WO2004017064A1 - Dispositif de separation de constituants d'echantillons par chromatographie liquide sous pression - Google Patents

Dispositif de separation de constituants d'echantillons par chromatographie liquide sous pression Download PDF

Info

Publication number
WO2004017064A1
WO2004017064A1 PCT/FR2003/001663 FR0301663W WO2004017064A1 WO 2004017064 A1 WO2004017064 A1 WO 2004017064A1 FR 0301663 W FR0301663 W FR 0301663W WO 2004017064 A1 WO2004017064 A1 WO 2004017064A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile phase
sample
stationary phase
phase
injection
Prior art date
Application number
PCT/FR2003/001663
Other languages
English (en)
Inventor
Michel Manach
Emil Mincsovics
Laszlo Kecskes
Barnabas Tapa
Ernö TYIHAK
Original Assignee
Bionisis S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bionisis S.A. filed Critical Bionisis S.A.
Priority to EP03787832A priority Critical patent/EP1535057A1/fr
Priority to AU2003264669A priority patent/AU2003264669A1/en
Priority to JP2004528546A priority patent/JP2005534937A/ja
Publication of WO2004017064A1 publication Critical patent/WO2004017064A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/91Application of the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N2030/906Plate chromatography, e.g. thin layer or paper chromatography pressurised fluid phase

