WO2004017394A1 - Verfahren zum vertikalen strukturieren von substraten in der halbleiterprozesstechnik mittels inkonformer abscheidung - Google Patents

Verfahren zum vertikalen strukturieren von substraten in der halbleiterprozesstechnik mittels inkonformer abscheidung Download PDF

Info

Publication number
WO2004017394A1
WO2004017394A1 PCT/DE2003/002438 DE0302438W WO2004017394A1 WO 2004017394 A1 WO2004017394 A1 WO 2004017394A1 DE 0302438 W DE0302438 W DE 0302438W WO 2004017394 A1 WO2004017394 A1 WO 2004017394A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover layer
layer
depth
deposition
precursor
Prior art date
Application number
PCT/DE2003/002438
Other languages
English (en)
French (fr)
Inventor
Thomas Hecht
Matthias Goldbach
Uwe Schröder
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Priority to EP03787693A priority Critical patent/EP1525610A1/de
Priority to JP2004528398A priority patent/JP2006500763A/ja
Publication of WO2004017394A1 publication Critical patent/WO2004017394A1/de
Priority to US11/042,326 priority patent/US7344953B2/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3141Deposition using atomic layer deposition techniques [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66181Conductor-insulator-semiconductor capacitors, e.g. trench capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors with potential-jump barrier or surface barrier
    • H01L29/94Metal-insulator-semiconductors, e.g. MOS
    • H01L29/945Trench capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate
    • H10B12/0387Making the trench
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers

