WO2004018824A2 - Magnetic impulse applied sleeve method of forming a wellbore casing - Google Patents

Magnetic impulse applied sleeve method of forming a wellbore casing Download PDF

Info

Publication number
WO2004018824A2
WO2004018824A2 PCT/US2003/025677 US0325677W WO2004018824A2 WO 2004018824 A2 WO2004018824 A2 WO 2004018824A2 US 0325677 W US0325677 W US 0325677W WO 2004018824 A2 WO2004018824 A2 WO 2004018824A2
Authority
WO
WIPO (PCT)
Prior art keywords
filed
patent application
application serial
attorney docket
tubular
Prior art date
Application number
PCT/US2003/025677
Other languages
French (fr)
Other versions
WO2004018824A3 (en
WO2004018824B1 (en
Inventor
Mark Shuster
Lev Ring
Original Assignee
Enventure Global Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enventure Global Technology filed Critical Enventure Global Technology
Priority to AU2003258274A priority Critical patent/AU2003258274A1/en
Priority to US10/525,332 priority patent/US7377326B2/en
Publication of WO2004018824A2 publication Critical patent/WO2004018824A2/en
Publication of WO2004018824A3 publication Critical patent/WO2004018824A3/en
Publication of WO2004018824B1 publication Critical patent/WO2004018824B1/en
Priority to US10/546,076 priority patent/US20070246934A1/en
Priority to US11/866,809 priority patent/US20080100064A1/en
Priority to US11/944,070 priority patent/US20080066929A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/006Screw-threaded joints; Forms of screw-threads for such joints with straight threads
    • F16L15/009Screw-threaded joints; Forms of screw-threads for such joints with straight threads with axial sealings having at least one plastically deformable sealing surface
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/042Threaded
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/08Casing joints
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/105Expanding tools specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/106Couplings or joints therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/14Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints made by plastically deforming the material of the pipe, e.g. by flanging, rolling
    • F16L13/16Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints made by plastically deforming the material of the pipe, e.g. by flanging, rolling the pipe joint consisting of overlapping extremities having mutually co-operating collars
    • F16L13/168Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints made by plastically deforming the material of the pipe, e.g. by flanging, rolling the pipe joint consisting of overlapping extremities having mutually co-operating collars for screw threaded pipes

Definitions

  • the present application is related to the following: (1) U.S. patent application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, (2) U.S. patent application serial no. 09/510,913, attorney docket no. 25791.7.02, filed on 2/23/2000, (3) U.S. patent application serial no. 09/502,350, attorney docket no. 25791.8.02, filed on 2/10/2000, (4) U.S. patent no. 6,328,113, (5) U.S. patent application serial no. 09/523,460, attorney docket no. 25791.11.02, filed on 3/10/2000, (6) U.S. patent application serial no. 09/512,895, attorney docket no.
  • This invention relates generally to oil and gas exploration, and in particular to forming and repairing wellbore casings to facilitate oil and gas exploration.
  • a relatively large borehole diameter is required at the upper part of the wellbore.
  • Such a large borehole diameter involves increased costs due to heavy casing handling equipment, large drill bits and increased volumes of drilling fluid and drill cuttings.
  • increased drilling rig time is involved due to required cement pumping, cement hardening, required equipment changes due to large variations in hole diameters drilled in the course of the well, and the large volume of cuttings drilled and removed.
  • the present invention is directed to overcoming one or more of the limitations of the existing procedures for forming new sections of casing in a wellbore.
  • a method of forming a wellbore casing within a borehole that traverses a subterranean formation includes externally applied tubular sleeve for improved sealing a wellbore casing joints.
  • a method of forming a wellbore casing within a borehole that traverses a subterranean formation includes magnetic impulse method for externally applying a tubular sleeve for improved sealing of wellbore casing joints.
  • a method of forming a wellbore casing within a borehole that traverses a subterranean formation includes expanding joined tubular members such as j oined wellbore casings with a tubular sleeve externally applied to the surfaces of the joined wellbore casing and overlapping the joint thereby maintaining an improved seal of the wellbore casing joints after expansion.