Definitions

  • the invention relates to a device for separating the constituents of a sample by liquid chromatography under pressure, of the type known under the name OPLC (Over Pressured Layer Chromatography or Optimum Performance Layer Chromatography).
  • OPLC Over Pressured Layer Chromatography or Optimum Performance Layer Chromatography
  • This technique consists of depositing a sample at one end of a stationary phase layer formed of a suitable material such as powder or particles of silicate gel, alumina, magnesium silicate, cellulose, polyamide. , etc., which is sealed between two walls to be subjected to an external pressure applied to these walls.
  • the components of the sample are separated by entrainment in the stationary phase by means of a mobile phase formed by a pressurized fluid.
  • the walls delimiting the stationary phase are equipped with means for injecting the sample into the stationary phase and for supplying the latter in the mobile phase, at a first end of the stationary phase, and include means for collecting sample and mobile phase at the other end of the stationary phase.
  • This can include a single sample processing channel, the supply and collection means being formed by transverse grooves in the walls which open onto the ends of the stationary phase.
  • several parallel and juxtaposed treatment paths can be defined in the stationary phase between transverse grooves of the ends of the walls, which form the supply and collection means, the different treatment paths being separated from each other by longitudinal partitions.
  • the stationary phase can be placed in a separation chamber of an apparatus comprising means mobile phase supply and mobile phase and sample output means, or it can be housed beforehand in a cassette which is then placed in the aforementioned device.
  • the flow of mobile phase injected into the stationary phase moves therein in a substantially uniform manner except in the areas of contact with side walls which extend from one end to the other of the stationary phase and which delimit laterally the route of treatment.
  • the object of the invention is in particular to remedy this drawback in a simple and effective manner.
  • It relates to a device for separating the constituents of a sample by OPLC type chromatography, in which the fronts of the sample constituents are substantially linear over their entire extent and in particular at their ends.
  • a device of the aforementioned type comprising a stationary phase formed by an appropriate medium placed between two walls, means for injecting a sample at a first end of the stationary phase, means for supplying in the mobile phase from this end of the stationary phase and from the mobile phase and sample collection means at the opposite end from the stationary phase, at least one sample processing channel being defined in the stationary phase between the means supply and collection means, characterized in that it also comprises means for injecting mobile phase on the longitudinal sides of said treatment channel, at the first end of the stationary phase.
  • the invention thus makes it possible to eliminate the edge effects at the ends of the fronts of sample constituents in the stationary phase, since the ends of these fronts are separated from the fixed side walls by mobile phase flows which are devoid of sample, so that a difference in the flow velocity along the side walls no longer affects the separation of the components of the samples.
  • the aforementioned means for injecting the mobile phase on either side of the treatment channel are formed at the ends of the means for supplying the stationary phase in the mobile phase.
  • Transverse grooves or the like formed at the ends of the stationary phase for supplying the mobile phase can be extended to form the injection means located on either side of the treatment path, so that the phase mobile is also progressing along the sides of the treatment path on either side of it.
  • said mobile phase injection means can be independent of a transverse groove forming the means for supplying the treatment path in mobile phase.
  • the invention applies both to the case where the stationary phase comprises a single sample processing channel, and to the case where it comprises several parallel juxtaposed sample processing channels, separated longitudinally from one another by channels mobile phase flow, which then have a multiple function of suppression of edge effects, protection of the sample constituents against the external environment and separation of the different processing paths.
  • the device according to the invention can be miniaturized on surfaces having a thickness of a few microns and an area of between a few mm 2 and a few hundred cm 2 .
  • the invention is also applicable to the case where the stationary phase forms a cylindrical column, mobile phase injection means being provided at one end of this column to form a flow of mobile phase around each sample processing channel in the stationary phase and to remove side effects on the surrounding wall.
  • FIG. 1 is a schematic top view of a device according to the invention.
  • FIG. 1 is a schematic side view of the device of Figure 1;
  • Figures 3 and 4 are schematic views from below of two plastic sheets forming a wall of the device of Figures 1 and 2;
  • FIGS. 5 and 6 are partial schematic views on a larger scale and in section along the lines V-V of Figure 3 and VI-VI of Figure 4;
  • FIG. 7 is a schematic top view of an alternative embodiment of this device, comprising several parallel and juxtaposed processing paths;
  • FIG. 8 is a schematic top view of an alternative embodiment of the device of Figures 1 to 6;
  • FIG. 9 is a schematic top view of an alternative embodiment of the device of Figure 7;
  • FIG. 10 is a partial schematic view in axial section of another variant of the invention in which the stationary phase forms a cylindrical column;
  • FIG. 11 is a schematic top view of the upper disc of the column;
  • - Figure 12 is a schematic top view of this disc in section along the line XII - XII of Figure 11;
  • FIG. 13 is a schematic bottom of the lower disc of the column
  • FIG. 14 is a schematic view of this filter in section along the line XIV - XIV of FIG. 13.
  • the reference 10 designates a stationary phase, which is formed of a layer of material enclosed between two walls 12, 14 in a plastic material such as for example poly (tetrafluoroethylene), the stationary phase being formed of monoliths of powder or particles of alumina, silicate gel, magnesium silicate, cellulose, polyamide, etc.
  • the stationary phase 10 and the walls 12, 14 are in the form of a sealed cassette, which is placed in a suitable device allowing to exert an external pressure P on the walls 12 and 14 , as indicated by the arrows in FIG. 2.
  • the stationary phase layer 10 can be placed inside an apparatus which has the walls 12, 14.
  • Mobile phase supply, sample injection and mobile phase and sample collection means are associated with the opposite longitudinal ends of the stationary phase 10, as described in more detail below.
  • the mobile phase supply means include a pump 16 or other similar means for pressurizing, the inlet 18 of which is connected to a mobile phase reservoir (here an appropriate liquid) and the outlet of which is connected to a groove transverse 22 which is formed by example in the upper wall 12 and which opens in the vicinity of the side walls delimiting the stationary phase 10, for a flow of mobile phase along the side walls of the stationary phase 10.
  • a pump 16 or other similar means for pressurizing the inlet 18 of which is connected to a mobile phase reservoir (here an appropriate liquid) and the outlet of which is connected to a groove transverse 22 which is formed by example in the upper wall 12 and which opens in the vicinity of the side walls delimiting the stationary phase 10, for a flow of mobile phase along the side walls of the stationary phase 10.
