38、 1 50、 1 85が好ましい。 これらは、 1種又は 2種以上組み合わせ て用いることができる。
本発明の緑色顔料は、 従来の緑色顔料に比べて波長 3 80-470 nmにおけ る分光透過率スぺク トルの透過率が低く、 且つ緑色として充分に着色しながら比 較的黄味成分が多いことから、 カラ一フィルターの緑色画素を形成する場合に、 黄色顔料の使用量を少なくできる。
緑色顔料と黄色顔料を混合して顔料分散体又は感光性着色組成物を調製する 場合には、 本発明の緑色顔料を含み、 場合によっては第二以上の緑色顔料を含む 緑色顔料の合計量に対する黄色顔料の配合比を質量比 (黄色顔料 緑色顔料) で 好ましくは 1. 6以下、 更に好ましくは 0. 8以下とする場合でも、 波長 3 80 〜470 n mにおける分光透過率スぺク トルの透過率を充分に低下させること ができる。 更に、 本発明の緑色顔料を用いる場合、 及び更に組み合わせて第二の 緑色顔料として上記領域 Cを表示できる緑色顔料を用いる場合には、 これらのい ずれも波長 3 80〜 4 7 0 n mにおける分光透過率スぺク トルの透過率が低い ため、 透明性の高い黄色顔料を組み合わせても充分に上記透過率を低下させるこ とができる。 透明性の高い黄色顔料を組み合わせた場合には、 調色後の画素の透 過率を高くすることができる。
本発明に係る緑色顔料は着色力に優れ透過率が高いことから、 それ自体が少量 でも充分な発色が得られるので、 これを中心に調色をすると、 上述したように組 み合わされる黄色顔料の使用量も少なくすることができ、 顔料全体の使用量が減 リ、 透明性の高い、 色純度に優れた緑色画素を形成できる。 また、 黄色顔料は耐 熱性ゃ耐光性に劣るものが多いため、 黄色顔料の使用量が少なくなることによつ て、 緑色画素の耐性も向上する。
また、 第二の緑色顔料として上記領域 Cを表示できる緑色顔料を更に用いる場 合には、 上記領域 Cを表示できる緑色顔料も着色力に優れ透過率が高く、 強い黄 味を帯びていることから、 これらを組み合わせて用いると顔料使用量が少量でも 黄味の強い緑色を充分に発色させることができる。 本発明の緑色顔料及び上記領 域 Cを表示できる緑色顔料を着色成分の中心として調色をすると、 上述したよう に組み合わされる黄色顔料の使用量も少なくすることができ、 顔料全体の使用量 が更に減り、 透明性の高い、 色純度に優れた緑色画素を形成できる感光性着色組 成物が得られる。
色再現域の大きい画像表示装置を得るために特に高濃度型 (高色濃度型) の力 ラーフィルターが求められる場合には、 顔料割合が非常に大きい感光性着色組成 物 (高濃度型感光性着色組成物) を用いることが多い。 しかしながら、 高濃度型 感光性着色組成物は顔料の配合割合が大きいことから、 画素を形成した時に色濃 度以外の透明性等の光学性能、 微細パターン形成能、 皮膜物性等への影響が特に 重大となる。 これに対して本発明の緑色顔料を用いる場合には、 高濃度型感光性 着色組成物としては非常に少ない顔料でも充分に高濃度型に対応できる発色が 得られる。 例えば、 顔料 (P ) Zビヒクル (V ) 比 (質量比) が 0 . 2 5〜 1 . 0、 好ましくは 0 . 2 5〜0 . 8の範囲でも、 高濃度で且つ透明性の高い緑色画 素を形成できる。 なお、 本発明において P / V比の顔料 (P ) とは、 本発明に係 る感光性着色組成物に含有される前記着色成分、 すなわち顔料の総量であって、 緑色顔料に混合される黄色顔料等の他の顔料を含んでおり、また、 ビヒクルとは、 感光性着色組成物中の顔料を除く不揮発成分を意味し、 液状のモノマー成分もビ ヒクルに含まれる。
また、 顔料の使用量が少なくなることに伴い、 顔料を分散させる分散剤の使用 量を減らすこともできるので、 顔料や分散剤等の硬化反応に関与しない成分 (非 反応性成分) と、 光硬化性樹脂や開始剤や熱硬化性樹脂等の硬化反応に関与する 成分(反応性成分)からなる感光性着色組成物を用いて画素を形成する場合には、 非反応性成分の配合割合が減り、 反応性成分の配合割合が増える。 具体的には、 本発明に係る感光性着色組成物は、 前記反応性成分 (a) に対する着色成分以外 の前記非反応性成分 (b) の質量比 (bZa) を 0. 45以下にすることが可能 となり、 充分な反応性が得られる。 ここで、 着色成分以外の非反応性成分は分散 剤を主体として構成される。 従って、 充分な顔料分散性が得られるのであれば、 上記質量比 (bZa) が小さいほど分散剤の使用量が少なくなリ、 感光性着色組 成物中の反応性成分の割合が増え、 その結果、 光硬化性が良好となって硬化後の 塗膜硬度、 硬化後の塗膜弾性、 膜厚均一性、 現像時の画素パターン欠損抑制、 残 渣減少、 現像性改善、 硬化後の塗膜架橋密度向上、 塗膜の薄膜化等の諸物性に優 れた緑色画素が得られる。
顔料分散体を調製するための分散剤としては、 次に示すような高分子分散剤、 すなわち (メタ) アクリル酸系 (共) 重合体ポリフロー No.75、 No.90、 No.95 (共 栄社油脂化学工業製) 、 メガファック F171、 F172、 F173 (大日本インキ化学工業 製) 、 フロラ一ド FG430、 FC431 (住友スリーェム製) 、 ソルスパース 13240、 200 00、 24000、 26000、 28000等の各種ソルスパース分散剤 (アビシァ製) 、 デイス パービック 111、 161、 162、 163、 164、 182、 2000、 2001 (ビックケミー製) 、 ァ ジスパー PB711、 PB41K PB11K PB82K PB822 (味の素ファインテクノ製) 等を 用いることができる。
カチオン系、 ァニオン系、 ノニオン系、 両性、 シリコーン系、 フッ素系等の界 面活性剤も分散剤として使用できる。 界面活性剤の中でも、 次に例示するような 高分子界面活性剤、 すなわち、 ポリオキシエチレンラウリルエーテル、 ポリオキ シエチレンステアリルエーテル、 ポリオキシエチレンォレイルエーテル等のポリ ォキシエチレンアルキルエーテル類; ポリオキシエチレンォクチルフエニルェ 一テル、 ポリオキシエチレンノニルフエニルエーテル等のポリオキシエチレンァ ルキルフエニルエーテル類; ポリエチレングリコールジラウレート、 ポリエチレ ングリコールジステアレート等のポリエチレングリコ一ルジェステル類; ソル ビタン脂肪酸エステル類;脂肪酸変性ポリエステル類: 3級ァミン変性ポリゥ レタン類などの高分子界面活性剤が好ましく用いられる。
分散剤の配合割合は、 通常、 顔料 (緑色顔料と他の顔料の合計) 1 00質量部 に対して通常は 1 0 0質量部以下、 好ましくは 3 0質量部以下の割合で用いる。 顔料分散体を調製するための溶剤 (分散溶剤) としては、 後述する感光性着色 組成物を調製するために希釈溶剤として用いられる各種の有機溶剤を用いるこ とができる。 分散溶剤は、 顔料 (緑色顔料と他の顔料の合計) 1 0 0質量部に対 して通常は 1 0 0〜 1 0 0 0質量部、 好ましくは 2 0 0〜 9 0 0質量部の割合で 用いる。
顏料分散体は、 緑色顏料、 他の顔料、 分散剤、 及び、 必要に応じてその他の成 分を、 任意の順序で溶剤に混合し、 ジェットミル、 ニーダー、 ロールミル、 アト ライタ、 スーパーミル、 ディゾルバ、 ホモミキサー、 サンドミル等の公知の分散 機を用いて分散させることによって調製できる。 本発明の緑色顔料は、 他の顔料 とは分けて分散体に調製してもよいし、 他の顔料と混合して分散体に調製しても 良い。
感光性着色組成物は、 緑色顔料、 他の顔料及び分散剤と共に、 光重合性化合物 や光重合開始剤等の光硬化に関与する成分、 すなわち感光性成分を配合し、 必要 に応じて溶剤で適切に希釈することにより調製される。
光重合性化合物は、 光照射によって、 それ自体が直接重合反応により硬化する 力、、 又は、 光照射によって活性化した開始剤の作用を受けて重合反応を生じて硬 化する化合物である。光重合性化合物の反応形式はラジカル重合、ァニオン重合、 カチオン重合等のいずれであってもよいが、 光重合性化合物としては通常、 ェチ レン性不飽和結合を有するラジカル重合性のモノマー、 オリゴマー、 ポリマーが 用いられる。
エチレン性不飽和結合を有するモノマー又はオリゴマーとしては、 多官能ァク リレー卜系のモノマー又はオリゴマーが好ましく用いられ、 例えば、 エチレング リコール(メタ) ァクリレート、 ジェチレングリコールジ(メタ) ァクリレート、 プロピレングリコールジ (メタ) ァクリレート、 ジプロピレングリコールジ (メ タ) ァクリレート、 ポリエチレングリコールジ (メタ) ァクリレー卜、 ポリプロ ピレングリコールジ (メタ) ァクリレート、 へキサンジ (メタ) ァクリレート、 ネオペンチルグリコールジ (メタ) ァクリレート、 グリセリンジ (メタ) ァクリ レート、 グリセリントリ (メタ) ァクリレート、 グリセリンテ卜ラ (メタ) ァク リレート、 テトラ卜リメチロールプロパントリ (メタ) ァクリレート、 1, 4— ブタンジオールジァクリレート、 ペンタエリスリ I ^一ルトリアクリレート、 トリ メチロールプロパントリァクリレート、 ペンタエリスリ | ^一ル (メタ) ァクリレ 一卜、 ジペンタエリスリ トールへキサ (メタ) ァクリレー卜などを例示すること ができる。 これらの成分は 2種以上を組み合わせて使用してもよい。
上記モノマー又はオリゴマ一の少なくとも一部は、 充分な架橋密度を得るため にラジカル重合性基を 2個以上有していることが好ましく、 3個以上有している ことが特に好ましい。
エチレン性不飽和結合を有するポリマーとしては、 上記多価ァクリレー卜系モ ノマーのポリマーや、 或いは、 エチレン性不飽和結合と共に水酸基やカルボキシ ル基等の他の官能基を有するモノマーを重合させた後に、 ポリマー分子に存在す る水酸基やカルボキシル基等の他の官能基を足場にしてエチレン性不飽和結合 を導入したポリマーを用いることができる。