Definitions

  • the invention relates to a method for structuring process surfaces of a substrate having a relief that are inclined and / or vertical and that extend in relation to the substrate surface to a relief depth with respect to a depth of coverage that is to be predetermined between the relief depth and the substrate surface.
  • the structuring of planar substrate surfaces which are horizontal to an afer surface is carried out by means of photolithographic processes in conjunction with selective etching processes.
  • reliefs with a pronounced topography are created on the wafer or substrate surface.
  • Such a relief also has vertical or inclined surfaces with respect to the substrate surface.
  • vertical or inclined process surfaces in order to differentiate the structures in their vertical extent functionally. Examples of this are the deep trench capacitor, the stack capacitor, and vertical transistor designs.
  • the structuring of reliefs in the direction vertical to the substrate surface is not directly possible using photolithographic processes.
  • Such vertical structuring is conventionally carried out with the aid of a suitable filler material which, as a mask, covers regions of the relief located below a depth of coverage during processing of unmasked regions.
  • Structuring a relief in the direction vertical to the substrate surface with respect to one between a substrate surface and a relief depth chosen then usually takes place according to one of the following two methods:
  • an oxide is to be deposited exclusively in a lower region of a relief which is arranged between the depth of coverage and the relief depth, the oxide is deposited or produced over the entire surface of the relief in a first step.
  • the relief is then completely filled with a suitable filler and then the filler is reduced to the depth of coverage. Exposed sections of the oxide are then removed and, as a last step, remanent sections of the filling material are completely removed.
  • an etching stop layer for example a nitride layer
  • a suitable filler material for example polycrystalline silicon
  • the filler material is etched back to the depth of coverage.
  • the nitride layer is now removed in the unmasked sections and an oxide is deposited or thermally generated in the exposed areas.
  • the oxide is then etched anisotropically. This is followed by the removal of the filler material and, as a last step, the complete removal of the etch stop layer.
  • PECVD plasma-based chemical vapor deposition processes
  • Thin layers are created on the surfaces of a relief, the thickness of which decreases with increasing depth on vertical or inclined surfaces.
  • the run-out of the layers produced in depth is difficult to control in these processes.
  • such layers have very thick distinguished between an end point in depth and an area near the substrate surface.
  • the silicon oxide grows on surfaces that are vertical or inclined to the substrate surface at a rate that decreases in relation to the relief depth, so that the layer thickness of the silicon oxide thus produced decreases in the direction of the relief depth.
  • TEOS tetraethylorthosilane
  • a cover layer is thus generated by a deposition process in a process chamber from precursor materials, a deposition of at least one of the precursor materials is restricted compared to a deposition of a complete cover layer, and thereby the cover layer is almost exclusively and with essentially uniform layer thickness is provided on the upper sections of the process areas arranged between the substrate surface and the depth of coverage.
  • a cover layer with an essentially uniform layer thickness is provided between the upper sections of the relief by means of the deposition process, for example an ALD process (atomic layer deposition).
  • ALD atomic layer deposition
  • Process parameters of the deposition process in particular a deposition time, a quantity of a precursor material deposited in the course of the deposition process and / or a chamber pressure in the process chamber are controlled in a manner that leads to incomplete coverage of the relief.
  • Such an incomplete, non-conformal covering layer (inconformal liner) produced according to the invention covers the relief only above the depth of coverage.
  • the cover layer has an essentially uniform layer thickness.
  • a first pre-stage material is fed to a process chamber in which the substrate is located.
  • the first precursor material is only deposited in designated (activated) sections of the substrate surface.
  • the first prepress material is usually modified. Are all activated sections with the modified prepress material covered, the first process phase of the deposition is completed and a monomolecular partial single cell layer is deposited from a modified precursor material on the substrate surface. Thereafter, non-separated portions of the first precursor material are removed from the process chamber by flushing with an inert gas and / or pumping.
  • a second pre-stage material is introduced into the process chamber, which deposits almost exclusively on the partial single-cell layer from the first pre-stage material.
  • the precursor materials are converted into the layer material.
  • a single layer (monolayer) of the layer to be produced is formed.
  • a process cycle of the ALD process is completed after the removal of non-deposited portions of the second pre-stage material from the process chamber. The process cycle is repeated until a layer of a predetermined layer thickness is formed from the individual layers deposited in each process cycle.
  • the prerequisite for this is that the precursor material is only offered in limited quantities, or the deposition process is terminated in good time before it is completely covered and the chamber pressure in the process chamber is selected so that a sufficiently slow diffusion of the precursor material into the depth of the relief is ensured.
  • the deposited layer is already a functional layer, any masking is not necessary.
  • the deposited layer can be a mask, with at least one etching back step for structuring the mask being saved compared to conventional methods.
  • the accuracy with which a predetermined depth of coverage can be achieved, with predetermined process parameters, depends on the total area of the relief to be covered on the substrate or wafer surface.
  • the total area to be covered becomes larger, since the relief in the horizontal extent is structured increasingly finer and denser and functional structures are increasingly realized on vertical surfaces.
  • a particular advantage of the method according to the invention lies in the fact that the accuracy with which a predetermined coverage depth can be achieved increases in the same way in the previously described development of integrated circuits.
  • the coverage depth is preferably set as a function of an exposure resulting from a product of a quantity or concentration of one of the precursor materials in the process chamber, a deposition time of the precursor material and a process pressure in the process chamber during the deposition.
  • At least one of the precursor materials preferably one with high Hem sticking coefficient offered in a smaller amount or concentration than would be necessary for complete coverage.
  • At least one process phase of a process cycle of the deposition process ends with the consumption of the scarce pre-stage material. There is advantageously no time monitoring of the deposition process. A total area covered by the generated cover layer and thus the depth of coverage correlates with the amount of the pre-stage material made available.
  • a particularly precise control and control of the deposition process results when at least one of the precursor materials is supplied by means of liquid injection. With this method, the amount of the previous material supplied and thus the coverage depth can be set very precisely.
  • the deposition time of at least one pre-stage material is checked during one process cycle of the deposition method.
  • the depth of coverage is set via the deposition time of the prepress material.
  • the method according to the invention is preferably adapted to different types of reliefs via the chamber pressure in the process chamber during the deposition, in particular of the precursor material with a high adhesive coefficient.
  • a non-conforming top layer is deposited on a flat relief that has structures with low aspect ratios and / or a high proportion of process surfaces inclined to the surface requires a lower chamber pressure for the same depth of coverage than a deposition on a deep relief with structures with a high aspect ratio.
  • a distribution device shown head extending over the entire substrate surface is provided for homogeneous distribution of at least the scarced precursor material over the entire substrate surface. This enables a uniform coverage depth to be achieved over an entire wafer surface.
  • the cover layer can already be a functional layer. However, it is also possible to use a cover layer produced in the manner mentioned as a mask. Compared to conventional methods for producing a mask for vertical structuring, there is at least no etching back and structuring of a mask material deposited over the entire surface.
  • a material forming the cover layer is provided as such with a high etching resistance to a material forming the lower sections of the process surfaces arranged between the relief depth and the depth of coverage.
  • the material forming the process areas in the lower sections can then be etched after depositing a cover layer with a high etching selectivity with respect to the cover layer, the etching being masked at least in sections by the cover layer.
  • a material which is substantially inert to an oxidation process is provided for the cover layer.
  • the material forming the process areas between the relief depth and the coverage depth is then oxidized by means of the oxidation process.
  • the oxidation process is masked at least in sections by the cover layer.
  • the cover layer is provided as a barrier layer against a doping process.
  • the material forming the process areas between the relief depth and the coverage depth is doped by means of the doping process, the doping process being masked at least in sections by the cover layer.
  • the cover layer is removed again after use as a mask.
  • the substrate in which the relief is made is composed of one or more layers of materials customary in semiconductor process technology. Common layer materials of the substrate are, for example, crystalline, polycrystalline or epitaxially grown silicon or silicon compounds.
  • HSG structures also form to a large extent on an inconsistent cover layer made of A1 2 0 3 .
  • An additional layer is therefore preferably provided before the application of the non-conforming cover layer, which is first masked with the non-conforming cover layer.
  • the non-conforming top layer is removed before process steps for which the properties of the material of the non-conforming top layer are disadvantageous and replaced by the additional layer underneath.
  • Preferred materials of the additional layer are silicon oxide and silicon nitride.
  • Possible materials of the non-conforming cover layer are those which are functionally suitable either as dielectric 'or conductive layers or as a mask. These include A1 2 0 3 , Hf0 2 , Zr0 2 , Ti0 2 , TiN, WN, SiN and La0 2 and other oxi- de rare earth.
  • the deposition typically takes place at a temperature between 25 and 800 degrees Celsius and a pressure between 0.13 Pa and 1013 hPa. Depending on the precursor materials selected, the temperature and pressure ranges must be restricted in a manner known to the person skilled in the art.
  • the precursor materials to be selected are in particular those which have a high adhesive coefficient or a low desorption coefficient.
  • tri-methyl aluminum is therefore preferably chosen as the first precursor material (precursor) and H 2 0 and / or 0 3 as the second precursor.
  • cover layer is hafnium oxide, with HfCl, Hf-t-butoxide, Hf-di-methyl-amide, Hf-ethyl-methyl-amide, Hf-diethyl-a id or Hf (MMP) as the first precursor and as second precursor H 2 0 and / or 0 3 is selected.
  • zirconium oxide is selected as the material of the cover layer
  • ZrCl or an organic Zr compound is preferably chosen as the first precursor and H 2 0 and / or 0 3 as the second precursor.
  • titanium oxide is formed from the first precursors TiCl 4 , Ti (OC 2 H 5 ) 4 or Ti (OCH (CH 3 ) 2 ) i and the second precursors H 2 0 and / or 0 3 as the material of the cover layer ,
  • cover layer is titanium nitride, which is formed from TiCl 4 and from NH 3 as precursors.
  • tungsten nitride is formed from the precursor materials WF ⁇ and NH 3 .
  • silicon nitride is preferably formed from the precursors SiH 2 , Cl 2 or NH 3 and / or N 2 H as the material of the cover layer.
  • silicon oxide as the material of the cover layer, using Si (NCO) or CH 3 OSi (NCO) 3 as the first precursor and H 2 0 and / or 0 3 as the second precursor.
  • the method according to the invention is in principle suitable for the vertical structuring of different types of reliefs. However, it is particularly suitable for structuring trenches which are formed in a substrate in a high aspect ratio. Especially in trenches with a high aspect ratio, the arrangement of the scarced precursor material is determined systematically from the substrate surface in a diffusion-determined manner.
  • the trenches are functionally formed as capacitors. If the capacitors have a dielectric collar (collar) that closes around the trench at approximately the depth of coverage, the collar can serve as an already adjusted edge of a mask. For a mask arranged in the upper trench region, there is then a lower accuracy requirement for its expansion in the direction of the relief depth. If, according to the method according to the invention, a cover layer is now arranged in an upper trench region, then an oxidation process of a material forming a trench wall in the lower trench region is controlled and then the cover layer is removed, this results in a particularly simple method for arranging an oxide layer as a cover layer in a lower one Trench area trench formed in a substrate. On the other hand, the formation of an oxide layer as a cover layer in the upper trench region results in a particularly simple method for producing an oxide layer in the upper trench region of a trench formed in a substrate.
  • FIG. 1 shows schematic cross sections through a section of a substrate in the course of a first exemplary embodiment of the method according to the invention.
  • FIG. 2 shows schematic cross sections through a section of a substrate in the course of a second exemplary embodiment of the method according to the invention.
  • FIG. 3 shows schematic cross sections through a section of a substrate in the course of a third exemplary embodiment of the method according to the invention.
  • FIG. 4 shows schematic cross sections through a section of a substrate in the course of a fourth exemplary embodiment of the method according to the invention.
  • FIG. 5 shows a schematic cross section through a capacitor structure produced according to the invention.
  • FIGS. La to le show successive phases of structuring a trench wall 43 of a trench 4 made in a substrate 1.
  • a substrate 1 consisting of a semiconductor substrate 11 and an auxiliary layer 12 arranged on the semiconductor substrate 11 has a horizontal substrate surface 101, from which a trench 4 extends into the substrate surface 101 extends in the vertical direction up to a relief depth 103 in the substrate 1.
  • the trench wall 43 forms vertical process surfaces 2 with respect to the substrate surface 101.
  • a coverage depth 102 is specified up to or from which the relief formed by the trench 4 is to be covered with a cover layer 3 to be formed below. The depth of coverage 102 divides the trench 4 into one towards the substrate surface
  • upper sections 21 of the process area 2 are arranged between the substrate surface 101 and the coverage depth 102 and lower sections 22 of the process area 2 between the coverage depth 102 and the relief depth 103.
  • a cover layer 3 is produced on the substrate surface 101 and the upper sections 21 of the process surfaces 2. Due to the high coefficient of adhesion of at least one of the precursor materials, the cover layer 3 grows from the substrate surface 101 in the direction of the relief depth 103. This applies to every molecular partial cell. The growth of the cover layer 3 in the direction of the relief depth 103 is restricted. For example, a process quantity of the preliminary material with a high adhesion coefficient is limited so that the cover layer 3 per individual layer does not grow further than the depth of coverage 102. In addition, the deposition process can be terminated for each individual layer of the top layer 3 when the coverage depth 102 is reached.
  • cover layer 3 is shown in FIG. 1b.
  • the cover layer 3 extends, apart from a short, wedge-shaped transition region 31, above the depth of coverage 102 uniformly and with the same layer thickness. Below the level of coverage
  • the cover layer 3 functions as an etching and doping mask.
  • an etching (bottle etch) takes place first in the lower trench region 42.
  • the trench 4 in the lower trench region 42 is widened.
  • FIG. 1 d This is followed by a gas phase doping, shown schematically in FIG. 1 d, of an area 13 of the semiconductor substrate 11 after previous HSG deposition (hemispherical silicone grain) with optional subsequent etching back.
  • the doped region 13 produced in this way corresponds to a low-resistance connection of an outer electrode (buried plate) when used in the production of DT (deep trench) DRAM memory cells.
  • FIG. 1 is structured in the vertical direction to the substrate surface 101 by an etching step which only acts on the lower trench region 42 and a doping step which likewise only acts on the lower trench region 42.
  • FIGS. 2a to 2c A further exemplary embodiment for structuring a trench 4 is shown in FIGS. 2a to 2c.
  • the trench 4 of FIG. 2 has a collar 44 arranged in the upper trench region 41, which is embedded in the semiconductor substrate 11 and surrounds the trench 4.
  • FIG. 2a shows a trench 4, which is introduced into a substrate 1 from a substrate surface 101 to a relief depth 103 and has a collar 44 in the upper trench region 41.
  • sections 411 of the trench wall 43 between the substrate surface 101 and an upper edge of the collar 44 are to be masked.
  • an incomplete cover layer 3 (non-conformal liner) is now produced, which only covers the trench wall 43 up to a depth of coverage 102.
  • both the cover layer 3 and the collar 44 act as a mask.
  • the method according to the invention is particularly suitable for this example, since a precise position of the upper edge of an etching and doping process is already defined by a lower edge of the collar 44.
  • the cover layer 5 only covers a portion 411 of the trench wall 43 in the upper trench region 41 located between the substrate surface 101 and an upper edge of the collar 44. A precise vertical adjustment of the coverage depth 102 by the deposition process is not necessary, provided that it is ensured that the cover layer 3 runs out in the area of the collar 44. After bottle etching and subsequent gas phase doping, the cover layer 3 is removed, a dielectric layer (node dielectric) is produced on the trench wall 43 and the trench 4 is then filled with polysilicon.
  • FIGS. 3a to 3c show, as a further exemplary embodiment of the method according to the invention, the arrangement of electrodes and a dielectric in the course of processing stacked capacitors in different phases.
  • auxiliary layer 12 for example made of silicon dioxide, is first applied to the semiconductor substrate 11.
  • the semiconductor substrate 11 forms together with the auxiliary layer 12 a substrate 1, into which trenches 4 are introduced from a substrate surface 101.
  • an inconsistent, conductive covering layer 31 and an inconsistent dielectric covering layer 32 are first produced one after the other.
  • the non-conforming dielectric cover layer 32 is drawn deeper into the trenches 4 than the non-conforming conductive cover layer 31.
  • FIG. 3a The resulting arrangement is shown schematically in FIG. 3a.
  • the non-conforming dielectric cover layer 32 is then etched back to about the upper edge of the trench 4 (spacer etch) and a conformal conductive cover layer 33, for example made of doped polysilicon, is applied.
  • the stacked capacitor is electrically connected to the doped region 54 of the transistor 5 with the conformal conductive cover layer 33.
  • the conformal conductive cover layer 33 is first etched back up to approximately the upper edge of the trench 4 and then a conformal dielectric cover layer 34 and a second conformal conductive cover layer 35 are deposited.
  • the arrangement shown in FIG. 3c results.
  • the first conformal conductive cover layer 33 forms a first electrode (node electrode) of the stacked capacitor embodied in the trench 4 which is connected to a doped region 54 of the transistor 5.
  • the non-conformally deposited conductive cover layer 31 and the second conformally deposited conductive cover layer 35 form an outer and inner counterelectrode which are deposited by the non-conformally or conformally dielectric cover layers 32, 34 are insulated from the first electrode 33.
  • the process according to the invention for the deposition of an inconsistent top layer results in a very substantial simplification of the process flow.
  • a multi-stage process sequence consisting of depositing a filler material, etching back the filler material and completely removing the filler material is unnecessary for both non-conformally deposited cover layers.
  • 4a shows the additional layer 7 which lines the trench 4 and on which an non-conformal cover layer 3, which is deposited according to the invention up to a depth of coverage 102, is arranged.
  • the additional layer 7 below the covering depth 102 is subsequently removed and the trench 4 is widened by etching in a trench region 42 arranged below the covering depth 102 (wet bottle etch). A gas phase doping is then carried out, which is masked by the non-conformally deposited cover layer 3.
  • FIG. 4b This results in the structure shown in FIG. 4b, in which the trench 4 is lined in an upper trench region 41 above the depth of coverage 102 with the additional layer 7 and the non-conforming cover layer 3 lying thereon.
  • the semiconductor substrate 11 is doped in the regions 13 adjoining the lower trench region 42.
  • the non-conforming cover layer 3 is then removed and HSG formation with subsequent etching back is carried out, which results in the structure shown in FIG. 4c.
  • the trench 4 is lined with the additional layer 7 in the upper trench region 41 and has HSG structures 6 in the lower trench region 42. Subsequently, the additional layer 7 is removed and a dielectric is deposited.
  • the HSG formation according to the method shown in FIG. 4 is only carried out after the non-conforming cover layer has been removed. This avoids the formation of HSG structures on the non-conforming cover layer, as is increasingly observed when A1 2 0 3 is selected as the material of the cover layer 3.
  • FIG. 5 shows a capacitor structure arranged in a substrate 1.
  • the capacitor structure shown can be realized by repeatedly depositing non-conforming cover layers according to the invention.
  • a capacitor based on the capacitor structure has a high reliability, a low leakage current and a high specific capacity in terms of volume.
  • a capacitor having a high specific capacitance can be easily and inexpensively implemented with two or more electrodes designed in the form of a comb in a trench using the method according to the invention.
  • trenches 4 with a high aspect ratio are first introduced into a substrate 1 by dry etching or macropores.
  • the trenches 4 have a longitudinal extension perpendicular to the cross-sectional plane of the illustration.
  • a capacitor The structure then extends over one or more trenches 4 arranged parallel to one another.
  • Functional silicon structures provided in the substrate 1 are then doped, also for connecting electrodes of the capacitor structure, for example.
  • first non-conforming dielectric cover layer 32 and an non-conforming conductive cover layer 31 are provided in a shortened manner compared to the first non-conforming dielectric cover layer 32 arranged underneath.
  • a second non-conforming dielectric cover layer 32 ' is provided such that it completely covers the non-conforming conductive cover layer 31, which forms an outer electrode, and connects to the first non-conformally deposited dielectric cover layer 32.
  • a conformally deposited conductive cover layer 33 is provided as the inner electrode.
  • the contacting of the inner electrode takes place through a doped region of the substrate 1 or, for example, by structuring the deposited cover layers on the surface of the substrate 1.
  • the capacitor structure is prepared for a repetition of the above-mentioned deposition steps, so that with a sufficient trench width the The partial structure of the cover layers shown in FIG. 5 can be repeated within a trench 4. All the respective inner electrodes 33 on the trench bottom are advantageously conductively connected without further measures. With suitable etching back of the conformally deposited conductive cover layer 33 and the dielectric cover layers 32 ', a conductive connection between the respective outer electrodes 31 of the repeating partial structures likewise results without further measures.
  • Example 1 In the processing of vertical transistor structures, such as trench power transistors and IGBTs (isolated gate bipolar transistors), the doping of a drain zone is advantageously simplified with a cover layer which acts as a doping barrier and is in accordance with the invention in a non-conformal manner.
  • trenches are first made in a substrate, in each of which a gate electrode is provided in the later course of the process.
  • the trenches are lined in an upper region, which lies opposite the source and channel zones formed in the substrate in the finished structure, with a doping barrier which is deposited in a manner not conforming to the invention.
  • the drain zone of the substrate adjoining a lower region of the trenches is then doped and the doping barrier is subsequently removed.
  • An increasing integration density in integrated circuits leads to the need to provide through-contacts to structures in a deep layer arranged below the upper layer during their processing from a substrate surface through an upper layer with already formed conductive regions.
  • the conductive areas are doped semiconductor areas or metallizations.
  • an opening (channel) is etched down to the deeper layer in the substrate and then filled with a conductive material.
  • a non-conforming, dielectric cover layer is provided on a wall of the opening in an upper region of the channel, which covers any exposed sections of conductive regions of the upper layer. A bottom of the opening, in the area of which the conductive region of the deep layer is contacted, remains uncovered. An undesired electrical short circuit between the two conductive areas is avoided.
  • a typical example of such an application of the method according to the invention is for stacked capacitor structures.
  • a transistor structure is arranged along a deep layer between a semiconductor substrate and an overlying oxide layer, in which capacitor structures and signal lines (bit lines) are formed, and to be contacted through the oxide layer from a substrate surface.
  • bit lines signal lines
  • the signal lines can be exposed to an opening.