  • the outlet 26 of the injection means 24 opens into another transverse groove 28 of the upper wall 12, which uniformly distributes the flow rate of the mobile and sample phase over almost the entire width of the stationary phase 10, the groove 28 ending a short distance from the side walls 36.
  • another transverse groove 30 is formed in the upper wall 12 and opens to the outside of the latter by an orifice to be connected to means 32 for outputting the liquid phase and possibly sample constituents.
  • This groove 30 extends over substantially the entire width of the stationary phase 10.
  • the transverse feed groove 22 is extended beyond the ends of the mobile phase distribution groove 28 and of sample, and its ends 40 extend in the immediate vicinity and along the side walls 36, substantially up to the level of the transverse groove 28 for dispensing sample, and form mobile phase injection means oriented in parallel to the side walls 36 in the direction of the transverse collection groove 30, for a mobile phase flow on the side walls 36.
  • This flow does not participate in the separation of the constituents of the sample in the stationary phase and does not contain any sample, and moves faster or slower than the mobile phase in the rest of the stationary phase, but eliminates the abovementioned edge effects and protects the treatment path against the external environment.
  • one of the walls for example the upper wall 12 is formed from two superimposed sheets 42, 44 of plastic material such as TEFLON (poly (tetrafluoroethylene)) in which the grooves 22, 28 and the corresponding injection orifices are formed.
  • plastic material such as TEFLON (poly (tetrafluoroethylene)
  • FIG. 3 The lower face or underside of the upper sheet 42 is shown in FIG. 3 and that of the lower sheet 44 is shown in FIG. 4.
  • the groove 22 is formed in the lower face of the upper sheet 42 along a transverse edge, and is fed in its middle by a through orifice 46 of the sheet 42, as shown.
  • the ends 48 of the groove 22 extend perpendicular to this groove in the direction of the other transverse edge of the sheet 42.
  • a through orifice 50 is formed in the sheet 42, a short distance from the orifice 46, and is intended to be connected to the aforementioned outlet 26.
  • This orifice 50 opens into a small longitudinal groove 52 of the underside of the sheet 42.
  • the groove 52 itself opens onto a through hole 54 of the bottom sheet 44, the underside of which is in contact with the phase stationary 10, has the transverse distribution groove 28.
  • the “staircase” supply of the groove 28 makes it possible to limit the impact of the mobile phase flow rate on the stationary phase.
  • the ends 48 of the groove 22 formed in the sheet 42 open onto the stationary phase via through orifices 40 in the sheet 44, which can have any desired section or shape and which form the injection means mobile phase along the side walls 36.
  • the transverse collection groove 30 is formed in the plate
  • outlet means 32 comprising two through orifices formed in the plates 42 and 44.
  • Beads of porous sintered material can be arranged in the grooves 28, 30, as well as at the ends 40, to protect the stationary phase and to regulate the flow of mobile phase.
  • the stationary phase 10 no longer comprises a single sample processing channel, but several parallel channels 58 which are juxtaposed transversely and which are separated longitudinally from each other by channels 60 d mobile phase flow.
  • the device shown in a simplified manner in FIG. 7 comprises a pump 16 for supplying the mobile phase, the outlet 20 of which is connected to a transverse groove 62 for distributing the mobile phase, this groove
  • sample injection means 24 which are each associated with a processing channel 58 and whose outputs 26 are connected to transverse distribution grooves 64 provided at the ends of the processing channels 58.
  • the feed groove 62 is also connected to small grooves or to injection orifices 66 provided on either side of the distribution grooves 64 and dimensioned to create longitudinal flow paths 60 of the desired width on both sides. and other of each treatment route 58.
  • transverse collection grooves 68 receive the mobile phase delivered by the distribution grooves 64 and that injected by the orifices 66. These transverse collection grooves 68 are connected to detection means 70 of a known type.
  • the device shown in FIG. 8 differs from that of FIG. 1 in that it comprises orifices 72 formed in the upper wall 12 of the device at the ends of the mobile phase flow paths along the side walls 36, these orifices 72 being in the extension of the transverse collection groove 30.
  • the mobile phase flows along the side walls 36, which do not participate in the separation of the components of the sample in the stationary phase, exit the device through the orifices 72 and are not mixed with the sample constituents collected in the groove 30.
  • the device shown in FIG. 9 differs from that of FIG. 7 in that the ends of the mobile phase flow paths 60 have orifices of outlet 74 which are independent of the transverse collection grooves 68 formed at the ends of the treatment channels 58.
  • FIG. 9 is t identical to that of FIG. 7.
  • the invention also applies when the stationary phase forms a cylindrical column of any cross section which is contained in a tube.
  • the mobile phase is injected at one end of the stationary phase column, in an annular channel which surrounds the sample injection surface. This removes edge effects between the front of sample constituents and the inner wall of the tube and separates the processing lines from each other.
  • An exemplary embodiment of such a device is shown in Figures 10 to 14. It essentially comprises a cylindrical tube 76 of suitable rigid material, in particular steel or of a suitable plastic material such as PEEK (polyetheretherketone), the ends of which threaded receive screwed covers 78 intended to pressurize the stationary phase 80 which fills the tube 76.
  • PEEK polyetheretherketone
  • the upper cover 78 is supported on an upper disc 82 engaged in the upper end of the tube 76 and comprising supply conduits 84 in sample and in mobile phase and at least one feed pipe 86 in mobile phase.
  • the disc 82 is supported on a disc 88 of porous material surrounded by a sealing ring 90 interposed between the disc 82 and the tube 76.
  • Chambers 92 are delimited in the disc 88 and separated from each other by partitions watertight 94 transverse and longitudinal.
  • Each chamber 92 is supplied with a sample and in mobile phase by a conduit 84 which passes through a transverse partition 94.
  • the or each conduit 86 for supplying in mobile phase opens out above the disc 88 between the chambers 92.
  • the lower end of the tube 76 likewise comprises a porous lower disk 96 surrounded by a sealing ring 98 interposed between the disk 96 and the tube 76, the stationary phase being supported by the disk 96 and the ring 98.
  • the disc 96 is divided into four independent sectors 99 by watertight bulkheads 100 longitudinal.
  • the disc 96 and the ring 98 rest on a lower disc 102 engaged in the lower end of the tube 76 and coming to bear on the lower cover 78.
  • Conduits 104 carried by the lower disc 102 each connect a sector 99 to means detection exteriors not shown.
  • the chambers 92 of the porous upper disc 88 and the sectors 99 of the porous lower disc 96 define in the stationary phase column 80 four sample processing channels, which are parallel and separated from each other and from the tube 76 by mobile phase flows supplied by the above-mentioned conduit (s) 86.
  • the mobile phase flows are collected at the output with the sample constituents and the mobile phase coming from the sample processing channels.
  • conduits for collecting the aforementioned mobile phase flows which have served to separate the treatment paths from one another and from the tube 76.
  • the invention consists in injecting a flow of mobile phase to separate different processing paths from one another and to eliminate edge effects between a fixed wall and the mobile phase which flows in the stationary phase.