充分な製膜性を得るためには重合性のポリマーを用いることが望ましく、 充分 な架橋密度を得るためには重合性のモノマー又はオリゴマーを用いることが望 ましいことから、 両者を混合して用いるのが好ましい。
これらの重合性又は非重合性のポリマー及びノ又は重合性のモノマー及び Z 又はオリゴマーからなるバインダー樹脂は、 感光性着色組成物中に固形分比とし て、 通常、 5〜 1 5質量%、 好ましくは 7〜 1 0質量%含有される。
光重合開始剤としては、 光照射によってラジカル重合、 ァニオン重合、 カチォ ン重合等の重合反応を開始させる活性種を発生させる化合物を用いることがで き、 前記光重合性化合物の反応形式に応じて適切な活性種を発生させるものを選 ぶ。 光ラジカル開始剤としては、 紫外線、 電離放射線、 可視光、 或いは、 その他 の各波長、 特に 3 6 5 n m以下のエネルギー線でフリーラジカルを発生する化合 物が用いられ、 例えば、 ベンゾイン、 ベンゾフエノンなどのべンゾフエノン誘導 体又はそれらのエステルなどの誘導体: キサントン並びにチォキサントン誘導 体: クロロスルフォニル、 クロロメチル多核芳香族化合物、 クロロメチル複素環 式化合物、 クロロメチルベンゾフエノン類などの含ハロゲン化合物; トリアジン 類: フルォレノン類; ハロアルカン類; 光還元性色素と還元剤とのレドックス カップル類;有機硫黄化合物:過酸化物などがある。 好ましくは、 ィルガキュア — 1 84, ィルガキュア一 36 9、 ィルガキュア一 6 5 1、 ィルガキュア一 90 7 (いずれもチバ 'スペシャルティ一 .ケミカルズ社製) 、 ダロキュア一 (メル ク社製) 、 アデ力 1, 1 7 (旭電化工業株式会社製) 、 2, 2' —ビス (o—ク ロロフエニル) 一 4, 5, 4' , 5' —テトラフエニル一 1, 2' —ビイミダゾ ール (黒金化成株式会社製) などのケトン系及びビイミダゾール系化合物等を挙 げることができる。 これらの開始剤を 1種のみ又は 2種以上を組み合わせて用い ることができる。 2種以上を併用する場合には、 吸収分光特性を阻害しないよう にするのがよい。
光ラジカル開始剤は、 感光性着色組成物中に固形分比として、 通常、 0. 05 〜 1 8質量%、 好ましくは 0. 1〜 1 3質量%含有される。 光ラジカル開始剤の 添加量が 0. 05質量%未満になると光硬化反応が進まず、 残膜率、 耐熱性、 耐 薬品性などが低下する傾向がある。 また、 この添加量が 1 8質量%を超えるとべ ース樹脂への溶解度が飽和に達し、 スピンコーティング時や塗膜レペリング時に 開始剤の結晶が析出し、 膜面の均質性が保持できなくなってしまい、 膜荒れ発生 と言う不具合が生じる。
なお、 感光性着色組成物を調製するにあたって、 光重合開始剤は、 本発明に係 る感光性着色組成物に最初から添加しておいてもよいが、 比較的長期間保存する 場合には、 使用直前に感光性樹脂組成物中に分散或いは溶解することが好ましい- さらに本発明の感光性着色組成物には、 耐熱性、 密着性、 耐薬品性 (特に耐ァ ルカリ性) の向上を図る目的で、 必要に応じて、 エポキシ基を分子内に 2個以上 有する化合物 (エポキシ樹脂) を配合することができる。 エポキシ基を分子内に 2個以上有する化合物としては、 例えば、 ビスフエノール A型エポキシ樹脂とし てェピコート 1 00 1、 1 002、 1 003、 1 004、 1 007、 1 00 9、 1 0 1 0 (油化シ Xル製) など、 ビスフヱノール F型エポキシ樹脂としてェピコ ート 807 (油化シェル製) など、 フエノールノポラック型エポキシ樹脂として E P P N 2 0 1、 2 0 2 (日本化薬製) 、 ェピコ一卜 1 5 4 (油化シェル製) な ど、 クレゾ一ルノボラック型エポキシ樹脂として E O C N 1 0 2、 1 0 3 S、 1 0 4 S、 1 0 2 0、 1 0 2 5、 1 0 2 7 (日本化薬製) 、 ェピコート 1 8 0 S (油 化シェル製) などを例示できる。 さらに、 環式脂肪族エポキシ樹脂や脂肪族ポリ グリシジルエーテルを例示することもできる。
このようなエポキシ樹脂は、 感光性着色組成物中に固形分比で、 通常は 0〜6 0質量%、 好ましくは 5〜4 0質量%含有される。
上述の感光性着色組成物には、 必要に応じて上記の成分以外にもシランカップ リング剤等の各種の添加剤を配合することができる。
上記感光性着色組成物には、 塗料化及び塗布適性を考慮して通常、 光重合性化 合物、 多価ラジカル重合性化合物、 光重合開始剤等の配合成分に対する溶解性が 良好で、 且つ、 スピンコーティング性が良好となるように沸点が比較的高い溶剤 が含有される。 使用可能な溶剤としては、 例えばメチルアルコール、 ェチルアル コール、 N—プロピルアルコール、 i一プロピルアルコールなどのアルコール系 溶剤: メ トキシアルコール、 ェトキシアルコールなどのセロソルブ系溶剤; メ ト キシェ卜キシエタノール、 ェトキシェ卜キシエタノールなどのカルビ I ^一ル系溶 剤;酢酸ェチル、 酢酸プチル、 メ 卜キシプロピオン酸メチル、 エトキシプロピオ ン酸ェチル、 乳酸ェチルなどのエステル系溶剤: アセトン、 メチルイソプチルケ トン、 シクロへキサノンなどのケトン系溶剤; メ トキシェチルアセテート、 エト キシェチルアセテート、 ェチルセ口ソルブアセテートなどのセロソルプアセテー 卜系溶剤: メ 卜キシエトキシェチルアセテート、 エトキシエトキシェチルァセテ ートなどのカルビ! ^一ルアセテート系溶剤; ジェチルエーテル、 エチレングリコ ールジメチルエーテル、 ジエチレングリコールジメチルエーテル、 テトラヒドロ フランなどのエーテル系溶剤; N , N—ジメチルホルムアミ ド、 N, N—ジメチ ルァセトアミ ド、 N—メチルピロリ ドンなどの非プロトン性アミ ド溶剤: 一ブ チロラクトンなどのラク トン系溶剤: ベンゼン、 トルエン、 キシレン、 ナフタレ ンなどの不飽和炭化水素系溶剤; N—ヘプタン、 N—へキサン、 N—オクタンな どの飽和炭化水素系溶剤などの有機溶剤を例示することができる。 これらの溶剤 の中では、 メ トキシェチルアセテート、 エトキシェチルアセテート、 ェチルセ口 ソルブアセテートなどのセロソルブアセテート系溶剤; メ トキシェトキシェチ ルァセテート、 ェトキシェトキシェチルァセテートなどのカルビトールァセテ一 ト系溶剤: エチレングリコールジメチルエーテル、 ジエチレングリコールジメチ ルエーテル、 プロピレングリコールジェチルエーテルなどのエーテル系溶剤: N, N—ジメチルァセ卜アミ ドなどの非プロ トン性アミ ド溶剤; メ トキシプロピオ ン酸メチル、 エトキシプロピオン酸ェチル、 乳酸ェチルなどのエステル系溶剤が 特に好適に用いられる。 特に好ましくは、 N, N—ジメチルァセトアミ ド、 MB A (酢酸ー3—メ トキシブチル、 CH3CH (O C H3) C H 2 C H 20 C O C H 3) 、 P GM E A (プロピレングリコールモノメチルエーテルアセテート、 CH3OCH 2CH (C H3) O CO C H3) 、 DM D G (ジエチレングリコールジメチルエーテ ル、 H3COC2H4OCH3) 又はこれらを混合したものを使用することができ、 こ れらを用いて固形分濃度を 1 0〜70質量%に調製する。
感光性着色組成物を製造するには、 本発明の緑色顔料、 他の顔料、 分散剤、 光 重合性化合物、 光重合開始剤、 及び、 その他の成分を適切な溶剤に投入するか、 本発明の緑色顔料、他の顔料、分散剤等からなる顔料分散体と、光重合性化合物、 光重合開始剤等の感光性成分及びその他の成分を溶剤中に投入して、 ペイントシ エーカー、 ビーズミル、 サンドグラインドミル、 アトライターミル、 2本ロール ミル、 3本ロールミル、 ニーダなどの一般的な方法で溶解、 分散させればよい。 このようにして得られる感光性着色組成物を用いてカラーフィルターの緑色 画素を形成することができる。 カラーフィルタ一は、 透明基板に所定のパターン で形成されたブラックマトリックスと、 当該ブラックマトリックス上に所定のパ ターンで形成した画素部を備え、 さらに必要に応じて、 当該画素部を覆うように 形成された保護膜を備えている。 保護膜上に必要に応じて液晶駆動用の透明電極 が形成される場合もある。 また、 ブラックマトリックス層が形成された領域に合 わせて、 透明電極板上若しくは画素部上若しくは保護膜上にスぺーサ一が形成さ れる場合もある。
画素部は赤色画素、 緑色画素及び青色画素がモザイク型、 ストライプ型、 トラ ィアングル型、 4画素配置型等の所望のパターンで配列されてなリ、 ブラックマ 卜リックス層は各画素パターンの間及び画素部形成領域の外側の所定領域に設 けられている。
緑色画素は、 本発明の緑色顔料を含有する感光性着色組成物を透明基板の一面 側に塗布し、 フォトマスクを介して光照射することにより露光し、 アルカリ現像 後、 クリーンオーブン等で加熱硬化することにより形成できる。 他の色の画素や ブラックマトリックス層などの着色層は、 緑色画素と同様に顔料分散法で形成す るのが好ましいが、 染色法、 印刷法、 電着法等の他の方法で形成することもでき る。ブラックマトリックス層は、クロム蒸着等により形成してもよし、。画素部は、 通常、 2 . 0 m程度の厚さに形成する。
保護膜は、 透明な感光性樹脂組成物の塗工液を、 スピンコーター、 ロールコー ター、スプレイ、印刷等の方法により塗布して形成することができる。保護膜は、 例えば、 2 / m程度の厚さに形成する。 スピンコーターを使用する場合、 回転数 は 5 0 0〜 "! 5 0 0回転 分の範囲内で設定する。 感光性樹脂組成物の塗工膜は, フォトマスクを介して光照射することにより露光され、 アルカリ現像後、 クリー ンオーブン等で加熱硬化されて保護膜となる。
