WO2004010415A1 - オーディオ復号装置と復号方法およびプログラム - Google Patents

オーディオ復号装置と復号方法およびプログラム Download PDF

Info

Publication number
WO2004010415A1
WO2004010415A1 PCT/JP2003/007962 JP0307962W WO2004010415A1 WO 2004010415 A1 WO2004010415 A1 WO 2004010415A1 JP 0307962 W JP0307962 W JP 0307962W WO 2004010415 A1 WO2004010415 A1 WO 2004010415A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
frequency
signal
low
sub
Prior art date
Application number
PCT/JP2003/007962
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Nomura
Osamu Shimada
Yuichiro Takamizawa
Masahiro Serizawa
Naoya Tanaka
Mineo Tsushima
Takeshi Norimatsu
Kok Seng Chong
Kim Hann Kuah
Sua Hong Neo
Original Assignee
Nec Corporation
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/485,616 priority Critical patent/US7555434B2/en
Application filed by Nec Corporation, Matsushita Electric Industrial Co., Ltd. filed Critical Nec Corporation
Priority to JP2004522719A priority patent/JP3579047B2/ja
Priority to CNB038172488A priority patent/CN1328707C/zh
Priority to KR1020047001439A priority patent/KR100602975B1/ko
Priority to AU2003244168A priority patent/AU2003244168A1/en
Priority to BR0311601-8A priority patent/BR0311601A/pt
Priority to EP03765275A priority patent/EP1439524B1/en
Priority to DE60327039T priority patent/DE60327039D1/de
Priority to CA002453814A priority patent/CA2453814C/en
Priority to BRPI0311601A priority patent/BRPI0311601B8/pt
Publication of WO2004010415A1 publication Critical patent/WO2004010415A1/ja
Priority to HK06102057A priority patent/HK1082092A1/xx
Priority to US12/393,316 priority patent/US7941319B2/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components

Definitions

  • Audio decoding device decoding method and program
  • the present invention relates to an audio decoding device and an audio decoding method for decoding an encoded audio signal.
  • MP EG-2 AAC Advanced Audio Coding
  • MPEG-2 AAC Advanced Audio Coding
  • a mapping method such as MDCT (Modified Discrete Cosine Transform).
  • MDCT Modified Discrete Cosine Transform
  • the frequency domain signal is quantized and Huffman-coded to form a bit stream.
  • the quantization is limited by increasing the quantization accuracy for frequency components that are easily perceived in the frequency domain signal and reducing the quantization accuracy for frequency components that are not. Achieve high sound quality with the code amount.
  • MPEG-2 AAC can achieve the same sound quality as a CD (44.1 kHz sampling, stereo) at a bit rate of about 96 kbps.
  • a bit rate of about 48 kbps high-frequency components that are less perceptually important are excluded from the encoding target (quantum To make the subjective sound quality at a limited bit rate the highest.
  • the high frequency components are not encoded, the sound quality is deteriorated, and the sound generally has a muffled feeling.
  • Bandwidth extension technology is attracting attention as a technology for solving such sound quality degradation at low bit rates.
  • Bandwidth extension technology uses MPEG-2 AAC and other methods.
  • a bit stream is formed by adding a high-frequency bit stream, which is auxiliary information with a small amount of code (generally about several kbps), to a low-frequency bit stream encoded at a low bit rate.
  • An audio decoding device (decoder) first decodes a low-frequency bit stream using a decoding method such as MPEG-2 AAC to obtain a low-frequency audio signal that does not include high-frequency components.
  • processing is performed on the low-frequency audio signal according to the auxiliary information indicated by the high-frequency bit stream to generate a high-frequency component using the band extension technique.
  • the high-frequency component thus obtained is combined with the low-frequency audio signal obtained by decoding the low-frequency bit stream to obtain a decoded audio signal including the high-frequency component.
  • Fig. 1 shows a conventional audio decoding device that uses the bandwidth extension technique described here.
  • the conventional audio decoding device shown in FIG. 1 includes a bitstream separation unit 100, a low-band decoding unit 101, a complex subband division unit 402, a complex band extension unit 403, and a complex subband synthesis unit 404.
  • Bit stream separating section 100 separates the input bit stream and outputs the separated bit stream to low band decoding section 101 and complex band extending section 403.
  • the bit stream contains a low-frequency bit stream in which the low-frequency signal is encoded using an encoding method such as MPEG-2 AAC, and information necessary for the complex band extension unit to generate a high-frequency signal.
  • the high-frequency bit stream is multiplexed.
  • the low-frequency bit stream is output to the low-frequency decoding unit 101, and the high-frequency bit stream is output to the complex band extension unit 403.
  • the low-frequency decoding unit 101 decodes the input low-frequency bit stream and performs low-frequency decoding. A sub-signal is generated and output to the complex sub-band division unit 402.
  • the low-band decoding unit 101 decodes the low-band bit stream using an existing audio decoding method such as MPEG-2AAC.
  • the complex sub-band division unit 402 divides the input low-band audio signal into bands using a complex sub-band division filter.
  • the band-divided low band subband signal is output to band extending section 403 and complex subband combining section 404.
  • the complex subband splitting filter for example, a 32 2 complex QMF (Quadrature Mirror Filter) filter puncture widely known conventionally can be used.
  • a complex low-band signal (low-band sub-band signal) divided into 32 sub-bands is output to complex band extension section 403 and complex sub-band synthesis section 404.
  • ⁇ ( ⁇ ) represents a low-Odo signal
  • Xk (ra) represents the low-frequency subband signal of the k th Pando
  • h (n) is Represents a low pass filter for analysis.
  • Kl 64.
  • the complex band extension unit 403 generates a high band sub-band signal representing a high band audio signal from the input high band bit stream and low band sub-band signal, and outputs the signal to the sub-band combining unit 404.
  • the complex band extension section 403 includes a complex high band generation section 500 and a complex amplitude adjustment section 501 as shown in FIG.
  • the complex band extender 4003 receives a high-frequency bit stream via an input terminal 502, a low-frequency sub-band signal via an input terminal 504, and a high-frequency signal via an output terminal 503. Outputs the sub-band signal.
  • the complex high-frequency generation unit 500 receives the low-frequency sub-band signal and the high-frequency bit stream as input, and converts the signal of the band specified by the high-frequency bit stream from the low-frequency sub-band signal to the high-frequency sub-band. Copy.
  • signal processing specified by the high-order bit stream may be performed. For example, assuming 64 sub-bands from sub-band 0 to sub-band 63 in descending order of frequency, complex sub-band signals from sub-band 0 to sub-band 19 are input terminals 5 as low-frequency sub-band signals. Suppose that it is supplied via 0 4.
  • copy information indicating from which low-band sub-band (sub-bands 0 to 19) the sub-band A (A> 19) is generated by copying the signal and Suppose signal processing information indicating the signal processing method to be applied (selected and used from several predetermined means such as filtering) is included.
  • the complex high-frequency generation unit 500 sets the high-frequency sub-band complex signal (named as copy processed sub-band signal) to be the same as the low-frequency sub-band complex signal indicated by the copy information. Furthermore, if the signal processing information indicates any necessity for signal processing to improve sound quality, the signal processing indicated by the signal processing information is applied to the copy processing subband signal.
  • the copy processing sub-band signal generated in this way is output to complex amplitude adjustment section 501.
  • a linear prediction inverse filter generally well known in speech coding can be used.
  • a filter coefficient of a linear prediction inverse filter can be calculated by linearly predicting an input signal, and the linear prediction inverse filter using the filter coefficient can operate to whiten the spectral characteristic of the input signal.
  • the reason why such a linear prediction inverse filter is used as signal processing is to make the spectral characteristics of the high-frequency sub-band signal flatter than those of the original low-frequency sub-band signal.
  • the spectral characteristics of the high-frequency sub-band signal are higher than those of the low-frequency sub-band signal.
  • a flat Providing a flattening process enables high-quality bandwidth extension technology.
  • the complex amplitude adjuster 501 performs a correction specified by the high-frequency bit stream on the amplitude of the input copy processing sub-band signal, and generates a high-frequency sub-band signal.
  • the amplitude correction is performed so that the signal energy of the high-frequency component of the input signal on the encoding side (named as target energy) and the high-frequency signal energy of the signal generated by the band extender 403 become equivalent.
  • the high-frequency bit stream contains information indicating the target energy.
  • the generated high frequency sub-band signal is output to output terminal 503. Note that the target energy described in the high-frequency bit stream can be considered to be calculated for each subband on a frame basis, for example.
  • the time direction in units of time obtained by further dividing the frame, and in the frequency direction in the unit of a band in which a plurality of sub-bands are combined.
  • the frame in the time direction is calculated in a time unit obtained by further dividing the frame, the time change of the energy can be expressed in more detail. If the calculation is performed in a unit of a band in which a plurality of subbands are put together, the number of bits required to code the target energy can be reduced.
  • the division unit in the time and frequency directions used in the calculation of the target energy is a time-frequency dalid, and the information is described in the high-frequency bit stream.
  • a high-frequency sub-band signal can be generated by using an additional signal in addition to the copy processed sub-band signal.
  • the amplitude of the copy processing sub-band signal and the amplitude of the additional signal are adjusted so that the energy of the high-frequency sub-band signal becomes the target energy.
  • the additional signal include a noise signal and a tone signal.
  • the gain for the amplitude adjustment of the copy processing sub-band signal and the additional signal is, for example, one of the copy processing sub-band signal and the additional signal as the main component of the generated high-frequency sub-band signal, It is calculated as follows, with one of them as the subcomponent.
  • Gmain sqrt (R / E / (1 + Q))
  • Gsub sqrt (RXQ / N / (1 + Q)) where, Graain is the amplitude adjustment gain of the main component, Gsub is the amplitude adjustment gain of the subcomponent, and E and N are each copied. Indicates the energy of the processed sub-pand signal and the additional signal. If the energy of the additional signal is normalized to 1,
  • N l.
  • R represents the target energy
  • Q represents the energy ratio of the main component and the sub component
  • R and Q are described in the high-frequency bit stream. Note that sqrt () is the square root.
  • the additional signal is the main component
  • the high-frequency sub-band signal can be calculated by weighting and adding the copy processing sub-band signal and the additional signal using the amplitude adjustment gain calculated as described above.
  • the complex sub-band synthesizing unit 404 performs band synthesis on the input low-band sub-band signal and high-frequency sub-band signal using a complex sub-band synthesis filter.
  • the audio signal generated by the band combination is the output of the audio decoding device.
  • f (n) represents a low-pass filter for synthesis. In this example, it is K2-64. If the sampling frequency of the audio signal output by the complex sub-band combining section 404 is higher than the sampling frequency of the audio signal output by the low-band decoding section 101 by the band extension technique, the complex sub-band combining section 40 4 is selected so that the low-frequency portion (the result of downsampling) of the audio signal output from the low-frequency decoding unit 101 is equal to the audio signal output from the low-frequency decoding unit 101.
  • the complex subband synthesis section 404 can use a 64 band complex QMF synthesis filter bank (K2-128 in Equation 404.1). In this case, the output of the 32 band complex analysis QMF filter bank is used as the signal value for the lower 32 band.
  • the conventional audio decoding device described above has a complex sub-band division unit and a complex sub-band synthesis unit that require a large amount of computation, and also requires a large amount of computation and a large device scale because band extension processing is performed on complex numbers. there were.
  • An object of the present invention is to provide a band extension technique that reduces the amount of computation while maintaining high sound quality, and an audio decoding device, an audio decoding method, and an audio decoding program using the same.
  • an audio decoding device comprises: a bitstream separation unit that separates a bitstream into a low-band bitstream and a high-band bitstream;
  • a low-frequency decoding unit that decodes the low-frequency bit stream to generate a low-frequency audio signal
  • a complex sub-band division unit that divides the low-frequency audio signal into complex signals of a plurality of frequency bands to generate a low-frequency sub-band signal
  • a correction coefficient extraction unit that calculates an energy correction coefficient based on the low-frequency sub-band signal
  • An energy correction unit that corrects a target energy described in the high-frequency bit stream with the energy correction coefficient to calculate a corrected target energy
  • a band extending unit that generates a high-frequency sub-band signal by amplitude-correcting the signal energy of a signal created by copying and processing the low-frequency sub-band signal according to the instruction of the high-frequency bit stream to the correction target energy;
  • a sub-band synthesizing unit for obtaining a decoded audio signal by band-synthesizing the real part of the low-band sub-band signal and the real part of the high-frequency sub-band signal using a sub-band synthesizing filter.
  • the correction coefficient extraction unit may calculate a signal phase of the low band sub-band signal, and calculate an energy correction coefficient based on the signal phase. Further, the correction coefficient extraction unit may calculate a ratio between the energy of the real part of the low-frequency sub-band signal and the signal energy of the low-frequency sub-band signal as an energy correction coefficient. Furthermore, the correction coefficient extraction unit may calculate an energy correction coefficient by averaging the phase of each sample of the low-frequency sub-band signal. Further, the correction In the coefficient extracting unit, the energy correction coefficient calculated for each frequency band may be smoothed.
  • a bit stream separating unit that separates a bit stream into a low-frequency bit stream and a high-frequency bit stream, and a low-frequency audio signal is generated by decoding the low-frequency bit stream.
  • a sub-band division unit that divides the low-band audio signal into real signals of a plurality of frequency bands to generate a low-frequency sub-band signal
  • a correction coefficient generator that generates a predetermined energy correction coefficient
  • An energy correction unit that corrects a target energy described in the high-frequency bit stream using the energy correction coefficient and calculates a corrected target energy
  • a band extending unit that generates a high-frequency sub-band signal by amplitude-correcting the signal energy of the signal created by copying and processing the low-frequency sub-band signal according to the instruction of the high-frequency bit stream to the capture target energy;
  • 'A sub-band synthesizing unit for obtaining a decoded audio signal by band-synthesizing the real part of the low-band sub-band signal and the real part of the high-band sub-band signal using a sub-band synthesizing filter.
  • the correction coefficient generation unit may generate a random number and use the random number as an energy correction coefficient. Further, the correction coefficient generating section may generate a predetermined energy correction coefficient for each frequency band.
  • An audio decoding apparatus generates an energy correction coefficient by an energy correction section that corrects a target energy of a high-frequency component, a correction coefficient calculation section that calculates an energy correction coefficient from a low-frequency sub-band signal, or a predetermined method.
  • the feature is that a correction coefficient generator is provided.
  • These processing units execute the target energy correction processing required when performing the bandwidth expansion processing using only real numbers. As a result, while maintaining high sound quality, the complex sub-band synthesis filter and Instead, a sub-band synthesis filter of a real number and a band expansion unit having a smaller amount of calculation can be used, and the required amount of calculation and device scale can be reduced.
  • FIG. 1 is a block diagram showing a configuration of a conventional audio decoding device.
  • FIG. 2 is a block diagram showing a configuration of the complex band extension unit 403 in the related art.
  • FIG. 3 is a diagram for explaining an amplitude adjustment operation according to the related art.
  • FIG. 4 is a diagram for explaining the operation of amplitude adjustment in the present invention.
  • FIG. 5 is a diagram for explaining the operation of amplitude adjustment when energy correction is not performed.
  • FIG. 6 is a block diagram showing a configuration of the audio decoding device according to the first embodiment of the present invention.
  • FIG. 7 is a block diagram showing a configuration of the audio decoding device according to the second embodiment of the present invention.
  • FIG. 8 is a block diagram showing a configuration of the band extension unit 103 in the present invention.
  • FIG. 6 is a block diagram showing the configuration of the audio decoding device according to the first embodiment of the present invention.
  • the audio decoding apparatus according to the present embodiment includes a bit stream separating unit 100, a low-band decoding unit 101, a complex sub-band dividing unit 102, a band extending unit 103, It comprises a band combining section 104, an energy correction section 105, and a correction coefficient extraction section 106.