Abstract

Dispositif de séparation des constituants d'un échantillon par chromatographie liquide sous pression du type OPLC, comprenant une phase stationnaire (10) formant une ou plusieurs voies de traitement d'échantillon et des moyens (22) d'alimentation en phase mobile à une extrémité de la phase stationnaire, avec des moyens (32) de collecte de phase mobile à l'extrémité opposée de la phase stationnaire, des moyens (40) d'injection de phase mobile étant également prévus sur les côtés de la phase stationnaire pour supprimer les effets de bord des fronts de constituants d'échantillon et pour séparer les voies de traitement les unes des autres.

Description

DISPOSITIF DE SEPARATION DE CONSTITUANTS D'ECHANTILLONS PAR CHROMATOGRAPHIE LIQUIDE SOUS PRESSION.
L'invention concerne un dispositif de séparation des constituants d'un échantillon par chromatographie liquide sous pression, du type connu sous la dénomination OPLC (Over Pressured Layer Chromatography ou Optimum Performance Layer Chromatography).
Cette technique consiste à déposer un échantillon à une extrémité d'une couche de phase stationnaire formée d'une matière appropriée telle que de la poudre ou des particules de gel de silicate, d'alumine, de silicate de magnésium, de cellulose, de polyamide, etc., qui est enfermée de façon étanche entre deux parois pour être soumise à une pression externe appliquée sur ces parois. Les constituants de l'échantillon sont séparés par entraînement dans la phase stationnaire au moyen d'une phase mobile formée par un fluide sous pression. Les parois délimitant la phase stationnaire sont équipées de moyens d'injection de l'échantillon dans la phase stationnaire et d'alimentation de celle-ci en phase mobile, à une première extrémité de la phase stationnaire, et comprennent des moyens de collecte d'échantillon et de phase mobile à l'autre extrémité de la phase stationnaire.
Celle-ci peut comprendre une seule voie de traitement d'échantillon, les moyens d'alimentation et de collecte étant formés par des rainures transversales des parois qui débouchent sur les extrémités de la phase stationnaire. En variante, plusieurs voies de traitement parallèles et juxtaposées peuvent être définies dans la phase stationnaire entre des rainures transversales des extrémités des parois, qui forment les moyens d'alimentation et de collecte, les différentes voies de traitement étant séparées les unes des autres par des cloisons longitudinales. Selon les réalisations, la phase stationnaire peut être placée dans une chambre de séparation d'un appareil comprenant des moyens d'alimentation en phase mobile et des moyens de sortie de phase mobile et d'échantillon, ou bien elle peut être logée préalablement dans une cassette que l'on place ensuite dans l'appareil précité.
Le débit de phase mobile injecté dans la phase stationnaire se déplace dans celle-ci de façon sensiblement uniforme sauf dans les zones de contact avec des parois latérales qui s'étendent d'une extrémité à l'autre de la phase stationnaire et qui délimitent latéralement la voie de traitement.
Dans ces zones, la compression de la phase stationnaire n'est pas la même que dans le reste de la voie de traitement, et la vitesse d'écoulement de phase mobile y est différente, ce qui nuit à l'efficacité de la séparation et à la précision des analyses. Cette situation peut être décrite comme un défaut de linéarité d'un front d'écoulement de la phase mobile dans la phase stationnaire, ce front était sensiblement linéaire sur sa majeure partie et déformé à ses extrémités au niveau des parois latérales par « effet de bord ».
L'invention a notamment pour but de remédier à cet inconvénient de façon simple et efficace.
Elle a pour objet un dispositif de séparation des constituants d'un échantillon par chromatographie du type OPLC, dans lequel les fronts de constituants d'échantillon sont sensiblement linéaires sur toute leur étendue et notamment à leurs extrémités.
Elle propose, à cet effet, un dispositif du type précité comprenant une phase stationnaire formée d'un milieu approprié placé entre deux parois, des moyens d'injection d'un échantillon à une première extrémité de la phase stationnaire, des moyens d'alimentation en phase mobile de cette extrémité de la phase stationnaire et des moyens de collecte de phase mobile et d'échantillon à l'extrémité opposée de la phase stationnaire, au moins une voie de traitement d'échantillon étant définie dans la phase stationnaire entre les moyens d'alimentation et les moyens de collecte, caractérisé en ce qu'il comprend également des moyens d'injection de phase mobile sur les côtés longitudinaux de ladite voie de traitement, à la première extrémité de la phase stationnaire.
L'invention permet ainsi de supprimer les effets de bord aux extrémités des fronts de constituants d'échantillon dans la phase stationnaire, puisque les extrémités de ces fronts sont séparées des parois latérales fixes par des écoulements de phase mobile qui sont dépourvus d'échantillon, de sorte qu'une différence de la vitesse d'écoulement le long des parois latérales n'a plus d'incidence sur la séparation des constituants des échantillons.
La suppression de ces effets de bord augmente de façon sensible l'efficacité de la séparation et la précision de l'analyse.
Dans un mode de réalisation préféré de l'invention, les moyens précités d'injection de phase mobile de part et d'autre de la voie de traitement sont formés aux extrémités des moyens d'alimentation de la phase stationnaire en phase mobile. Des rainures transversales ou moyens analogues formés aux extrémités de la phase stationnaire pour l'alimentation en phase mobile, peuvent être prolongés pour former les moyens d'injection situés de part et d'autre de la voie de traitement, de telle sorte que la phase mobile progresse également sur les côtés de la voie de traitement de part et d'autre de celle-ci.
En variante, lesdits moyens d'injection de phase mobile peuvent être indépendants d'une rainure transversale formant les moyens d'alimentation de la voie de traitement en phase mobile.
L'invention s'applique aussi bien au cas où la phase stationnaire comprend une seule voie de traitement d'échantillon, qu'au cas où elle comprend plusieurs voies parallèles juxtaposées de traitement d'échantillon, séparées longitudinalement les unes des autres par des canaux d'écoulement de phase mobile, qui ont alors une fonction multiple de suppression des effets de bord, de protection des constituants d'échantillon contre l'environnement extérieur et de séparation des différentes voies de traitement. Le dispositif selon l'invention peut être miniaturisé sur des surfaces ayant une épaisseur de quelques microns et une aire comprise entre quelques mm2 et quelques centaines de cm2.
L'invention est également applicable au cas où la phase stationnaire forme une colonne cylindrique, des moyens d'injection de phase mobile étant prévus à une extrémité de cette colonne pour former un écoulement de phase mobile autour de chaque voie de traitement d'échantillon dans la phase stationnaire et pour supprimer les effets de bord sur la paroi environnante. L'invention sera mieux comprise et d'autres caractéristiques, détails et avantages de celle-ci, apparaîtront plus clairement à la lecture de la description qui suit, faite à titre d'exemple en référence aux dessins annexés dans lesquels :