  • amethod of improving the seal of tubular members that are connected and then expanded includes using a magnetic impulse method for externally applying a tubular sleeve to the joint between the tubular members prior to expanding the connected tubular members.
  • an improved method of connecting wellbore casing tubular member includes fonning raised ring portions to enhance surface contact stress in the coupling connection and subsequently applying inward radial force with a tubular sleeve imposed by magnetic impulse method for improved sealing of the joints between the tubular members.
  • FIG. 1 is a fragmentary cross-sectional schematic illustration of a first tubular member, such a first wellbore casing, for placement within a borehole that traverses a subterranean formation.
  • FIG. 2 is a fragmentary cross-sectional schematic illustration of the first tubular member, such as the first wellbore casing as in Fig. 1 and an aligned second tubular member, such as a second wellbore casing in position for coupling together and for placing the first and second tubular members, such as the depicted wellbore casings within a borehole.
  • FIG. 3 is a fragmentary cross-sectional schematic illustration of first and second wellbore casings of Fig. 2 after overlapping coupling as with the first female threads and second male threads providing a substantially continuous wellbore that may be radially expanded and plastically deformed at the overlapping portions of the first and second wellbore casings.
  • FIG. 4 is a fragmentary cross-sectional schematic illustration of the coupling joint of Fig. 3 after placing a tubular sleeve axially aligned with the first and second wellbore casings, and overlappingly positioned at the joint formed by coupling the first and second wellbore casings.
  • FIG. 5 is a fragmentary cross-sectional schematic illustration of the first and second wellbore casings and of the tubular sleeve of Fig.4 and further schematically depicting one illustration of a magnetic impulse apparatus positioned at the tubular sleeve for externally applying the tubular sleeve for improved sealing of the joint formed by coupling the wellbore casings together.
  • FIG. 6 is a fragmentary cross-sectional schematic illustration of the apparatus of Fig. 5, after applying magnetic impulse force to the tubular sleeve for improved sealing of the joint formed by coupling the first and second wellbore casings of Fig. 5.
  • FIG. 7 is a fragmentary cross-sectional schematic illustration of a joint of a first and second tubular member, such as a first and second wellbore casing, having a tubular sleeve externally applied to the adjacent external surfaces of the first and second tubular members at the overlapping joint there between prior to expanding the first and second tubular members at the area of the joint, according to one aspect of the present invention.
  • FIG. 8 is a fragmentary cross-sectional schematic illustration of the apparatus of Fig. 7, after the coupled portion of the first and second tubular member wellbore casings and the externally applied tubular sleeve have been radially expanded and plastically deformed according to one aspect of the present invention.
  • FIG. 9 is a fragmentary cross-sectional schematic illustration of the first female coupling and second male coupling and overlapping tubular sleeve with raised ridges interposed between the couplings to increase the surface to surface contact stress for maintaining sealing contact upon expanding and plastically deforming the coupling and tubular sleeve at the overlapping portions of the first and second tubular members.
  • FIG. 10 is a fragmentary cross-sectional schematic illustration of an alternative embodiment of the invention in which an interior tubular sleeve 41 is aligned with the coupling joint between tubular members and the interior tubular sleeve 41 is forced outward and applied to the interior surfaces of the tubular members by a magnetic impulse device.
  • a borehole 10 that traverses a subterranean formation 12 includes a first tubular member 14, such as a first wellbore casing 14 that is positioned within and coupled to the borehole.
  • first tubular member 14 such as a first wellbore casing 14 that is positioned within and coupled to the borehole.
  • tubular members in the form of wellbore casings will be described and depicted. It will be understood that although the methods, particularly advantageous for forming wellbore casings, certain advantageous features may also be applicable to other tubular members as described and claimed herein.
  • the first wellbore casing 14 may, for example, be positioned within and coupled to the borehole 10 using any number of conventional methods and apparatus, that may or may not include radial expansion and plastic deformation of the first wellbore casing 14, and/or using one or more of the methods and apparatus disclosed in one or more of the following: (1) U.S. patent application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, (2) U.S. patent application serial no. 09/510,913, attorney docket no. 25791.7.02, filed on 2/23/2000, (3) U.S. patent application serial no. 09/502,350, attorney docket no.