  • the bitstream separation unit 100 separates the input bitstream and outputs the separated bitstream to the low-band decoding unit 101, the band extension unit 103, and the energy correction unit 105.
  • the bit stream is multiplexed with a low-frequency bit stream in which the low-frequency signal is encoded and a high-frequency bit stream including information necessary for the band extension unit 103 to generate the high-frequency signal. I have.
  • the low-frequency bit stream is output to the low-frequency decoding unit 101, and the high-frequency bit stream is output to the bandwidth extending unit 103 and the energy correction unit 105.
  • the low-frequency decoding unit 101 outputs the input low-frequency signal.
  • the bit stream is decoded to generate a low-frequency audio signal and output to the complex sub-band division unit 102.
  • the low-band decoding unit 101 decodes the low-band bit stream using an existing audio decoding method such as MPEG-2AAC.
  • the complex sub-band division unit 102 divides the input low-frequency audio signal into bands using a complex sub-band division filter.
  • the band-divided low band sub-band signal is output to band extension section 103, sub-band synthesis section 104, and correction coefficient extraction section 106.
  • the correction coefficient extraction unit 106 calculates an energy correction coefficient from the low-frequency sub-band signal by a method described later, and outputs the energy correction coefficient to the energy correction unit 105.
  • the energy correction unit 105 calculates a correction target energy obtained by correcting the target energy of the high-frequency component described in the high-frequency bit stream with an energy correction coefficient, and outputs the corrected target energy to the band extension unit 103.
  • the band extension unit 103 generates a high-band sub-band signal representing a high-band audio signal from the input high-band bit stream, low-band sub-band signal, and corrected target energy, and sends the signal to the sub-band synthesis unit 104. Output.
  • the subband synthesizing unit 104 performs band synthesis on the input low band subband signal and high band subband signal using a subband synthesis filter. Generated by band synthesis The audio signal thus output becomes an output of the audio decoding device.
  • the difference between the audio decoding device of the present invention thus configured and the conventional audio decoding device of FIG. 1 is that, instead of the complex subband dividing unit 402 of FIG. In FIG. 6, there is a sub-band synthesizer 104 in place of the complex sub-band synthesizer 404 in FIG. 1, and in FIG. 6 instead of the complex band expander 400 in FIG.
  • the present embodiment (FIG. 6) further includes a correction coefficient extraction unit 106 and an energy correction unit 105.
  • the other processing units are the same as those in the conventional system, are well known to those skilled in the art, and are not directly related to the present invention.
  • the following describes in detail the complex subband division unit 102, band extension unit 103, subband synthesis unit 104, energy correction unit 105, and correction coefficient extraction unit 106, which are different from the conventional method. explain.
  • Equation 40.2.1 for generating a complex subband signal has been used as a subband division filter.
  • a filter bank as shown in Equation 404.1 was used as a subband synthesis filter.
  • a signal down-sampled to the output of Equation 44.1 or the output of Equation 44.1 to the sampling frequency of the input signal of Equation 42.1 exactly matches the input of Equation 42.1 There is complete reconfiguration. In order to obtain high-quality decoded audio signals, this relationship of complete reconstructability is necessary for the subband division / synthesis filter.
  • the complex subband synthesis filter used in the conventional complex subband synthesis unit 404 is replaced with a real subband synthesis filter.
  • the subband synthesis filter is simply changed from a complex number to a real number, complete reconstructability will be lost and the sound quality will deteriorate.
  • 34 4 in Equation 102.1 may be 1 / 4 ⁇ .
  • the complex sub-band division unit 102 may be obtained by adding the processing unit ′ for performing the rotation operation of Equation 102.1 to the subsequent stage of the conventional complex sub-band division unit 402. It is preferable that the complex subband division unit 102 performs the following equation, which can realize an operation equivalent to the processing combining the above with a smaller amount of operation.
  • a high-frequency sub-band signal representing a high-frequency audio signal is generated from the high-frequency bit stream, the low-frequency sub-band signal, and a correction target energy to be described later, and is output to the sub-band combining unit 104. As shown in Fig. 8, it is composed of a high-frequency generation unit 300, an amplitude adjustment unit 301, and a conversion unit 300.
  • the band extension unit 103 is a high-frequency bit stream via an input terminal 302. Input, input the low band sub-band signal via input terminal 304, input the correction target energy via input terminal 303, and output the high band sub-band signal via output terminal 303. Do ..
  • the conversion unit 305 extracts only the real part from the complex low-band sub-band signal input via the input terminal 304, and outputs the real low-band sub-band signal (hereinafter, unless otherwise specified, the low-band sub-band signal is The signal is converted to a real number and output to the high-frequency generation unit 300.
  • the high-frequency generation unit 300 receives the low-frequency sub-band signal and the high-frequency bit stream as inputs, The signal of the band specified by the stream is copied to the high frequency sub-band. At the time of this copying, signal processing specified by the high-frequency bit stream may be performed.
  • the processing of the high-frequency generator 300 The real number signal of the high frequency sub-band (named as copy processing sub-band signal) is the same as the real number signal of the low frequency sub-band indicated by the copy information. Furthermore, if the signal processing information indicates any need for signal processing to improve sound quality, the signal processing indicated by the signal processing information is applied to the copy processing sub-band signal. The copy processing sub-band signal thus generated is output to the amplitude adjustment unit 301.
  • a linear prediction inverse filter can be used similarly to the complex frequency domain generation unit 500 of the related art.
  • the effect of the filter is the same as that of the complex high-frequency generation unit 500, and thus the description is omitted.
  • the gamut generator 300 operating on a real number signal has a higher performance than the complex high-band generator 500 operating on a complex signal. There is an effect that the amount of calculation required for calculating the filter coefficient can be reduced.
  • the amplitude adjuster 301 corrects the amplitude of the input copy added sub-band signal according to the high-frequency bit stream so as to be equivalent to the corrected target energy, and generates a high-frequency sub-band signal.
  • the generated high frequency sub-band signal is output to output terminal 303.
  • the target energy described in the high-frequency bit stream may be considered to be calculated in units of frames for each sub-band, for example. In consideration of this, it may be considered that the calculation is performed in a time unit obtained by further dividing the frame in the time direction, and in a band unit obtained by combining a plurality of subbands in the frequency direction.
  • the time change of energy can be expressed in more detail.
  • the division unit in the time and frequency directions used in the calculation of the target energy is a time frequency grid, and the information is described in the high-frequency bit stream.
  • the amplitude adjustment unit 301 when a high-frequency sub-band signal is generated by using an additional signal in addition to the copied processed auxiliary band signal, the high-frequency sub-band signal is generated. So that the energy of the signal becomes the corrected target energy, The amplitude of the copy processing sub-band signal and the amplitude of the additional signal are adjusted. Examples of the additional signal include a noise signal and a tone signal.
  • the gain for adjusting the amplitude of the copy processing sub-band signal and the additional signal is, for example, one of the copy processing sub-band signal and the additional signal as the main component of the generated high-frequency sub-band signal, and the other one. Is calculated as follows, with Copy feed: If the signal is the main component,
  • Gsub sqrt (a XRXQ / Nr / (1 + Q))
  • Gmain is the amplitude adjustment gain of the main component
  • Gsub is the amplitude adjustment gain of the subcomponent
  • Er and Nr are Indicates the energy of the copy signal and the additional signal.
  • these energy notations Er and Nr are different from the notations E and N in the description of the conventional example.
  • R represents a target energy
  • a represents an energy correction coefficient calculated by a correction coefficient extraction unit 106 described later.
  • a XR represents the corrected target energy.
  • Q represents the energy ratio between the main component and sub-component, and R and Q are described in the high-frequency bit stream. Note that sqrt () is the square root.
  • Gmain and Gsub are expressed by the following equations.
  • Gmain and Gsub may be represented by the following equations.
  • the high-frequency sub-band signal can be calculated by weighting and adding the copy processed sub-band signal and the additional signal using the amplitude adjustment gain calculated as described above.
  • the real number of high-frequency sub-band signals (the real part of the high-frequency component after amplitude adjustment in the figure) was obtained by correcting the target energy representing the signal energy of the high-frequency component of the input signal.
  • the amplitude is adjusted to be the same as the correction target energy.
  • the case where the correction target energy is calculated in consideration of the signal phase (phase B in the figure) of the complex low-frequency sub-band signal before being converted by the conversion unit 305
  • the signal energy of the virtual complex high band subband signal is equivalent to the target energy.
  • the signal energy of the virtual complex high-frequency sub-band signal is equal to the target energy. It will also be bigger. As a result, the high-frequency component of the audio signal band-combined by the sub-band synthesizing unit 104 becomes larger than the high-frequency component of the input signal on the encoding side, causing sound quality degradation.
  • band extension section 103 In order to realize the processing of the band extender 103 by processing only the real part with a small amount of computation and to obtain a decoded signal of high sound quality, it is necessary to use the correction target energy in the amplitude adjustment as described above. In the present embodiment, a correction target energy is calculated in the correction coefficient extraction unit 106 and the energy correction unit 105.
  • the correction coefficient extraction unit 106 calculates an energy correction coefficient based on the input complex low band subband signal, and outputs the energy correction coefficient to the energy correction unit 105.
  • the calculation of the energy correction coefficient can be performed by calculating the signal phase of the complex low-frequency sub-band signal and using this as the energy correction coefficient. For example, it is possible to calculate the energy of the low-band sub-band signal composed of complex signal samples and the energy calculated from only the real part thereof, and use the energy ratio as an energy correction coefficient. Alternatively, it is also possible to calculate the phase of each signal sample value of a complex number constituting the low-frequency sub-band signal, and average this to calculate the energy correction coefficient. Further, in the above-described method, an energy correction coefficient is calculated for each of the divided frequency bands.
  • the energy correction coefficient of an adjacent band and a coefficient obtained by smoothing the energy correction coefficient of the band are calculated as the energy correction coefficient of the band. It can also be a correction coefficient.
  • the energy correction coefficient of the current frame can be smoothed in the time direction using a predetermined time constant and the energy correction coefficient of the previous frame. By performing such smoothing of the energy correction coefficient, it is possible to suppress a sudden change in the energy correction coefficient, and as a result, it is possible to improve the quality of the audio signal after the band expansion.
  • the energy calculation or the averaging of the phase of the signal sample value in the above-described method uses the signal samples included in the time-frequency dalid in accordance with the time-frequency daid of the target energy described in the related art.
  • the energy correction coefficient is calculated using signal samples with little change in the phase characteristic. It is desirable to calculate In general, the time-frequency grid is set so that changes in signals in the grid are small. Therefore, by calculating the energy correction coefficient in accordance with the time-frequency grid ', it is possible to calculate the energy correction coefficient that accurately represents the phase characteristic, and as a result, to improve the quality of the audio signal after band expansion. Can be. In addition, this method considers signal changes in either the time direction or the frequency direction, and uses signal samples included in a range delimited by only one of the dalit boundaries in the time direction or the frequency direction. Can also be implemented.
  • the energy correction unit 105 corrects the target energy representing the signal energy of the high-frequency component of the input signal described in the high-frequency bit stream using the energy correction coefficient calculated by the correction coefficient extraction unit 106. Calculates the correction target energy and expands the bandwidth 1
  • the audio decoding apparatus includes a bitstream separating unit 100, a low-band decoding unit 101, a subband dividing unit 202, a band extending unit 103, a subband synthesizing unit 104, a correction coefficient It consists of a generator 206, an energy corrector 105 and a force.
  • the second embodiment of the present invention is different from the first embodiment of the present invention in that the complex sub-band division unit 102 is replaced with a sub-band division unit 202, and the correction coefficient extraction is performed. Only the output part 106 is replaced by the correction coefficient generation part 206, and the other parts are exactly the same. Therefore, the subband division unit 202 and the correction coefficient generation unit 206 will be described in detail.
  • the sub-band division unit 202 divides the input low-band audio signal into bands using a sub-band division filter.
  • the real-numbered low-frequency sub-band signals that have been band-divided are output to band extension section 103 and sub-band synthesis section 104.
  • the sub-band division filter used in the sub-band division unit 202 is composed of only a real-number processing unit of Expression 10.2.2, and its output signal is a real-number low-frequency sub-band signal. Therefore, since the low-band sub-band signal input to the band extension unit 103 is a real number, the real-number low-band sub-band signal input to the conversion unit 305 is directly used by the high-band generation unit 300 Output to
  • the correction coefficient generation unit 206 calculates an energy correction coefficient by a predetermined method, and outputs the energy correction coefficient to the energy correction unit 105.
  • a method of calculating the energy correction coefficient for example, a random number can be generated in the correction coefficient generation unit 206 and the random number can be used as the energy correction coefficient.
  • the generated random numbers are normalized from 0 to 1.
  • the amplitude of the real number high-frequency sub-band signal is adjusted so as to have the same signal energy as the target energy, the high-frequency component of the decoded audio signal becomes higher than the target energy.
  • the corrected target energy can be smaller than the target energy.
  • the high-frequency component of the audio signal after decoding does not necessarily have to have a large target energy, so that a sound quality improvement effect can be expected.
  • an energy correction coefficient is determined in advance for each frequency band, and according to only one of the frequency band of the copy source and the frequency band of the copy destination in the copy performed by the band extending unit 103. , And an energy correction unit can be generated.
  • the predetermined energy correction coefficient is a value from 0 to 1.
  • the maximum value of the random number can be determined for each frequency band, and the random number normalized within the range can be used as the energy correction coefficient.
  • a coefficient obtained by performing smoothing on the energy correction coefficient calculated for each frequency band with the energy correction coefficient of an adjacent band may be used as the energy correction coefficient of the band.
  • the energy correction coefficient of the current frame can be smoothed in the time direction using a predetermined time constant and the energy correction coefficient of the previous frame.
  • the second embodiment of the present invention is different from the first embodiment of the present invention in that the quality of the decoded audio signal is lower than that of the first embodiment because the signal phase of the low-frequency sub-band signal is not considered.
  • a further low computational complexity can be realized.
  • the audio decoding device of the present embodiment includes a recording medium on which a program for executing the audio decoding method described above is recorded.
  • This recording medium may be a magnetic disk, a semiconductor memory, or another recording medium.
  • This program is read from the recording medium into the audio decoding device, and controls the operation of the audio decoding device. Specifically, the above processing is realized by the CPU in the audio decoding device instructing the hardware resources of the audio decoding device to perform a specific process under the control of this program.