- la figure 1 est une vue schématique de dessus d'un dispositif selon l'invention ;
- la figure 2 est une vue schématique de côté du dispositif de la figure 1 ;
- les figures 3 et 4 sont des vues schématiques de dessous de deux feuilles de matière plastique formant une paroi du dispositif des figures 1 et 2 ;
- les figures 5 et 6 sont des vues schématiques partielles à plus grande échelle et en coupe selon les lignes V-V de la figure 3 et VI-VI de la figure 4 ;
- la figure 7 est une vue schématique de dessus d'une variante de réalisation de ce dispositif, comprenant plusieurs voies de traitement parallèles et juxtaposées;
- la figure 8 est une vue schématique de dessus d'une variante de réalisation du dispositif des figures 1 à 6 ;
- la figure 9 est une vue schématique de dessus d'une variante de réalisation du dispositif de la figure 7 ;
- la figure 10 est une vue schématique partielle en coupe axiale d'une autre variante de l'invention dans laquelle la phase stationnaire forme une colonne cylindrique ;
- la figure 11 est une vue schématique de dessus du disque supérieur de la colonne ; - la figure 12 est une vue schématique de dessus de ce disque en coupe selon la ligne XII - XII de la figure 11 ;
- la figure 13 est une schématique de dessous du disque inférieur de la colonne ;
- la figure 14 est une vue schématique de ce filtre en coupe selon la ligne XIV - XIV de la figure 13.
Dans les figures 1 à 6, qui représentent de façon très simplifiée un dispositif comprenant une seule voie de traitement d'échantillon, la référence 10 désigne une phase stationnaire, qui est formée d'une couche de matière enfermée entre deux parois 12, 14 en une matière plastique telle par exemple que du poly(tétrafluoroéthylène) , la phase stationnaire étant formée de monolithes de poudre ou de particules d'alumine, de gel de silicate, de silicate de magnésium, de cellulose, de polyamide, etc.
De façon préférée, la phase stationnaire 10 et les parois 12, 14 se présentent sous forme d'une cassette fermée de façon étanche, que l'on place dans un appareil approprié permettant d'exercer une pression externe P sur les parois 12 et 14, comme indiqué par les flèches en figure 2. En variante, la couche de phase stationnaire 10 peut être placée à l'intérieur d'un appareil qui comporte les parois 12, 14.
Des moyens d'alimentation en phase mobile, d'injection d'échantillon et de collecte de phase mobile et d'échantillon sont associés aux extrémités longitudinales opposées de la phase stationnaire 10, comme décrit plus en détail ci-dessous.
Les moyens d'alimentation en phase mobile comprennent une pompe 16 ou autre moyen analogue de mise en pression, dont l'entrée 18 est reliée à un réservoir de phase mobile (ici un liquide approprié) et dont une sortie 20 est reliée à une rainure transversale 22 qui est formée par exemple dans la paroi supérieure 12 et qui débouche au voisinage des parois latérales délimitant la phase stationnaire 10, pour un écoulement de phase mobile le long des parois latérales de la phase stationnaire 10.
Une autre sortie 23 des moyens 16 de mise en pression alimente des moyens 24 d'injection d'un échantillon complexe E dont on veut séparer les constituants par chromatographie OPLC. La sortie 26 des moyens d'injection 24 débouche dans une autre rainure transversale 28 de la paroi supérieure 12, qui répartit de façon uniforme le débit de la phase mobile et d'échantillon sur presque toute la largeur de la phase stationnaire 10, la rainure 28 se terminant à faible distance des parois latérales 36.
A l'extrémité opposée de cette phase stationnaire, une autre rainure transversale 30 est formée dans la paroi supérieure 12 et débouche à l'extérieur de celle-ci par un orifice pour être reliée à des moyens 32 de sortie de phase liquide et éventuellement de constituants d'échantillon. Cette rainure 30 s'étend sur sensiblement toute la largeur de la phase stationnaire 10.
D'autres moyens, non représentés, peuvent être prévus pour régler les débits d'alimentation et de collecte de phase liquide et la pression externe P appliquée à la phase stationnaire 10. Lors du fonctionnement de ce dispositif, le débit de phase mobile progresse de façon uniforme d'une extrémité à l'autre de la phase stationnaire 10 comme indiqué par les flèches 34, sauf au voisinage des parois latérales 36 entre lesquelles est enfermée la phase stationnaire 10 et qui délimitent la voie de traitement de l'échantillon E. L'invention prévoit de faire s'écouler un courant de phase mobile dépourvue d'échantillon le long des parois 36, comme indiqué par les flèches 38, de la rainure d'alimentation 22 jusqu'à la rainure de collecte 30, pour supprimer les effets de bord aux extrémités des fronts de constituants d'échantillon dans la phase stationnaire. Pour cela, la rainure transversale d'alimentation 22 est prolongée au-delà des extrémités de la rainure 28 de distribution de phase mobile et d'échantillon, et ses extrémités 40 s'étendent au voisinage immédiat et le long des parois latérales 36, sensiblement jusqu'au niveau de la rainure transversale 28 de distribution d'échantillon, et forment des moyens d'injection de phase mobile orientés parallèlement aux parois latérales 36 en direction de la rainure transversale de collecte 30, pour un écoulement de phase mobile sur les parois latérales 36. Cet écoulement ne participe pas à la séparation des constituants de l'échantillon dans la phase stationnaire et ne contient pas d'échantillon, et se déplace plus vite ou moins vite que la phase mobile dans le reste de la phase stationnaire, mais supprime les effets de bord précités et protège la voie de traitement contre l'environnement extérieur.
Dans un mode de réalisation préféré de l'invention et comme représenté schématiquement aux figures 2 à 6, l'une des parois, par exemple la paroi supérieure 12 est formée de deux feuilles superposées 42, 44 de matière plastique telle que du TEFLON (poly(tétrafluoro- éthylène)) dans lesquelles sont formées les rainures 22, 28 et les orifices d'injection correspondants.
La face inférieure ou face de dessous de la feuille supérieure 42 est représentée en figure 3 et celle de la feuille inférieure 44 est représentée en figure 4.
La rainure 22 est formée dans la face inférieure de la feuille supérieure 42 le long d'un bord transversal, et est alimentée en son milieu par un orifice traversant 46 de la feuille 42, comme représenté. Les extrémités 48 de la rainure 22 s'étendent perpendiculairement à cette rainure en direction de l'autre bord transversal de la feuille 42.
Un orifice traversant 50 est formé dans la feuille 42, à faible distance de l'orifice 46, et est destiné à être relié à la sortie 26 précitée. Cet orifice 50 débouche dans une petite rainure longitudinale 52 de la face inférieure de la feuille 42. La rainure 52 débouche elle-même sur un orifice traversant 54 de la feuille inférieure 44, dont la face inférieure en contact avec la phase stationnaire 10, comporte la rainure transversale 28 de distribution. L'orifice