Abstract

Auf einer reliefartig strukturierten Substratoberfläche (101) eines Substrats (1), typischerweise eines Halbleiterwafers, wird mittels eines Abscheideverfahrens ( tomic layer deposition; ADL) zur Substratoberfläche (101) geneigten oder vertikalen Prozessflächen (2) eine Deckschicht (3) vorgesehen, die durch Begrenzen einer Prozessmenge mindestens eines Vorstufenmaterials und/oder durch zeitliche Begrenzung des Abscheideverfahrens auf einfache Weise bereits in einer zur Substratoberfläche (101) vertikalen Richtung strukturiert und als funktionale Schicht oder Maske für folgende Prozessschritte ausgebildet wird.

Description

Beschreibung
Verfahren zum vertikalen Strukturieren von Substraten in der Halbleiterprozesstechnik mittels inkonformer Abscheidung
Die Erfindung betrifft ein Verfahren für ein Strukturieren von zu einer horizontalen Substratoberfläche geneigten und/oder vertikalen und sich bezogen auf die Substratoberfläche bis in eine Relieftiefe erstreckenden Prozessflächen eines ein Relief aufweisenden Substrats bezüglich einer jeweils zwischen der Relieftiefe und der Substratoberfläche vorzugebenden Bedeckungstiefe.
In der Halbleiterprozesstechnologie erfolgt das Strukturieren planarer, zu einer aferoberfläche horizontalen Substratoberflächen durch photolithographische Verfahren in Verbindung mit selektiven Ätzverfahren. Während der Prozessierung integrierter Schaltkreise entstehen auf der Wafer- oder Substratoberfläche Reliefs mit einer ausgeprägten Topographie. Ein solches Relief weist auch zur Substratoberfläche vertikale oder geneigte Oberflächen auf. Im Zuge einer weiteren Verkleinerung (shrinking) der integrierten Schaltkreise ergibt sich die Notwendigkeit, auch vertikale oder geneigte Prozessflächen zu strukturieren, um die Strukturen in ihrer vertikalen Ausdehnung funktional zu differenzieren. Beispiele dafür sind der Deep-Trench-Kondensator, der Stapelkondensator, sowie vertikale Transistordesigns. Das Strukturieren von Reliefs in zur Substratoberfläche vertikaler Richtung ist durch photolithographische Verfahren nicht unmittelbar möglich.
Ein solches vertikales Strukturieren erfolgt herkömmlicherweise mit Hilfe eines geeigneten Füllmaterials, das als Maske unterhalb einer Bedeckungstiefe gelegene Bereiche des Reliefs während einer Bearbeitung unmaskierter Bereiche abdeckt.
Ein Strukturieren eines Reliefs in zur Substratoberfläche vertikaler Richtung bezüglich einer zwischen einer Substrat- oberfläche und einer Relieftiefe gewählten Bedeckungstiefe erfolgt dann üblicherweise nach einer der beiden nachstehenden Methoden:
Soll etwa ein Oxid ausschließlich in einem unteren, zwischen der Bedeckungstiefe und der Relieftiefe angeordneten Bereich eines Reliefs abgeschieden werden, so wird in einem ersten Schritt das Oxid ganzflächig auf das Relief abgeschieden oder erzeugt. Danach wird das Relief mit einem geeigneten Füllmaterial zunächst vollständig gefüllt und anschließend das Füllmaterial bis zur Bedeckungstiefe zurückgebildet. Darauf werden frei liegende Abschnitte des Oxids entfernt und als letzter Schritt remanente Abschnitte des Füllmaterials vollständig entfernt.
Soll ein Oxid nur in zwischen der Substratoberfläche und der Bedeckungstiefe angeordneten oberen Bereichen eines Reliefs abgeschieden oder erzeugt werden, so wird zunächst über das ganze Relief ganzflächig eine Ätzstoppschicht, zum Beispiel eine Nitridschicht, vorgesehen. Es erfolgt wiederum ein Füllen der Struktur mit einem geeigneten Füllmaterial, zum Beispiel polykristallinem Silizium, sowie eine Rückätzung des Füllmaterials bis zur Bedeckungstiefe. In den unmaskierten Abschnitten wird nun die Nitridschicht entfernt und in den freiliegenden Bereichen ein Oxid abgeschieden oder thermisch generiert. Anschließend wird das Oxid anisotrop aufgeätzt. Es folgt die Entfernung des Füllmaterials, sowie als letzter Schritt das vollständige Entfernen der Ätzstoppschicht.
Daneben sind plasmagestützte chemische Dampfphasenabscheide- verfahren, (PECVD, plas a enhanced che ical vapor deposition) bekannt. Dabei werden auf Oberflächen eines Reliefs dünne Schichten erzeugt, deren Stärke auf zur Substratoberfläche geneigten oder vertikalen Oberflächen mit zunehmender Tiefe abnimmt. Allerdings ist das Auslaufen der erzeugten Schichten in der Tiefe bei diesen Verfahren nur schwer kontrollierbar. Darüber hinaus weisen solche Schichten sehr starke Dickenun- terschiede zwischen einem Endpunkt in der Tiefe und einem Bereich nahe der Substratoberfläche auf.
Ebenso wächst bei einer diffusionslimitierten Abscheidung von Siliziumoxid mittels Tetraethylorthosilan (TEOS) das Siliziumoxid auf zur Substratoberfläche vertikalen oder geneigten Oberflächen mit gegen die Relieftiefe abnehmender Rate auf, so dass die Schichtdicke des so erzeugten Siliziumoxids in Richtung Relieftiefe abnimmt.
Es sind also bisher nur aufwändige Verfahren bekannt, mit denen auf zur Substratoberfläche geneigten oder vertikalen 0- berflächen eines Substrats ausschließlich oberhalb oder unterhalb einer Bedeckungstiefe eine Deckschicht gleichmäßiger Schichtdicke angeordnet oder erzeugt werden kann.
Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren zur Verfügung zu stellen, mit dem auf einfache Weise auf zu einer Substratoberfläche eines Substrats geneigten oder vertikalen Prozessflächen eine Deckschicht mit im Wesentlichen gleichmäßiger Schichtdicke ausschließlich oberhalb einer vorgegebenen Bedeckungstiefe vorgesehen werden kann. Es ist weiter Aufgabe der Erfindung, ein Verfahren zum Anordnen einer Oxidschicht in einem unteren oder oberen Grabenbereich eines in einem Substrat ausgebildeten Grabens sowie ein Verfahren zur Herstellung einer Kondensatorstruktur aufzuzeigen.
Diese Aufgabe wird bei einem Verfahren der Eingangs genannten Art durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale gelöst. Vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens ergeben sich aus den Unteransprüchen.
Gemäß dem erfindungsgemäßen Verfahren für ein vertikales Strukturieren eines ein Relief mit zu einer horizontalen Substratoberfläche geneigten und/oder vertikalen und sich bezogen auf die Substratoberfläche bis in eine Relieftiefe erstreckenden Prozessflächen aufweisenden Substrats bezüglich einer jeweils zwischen der Relieftiefe und der Substratoberfläche liegenden Bedeckungstiefe wird also mittels eines Abscheideverfahrens in einer Prozesskammer aus Vorstufenmaterialien eine Deckschicht erzeugt, eine Abscheidung mindestens einer der Vorstufenmaterialien gegenüber einer Abscheidung einer vollständigen Deckschicht beschränkt und dadurch die Deckschicht nahezu ausschließlich und mit im Wesentlichen gleichmäßiger Schichtdicke auf zwischen der Substratoberfläche und der Bedeckungstiefe angeordneten o- beren Abschnitten der Prozessflächen vorgesehen.
Dabei wird auf zwischen den oberen Abschnitten des Reliefs mittels des Abscheideverfahrens, etwa eines ALD-Prozesses (a- tomic layer deposition) , eine Deckschicht mit im Wesentlichen gleichförmiger Schichtdicke vorgesehen. Dabei werden Prozessparameter des Abscheideverfahrens, insbesondere eine Abscheidedauer, eine Menge eines im Zuge des Abscheideverfahrens abgeschiedenen Vorstufenmaterials und/oder ein Kammerdruck in der Prozesskammer in einer Weise gesteuert, die zu einer unvollständigen Bedeckung des Reliefs führt.
Eine solche erfindungsgemäß erzeugte unvollständige, inkonforme Deckschicht (inconformal liner) bedeckt das Relief ausschließlich oberhalb der Bedeckungstiefe. Die Deckschicht weist dabei eine im Wesentlichen gleichmäßige Schichtdicke auf.
Bekannterweise wird bei einem ALD-Prozess in einer ersten Prozessphase ein erstes Vorstufenmaterial einer Prozesskammer, in der sich das Substrat befindet, zugeführt. Durch einen als Chemiesorbtion bezeichneten Prozess lagert sich das erste Vorstufenmaterial ausschließlich in vorgesehenen (aktivierten) Abschnitten der Substratoberfläche ab. Dabei wird das erste Vorstufenmaterial in der Regel modifiziert. Sind alle aktivierten Abschnitte mit dem modifizierten Vorstufen- material bedeckt, so ist die erste Prozessphase der Abscheidung abgeschlossen und eine monomolekulare Teileinzellage aus einem modifizierten Vorstufenmaterial auf der Substratoberfläche abgeschieden. Danach werden nichtabgeschiedene Anteile des ersten Vorstufenmaterials durch Spülen mit einem inerten Gas und/oder Abpumpen aus der Prozesskammer entfernt. In einer zweiten Phase wird ein zweites Vorstufenmaterial in die Prozesskammer eingebracht, das sich nahezu ausschließlich auf der Teileinzellage aus dem ersten Vorstufenmaterial ablagert . Dabei werden die Vorstufenmaterialien in das Schichtmaterial umgesetzt. Es bildet sich eine Einzellage (Monolayer) der zu erzeugenden Schicht. Nach einem Entfernen nicht abgeschiedener Anteile des zweiten Vorstufenmaterials aus der Prozesskammer ist ein Prozesszyklus des ALD-Prozesses abgeschlossen. Der Prozesszyklus wird solange wiederholt, bis aus den je Prozesszyklus abgeschiedenen Einzellagen eine Schicht vorher bestimmter Schichtdicke gebildet ist.
Herkömmlicherweise wird bei ALD-Prozessen deren selbstlimitierender Charakter genutzt, wobei sich bei ausreichender Zufuhr der Vorstufenmaterialien unabhängig von einer Menge der zugeführten Vorstufenmaterialien, deren Zuflusscharakteristi- ka und einer Diffusion- und Reaktionsdynamik der Vorstufenmaterialien eine vollständige Deckschicht (conformal liner) nahezu gleichmäßiger Schichtdicke ergibt. Da die Abscheidung der Vorstufenmaterialien weitgehend durch Chemiesorption, nicht aber durch die dynamische, diffusionsbestimmte Prozesse beschränkt wird, ergibt sich für ALD-Prozesse bei einer Abscheidung auf nicht planaren strukturierten Substratoberflächen eine sehr gute Kantenbedeckung.