Abstract

高域成分の目標エネルギを補正するエネルギ補正部(105)と、低域サブバンド信号からエネルギ補正係数を算出する補正係数算出部(106)を新たに設ける。帯域拡張処理を実数のみで実施する際に必要となる目標エネルギの補正処理を、これらの処理部が実行する。これにより、高音質を維持しつつ、複素サブバンド合成フィルタおよび複素帯域拡張部の代わりに、より演算量が少ない実数のサブバンド合成フィルタおよび帯域拡張部を用いることができ、必要演算量・装置規模を低減できる。

Description

明細書
オーディォ復号装置と復号方法およびプログラム 技術分野
本発明は、 符号化されたオーディオ信号を復号するためのオーディオ復号装 置およぴ復号方法に関する。
背景技術
低ビットレートで高音質に符号化可能なオーディオ符号ィヒ ·復号方式として
、 I SO/ I ECの国際標準方式である MP EG— 2 AAC (Advanced Audio Coding) が広く知られている。 この MPEG— 2 AACに代表される 従来のオーディオ符号化復号方式では、 まず、 時間領域の P CM信号を複数サ ンプルまとめて 1'フレームとし、 これを MDCT (Modified Discrete Cosine Transform) などの写像変換により周波数領域信号へと変換する。 そして、 この 周波数領域信号を量子化およびハフマン符号化してビットストリームを形成す る。 量子化においては人間の聴覚特性を考慮して、 周波数領域信号の中で知覚 されやすい周波数成分については量子化精度を高く、 そうでない周波数成分に ついては量子化精度を低くすることにより、 限られた符号量で高い音質を実現 する。 例えば、 MPEG— 2 AACでは 96 k b p s程度のビットレ トで CDと同等音質 (44. 1 kHzサンプリング、 ステレオ) を実現できる。 これより低いビットレート、 例えば 48 k b p s程度のビットレートで 44 . 1 kHzサンプリングのステレオオーディオ信号を符号化しょうとする場合 、 聴覚的に重要度が低い高域周波数成分を符号化対象から外す (量子化値を零 とする) ことで限られたビットレートでの主観的音質が最高となるようにする 。 しかしながらこの場合、 高域周波数成分が符号ィ匕されていないために音質が 劣化し、 一般的にはこもった感じの音となってしまう。
このような低ビットレートでの音質劣化を解決する技術として帯域拡張技術 が注目を集めている。 帯域拡張技術では、 MPEG— 2 AACなどの方式で 低ビットレートに符号化した低域ビットス トリームに、 僅かな符号量 (一般に 数 k b p s程度) の補助情報である高域ビットス トリームを付加してビットス トリームを構成する。 オーディオ復号装置 (デコーダ) では、 まず、 MPEG -2 AACなどの復号方法で低域ビットス トリームを復号して、 高域周波数 成分が含まれていない低域オーディオ信号を得る。 そして、 帯域拡張技術によ り、 高域ビットス トリームが示す補助情報に従った加工を低域オーディオ信号 に施して高域周波数成分を生成する。 こうして得られた高域周波数成分と、 低'' 域ビットストリームを復号して得られた低域オーディ'ォ信号を合成して高域周 波数成分を含む復号オーディォ信号を得る。
帯域拡張技術を用いた従来のオーディオ復号装置の一例として、 MPEG— 2 AAC復号装置に SBRと呼ばれる帯域拡張技術を組み合わせた例が、 下 記の文献 1の 5. 6節に記述されている。 ここに記述されているような帯域拡 張技術を用いた従来のオーディォ復号装置を図 1に示す。
文献 1 : 「D i g i t a l Ra d i o Mo n d i a l e (DRM) ; S y s t em S p e c i f i c a t i o nJ (ETS I T S 101 98 0 VI. 1. 1) 、 2001年 9月発行、 p . 42-57
図 1に示す従来のオーディオ復号装置は、 ビットス トリーム分離部 100、 低域復号部 101、 複素サブパンド分割部 402、 複素帯域拡張部 403、 複 素サブバンド合成部 404力 ら構成される。
ビットス トリーム分離部 100は、 入力されたビットス トリームを分離して 低域復号部 101と複素帯域拡張部 403へ出力する。 ビットス トリ一ムには 低域信号が M PEG- 2 AACなどの符号化方式で符号化されている低域ビ ットストリームと、 複素帯域拡張部が高域信号を生成するために必要な情報を 含む高域ビットストリームが多重化されている。 低域ビットストリームは低域 復号部 101へ、 高域ビットストリームは複素帯域拡張部 403へ出力される 低域復号部 101は、 入力された低域ビットストリ一ムを復号して低域ォー ディォ信号を生成し、 複素サブバンド分割部 4 0 2へ出力する。 低域復号部 1 0 1は MP E G— 2 AA Cなど既存のオーディオ復号方式を用いて低域ビッ トストリームを復号する。
複素サブパンド分割部 4 0 2は、 入力された低域オーディォ信号を複素サブ パンド分割フィルタによって帯域分割する。 帯域分割された低域サブバンド信 号は帯域拡張部 4 0 3および複素サブバンド合成部 4 0 4へ出力される。 複素 サブバンド分割フィルタについては、 例えば、 従来から広く知られている 3 2 パンド複素 QMF (Quadrature Mirror Filter:直交鏡像フィルタ) フィルタ パンクなどを用いることができる。 この場合、 3 2サブバンドに帯域分割され た複素数の低域信号 (低域サブパンド信号) が複素帯域拡張部 4 0 3およぴ複 素サブバンド合成部 4 0 4へ出力される。 3 2パンド複素分析 QMFフィルタ パンクの計算式は以下のようになる。 、 ^ 、mM— ") (")^¾ + 0)( + 。), = 0,1, ..., ^"1 - 1 402. 1 n=-∞
,2π
κ ^ e 3K\ ' . · . 402. Ζ ここで、 χ(η)は低域オーディォ信号を表し、 Xk(ra)は kパンド目の低域サブバ ンド信号を表し、 h(n)は分析用低域通過フィルタを表す。 本例では Kl=64であ る。
複素帯域拡張部 4 0 3は、 入力された高域ビットストリ ムと低域サブパン ド信号から高域のオーディオ信号を表す高域サブパンド信号を生成してサブバ ンド合成部 4 0 4へ出力する。 複素帯域拡張部 4 0 3は、 図 2に示すように複 素高域生成部 5 0 0と複素振幅調整部 5 0 1から構成される。 複素帯域拡張部 4 0 3は入力端子 5 0 2を介して高域ビットストリームを入力し、 入力端子 5 0 4を介して低域サブバンド信号を入力し、 出力端子 5 0 3を介して高域サブ パンド信号を出力する。 複素高域生成部 5 0 0は、 低域サブバンド信号と高域ビットストリームを入 力とし、 低域サブバンド信号の中から高域ビットストリームが指定する帯域の 信号を高域サブバンドへと複写する。 また、 この複写の際には髙域ビットスト リームが指定する信号加工を施す場合もある。 例えば、 周波数が低い順にサブ パンド 0からサブバンド 6 3まで 6 4個のサブバンドを仮定し、 低域サブバン ド信号としてサブバンド 0からサブバンド 1 9までの複素数のサブバンド信号 が入力端子 5 0 4を介して供給されているとする。 また高域ビットストリーム には、 サブバンド A (A > 1 9 ) をどの低域サブパンド (サブバンド 0から 1 9 ) から信号を複写して生成するかを表す複写情報、 および、 複写の際に施す 信号加工方法 (フィルタリングなどあらかじめ定められた数種類の手段から選 択して用いられる) を示す信号加工情報が含まれているとする。 複素高域生成 部 5 0 0では、 高域のサブパンドの複素信号 (複写加工サブバンド信号と名付 ける) を複写情報が示す低域のサブパンドの複素信号と同一とする。 さらに、 音質向上のために信号加工情報が何らかの信号加工の必要性を表している場合 は、 複写加工サブバンド信号に信号加工情報が示す信号加工を施す。 このよう にして生成された複写加工サブバンド信号は複素振幅調整部 5 0 1に出力され る。
複素高域生成部 5 0 0における信号加工の一例として、 音声符号化で一般に 良く知られる線形予測逆フィルタを用いることができる。 一般に、 線形予測逆 フィルタのフィルタ係数は入力信号を線形予測することにより算出でき、 当該 フィルタ係数を用いた前記線形予測逆フィルタは入力信号のスぺクトル特性を 白色化するように動作することが知られている。 このような線形予測逆フィル タを信号加工として用いる理由は、 高域サブパンド信号のスぺクトル特性を、 複写元の低域サブバンド信号のスぺク トル特性よりも平坦化するためである。 例えば、 音声信号などの場合、 低域サブパンド信号と高域サブバンド信号のス ぺクトル特性を比較すると、 高域サブパンド信号のスぺク トル特性は低域サブ パンド信号のスぺクトル特性よりも平坦であることが多いため、 このような平 坦化処理を備えることにより、 高品質な帯域拡張技術が実現できる。
複素振幅調整部 5 0 1は、 入力された複写加工サブパンド信号の振幅に対し て、 高域ビットストリームが指定する補正を施して高域サブパンド信号を生成 する。 つまり、 符号化側における入力信号の高域成分の信号エネルギ (目標ェ ネルギと名付ける) と、 帯域拡張部 4 0 3が生成する信号の高域信号エネルギ が等価となるような振幅補正を複写加工サブパンド信号に対して施す。 そのた. めに、 高域ビットストリームには目標エネルギを表す情報が含まれている。 生 成された高域サブバンド信号は出力端子 5 0 3へ出力される。 なお、 高域ビッ トストリームに記載される目標エネルギは、 例えば、 サブバンド毎にフレーム 単位で算出されていると考えることができる。 また、 入力信号の時間及び周波 数方向の特性を考慮して、 時間方向にはフレームをさらに分割した時間単位で 、 周波数方向には複数のサブパンドをまとめたパンド単位で算出しても良い。 時間方向のフレームをさらに分割した時間単位で算出する場合には、 エネルギ の時間変化をより詳細に表すことができる。 複数のサブバンドをまとめたパン ド単位で算出する場合には、 目標エネルギを符号ィヒするのに必要なビット数を 削減することができる。 ここで、 目標エネルギの算出で利用する時間及び周波 数方向の分割単位は時間周波数ダリッドとし、 その情報は高域ビットストリー ムに記載される。
. また、 複素振幅調整部 5 0 1の他の実施例として、 複写加工サブパンド信号 に加えて付加信号を用いて高域サブパンド信号を生成することができる。 この 場合、 高域サブパンド信号のエネルギが目標エネルギとなるように、 複写加工 サブパンド信号の振幅と付加信号の振幅とが調整される。 付加信号の例として は、 雑音信号あるいはトーン信号が挙げられる。 複写加工サブバンド信号と付 加信号の振幅調整.用のゲインは、 例えば、 複写加工サブバンド信号と付加信号 とのうちどちらか一方を、 生成後の高域サブパンド信号の主成分とし、 他の一 方を副成分とした上で以下のように算出される。 複写加工サブバンド信号を主 成分とする場合は、 Gmain=sqrt (R/E/ ( 1 +Q) )
Gsub=sqrt (RXQ/N/ (1+Q) ) ここで、 Graainは主成分の振幅調整用ゲインであり、 Gsubは副成分の振幅調 整用ゲインであり、 Eと Nは、 それぞれ、 複写加工サブパンド信号と付加信号 のエネルギを表す。 なお、 付加信号のエネルギが 1に正規化されている場合は
N=lである。 また、 Rは目標エネルギを表し、 Qは主成分と副成分のェネル ギ比を表し、 Rと Qは高域ビットストリームに記載されているものとする。 な お、 sqrt () は平方根である。 一方、 付加信号を主成分とする場合は、
Gmain=sqrt (R/N (1+Q) )
Gsub=sqrt (RXQ/E/ (1+Q) ) となる。 以上のように算出した振幅調整用ゲインを用いて、 複写加工サブパン ド信号と付加信号を重み付け加算することにより高域サブパンド信号は算出で さる。
ここで、 複素振幅調整部 501における振幅調整の動作および効果を、 図 3 を用いて詳細に説明する。 符号化側における入力信号の高域成分の信号位相 ( 図中、 位相 A) と、 前記低域サブパンド信号から導出した高域サブバンド信号 の信号位相 (図中、 位相 とは図 3に示すように全く異なるが、 前記高域サ ブバンド信号は、 その信号エネルギが目標エネルギと同一となるように振幅調 整されているため、 聴感的な音質劣化を抑えることができる。 これは人の聴覚 が信号の位相変動よりもエネルギ変動により敏感であるためである。
複素サブパンド合成部 404は、 入力された低域サブパンド信号と高域サブ パンド信号を複素サブパンド合成フィルタによって帯域合成する。 この帯域合 成により生成されたオーディォ信号がオーディォ復号装置の出力となる。 複素 サブバンド合成フィルタは、 複素サブパンド分割部 4 0 2で用いられている複 素サブバンドフィルタに対応したものが用いられる。 つまり、 ある信号を複素 サブバンド分割フィルタで帯域分割し、 これを複素サブバンド合成フィルタで 帯域合成すると元の信号 (複素サブパンド分割フィルタの入力信号) が完全に 再構成できるように選ばれる。 例えば、 複素サブパンド合成フィルタとして式 4 0 2 . 1に示したような 3 2バンド複素 QMF分割フィルタパンク (Kl== 6 4 ) が用いられている場合、 下記の式 4 0 4. 1を用いることができる。
* 1 Κ2-1
404. 1 tn--∞ =0 ここで、 f (n )は合成用低域通過フィルタを表す。 本例では K2-64である。 また、 帯域拡張技術によって低域復号部 1 0 1が出力するオーディオ信号の サンプリング周波数よりも複素サブパンド合成部 4 0 4が出力するオーディオ 信号のサンプリング周波数が高い場合は、 複素サブバンド合成部 4 0 4が出力' するオーディオ信号の低域部 (ダウンサンプリングした結果) が低域復号部 1 0 1が出力するオーディオ信号と等しくなるように選ばれる。 複素サブパンド 合成部 4 0 4では 6 4バンド複素 QMF合成フィルタバンク (式 4 0 4 . 1に おいて K2- 1 2 8 ) を用いることができる。 なお、 この場合、 低域側 3 2バン ドには 3 2バンド複素分析 QMFフィルタバンクの出力が信号値として用いら れる。