54 est sensiblement tangent à la rainure 28.
L'alimentation « en escalier » de la rainure 28 permet de limiter l'impact du débit de phase mobile sur la phase stationnaire. Par ailleurs, les extrémités 48 de la rainure 22 formée dans la feuille 42 débouchent sur la phase stationnaire par l'intermédiaire d'orifices traversants 40 de la feuille 44, qui peuvent avoir toute section ou forme souhaitée et qui forment les moyens d'injection de phase mobile le long des parois latérales 36. La rainure transversale de collecte 30 est formée dans la plaque
44 et est reliée à des moyens de sortie 32 comprenant deux orifices traversants formés dans les plaques 42 et 44.
Des cordons de matière frittée poreuse peuvent être disposés dans les rainures 28, 30, ainsi qu'aux extrémités 40, pour protéger la phase stationnaire et régulariser l'écoulement de phase mobile.
Dans la variante de réalisation représentée schématiquement en figure 7, la phase stationnaire 10 ne comprend plus une seule voie de traitement d'échantillon, mais plusieurs voies parallèles 58 qui sont juxtaposées transversalement et qui sont séparées longitudinalement les unes des autres par des voies 60 d'écoulement de phase mobile.
Le dispositif représenté de façon simplifiée en figure 7 comprend une pompe 16 d'alimentation en phase mobile, dont la sortie 20 est reliée à une rainure transversale 62 de distribution de phase mobile, cette rainure
62 alimentant des moyens 24 d'injection d'échantillon qui sont chacun associés à une voie 58 de traitement et dont les sorties 26 sont reliées à des rainures transversales 64 de distribution prévues aux extrémités des voies de traitement 58.
La rainure 62 d'alimentation est également reliée à de petites rainures ou à des orifices d'injection 66 prévus de part et d'autre des rainures de distribution 64 et dimensionnés pour créer des voies d'écoulement longitudinales 60 de la largeur souhaitée de part et d'autre de chaque voie de traitement 58.
Aux extrémités opposées des voies de traitement 58, des rainures transversales de collecte 68 reçoivent la phase mobile délivrée par les rainures de distribution 64 et celle injectée par les orifices 66. Ces rainures transversales de collecte 68 sont reliées à des moyens de détection 70 d'un type connu.
On peut ainsi former par exemple huit voies de traitement 58 parallèles et juxtaposées dans une même couche de phase stationnaire, ces huit voies étant séparées les unes des autres et des parois latérales externes par les voies longitudinales 60 d'écoulement de phase mobile.
Le dispositif représenté en figure 8 diffère de celui de la figure 1 en ce qu'il comprend des orifices 72 formés dans la paroi supérieure 12 du dispositif aux extrémités des voies d'écoulement de phase mobile le long des parois latérales 36, ces orifices 72 étant dans le prolongement de la rainure transversale de collecte 30. Ainsi les écoulements de phase mobile le long des parois latérales 36, qui ne participent pas à la séparation des constituants de l'échantillon dans la phase stationnaire, sortent du dispositif par les orifices 72 et ne sont pas mélangés aux constituants d'échantillon collectés dans la rainure 30. De même, le dispositif représenté en figure 9 diffère de celui de la figure 7 en ce que les extrémités des voies 60 d'écoulement de phase mobile comportent des orifices de sortie 74 qui sont indépendants des rainures transversales de collecte 68 formées aux extrémités des voies de traitement 58. Pour le reste, le dispositif de la figure 9 est identique à celui de la figure 7. Comme déjà indiqué, l'invention s'applique également lorsque la phase stationnaire forme une colonne cylindrique de section quelconque qui est contenue dans un tube. Dans ce cas, on injecte la phase mobile à une extrémité de la colonne de phase stationnaire, dans un canal annulaire qui entoure la surface d'injection d'échantillon. Cela supprime les effets de bord entre le front de constituants d'échantillon et la paroi interne du tube et sépare les voies de traitement les unes des autres. Un exemple de réalisation d'un tel dispositif est représenté aux figures 10 à 14. Il comprend essentiellement un tube cylindrique 76 de matière rigide appropriée, notamment d'acier ou d'une matière plastique appropriée telle que PEEK (polyéthéréthercétone), dont les extrémités filetées reçoivent des couvercles vissés 78 destinés à mettre en pression la phase stationnaire 80 qui remplit le tube 76.Le couvercle supérieur 78 est en appui sur un disque supérieur 82 engagé dans l'extrémité supérieure du tube 76 et comportant des conduits 84 d'alimentation en échantillon et en phase mobile et au moins un conduit 86 d'alimentation en phase mobile. Le disque 82 est en appui sur un disque 88 de matière poreuse entouré d'un anneau d'étanchéité 90 interposé entre le disque 82 et le tube 76. Des chambres 92 sont délimitées dans le disque 88 et séparées les unes des autres par des cloisons étanches 94 transversales et longitudinales. Chaque chambre 92 est alimentée en échantillon et en phase mobile par un conduit 84 qui traverse une cloison transversale 94. Le ou chaque conduit 86 d'alimentation en phase mobile débouche au-dessus du disque 88 entre les chambres 92.
L'extrémité inférieure du tube 76 comporte de même un disque inférieur poreux 96 entouré d'un anneau d'étanchéité 98 interposé entre le disque 96 et le tube 76, la phase stationnaire étant supportée par le disque 96 et l'anneau 98. Le disque 96 est partagé en quatre secteurs indépendants 99 par des cloisons étanches 100 longitudinales. Le disque 96 et l'anneau 98 reposent sur un disque inférieur 102 engagé dans l'extrémité inférieure du tube 76 et venant en appui sur le couvercle inférieur 78. Des conduits 104 portés par le disque inférieur 102 relient chacun un secteur 99 à des moyens extérieurs de détection non représentés.
Dans ce dispositif, les chambres 92 du disque supérieur poreux 88 et les secteurs 99 du disque inférieur poreux 96 définissent dans la colonne de phase stationnaire 80 quatre voies de traitement d'échantillon, qui sont parallèles et séparées les unes des autres et du tube 76 par des écoulements de phase mobile alimentés par le ou les conduits 86 précités.
Dans cet exemple de réalisation, les écoulements de phase mobile sont collectés en sortie avec les constituants d'échantillon et la phase mobile provenant des voies de traitement d'échantillon. En variante, on peut prévoir dans le disque inférieur 102 des conduits de collecte des écoulements précités de phase mobile qui ont servi à séparer les voies de traitement les unes des autres et du tube 76.
De façon générale, l'invention consiste à injecter un débit de phase mobile pour séparer différentes voies de traitement les unes des autres et pour supprimer des effets de bord entre une paroi fixe et la phase mobile qui s'écoule dans la phase stationnaire.