Es konnte nun beobachtet werden, dass der Abscheideprozess auf einer strukturierten Oberfläche unter bestimmten Prozessbedingungen gerichtet von der Substratoberfläche in die Tiefe des Reliefs hinein erfolgt. Dieser Umstand wird durch das erfindungsgemäße Verfahren ge- nutzt. Dabei ist es erfindungswesentlich, dass sich in oberen, der Substratoberfläche zugewandten Bereichen des Reliefs, eine vollständige Lage des Vorstufenmaterials ergibt, in unteren Bereichen jedoch nahezu kein Material abgeschieden wird. Ein dazwischenliegender Übergangsbereich, in dem eine Deckungsgradient vorliegt, weist nur eine bezogen zur typischen Relieftiefe geringe Ausdehnung auf. Eine solche gerichtete, systematische Belegung eines Reliefs von der Substratoberfläche in Richtung der Relieftiefe hinein ergibt sich den Beobachtungen zufolge bevorzugt dann, wenn mindestens eines der Vorstufenmaterialien einen geringen Desorptionskoeffi- zienten aufweist und in gegenüber einer für eine vollständige Bedeckung notwendigen Menge reduzierten Menge angeboten wird.
Weist das Vorstufenmaterial einen niedrigen Desorptionskoef- fizienten auf, so ist die Wahrscheinlichkeit dafür, dass ein bereits adsorbiertes Molekül des Vorstufenmaterials sich wieder aus der Schicht entfernt, also desorbiert, sehr gering. Wird nun im Zuge eines ALD-Prozesses ein Vorstufenmaterial mit einem niedrigen Desorptionskoeffizienten, entsprechend einem hohen Haftkoeffizienten (sticking coefficient) vorgesehen, so wird ein auf einer Substratoberfläche ausgeprägtes Relief von der Substratoberfläche her fortschreitend in die Tiefe bedeckt. Dabei erfolgt die Bedeckung abgesehen von einem kurzen Übergangsbereich vollständig und in gleichmäßiger Schichtdicke.
Voraussetzung dafür ist, dass das Vorstufenmaterial nur in begrenzter Menge angeboten wird, bzw. das Abscheideverfahren vor einem vollständigen Bedecken rechtzeitig abgebrochen wird und der Kammerdruck in der Prozesskammer so gewählt wird, dass eine ausreichend langsame Diffusion des Vorstufenmaterials in die Tiefe des Reliefs sichergestellt ist.
Damit lässt sich auf besonders vorteilhafte und einfache Weise eine ein Relief aufweisende Substratoberfläche vertikal strukturieren. Handelt es sich bei der abgeschiedenen Schicht bereits um eine funktionale Schicht, so entfällt jegliches maskieren. Andererseits kann es sich aber bei der abgeschiedenen Schicht um eine Maske handeln, wobei gegenüber herkömmlichen Verfahren mindestens ein Rückätzschritt zum Strukturieren der Maske eingespart wird.
Die Genauigkeit, mit der eine vorgegebene Bedeckungstiefe erzielt werden kann, hängt bei vorgegebenen Prozessparametern von der zu bedeckenden Gesamtfläche des Reliefs auf der Substrat- bzw. Waferobertlache ab. Je größer dabei die zu bedeckende Gesamtfläche ist, desto geringer ist die Abhängigkeit der Bedeckungstiefe von Schwankungen der Menge zugeführten Vorstufenmaterials bzw. der Dauer der Abscheidung des Vorstufenmaterials. Mit fortschreitender Erhöhung der Dichte von auf der Substratoberfläche realisierten Strukturen wird die zu bedeckende Gesamtfläche größer, da das Relief in der horizontalen Ausdehnung zunehmend feiner und dichter strukturiert wird und zunehmend funktionale Strukturen an vertikalen Oberflächen realisiert werden.
Ein besonderer Vorteil des erfindungsgemäßen Verfahrens liegt nun darin begründet, dass sich die Genauigkeit, mit der eine vorgegebene Bedeckungstiefe realisiert werden kann, bei der vorgezeichneten Entwicklung integrierter Schaltungen in gleicher Weise erhöht.
Bezüglich der Prozessparameter wird die Bedeckungstiefe bevorzugterweise in Abhängigkeit einer sich aus einem Produkt aus einer Menge bzw. Konzentration eines der Vorstufenmaterialien in der Prozesskammer, einer Abscheidedauer des Vorstufenmaterials und einem Prozessdruck in der Prozesskammer während der Abscheidung ergebenden Exposition eingestellt.
Nach einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird während des Abscheideverfahrens mindestens eines der Vorstufenmaterialien, bevorzugt ein solches mit ho- hem Haftkoeffizienten (sticking coefficient) in einer gerin- geren Menge bzw. Konzentration angeboten, als für eine vollständige Bedeckung notwendig wäre. Jeweils mindestens eine Prozessphase eines Prozesszyklus des Abscheideverfahrens endet mit dem Verbrauch des verknappten Vorstufenmaterials. Es entfällt vorteilhafterweise eine zeitliche Überwachung des Abscheidevorgangs. Eine von der erzeugten Deckschicht bedeckte Gesamtfläche und damit die Bedeckungstiefe korreliert mit der Menge des zur Verfügung gestellten Vorstufenmaterials.
Eine besonders genaue Kontrolle und Steuerung des Abscheideverfahrens ergibt sich bei einem Zuführen mindestens eines der Vorstufenmaterialien mittels Flüssiginjektion (liquid in- jection) . Mit dieser Methode kann die Menge des zugeführten Vorgängermaterials und damit die Bedeckungstiefe sehr genau eingestellt werden.
Nach einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Abscheidedauer mindestens eines Vorstufenmaterials, bevorzugt eines Vorstufenmaterials mit hohem Haftkoeffiezienten, während jeweils eines Prozesszyklus des Abscheideverfahrens kontrolliert. Dabei wird die Bedeckungstiefe über die Abscheidedauer des Vorstufenmaterials eingestellt.
Bevorzugterweise erfolgt eine Anpassung des erfindungsgemäßen Verfahrens an verschiedene Typen von Reliefs über den Kammerdruck in der Prozesskammer während des Abscheidens insbesondere des Vorstufenmaterials mit hohem Haftkoeffizienten. So erfordert eine Abscheidung einer inkonformen Deckschicht auf einem flachen Relief, das Strukturen mit niedrigem Aspektverhältnissen und/oder einen hohen Anteil zur Oberfläche geneigter Prozessflächen aufweist für die gleiche Bedeckungstiefe einen niedrigeren Kammerdruck als eine Abscheidung auf einem tiefen Relief mit Strukturen mit hohem Aspektverhältnis. Nach einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird für eine homogene Verteilung zumindest des verknappten Vorstufenmaterials über die gesamte Substratoberfläche eine sich über die gesamte Substratoberfläche erstreckende Verteileinrichtung (shower head) vorgesehen. Damit lässt sich eine über eine gesamte Waferoberflache einheitliche Bedeckungstiefe erzielen.
Bei der Deckschicht kann es sich bereits um eine funktionale Schicht handeln. Es ist aber auch möglich, eine in der genannten Weise erzeugte Deckschicht ihrerseits als Maske zu verwenden. Gegenüber herkömmlichen Verfahren zur Erzeugung einer Maske zur vertikalen Strukturierung entfällt mindestens ein Rückätzen und Strukturieren eines ganzflächig abgeschiedenen Maskenmaterials.
Nach einer ersten bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird ein die Deckschicht ausbildendes Material als ein solches mit hoher Ätzresistenz gegen ein zwischen der Relieftiefe und der Bedeckungstiefe angeordnete untere Abschnitte der Prozessflächen ausbildendes Material vorgesehen. Das die Prozessflächen in den unteren Abschnitten ausbildende Material kann dann nach Abscheiden einer Deckschicht mit einer hohen Ätzselektivität gegenüber der Deckschicht geätzt werden, wobei das Ätzen mindestens abschnittsweise durch die Deckschicht maskiert wird.
Nach einer zweiten bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird für die Deckschicht ein gegen einen Oxidationsprozess im Wesentlichen inertes Material vorgesehen. Anschließend wird das die Prozessflächen zwischen der Relieftiefe und der Bedeckungstiefe ausbildende Material mittels des Oxidationsprozesses oxidiert. Dabei wird der Oxidationsprozess mindestens abschnittsweise durch die Deckschicht maskiert. Schließlich wird nach einer dritten bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens die Deckschicht als eine Barriereschicht gegen einen Dotierprozess vorgesehen. Das die Prozessflächen zwischen der Relieftiefe und der Bedeckungstiefe ausbildende Material wird mittels des Dotierprozesses dotiert, wobei der Dotierprozess mindestens abschnittsweise durch die Deckschicht maskiert wird. Nach Benutzung als Maske wird die Deckschicht wieder entfernt.
Das Substrat, in dem das Relief ausgeführt ist, ist aus einer oder mehreren Schichten aus in der Halbleiterprozesstechnologie üblichen Materialien aufgebaut. Übliche Schichtmaterialien des Substrats sind etwa kristallines, polykristallines oder epitaktisch gewachsenes Silizium oder Siliziumverbindungen.
Materialien, die für eine erfindungsgemäße inkonforme Abscheidung gut geeignet sind, weisen für eine folgende Prozessierung mitunter nachteilige Eigenschaften auf. So bilden sich etwa bei einer HSG-Formierung auch in starken Maß HSG- Strukturen etwa auf einer inkonformen Deckschicht aus A1203.
Bevorzugterweise wird daher vor dem Aufbringen der inkonformen Deckschicht eine Zusatzschicht vorgesehen, die zunächst mit der inkonformen Deckschicht maskiert wird. Im Folgenden wird die inkonforme Deckschicht vor Prozessschritten, für die die Eigenschaften des Materials der inkonformen Deckschicht nachteilig sind, entfernt und durch die darunterliegende Zu- satzschicht ersetzt.
Bevorzugte Materialien der Zusatzschicht sind Siliziumoxid und Siliziumnitrid.
Mögliche Materialien der inkonformen Deckschicht sind solche, die funktional entweder als dielektrische 'oder leitende Schichten oder aber als Maske geeignet sind. Dazu zählen A1203, Hf02, Zr02, Ti02, TiN, WN, SiN und La02 und weitere Oxi- de seltener Erden. Die Abscheidung erfolgt dabei typischerweise jeweils bei einer Temperatur zwischen 25 und 800 Grad Celsius und einem Druck zwischen 0,13 Pa und 1013 hPa. Abhängig von den gewählten Vorstufenmaterialien sind die Temperatur- und Druckbereiche in jeweils dem Fachmann bekannter Weise einzuschränken.
Wie bereits beschrieben, sind als Vorstufenmaterialien insbesondere solche zu wählen, die einen hohen Haftkoeffizienten beziehungsweise einen niedrigen Desorptionskoeffizienten aufweisen.
Für Aluminiumoxid wird daher in bevorzugter Weise als erstes Vorstufenmaterial (Präkursor) Tri-Methyl-Aluminium und als zweiter Präkursor H20 und/oder 03 gewählt.
Ein weiteres bevorzugtes Material der Deckschicht ist Hafniumoxid, wobei als erster Präkursor HfCl , Hf-t-butoxide, Hf- di-methyl-amid, Hf-ethyl-methyl-amid, Hf-diethyl-a id oder Hf(MMP) sowie als zweiter Präkursor H20 und/oder 03 gewählt wird.