上述した従来のオーディォ復号装置では、 演算量が大きい複素サブパンド分 割部およぴ複素サブバンド合成部を有する上、 帯域拡張処理を複素数上で行う ため必要演算量 ·装置規模が大きいという問題があった。
発明の開示 本発明の目的は、 高音質を維持しつつ演算量を低減した帯域拡張技術、 およ ぴこれを用いたオーディオ復号装置、 オーディオ復号方法およびオーディオ復 号用プログラムを提供することにある。
上記目的を達成するために、 本発明のオーディオ復号装置は、 ビットストリ 一ムを低域ビットス トリームと高域ビットストリームに分離するビットスト ーム分離部と、
前記低域ビットストリームを復号して低域オーディオ信号を生成する低域復 号部と、
前記低域オーディォ信号を複数の周波数帯域の複素数信号に帯域分割して低 域サブバンド信号を生成する複素サブパンド分割部と、
前記低域サブバンド信号に基づきエネルギ補正係数を算出する補正係数抽出 部と、
前記高域ビットストリームに記載される目標エネルギを前記エネルギ補正係 数により補正し補正目標エネルギを算出するエネルギ補正部と、
前記高域ビットストリームの指示に従い前記低域サブパンド信号を複写およ び加工して作成した信号の信号エネルギを前記補正目標ェネルギに振幅補正し て高域サブバンド信号を生成する帯域拡張部と、
前記低域サブバンド信号と前記高域サブパンド信号の実部をサブバンド合成 フィルタにより帯域合成して復号オーディォ信号を得るサブバンド合成部とか ら構成されている。
また、 本発明の他のオーディオ復号装置では、 前記補正係数抽出部において 、 前記低域サブバンド信号の信号位相を算出し、 前記信号位相によりエネルギ 捕正係数を算出するようにしてもよい。 また、 前記補正係数抽出部において、 前記低域サブバンド信号の実部のエネルギと前記低域サブパンド信号の信号ェ ネルギとの比をエネルギ補正係数として算出するようにしてもよい。 さらに、 前記補正係数抽出部において、 前記低域サブパンド信号の各サンプルの位相を 平均化してエネルギ捕正係数を算出するようにしてもよい。. さらに、 前記補正 係数抽出部において、 前記周波数帯域毎に算出したエネルギ補正係数を平滑化 するようにしてもよい。
また、 本発明の他のオーディオ復号装置では、 ビットストリームを低域ビッ トストリームと高域ビットストリームに分離するビットストリーム分離部と、 前記低域ビットストリームを復号して低域オーディオ信号を生成する低域復 号部と、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブバンド信号を生成するサブバンド分割部と、
予め定めたエネルギ補正係数を発生する補正係数発生部と、
前記高域ビットストリームに記載される目標エネルギを前記エネルギ補正係 数により補正し補正目標ェネルギを算出するエネルギ補正部と、
前記高域ビットストリームの指示に従い前記低域サブパンド信号を複写およ び加工して作成した信号の信号エネルギを前記捕正目標エネルギに振幅補正し て高域サブバンド信号を生成する帯域拡張部と、
' 前記低域サブバンド信号と前記高域サブバンド信号の実部をサブバンド合成 フィルタにより帯域合成して復号オーディォ信号を得るサブバンド合成部とか ら構成されている。
また、 本発明の他のオーディオ復号装置では、 前記補正係数発生部において 、 乱数を発生させ当該乱数をエネルギ補正係数とするようにしてもよい。 さら に、 前記補正係数発生部において、 周波数帯域ごとに予め定めたエネルギ補正 係数を発生させるようにしてもよい。
本発明によるオーディォ復号装置は、 高域成分の目標エネルギを補正するェ ネルギ補正部と、 低域サブパンド信号からエネルギ補正係数を算出する補正係 数算出部あるいは予め定めた方法でエネルギ補正係数を発生させる補正係数発 生部を設けたこと ^特徴としている。 帯域拡張処理を実数のみで実施する際に 必要となる目標エネルギの捕正処理を、 これらの処理部が実行する。 これによ り、 高音質を維持しつつ、 複素サブバンド合成フィルタおよぴ複素帯域拡張部 の代わりに、 より演算量が少ない実数のサブパンド合成フィルタおよび帯域拡 張部を用いることができ、 必要演算量 ·装置規模を低減できるという効果が得 られる。 さらに、 低域サブバンド信号を用いずにエネルギ補正係数を発生させ る補正係数発生部を用いる場合には、 サブバンド合成フィルタおよび帯域拡張 部に加えて、 演算量が少ない実数のサブパンド分割フィルタを用いることがで き、 より必要演算量 ·装置規模を低減できるという効果が得られる。 図面の簡単な説明
図 1は、 従来のオーディオ復号装置の構成を示すプロック図である。
図 2は、 従来技術における複素帯域拡張部 4 0 3の構成を示すブロック図で める。
図 3は、 従来技術における振幅調整の動作を説明するための図である。 図 4は、 本発明における振幅調整の動作を説明するための図である。
図 5は、 エネルギ補正をしない場合の振幅調整の動作を説明するための図で ある。
図 6は、 本発明の第 1の実施形態のオーディォ復号装置の構成を示すプロッ ク図である。
図 7は、 本発明の第 2の実施形態のオーディォ復号装置の構成を示すプロッ ク図である。
図 8は、 本発明における帯域拡張部 1 0 3の構成を示すプロック図である。 発明を実施するための最良な形態
次に、 本発明の実施の形態について図面を参照して詳細に説明する。
(第 1の実施形態)
図 6は本発明の第 1の実施形態のオーディォ復号装置の構成を示すプロック 図である。 本実施形態のオーディオ復号装置は、 ビットストリーム分離部 1 0 0、 低域復号部 1 0 1、 複素サブバンド分割部 1 0 2、 帯域拡張部 1 0 3、 サ プバンド合成部 1 0 4、 エネルギ補正部 1 0 5、 捕正係数抽出部 1 0 6とから 構成される。
ビットストリーム分離部 1 0 0は、 入力されたビットストリームを分離して 低域復号部 1 0 1と帯域拡張部 1 0 3とエネルギ補正部 1 0 5へ出力する。 ビ ットストリームには低域信号が符号ィ匕されている低域ビットストリームと、 帯 域拡張部 1 0 3が高域信号を生成するために必要な情報を含む高域ビットスト リームが多重化されている。 低域ビットストリームは低域復号部 1 0 1 へ、 高 域ビットストリームは帯域拡張部 1 0 3とエネルギ補正部 1 0 5へ出力される 低域復号部 1 0 1は、 入力された低域ビットストリームを復号して低域ォー ディォ信号を生成し、 複素サブバンド分割部 1 0 2へ出力する。 低域復号部 1 0 1は MP E G— 2 AA Cなど既存のオーディオ復号方式を用いて低域ビッ トストリームを復号する。
複素サブバンド分割部 1 0 2は、 入力された低域オーディオ信号を複素サブ パンド分割フィルタによって帯域分割する。 帯域分割された低域サブバンド信 号は帯域拡張部 1 0 3とサブパンド合成部 1 0 4と補正係数抽出部 1 0 6 へ出 力される。
捕正係数抽出部 1 0 6は、 低域サブパンド信号から後述する手法でエネルギ 捕正係数を算出し、 エネルギ補正部 1 0 5へ出力する。
エネルギ補正部 1 0 5は、 高域ビットストリームに記載される高域成分の目 標エネルギをエネルギ補正係数により補正した補正目標エネルギを算出し、 帯 域拡張部 1 0 3へ出力する。
帯域拡張部 1 0 3は、 入力された高域ビットストリームと低域サブバンド信 号と補正目標エネルギから高域のオーディオ信号を表す高域サブバンド信号を 生成してサブパンド合成部 1 0 4へ出力する。
サブパンド合成部 1 0 4は、 入力された低域サブバンド信号と高域サブバン ド信号をサブバンド合成フィルタによつて帯域合成する。 帯域合成により生成 されたオーディォ信号がオーディォ復号装置の出力となる。
このように構成される本発明のオーディオ復号装置と図 1の従来のオーディ ォ復号装置の相違は、 図 1の複素サブバンド分割部 4 0 2の替わりに図 6では 複素サブバンド分割部 1 0 2があり、 図 1の複素サプバンド合成部 4 0 4の替 わりに図 6ではサブパンド合成部 1 0 4があり、 図 1の複素帯域拡張部 4 0 3 の替わりに図 6では帯域拡張部 1 0 3があり、 また、 本実施形態 (図 6 ) には 補正係数抽出部 1 0 6とエネルギ補正部 1 0 5が追加されていることにある。 他の処理部については、 従来方式と同じであり当業者にとってよく知られてお り、 また本発明とは直接関係しないので、 その詳細な説明は省略する。 以下で は従来と手法が異なる複素サブバンド分割部 1 0 2、 帯域拡張部 1 0 3、 サブ バンド合成部 1 0 4、 エネルギ捕正部 1 0 5、 補正係数抽出部 1 0 6について 詳細に説明する。
まず、 複素サブパンド分割部 1 0 2とサブバンド合成部 1 0 4について説明 する。 従来はサブバンド分割フィルタとして複素数のサブバンド信号を生成す る式 4 0 2 . 1のようなフィルタバンクを用いていた。 また、 これに対応する 逆変換として式 4 0 4 . 1のようなフィルタバンクをサブバンド合成フィルタ として用いていた。 式 4 0 4 . 1の出力、 あるいは、 式 4 0 4 . 1の出力を式 4 0 2 . 1の入力信号のサンプリング周波数にダウンサンプリングした信号は 式 4 0 2. 1の入力と完全に一致する完全再構成性がある。 高音質な復号ォ一 ディォ信号を得るためには、 この完全再構成性の関係がサブバンド分割 ·合成 フィルタに必要となる。
本実施形態においては、 演算量を低減するために、 従来の複素サブパンド合 成部 4 0 4で用いられている複素サブバンド合成フィルタを、 実数のサブバン ド合成フィルタに置き換えている。 しかしながら、 単にサブバンド合成フィル タを複素数から実数に変更してしまうと完全再構成性は失われ、 音質が劣化す る。
複素数のサブパンド分割フィルタと実数のサブバンド合成フィルタの間で完 全再構成性を実現するためには、 従来の複素サブパンド分割フィルタの出力に 回転演算を施すと良いことが従来から広く知られている。 この回転演算は複素 数の実数軸と虚数軸を (π÷4) だけ回転させるものであり、 一般的に良く知 られた D FTから DC Τを導出する手法と同じである。 例えば、 k0=lZ2の 場合、 式 402. 1の 32パンド複素 QMF分割フィルタバンクの計算式には 、 各サブバンド kに対して以下の回転演算 (K = K1) を施すと良い。
Figure imgf000015_0001
なお、 式 102. 1における 3 4 Κは 1/4 Κでも良い。
このように従来の複素サブバンド分割部 402の後段に式 102. 1の回転 演算を行う処理部'を付加したものを複素サブパンド分割部 102としても良い が、 これらサブバンド分割フィルタと回転演算処理を合わせた処理と等価な演 算をより少ない演算量で実現可能な下式を複素サブバンド分割部 102で行う と良い。
Xkim) -
Figure imgf000015_0002
1 102. 2 これに対応する実数のサブパンド合成フィルタとしては、 式 404. 1に、 下記の式 104. 1に示す変換を施し、 実数部分のみを取り出した下記の式 1 04. 2をサブバンド合成部 104で用いれば、 完全再構成性を実現できるよ うになる。 irJk+k0)^K 104.
WK 2》
Figure imgf000016_0001
•" 104. 2 ここで、 Re[. ]は複素サブパンド信号の実数部のみを取り出すことを表す。 次に帯域拡張部 1 0 3について説明する。 帯域拡張部 1 0 3は、 入力された 高域ビットストリームと低域サブバンド信号と後述する補正目標エネルギから 高域のオーディォ信号を表す高域サブバンド信号を生成してサブパンド合成部 1 0 4へ出力する。 帯域拡張部 1 0 3は、 図 8に示すように高域生成部 3 0 0 と振幅調整部 3 0 1と変換部 3 0 5から構成される。 帯域拡張部 1 0 3は入力 端子 3 0 2を介して高域ビットストリームを入力し、 入力端子 3 0 4を介して 低域サブパンド信号を入力し、 入力端子 3 0 6を介して補正目標エネルギを入 力し、 出力端子 3 0 3を介して高域サブパンド信号を出力する。.
変換部 3 0 5は、 入力端子 3 0 4を介して入力した複素数の低域サブパンド 信号から実部のみを取り出し、 実数の低域サブバンド信号 (以下、 断りがない 限り低域サブバンド信号は実数とする) に変換し高域生成部 3 0 0へ出力する 高域生成部 3 0 0は、 低域サブパンド信号と高域ビットストリームを入力と し、 低域サブパンド信号の中から高域ビットストリームが指定する帯域の信号 を髙域サブパンドへと複写する。 また、 この複写の際には高域ビットストリー ムが指定する信号加工を施す場合もある。 例えば、 周波数が低い順にサブバン ド 0からサブパンド 6 3まで 6 4個のサブパンドを仮定し、 低域サプバンド信 号としてサブパンド 0からサブパンド 1 9までの実数のサブパンド信号が変換 部 3 0 5から供給されているとする。 また高域ビットストリームには、 サブバ ンド A (A > 1 9 ) をどの低域サブパンド (サブバンド 0から 1 9 ) から信号 を複写して生成するかを表す複写情報、 および、 複写の際に施す信号加工方法
(フィルタリングなどあらかじめ定めちれた数種類の手段から選択して fflいら れる) を示す信号加工情報が含まれているとする。 高域生成部 3 0 0の処理は 、 高域のサブバンドの実数信号 (複写加工サブパンド信号と名付ける) を複写 情報が示す低域のサブパンドの実数信号と同一とする。 さらに、 音質向上のた めに信号加工情報が何らかの信号加工の必要性を表している場合は、 複写加工 サブパンド信号に信号加工情報が示す信号加工を施す。 このようにして生成さ れた複写加工サブパンド信号は振幅調整部 3 0 1に出力される。