Claims

REVENDICATIONS
1 - Dispositif de séparation des constituants d'un échantillon par chromatographie liquide du type OPLC, comprenant une phase stationnaire (10) formée d'un milieu approprié placé entre deux parois (12, 14), des moyens (26, 28) d'injection d'échantillon à une première extrémité de la phase stationnaire et d'alimentation en phase mobile de cette extrémité de la phase stationnaire, et des moyens (30, 32) de collecte de phase mobile et de constituants d'échantillon à l'extrémité opposée de la phase stationnaire, au moins une voie de traitement d'échantillon étant définie dans la phase stationnaire (10) entre les moyens d'alimentation et les moyens de collecte, caractérisé en ce qu'il comprend également des moyens d'injection (40, 66) de phase mobile sur les côtés longitudinaux de ladite voie de traitement, à ladite première extrémité de la phase stationnaire.
2 - Dispositif selon la revendication 1 , caractérisé en ce qu'il comprend également des moyens (30, 68) de collecte de phase mobile agencés à ladite extrémité opposée de la phase stationnaire pour recevoir le débit de phase mobile injecté sur les côtés longitudinaux de ladite voie de traitement.
3 - Dispositif selon la revendication 1 , caractérisé en ce que lesdits moyens d'injection (40, 66) sont séparés des moyens (28, 64) d'injection d'échantillon et d'alimentation en phase mobile.
4 - Dispositif selon la revendication 3, caractérisé en ce que lesdits moyens d'injection (40, 66) de phase mobile sont au niveau des extrémités des moyens (28, 64) d'injection d'échantillon et d'alimentation en phase mobile.
5 - Dispositif selon la revendication 1 , caractérisé en ce qu'il comprend, à la première extrémité de la phase stationnaire, une rainure transversale (22) d'alimentation en phase mobile et une rainure transversale (28) de distribution d'échantillon et de phase mobile, la rainure transversale d'alimentation (22) étant prolongée au-delà des extrémités de la rainure (28) de distribution d'échantillon et de phase mobile pour former les moyens (40) d'injection de phase mobile sur les côtés longitudinaux de la voie de traitement.
6 - Dispositif selon la revendication 1 , caractérisé en ce qu'il comprend, à la première extrémité de la phase stationnaire, une rainure transversale (64) de distribution d'échantillon et d'alimentation en phase mobile de la voie de traitement, et aux extrémités de cette rainure (64), des rainures séparées (66) d'injection de phase mobile sur les côtés longitudinaux de la voie de traitement (58).
7. - Dispositif selon la revendication 5, caractérisé en ce que une rainure (22) d'alimentation en phase mobile est formée entre deux feuilles (42, 44) superposées de matière étanche, par exemple de matière plastique, qui constituent l'une des parois (12, 14) précitées, une rainure (28) de distribution d'échantillon et de phase mobile étant formée dans celle (44) des feuilles qui est au contact de la phase stationnaire, l'autre de ces feuilles comportant des orifices traversants d'injection d'échantillon et d'alimentation en phase mobile.
8 - Dispositif selon la revendication 1 , caractérisé en ce que la phase stationnaire forme une seule voie de traitement d'échantillon, délimitée entre les parois (12, 14) par des parois latérales (36), et en ce que les moyens (40) d'injection de phase mobile sont situés entre ces parois latérales (36) et la voie de traitement.
9 - Dispositif selon la revendication 1 , caractérisé en que la phase stationnaire comprend plusieurs voies de traitement parallèles et juxtaposées (58), qui sont séparées longitudinalement les unes des autres par des voies (60) d'écoulement de phase mobile.
10 - Dispositif selon la revendication 9, caractérisé en ce que la phase stationnaire est délimitée entre des parois latérales externes et comprend des voies d'écoulement de phase mobile (60) le long de ces parois latérales. 11 - Dispositif selon la revendication 1 , caractérisé en ce qu'il comprend des moyens (72, 74) prévus à ladite extrémité opposée de la phase stationnaire pour collecter le débit de phase mobile injecté sur les côtés d'une voie de traitement (58) indépendamment de la collecte de phase mobile et de constituants d'échantillon à l'extrémité de la voie de traitement (58).
12 - Dispositif selon la revendication 1 , caractérisé en ce qu'il est miniaturisé.
13 - Dispositif selon la revendication 1 , caractérisé en ce que la phase stationnaire (80) forme une colonne cylindrique et en ce que des moyens (86) d'injection de phase mobile sont prévus à une extrémité de cette colonne pour former un écoulement de phase mobile autour de chaque voie de traitement d'échantillon.
PCT/FR2003/001663 2002-08-02 2003-06-03 Dispositif de separation de constituants d'echantillons par chromatographie liquide sous pression WO2004017064A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03787832A EP1535057A1 (fr) 2002-08-02 2003-06-03 Dispositif de separation de constituants d'echantillons par chromatographie liquide sous pression
AU2003264669A AU2003264669A1 (en) 2002-08-02 2003-06-03 Device for separating sample components by liquid chromatography under pressure
JP2004528546A JP2005534937A (ja) 2002-08-02 2003-06-03 圧力下の液体クロマトグラフィによって試料成分を分離するための機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0209899A FR2843198B1 (fr) 2002-08-02 2002-08-02 Dispositif de separation de constituants d'echantillons par chromatograhie liquide sous pression
FR02/09899 2002-08-02

Publications (1)

Publication Number Publication Date
WO2004017064A1 true WO2004017064A1 (fr) 2004-02-26

Family

ID=30129670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/001663 WO2004017064A1 (fr) 2002-08-02 2003-06-03 Dispositif de separation de constituants d'echantillons par chromatographie liquide sous pression

Country Status (7)