  • the second tubular member 16, such as second wellbore casing 16 is then overlappingly coupled to the first wellbore casing 14 for positioning within the borehole 10.
  • the first wellbore casing 14 may, for example, be coupled at a first coupling portion 18 to a second coupling portion 20 of the second wellbore casing 16 using any number of conventional methods and apparatus.
  • the coupling may comprise a male, or externally, threaded portion 24 engaged with a female, or internally, threaded portion 26.
  • the method of coupling may or may not include radial expansion and plastic deformation of either of the wellbore casings 14 or 16 or both, and or using one of more of the methods disclosed in one of more of the following: (1) U.S. patent application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, (2) U.S. patent application serial no. 09/510,913, attorney docket no. 25791.7.02, filed on 2/23/2000, (3) U.S. patent application serial no. 09/502,350, attorney docket no. 25791.8.02, filed on 2/10/2000, (4) U.S. patent no. 6,328,113, (5) U.S. patent application serial no.
  • a first surface portion 26 and a second surface portion 28 are adjacently positionally in the axial direction and may or may not have the same or nearly the same outside diameters 32 and 34. It would understood that according to the foregoing methods and apparatus for expanding the wellbore casing, the depiction in Fig. 2 and Fig. 3 may or may not demonstrate an overlapping portion that has been previously expanded. In either instance, it is desirable for the present invention that the exterior first outside diameter 32 and the outside diameter 34 have the same or nearly the same dimensions.
  • a joint 30 is formed there between that may include a small gap such as a bevel or partial channel on either member as is conventional for accommodating nicks or dents so that they will not interfere with complete coupling between the first and second wellbore casings.
  • first wellbore casing 14 and the second wellbore casing 16 may or may not have been radially expanded in the depiction of Fig. 4.
  • a tubular sleeve 40 is positioned overlapping the first surface portion 26 of the first wellbore casings 14 and also overlapping the second surface portion 28 of the second wellbore casing 16, thereby overlapping the joint 30 and axially extending in either direction there from at least partially over the overlapping coupling as well as partially over a portion of casing 16 that does not overlap first wellbore casing 14.
  • the tubular sleeve 40 is preferably composed of electrically conductive material that are suitably malleable or flowable to be shaped mechanically, as for example copper, aluminum, light metal, and metal alloys. Steel alloys and other metal alloys with suitable electrically conductivity and with suitable malleability or suitable flow behavior may also be used.
  • the inside diameter 42, of the tubular sleeve 40 is only slightly larger than the outside diameter of at the joint 30 the first tubular member 14 or the second tubular member 16. This means a cylindrical gap 44 between the inside surface 46 of sleeve 40 and the first and outside surfaces 26 and 28 of wellbore casings 14 and 16 respectively.
  • the outside diameter 48 of tubular sleeve 40 is slightly larger than the inside diameter 42 defining a thickness 49 that is relatively thin compared the thickness of the wellbore casings 14 and 16.
  • FIG. 5 is a schematic illustration of the overlapping wellbore casings 14 and 16 and the overlapping tubular sleeve 40, as in Fig. 4, and further schematically depicts a magnetic impulse energy applicator 50.
  • the impulse energy applicator 50 is aligned with the tubular sleeve at a position overlapping the joint 30 and extending a distance over the surfaces 26 and 28 on either side of the joint 30.
  • the magnetic impulse apparatus 50 may comprise an impulse conductor ring 52 having an inside diameter 54 slightly larger than the outside diameter of the ring 40, thereby leaving a small cylindrical gap 56 there between.
  • Conductor ring 52 is interrupted with a radially extending gap (not shown) and is operatively connected to an impulse generator 58 such that the magnetic impulse power flows circumferentially around conductor ring 52 when applied from the impulse generator 58.
  • This method applied to joints of wellbore casing has not heretofore been known, although there are conventional devices and it is a conventional concept for providing a magnetic impulse for shaping of cylindrical metal parts.