高域生成部 3 0 0における信号加工の一例として、 従来技術の複素髙域生成 部 5 0 0と同様に線形予測逆フィルタを用いることができる。 当該フィルタの 効果は複素高域生成部 5 0 0と同様であるため説明を省略する。 なお、 高域生 成処理において線形予測逆フィルタを用いる場合、 実数信号上で動作する髙域 生成部 3 0 0は、 複素信号上で動作する複素高域生成部 5 0 0に比べて、 当該 フィルタ係数算出に必要な演算量を削減できるという効果がある。
振幅調整部 3 0 1は、 高域ビットストリームに従い、 入力された複写加エサ ブバンド信号の振幅を補正目標エネルギと等価となるように補正し、 高域サブ パンド信号を生成する。 生成された高域サブバンド信号は出力端子 3 0 3へ出 力される。 なお、 高域ビットストリームに記載される目標エネルギは、 従来例 と同様に、 例えば、 サブバンド毎にフレーム単位で算出されていると考えても 良いし、 入力信号の時間及び周波数方向の特性を考慮して、 時間方向にはフレ ームをさらに分割した時間単位で、 周波数方向には複数のサブバンドをまとめ たバンド単位で算出されていると考えても良い。 時間方向のフレームをさらに 分割した時間単位で算出する場合には、 エネルギの時間変化をより詳細に表す ことができる。 複数のサブバンドをまとめたパンド単位で算出する場合には、 目標エネルギを符号ィ匕するのに必要なビット数を削減するととができる。 ここ で、 目標エネルギの算出で利用する時間及び周波数方向の分割単位は時間周波 数グリッドとし、 その情報は高域ビットストリームに記載される。
また、 振幅調整部 3 0 1の他の実施例として、 従来例と同様に、 複写加エサ プバンド信号に加えて付加信号を用いて高域サブパンド信号を生成する場合に おいても、 高域サブパンド信号のエネルギが補正目標エネルギとなるように、 複写加工サブバンド信号の振幅と付加信号の振幅とが調整される。 付加信号の 例としては、 雑音信号あるいはトーン信号が挙げられる。 複写加工サブバンド 信号と付加信号の振幅調整用のゲインは、 例えば、 複写加工サブバンド信号と 付加信号とのうちどちらか一方を、 生成後の高域サブバンド信号の主成分とし 、 他の一方を副成分とした上で以下のように算出される。 複写加エサ: 信号を主成分とする場合は、
Gmain=sqrt (a XR/Er/ ( 1 + Q) )
Gsub = sqrt (a XRXQ/Nr/ (1 +Q) ) ここで、 Gmainは主成分の振幅調整用ゲインであり、 Gsubは副成分の振幅調 整用ゲインであり、 Erと Nrは、 それぞれ、 複写カ卩ェサブパンド信号と付加信 号のエネルギを表す。 なお、 これらのエネルギの表記 Erと Nrが従来例の説明 時の表記 E、 Nと異なるのは、 従来例においては複写加工サブバンド信号と付 加信号が複素数信号であるのに対して、 本発明では実数信号であることを区別 するためである。 付加信号のエネルギが 1に正規化されている場合は Nr= 1で ある。 また、 Rは目標エネルギを表し、 aは後述する補正係数抽出部 106で 算出されるエネルギ補正係数を表す。 したがって、 a XRは補正目標エネルギ を表す。 Qは主成分と副成分のエネルギ比を表し、 Rと Qは高域ビットストリ ームに記載されているものとする。 なお、 sqrt () は平方根である。 一方、 付 加信号を主成分とする場合は、 Gmain、 Gsubは下記の式により示される。
Graain=sqrt (a X R/Nr/ (1+Q) )
G sub = sqrt (a XRXQ/Er/ (1+Q) ) また、 付加信号を主成分とする場合には、 複素数の低域サブバンド信号に基 づいて算出されたエネルギ補正係数 aの代わりに、 エネルギ捕正係数 aと同様 の手法によって付加信号に基づいて算出されたエネルギ補正係数 bを用いて、
Gmain、 Gsubを下記の式により示すようにしてもよい。
Gmain=sqrt ( b X R/Nr/ ( ί + Q) )
Gsub = sqrt ( b X R X Q/Er/ ( 1 + Q) ) なお、 付加信号として、 記憶領域に予め格納されている信号を用いる場合に は、 エネルギ補正係数 bについても予め算出しておき、 定数とすることによつ て、 エネルギ補正係数 IDの算出に関わる演算を省略することができる。 以上の ように算出した振幅調整用ゲインを用いて、 複写加工サブバンド信号と付加信 号を重み付け加算することにより高域サブバンド信号は算出できる。
ここで、 振幅調整部 3 0 1における振幅調整の動作および効果を、 図 4を用 いて詳細に説明する。 実数の高域サブパンド信号 (図中、 振幅調整後の高域成 分の実部) は、 その信号エネルギが、 入力信号の高域成分の信号エネルギを表 す目標エネルギを補正して得られた補正目標エネルギと同一となるように振幅 調整される。 ここで、 図 4に示すように補正目標エネルギが変換部 3 0 5で変 換される前の複素数の低域サブパンド信号の信号位相 (図中、 位相 B ) を考慮 して算出されている場合、 複素数の低域サブパンド信号から導出した仮想的な 複素数の高域サブバンド信号を鑑みると、 仮想的な複素数の高域サブバンド信 号の信号エネルギは目標エネルギと等価になっている。 なお、 本例で利用する 複素サブパンド分割部 1 0 2とサブバンド合成部 1 0 4とからなる分析合成系 では、 上述したようにサブパンド信号の実部のみを用いて、 実部と虚部の両方 を用いたときと同様に完全再構成が得られる。 したがって、 実数の高域サブバ ンド信号が補正目標エネルギと同一な信号エネルギになるように振幅調整され ることにより、 従来例と同様に、 人の聴覚上重要なエネルギ変動は最小限に抑 えられるため、 聰感的な音質劣化を抑えることができる。 一方、 振幅調整処理 において、 補正目標エネルギではなく目標エネルギを用いて振幅調整した場合 の例を図 5に示す。 図 5に示すように実数の高域サブバンド信号が目標エネル ギと同一な信号エネルギになるように振幅調整された場合、 前記仮想的な複素 数の高域サブパンド信号の信号エネルギは目標エネルギょりも大きくなつてし まう。 この結果、 サブバンド合成部 1 0 4で帯域合成されたオーディォ信号の 高域成分は、 符号化側の入力信号の高域成分よりも大きくなり、 音質劣化の原 因となる。
以上で帯域拡張部 1 0 3の説明を終える。 帯域拡張部 1 0 3の処理を低演算 量な実部のみの処理で実現するとともに高音質な復号信号を得るためには、 上 述したように振幅調整において補正目標エネルギを用いる必要があり、 本実施 形態では補正係数抽出部 1 0 6とエネルギ補正部 1 0 5において補正目標エネ ルギを算出する。
補正係数抽出部 1 0 6は、 入力された複素数の低域サブバンド信号に基づい てエネルギ捕正係数を算出し、 エネルギ補正部 1 0 5へ出力する。 エネルギ補 正係数の算出は、 複素数の低域サブバンド信号の信号位相を算出し、 れをェ ネルギ補正係数とすることにより実施できる。 例えば、 複素数の信号サンプル から成る低域サブバンド信号のエネルギと、 その実部のみから算出したェネル ギとを算出し、 これらエネルギの比をエネルギ補正係数とすることができる。 あるいは、 低域サブバンド信号を構成する複素数の各信号サンプル値の位相を 算出し、 これを平均化してエネルギ補正係数を算出することもできる。 さらに 、 上述した手法では、 帯域分割された周波数帯域毎にエネルギ補正係数が算出 されるが、 隣接する帯域のエネルギ補正係数と当該帯域のエネルギ補正係数を 平滑ィ匕した係数を、 当該帯域のエネルギ補正係数とすることもできる。 また、 予め定めた時定数と前フレームのエネルギ捕正係数とを用いて現フレームのェ ネルギ捕正係数を時間方向に平滑ィ匕することもできる。 このようなエネルギ補 正係数の平滑ィヒを行うことにより、 エネルギ捕正係数の急激な変化を抑制する ことができ、 結果として帯域拡張後のオーディオ信号の品質を向上させること ができる。 なお、 上述した手法におけるエネルギの算出あるいは、 信号サンプル値の位 相の平均化は、 従来の技術において説明した目標エネルギの時間周波数ダリッ ドに合わせて、 当該時間周波数ダリッドに含まれる信号サンプルを用いて実施 するようにしても良い。 帯域拡張後のオーディオ信号の品質を向上させるため には、 位相特性を正確に表すエネルギ補正係数を算出する必要があり、 このた めには、 位相特性変化の少ない信号サンプルを用いてエネルギ補正係数を算出 することが望ましい。 一般的に、 時間周波数グリッドは、 当該グリッド内の信 号の変化が小さくなるように設定される。 したがって、 時間周波数グリッド'に 合わせてエネルギ捕正係数を算出することにより、 位相特性を正確に表すエネ ルギ補正係数を算出することができ、 結果として帯域拡張後のオーディオ信号 の品質を向上させることができる。 また、 本手法は、 時間方向あるいは周波数 方向のいずれか一方のみについて信号の変化を考慮し、 時間方向あるいは周波 数方向のどちらか一方のダリッド境界のみによって区切られた範囲に含まれる 信号サンプルを用いて実施することもできる。
エネルギ補正部 1 0 5は、 高域ビットストリームに記載される入力信号の高 域成分の信号エネルギを表す目標エネルギを、 捕正係数抽出部 1 0 6で算出し たエネルギ補正係数により補正して補正目標エネルギを算出し、 帯域拡張部 1
0 3へ出力する。
(第 2の実施形態)
次に、 本発明の第 2の実施の形態について図 7を用いて詳細に説明する。 図 7を参照すると、 本発明の第 2の実施の形態としてのオーディォ復号装置 が示されている。 本実施形態のオーディオ復号装置は、 ビットストリーム分離 部 1 0 0、 低域復号部 1 0 1、 サブバンド分割部 2 0 2、 帯域拡張部 1 0 3、 サブバンド合成部 1 0 4、 補正係数発生部 2 0 6、 エネルギ補正部 1 0 5と力 ら構成される。
本発明の第 2の実施の形態は、 本発明の第 1の実施の形態と比較して、 複素 サブパンド分割部 1 0 2がサブパンド分割部 2 0 2に置き換わり、 補正係数抽 出部 1 0 6が補正係数発生部 2 0 6に置き換わっているのみであり、 他の部分 については全く同一である。 そこでサブバンド分割部 2 0 2と補正係数発生部 2 0 6について詳細に説明する。
サブパンド分割部 2 0 2は、 入力された低域オーディォ信号をサブバンド分 割フィルタによって帯域分割する。 帯域分割された実数の低域サブパンド信号 は帯域拡張部 1 0 3とサブパンド合成部 1 0 4へ出力される。 ここで、 サブバ ンド分割部 2 0 2で利用されるサブバンド分割フィルタは式 1 0 2 . 2の実数 の処理部のみから構成され、 その出力信号は実数の低域サブバンド信号となる 。 したがって、 帯域拡張部 1 0 3に入力される低域サブバンド信号は実数であ るため、 変換部 3 0 5においては入力した実数の低域サブパンド信号をそのま ま高域生成部 3 0 0に出力する。
補正係数発生部 2 0 6は、 予め定めた手法でエネルギ捕正係数を算出し、 ェ ネルギ補正部 1 0 5へ出力する。 エネルギ補正係数の算出方法としては、 例え ば、 この捕正係数発生部 2 0 6において、 乱数を発生させ当該乱数をエネルギ 捕正係数とすることができる。 ここで、 発生させる乱数は 0から 1に正規化さ れる。 第 1の実施の形態において説明したように、 実数の高域サブパンド信号が 目標エネルギと同一な信号エネルギになるように振幅調整された場合、 復号後 のオーディオ信号の高域成分は目標エネルギょりも必ず大きくなつてしまう力 S 、 0から 1に正規化された乱数から導出したエネルギ補正係数を用いることに より、 補正目標ェネルギは目標エネルギよりも小さくなり得る。 この結果、 復 号後のオーディォ信号の高域成分は目標エネルギょりも必ずしも大きくはなら ないため、 音質改善効果が期待できる。 また、 周波数帯域ごとに予めエネルギ 補正係数を定めておき、 帯域拡張部 1 0 3で実施される複写における複写元の 周波数帯域および複写先の周波数帯域、 あるいは、 そのどちらか一方のみに応 じて、 エネルギ捕正係 ¾を発生させることもできる。 この場合も予め定めたェ ネルギ捕正係数は 0から 1の値とする。 本手法を用いた場合、 乱数を用いてェ ネルギ捕正係数を算出する手法に比べて、 人の聴覚特性などを利用でき、 より 音質改善効果を得る事ができる。 なお、 上記 2手法を組み合わせて、 周波数帯 域ごとに乱数の最大値を定めておき、 その範囲内に正規化された乱数をェネル ギ補正係数とすることもできる。 あるいは、 周波数帯域ごとに平均値を予め定 めておき、 その平均値を中心とした乱数を発生させ、 エネルギ補正係数を算出 することもできる。 さらに、 周波数帯域毎に算出されたエネルギ補正係数に対 して、 隣接する帯域のエネルギ補正係数により平滑ィ匕を施した係数を、 当該帯 域のエネルギ補正係数とすることもできる。 また、 予め定めた時定数と前フレ ームのエネルギ補正係数とを用いて現フレームのエネルギ補正係数を時間方向 に平滑化することもできる。
本発明の第 2の実施の形態は、 本発明の第 1の実施の形態と比較して、 低域 サブバンド信号の信号位相を考慮しないために復号オーディォ信号の品質は第 1の実施の形態よりも低下するが、 複素数の低域サブパンド信号を利用する必 要がなくなり実数のサブバンド分割フィルタを用いることができるため、 更な る低演算量ィヒを実現できる。
なお、 本発明が上記各実施形態に限定されず、 本発明の技術思想の範囲内に おいて、 各実施形態は適宜変更され得ることは明らかである。
また、 図には示されていないが、 本実施形態のオーディオ復号装置は、 上記 で説明したオーディォ復号方法を実行するためのプログラムを記録した記録媒 体を備えている。 この記録媒体は磁気ディスク、 半導体メモリまたはその他の 記録媒体であってもよい。 このプログラムは、 記録媒体からオーディオ復号装 置に読み込まれ、 オーディオ復号装置の動作を制御する。 具体的には、 オーデ ィォ復号装置内の C P Uがこのプログラムの制御によりオーディォ復号装置の ハードウェア資源に特定の処理を行うように指示することにより上記の処理が 実現される。