保護膜上の透明電極は、酸化インジウムスズ( I T O ) 、酸化亜鉛(Z r> O ) 、 酸化スズ (S n O ) 等、 およびそれらの合金等を用いて、 スパッタリング法、 真 空蒸着法、 C V D法等の一般的な方法により形成され、 必要に応じてフォトレジ ス卜を用いたエッチング又は治具の使用により所定のパターンとしたものであ る。 この透明電極の厚みは 2 0〜 5 0 0 n m程度、 好ましくは 1 0 0〜 3 0 0 η m程度とすることできる。
透明電極上のスぺーサーも、 感光性樹脂組成物の塗工液を、 スピンコーター、 ロールコ一ター、 スプレイ、 印刷等の方法により塗布し、 フォトマスクを介する 光照射により露光し、 アルカリ現像後、 クリーンオーブン等で加熱硬化すること により形成できる。 上記スぺーサ一は、 セルギャップに対応する高さを有する柱 状スぺーサ一であることが好ましい。 柱状スぺーサ一は、 例えば、 5 jU m程度の 高さに形成される。 スピンコーターの回転数も保護膜を形成する場合と同様に、 500〜 1 500回転 分の範囲内で設定すればよい。
配向膜は、 ポリイミ ド樹脂等の樹脂を含有する塗工液をカラーフィルターの内 面側にスピンコート等の公知の方法で塗布し、 乾燥し、 必要に応じて熱や光によ リ硬化させた後、 ラビングすることによって形成できる。
このようにして得られるカラーフィルタ一は、 透明基板と、 当該透明基板上に 形成された画素部を備え、 さらに必要に応じてブラックマトリックス層、 前記着 色層を被覆する保護膜及びノ又は対向させるべき電極基板との間隔を維持する ために非表示部と重なり合う位置に設けられたスぺーサ一等を備えていてもよ く、 画素部のうち緑色画素が本発明の緑色顔料を含有するものである。
この緑色画素は、 膜厚が 2. 7 jt m以下、 好ましくは 2. 5 im以下にして単 一画素で F 1 0光源で測色した時に、 C I Eの X Y Z表色系において X座標が 0. 2 1 ≤ X≤0. 30、 y座標が 0. 55≤ y≤ 0. 7 1及び刺激値 Yが 29≤ Y、 更に好ましくは 5 0≤Yの範囲の色空間を表示でき、 他の色の画素と組み合わせ ることによつて広い色再現領域を確保できると共に、 膜厚が薄くても透過率が非 常に大きい。
また、 上記緑色画素は、 少量の黄色顔料を混合するだけで黄味を強くすること ができ、 画素中の前記緑色顔料に対する前記黄色顔料の質量比 (黄色顔料 Ζ緑色 顔料) が 1. 6以下の場合でも、 単一画素で F 1 0光源で測色した時に C〖 Εの X Υ Ζ表色系において X座標が 0. 2 1 ≤ χ≤ 0. 30、 y座標が 0. 55≤ y ≤0. 7 1の範囲の X y色度座標領域を表示することができる。
更に、 上記緑色画素は、 少なくとも第一の緑色顔料として前記領域 Aを表示で きる緑色顔料から選ばれる 1種、 及び第二の緑色顔料として前記領域 Cを表示で きる緑色顔料を含有する場合には、 膜厚が 2. 5 jt/m以下にして単一画素で F 1 0光源で測色した時に、 C I Eの X Y Z表色系において X座標が 0. 25≤ x≤ 0. 3 2、 y座標が 0. 55≤ y≤0. 7 5及び刺激値 Yが 30≤ Y、 より好ま しくは 40≤Υ、 更に好ましくは 50≤Υの範囲の色空間を表示でき、 他の色の 画素と組み合わせることによって広い色再現領域を確保できると共に、 膜厚が薄 くても透過率が非常に大きい。 また、 上記緑色画素は、 少なくとも第一の緑色顔料として前記領域 Aを表示で きる緑色顔料から選ばれる 1種、 及び第二の緑色顔料として前記領域 Cを表示で きる緑色顔料を含有する場合にも、 少量の黄色顔料を混合するだけで黄味を強く することができ、 画素中の前記緑色顔料の合計量に対する前記黄色顔料の質量比 (黄色顔料 Z緑色顔料) が 1 . 6以下の場合でも、 単一画素で F 1 0光源で測色 した時に C I Eの X Y Z表色系において X座標が 0 . 2 5≤ x≤0 . 3 2、 y座 標が 0 . 5 5≤ y≤0 . 7 5の範囲の X y色度座標領域を表示することができる。 また、 上記緑色画素は、 顔料や分散剤等の非反応性成分を少なくし、 光重合性 化合物や光重合開始剤等の感光性成分、 熱硬化性樹脂等の感光性成分以外の硬化 性成分、 アル力リ可溶性パインダ一等の現像性成分の配合割合を増やすことがで きるので、 光硬化性、 微細パターンの形成能、 画素形成後の物性が良好であり、 具体的には、 照射感度が良好であり、 残さが生じにく く、 異物が残らず、 現像度 が高く、 現像後形状が正確であり、 画素の断面は台形状となり、 膜厚が均一であ る。 また、 得られた画素は架橋密度が高いので、 硬度や弾性に優れ、 不純物の溶 出も少ない。
本発明によれば、 感光性着色組成物の塗膜を上面から露光する時に塗膜の下側 まで充分に硬化するので、 現像する時に逆テーパー状にはならず、 画素断面の下 底の長さに対する上底の長さの比 (上底ノ下底) が 1未満となるテーパー状に形 成され、 パターンの形状が良好である。
また、得られた画素は硬度が 5 0 0 N Zm m2以上又は弾性変形率が 2 0 %以上 に達し、 変形し難い緑色画素が得られる。
画素の硬度は、 超微小硬度計 ( (株) フィッシャーインスツルメンッ製 W I N 一 H C U ) を用い、 ビッカース圧子の最大荷重 2 O m N (加重速度 2 m N Z秒、 最大荷重で 5秒間保持、 除重速度 2 m N Z秒) となる条件で表面硬度を測定した 時のユニバーサル硬さ (試験荷重 Z試験荷重下でのビッカース圧子の表面積: N /m m2) として特定される。
また、 弾性変形率は上記試験において、 弾性変形量と塑性変形量を測定し、 弾 性変形量と塑性変形量の総和である全変形量に対する弾性変形量の割合として 特定される。
また、 液晶カラーテレビは動画に対応するために高速応答が必要とされる。 こ のような要求に対して、 本発明の緑色顔料を用いることで硬化成分を十分な量使 えるため、 不純物の溶出性を少なくし、 電圧保持率等に優れたカラーフィルタ一 を作製し、 液晶カラーテレビに適用できる。
このようにして製造されたカラ一フィルターを相手部材である液晶駆動側基 板と対向させ、 間隙部に液晶を満たして密封することにより、 液晶パネルが得ら れる。 このような液晶パネルは、 パーソナルコンピュータ一等のフラットデイス プレー等の表示装置として好適に適用できる。
なお、 本発明に係るカラーフィルタ一について、 液晶表示装置用カラーフィル ターを代表例として説明したが、 本発明は、 T N、 I P S , V A等の駆動モード に関係なくアクティブ方式のカラーフィルターに適用可能であり、 また、 ァクテ イブ方式に限られず各種の駆動方式のカラーフィルター、 例えば単純マトリック ス方式等に適用可能であり、 さらには、 液晶表示装置以外の他方式の表示装置用 のカラーフィルタ一、 例えば E L (エレク ト口ルミネッセンス) デバイスのカラ 一フィルターにも適用可能である。
E Lデバイスは、 R G B各色の E L素子をマトリックス状に配列し、 各色の発 光を制御すればフルカラー表示可能であるが、 E L素子の光取り出し側 (鑑賞者 側) にカラーフィルターを配置することにより、 発色光を変調させて表示性能を 向上させることができ、 またカラーフィルターが E L素子を外部光から保護して 長寿命化に貢献する等の効果も得られる。 実施例 A . 緑色顔料の合成
(合成実施例 1 )
フタロジニトリル、 塩化亜鉛を原料として亜鉛フタロシアニンを製造した。 れの 1 -クロロナフタレン溶液は、 6 0 0 ~ 7 0 0 n mに光の吸収を有してし, ハロゲン化は、 塩化スルフリル 3. 1質量部、 無水塩化アルミニウム 3. · 部、 塩化ナトリウム 0. 46質量部、 亜鉛フタロシアニン 1質量部を 40°Cで混 合し、 臭素 2. 2質量部を滴下して行った。 80°Cで 1 5時間反応し、 その後、 反応混合物を水に投入し、 臭素化亜鉛フタロシアニン粗顔料を析出させた。 この 水性スラリーを濾過し、 80°Cの湯洗浄を行い、 90°Cで乾燥させ、 2. 6質量 部の精製された臭素化亜鉛フタロシアニン粗顔料を得た。
この臭素化亜鉛フタロシアニン粗顔料 1質量部、 粉碎した塩化ナトリウム 7質 量部、 ジエチレングリコール 1. 6質量部、 キシレン 0. 09質量部を双腕型二 ーダ一に仕込み、 1 00°Cで 6時間混練した。 混練後 80°Cの水 1 00質量部に 取り出し、 1時間攪拌後、 濾過、 湯洗、 乾燥、 粉砕した臭素化亜鉛フタロシア二 ン顔料 (以下、 顏料組成物 ( 1 ) と称す) を得た。
得られた臭素化亜鉛フタロシアニン顔料は、 質量分析によるハロゲン含有量分 析から、 平均組成 Z n P c B r 10C I 4H2で (P c ; フタロシアニン) 、 1分子中 に平均 1 0個の臭素を含有するものであった。
なお、 透過型電子顕微鏡 (日本電子 (株) 製 J EM— 20 1 0) で測定した一 次粒径の平均値は 0. 06 5 imであった。
(合成実施例 2)
フタロジニトリル、 塩化亜鉛を原料として亜鉛フタロシアニンを製造した。 こ れの 1 -クロロナフタレン溶液は、 600〜700 nmに光の吸収を有していた < ハロゲン化は、 塩化スルフリル 3. 1質量部、 無水塩化アルミニウム 3. 7質量 部、 塩化ナトリウム 0. 46質量部、 亜鉛フタロシアニン 1質量部を 40°Cで混 合し、臭素 2. 63質量部を滴下して行った。 80°Cで 1 5時間反応し、その後、 反応混合物を水に投入し、 臭素化亜鉛フタロシアニン粗顔料を析出させた。 この 水性スラリーを濾過し、 60°Cの湯洗浄を行い、 90°Cで乾燥させ、 2. 8質量 部の精製された臭素化亜鉛フタロシアニン粗顔料を得た。