  • the adaptation of one of more of the methods and apparatus according to one or more of the following may be used in connection with this aspect of the present invention: (1) U. S. Patent 5,444,963 issued to Steingroever, et al., August 29, 1995; (2) U. S. Patent 5,586,460 issued to Steingroever December 24, 1996; (3).
  • Patent 5,953,805 issued to Steingroever September 21, 1999, as well as the techniques an apparatus is described on the web page of Magnetic-Physics, Inc., with reference to the shaping technique under the trademark Magnetopuls, the disclosures of which are incorporated by reference.
  • the magnetic impulse generator 58 provides a magnetic in pulse to the conductor ring 52.
  • the magnetic impulse causes a powerful magnetic field 60 to be produced and simultaneously causes a counter current magnetic pulse 62 to be produced within tubular sleeve 40.
  • An extremely high concentration of magnetic flux at 64 results in the gap 56 between tubular sleeve 40 and impulse ring 52.
  • This high flux concentration due to the magnetic impulse generates a large force 66 inward from the ring 52 thereby collapsing tubular sleeve 40 onto the surfaces 26 and 28 at the joint.
  • the malleable or flowable material from which tubular sleeve 40 is made flows at 74 into the joint gap 30.
  • This method produces a surface to surface air tight metallic seal entirely over the coupling between the first wellbore casing 14 and the second wellbore casing 16.
  • the strength of the tubular sleeve 40 also holds the joint together during the process of mechanical expansion of the wellbore casing at the joint.
  • first and second tubular members, 14 and 16, and the tubular sleeve 40 may then be positioned within another structure 10 such as, for example, a wellbore 10, and radially expanded and plastically deformed, for example, by moving an expansion cone 80 through the interiors of the first and second tubular members 14 and 16.
  • the tubular sleeve 40 is also radially expanded and plastically deformed.
  • the tubular sleeve 40 may be maintained in circumferential tension and the overlapping end coupling portions, 18 and 20, of the first and second tubular members, 14 and 16, may be maintained in circumferential compression.
  • a fragmentary cross-sectional schematic illustration shows an exemplary embodiment of method and apparatus in which first and second tubular members 114 and 116 are overlapping coupled together, as with a first coupling portion 118 and a second coupling portion 120 pressed together in surface-to-surface engagement, and with an overlapping tubular sleeve 40 applied to the exterior thereof and providing a substantially continuous tubular assembly that may be expanded and plastically deformed.
  • the first coupling portion 118 and the second coupling portion 120 may be overlappingly coupled together, as with a first female coupling portion and a second male coupling portion pushed, slid or pressed together in surface-to-surface engagement, and An overlapping tubular sleeve 40 is applied to the coupling to provide sealing and to stress the tubular coupling portions toward each other.
  • one or more raised ridge rings 84(a-c) and corresponding troughs rings 86(a-c) are formed interposed between the first and second couplings to increase the surface to surface contact stress for maintaining sealing contact upon expanding and plastically deforming the coupling and tubular sleeve at the overlapping portions of the first and second tubular members.
  • the peaks 88(a-c) of the ridges 84(a-c) have a small area of surface contact with the opposed coupling portion, compared to the entire overlapping coupling area, such that the stress or force per area of contact is significantly increased thereby facilitating the surface to surface seal at the coupling joint.
  • the ridge rings 84 are shown formed in the second male coupling portion with the peaks toward the first female male coupling portion, it will be understood based upon this disclosure that the ridge rings 84 might alternatively be formed on the female coupling portion 118 with the peaks toward the female coupling portion 120.
  • the tubular sleeve 40 as applied to the exterior of the overlapping tubular members increases the sealing stress.
  • the tubular sleeve 40 acting together with the raised ridge rings 84 work together to maintain the seal when the tubular members 114 and 116 are expanded and plastically deformed as disclosed herein.
  • FIG 10 depicts another exemplary embodiment of the invention in which an interior tubular sleeve 41 is aligned with coupling joint between tubular members 14 and 16.