Wird als Material der Deckschicht Zirkoniumoxid gewählt, so wird als erster Präkursor bevorzugt ZrCl oder eine organische Zr-Verbindung und als zweiter Präkursor H20 und/oder 03 gewählt .
In einer weiteren bevorzugten Ausführungsform wird als Material der Deckschicht Titanoxid aus den ersten Präkursoren TiCl4, Ti(OC2H5)4 oder Ti (OCH (CH3) 2) i und den zweiten Präkursoren H20 und/oder 03 gebildet.
Ein weiteres bevorzugtes Material der Deckschicht ist Titannitrid, dass aus TiCl4 und aus NH3 als Präkursoren gebildet wird. Nach einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird aus den Vorstufenmaterialien WFβ und NH3 Wolframnitrid gebildet.
Ebenso wird bevorzugt aus den Präkursoren SiH2, Cl2 bzw. NH3 und/oder N2H als Material der Deckschicht Siliziumnitrid gebildet.
Ferner ist es möglich, als Material der Deckschicht Siliziumoxid zu wählen, wobei als erster Präkursor Si(NCO) oder CH3OSi(NCO)3 und als zweiter Präkursor H20 und/oder 03 eingesetzt wird.
Das erfindungsgemäße Verfahren ist prinzipiell zum vertikalen Strukturieren verschiedener Typen von Reliefs geeignet. In besonderer Weise ist es jedoch zum Strukturieren von Gräben, die in einem hohen Aspektverhältnis in einem Substrat ausgebildet sind, geeignet. Gerade in Gräben mit hohem Aspektverhältnis erfolgt diffusionsbestimmt die Anordnung des verknappten Vorstufenmaterials ausgeprägt systematisch von der Substratoberfläche her.
In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden dabei die Gräben funktional zu Kondensatoren ausgebildet. Weisen die Kondensatoren einen dielektrischen Kragen (collar) auf, der sich in etwa in Höhe der Bedeckungstiefe um den Graben schließt, so kann der Kragen als bereits justierte Kante einer Maske dienen. Für eine im oberen Grabenbereich angeordnete Maske ergibt sich dann eine geringere Genauigkeitsanforderung an ihre Ausdehnung in Richtung der Relieftiefe. Wird gemäß dem erfindungsgemäßen Verfahren nun eine Deckschicht in einem oberen Grabenbereich angeordnet, danach ein Oxidationsprozess eines im unteren Grabenbereich eine Grabenwandung ausbildenden Materials gesteuert und anschließend die Deckschicht entfernt, so ergibt sich ein besonders einfaches Verfahren zum Anordnen einer O- xidschicht als Deckschicht in einem unteren Grabenbereich ei- nes in einem Substrat ausgebildeten Grabens. Andererseits ergibt sich durch ein Ausbilden einer Oxidschicht als Deckschicht im oberen Grabenbereich ein besonders einfaches Verfahren zum Erzeugen einer Oxidschicht im oberen Grabenbereich eines in einem Substrat ausgebildeten Grabens.
Im Folgenden wird die Erfindung anhand von Figuren näher erläutert, wobei für einander entsprechende Bauteile und Komponenten die selben Bezugszeichen verwendet werden.
Fig. 1 zeigt schematische Querschnitte durch einen Ausschnitt eines Substrats im Zuge eines ersten Ausführungsbeispiels des erfindungsgemäßen Verfahrens.
Fig. 2 zeigt schematische Querschnitte durch einen Ausschnitt eines Substrats im Zuge eines zweiten Ausführungsbeispiels des erfindungsgemäßen Verfahrens.
Fig. 3 zeigt schematische Querschnitte durch einen Ausschnitt eines Substrats im Zuge eines dritten Ausführungsbeispiels des erfindungsgemäßen Verfahrens.
Fig. 4 zeigt schematische Querschnitte durch einen Ausschnitt eines Substrats im Zuge eines vierten Ausführungsbeispiels des erfindungsgemäßen Verfahrens.
Fig. 5 zeigt einen schematische Querschnitte durch einen erfindungsgemäß erzeugte KondensatorStruktur.
Die Fig. la bis Fig. le zeigen aufeinanderfolgende Phasen eines Strukturierens einer Grabenwandung 43 eines in einem Substrat 1 eingebrachten Grabens 4.
Ein aus einem Halbleitersubstrat 11 und einer auf dem Halbleitersubstrat 11 angeordneten Hilfsschicht 12 bestehendes Substrat 1 weist eine horizontale Substratoberfläche 101 auf, von der aus sich ein Graben 4 in zur Substratoberfläche 101 vertikaler Richtung bis zu einer Relieftiefe 103 in das Substrat 1 erstreckt. Die Grabenwandung 43 bildet zur Substratoberfläche 101 vertikale Prozessflächen 2. Zwischen der Substratoberfläche 101 und der Relieftiefe 103 wird eine Bedeckungstiefe 102 vorgegeben bis zu der, bzw. ab der das durch den Graben 4 gebildete Relief mit einer im Folgenden auszubildenden Deckschicht 3 bedeckt werden soll. Die Bedeckungstiefe 102 teilt den Graben 4 in einen zur Substratoberfläche
101 orientierten oberen Grabenbereich 41 und einen unteren Grabenbereich 42. Entsprechend den Grabenbereichen 41, 42 sind obere Abschnitte 21 der Prozessfläche 2 zwischen der Substratoberfläche 101 und der Bedeckungstiefe 102 sowie untere Abschnitte 22 der Prozessfläche 2 zwischen der Bedeckungstiefe 102 und der Relieftiefe 103 angeordnet.
Gemäß dem erfindungsgemäßen Verfahren wird eine Deckschicht 3 auf der Substratoberfläche 101 und den oberen Abschnitten 21 der Prozessflächen 2 erzeugt. Bedingt durch den hohen Haftkoeffizienten mindestens eines der Vorstufenmaterialien wächst die Deckschicht 3 ausgehend von der Substratoberfläche 101 in Richtung der Relieftiefe 103. Dies gilt für jede molekulare Teileinzellage. Das Wachsen der Deckschicht 3 in Richtung der Relieftiefe 103 wird beschränkt. Beispielsweise wird dazu eine Prozessmenge des Vorstufenmaterials mit hohem Haftkoeffizienten beschränkt, so dass die Deckschicht 3 pro Einzellage nicht weiter als bis zur Bedeckungstiefe 102 wächst. Zudem kann für jede Einzellage der Deckschicht 3 der Abscheidepro- zess beim Erreichen der Bedeckungstiefe 102 abgebrochen werden.
Es ergibt sich in beiden Fällen eine in der Fig. lb dargestellte Ausbildung der Deckschicht 3. Die Deckschicht 3 erstreckt sich, von einem kurzen, keilförmigen Übergangsbereich 31 abgesehen, oberhalb der Bedeckungstiefe 102 gleichförmig und in gleicher Schichtdicke. Unterhalb der Bedeckungstie e
102 findet nahezu keine Ablagerung statt. In nachfolgenden Prozessschritten fungiert, wie aus der Fig. lc ersichtlich, die Deckschicht 3 als Ätz- und Dotiermaske. Gemäß der Fig. lc erfolgt zunächst im unteren Grabenbereich 42 eine Ätzung (bottle etch) . Infolge des Ätzprozesses wird der Graben 4 im unteren Grabenbereich 42 aufgeweitet.
Daraufhin erfolgt eine in der Fig. Id schematisch dargestellte Gasphasendotierung eines Gebiets 13 des Halbleitersubstrats 11 nach vorangegangener HSG-Abscheidung (hemispherical Silicon grain) mit optionaler anschließender Rückätzung. Das so erzeugte dotierte Gebiet 13 entspricht in der Anwendung bei der Herstellung von DT (deep trench) DRAM Speicherzellen einem niederohmigen Anschluss einer äußeren Elektrode (buried plate) .
Danach wird die in den vorangegangenen Prozessschritten als Maske dienende Deckschicht 3 entfernt. Es ergibt sich ein in der Fig. le dargestelltes Relief, das durch einen lediglich auf den unteren Grabenbereich 42 wirkenden Ätzschritt und einen ebenfalls lediglich auf den unteren Grabenbereich 42 wirkenden Dotierschritt in zur Substratoberfläche 101 vertikaler Richtung strukturiert ist.
In den Fig. 2a bis Fig. 2c ist ein weiteres Ausführungsbeispiel für ein Strukturieren eines Grabens 4 dargestellt. Im Unterschied zu dem Graben aus der Fig. 1 weist der Graben 4 der Fig. 2 einen im oberen Grabenbereich 41 angeordneten Kragen (collar) 44 auf, der im Halbleitersubstrat 11 eingebettet ist und den Graben 4 umschließt.
In der Fig. 2a ist ein von einer Substratoberfläche 101 bis zu einer Relieftiefe 103 in ein Substrat 1 eingebrachter Graben 4 mit einem Kragen 44 im oberen Grabenbereich 41 dargestellt. Für folgende Prozessschritte sind Teilabschnitte 411 der Grabenwandung 43 zwischen der Substratoberfläche 101 und einer Oberkante des Kragens 44 zu maskieren. Im Folgenden wird nun eine unvollständige Deckschicht 3 (in- conformal liner) erzeugt, die die Grabenwandung 43 lediglich bis zu einer Bedeckungstiefe 102 bedeckt. Für folgende Ätz- und Dotierschritte fungieren sowohl die Deckschicht 3 als auch der Kragen 44. als Maske. Für dieses Beispiel ist das erfindungsgemäße Verfahren besonders geeignet, da eine genaue Lage der Oberkante eines Ätz- und Dotiervorgangs bereits durch eine Unterkante des Kragens 44 festgelegt ist. Durch die Deckschicht 5 wird lediglich ein zwischen der Substratoberfläche 101 und einer Oberkante des Kragens 44 befindlicher Teilabschnitt 411 der Grabenwandung 43 im oberen Grabenbereich 41 abgedeckt. Ein exaktes vertikales Justieren der Bedeckungstiefe 102 durch das Abscheideverfahren ist nicht erforderlich, sofern sichergestellt ist, dass die Deckschicht 3 im Bereich des Kragens 44 ausläuft. Nach einer Flaschenätzung (bottle etch) und anschließender Gasphasendotierung wird die Deckschicht 3 entfernt, eine dielektrische Schicht (node dielectric) auf der Grabenwandung 43 erzeugt und anschließend der Graben 4 mit Polysilizium gefüllt.
In den Fig. 3a bis Fig. 3c ist als ein weiteres Ausführungsbeispiel des erfindungsgemäßen Verfahrens das Anordnen von Elektroden und eines Dielektrikums im Zuge einer Prozessierung von Stapelkondensatoren (stacked capacitors) in verschiedenen Phasen dargestellt.
Dabei werden zunächst in und auf dem Halbleitersubstrat 11 elektronische Strukturen wie etwa Transistoren 5 ausgebildet, die jeweils ein Gatedielektrikum 51, ein Gateelektrode 52, sowie eine Drain- und eine Sourceelektrode ausbildende dotierte Gebiete 53,54 aufweisen. Die Stapelkondensatoren werden im Unterschied zu den Grabenkondensatoren der Fig. 1 auf bzw. über der Oberfläche des Halbleitersubstrats 11 vorgesehen. Dazu wird zunächst eine Hilfsschicht 12, etwa aus Siliziumdioxid auf das Halbleitersubstrat 11 aufgebracht. Das Halbleitersubstrat 11 bildet zusammen mit der Hilfsschicht 12 ein Substrat 1, in das von einer Substratoberfläche 101 her Gräben 4 eingebracht werden.
Mit dem erfindungsgemäßen Verfahren zur Abscheidung einer inkonformen Deckschicht werden nun zunächst nacheinander eine inkonforme, leitfähige Deckschicht 31 und eine inkonforme dielektrische Deckschicht 32 erzeugt. Dabei wird die inkonforme dielektrische Deckschicht 32 tiefer in die Gräben 4 gezogen als die inkonforme leitfähige Deckschicht 31.
Die sich ergebende Anordnung ist in der Fig. 3a schematisch dargestellt.