この臭素化亜鉛フタロシアニン粗顔料に他の成分を上記合成実施例 1 と同じ 組成で仕込み、 同じ方法でニーダ一を用い顔料化し、 臭素化亜鉛フタロシアニン 顔料 (以下、 顔料組成物 (2) と称す) を得た。 得られた臭素化亜鉛フタロシアニン顔料は、 質量分析によるハロゲン含有量分 析から、 平均組成 Z n P c B r,2C I 3Hで (P c ; フタロシアニン) 、 一分子中 に平均 1 2個の臭素を含有するものであった。
なお、 透過型電子顕微鏡 (日本電子 (株) 製 J EM— 20 1 0) で測定した一 次粒径の平均値は 0. 065 であった。
B. 綠顔料分散体の調製
(分散体実施例 1 )
直径 0. 5 mmのジルコニァビーズを仕込んだ五十嵐機械製造社製高速分散機 「T S C— 6 H」に、前記合成実施例 1で合成した顔料組成物(1 ) 1 5質量部、 ビックケミ一社製アクリル系分散剤 「B Y K— 200 1」 7質量部、 プロピレン グリコールモノメチルアセテート (以下、 P GMEAと称す) 7 8質量部を仕込 み、 毎分 2000回転で 8時間攪拌して、 臭素化亜鉛フタロシアニン顔料分散体 ( 1 ) を調製した。 調製後、 分光透過率スぺクトル測定、 粒度分布測定、 粘度測 定を行った。 各評価結果を第 1表に示す。 また、 透過率が最小になる波長 (Tm i n) が 5%となる単色分光透過率スぺク トルを、 従来の緑色顔料である P G 7 と P G 36の単色分光透過率スぺクトルと共に図 5に示す。
a) 分光透過率スペクトル測定
単色分光透過率スぺクトルは、 オリンパス (株) 製 OS P— S P 200顕微分 光測光装置を用いて測定した。測定条件は、光源が F 1 0光源、照明倍率 20倍、 ピンホール N o. 7 ( 50 /i m) である。
b) 粘度測定
回転振動型粘度計(ビスコメイ ト VM— 1 G、山一電機社製) を用いて、 2 3. 5 °Cにおける粘度を測定した。
c) 粒度分布測定
顔料分散体 0. 1質量部を P GME A溶媒 9. 9質量部で希釈し、 マイクロト ラック U PA粒度分布計 (曰機装社製) を用いて、 粒度分布を測定した。
(分散体実施例 2)
顔料組成物 ( 1 ) の代わりに前記合成実施例 2で合成した顔料組成物 (2) を 4
46 用いた以外は分散体実施例 1 と同様にして、 臭素化亜鉛フタロシアニン顔料分散 体 (2) を調製し、 分散体実施例 1 と同様に評価した。 各評価結果を第 1表に示 す。 また、 透過率が最小になる波長 (Tm i n) が 5<½となる単色分光透過率ス ぺク トルを、 従来の緑色顔料である P G 7と P G 36の単色分光透過率スぺク ト ルと共に図 5に示す。
(分散体比較例 1 )
顔料組成物 (1 ) の代わりにビグメントグリーン 7 (塩素化銅フタロシアニン 顔料) を用いた以外は分散体実施例 1 と同様にして、 塩素化銅フタロシアニン顔 料分散体を調製し、 分散体実施例 1 と同様に評価した。 各評価結果を第 1表に示 す。
(分散体比較例 2)
顔料組成物 ( 1 ) の代わりにビグメントグリーン 36 (臭素化銅フタロシア二 ン顔料) を用いた以外は分散体実施例 1 と同様にして、 臭素化銅フタロシアニン 顔料分散体を調製し、 分散体実施例 1 と同様に評価した。 各評価結果を第 1表に 示す。
第 1表:緑顔料単色分散体
分散体 分散体 分散体 分散体 実施例 1 実施例 2 比較例 1 比較例 2
(分散体 1 ) (分散体 2) (PG7分散体) (PG36分散体)
T m a X波: 515 520 495nm 520nm
分光透過率 最大 93.8 % 92.8 % 92.7 % 93.6 % スぺク トル 最小 5 %
(Tmin5%) 435 nm 38.7 % 35.2% 46.0 % 38.2 %
490 nm 86.0% 79.9 % 92.5 % 89.3 %
545 nm 85.6 % 88.0 % 80.9 % 90.8 %
610 nm 9.2 % 14.6 % 6.9% 21.6 %
色度 (χ値) 0.247 0.274 0.214 0.284
(y=0.440) (y値) ( ). 40
(Y値) 61.2 68.1 45.9 71.7
粘度 4.7 cps 4.6 cps 5.8 cps 5.2 cps 粒度分布 10% 29.1 31.5 35.5 34.2
50% 53.6 52.8 65.0 63.8
90% 101.5 103.4 120.3 111.9 本発明に係る分散体実施例 1、 2においては、 F 1 0光源の青光源の波長であ る 435 nmにおける前記分光透過率スぺク トルの透過率が P G 7に比べ低く、 調色で消すべき青み成分が少なくなつていることが明らかになった。 更に、 F 1 0光源の三波長管の副波長である 490 nmにおける透過率が PG 7、 P G 36 に比べ低く、 F 1 0光源の副波長光源を透過しないため、 緑色として着色力が高 くなることが明らかになった。 また、 545 nmにおける透過率が PG 7に比べ 高く、 緑色の波長である 545 nm付近に高い透過率を持つことが明らかになつ た。 また、 61 0 nmにおける透過率は P G 36に比べ低く、 赤味成分が少なく なっていることが明らかになった。 また、 本発明に係る分散体実施例 1、 2にお いては、 PG 7と PG 36の間の色度座標領域を表示でき、 且つ Y値が比較的高 く、 すなわち明度が高いことが明らかになった。
また、 本発明に係る分散体実施例 1、 2においては、 07及び 036に比 ベて粘度が低く、 分散性が良好であった。 更に、 本発明に係る分散体実施例 1、 2においては、 PG 7及び PG 36に比べて平均粒径 (50%粒径) が小さいこ とから、 微細化されており、 分散性が良好であることがわかった。
C. 感光性緑色組成物の調製
(製造例 1 )
感光性緑色組成物に用いられる、 本発明の緑色顔料よりも黄味が強い、 前記領 域 cを表示できるカラーフィルター用緑色顔料を製造した。 まず、 フタ口ジニト リル、 塩化亜鉛を原料として亜鉛フタロシアニンを製造した。 これの 1一クロ口 ナフタレン溶液は、 600〜700 nmに光の吸収を有していた。ハロゲン化は、 塩化スルフリル 3. 1重量部、 無水塩化アルミニウム 3. 7重量部、 塩化ナトリ ゥ厶 0. 46重量部、 亜鉛フタロシアニン 1重量部を 40°Cで混合し、 臭素 4. 4重量部を滴下して行った。 80°Cで 1 5時間反応し、 その後、 反応混合物を水 に投入し、 臭素化亜鉛フタロシアニン粗顔料を析出させた。 この水性スラリーを 濾過し、 80°Cの湯洗浄を行い、 90°Cで乾燥させ、 3. 0重量部の精製された 臭素化亜鉛フタロシアニン粗顔料を得た。 この臭素化亜鉛フタロシアニン粗顔料 に他の成分を上記合成実施例 1 と同じ組成で仕込み、 同じ方法でニーダーを用い 顔料化し、 臭素化亜鉛フタロシアニン顔料 (以下、 顔料組成物 (Y) と称す) を 得た。 得られた臭素化亜鉛フタロシアニン顔料は、 質量分析によるハロゲン含有 量分析から、 平均組成 Z n P c B r 14C I 2 (P c ; フタロシアニン) であった。
(感光性緑色組成物実施例 1 )
( 1 ) 黄色顔料分散体の調製
顔料組成物 (1 ) の代わりに P Y 83を用いた以外は分散体実施例 1 と同様に して、 P Y 83顔料分散体を調製した。
(2) 顔料分散体 (Y) の調製
顔料組成物 ( 1 ) の代わりに、 本発明の緑色顔料よりも黄味が強い顔料組成物 (Y) を用いた以外は分散体実施例 1 と同様にして、 顔料分散体 (Y) を調製し た。 顔料分散体 ( 1 ) と同様に測色を行ったところ、 y = 0. 440のとき、 X = 0. 295であった。 透過率が最小になる波長 (Tm i n) が 5%となる単色 分光透過率スぺク トルを、 従来の緑色顏料である P G 7と P G 36の単色分光透 過率スぺクトルと共に図 6に示す。
(3) 感光性緑色組成物 Aの調製
アルカリ可溶型光反応性ポリマーを調製するために、 MMA 70部、 B zMA 1 5部、 MAA 1 5部、 P GMEA 1 00部をフラスコに仕込み、 9 3°C、 窒素 雰囲気下で 7時間重合した。 この反応液の固形分濃度を P GME Aで 40. 2% に調製した。 得られたポリマーの酸価は 1 04mg KOH、 ポリスチレン換算の 重量平均分子量 Mwは 24, 700であった。
次いで、 臭素化亜鉛フタロシアニン顔料分散体 ( 1 ) 、 P Y 8 3顔料分散体、 アルカリ可溶型光反応性ポリマー、 ジペンタエリスリ トールペンタァクリレー卜 (以下、 D P PA) 、 ィルガキュア 3 6 9 (商品名) 及び P GMEAを下記割合 で、 室温で混合、 攪拌、 ろ過して感光性緑色組成物 Aを調製した。
ぐ感光性緑色組成物 Aの組成 >
'臭素化亜鉛フタロシアニン顔料分散体 ( 1 ) : 49. 00部
■ P Y 83顔料分散体 : 8 · 65部
■アル力リ可溶型光反応性ポリマー : 6. 3 1部 • D P P A (日本化薬㈱製サートマ一 S R 399 E) : 3. 26部
•ィルガキュア 369 (商品名 : チパ■スペシャルティ ■ケミカルズ社製)
: 2. 49部
■ PGME A : 30. 29部
(感光性緑色組成物実施例 2 ~ 3及び感光性緑色組成物比較例 1〜 4 ) 配合成分を第 2表に示すように変更する以外は感光性緑色組成物実施例 1 と 同様と同様の手順で、 感光性緑色組成物 B~Gを調製した。 第 2表 : 感光性着色組成物配合表