Claims

請求の範囲
1 . ビッ トストリームを低域ビットストリームと高域ビットス トリームに 分離するビッ トストリーム分離部と、
前記低域ビットストリームを復号して低域オーディオ信号を生成する低域復 号部と、
前記低域オーディォ信号を複数の周波数帯域の複素数信号に帯域分割して低 域サブバンド信号を生成する複素サブパンド分割部と、
前記低域サブバンド信号に基づきエネルギ補正係数を算出する補正係数抽出 部と、
前記高域ビットストリームに記載される目標エネルギを前記エネルギ補正係 数により補正し補正目標エネルギを算出するエネルギ補正部と、
前記高域ビットストリームの指示に従い前記低域サブバンド信号を複写およ び加工して作成した信号の信号エネルギを前記補正目標エネルギに振幅捕正し て高域サブバンド信号を生成する帯域拡張部と、
前記低域サブバンド信号と前記高域サブパンド信号の実部をサブバンド合成 フィルタにより帯域合成して復号オーディォ信号を得るサブバンド合成部と、 から構成されるオーディォ復号装置。
2 . 前記補正係数抽出部は、 前記低域サブパンド信号の信号位相を算出し 、 前記信号位相に基づいてエネルギ補正係数を算出する請求項 1記載のオーデ ィォ復号装置。
3 . 前記補正係数抽出部は、 前記低域サブパンド信号の実部のエネルギと 前記低域サブパンド信号の信号エネルギとの比をエネルギ補正係数として算出 する請求項 1記載のオーディォ復号装置。
4 . 前記補正係数抽出部は、 前記低域サブパンド信号の各サンプルの位相 を平均化してエネルギ補正係数を算出する請求項 1記載のオーディオ復号装置
5 . 前記補正係数抽出部は、 前記周波数帯域毎に算出したエネルギ補正係 数を平滑化する請求項 1から 4のいずれか 1項記載のオーディォ復号装置。
6 . ビットストリームを低域ビットストリームと高域ビットストリームに 分離するビッ トストリーム分離部と、
前記低域ビットストリームを復号して低域オーディオ信号を生成する低域復 号部と、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブバンド信号を生成するサブバンド分割部と、
予め定めたエネルギ補正係数を発生する補正係数発生部と、
前記高域ビットストリームに記載される目標エネルギを前記エネルギ補正係 数により補正し補正目標エネルギを算出するエネルギ補正部と、
前記高域ビットストリームの指示に従い前記低域サブバンド信号を複写およ ぴ加工して作成した信号の信号エネルギを前記補正目標ェネルギに振幅補正し て高域サブパンド信号を生成する帯域拡張部と、
前記低域サブバンド信号と前記高域サブバンド信号の実部をサブバンド合成 フィルタにより帯域合成して復号オーディォ信号を得るサブパンド合成部と、 から構成されるオーディォ復号装置。
7 . 前記補正係数発生部は、 乱数を発生させ当該乱数をエネルギ補正係数 とする請求項 6記載のオーディォ復号装置。
8 . 前記補正係数発生部は、 周波数帯域ごとに予め定めたエネルギ補正係 数を発生させる請求項 6記載のオーディオ復号装置。
9 . ビットストリームを低域ビットストリームと高域ビットストリームに 分離するステップと、
前記低域ビットストリームを復号して低域オーディオ信号を生成するステツ プと、
前記低域オーディォ信号を複数の周波数帯域の複素数信号に帯域分割して低 域サブバンド信号を生成するステップと、
前記低域サブバンド信号に基づきエネルギ補正係数を算出するステップと、 前記高域ビットストリームに記載される目標エネルギを前記エネルギ補正係 数により補正し補正目標エネルギを算出するステツプと、
前記高域ビットストリームの指示に従い前記低域サブバンド信号を複写およ ぴ加工して作成した信号の信号エネルギを前記補正目標ェネルギに振幅補正し て高域サブバンド信号を生成するステップと、
前記低域サブバンド信号と前記高域サブパンド信号の実部をサブバンド合成 フィルタにより帯域合成して復号オーディォ信号を得るステップとを備えたォ 一ディォ復号方法。
1 0 . 前記補正目標エネルギの算出において、 前記低域サブバンド信号の 信号位相を算出し、 前記信号位相に基づいてエネルギ補正係数を算出する請求 項 9記載のオーディォ復号方法。
1 1 . 前記補正目標エネルギの算出において、 前記低域サブバンド信号の 実部のエネルギと前記低域サブパンド信号の信号エネルギとの比をエネルギ補 正係数として算出する請求項 9記載のオーディオ復号方法。
1 2 . 前記補正目標エネルギの算出において、 前記低域サブバンド信号の 各サンプルの位相を平均化してエネルギ補正係数を算出する請求項 9記載のォ 一ディォ復号方法。
1 3 . 前記補正目標エネルギの算出において、 前記周波数帯域毎に算出し たエネルギ補正係数を平滑ィ匕する請求項 9から 1 2のいずれか 1項記載のォー ディォ復号方法。
1 4 . ビットストリームを低域ビットストリームと高域ビットス トリーム に分離するステップと、
前記低域ビットストリームを復号して低域オーディオ信号を生成するステツ プ、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブバンド信号を生成するステップ、
予め定めたエネルギ補正係数を発生するステップ、
前記高域ビットストリームに記載される目標エネルギを前記エネルギ補正係 数により捕正し補正目標エネルギを算出するステツプ、
前記高域ビットストリームの指示に従い前記低域サブパンド信号を複写およ ぴ加工して作成した信号の信号エネルギを前記補正目標エネルギに振幅補正し て高域サブバンド信号を生成するステップと、
前記低域サブバンド信号と前記高域サブバンド信号の実部をサブパンド合成 フィルタにより帯域合成して復号オーディォ信号を得るステップとを備えたォ 一ディォ復号方法。
1 5 . 前記エネルギ補正係数の発生において、 乱数を発生させ当該乱数を エネルギ補正係数とする請求項 1 4記載のオーディォ復号方法。
1 6 . 前記エネルギ補正係数の発生において、 周波数帯域ごとに予め定め たエネルギ補正係数を発生させる請求項 1 4記載のオーディオ復号方法。
1 7 . ビットストリームを低域ビットストリームと高域ビットストリーム に分離するビットストリーム分離処理と、
前記低域ビットストリームを復号して低域オーディオ信号を生成する低域復 号処理と、
前記低域オーディォ信号を複数の周波数帯域の複素数信号に帯域分割して低 域サブバンド信号を生成する複素サブバンド分割処理と、
前記低域サブバンド信号に基づきエネルギ補正係数を算出する捕正係数抽出 処理と、
前記高域ビットストリームに記載される目標エネルギを前記エネルギ補正係 数により補正し補正目標エネルギを算出するエネルギ補正処理と、
前記离域ビッ トストリームの指示に従い前記低域サブバンド信号を複写およ び加工して作成した信号の信号エネルギを前記補正目標エネルギに振幅補正し て高域サブパンド信号を生成する帯域拡張処理と、
前記低域サブバンド信号と前記高域サブパンド信号の実部をサブバンド合成 フィルタにより帯域合成して復号オーディオ信号を得るサブバンド合成処理と をコンピュータに実行させるためのプログラム。
1 8 . 前記補正係数抽出処理において、 前記低域サブパンド信号の信号位 相を算出し、 前記信号位相によりエネルギ補正係数を算出する請求項 1 7記載 のプログラム。
1 9 . 前記補正係数抽出処理において、 前記低域サブパンド信号の実部の エネルギと前記低域サブパンド信号の信号エネルギとの比をエネルギ補正係数 として算出する請求項 1 7記載のプログラム。
2 0 . 前記補正係数抽出処理において、 前記低域サブバンド信号の各サン プルの位相を平均化してエネルギ補正係数を算出する請求項 1 7記載のプログ ラム。
2 1 . 前記補正係数抽出処理において、 前記周波数帯域毎に算出したエネ ルギ補正係数を平滑化する請求項 1 7から 2 0のいずれか 1項記載のプロダラ ム。
2 2 . ビットストリームを低域ビットストリームと高域ビットストリーム に分離するビッ トストリーム分離処理と、
前記低域ビットストリームを復号して低域オーディオ信号を生成する低域復 号処理と、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブバンド信号を生成するサブバンド分割処理と、
予め定めたエネルギ補正係数を発生する補正係数発生処理と、
前記高域ビットストリームに記載される目標エネルギを前記エネルギ補正係 数により補正し補正目標エネルギを算出するエネルギ補正処理と、
前記高域ビットストリームの指示に従い前記低域サブバンド信号を複写およ ぴ加工して作成した信号の信号エネルギを前記補正目標ェネルギに振幅補正し て高域サブバンド信号を生成する帯域拡張処理と、
前記低域サブバンド信号と前記高域サブパンド信号の実部をサブバンド合成 フィルタにより帯域合成して復号オーディオ信号を得るサブパンド合成処理と をコンピュータに実行させるプログラム。
2 3 . 前記捕正係数発生処理において、 乱数を発生させ当該乱数をェネル ギ補正係数とする請求項 2 2記載のプログラム。
2 4 . ·前記補正係数発生処理において、 周波数帯域ごとに予め定めたエネ ルギ補正係数を発生させる請求項 2 2記載のプログラム。
2 5 . ビットストリームを低域ビットストリームと高域ビットストリーム に分離するビットストリーム分離部と、
前記低域ビットストリームを復号して低域オーディオ信号を生成する低域復 号部と、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブバンド信号を生成するサブバンド分割部と、
前記高域ビットストリームに記載される目標エネルギを予め定められたエネ ルギ補正係数により補正し補正目標ェネルギを算出するエネルギ補正部と、 前記高域ビットストリームの指示に従い前記低域サブバンド信号を複写およ ぴ加工して作成した信号の信号エネルギを前記補正目標エネルギに振幅補正し て髙域サブパンド信号を生成する帯域拡張部と、
前記低域サブパンド信号と前記高域サブパンド信号の実部をサブバンド合成 フィルタにより帯域合成して復号オーディォ信号を得るサブパンド合成部と、 から構成されるオーディォ復号装置。
2 6 . ビットストリームを低域ビットストリームと高域ビットストリーム に分離するビットストリーム分離部と、
前記低域ビットストリームを復号して低域オーディオ信号を生成する低域復 号部と、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブパンド信号を生成するサブパンド分割部と、
前記低域サブバンド信号を複写およびカ卩ェして生成される信号のエネルギ補 正係数を出力するエネルギ補正部と、
前記高域ビットストリームの指示に従い前記低域サブバンド信号を複写およ びカロェして作成した信号の信号エネルギを前記エネルギ捕正係数を用いて振幅 補正を行い、 高域サブバンド信号を生成する帯域拡張部と、
前記低域サブバンド信号と前記高域サブバンド信号の実部をサブバンド合成 フィルタにより帯域合成して復号オーディォ信号を得るサブパンド合成部と、 から構成されるオーディォ復号装置。
2 7 . ビットストリームを低域ビットストリームと高域ビットストリーム に分離するビッ トストリーム分離部と、
前記低域ビットストリームを復号して低域オーディオ信号を生成する低域復 号部と、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブバンド信号を生成するサブバンド分割部と、
前記高域ビットストリームの指示と予め定められたエネルギ補正係数とを用 いて補正目標エネルギを算出するエネルギ補正部と、
前記高域ビットストリームの指示に従い前記低域サブパンド信号を複写およ び加工して作成した信号の信号エネルギを前記補正目標エネルギに振幅補正し て高域サブバンド信号を生成する帯域拡張部と、
前記低域サブバンド信号と前記高域サブバンド信号の実部をサブパンド合成 フィルタにより帯域合成して復号オーディォ信号を得るサブパンド合成部と、 から構成されるオーディォ復号装置。
2 8 . ビットストリームを低域ビットストリームと高域ビットストリーム に分離するビッ トストリーム分離部と、
前記低域ビットストリームを復号して低域オーディオ信号を生成する低域復 号部と、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブバンド信号を生成するサブバンド分割部と、
前記低域サブパンド信号を複写および加工して作成した信号の信号エネルギ を前記高域ビットストリームに含まれる指示と予め定められたエネルギ補正係 数を用いて振幅補正を行い、 高域サブバンド信号を生成する帯域拡張部と、 前記低域サブバンド信号と前記高域サブバンド信号の実部をサブバ/ド合成 フィルタにより帯域合成して復号オーディォ信号を得るサブパンド合成部と、 から構成されるオーディォ復号装置。
2 9 . ビットストリームを低域ビットス トリームと高域ビットス トリーム に分離するビットストリーム分離部と、
前記低域ビットストリームを復号して低域オーディオ信号を生成する低域復 号部と、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブバンド信号を生成するサブバンド分割部と、
前記高域ビットス トリームに記載される目標エネルギ (R) を予め定めたエネ ルギ補正係数 (a) により補正した補正目標エネルギ (aR) と前記低域サブパン ド信号を複写および加工して作成した信号の信号エネルギ (Er)とが等しくなる ように振幅補正する際に、 目標エネルギ (R) に代えて前記信号エネルギ (Er) を前記エネルギ補正係数の逆数 (1 ) により補正し、 高域サブバンド信号を生 成する帯域拡張部と、
前記低域サブバンド信号と前記高域サブバンド信号の実部をサブパンド合成 フィルタにより帯域合成して復号オーディォ信号を得るサブパンド合成部と、 から構成されるオーディォ復号装置。
3 0 . ビットストリームを低域ビットストリームと高域ビットストリーム に分離するステップと、
前記低域ビットストリームを復号して低域オーディオ信号を生成するステツ プと、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブバンド信号を生成するステップと、
前記高域ビットストリームに記載される目標エネルギを予め定められたエネ ルギ補正係数により補正し補正目標エネルギを算出するステツプと、
前記高域ビットストリームの指示に従い前記低域サブパンド信号を複写およ ぴ加工して作成した信号の信号エネルギを前記補正目標エネルギに振幅補正し て高域サブバンド信号を生成するステップと、
前記低域サブバンド信号と前記高域サブバンド信号の実部をサブバンド合成 フィルタにより帯域合成して復号オーディォ信号を得るステツプとを備えたォ 一ディォ復号方法。
3 1 . ビッ トストリームを低域ビットストリームと高域ビットストリーム に分離するステップと、
前記低域ビットストリームを復号して低域オーディオ信号を生成するステツ プと、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブバンド信号を生成するステップと、
前記低域サブバンド信号を複写および加工して生成される信号のエネルギ補 正係数を出力するステップと、
前記高域ビットストリームの指示に従い前記低域サブパンド信号を複写およ ぴ加工して作成した信号の信号エネルギを前記エネルギ補正係数を用いて振 補正を行い、 高域サブバンド信号を生成するステップと、
前記低域サブバンド信号と前記高域サブバンド信号の実部をサブパンド合成 フィルタにより帯域合成して復号オーディォ信号を得るステツプとを備えたォ 一ディォ復号方法。
3 2 . ビッ トストリームを低域ビットストリームと高域ビットストリーム に分離するステップと、 前記低域ビットストリームを復号して低域オーディオ信号を生成するステツ プと、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブパンド信号を生成するステップと、
前記髙域ビットストリームの指示と予め定められたエネルギ補正係数とを用 いて補正目標エネルギを算出するステップと、
前記高域ビットストリームの指示に従い前記低域サブパンド信号を複写およ び加工して作成した信号の信号エネルギを前記捕正目標ェネルギに振幅補正し て高域サブバンド信号を生成するステップと、
前記低域サブパンド信号と前記高域サブパンド信号の実部をサブパンド合成 フィルタにより帯域合成して復号オーディォ信号を得るステツプとを備えたォ 一ディォ復号方法。
3 3 . ビッ トストリームを低域ビットストリームと高域ビットス トリーム に分離するステップと、
前記低域ビットストリームを復号して低域オーディオ信号を生成するステツ プと、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サプパンド信号を生成するステツプと、
前記低域サブバンド信号を複写および加工して作成した信号の信号エネルギ を前記高域ビットストリームに含まれる指示と予め定められたエネルギ補正係 数を用いて振幅補正を行い、 高域サブバンド信号を生成するステップと、 前記低域サブバンド信号と前記高域サブバンド信号の実部をサブパンド合成 フィルタにより帯域合成して復号オーディォ信号を得るステツプとを備えたォ 一ディォ復号方法。
3 4 . ビットストリームを低域ビットストリームと高域ビットストリーム に分離するステップと、
前記低域ビットストリームを復号して低域オーディオ信号を生成するステツ プと、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブバンド信号を生成するステップと、
前記高域ビットストリームに記載される目標エネルギ (R) を予め定めたエネ ルギ補正係数 (a) により補正した捕正目標エネルギ (aR) と前記低域サブバン ド信号を複写および加工して作成した信号の信号エネルギ (Er)とが等しくなる ように振幅補正する際に、 目標エネルギ (R) に代えて前記信号エネルギ (Er) を前記エネルギ補正係数の逆数 (i/a) により補正して高域サブバンド信号を生 成するステップと、
前記低域サブバンド信号と前記高域サブパンド信号の実部をサブパンド合成 フィルタにより帯域合成して復号オーディォ信号を得るステップとを備えたォ 一ディォ復号方法。
3 5 . ビットストリームを低域ビットストリームと高域ビットストリーム に分離するビットストリーム分離処理と、
前記低域ビットストリームを復号して低域オーディオ信号を生成する低域復 号処理と、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブバンド信号を生成するサブバンド分割処理と、
前記高域ビットストリームに記載される目標エネルギを予め定められたエネ ルギ補正係数により補正し補正目標エネルギを算出するエネルギ補正処理と、 前記高域ビットストリームの指示に従い前記低域サブパンド信号を複写およ び加工して作成した信号の信号エネルギを前記補正目標エネルギに振幅補正し て高域サブバンド信号を生成する帯域拡張処理と、
前記低域サブバンド信号と前記高域サブパンド信号の実部をサブパンド合成 フィルタにより帯域合成して復号オーディォ信号を得るサブバンド合成処理と をコンピュータに実行させるためのプログラム。
3 6 . ビットストリームを低域ビットストリームと高域ビットス トリーム に分離するビットストリーム分離処理と、
前記低域ビットストリームを復号して低域オーディオ信号を生成する低域復 号処理と、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブバンド信号を生成するサブバンド分割処理と、
前記低域サブバンド信号を複写および加工して生成される信号のエネルギ補 正係数を出力するエネルギ補正処理と、
前記高域ビットストリームの指示に従い前記低域サブバンド信号を複写およ びカ卩ェして作成した信号の信号エネルギを前記エネルギ補正係数を用いて振幅 補正を行い、 高域サブバンド信号を生成する帯域拡張処理と、
前記低域サブバンド信号と前記高域サブパンド信号の実部をサブパンド合成 フィルタにより帯域合成して復号オーディオ信号を得るサブバンド合成処理と をコンピュータに実行させるためのプログラム。
3 7 . ビットス トリームを低域ビットス トリームと高域ビットス トリーム に分離するビットストリーム分離処理と、
前記低域ビットストリームを復号して低域オーディオ信号を生成する低域復 号処理と、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブバンド信号を生成するサブバンド分割処理と、
前記髙域ビットストリームの指示と予め定められたエネルギ補正係数とを用 いて補正目標エネルギを算出するエネルギ補正処理と、
前記高域ビットストリームの指示に従い前記低域サブパンド信号を複写およ ぴ加工して作成した信号の信号エネルギを前記補正目標エネルギに振幅補正し て高域サブバンド信号を生成する帯域拡張処理と、
前記低域サブバンド信号と前記高域サブバンド信号の実部をサブパンド合成 フィルタにより帯域合成して復号オーディォ信号を得るサブバンド合成処理と をコンピュータに実行させるためのプログラム。
3 8 . ビットストリームを低域ビットストリームと高域ビットストリーム に分離するビットストリーム分離処理と、
前記低域ビットストリームを復号して低域オーディオ信号を生成する低域復 号処理と、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブバンド信号を生成するサブバンド分割処理と、
前記低域サブパンド信号を複写および加工して作成した信号の信号エネルギ を前記高域ビットストリームに含まれる指示と予め定められたエネルギ補正係 数を用いて振幅補正を行い、 高域サブバンド信号を生成する帯域拡張処理と、 前記低域サブバンド信号と前記高域サブバンド信号の実部をサブバンド合成 フィルタにより帯域合成して復号オーディォ信号を得るサブパンド合成処理と をコンピュータに実行させるためのプログラム。
3 9 . ビットストリームを低域ビットストリームと髙域ビットストリーム に分離するビットストリーム分離処理と、
前記低域ビットストリームを復号して低域オーディオ信号を生成する低域復 号処理と、
前記低域オーディォ信号を複数の周波数帯域の実数信号に帯域分割して低域 サブバンド信号を生成するサブバンド分割処理と、
前記髙域ビットス トリームに記載される目標エネルギ (R) を予め定めたエネ ルギ補正係数 (a) により補正した補正目標エネルギ (aR) と前記低域サブバン ド信号を複写および加工して作成した信号の信号エネルギ (Er)とが等しくなる ように振幅補正する際に、 目標エネルギ (R) に代えて前記信号エネルギ (Er) を前記エネルギ補正係数の逆数 ) により補正し、 高域サブパンド信号を生 成する帯域拡張処理と、
前記低域サブバンド信号と前記高域サブバンド信号の実部をサブバンド合成 フィルタにより帯域合成して復号オーディォ信号を得るサブバンド合成処理と をコンピュータに実行させるためのプログラム。
PCT/JP2003/007962 2002-07-19 2003-06-24 オーディオ復号装置と復号方法およびプログラム WO2004010415A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
BR0311601-8A BR0311601A (pt) 2002-07-19 2003-06-24 Aparelho e método decodificador de áudio e programa para habilitar computador
JP2004522719A JP3579047B2 (ja) 2002-07-19 2003-06-24 オーディオ復号装置と復号方法およびプログラム
CNB038172488A CN1328707C (zh) 2002-07-19 2003-06-24 音频解码设备以及解码方法
KR1020047001439A KR100602975B1 (ko) 2002-07-19 2003-06-24 오디오 복호 장치와 복호 방법 및 프로그램을 기록한 컴퓨터 판독가능 기록매체
AU2003244168A AU2003244168A1 (en) 2002-07-19 2003-06-24 Audio decoding device, decoding method, and program
US10/485,616 US7555434B2 (en) 2002-07-19 2003-06-24 Audio decoding device, decoding method, and program
EP03765275A EP1439524B1 (en) 2002-07-19 2003-06-24 Audio decoding device, decoding method, and program
BRPI0311601A BRPI0311601B8 (pt) 2002-07-19 2003-06-24 "aparelho e método decodificador de áudio"
CA002453814A CA2453814C (en) 2002-07-19 2003-06-24 Audio decoding apparatus and decoding method and program
DE60327039T DE60327039D1 (de) 2002-07-19 2003-06-24 Audiodekodierungseinrichtung, dekodierungsverfahren und programm
HK06102057A HK1082092A1 (en) 2002-07-19 2006-02-17 Audio decoding apparatus and decoding method
US12/393,316 US7941319B2 (en) 2002-07-19 2009-02-26 Audio decoding apparatus and decoding method and program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-210945 2002-07-19
JP2002210945 2002-07-19
JP2002273010 2002-09-19
JP2002-273010 2002-09-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10485616 A-371-Of-International 2003-06-24
US12/393,316 Division US7941319B2 (en) 2002-07-19 2009-02-26 Audio decoding apparatus and decoding method and program

Publications (1)

Publication Number Publication Date
WO2004010415A1 true WO2004010415A1 (ja) 2004-01-29

Family

ID=30772215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007962 WO2004010415A1 (ja) 2002-07-19 2003-06-24 オーディオ復号装置と復号方法およびプログラム