Im Anschluss wird die inkonforme dielektrische Deckschicht 32 bis etwa zur Oberkante des Grabens 4 zurückgeätzt (spacer etch) und eine konforme leitfähige Deckschicht 33, etwa aus dotiertem Polysilizium aufgebracht.
Die Fig. 3b zeigt die sich daraus ergebende Anordnung. Mit der konformen leitfähigen Deckschicht 33 wird der Stapelkondensator elektrisch an das dotierte Gebiet 54 des Transistors 5 angeschlossen.
In weiteren Schritten wird zunächst die konforme leitfähige Deckschicht 33 bis etwa zur Oberkante des Grabens 4 zurückgeätzt und anschließend eine konforme dielektrische Deckschicht 34 und eine zweite konforme leitfähige Deckschicht 35 abgeschieden. Es ergibt sich die in der Fig. 3c dargestellte Anordnung.
Die erste konforme leitfähige Deckschicht 33 bildet eine mit einem dotierten Gebiet 54 des Transistors 5 verbundene erste Elektrode (node electrode) des im Graben 4 ausgeführten Stapelkondensators. Die inkonform abgeschiedene leitfähige Deckschicht 31 und die zweite konform abgeschiedene leitfähige Deckschicht 35 bilden eine äußere und innere Gegenelektrode, die durch die inkonform bzw. konform abgeschiedenen die- lektrischen Deckschichten 32, 34 gegen die erste Elektrode 33 isoliert sind.
Durch das erfindungsgemäße Verfahren zur Abscheidung einer inkonformen Deckschicht ergibt sich eine sehr wesentliche Vereinfachung des Prozessflusses. Gegenüber einer Realisierung der in der Fig. 3c dargestellten Struktur mit herkömmlichen Verfahren erübrigt sich für beide inkonform abgeschiedene Deckschichten eine mehrstufige Prozessfolge bestehend aus Abscheiden eines Füllmaterials, Rückätzen des Füllmaterials und vollständiges Entfernen des Füllmaterials.
In den Fig. 4a bis Fig. 4c ist eine Variante des in den Fig. la bis le dargestellten Ausführungsbeispiels des erfindungsgemäßen Verfahrens dargestellt. Dabei wird vor dem Abscheiden der inkonformen Deckschicht 3 auf dem Substrat 1 eine konforme Zusatzschicht 7 etwa aus Siliziumnitrid oder Siliziumoxid durch Abscheidung oder durch Oxidation bzw. Nitridierung vorgesehen.
In Fig. 4a ist die Zusatzschicht 7 dargestellt, die den Graben 4 auskleidet und auf der eine erfindungsgemäß bis zur einer Bedeckungstiefe 102 abgeschiedene inkonforme Deckschicht 3 angeordnet ist.
Nachfolgend wird die Zusatzschicht 7 unterhalb der Bedeckungstiefe 102 entfernt und der Graben 4 in einem unterhalb der Bedeckungstiefe 102 angeordneten Grabenbereich 42 durch Ätzen aufgeweitet (wet bottle etch) . Anschließend wird eine Gasphasendotierung ausgeführt, die durch die inkonform abgeschiedene Deckschicht 3 maskiert wird.
Es ergibt sich die in der Fig. 4b dargestellte Struktur, bei der der Graben 4 in einem oberen Grabenbereich 41 oberhalb der Bedeckungstiefe 102 mit der Zusatzschicht 7 und der aufliegenden inkonformen Deckschicht 3 ausgekleidet ist. In an den unteren Grabenbereich 42 anschließenden Gebieten 13 ist das Halbleitersubstrat 11 dotiert.
Danach wird die inkonforme Deckschicht 3 entfernt und eine HSG-Formierung mit anschließender Rückätzung ausgeführt, wodurch sich die in der Fig. 4c dargestellte Struktur ergibt.
Der Graben 4 ist im oberen Grabenbereich 41 mit der Zusatzschicht 7 ausgekleidet und weist im unteren Grabenbereich 42 HSG-Strukturen 6 auf. Nachfolgend wird die Zusatzschicht 7 entfernt und ein Dielektrikum abgeschieden.
Im Unterschied zum anhand der Fig. 1 dargestellten Verfahren wird die HSG-Formierung gemäß dem in der Fig. 4 dargestellten Verfahren erst nach dem Entfernen der inkonformen Deckschicht ausgeführt. Damit wird ein Formieren von HSG-Strukturen auf der inkonformen Deckschicht, wie sie verstärkt etwa bei einer Wahl von A1203 als Material der Deckschicht 3 zu beobachten ist, vermieden.
Die Fig. 5 zeigt eine in einem Substrat 1 angeordnete Kondensatorstruktur. Die dargestellte Kondensatorstruktur ist durch wiederholtes erfindungsgemäßes Abscheiden inkonformer Deckschichten realisierbar. Ein auf der Kondensatorstruktur basierender Kondensator weist eine hohe Zuverlässigkeit, einen geringen Leckstrom und eine bezogen auf das Volumen hohe spezifische Kapazität auf. Mit der gezeigten Kondensatorstruktur lässt sich mit zwei oder mehr mit Hilfe des erfindungsgemäßen Verfahrens in einem Graben kammförmig ausgebildeten Elektroden einfach und kostengünstig ein Kondensator hoher spezifischer Kapazität realisieren.
Dazu werden zunächst durch Trockenätzen oder Makroporen in ein Substrat 1 Gräben 4 mit hohem Aspektverhältnis eingebracht. Die Gräben 4 weisen eine zur Querschnittsebene der Darstellung senkrechte Längsausdehnung auf. Eine Kondensator- struktur erstreckt sich dann über ein oder mehrere, parallel nebeneinander angeordnete Gräben 4.
Danach werden im Substrat 1 vorgesehene funktionelle Siliziumstrukturen, auch etwa zum Anschluss von Elektroden der Kondensatorstruktur, dotiert.
Es folgt das Abscheiden einer ersten inkonformen dielektrischen Deckschicht 32 und einer inkonformen leitfähigen Deckschicht 31. Dabei wird die inkonforme leitfähige Deckschicht 31 gegenüber der darunter angeordneten ersten inkonformen dielektrischen Deckschicht 32 verkürzt vorgesehen. Eine zweite inkonforme dielektrische Deckschicht 32' wird so vorgesehen, dass sie die inkonforme leitfähige Deckschicht 31, die eine äußere Elektrode bildet, vollständig bedeckt und an die erste inkonform abgeschiedene dielektrische Deckschicht 32 anschließt.
Schließlich wird eine konform abgeschiedene leitfähige Deckschicht 33 als innere Elektrode vorgesehen. Die Kontaktierung der inneren Elektrode erfolgt durch einen dotierten Bereich des Substrats 1 oder etwa durch Strukturieren der abgeschiedenen Deckschichten an der Oberfläche des Substrats 1. Zur Erhöhung der Kapazität wird die Kondensatorstruktur für eine Wiederholung der genannten Abscheidungsschritte vorbereitet, so dass bei einer ausreichenden Grabenweite die in der Fig. 5 gezeigte Teilstruktur der Deckschichten innerhalb eines Grabens 4 wiederholbar ist. Dabei werden vorteilhafterweise alle jeweiligen inneren Elektroden 33 am Grabengrund ohne weitere Maßnahmen leitend verbunden. Bei geeigneter Rückätzung der konform abgeschiedenen leitfähigen Deckschicht 33 und der dielektrischen Deckschichten 32' ergibt sich ebenso ohne weitere Maßnahmen eine leitfähige Verbindung zwischen den jeweiligen äußeren Elektroden 31 der sich wiederholenden Teilstrukturen.
Beispiel 1: Bei der Prozessierung vertikaler Transistorstrukturen, wie Trench-Leistungstransistoren und IGBTs (isolated gate bipolar transistors) wird die Dotierung einer Drainzone vorteilhaft mit einer als Dotierbarriere wirkenden erfindungsgemäß inkonform abgeschiedenen Deckschicht vereinfacht. Dazu werden zunächst in ein Substrat Gräben (Trenches) eingebracht, in denen im späteren Prozessverlauf jeweils eine Gateelektrode vorgesehen wird. Die Gräben werden in einem oberen Bereich, der in der fertigen Struktur im Substrat ausgebildeten Sour- ce- und Kanalzonen gegenüberliegt, mit einer erfindungsgemäß inkonform abgeschiedenen Dotierbarriere ausgekleidet. Danach wird die an einen unteren Bereich der Gräben anschließende Drainzone des Substrats dotiert und anschließend die Dotierbarriere entfernt.
Beispiel 2:
Eine steigende Integrationsdichte bei integrierten Schaltungen führt zur Notwendigkeit, während derer Prozessierung von einer Substratoberfläche her durch eine obere Schicht mit bereits ausgebildeten leitfähigen Gebieten Durchkontaktierungen zu Strukturen in einer unterhalb der oberen Schicht angeordneten tiefen Schicht vorzusehen. Die leitfähigen Gebiete sind dabei dotierte Halbleitergebiete oder Metallisierungen. Dazu wird im Substrat eine Öffnung (Kanal) bis zur tieferen Schicht geätzt und anschließend mit einem leitfähigen Material gefüllt.
Werden infolge von Fertigungstoleranzen beim Ausbilden der Öffnungen Abschnitte der leitfähigen Gebiete der oberen Schicht durch eine Öffnung frei gelegt und anschließend die Öffnung mit einem leitfähigen Material gefüllt, so ergibt sich eine meist nicht vorgesehene elektrische Verbindung zwischen den leitfähigen Gebieten der oberen Schicht und der tiefen Schicht. Erfindungsgemäß wird nun nach dem Ausbilden und vor dem Füllen der Öffnungen eine inkonforme, dielektrische Deckschicht an einer Wandung der Öffnung in einem oberen Bereich des Kanals vorgesehen, die eventuell frei gelegte Abschnitte von leitfähigen Gebieten der oberen Schicht abdeckt. Ein Grund der Öffnung, in dessen Bereich das leitfähige Gebiet der tiefen Schicht kontaktiert wird, bleibt unbedeckt. Ein unerwünschter elektrischer Kurzschluss zwischen den beiden leitfähigen Gebieten ist vermieden.
Ein typisches Beispiel für eine solche Anwendung des erfindungsgemäßen Verfahrens liegt für Stacked-capacitor- Strukturen vor. Bei einer Stacked-capacitor-Struktur ist eine Transistorstruktur entlang einer tiefen Schicht zwischen einem HalbleiterSubstrat und einer aufliegenden Oxidschicht, in der Kondensatorstrukturen und Signalleitungen (bit lines) ausgebildet sind, angeordnet und von einer Substratoberfläche her durch die Oxidschicht hindurch zu kontaktieren. Beim Ätzen von Öffnungen für die Durchkontaktierungen können die Signalleitungen zu einer Öffnung hin frei gelegt werden. Durch ein Auskleiden der Öffnungen in einem Bereich bis unterhalb der Signalleitungen durch eine inkonforme dielektrische Deckschicht gemäß dem erfindungsgemäßen Verfahren wird die Ausbeute an fehlerfreien Strukturen ohne Kurzschluss zu den Signalleitungen erheblich erhöht.
Bezugszeichenliste
1 Substrat
101 Substratoberflache
102 Bedeckungstiefe
103 Relieftiefe
11 Halbleitersubstrat
12 Hilfsschicht
13 dotiertes Gebiet
2 Prozessflache
21 oberer Abschnitt
22 unterer Abschnitt
3 Deckschicht
31 leitfahige inkonforme Deckschicht 32, 32' dielektrische inkonforme Deckschicht
33 leitfahige konforme Deckschicht
34 dielektrische konforme Deckschicht
35 zweite leitfahige konforme Deckschicht
4 Graben
41 oberer Grabenbereich 411 Teilabschnitt
42 unterer Grabenbereich
43 Grabenwandung
44 Kragen
5 Transistor
51 Gatedielektrikum
52 Gateelektrode
53 dotiertes Gebiet
54 dotiertes Gebiet
6 HSG-Struktur
7 Zusatzschicht