Figure imgf000051_0001
(感光性緑色組成物実施例 4)
( 1 ) 黄色顔料分散体の調製
顔料組成物( 1 )の代わりに P Y 1 50を用し 以外は分散体 1 と同様にして. P Y 1 50顔料分散体を調製した。 (2) 感光性緑色組成物 Hの調製
臭素化亜鉛フタロシアニン分散体 (1 ) 及び臭素化亜鉛フタロシアニン分散体 (Y) 、 PY 1 50顔料分散体、 実施例 1 と同じアルカリ可溶型光反応性ポリマ 一、 ジペンタエリスリ ! -ールペンタァクリレー卜 (以下、 DP PA) 、 ィルガキ ユア 369 (商品名) 及び PGME Aを下記配合割合で、 室温で攪拌し、 ろ過し て感光性緑色組成物 Hを調整した。
ぐ感光性緑色組成物 Hの組成 >
'臭素化亜鉛フタロシアニン顔料分散体 ( 1 ) : 1 1. 20部
■臭素化亜鉛フタロシアニン顔料分散体 (Y) : 7. 47部
■ P Y 1 50顔料分散体 : 28. 00部 ■アルカリ可溶型光反応性ポリマー : 8. 1 6部
■ D P P A (日本化薬㈱製サートマ一 S R 399 E) : 4. 22部 ■ィルガキュア 369 (商品名 : チバ■スペシャルティ ■ケミカルズ社製)
: 3. 21部
- PGMEA : 37. 75部
(感光性緑色組成物実施例 5及び感光性緑色組成物比較例 5〜 8 )
配合成分を第 3表に示すように変更する以外は感光性緑色組成物実施例 4と 同様と同様の手順で、 感光性緑色組成物 I〜Mを調製した。
第 3表:感光性緑色組成物配合表
Figure imgf000053_0001
D. 緑色画素の形成
(緑色画素実施例 1 〜 3、 緑色画素比較例 1 〜 4 )
実施例の感光性緑色組成物 A乃至 C及び比較例の感光性緑色組成物 D乃至 G を用いて緑色画素を作成し、 下記項目を評価した。 評価結果を第 3表に示す。
( 1 ) 緑色画素の形成
1 0 cm画のガラス基板上に、 感光性緑色組成物をスピンコーター (M I K A S A製、 形式 1 H— D X 2) により、 塗布、 乾燥し、 塗膜を形成した。 この塗膜 をホットプレート上で 90°C、 3分間加熱した。 加熱後、 2. O kWの超高圧水 銀ランプを装着した UVァライナー(大日本スクリーン製、形式 MA 1 200) によって、 1 0 Om JZcm2の強度 (40 5 n m照度換算) でフォトマスクを介 して紫外線を照射した。 紫外線の照射後、 23°Cの 0. 5質量%水酸化カリウム 水溶液を用いて 1分間、 スピン現像機で現像した後、 純水で 1分間洗浄して乾燥 P T/JP2003/009344
52 し、 塗膜をクリーンオーブン (忍足研究所 (株) 製、 S CO V— 250 H y - S o) 【こより 230°Cで 30分間乾燥し、 硬化膜を得た。
(2) 色評価
形成したカラーフィルター画素を、 ォリンパス (株) 製 OS P— S P 200顕 微分光測光装置で測色した。 測定条件は、 光源が F 1 0光源、 照明倍率 20倍、 ピンホール N o. 7 (50 i m) である。
色評価が x = 0. 257、 y = 0. 693となる各硬化膜の膜厚を第三表に示 す。 色評価で x = 0. 2 57、 y =0. 69 3となる塗膜及び硬化膜を用いて、 以後各項目の評価を行った。
(3) 硬さ ■弾性変形率評価
得られた硬化膜の硬度を、 超微小硬度計 ( (株) フィッシャーインスツルメン ッ製 W I N— H CU) を用い、 ビッカース圧子の最大荷重 2 OmNとなる条件で 表面硬度を測定した時のユニバーサル硬さ (試験荷重 Z試験荷重下でのピッカー ス圧子の表面積: NZmm2) で評価した。
また、 同時に測定される最大荷重時の変形量及び荷重解除後の変形量から、 次 式:
弾性変形率 = 1 00- (荷重解除後の変形量 最大荷重時の変形量) X 1 00 に従い、 弾性変形率を計算した。
(4) 残渣、 感度、 密着性、 現像性及び断面形状の評価
(2) の色評価で硬化膜が X = 0. 2 57、 y = 0. 6 9 3となる各塗膜に、 超高圧水銀ランプを用いフォトマスクを介して、 365 nm、 405 nm及び 4 3 6 nmの各波長を含む紫外線を 300 m J c m2の露光量で照射した。 但し、 感度評価を行う場合には、 50〜30 Om JZcm2の範囲で露光量を変動させた t その後、 各基板を 23°Cの 0. 5質量0 水酸化カリウム水溶液を用いて 1分間、 スピン現像機で現像した後、 純水で 1分間洗浄し、 乾燥した。 その後、 基板を 2 30°Cのクリーンオーブン内で 30分間ボス卜べ一クを行って、 基板上に画素パ ターンが配列された画素アレイを作製した。 得られた緑色画素について、 以下の 評価を行った。 結果を第 4表に示す。 <残渣>
未露光部の基板表面をエタノールを含ませたレンズクリーナー (商品名トレシ 一、 東レ (株) 製) で 1 0回拭き取り、 レンズクリーナーの着色の有無を調べ、 下記基準で評価した。
■ O: レンズクリーナーが全く着色しない。
- X : レンズクリーナーが着色する。
<感度 >
20 jt mのライン &スペースが密着する最小露光量を測定し、 下記基準で評価 した。
■〇: 1 0 Om JZcm2以下で 2 O imのラインが密着する。
■ X : 1 0 Om JZcm2以下で 20〃mのラインが密着しない。
ぐ密着性 >
1 / m〜 50 mのライン &スペースで、 現像工程後に流されずに密着してい る最小線幅を測定し、 下記基準で評価した。
■ O: 1 0 m以下のラインが密着する。
■ X : 1 0 m以下のラインが密着しない。
ぐ現像性 >
未露光部が完全に溶解した時間を測定し、 下記基準で評価した。
• ◎: 20秒〜 40秒で完全に溶解する。
- 0 : 60秒以内で完全に溶解する。
' : 60秒以内で完全に溶解しない。
<断面形状 >
実施例 1〜3及び比較例 1 ~4において基板に作製した画素を、 ライン &スぺ ースに対して垂直にガラス基板ごと切断し、 真横からの断面写真を走査電子顕微 鏡にて撮影した。 倍率は 1 0, 000倍とした。 撮影された写真上で、 画素断面 の上底と下底の長さを測定し、 下底の長さに対する上底の長さの比率 (上底 Z下 底) を求めた。 得られた比率を、 下記基準で評価した。
• O:比率が 1未満である。 X :比率が 1以上である, 第 4表:緑画素実施例
Figure imgf000056_0001
本発明に係る緑色顔料を用いた実施例 1、 2は、 膜厚が 2. 49、 2. 6 1 μ mと薄いもので、 単一画素で F 1 0光源で測色した時の C I Eの X Y Z表色系に おける X座標が 0. 257、 y座標が 0. 693を実現でき、 且つ刺激値 Yが 3 1 - 5、 29. 5と透過率が高かった。 また、 本発明に係る緑色顔料に更に本発 明の緑色顔料よりも黄味が強い、 前記領域 Cを表示できる緑色顔料を組み合わせ て用いた実施例 3は、 膜厚が 2. 45 mと更に薄いもので、 単一画素で F 1 0 光源で測色した時の C I Eの X Y Z表色系における X座標が 0. 257、 y座標 が 0. 693を実現でき、 且つ刺激値 Yが 3 1. 9と透過率が更に高かった。 本 発明に係る緑色顔料を用いた実施例はいずれも、膜厚が薄く、硬度や弾性変形率、 残渣、 感度、 密着性、 現像性、 形状の点においても優れた画素が得られた。
一方、 緑色顔料として P G 7を用いた比較例 1は、 実施例と同様の色度 (x、 y) を実現するためには、 黄色顔料/緑色顔料 =0. 9と黄色顔料を多く含む必 要があり、 膜厚は 2. 93 mとなって、 且つ得られた刺激値 Yは 24. 6であ リ比較的暗い画素となった。 また膜厚が厚いため、 残渣、 現像性に劣るものとな つ 7"こ。
また、緑色顔料として P G 36を用いた比較例 2は、実施例と同様の色度( X、 y) を実現するためには、 膜厚を厚く 4. 92 とする必要があり、 透過率も 実施例 1、 2に劣るものであった。 また膜厚が厚いため、 硬度や弾性変形率、 残 渣、 感度、 密着性、 現像性、 形状のいずれにおいても劣るものとなった。
また、緑色顔料として PG7と PG 36を組み合わせて用いた比較例 3、 4は、 実施例と同様の色度 (x、 y) を実現するためには、 膜厚は PG 36よりも改善 されているものの厚くする必要があり、 透過率も PG7よりも改善されているも のの実施例に劣るものであった。 また膜厚が厚いため、 残渣、 現像性、 形状に劣 るものとなった。
(緑色画素実施例 4、 5、 緑色画素比較例 5 ~ 8)
実施例の感光性緑色組成物 H, I及び比較例の感光性緑色組成物 J乃至 Mを用 いて緑色画素を作成し、 実施例 1 と同じ項目を同様に評価した。 なお、 色評価が x = 0. 3 1 0、 y = 0. 630となる各硬化膜の膜厚を第 5表に示す。 色評価 で x = 0. 3 1 0、 y = 0. 630となる塗膜及び硬化膜を用いて、 各項目の評 価を行った。 評価結果を第 5表に示す。
第 4表: 緑画素実施例
Figure imgf000058_0001
本発明に係る感光性着色組成物である実施例 4、 5は、 膜厚が 1. 85 m、 2. 1 5 mと薄いもので、 単一画素で F 1 0光源で測色した時の C I Eの X Y Z表色系における X座標が 0. 3 1 0、 y座標が 0. 630を実現でき、 且つ刺 激値 Yが 55. 7、 56. 2と透過率が高かった。 緑色顔料に対する黄色顔料の 質量比 (黄色顏料 緑色顔料) が 1. 6以下となる割合でも、 単一画素で F 1 0 光源で測色した時に C I Eの X Y Z表色系において X座標が 0. 31 0、 y座標 が 0. 630の範囲の X y色度座標領域を表示できた。 本発明に係る感光性着色 組成物である実施例 4、 5は、 膜厚が 1. 85〃m、 2. 1 5 mと薄く、 硬度 や弾性変形率、 残渣、 感度、 密着性、 現像性、 形状の点においても優れた画素が 得られた。