Country Link
US (1) US20040020834A1 (fr)
EP (1) EP1535057A1 (fr)
JP (1) JP2005534937A (fr)
CN (1) CN100350245C (fr)
AU (1) AU2003264669A1 (fr)
FR (1) FR2843198B1 (fr)
WO (1) WO2004017064A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020187557A1 (en) * 2001-06-07 2002-12-12 Hobbs Steven E. Systems and methods for introducing samples into microfluidic devices
US7261812B1 (en) 2002-02-13 2007-08-28 Nanostream, Inc. Multi-column separation devices and methods
CN100528363C (zh) * 2002-02-13 2009-08-19 安捷伦科技有限公司 微流体分离柱装置及其制备方法
US6936167B2 (en) 2002-10-31 2005-08-30 Nanostream, Inc. System and method for performing multiple parallel chromatographic separations
EP1648582A4 (fr) * 2003-06-19 2010-02-17 Univ Indiana Res & Tech Corp Methode et appareil de mise en oeuvre d electrochromatograph ie planaire a pression elevee
US7028536B2 (en) * 2004-06-29 2006-04-18 Nanostream, Inc. Sealing interface for microfluidic device
US20050032238A1 (en) * 2003-08-07 2005-02-10 Nanostream, Inc. Vented microfluidic separation devices and methods
US8007742B2 (en) 2005-09-20 2011-08-30 United States Of America As Represented By The Secretary Of Commerce IRIS digester-evaporator interface
US7940249B2 (en) 2005-11-01 2011-05-10 Authentec, Inc. Devices using a metal layer with an array of vias to reduce degradation
JP2007163459A (ja) * 2005-11-18 2007-06-28 Sharp Corp 分析用マイクロチップ
US9164111B2 (en) * 2007-03-12 2015-10-20 Resolved Technologies, Inc. Device for multiple tests from a single sample
CN102680638B (zh) * 2011-03-15 2014-04-23 上海高佳仪器科技有限公司 一种加压薄层色谱预制板的制造方法
CN105473021B (zh) * 2013-03-15 2018-01-19 智能专利有限责任公司 可穿戴设备及相关系统
CN107271602B (zh) * 2017-06-05 2019-02-15 山东省中医药研究院 一种消除薄层色谱边缘效应的装置
CN111366674A (zh) * 2020-04-13 2020-07-03 杭州旭昱科技有限公司 一种oplc加压薄层色谱仪多油缸加压装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2800464A1 (de) * 1978-01-05 1979-07-12 Bayer Ag Verfahren zur erzeugung hochbelegter substanzzonen im sorbens von duennschichtchromatographieplatten
GB2078127A (en) * 1980-06-03 1982-01-06 Mueszeripari Muevek Lab Linear overpressured thin-layer chromatographic apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915856A (en) * 1974-12-20 1975-10-28 Holger Meyer Method of carrying out preparative thin-layer chromatography and apparatus for use in the method
HU184065B (en) * 1979-12-06 1984-06-28 Mueszeripari Muevek Lab Cromatographic layer sheet for a pressurized layer chromatographic equipment
US4469601A (en) * 1981-03-17 1984-09-04 Varex Corporation System and apparatus for multi-dimensional real-time chromatography
US4346001A (en) * 1981-06-12 1982-08-24 Labor Muszeripari Muvek Linear overpressured thin-layer chromatographic apparatus
US4348286A (en) * 1981-07-17 1982-09-07 Analtech, Incorporated Large sample thin layer chromatography
HU189133B (en) * 1982-04-28 1986-06-30 Labor Mueszeripari Muevek,Hu Special layer plate and/or layer plate system for overpressure multi-layer chromatography
HU190910B (en) * 1983-08-16 1986-12-28 Reanal Finomvegyszergyar,Hu Method for producing glue suitable for fixing sorbent layer of pressurized one and multiple layer chromatography
JPS6042653A (ja) * 1983-08-17 1985-03-06 Shionogi & Co Ltd クロマトグラフィ−・プレ−ト
GB2173125B (en) * 1985-04-04 1989-04-19 Mueszeripari Muevek Lab Apparatus for overpressured thin-layer chromatographic technique
US5116495A (en) * 1987-09-11 1992-05-26 Ottosensors Corporation Capillary chromatography device
FR2803220B1 (fr) * 2000-01-04 2002-07-05 Bionisis Dispositif et procede de traitement d'un echantillon par separation sur une phase stationnaire, sous flux force controle
CN2488066Y (zh) * 2001-07-16 2002-04-24 常州市新祥天然产物分离设备有限公司 天然产物分离纯化用层析柱

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2800464A1 (de) * 1978-01-05 1979-07-12 Bayer Ag Verfahren zur erzeugung hochbelegter substanzzonen im sorbens von duennschichtchromatographieplatten
GB2078127A (en) * 1980-06-03 1982-01-06 Mueszeripari Muevek Lab Linear overpressured thin-layer chromatographic apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NYIREDY S: "The bridge between TLC and HPLC: overpressured layer chromatography (OPLC)", TRAC, TRENDS IN ANALYTICAL CHEMISTRY, ANALYTICAL CHEMISTRY. CAMBRIDGE, GB, vol. 20, no. 2, February 2001 (2001-02-01), pages 91 - 101, XP004249002, ISSN: 0165-9936 *

Also Published As

Publication number Publication date
JP2005534937A (ja) 2005-11-17
CN1678905A (zh) 2005-10-05
CN100350245C (zh) 2007-11-21
AU2003264669A1 (en) 2004-03-03
US20040020834A1 (en) 2004-02-05
FR2843198A1 (fr) 2004-02-06
FR2843198B1 (fr) 2004-10-15
EP1535057A1 (fr) 2005-06-01

Similar Documents

Publication Publication Date Title
WO2004017064A1 (fr) Dispositif de separation de constituants d'echantillons par chromatographie liquide sous pression
EP0879357A1 (fr) Filtre micro-usine pour micropompe
FR2836230A1 (fr) Protection du lit chromatographique dans les dispositifs de chromatographie a compression axiale dynamique
EP3580385B1 (fr) Fer a repasser comportant un dispositif de rétention des particules de tartre transportées par la vapeur
CA1253811A (fr) Dispositif pour prelever la phase liquide d'une suspension
EP0588672A1 (fr) Valve implantable pour le traitement de l'hydrocéphalie
FR2649621A1 (fr) Element de filtre a gaz
EP0358543B1 (fr) Appareil de séparation d'au moins deux éléments contenus dans un fluide gazeux ou liquide à l'aide d'un matériau filtrant ou absorbant
EP0674929B1 (fr) Filtre-presse à membrane élastique, procédé de filtration utilisant un tel filtre
FR2851790A1 (fr) Filtre a carburant
CA2552021C (fr) Dispositif de filtration integrant une boucle et une pompe de circulation
EP0019554A1 (fr) Dispositif de filtration
FR2929858A1 (fr) Filtre a carburant et cartouche filtrante permettant un degazage
EP0039650A1 (fr) Sac filtrant - sac à poussière pour aspirateur
EP2532405B1 (fr) Filtre à carburant avec purge d'eau et élément filtrant pour un tel filtre
FR2525183A2 (fr) Dispositif de distribution en proportion reglable de deux substances pateuses
WO1999040993A1 (fr) Separateur pour melange triphasique destine a etre utilise sous le niveau de la mer
FR2923199A1 (fr) Maitre-cylindre a joint d'etancheite en forme de u.
FR2846253A1 (fr) Tete de reception d'une unite de filtration
FR2883770A1 (fr) Dispositif ameliore de chromatographie de partage centrifuge a cellules
WO2016005313A1 (fr) Embase d'un module de captage d'un gaz dissous dans un liquide et dispositif de mesure
WO2015110507A1 (fr) Module de captage d'un gaz dissous dans un liquide et dispositif de mesure
WO1995003110A1 (fr) Dispositif de filtration pour circuit frigorifique et procede de fabrication d'un tel dispositif
BE1019399A3 (fr) Filtres combines.
EP3877093A1 (fr) Procédé de fabrication d'un dispositif distributeur de produit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003787832

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004528546

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038210800

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003787832

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003787832

Country of ref document: EP