Claims

Patentansprüche
1. Verfahren für ein Strukturieren von zu einer horizontalen Substratoberfläche (101) geneigten und/oder vertikalen und sich von der Substratoberfläche (101) bis in eine Relieftiefe (103) erstreckenden Prozessflächen (2) eines ein sich von der Substratoberfläche (101) bis zur Relieftiefe (103) erstreckendes Relief aufweisenden Substrats (1) bezüglich einer jeweils zwischen der Relieftiefe (103) und der Substratoberfläche (101) vorzugebenden Bedeckungstiefe (102) , d a d u r c h g e k e n n z e i c h n e t , d a s s
- mittels eines ALD-Abscheideverfahrens in einer Prozesskammer aus Vorstufenmaterialien eine sich von der Substratoberfläche (101) in Richtung der Relieftiefe (103) aufbauende Deckschicht (3) erzeugt,
- dabei eine Abscheidung mindestens einer der Vorstufenmaterialien gegenüber einer Abscheidung einer vollständigen Deckschicht (3) beschränkt und dadurch
- die Deckschicht (3) nahezu ausschließlich und mit im Wesentlichen gleichmäßiger Schichtdicke auf zwischen der Substratoberfläche (101) und der Bedeckungstiefe (102) angeordneten oberen Abschnitten (21) der Prozessflächen (2) vorgesehen wird.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a s's das Abscheideverfahren als ein ALD-Verfahren gesteuert wird, bei dem mindestens eines der Vorstufenmaterialien mit einem hohen Haftkoeffizienten gewählt wird, adsorbierte Moleküle des Vorstufenmaterials mit hohem Haftkoeffizienten in nicht wesentlichen Umfang desorbieren und die Deckschicht (3) diffusionsgesteuert von der Substratoberfläche (101) in Richtung der Relieftiefe (103) aufgebaut wird.
3. Verfahren nach einem der Ansprüche 1 bis 2, d a d u r c h g e k e n n z e i c h n e t , d a s s die Bedeckungstiefe (102) in Abhängigkeit einer sich aus ei- nem Produkt aus einer Konzentration eines der Vorstufenmaterialien, einer Abscheidedauer des Vorstufenmaterials und einem Prozessdruck in der Prozesskammer während der Abscheidung ergebenden Exposition eingestellt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , d a s s die Abscheidung mindestens eines der Vorstufenmaterialien beschränkt wird, indem eine gegenüber einer für eine vollständige Bedeckung der Prozessflächen (2) notwendigen Menge reduzierte Menge des Vorstufenmaterials zugeführt wird.
5. Verfahren nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , d a s s das mindestens eine Vorstufenmaterial mittels Flüssiginjektion zugeführt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , d a s s die Abscheidung mindestens eines der Vorstufenmaterialien beschränkt wird, indem eine Abscheidedauer des Vorstufenmaterials gegenüber einer für eine vollständige Bedeckung der Prozessflächen (2) notwendigen Abscheidedauer reduziert wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , d a s s die Abscheidung mindestens eines der Vorstufenmaterialien beschränkt wird, indem ein Kammerdruck in der Prozesskammer gegenüber einem für eine vollständige Bedeckung der Prozessflächen (2) notwendigen Kammerdruck reduziert wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , d a s s während des Abscheideverfahrens das jeweils zugeführte Vorstufenmaterial mittels einer Verteileinrichtung gleichmäßig über der Substratoberfläche (101) verteilt wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , d a s s
- ein die Deckschicht (3) ausbildendes Material mit einer hohen Ätzresistenz gegen ein die Prozessflächen (2) in zwischen der Relieftiefe (103) und der Bedeckungstiefe (102) angeordneten unteren Abschnitten (22) ausbildendes Material vorgesehen wird und
- ein die Prozessflächen (2) in den unteren Abschnitten (22) ausbildendes Material mit einer hohen Selektivität gegenüber der Deckschicht (3) geätzt und dabei das Ätzen mindestens abschnittsweise durch die Deckschicht (3) maskiert wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , d a s s
- für die Deckschicht (3) ein gegen einen Oxidationsprozess im Wesentliches inertes Material vorgesehen wird,
- ein die Prozessflächen (2) in zwischen der Relieftiefe (103) und der Bedeckungstiefe (102) angeordneten unteren
Abschnitten (22) ausbildendes Material mittels des Oxidati- onsprozesses oxidiert und dabei der Oxidationsprozess mindestens abschnittsweise durch die Deckschicht (3) maskiert wird.
11. Verfahren nach einem der Ansprüche 1 bis 10, d a d u r c h g e k e n n z e i c h n e t , d a s s
- für die Deckschicht (3) ein als Barriere gegen einen Dotierprozess geeignetes Material vorgesehen wird und
- ein die Prozessflächen (2) in zwischen der Relieftiefe (103) und der Bedeckungstiefe (102) angeordneten unteren
Abschnitten (22) ausbildendes Material mittels des Dotierprozesses dotiert und dabei der Dotierprozess mindestens abschnittsweise durch die Deckschicht (3) maskiert wird.
12. Verfahren nach einem der Ansprüche 1 bis 11, d a d u r c h g e k e n n z e i c h n e t , d a s s die Deckschicht (3) nach ihrer Benutzung als mindestens Teil einer Maske entfernt wird.
13. Verfahren nach einem der Ansprüche 1 bis 12, d a d u r c h g e k e n n z e i c h n e t , d a s s vor dem Abscheiden der Deckschicht (3) mindestens eine Zusatzschicht (7) auf dem Substrat (1) vorgesehen wird.
14. Verfahren nach Anspruch 13, d a d u r c h g e k e n n z e i c h n e t , d a s s als Material der Zusatzschicht (7) Siliziumoxid oder Siliziumnitrid vorgesehen wird.
15. Verfahren nach einem der Ansprüche 1 bis 14, d a d u r c h g e k e n n z e i c h n e t , d a s s als Material der Deckschicht (3) ein Material aus einer Gruppe, umfassend A1203, Hf02, Zr02, Ti02, TiN, WN, SiN, Si02 und La02, gewählt wird.
16. Verfahren nach Anspruch 15, d a d u r c h g e k e n n z e i c h n e t , d a s s als Material der Deckschicht (3) A1203, als ein erstes Vorstufenmaterial Trimethylaluminium und als zweites Vorstufenmaterial H20 und/oder 03 gewählt wird.
17. Verfahren nach Anspruch 15, d a d u r c h g e k e n n z e i c h n e t , d a s s als Material der Deckschicht (3) Hf02, als ein erster Vorstufenmaterial HfCl , Hf-t-butoxide, Hf-di- ethyl-amid, Hf- ethyl-methyl-amid, Hf-di-ethyl-amid oder Hf(MMP) und als zweites Vorstufenmaterial H20 und/oder 03 gewählt wird.
18. Verfahren nach Anspruch 15, d a d u r c h g e k e n n z e i c h n e t , d a s s als Material der Deckschicht (3) Zr02, als ein erstes Vorstufenmaterial ZrCl4 oder eine organische Zr-Verbindung und als zweites VorStufenmaterial H20 und/oder 03 gewählt wird.
19. Verfahren nach Anspruch 15, d a d u r c h g e k e n n z e i c h n e t , d a s s als Material der Deckschicht (3) Ti02, als ein erstes Vorstufenmaterial TiCl4, Ti(0C2H5) , Ti (OCH(CH3)2) und als ein zweites Vorstufenmaterial H20 und/oder 03 gewählt wird.
20. Verfahren nach Anspruch 15, d a d u r c h g e k e n n z e i c h n e t , d a s s als Material der Deckschicht (3) TiN, als ein erstes Vorstufenmaterial TiCl4 und als zweites Vorstufenmaterial NH3 gewählt wird.
21. Verfahren nach Anspruch 15, d a d u r c h g e k e n n z e i c h n e t , d a s s als Material der Deckschicht (3) WN, als ein erstes Vorstufenmaterial WFδ und als zweites Vorstufenmaterial NH3 gewählt wird.
22. Verfahren nach Anspruch 15, d a d u r c h g e k e n n z e i c h n e t , d a s s als Material der Deckschicht (3) SiN, als ein erstes Vorstufenmaterial SiH2Cl2 und als zweites Vorstufenmaterial NH3 und/oder N2H gewählt wird.
23. Verfahren nach Anspruch 15, d a d u r c h g e k e n n z e i c h n e t , d a s s als Material der Deckschicht (3) Si02, als ein erstes Vorstufenmaterial Si(NCO) oder CH30Si(NC0)3 und als zweites Vorstufenmaterial H20 und/oder 03 gewählt wird.
24. Verfahren nach einem der Ansprüche 1 bis 23, d a d u r c h g e k e n n z e i c h n e t , d a s s für das Relief im Substrat (1) Gräben (4) mit einem hohen Aspektverhältnis ausgebildet werden.
25. Verfahren nach der Anspruch 24, d a d u r c h g e k e n n z e i c h n e t , d a s s die Gräben ( 4 ) funktional zu Kondensatoren ausgebildet werden .
26. Verfahren zum Anordnen einer Oxidschicht in einem unteren Grabenbereich (41) eines in einem Substrat (1) ausgebildeten Grabens (4), umfassend
- ein Ausbilden einer Deckschicht (3) im oberen Grabenbereich (41) gemäß einem der Verfahren nach Anspruch 1 bis 8,
- ein Steuern eines Oxidationsprozesses eines im unteren Grabenbereich (42) eine Grabenwandung (43) ausbildenden Materials und
- ein Entfernen der Deckschicht (3) .
27. Verfahren zum Anordnen einer Oxidschicht in einem oberen Grabenbereich (43) eines in einem Substrat (1) ausgebildeten Grabens (4) durch ein Ausbilden einer Deckschicht (3) im oberen Grabenbereich (41) gemäß einem der Verfahren nach Anspruch 1 bis 8.
28. Verfahren zur Herstellung einer Kondensatorstruktur in einem Substrat (1), umfassend die Schritte:
1) Bereitstellen des Substrats (1) ,
2) Einbringen von Gräben (4) in das Substrat (1) ,
3) Abscheiden einer ersten inkonformen dielektrischen Deckschicht (32) gemäß einem der Verfahren nach Anspruch 1 bis 8,
4) Abscheiden einer die erste inkonforme dielektrische Deckschicht (32) nicht vollständig bedeckenden inkonformen leitfähigen Deckschicht (31) gemäß einem der Verfahren nach Anspruch 1 bis 8,
5) Abscheiden einer die inkonforme leitfähige Deckschicht
(31) vollständig bedeckenden zweiten inkonformen dielektrischen Deckschicht (32') gemäß einem der Verfah¬ ren nach Anspruch 1 bis 8 und
6) Abscheiden einer konformen leitfähigen Deckschicht
(33) gemäß einem der Verfahren nach Anspruch 1 bis 8.
29. Verfahren nach Anspruch 28, d a d u r c h g e k e n n z e i c h n e t , d a s s die Abfolge der Schritte 3 bis 6 mindestens einmal wiederholt wird.
PCT/DE2003/002438 2002-07-30 2003-07-21 Verfahren zum vertikalen strukturieren von substraten in der halbleiterprozesstechnik mittels inkonformer abscheidung WO2004017394A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03787693A EP1525610A1 (de) 2002-07-30 2003-07-21 Verfahren zum vertikalen strukturieren von substraten in der halbleiterprozesstechnik mittels inkonformer abscheidung
JP2004528398A JP2006500763A (ja) 2002-07-30 2003-07-21 インコンフォーマルな堆積を用いて半導体プロセス技術において基板を垂直にパターニングする方法
US11/042,326 US7344953B2 (en) 2002-07-30 2005-01-26 Process for vertically patterning substrates in semiconductor process technology by means of inconformal deposition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10234735.2 2002-07-30
DE10234735A DE10234735A1 (de) 2002-07-30 2002-07-30 Verfahren zum vertikalen Strukturieren von Substraten in der Halbleiterprozesstechnik mittels inkonformer Abscheidung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/042,326 Continuation US7344953B2 (en) 2002-07-30 2005-01-26 Process for vertically patterning substrates in semiconductor process technology by means of inconformal deposition

Publications (1)

Publication Number Publication Date
WO2004017394A1 true WO2004017394A1 (de) 2004-02-26

Family

ID=30128527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002438 WO2004017394A1 (de) 2002-07-30 2003-07-21 Verfahren zum vertikalen strukturieren von substraten in der halbleiterprozesstechnik mittels inkonformer abscheidung

Country Status (7)

Country Link
US (1) US7344953B2 (de)
EP (1) EP1525610A1 (de)
JP (1) JP2006500763A (de)
KR (1) KR100615743B1 (de)
DE (1) DE10234735A1 (de)
TW (1) TWI236706B (de)
WO (1) WO2004017394A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144770B2 (en) 2004-01-15 2006-12-05 Infineon Technologies Ag Memory cell and method for fabricating it
US7608549B2 (en) 2005-03-15 2009-10-27 Asm America, Inc. Method of forming non-conformal layers