一方、緑色顔料として P G 7を用いた比較例 5は、実施例 4と同様の色度( X、 y) を実現するためには、 黄色顔料 緑色顔料 =3. 5と黄色顔料を多く含む必 要があり、 膜厚は 2. 55 mとなって、 且つ得られた刺激値 Yは 5 1. 0であ リ比較的暗い画素となった。 また膜厚が厚いため、 残渣、 密着性、 現像性に劣る ものとなった。
また、緑色顔料として P G 36を用いた比較例 6は、実施例 4と同様の色度( X , y) を実現するためには、 膜厚を厚く 2. 83 mとする必要があり、 透過率も 実施例 1 、 2に劣るものであった。 また膜厚が厚いため、 硬度や弾性変形率、 残 渣、 感度、 密着性、 現像性、 形状のいずれにおいても劣るものとなった。
また、緑色顔料として P G 7と PG 3 6を組み合わせて用いた比較例 7、 8は、 実施例 4と同様の色度 (x、 y ) を実現するためには、 膜厚は P G 36よりも改 善されているものの厚くする必要があり、 透過率も P G 7よりも改善されている ものの実施例に劣るものであった。 また膜厚が厚いため、 残渣、 密着性、 現像性 に劣るものとなった。
E. カラーフィルターの作製
(カラーフィルター実施例 1 )
( 1 ) ブラックマトリックスの形成
厚み 1. 1 mmのガラス基板 (旭硝子 (株) 製 A L材) 上に、 感光性の黒色樹 脂 C K一 2000 (富士ハントテクノロジー (株) 製の商品名) をスピンコータ 一で塗布し、 1 00°Cで 3分間乾燥させ、 膜厚 1 . 0 mの遮光層を形成した。 当該遮光層を超高圧水銀ランプで遮光パターンに露光した後に、 0. 5 w t %水 酸化カリウム水溶液で現像し、 その後、 基板を 2 30°Cの雰囲気中に 30分間放 置することによリ加熱処理を施して遮光部を形成すべき領域にブラックマ卜リ ックスを形成した。
(2) 着色層の形成
上記のようにしてブラックマトリックスを形成した基板上に、 感光性赤色組成 物 CR— 2000 (富士ハントテクノロジー (株) 製の商品名) をスピンコーテ イング法により塗布 (塗布厚み 2. 0 m) し、 その後、 70°Cのオーブン中で 30分間乾燥した。
次いで、 感光性赤色組成物の塗膜から 1 00 /mの距離にフォトマスクを配置 してプロキシミティアライナにより 2. 0 kWの超高圧水銀ランプを用いて着色 層の形成領域に相当する領域のみに紫外線を 1 0秒間照射した。 次いで、 0. 5 w t %水酸化力リゥム水溶液(液温 23°C)中に 1分間浸潰してアル力リ現像し、 塗膜の未硬化部分のみを除去した。 その後、 基板を 230°Cの雰囲気中に 30分 間放置することによリ加熱処理を施して赤色画素を形成すべき領域に赤色のレ リーフパターンを形成した。
次に、 上記感光性緑色組成物 Aを用いて、 赤色のレリーフパターン形成と同様 の工程で、 緑色画素を形成すべき領域に緑色のレリーフパターンを形成した。 さらに、感光性青色樹脂組成物 C B— 2000 (富士ハントテクノロジー (株) 製の商品名) を用いて、 赤色のレリーフパターン形成と同様の工程で、 青色画素 を形成すべき領域に青色のレリーフパターンを形成し、 赤 (R) 、 綠 (G) 、 青 (B) の 3色からなる着色層を形成し、 カラ一フィルターを得た。
(3) 保護膜の形成
着色層を形成したガラス基板上に、 クリアレジスト (J S R (株) 製、 商品名 ォプトマ一 S S 69 1 7) をスピンコーティング法により塗布、 乾燥し、 乾燥膜 厚 2 mの塗膜を形成した。 この塗膜から 1 00 mの距離にフォ卜マスクを配 置してプロキシミティアライナにより 2. 0 kWの超高圧水銀ランプを用いて着 色層の形成領域に相当する領域のみに紫外線を 1 0秒間照射した。 次いで、 0. 5 w t 0/0水酸化カリウム水溶液 (液温 23°C) 中に 1分間浸潰してアルカリ現像 し、 塗膜の未硬化部分のみを除去した。 その後、 基板を 200°Cの雰囲気中に 3 0分間放置することにより加熱処理を施して保護膜を形成し、 着色層と保護膜を 有するカラーフィルターを得た。
(4) スぺーサ一の形成
着色層を形成したガラス基板上に、 下記組成の柱レジスト (富士フィルムォー リン (株) 製、 商品名カラーモザイク、 品番 CK一 2000) をスピンコーティ ング法により塗布、 乾燥し、 乾燥膜厚 5 ju mの塗布膜を形成した。 この塗膜から 1 00 mの距離にフォトマスクを配置してプロキシミティアライナによリ 2. 0 kWの超高圧水銀ランプを用いて、 ブラックマ卜リックス上のスぺーサ一の形 成領域のみに紫外線を 1 0秒間照射した。 次いで、 0 . 5 w t %水酸化カリウム 水溶液 (液温 2 3 °C) 中に 1分間浸潰してアルカリ現像し、 未硬化部分のみを除 去した。 その後、 基板を 2 3 0 °Cの雰囲気中に 3 0分間放置することにより加熱 処理を施して固定スぺーサーを形成し、 着色層とスぺーサーを有するカラーフィ ルターを得た。 得られたカラーフィルタ一は、 色再現域が広く且つ透過率の高い カラーフィルターであった。
(カラーフィルター実施例 2 )
緑色画素を形成するために上記感光性緑色組成物 Aに代えて感光性緑色組成 物 Bを用いた以外はカラーフィルター実施例 1 と同様にして、 着色層と保護膜を 有するカラーフィルター及び着色層とスぺーサーを有するカラーフィルターを 得た。
得られたカラーフィルターは、 色再現域が広く且つ透過率の高いカラーフィル タ一であった。
E . 液晶パネルの作製
上記実施例で得られたカラーフィルターの固定スぺ一サーを含む表面に、 基板 温度 2 0 0 °Cでアルゴンと酸素を放電ガスとし、 D Cマグネトロンスパッタリン グ法によって I T Oをターゲットとして透明電極膜を形成した。 その後、 更に透 明電極膜上にポリイミ ドよりなる配向膜を形成した。
次いで、 上記カラーフィルターと、 T F Tを形成したガラス基板とを、 ェポキ シ樹脂をシール材として用い、 1 5 0 °Cで 0 . 3 k g Z c m2の圧力をかけて接合 してセル組みし、 T N液晶を封入して、 本発明の液晶パネルを作製した。 産業上の利用可能性 以上説明したように、 本発明に係る緑色顏料は従来の緑色顔料では表示できな い色座標を表示でき、 緑色としての着色力に優れ青味が強すぎず、 且つ透過率が 高いことからカラーフィルターの緑色画素を形成するのに好適に用いられる。 本 発明に係る緑色顔料は比較的少量の顔料で充分な発色が得られるため、 それ自体 の使用量を少なくすることができると共に、 調色のために混合される黄色顔料又 は黄味の強い緑色顔料の使用量も少なくすることができるので、 薄くて透明性の 高い、 色純度に優れた緑色画素を形成できる。
本発明に係る感光性着色組成物は、 上記本発明の緑色顔料を用いるので、 少な い顔料使用量で各規格に定められた緑色画素の色に近づけることができ、 その結 果、 カラーフィルターの画素を形成する場合に膜厚を薄くすることができ、 製版 性が向上してフォトリソグラフィ一で微細形状を形成しやすくなる。 また、 黄色 顔料の混合量が少なくても充分に黄味が強い緑色の発色性を有する緑色画素及 び Z又は薄くて透明性の高い色純度に優れた緑色画素を形成でき、 更に、 従来の 緑色顔料を用いる場合よリも薄い膜厚で色再現域を広げることができる。 また、 本発明の緑色顔料は透過率が高いため、 さらに黄色顔料と組合せて緑色画素を形 成する場合に、 色座標の着色力が高い領域 (高濃度領域) においても従来よりも 薄い膜厚で透過率を高くできる。 従って、 本発明に係る感光性着色組成物を用い てカラーフィルターを形成する場合には、 色再現域が広く、 且つ透過率が高い力 ラーフィルターを形成することができる。 本発明に係る感光性着色組成物を用い てカラーフィルターを形成する場合には、 ハロゲン化銅フタロシアニン顔料を用 いた従来の感光性着色組成物を用いて形成する場合と比べて、 カラーフィルター の光の透過性が上がるため、 強いバックライトが必要なくなり、 液晶パネルのコ ストアップや消費電力の増加を抑えることができる。
上記本発明の緑色顔料に第二の緑色顔料として更に黄味が強い緑色顔料を組 み合わせて用いられる場合、 特に、 第二の緑色顔料として前記領域 Cを表示でき る緑色顔料を組み合わせて用いられる場合には、 本発明に係る感光性着色組成物 は、よリ薄い膜厚で、各規格の緑色画素に近づけ、反応性成分の配合割合が高く、 製版性に優れる感光性着色組成物が得られ、 色再現域が広く、 且つ透過率が高い カラーフィルターを形成できる。
さらに、 本発明に係る感光性着色組成物においては、 使用される緑色顔料及び 黄色顔料の配合割合が減り、 それに伴って分散剤の使用量も減る結果、 光硬化反 応に関与する感光性成分の配合割合が増え、 硬度、 弾性、 形状、 膜厚均一性等の 諸物性に優れた緑色画素が得られる。
このような本発明に係る緑色顔料を用いた緑色画素は色再現領域が広く、 且つ, 透過率が高く、 且つ、 諸物性にも優れているため、 係る緑色画素を備えた表示性 能の高いカラーフィルター及び液晶パネルを用いて、 s R G B等のマルチメディ ァモニターの表示規格、 或いは、 N T S C、 E B U等のカラーテレビの表示規格 のような色座標の着色力が高い領域 (高濃度領域) をも満足し得る液晶表示装置 を製造することが可能となる。