Country Status (13)

Country Link
US (2) US7555434B2 (ja)
EP (2) EP2019391B1 (ja)
JP (1) JP3579047B2 (ja)
KR (1) KR100602975B1 (ja)
CN (1) CN1328707C (ja)
AT (1) ATE428167T1 (ja)
AU (1) AU2003244168A1 (ja)
BR (2) BR0311601A (ja)
CA (1) CA2453814C (ja)
DE (1) DE60327039D1 (ja)
HK (1) HK1082092A1 (ja)
TW (1) TWI268665B (ja)
WO (1) WO2004010415A1 (ja)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053895A (ja) * 2002-07-19 2004-02-19 Nec Corp オーディオ復号装置と復号方法およびプログラム
JP2004053940A (ja) * 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd オーディオ復号化装置およびオーディオ復号化方法
JP2008519290A (ja) * 2004-11-02 2008-06-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 複素値のフィルタ・バンクを用いたオーディオ信号の符号化及び復号化
JP2009538450A (ja) * 2006-05-25 2009-11-05 オーディエンス,インコーポレイテッド オーディオ信号を処理するシステムおよび方法
JP2011248378A (ja) * 2004-05-19 2011-12-08 Panasonic Corp 符号化装置、復号化装置、およびこれらの方法
WO2012017621A1 (en) * 2010-08-03 2012-02-09 Sony Corporation Signal processing apparatus and method, and program
WO2012050023A1 (ja) * 2010-10-15 2012-04-19 ソニー株式会社 符号化装置および方法、復号装置および方法、並びにプログラム
US8189766B1 (en) 2007-07-26 2012-05-29 Audience, Inc. System and method for blind subband acoustic echo cancellation postfiltering
US8194880B2 (en) 2006-01-30 2012-06-05 Audience, Inc. System and method for utilizing omni-directional microphones for speech enhancement
US8194882B2 (en) 2008-02-29 2012-06-05 Audience, Inc. System and method for providing single microphone noise suppression fallback
US8204252B1 (en) 2006-10-10 2012-06-19 Audience, Inc. System and method for providing close microphone adaptive array processing
US8204253B1 (en) 2008-06-30 2012-06-19 Audience, Inc. Self calibration of audio device
US8259926B1 (en) 2007-02-23 2012-09-04 Audience, Inc. System and method for 2-channel and 3-channel acoustic echo cancellation
US8345890B2 (en) 2006-01-05 2013-01-01 Audience, Inc. System and method for utilizing inter-microphone level differences for speech enhancement
US8355511B2 (en) 2008-03-18 2013-01-15 Audience, Inc. System and method for envelope-based acoustic echo cancellation
US8521530B1 (en) 2008-06-30 2013-08-27 Audience, Inc. System and method for enhancing a monaural audio signal
US8744844B2 (en) 2007-07-06 2014-06-03 Audience, Inc. System and method for adaptive intelligent noise suppression
US9008329B1 (en) 2010-01-26 2015-04-14 Audience, Inc. Noise reduction using multi-feature cluster tracker
JP2015092254A (ja) * 2010-07-19 2015-05-14 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 帯域幅拡張のためのスペクトル平坦性制御
US9076456B1 (en) 2007-12-21 2015-07-07 Audience, Inc. System and method for providing voice equalization
US9185487B2 (en) 2006-01-30 2015-11-10 Audience, Inc. System and method for providing noise suppression utilizing null processing noise subtraction
JP2016507080A (ja) * 2013-01-29 2016-03-07 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ エネルギー制限演算を用いて周波数増強信号を生成する装置および方法
US9536540B2 (en) 2013-07-19 2017-01-03 Knowles Electronics, Llc Speech signal separation and synthesis based on auditory scene analysis and speech modeling
US9679580B2 (en) 2010-04-13 2017-06-13 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9691410B2 (en) 2009-10-07 2017-06-27 Sony Corporation Frequency band extending device and method, encoding device and method, decoding device and method, and program
US9820042B1 (en) 2016-05-02 2017-11-14 Knowles Electronics, Llc Stereo separation and directional suppression with omni-directional microphones
US9838784B2 (en) 2009-12-02 2017-12-05 Knowles Electronics, Llc Directional audio capture
US9875746B2 (en) 2013-09-19 2018-01-23 Sony Corporation Encoding device and method, decoding device and method, and program
US9978388B2 (en) 2014-09-12 2018-05-22 Knowles Electronics, Llc Systems and methods for restoration of speech components
RU2719008C1 (ru) * 2016-04-12 2020-04-16 Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. Аудиокодер для кодирования аудиосигнала, способ для кодирования аудиосигнала и компьютерная программа, учитывающие детектируемую спектральную область пиков в верхнем частотном диапазоне
US10692511B2 (en) 2013-12-27 2020-06-23 Sony Corporation Decoding apparatus and method, and program
JP2021092811A (ja) * 2010-07-19 2021-06-17 ドルビー・インターナショナル・アーベー 高周波再構成の際のオーディオ信号処理

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0202159D0 (sv) 2001-07-10 2002-07-09 Coding Technologies Sweden Ab Efficientand scalable parametric stereo coding for low bitrate applications
EP1423847B1 (en) 2001-11-29 2005-02-02 Coding Technologies AB Reconstruction of high frequency components
SE0202770D0 (sv) 2002-09-18 2002-09-18 Coding Technologies Sweden Ab Method for reduction of aliasing introduces by spectral envelope adjustment in real-valued filterbanks
EP1899958B1 (en) * 2005-05-26 2013-08-07 LG Electronics Inc. Method and apparatus for decoding an audio signal
JP4988716B2 (ja) 2005-05-26 2012-08-01 エルジー エレクトロニクス インコーポレイティド オーディオ信号のデコーディング方法及び装置
US8090586B2 (en) 2005-05-26 2012-01-03 Lg Electronics Inc. Method and apparatus for embedding spatial information and reproducing embedded signal for an audio signal
JP2009500657A (ja) 2005-06-30 2009-01-08 エルジー エレクトロニクス インコーポレイティド オーディオ信号をエンコーディング及びデコーディングするための装置とその方法
CA2613731C (en) 2005-06-30 2012-09-18 Lg Electronics Inc. Apparatus for encoding and decoding audio signal and method thereof
US8214221B2 (en) 2005-06-30 2012-07-03 Lg Electronics Inc. Method and apparatus for decoding an audio signal and identifying information included in the audio signal
JP4899359B2 (ja) * 2005-07-11 2012-03-21 ソニー株式会社 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
JP4568363B2 (ja) 2005-08-30 2010-10-27 エルジー エレクトロニクス インコーポレイティド オーディオ信号デコーディング方法及びその装置
US7761303B2 (en) 2005-08-30 2010-07-20 Lg Electronics Inc. Slot position coding of TTT syntax of spatial audio coding application
US7788107B2 (en) 2005-08-30 2010-08-31 Lg Electronics Inc. Method for decoding an audio signal
US8577483B2 (en) 2005-08-30 2013-11-05 Lg Electronics, Inc. Method for decoding an audio signal
US20080221907A1 (en) * 2005-09-14 2008-09-11 Lg Electronics, Inc. Method and Apparatus for Decoding an Audio Signal
AU2006291689B2 (en) * 2005-09-14 2010-11-25 Lg Electronics Inc. Method and apparatus for decoding an audio signal
US8443026B2 (en) * 2005-09-16 2013-05-14 Dolby International Ab Partially complex modulated filter bank
US7917561B2 (en) * 2005-09-16 2011-03-29 Coding Technologies Ab Partially complex modulated filter bank
US7646319B2 (en) 2005-10-05 2010-01-12 Lg Electronics Inc. Method and apparatus for signal processing and encoding and decoding method, and apparatus therefor
US7672379B2 (en) 2005-10-05 2010-03-02 Lg Electronics Inc. Audio signal processing, encoding, and decoding
US7751485B2 (en) 2005-10-05 2010-07-06 Lg Electronics Inc. Signal processing using pilot based coding
EP1946302A4 (en) 2005-10-05 2009-08-19 Lg Electronics Inc SIGNAL PROCESSING METHOD AND APPARATUS, ENCODING AND DECODING METHOD, AND ASSOCIATED APPARATUS
KR100878833B1 (ko) 2005-10-05 2009-01-14 엘지전자 주식회사 신호 처리 방법 및 이의 장치, 그리고 인코딩 및 디코딩방법 및 이의 장치
US7696907B2 (en) 2005-10-05 2010-04-13 Lg Electronics Inc. Method and apparatus for signal processing and encoding and decoding method, and apparatus therefor
US7761289B2 (en) 2005-10-24 2010-07-20 Lg Electronics Inc. Removing time delays in signal paths
US7720677B2 (en) 2005-11-03 2010-05-18 Coding Technologies Ab Time warped modified transform coding of audio signals
BRPI0520729B1 (pt) * 2005-11-04 2019-04-02 Nokia Technologies Oy Método para a codificação e decodificação de sinais de áudio, codificador para codificação e decodificador para decodificar sinais de áudio e sistema para compressão de áudio digital.
US7752053B2 (en) 2006-01-13 2010-07-06 Lg Electronics Inc. Audio signal processing using pilot based coding
KR20080087909A (ko) * 2006-01-19 2008-10-01 엘지전자 주식회사 신호 디코딩 방법 및 장치
KR100953643B1 (ko) * 2006-01-19 2010-04-20 엘지전자 주식회사 미디어 신호 처리 방법 및 장치
RU2453986C2 (ru) * 2006-01-27 2012-06-20 Долби Интернэшнл Аб Эффективная фильтрация банком комплексно-модулированных фильтров
KR20080093419A (ko) * 2006-02-07 2008-10-21 엘지전자 주식회사 부호화/복호화 장치 및 방법
US20090177479A1 (en) * 2006-02-09 2009-07-09 Lg Electronics Inc. Method for Encoding and Decoding Object-Based Audio Signal and Apparatus Thereof
CN101322183B (zh) * 2006-02-16 2011-09-28 日本电信电话株式会社 信号失真消除装置、方法
ES2391116T3 (es) 2006-02-23 2012-11-21 Lg Electronics Inc. Método y aparato para procesar una señal de audio
US7965848B2 (en) 2006-03-29 2011-06-21 Dolby International Ab Reduced number of channels decoding
US8626515B2 (en) * 2006-03-30 2014-01-07 Lg Electronics Inc. Apparatus for processing media signal and method thereof
US8949120B1 (en) 2006-05-25 2015-02-03 Audience, Inc. Adaptive noise cancelation
DE102006047197B3 (de) 2006-07-31 2008-01-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Verarbeiten eines reellen Subband-Signals zur Reduktion von Aliasing-Effekten
US20080235006A1 (en) * 2006-08-18 2008-09-25 Lg Electronics, Inc. Method and Apparatus for Decoding an Audio Signal
GB2443911A (en) * 2006-11-06 2008-05-21 Matsushita Electric Ind Co Ltd Reducing power consumption in digital broadcast receivers
JP4967618B2 (ja) * 2006-11-24 2012-07-04 富士通株式会社 復号化装置および復号化方法
JP5103880B2 (ja) * 2006-11-24 2012-12-19 富士通株式会社 復号化装置および復号化方法
WO2008100100A1 (en) 2007-02-14 2008-08-21 Lg Electronics Inc. Methods and apparatuses for encoding and decoding object-based audio signals
US20080208575A1 (en) * 2007-02-27 2008-08-28 Nokia Corporation Split-band encoding and decoding of an audio signal
KR101261524B1 (ko) * 2007-03-14 2013-05-06 삼성전자주식회사 노이즈를 포함하는 오디오 신호를 저비트율로부호화/복호화하는 방법 및 이를 위한 장치
KR101411900B1 (ko) * 2007-05-08 2014-06-26 삼성전자주식회사 오디오 신호의 부호화 및 복호화 방법 및 장치
JP5404412B2 (ja) * 2007-11-01 2014-01-29 パナソニック株式会社 符号化装置、復号装置およびこれらの方法
US8688441B2 (en) * 2007-11-29 2014-04-01 Motorola Mobility Llc Method and apparatus to facilitate provision and use of an energy value to determine a spectral envelope shape for out-of-signal bandwidth content
US8433582B2 (en) * 2008-02-01 2013-04-30 Motorola Mobility Llc Method and apparatus for estimating high-band energy in a bandwidth extension system
US20090201983A1 (en) * 2008-02-07 2009-08-13 Motorola, Inc. Method and apparatus for estimating high-band energy in a bandwidth extension system
KR101261677B1 (ko) * 2008-07-14 2013-05-06 광운대학교 산학협력단 음성/음악 통합 신호의 부호화/복호화 장치
US8463412B2 (en) 2008-08-21 2013-06-11 Motorola Mobility Llc Method and apparatus to facilitate determining signal bounding frequencies
CN101751925B (zh) * 2008-12-10 2011-12-21 华为技术有限公司 一种语音解码方法及装置
JP5309944B2 (ja) * 2008-12-11 2013-10-09 富士通株式会社 オーディオ復号装置、方法、及びプログラム
US8463599B2 (en) * 2009-02-04 2013-06-11 Motorola Mobility Llc Bandwidth extension method and apparatus for a modified discrete cosine transform audio coder
US8626516B2 (en) * 2009-02-09 2014-01-07 Broadcom Corporation Method and system for dynamic range control in an audio processing system
JP5126145B2 (ja) * 2009-03-30 2013-01-23 沖電気工業株式会社 帯域拡張装置、方法及びプログラム、並びに、電話端末
JP4932917B2 (ja) * 2009-04-03 2012-05-16 株式会社エヌ・ティ・ティ・ドコモ 音声復号装置、音声復号方法、及び音声復号プログラム
BR112012009445B1 (pt) 2009-10-20 2023-02-14 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Codificador de áudio, decodificador de áudio, método para codificar uma informação de áudio, método para decodificar uma informação de áudio que utiliza uma detecção de um grupo de valores espectrais previamente decodificados
EP3291231B1 (en) * 2009-10-21 2020-06-10 Dolby International AB Oversampling in a combined transposer filterbank
CN102792370B (zh) 2010-01-12 2014-08-06 弗劳恩霍弗实用研究促进协会 使用描述有效状态值及区间边界的散列表的音频编码器、音频解码器、编码音频信息的方法及解码音频信息的方法
JP5652658B2 (ja) 2010-04-13 2015-01-14 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
JP5609737B2 (ja) 2010-04-13 2014-10-22 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
HUE028738T2 (en) * 2010-06-09 2017-01-30 Panasonic Ip Corp America Bandwidth Extension Procedure, Bandwidth Extension Device, Program, Integrated Circuit, and Audio Decoder
US8560330B2 (en) * 2010-07-19 2013-10-15 Futurewei Technologies, Inc. Energy envelope perceptual correction for high band coding
US8762158B2 (en) * 2010-08-06 2014-06-24 Samsung Electronics Co., Ltd. Decoding method and decoding apparatus therefor
KR101826331B1 (ko) * 2010-09-15 2018-03-22 삼성전자주식회사 고주파수 대역폭 확장을 위한 부호화/복호화 장치 및 방법
CN103443856B (zh) 2011-03-04 2015-09-09 瑞典爱立信有限公司 音频编码中的后量化增益校正
EP2710588B1 (en) 2011-05-19 2015-09-09 Dolby Laboratories Licensing Corporation Forensic detection of parametric audio coding schemes
FR2976111B1 (fr) * 2011-06-01 2013-07-05 Parrot Equipement audio comprenant des moyens de debruitage d'un signal de parole par filtrage a delai fractionnaire, notamment pour un systeme de telephonie "mains libres"
JP5942358B2 (ja) 2011-08-24 2016-06-29 ソニー株式会社 符号化装置および方法、復号装置および方法、並びにプログラム
CN103295583B (zh) * 2012-02-24 2015-09-30 佳能株式会社 用于提取声音的子带能量特征的方法、设备以及监视系统
US9640194B1 (en) 2012-10-04 2017-05-02 Knowles Electronics, Llc Noise suppression for speech processing based on machine-learning mask estimation
KR20190134821A (ko) 2013-04-05 2019-12-04 돌비 인터네셔널 에이비 스테레오 오디오 인코더 및 디코더
US10204630B2 (en) * 2013-10-22 2019-02-12 Electronics And Telecommunications Research Instit Ute Method for generating filter for audio signal and parameterizing device therefor
EP2963648A1 (en) 2014-07-01 2016-01-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio processor and method for processing an audio signal using vertical phase correction
JP2016038435A (ja) * 2014-08-06 2016-03-22 ソニー株式会社 符号化装置および方法、復号装置および方法、並びにプログラム
DE112015003945T5 (de) 2014-08-28 2017-05-11 Knowles Electronics, Llc Mehrquellen-Rauschunterdrückung
EP3107096A1 (en) * 2015-06-16 2016-12-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Downscaled decoding
CN114296991B (zh) * 2021-12-28 2023-01-31 无锡众星微系统技术有限公司 一种应用于Expander的CRC数据校验方法和校验电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08123495A (ja) * 1994-10-28 1996-05-17 Mitsubishi Electric Corp 広帯域音声復元装置
JPH08305396A (ja) * 1995-05-09 1996-11-22 Matsushita Electric Ind Co Ltd 音声帯域拡大装置および音声帯域拡大方法
JPH0990992A (ja) * 1995-09-27 1997-04-04 Nippon Telegr & Teleph Corp <Ntt> 広帯域音声信号復元方法
JPH09101798A (ja) * 1995-10-05 1997-04-15 Matsushita Electric Ind Co Ltd 音声帯域拡大方法および音声帯域拡大装置
JPH09127998A (ja) * 1995-10-26 1997-05-16 Sony Corp 信号量子化方法及び信号符号化装置
WO1998052187A1 (en) * 1997-05-15 1998-11-19 Hewlett-Packard Company Audio coding systems and methods