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10345461B3 (de) * 2003-09-30 2005-08-11 Infineon Technologies Ag Selektive sequentielle Gasphasenabscheidung und Verfahren zur Ausbildung von Kragenstrukturen für Lochgräben in Halbleitersubstraten
DE102004022602A1 (de) * 2004-05-07 2005-12-15 Infineon Technologies Ag Verfahren zur Herstellung eines Grabenkondensators, Verfahren zur Herstellung einer Speicherzelle, Grabenkondensator und Speicherzelle
US6930055B1 (en) * 2004-05-26 2005-08-16 Hewlett-Packard Development Company, L.P. Substrates having features formed therein and methods of forming
US7122439B2 (en) * 2004-11-17 2006-10-17 International Business Machines Corporation Method of fabricating a bottle trench and a bottle trench capacitor
US20060234441A1 (en) * 2005-04-13 2006-10-19 Promos Technologies Inc. Method for preparing a deep trench
US7402860B2 (en) * 2005-07-11 2008-07-22 Infineon Technologies Ag Method for fabricating a capacitor
EP1958258A1 (de) * 2005-12-06 2008-08-20 Stmicroelectronics Sa Widerstand in einer integrierten schaltung
DE102006027932A1 (de) 2006-06-14 2007-12-20 Aixtron Ag Verfahren zum selbstlimitierenden Abscheiden ein oder mehrerer Monolagen
US7615444B2 (en) * 2006-06-29 2009-11-10 Qimonda Ag Method for forming a capacitor structure
US7573420B2 (en) * 2007-05-14 2009-08-11 Infineon Technologies Ag RF front-end for a radar system
JP5211730B2 (ja) * 2008-02-12 2013-06-12 富士通セミコンダクター株式会社 半導体装置及びその製造方法
US7897473B2 (en) 2008-07-29 2011-03-01 International Business Machines Corporation Method of manufacturing a dual contact trench capacitor
US8198663B2 (en) * 2008-07-29 2012-06-12 International Business Machines Corporation Structure for dual contact trench capacitor and structure thereof
US7759189B2 (en) * 2008-07-29 2010-07-20 International Business Machines Corporation Method of manufacturing a dual contact trench capacitor
US8384140B2 (en) 2008-07-29 2013-02-26 International Business Machines Corporation Structure for dual contact trench capacitor and structure thereof
US8143135B2 (en) 2009-10-08 2012-03-27 International Business Machines Corporation Embedded series deep trench capacitors and methods of manufacture
US7923313B1 (en) 2010-02-26 2011-04-12 Eastman Kodak Company Method of making transistor including reentrant profile
US8803203B2 (en) * 2010-02-26 2014-08-12 Eastman Kodak Company Transistor including reentrant profile
US8304347B2 (en) 2011-01-07 2012-11-06 Eastman Kodak Company Actuating transistor including multiple reentrant profiles
US8847232B2 (en) 2011-01-07 2014-09-30 Eastman Kodak Company Transistor including reduced channel length
US8847226B2 (en) 2011-01-07 2014-09-30 Eastman Kodak Company Transistor including multiple reentrant profiles
US7985684B1 (en) 2011-01-07 2011-07-26 Eastman Kodak Company Actuating transistor including reduced channel length
US8383469B2 (en) 2011-01-07 2013-02-26 Eastman Kodak Company Producing transistor including reduced channel length
US8409937B2 (en) 2011-01-07 2013-04-02 Eastman Kodak Company Producing transistor including multi-layer reentrant profile
US8338291B2 (en) 2011-01-07 2012-12-25 Eastman Kodak Company Producing transistor including multiple reentrant profiles
US8492769B2 (en) 2011-01-07 2013-07-23 Eastman Kodak Company Transistor including multi-layer reentrant profile
US8617942B2 (en) 2011-08-26 2013-12-31 Eastman Kodak Company Producing transistor including single layer reentrant profile
US8637355B2 (en) 2011-08-26 2014-01-28 Eastman Kodak Company Actuating transistor including single layer reentrant profile
US8592909B2 (en) 2011-08-26 2013-11-26 Eastman Kodak Company Transistor including single layer reentrant profile
US8865576B2 (en) 2011-09-29 2014-10-21 Eastman Kodak Company Producing vertical transistor having reduced parasitic capacitance
US8803227B2 (en) 2011-09-29 2014-08-12 Eastman Kodak Company Vertical transistor having reduced parasitic capacitance
CN102496568B (zh) * 2011-12-27 2014-01-01 上海先进半导体制造股份有限公司 沟槽功率器件结构的制造方法
CN102496573B (zh) * 2011-12-28 2014-01-01 上海先进半导体制造股份有限公司 沟槽绝缘栅型双极晶体管的制作方法
US9502653B2 (en) * 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
US9425078B2 (en) * 2014-02-26 2016-08-23 Lam Research Corporation Inhibitor plasma mediated atomic layer deposition for seamless feature fill
US9142647B1 (en) * 2014-03-06 2015-09-22 Eastman Kodak Company VTFT formation using selective area deposition
US9728501B2 (en) 2015-12-21 2017-08-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming trenches
US9984923B2 (en) * 2016-06-30 2018-05-29 International Business Machines Corporation Barrier layers in trenches and vias
US10224414B2 (en) * 2016-12-16 2019-03-05 Lam Research Corporation Method for providing a low-k spacer
JP7474696B2 (ja) 2018-01-04 2024-04-25 マジック リープ, インコーポレイテッド 無機材料を組み込むポリマー構造に基づく光学要素
US10896823B2 (en) 2018-11-21 2021-01-19 Thomas E. Seidel Limited dose atomic layer processes for localizing coatings on non-planar surfaces
CN111799329A (zh) 2019-04-08 2020-10-20 三星电子株式会社 半导体器件
WO2021024042A2 (en) 2019-07-17 2021-02-11 Seidel Thomas E Limited dose and angle directed beam assisted ale and ald processes for localized coatings on non-planar surfaces
IT201900013416A1 (it) 2019-07-31 2021-01-31 St Microelectronics Srl Dispositivo di potenza a bilanciamento di carica e procedimento di fabbricazione del dispositivo di potenza a bilanciamento di carica
CN112466747B (zh) * 2019-09-06 2022-10-21 芯恩(青岛)集成电路有限公司 沟槽栅及沟槽栅功率器件的制作方法
DE102020204651A1 (de) * 2020-04-09 2021-10-14 Lts Lohmann Therapie-Systeme Ag Einrichtung zum Herstellen von Mikro-Arrays sowie Verfahren zum Herstellen eines Mikro-Arrays
JP7315756B2 (ja) * 2020-09-18 2023-07-26 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010054769A1 (en) * 2000-05-15 2001-12-27 Ivo Raaijmakers Protective layers prior to alternating layer deposition
US20020014647A1 (en) * 2000-07-07 2002-02-07 Infineon Technologies Ag Trench capacitor with isolation collar and corresponding method of production

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232171B1 (en) * 1999-01-11 2001-05-15 Promos Technology, Inc. Technique of bottle-shaped deep trench formation
DE10019090A1 (de) * 2000-04-12 2001-10-25 Infineon Technologies Ag Grabenkondensator sowie dazugehöriges Herstellungsverfahren
DE10130936B4 (de) * 2001-06-27 2004-04-29 Infineon Technologies Ag Herstellungsverfahren für ein Halbleiterbauelement mittels Atomschichtabscheidung/ALD
AU2003228402A1 (en) * 2002-03-28 2003-10-13 President And Fellows Of Harvard College Vapor deposition of silicon dioxide nanolaminates
US7160577B2 (en) * 2002-05-02 2007-01-09 Micron Technology, Inc. Methods for atomic-layer deposition of aluminum oxides in integrated circuits
US6759292B2 (en) * 2002-10-30 2004-07-06 Infineon Technologies Ag Method for fabricating a trench capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010054769A1 (en) * 2000-05-15 2001-12-27 Ivo Raaijmakers Protective layers prior to alternating layer deposition
US20020014647A1 (en) * 2000-07-07 2002-02-07 Infineon Technologies Ag Trench capacitor with isolation collar and corresponding method of production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1525610A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144770B2 (en) 2004-01-15 2006-12-05 Infineon Technologies Ag Memory cell and method for fabricating it
US7608549B2 (en) 2005-03-15 2009-10-27 Asm America, Inc. Method of forming non-conformal layers

Also Published As

Publication number Publication date
KR100615743B1 (ko) 2006-08-25
US20050164464A1 (en) 2005-07-28
DE10234735A1 (de) 2004-02-12
EP1525610A1 (de) 2005-04-27
TW200403724A (en) 2004-03-01
KR20050026050A (ko) 2005-03-14
JP2006500763A (ja) 2006-01-05
TWI236706B (en) 2005-07-21
US7344953B2 (en) 2008-03-18

Similar Documents

Publication Publication Date Title
EP1525610A1 (de) Verfahren zum vertikalen strukturieren von substraten in der halbleiterprozesstechnik mittels inkonformer abscheidung
DE19521489B4 (de) Kondensatorplatte und Kondensator, je in einer Halbleitervorrichtung gebildet, die Verwendung eines solchen Kondensators als Speicherkondensator einer Halbleitervorrichtung, Verfahren zur Herstellung eines Kondensators und Verwendung eines solchen Verfahrens zur Herstellung von DRAM-Vorrichtungen
DE10142580B4 (de) Verfahren zur Herstellung einer Grabenstrukturkondensatoreinrichtung
DE102006000613A1 (de) DRAM mit High-K-Dielektrikum-Speicherkondensator und Verfahren zum Herstellen desselben
DE102006012772A1 (de) Halbleiterspeicherbauelement mit dielektrischer Struktur und Verfahren zur Herstellung desselben
DE102006026954A1 (de) Verfahren zur Herstellung eines Kondensators in einem Halbleiterbauelement
DE102015017252B3 (de) Halbleiterstruktur, die Kondensatoren mit verschiedenen Kondensatordielektrika umfasst, und Verfahren zu ihrer Herstellung
DE10308888B4 (de) Anordnung von Kondensatoren zur Erhöhung der Speicherkapazität in einem Halbleitersubstrat und Verfahren zur Herstellung einer Anordnung
DE10055431A1 (de) Verfahren zum Herstellen von Kondensatoren eines Halbleiterbauelements
DE19947053C1 (de) Grabenkondensator zu Ladungsspeicherung und Verfahren zu seiner Herstellung
DE10352068B4 (de) Ausbilden von Siliziumnitridinseln für eine erhöhte Kapazität
DE4328510A1 (de) Verfahren zur Herstellung eines Halbleiterspeicherbauelementes mit einem Kondensator und damit herstellbares Halbleiterspeicherbauelement
WO2002069375A2 (de) Grabenkondensator und verfahren zu seiner herstellung
DE19712540C1 (de) Herstellverfahren für eine Kondensatorelektrode aus einem Platinmetall
DE19632835C1 (de) Verfahren zur Herstellung eines Kondensators in einer Halbeiteranordnung
DE10130936B4 (de) Herstellungsverfahren für ein Halbleiterbauelement mittels Atomschichtabscheidung/ALD
DE102012100006A1 (de) Halbleiterbauelement und Herstellungsverfahren dafür
DE10248980B4 (de) Verfahren zur Herstellung strukturierter Schichten aus Siliziumdioxid auf senkrecht oder geneigt zu einer Substratoberfläche angeordneten Prozessflächen
EP0859405A2 (de) Herstellverfahren für eine erhabene Kondensatorelektrode
DE10303413B3 (de) Verfahren zur Herstellung eines Oxidkragens für einen Grabenkondensator
DE102004022602A1 (de) Verfahren zur Herstellung eines Grabenkondensators, Verfahren zur Herstellung einer Speicherzelle, Grabenkondensator und Speicherzelle
WO2001029885A2 (de) Verfahren zur herstellung einer kondensator-elektrode mit barrierestruktur
DE19923262C1 (de) Verfahren zur Erzeugung einer Speicherzellenanordnung
EP1364408B1 (de) Verfahrenher zur herstellung einer elektrodenanordnung zur ladungsspeicherung
WO2004102674A1 (de) Trench-speicherkondensator und verfahren zu dessen herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IE IT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003787693

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11042326

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004528398

Country of ref document: JP

Ref document number: 1020057001623

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057001623

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003787693

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020057001623

Country of ref document: KR