Claims

請 求 の 範 囲
1. フタロシアニングリーン顔料からなり、 単体で F 1 0光源で測色した時の C I Eの X Y Z表色系において下記方程式 1 、 2及び 3で囲まれる X y色度座標領 域を表示できる、 カラーフィルター用緑色顔料。
(方程式 1 )
y =2.640x X +0.080
但し方程式 1において、 0.180< X <0.230
(方程式 2)
y =5261.500 x4-6338.700x χ3+2870.400 x x2-580.730 x x +44.810 但し方程式 2において、 0.230< x <0.350
(方程式 3)
y =—36.379 x x 3 + 37· 410 x x 2— 13.062 x x +1.907
但し方程式 3において、 0.180< x <0·350
2. 前記フタロシアニングリーン顔料は、 380〜 7 80 nmにおける分光透過 率スぺク トルの透過率が最大となる波長 (Tma x) が 500〜 520 n mであ る、 請求の範囲第 1項に記載のカラーフィルター用緑色顔料。
3. 前記フタロシアニングリーン顏料が臭素化亜鉛フタロシアニンである、 請求 の範囲第 1項又は第 2項に記載のカラーフィルター用緑色顔料。
4. 前記臭素化亜鉛フタロシアニンが 1分子中に臭素を平均 1 3個未満含有する, 請求の範囲第 3項に記載のカラーフィルタ一用緑色顏料。
5. 平均一次粒子径が 0. 0 1 〜0. 1 mである請求の範囲第 3項又は第 4項 に記載の臭素化亜鉛フタロシアニンを含有する、 カラーフィルター用緑色顔料分 散体。
6. 硬化反応に関与する反応性成分、 前記請求の範囲第 1項から第 4項までのい ずれかに記載のカラーフィルター用緑色顔料を含む 1又は 2以上の着色成分を 含有する、 カラーフィルター用感光性着色組成物。
7. 前記着色成分中に前記カラーフィルタ一用緑色顔料を 30質量%より多く含 む、 請求の範囲第 6項に記載のカラーフィルター用感光性着色組成物。
8. 前記着色成分中の緑色顔料の全量を基準として前記カラーフィルター用綠色 顔料を 50質量%以上含む、 請求の範囲第 6項又は第 7項に記載のカラーフィル ター用感光性着色組成物。
9. 硬化反応に閏与する反応性成分、 第一の緑色顔料としてフタロシアニングリ ーン顔料からなり、 単体で F 1 0光源で測色した時の C I Eの X Y Z表色系にお いて下記方程式 1、 2及び 3で囲まれる X y色度座標領域を表示できるカラ一フ ィルター用緑色顔料から選択される 1種、 及び第二の緑色顔料としてフタロシア ニングリーン顔料からなり、 単体で F 1 0光源で測色した時の C I Eの X Y Z表 色系において下記方程式 4、 5及び 6で囲まれる X y色度座標領域を表示できる カラーフィルター用緑色顔料から選択される 1種を少なくとも含む着色成分を 含有する、 カラーフィルタ一用感光性着色組成物。
(方程式 1 )
y =2.640 X X +0.080
但し方程式 1において、 0.180< X <0.230
(方程式 2)
y =5261.500 X x - 6338.700 x χ3+2870.400 x x2-580.730 x x +44.810 但し方程式 2において、 0.230< x <0.350
(方程式 3)
y =—36.379 x x 3+37.410x x 2— 13· 062 x x +1.907 但し方程式 3において、 0.180< X <0.350
(方程式 4)
y =8.000 x -1.513
但し方程式 4において、 0.260< X <0.270
(方程式 5)
y =-1051.300 X x +1176.900 χ χ3— 450.880 χ χ2+62.131 χ χ—0.836 但し方程式 5において、 0.260< χ <0.350
(方程式 6)
y =5746.700 x χ4— 7310.300 x3+3493.200x x2-744.610x x +60.251 但し方程式 6において、 0.270< x <0.350
1 0. 前記第一の緑色顔料は、 380〜7 80 nmにおける分光透過率スぺク ト ルの透過率が最大となる波長 (Tma x) が 500〜 520 nmであり、 前記第 二の緑色顔料は、 3 80~7 80 n mにおける分光透過率スぺク トルの透過率が 最大となる波長 (Tma x) が 520〜 5 35 である、 請求の範囲第 9項に 記載のカラーフィルター用感光性着色組成物。
1 1. 前記第一の緑色顔料及び前記第二の緑色顔料において、 フタロシアニンゲ リーン顔料の中心金属が同じである、 請求の範囲第 9項又は第 1 0項に記載の力 ラーフィルター用感光性着色組成物。
1 2. 前記第一の緑色顔料及び前記第二の緑色顔料が臭素化亜鉛フタロシアニン である、 請求の範囲第 9項から第 1 1項までのいずれかに記載のカラーフィルタ 一用感光性着色組成物。
1 3. 前記第一の緑色顔料の臭素化亜鉛フタロシアニンが 1分子中に臭素を平均 1 3個未満含有し、 前記第二の緑色顔料の臭素化亜鉛フタロシアニンが 1分子中 に臭素を平均 1 3個以上含有する、 請求の範囲第 1 2項に記載のカラーフィルタ 一用感光性着色組成物。
1 4. 前記臭素化亜鉛フタロシアニンの平均一次粒子径が 0. 0 1 〜0. 1 m である、 請求の範囲第 1 2項又は第 1 3項に記載のカラーフィルター用感光性着 色組成物。
1 5. 前記反応性成分 (a) に対する前記着色成分以外の非反応性成分 (b) の 質量比 (b/a ) が 0. 45以下である、 請求の範囲第 6項から第 1 4項までの いずれかに記載のカラーフィルター用感光性着色組成物。
1 6. 顔料 Zビヒクル比が 0. 25〜 1. 0である、 請求の範囲第 6項から第 1 5項までのいずれかに記載のカラ一フィルター用感光性着色組成物。
1 7. 前記着色成分として、 更に少なくとも 1以上の黄色顔料を含有する、 請求 の範囲第 6項から第 1 6項までのいずれかに記載のカラーフィルター用感光性 着色組成物。
1 8. 前記カラーフィルター用緑色顔料を含む緑色顔料及び黄色顔料を、 前記緑 色顔料に対する前記黄色顔料の質量比 (黄色顔料 Z緑色顔料) が 1. 6以下とな る割合で含有することを特徴とする、 請求の範囲第 6項から第 1 7項までのいず れかに記載のカラーフィルター用感光性着色組成物。
1 9. 前記請求の範囲第 1項から第 4項までのいずれかに記載のカラーフィルタ 一用緑色顔料を含む 1又は 2以上の顔料を含有する緑色画素を設けたことを特 徴とするカラーフィルター。
20. 前記請求の範囲第 6項から第 1 8項までのいずれかに記載のカラーフィル ター用感光性着色組成物を用いて形成した緑色画素を設けたことを特徴とする カラーフィルター。
2 1. 前記緑色画素は、 膜厚が 2. 7 m以下であり、 且つ、 単一画素で F 1 0 光源で測色した時の C I Eの X Y Z表色系において X座標が 0. 2 1 ≤ X ≤ 0. 30、 y座標が 0. 55≤ y≤ 0. 7 1及び刺激値 Yが 29≤ Yの範囲の色空間 を表示できることを特徴とする、 請求の範囲第 1 9項又は第 20項に記載のカラ 一フィルター。
2 2. 前記緑色画素は、 前記カラーフィルター用緑色顔料と共に少なくとも黄色 顔料を前記カラーフィルター用緑色顔料に対する前記黄色顔料の質量比 (黄色顏 料 緑色顔料) が 1. 6以下となる割合で含有し、 単一画素で F 1 0光源で測色 した時に C I Eの X Y Z表色系において X座標が 0. 2 1 ≤ χ≤0· 30、 y座 標が 0. 55≤ y≤0. 7 1の範囲の X y色度座標領域を表示できることを特徴 とする、 請求の範囲第 1 9項又は第 20項に記載のカラーフィルター。
23. 硬化反応に関与する反応性成分、 第一の緑色顔料としてフタロシアニング リーン顔料からなり、 単体で F 1 0光源で測色した時の C I Eの X Y Z表色系に おいて下記方程式 1、 2及び 3で囲まれる X y色度座標領域を表示できるカラー フィルター用緑色顔料から選択される 1種、 及び第二の緑色顔料としてフタロシ アニングリーン顔料からなり、 単体で F 1 0光源で測色した時の C I Eの X Y Z 表色系において下記方程式 4、 5及び 6で囲まれる X y色度座標領域を表示でき るカラーフィルター用緑色顔料から選択される 1種を少なくとも含む着色成分 を含有する、 カラーフィルター用感光性着色組成物を用いて形成した緑色画素を 設けたことを特徴とするカラーフィルター。
(方程式 1 )
y =2.640 X +0.080
但し方程式 1において、 0.180< X <0.230
(方程式 2) y =5261.500 x x4— 6338.700x x3 + 2870.400 x x2-580.730 x x +44.810 但し方程式 2において、 0.230< χ <0·350
(方程式 3)
y =—36.379 x x3 + 37.410x x 2— 13.062 x x +1.907
但し方程式 3において、 0.180< x <0·350
(方程式 4)
y =8.000x x一 1.513
但し方程式 4において、 0·260< X <0.270
(方程式 5)
y =-1051.300x χ + 1176.900x x 3-450.880 x x 2 + 62.131 x一 0.836 但し方程式 5において、 0.260< x <0.350
(方程式 6)
y =5746.700 X X 4— 7310.300 X χ 3 +3493.200 x χ2— 744.610 χ χ +60.251 但し方程式 6において、 0.270< X <0.350
24. 前記緑色画素は、 膜厚が 2. 5 jt m以下であり、 且つ、 (^〖 の乂丫ヱ表 色系において X座標が 0. 25≤ x≤0. 32、 y座標が 0. 55≤ y≤0. 7 5及び刺激値 Yが 30≤Yの範囲の色空間を表示できることを特徴とする、 請求 の範囲第 23項に記載のカラーフィルター。
25. 前記緑色画素は、 前記第一及び第二の緑色顔料を含む緑色顔料及び黄色顏 料を、前記緑色顏料に対する前記黄色顔料の質量比(黄色顔料/緑色顔料)が 1. 6以下となる割合で含有し、 単一画素で F 1 0光源で測色した時に C I Εの Χ Υ Ζ表色系において X座標が 0. 25≤ χ≤ 0. 32、 y座標が 0. 5 5≤ y≤0. 7 5の範囲の x y色度座標領域を表示できることを特徴とする、 請求の範囲第 2 3項に記載のカラーフィルター。
26.前記緑色画素の硬度が 500 NZmm2以上又は弾性変形率が 20<½以上で あることを特徴とする、 請求の範囲第 1 9項から第 2 5項までのいずれかに記載 のカラーフィルター。
2 7 . 前記緑色画素の断面の下底の長さに対する上底の長さの比が 1未満である ことを特徴とする、 請求の範囲第 1 9項から第 2 6項までのいずれかに記載の力 ラーフィルター。
2 8 . 前記請求の範囲第 1 9項から第 2 7項までのいずれかに記載のカラーフィ ルターと液晶駆動側基板とを対向させ、 両者の間に液晶を封入してなる液晶パネ ル。
PCT/JP2003/009344 2002-07-24 2003-07-23 カラーフィルター用緑色顔料、緑色顔料分散体、感光性着色組成物、カラーフィルター、及び、液晶パネル WO2004010172A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/520,321 US7781129B2 (en) 2002-07-24 2003-07-23 Green pigment for color filter, green pigment dispersion, photosensitive color composition, color filter, and liquid crystal panel
US12/835,235 US8211599B2 (en) 2002-07-24 2010-07-13 Green pigment for color filter, green pigment dispersion, photosensitive color composition, color filter, and liquid crystal panel

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002-215169 2002-07-24
JP2002215169 2002-07-24
JP2003275222A JP4368158B2 (ja) 2002-07-24 2003-07-16 感光性着色組成物、カラーフィルター、及び、液晶パネル
JP2003-275222 2003-07-16
JP2003275219A JP4368157B2 (ja) 2002-07-24 2003-07-16 カラーフィルター用緑色顔料、緑色顔料分散体、感光性着色組成物、カラーフィルター、及び、液晶パネル
JP2003-275219 2003-07-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10520321 A-371-Of-International 2003-07-23
US12/835,235 Continuation US8211599B2 (en) 2002-07-24 2010-07-13 Green pigment for color filter, green pigment dispersion, photosensitive color composition, color filter, and liquid crystal panel

Publications (1)

Publication Number Publication Date
WO2004010172A1 true WO2004010172A1 (ja) 2004-01-29

Family

ID=30773349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009344 WO2004010172A1 (ja) 2002-07-24 2003-07-23 カラーフィルター用緑色顔料、緑色顔料分散体、感光性着色組成物、カラーフィルター、及び、液晶パネル

Country Status (4)

Country Link
US (2) US7781129B2 (ja)
KR (1) KR100708327B1 (ja)
TW (1) TWI225163B (ja)
WO (1) WO2004010172A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036520A (ja) * 2016-08-31 2018-03-08 Dic株式会社 カラーフィルタ用顔料組成物及びカラーフィルタ