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732687B2 (en) 1995-03-13 2005-10-12 Matsushita Electric Industrial Co., Ltd. Apparatus for expanding speech bandwidth
JP3351498B2 (ja) * 1996-06-10 2002-11-25 株式会社日本コンラックス Icカードリーダライタ
DE19724362A1 (de) 1997-06-10 1998-12-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren und Vorrichtung zum Beschlämmen und Trocknen von Glasrohren für Lampen
SE512719C2 (sv) * 1997-06-10 2000-05-02 Lars Gustaf Liljeryd En metod och anordning för reduktion av dataflöde baserad på harmonisk bandbreddsexpansion
SE9903553D0 (sv) 1999-01-27 1999-10-01 Lars Liljeryd Enhancing percepptual performance of SBR and related coding methods by adaptive noise addition (ANA) and noise substitution limiting (NSL)
US6615169B1 (en) * 2000-10-18 2003-09-02 Nokia Corporation High frequency enhancement layer coding in wideband speech codec
SE0004163D0 (sv) * 2000-11-14 2000-11-14 Coding Technologies Sweden Ab Enhancing perceptual performance of high frequency reconstruction coding methods by adaptive filtering
US6889182B2 (en) * 2001-01-12 2005-05-03 Telefonaktiebolaget L M Ericsson (Publ) Speech bandwidth extension
EP1423847B1 (en) * 2001-11-29 2005-02-02 Coding Technologies AB Reconstruction of high frequency components
TWI288915B (en) 2002-06-17 2007-10-21 Dolby Lab Licensing Corp Improved audio coding system using characteristics of a decoded signal to adapt synthesized spectral components

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08123495A (ja) * 1994-10-28 1996-05-17 Mitsubishi Electric Corp 広帯域音声復元装置
JPH08305396A (ja) * 1995-05-09 1996-11-22 Matsushita Electric Ind Co Ltd 音声帯域拡大装置および音声帯域拡大方法
JPH0990992A (ja) * 1995-09-27 1997-04-04 Nippon Telegr & Teleph Corp <Ntt> 広帯域音声信号復元方法
JPH09101798A (ja) * 1995-10-05 1997-04-15 Matsushita Electric Ind Co Ltd 音声帯域拡大方法および音声帯域拡大装置
JPH09127998A (ja) * 1995-10-26 1997-05-16 Sony Corp 信号量子化方法及び信号符号化装置
WO1998052187A1 (en) * 1997-05-15 1998-11-19 Hewlett-Packard Company Audio coding systems and methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MADOKA HARA ET AL.: "Taisu power spectre-jo deno senkei yosoku o mochiita kyotaiiki onsei kara kotaiiki onsei no seiiku", NIHON ONKYO GAKKAI KOEN RONBUNSHU, THE ACOUSTICAL SOCIETY OF JAPAN (ASJ) (SHUNKI I), March 1997 (1997-03-01), pages 277 - 278, XP002975493 *
MINEO TSUSHIMA ET AL.: "Teiiki kakudai ni yoru kotaiiki onsei no gosei hoho no kento", NIHON ONKYO GAKKAI KOEN RONBUNSHU, THE ACOUSTICAL SOCIETY OF JAPAN (ASJ) (SHUNKI I), March 1995 (1995-03-01), pages 249 - 250, XP002975494 *

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053940A (ja) * 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd オーディオ復号化装置およびオーディオ復号化方法
JP2004053895A (ja) * 2002-07-19 2004-02-19 Nec Corp オーディオ復号装置と復号方法およびプログラム
JP2011248378A (ja) * 2004-05-19 2011-12-08 Panasonic Corp 符号化装置、復号化装置、およびこれらの方法
CN102148035B (zh) * 2004-11-02 2014-06-18 皇家飞利浦电子股份有限公司 使用复值滤波器组的音频信号的编码和解码
JP2008519290A (ja) * 2004-11-02 2008-06-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 複素値のフィルタ・バンクを用いたオーディオ信号の符号化及び復号化
CN101053019B (zh) * 2004-11-02 2012-01-25 皇家飞利浦电子股份有限公司 使用复值滤波器组的音频信号的编码和解码的装置和方法
US8255231B2 (en) 2004-11-02 2012-08-28 Koninklijke Philips Electronics N.V. Encoding and decoding of audio signals using complex-valued filter banks
US8345890B2 (en) 2006-01-05 2013-01-01 Audience, Inc. System and method for utilizing inter-microphone level differences for speech enhancement
US8867759B2 (en) 2006-01-05 2014-10-21 Audience, Inc. System and method for utilizing inter-microphone level differences for speech enhancement
US8194880B2 (en) 2006-01-30 2012-06-05 Audience, Inc. System and method for utilizing omni-directional microphones for speech enhancement
US9185487B2 (en) 2006-01-30 2015-11-10 Audience, Inc. System and method for providing noise suppression utilizing null processing noise subtraction
JP2009538450A (ja) * 2006-05-25 2009-11-05 オーディエンス,インコーポレイテッド オーディオ信号を処理するシステムおよび方法
US8204252B1 (en) 2006-10-10 2012-06-19 Audience, Inc. System and method for providing close microphone adaptive array processing
US8259926B1 (en) 2007-02-23 2012-09-04 Audience, Inc. System and method for 2-channel and 3-channel acoustic echo cancellation
US8886525B2 (en) 2007-07-06 2014-11-11 Audience, Inc. System and method for adaptive intelligent noise suppression
US8744844B2 (en) 2007-07-06 2014-06-03 Audience, Inc. System and method for adaptive intelligent noise suppression
US8189766B1 (en) 2007-07-26 2012-05-29 Audience, Inc. System and method for blind subband acoustic echo cancellation postfiltering
US9076456B1 (en) 2007-12-21 2015-07-07 Audience, Inc. System and method for providing voice equalization
US8194882B2 (en) 2008-02-29 2012-06-05 Audience, Inc. System and method for providing single microphone noise suppression fallback
US8355511B2 (en) 2008-03-18 2013-01-15 Audience, Inc. System and method for envelope-based acoustic echo cancellation
US8521530B1 (en) 2008-06-30 2013-08-27 Audience, Inc. System and method for enhancing a monaural audio signal
US8204253B1 (en) 2008-06-30 2012-06-19 Audience, Inc. Self calibration of audio device
US9691410B2 (en) 2009-10-07 2017-06-27 Sony Corporation Frequency band extending device and method, encoding device and method, decoding device and method, and program
US9838784B2 (en) 2009-12-02 2017-12-05 Knowles Electronics, Llc Directional audio capture
US9008329B1 (en) 2010-01-26 2015-04-14 Audience, Inc. Noise reduction using multi-feature cluster tracker
US10381018B2 (en) 2010-04-13 2019-08-13 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9679580B2 (en) 2010-04-13 2017-06-13 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US10546594B2 (en) 2010-04-13 2020-01-28 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US10297270B2 (en) 2010-04-13 2019-05-21 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US10224054B2 (en) 2010-04-13 2019-03-05 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
JP2015092254A (ja) * 2010-07-19 2015-05-14 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 帯域幅拡張のためのスペクトル平坦性制御
US10339938B2 (en) 2010-07-19 2019-07-02 Huawei Technologies Co., Ltd. Spectrum flatness control for bandwidth extension
JP2021092811A (ja) * 2010-07-19 2021-06-17 ドルビー・インターナショナル・アーベー 高周波再構成の際のオーディオ信号処理
JP6993523B2 (ja) 2010-07-19 2022-01-13 ドルビー・インターナショナル・アーベー 高周波再構成の際のオーディオ信号処理
JP7345694B2 (ja) 2010-07-19 2023-09-15 ドルビー・インターナショナル・アーベー 高周波再構成の際のオーディオ信号処理
RU2666291C2 (ru) * 2010-08-03 2018-09-06 Сони Корпорейшн Устройство и способ обработки сигнала и программа
JP2012037582A (ja) * 2010-08-03 2012-02-23 Sony Corp 信号処理装置および方法、並びにプログラム
CN104200808A (zh) * 2010-08-03 2014-12-10 索尼公司 信号处理设备和方法
RU2550549C2 (ru) * 2010-08-03 2015-05-10 Сони Корпорейшн Устройство и способ обработки сигнала и программа
US10229690B2 (en) 2010-08-03 2019-03-12 Sony Corporation Signal processing apparatus and method, and program
US9406306B2 (en) 2010-08-03 2016-08-02 Sony Corporation Signal processing apparatus and method, and program
US9767814B2 (en) 2010-08-03 2017-09-19 Sony Corporation Signal processing apparatus and method, and program
US11011179B2 (en) 2010-08-03 2021-05-18 Sony Corporation Signal processing apparatus and method, and program
WO2012017621A1 (en) * 2010-08-03 2012-02-09 Sony Corporation Signal processing apparatus and method, and program
US10236015B2 (en) 2010-10-15 2019-03-19 Sony Corporation Encoding device and method, decoding device and method, and program
US9536542B2 (en) 2010-10-15 2017-01-03 Sony Corporation Encoding device and method, decoding device and method, and program
US9767824B2 (en) 2010-10-15 2017-09-19 Sony Corporation Encoding device and method, decoding device and method, and program
RU2630384C1 (ru) * 2010-10-15 2017-09-07 Сони Корпорейшн Устройство и способ декодирования и носитель записи программы
WO2012050023A1 (ja) * 2010-10-15 2012-04-19 ソニー株式会社 符号化装置および方法、復号装置および方法、並びにプログラム
US9177563B2 (en) 2010-10-15 2015-11-03 Sony Corporation Encoding device and method, decoding device and method, and program
JP2016510429A (ja) * 2013-01-29 2016-04-07 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ サブバンドの時間的平滑化を用いて周波数増強信号を生成する装置および方法
US10354665B2 (en) 2013-01-29 2019-07-16 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating a frequency enhanced signal using temporal smoothing of subbands
US9741353B2 (en) 2013-01-29 2017-08-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating a frequency enhanced signal using temporal smoothing of subbands
US9552823B2 (en) 2013-01-29 2017-01-24 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating a frequency enhancement signal using an energy limitation operation
JP2016507080A (ja) * 2013-01-29 2016-03-07 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ エネルギー制限演算を用いて周波数増強信号を生成する装置および方法
US9640189B2 (en) 2013-01-29 2017-05-02 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating a frequency enhanced signal using shaping of the enhancement signal
US9536540B2 (en) 2013-07-19 2017-01-03 Knowles Electronics, Llc Speech signal separation and synthesis based on auditory scene analysis and speech modeling
US9875746B2 (en) 2013-09-19 2018-01-23 Sony Corporation Encoding device and method, decoding device and method, and program
US10692511B2 (en) 2013-12-27 2020-06-23 Sony Corporation Decoding apparatus and method, and program
US11705140B2 (en) 2013-12-27 2023-07-18 Sony Corporation Decoding apparatus and method, and program
US9978388B2 (en) 2014-09-12 2018-05-22 Knowles Electronics, Llc Systems and methods for restoration of speech components
US10825461B2 (en) 2016-04-12 2020-11-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoder for encoding an audio signal, method for encoding an audio signal and computer program under consideration of a detected peak spectral region in an upper frequency band
RU2719008C1 (ru) * 2016-04-12 2020-04-16 Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. Аудиокодер для кодирования аудиосигнала, способ для кодирования аудиосигнала и компьютерная программа, учитывающие детектируемую спектральную область пиков в верхнем частотном диапазоне
US11682409B2 (en) 2016-04-12 2023-06-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoder for encoding an audio signal, method for encoding an audio signal and computer program under consideration of a detected peak spectral region in an upper frequency band
US9820042B1 (en) 2016-05-02 2017-11-14 Knowles Electronics, Llc Stereo separation and directional suppression with omni-directional microphones

Also Published As

Publication number Publication date
AU2003244168A1 (en) 2004-02-09
EP2019391B1 (en) 2013-01-16
EP1439524A4 (en) 2005-06-08
EP1439524A1 (en) 2004-07-21
EP1439524B1 (en) 2009-04-08
US20050171785A1 (en) 2005-08-04
US7941319B2 (en) 2011-05-10
DE60327039D1 (de) 2009-05-20
JPWO2004010415A1 (ja) 2005-11-17
CA2453814A1 (en) 2004-01-19
TWI268665B (en) 2006-12-11
HK1082092A1 (en) 2006-05-26
JP3579047B2 (ja) 2004-10-20
EP2019391A3 (en) 2009-04-01
CN1669073A (zh) 2005-09-14
CA2453814C (en) 2010-03-09
AU2003244168A8 (en) 2004-02-09
KR20050010744A (ko) 2005-01-28
KR100602975B1 (ko) 2006-07-20
ATE428167T1 (de) 2009-04-15
CN1328707C (zh) 2007-07-25
BR0311601A (pt) 2005-02-22
BRPI0311601B8 (pt) 2018-02-14
BRPI0311601B1 (pt) 2017-12-12
EP2019391A2 (en) 2009-01-28
TW200405673A (en) 2004-04-01
US20090259478A1 (en) 2009-10-15
US7555434B2 (en) 2009-06-30

Similar Documents

Publication Publication Date Title
WO2004010415A1 (ja) オーディオ復号装置と復号方法およびプログラム
US10522168B2 (en) Audio signal synthesizer and audio signal encoder
JP4227772B2 (ja) オーディオ復号装置と復号方法およびプログラム
KR101747918B1 (ko) 고주파수 신호 복호화 방법 및 장치
JP5203077B2 (ja) 音声符号化装置及び方法、音声復号化装置及び方法、並びに、音声帯域拡張装置及び方法
US8639500B2 (en) Method, medium, and apparatus with bandwidth extension encoding and/or decoding
US8949119B2 (en) Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9583112B2 (en) Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
WO2010024371A1 (ja) 周波数帯域拡大装置及び方法、符号化装置及び方法、復号化装置及び方法、並びにプログラム
US20130028427A1 (en) Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
WO2006075563A1 (ja) オーディオ符号化装置、オーディオ符号化方法およびオーディオ符号化プログラム
WO2006049204A1 (ja) 符号化装置、復号化装置、符号化方法及び復号化方法
WO2005111568A1 (ja) 符号化装置、復号化装置、およびこれらの方法
WO2006003891A1 (ja) 音声信号復号化装置及び音声信号符号化装置
JP4354561B2 (ja) オーディオ信号符号化装置及び復号化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004522719

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2453814

Country of ref document: CA

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2003765275

Country of ref document: EP

Ref document number: 10485616

Country of ref document: US

Ref document number: 1020047001439

Country of ref document: KR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003765275

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3039/CHENP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 20038172488

Country of ref document: CN