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI378282B (en) * 2005-02-28 2012-12-01 Fujifilm Corp Liquid crystal display
WO2006098261A1 (ja) * 2005-03-14 2006-09-21 Sakata Inx Corp. 処理顔料及びその用途
KR101017760B1 (ko) * 2005-08-29 2011-02-28 도판 인사츠 가부시키가이샤 감광성 착색 조성물, 컬러 필터 기판 및 반투과형 액정표시 장치
JP4396614B2 (ja) * 2005-09-21 2010-01-13 エプソンイメージングデバイス株式会社 液晶装置及び電子機器
US7837780B2 (en) * 2006-11-10 2010-11-23 Global Oled Technology Llc Green color filter element
US7973902B2 (en) 2006-11-10 2011-07-05 Global Oled Technology Llc Display with RGB color filter element sets
JP5024107B2 (ja) * 2007-03-13 2012-09-12 Jsr株式会社 着色層形成用感放射線性組成物、カラーフィルタおよびカラー液晶表示素子
KR20140042931A (ko) * 2007-06-21 2014-04-07 미쓰비시 가가꾸 가부시키가이샤 안료 분산액, 컬러 필터용 착색 조성물, 컬러 필터, 액정 표시 장치 및 유기 el 디스플레이
JP5320760B2 (ja) * 2007-07-27 2013-10-23 三菱化学株式会社 カラーフィルタ用着色組成物、カラーフィルタ、及び液晶表示装置
KR101030022B1 (ko) 2007-09-11 2011-04-20 제일모직주식회사 안료 분산액 조성물, 이를 포함하는 컬러필터용 레지스트조성물 및 이로부터 제조된 컬러필터
TW200916847A (en) * 2007-10-02 2009-04-16 Au Optronics Corp Color filter and liquid crystal display device
JP5484667B2 (ja) * 2007-11-27 2014-05-07 山陽色素株式会社 顔料分散体
JP4640406B2 (ja) * 2007-11-27 2011-03-02 セイコーエプソン株式会社 カラーフィルター用インク、カラーフィルター用インクセット、カラーフィルター、画像表示装置、および、電子機器
JP4548476B2 (ja) * 2007-11-27 2010-09-22 セイコーエプソン株式会社 カラーフィルター用インクの製造方法、カラーフィルター用インク、カラーフィルター、画像表示装置、および、電子機器
JP2009127027A (ja) * 2007-11-28 2009-06-11 Seiko Epson Corp カラーフィルター用インク、カラーフィルター用インクセット、カラーフィルター、画像表示装置、および、電子機器
JP4466725B2 (ja) * 2007-11-28 2010-05-26 セイコーエプソン株式会社 カラーフィルター用インク、カラーフィルター用インクセット、カラーフィルター、画像表示装置、および、電子機器
JP2009128862A (ja) * 2007-11-28 2009-06-11 Seiko Epson Corp カラーフィルター用インク、カラーフィルター用インクセット、カラーフィルター、画像表示装置、および、電子機器
JP2009144087A (ja) * 2007-12-17 2009-07-02 Seiko Epson Corp カラーフィルター用インク、カラーフィルター用インクセット、カラーフィルター、画像表示装置、および、電子機器
TWI370334B (en) * 2007-12-20 2012-08-11 Ind Tech Res Inst Holographic gratings and method of fabricating the same
JP2009169214A (ja) * 2008-01-18 2009-07-30 Seiko Epson Corp カラーフィルター用インクセット、カラーフィルター、画像表示装置、および、電子機器
CN101939857B (zh) 2008-02-07 2013-05-15 三菱化学株式会社 半导体发光装置、背光源、彩色图像显示装置以及这些中使用的荧光体
KR101603130B1 (ko) * 2008-02-27 2016-03-14 후지필름 가부시키가이샤 착색 경화성 조성물, 컬러 필터 및 액정 표시 장치
JP5428198B2 (ja) * 2008-05-12 2014-02-26 凸版印刷株式会社 カラーフィルタおよび液晶表示装置
US8077230B2 (en) * 2008-06-18 2011-12-13 Aptina Imaging Corporation Methods and apparatus for reducing color material related defects in imagers
WO2010001733A1 (ja) 2008-07-04 2010-01-07 凸版印刷株式会社 カラーフィルタ及び液晶表示装置
JP2010044981A (ja) * 2008-08-15 2010-02-25 Fujifilm Corp 表示装置
JP5644992B2 (ja) * 2008-09-05 2014-12-24 Jsr株式会社 着色感放射線性組成物、カラーフィルタおよびカラー液晶表示素子
KR101626982B1 (ko) * 2008-09-05 2016-06-03 제이에스알 가부시끼가이샤 착색 감방사선성 조성물, 컬러 필터 및 컬러 액정 표시 소자
US8277697B2 (en) * 2008-10-29 2012-10-02 Global Oled Technology Llc Color filter element with improved colorant dispersion
KR101018324B1 (ko) * 2008-11-27 2011-03-04 디아이씨 가부시끼가이샤 컬러 필터용 안료 조성물, 그 제조 방법 및 컬러 필터
US9187578B2 (en) * 2009-04-16 2015-11-17 Dic Corporation Polymer modified pigment and production process of the same
KR101311941B1 (ko) * 2009-12-28 2013-09-26 제일모직주식회사 안료 분산액 조성물, 이를 포함하는 감광성 수지 조성물 및 이를 이용하여 제조된 컬러필터
KR101288563B1 (ko) * 2009-12-31 2013-07-22 제일모직주식회사 컬러필터용 감광성 수지 조성물
JP2011158788A (ja) * 2010-02-02 2011-08-18 Sony Corp ホログラム付き媒体、ホログラム付き媒体製造装置および情報判定方法
US20110247522A1 (en) * 2010-04-12 2011-10-13 Krzysztof Nauka Method of advantageous manipulation of the solid pigment colors
JP5657286B2 (ja) * 2010-06-25 2015-01-21 株式会社ジャパンディスプレイ 液晶表示装置
JP5649990B2 (ja) * 2010-12-09 2015-01-07 シャープ株式会社 カラーフィルタ、固体撮像素子、液晶表示装置および電子情報機器
KR101759234B1 (ko) 2011-09-05 2017-07-19 삼성디스플레이 주식회사 색필터 조성물
CN111458947A (zh) * 2012-08-21 2020-07-28 凸版印刷株式会社 反射型显示面板及其制造方法
KR102129788B1 (ko) 2013-11-01 2020-07-06 삼성디스플레이 주식회사 액정 표시 장치, 이를 제조하는 방법, 및 이를 리페어하는 방법
KR102166216B1 (ko) * 2014-02-07 2020-10-15 디아이씨 가부시끼가이샤 컬러 필터용 녹색 안료 조성물 및 컬러 필터
JP6205289B2 (ja) * 2014-02-14 2017-09-27 富士フイルム株式会社 着色組成物、硬化膜、カラーフィルタ、パターン形成方法、カラーフィルタの製造方法、固体撮像素子、および、画像表示装置
KR102323365B1 (ko) * 2015-01-07 2021-11-09 동우 화인켐 주식회사 착색 감광성 수지 조성물
JP6915960B2 (ja) * 2015-01-07 2021-08-11 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 着色感光性樹脂組成物
KR102279575B1 (ko) * 2015-03-26 2021-07-20 동우 화인켐 주식회사 착색 감광성 수지 조성물, 컬러 필터 및 이를 구비한 화상 표시 장치
JP6119922B2 (ja) * 2015-03-27 2017-04-26 三菱化学株式会社 着色樹脂組成物、カラーフィルタ、及び画像表示装置
TWI737597B (zh) * 2015-03-30 2021-09-01 日商住友化學股份有限公司 著色感光性樹脂組合物、塗膜、彩色濾光片、及顯示裝置
KR102222402B1 (ko) * 2015-03-31 2021-03-03 동우 화인켐 주식회사 착색 감광성 수지 조성물
KR102558752B1 (ko) * 2015-04-21 2023-07-24 디아이씨 가부시끼가이샤 컬러 필터용 녹색 안료 조성물 및 컬러 필터
TWI736595B (zh) * 2016-03-25 2021-08-21 日商富士軟片股份有限公司 感光性組成物、彩色濾光片、圖案形成方法、固體攝像元件及圖像顯示裝置
KR20180036218A (ko) * 2016-09-30 2018-04-09 엘지디스플레이 주식회사 착색제, 이를 포함하는 착색 수지 조성물 및 컬러필터
KR102502221B1 (ko) * 2017-08-08 2023-02-21 삼성디스플레이 주식회사 색 변환 소자 및 이를 포함하는 표시 장치
CN107422521A (zh) * 2017-09-19 2017-12-01 京东方科技集团股份有限公司 一种彩膜基板及其制备方法、显示面板
KR102337782B1 (ko) * 2018-02-09 2021-12-09 동우 화인켐 주식회사 녹색 감광성 수지 조성물, 이를 포함하는 컬러필터 및 화상표시장치
KR102338255B1 (ko) * 2018-03-09 2021-12-10 동우 화인켐 주식회사 착색 감광성 수지 조성물, 이를 이용하여 제조된 컬러필터 및 화상표시장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014912A1 (fr) * 2000-08-17 2002-02-21 Mitsubishi Chemical Corporation Composition de filtres colores et filtres colores
WO2002067022A1 (en) * 2001-02-23 2002-08-29 Dainippon Ink And Chemicals, Inc. Color filter
JP2003161828A (ja) * 2001-09-17 2003-06-06 Dainippon Ink & Chem Inc 顔料分散組成物、顔料分散レジスト、およびカラーフィルター

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2214469A (en) * 1935-08-14 1940-09-10 Ici Ltd Process for manufacturing halogenated phthalocyanines
CH608822A5 (en) 1974-03-29 1979-01-31 Basf Ag Process for the preparation of copper polychloropoly-bromophthalocyanines
JP2543051B2 (ja) 1986-11-13 1996-10-16 松下電器産業株式会社 カラ―フィルタ―の製造方法
JP3051065B2 (ja) 1995-10-16 2000-06-12 株式会社日本触媒 フタロシアニン化合物を含んでなるカラーフィルター
JP3641093B2 (ja) 1996-02-02 2005-04-20 東京応化工業株式会社 緑色カラーフィルタ用感光性組成物及びこれを用いた緑色カラーフィルタの製造方法
JP4118007B2 (ja) * 1999-11-09 2008-07-16 三菱化学株式会社 カラーフィルター用組成物およびカラーフィルター
JP4346230B2 (ja) 2000-09-12 2009-10-21 三菱化学株式会社 カラーフィルター用組成物およびカラーフィルター
JP4592239B2 (ja) * 2000-12-22 2010-12-01 三菱化学株式会社 カラーフィルター用組成物及びカラーフィルター
JP3945242B2 (ja) 2000-12-22 2007-07-18 東洋インキ製造株式会社 カラーフィルタ用着色組成物およびカラーフィルタ
JP4407097B2 (ja) * 2001-02-23 2010-02-03 Dic株式会社 カラーフィルター

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014912A1 (fr) * 2000-08-17 2002-02-21 Mitsubishi Chemical Corporation Composition de filtres colores et filtres colores
WO2002067022A1 (en) * 2001-02-23 2002-08-29 Dainippon Ink And Chemicals, Inc. Color filter
JP2003161828A (ja) * 2001-09-17 2003-06-06 Dainippon Ink & Chem Inc 顔料分散組成物、顔料分散レジスト、およびカラーフィルター

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036520A (ja) * 2016-08-31 2018-03-08 Dic株式会社 カラーフィルタ用顔料組成物及びカラーフィルタ

Also Published As

Publication number Publication date
US20110075077A1 (en) 2011-03-31
US7781129B2 (en) 2010-08-24
TW200411220A (en) 2004-07-01
TWI225163B (en) 2004-12-11
US8211599B2 (en) 2012-07-03
KR100708327B1 (ko) 2007-04-17
US20060098316A1 (en) 2006-05-11
KR20050025658A (ko) 2005-03-14

Similar Documents

Publication Publication Date Title
JP4368157B2 (ja) カラーフィルター用緑色顔料、緑色顔料分散体、感光性着色組成物、カラーフィルター、及び、液晶パネル
WO2004010172A1 (ja) カラーフィルター用緑色顔料、緑色顔料分散体、感光性着色組成物、カラーフィルター、及び、液晶パネル
JP4368158B2 (ja) 感光性着色組成物、カラーフィルター、及び、液晶パネル
JP5577659B2 (ja) 感光性黒色樹脂組成物、樹脂ブラックマトリクス基板、カラーフィルター基板および液晶表示装置
JP4195323B2 (ja) 着色レジスト用顔料分散液、感光性着色組成物、及び、カラーフィルター
JP2007320986A (ja) ポリハロゲン化亜鉛フタロシアニン顔料組成物及びカラーフィルタ
JP6024149B2 (ja) カラーフィルター用着色樹脂組成物、カラーフィルター、及び液晶表示装置
CN108070279A (zh) 使用了邻苯二甲酰亚胺及其衍生物的颜料分散体和着色组合物
JP4905547B2 (ja) カラーフィルタ基板および液晶表示装置
JP4539477B2 (ja) カラーフィルタ用顔料組成物、その製造方法及びカラーフィルタ
JP2009217241A (ja) カラーフィルタ用緑色着色組成物およびカラーフィルタ
JP2010266740A (ja) カラーフィルタ用着色組成物、これを用いたカラーフィルタ、及び液晶表示装置
JP2011112672A (ja) カラーフィルタ用緑色顔料分散体の製造方法、該製造方法により製造されるカラーフィルタ用緑色顔料分散体、カラーフィルタ用緑色着色レジスト、着色層、カラーフィルタ、及び液晶表示装置
JP4136745B2 (ja) 着色レジスト用顔料分散液調製用顔料分散補助剤、着色レジスト用顔料分散液、感光性着色組成物及び、カラーフィルター
JP2003241374A (ja) アルカリ可溶性グラフトポリマーからなる有機溶剤系着色レジスト用バインダー、有機溶剤系着色レジスト用顔料分散液、感光性着色組成物及び、カラーフィルター
JP4195329B2 (ja) 着色レジスト用顔料分散液、感光性着色組成物、及び、カラーフィルター
JP2012173319A (ja) カラーフィルタ用赤色着色組成物、およびカラーフィルタ
JP2005275052A (ja) カラーフィルター用青色顔料組成物及びカラーフィルター
JP2003185825A (ja) 顔料組成物、顔料分散レジスト、およびカラーフィルター
JP2003183535A (ja) 黄味の緑色顔料組成物の製造方法、それで得られた緑色顔料組成物を用いたカラーフィルター
TWI442101B (zh) 液晶顯示裝置用彩色濾光片基板及液晶顯示裝置
JP2006091649A (ja) カラーフィルター青色画素部用顔料組成物の製造方法及びカラーフィルター
JP2011095313A (ja) カラーフィルタ
JP2004091602A (ja) 黄味の赤色顔料組成物の製造方法、それで得られた赤色顔料組成物を用いたカラーフィルター
JP2008089640A (ja) カラーフィルター用青色顔料分散液、カラーフィルター用青色樹脂組成物、カラーフィルター、及び表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

WWE Wipo information: entry into national phase

Ref document number: 1020057001312

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057001312

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006098316

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10520321

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10520321

Country of ref document: US