  • the interior tubular sleeve 41 is forced outward by magnetic impulse device 51 in a conventional manner or the adaptation of one of more of the methods and apparatus according to one or more of the following may be used in connection with this aspect of the present invention: (1) U. S. Patent 5,444,963 issued to Steingroever, et al., August 29, 1995; (2) U. S. Patent 5,586,460 issued to Steingroever December 24, 1996; (3).
  • Patent 5,953,805 issued to Steingroever September 21, 1999, as well as the techniques an apparatus is described on the web page of Magnetic-Physics, Inc., with reference to the shaping technique under the trademark Magnetopuls, the disclosures of which are incorporated by reference.
  • the interior sleeve 41 is applied to the interior surfaces of the tubular members overlapping the coupling joint and thereby facilitates sealing and connection between the tubular members.
  • one or more layers or coatings of softer material may be interposed between the joints, to facilitate sealing before and after expanding and plastically deforming joined tubular members such as wellbore casings.
  • the interposed material may also be a material of the type having a lower melting point before deformation than after deformation.
  • the material may be an exothermic material that initially releases energy upon stress or heat input thereby melting or plastically flowing at one temperature and subsequently without the further release of such heat energy having a higher melting point or plastic flow temperature.
  • the first and second tubular members, 14 and 16 are radially expanded and plastically deformed using the expansion cone 80 in a conventional manner and/or using one or more of the methods and apparatus disclosed in one or more of the following: (1) U.S. patent application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, (2) U.S. patent application serial no. 09/510,913, attorney docket no. 25791.7.02, filed on 2/23/2000, (3) U.S. patent application serial no. 09/502,350, attorney docket no. 25791.8.02, filed on 2/10/2000, (4) U.S. patent application serial no. 09/440,338, attorney docket no.
  • first and second tubular members, 14 and 16 are radially expanded and plastically deformed using other conventional methods for radially expanding and plastically deforming tubular members such as, for example, internal pressurization and/or roller expansion devices such as, for example, that disclosed in U.S. patent application publication no. US 2001/0045284 Al, the disclosure of which is incorporated herein by reference.
  • tubular sleeve 40 The use of the tubular sleeve 40 during (a) the coupling of the first tubular member 19 to the second tubular member 16, (b) the placement of the first and second tubular members in the structure 10, (c) the radial expansion and plastic deformation of the first and second tubular members, and (d) magnetic impulse applying tubular sleeve to the overlapping coupling ends between the first and second tubular members provides a number of significant benefits.
  • the tubular sleeve 40 protects the exterior surfaces of the end portions, 18 and 20, of the first and second tubular members, 14 and 16, during handling and insertion of the tubular members within the structure 10.
  • tubular sleeve 40 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 16 to the first tubular member 14. In this manner, misalignment that could result in damage to the threaded connections, 22 and 24, of the first and second tubular members, 14 and 16, may be avoided.
  • the tubular sleeve 40 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 40 can be easily rotated, that would indicate that the first and second tubular members, 14 and 16, are not fully threadably coupled and in intimate contact with the internal flange 36 of the tubular sleeve. Furthermore, the tubular sleeve 16 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 14 and 16.
  • the tubular sleeve 40 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve and the exterior surfaces of the end portions, 18 and 20, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 22 and 24, of the first and second tubular members, 14 and 16, into the annulus between the first and second tubular members and the structure 10.
  • tubular sleeve 40 may be maintained in circumferential tension and the end portions, 18 and 20, of the first and second tubular members, 14 and 16, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve.
  • the tubular sleeve 40 may also increase the collapse strength of the end portions, 18 and 20, of the first and second tubular members, 14 and 16.
  • a useful method of forming a wellbore casing within a borehole that traverses a subterranean formation includes a first wellbore casing for positioning within the borehole and coupling the first wellbore casing to the borehole, positioning a second wellbore casing within the borehole such that the second wellbore casing overlaps with and is coupled to a portion of the first wellbore casing thereby forming a joint, positioning a tubular sleeve so that it overlaps with and is coupled to at least a portion of the first wellbore casing and to a portion of the second wellbore casing, the tubular sleeve extending a length in either axial direction from the joint between the first and second wellbore casings, causing the tubular sleeve to collapse inwardly onto the respective end portions of the first and second wellbore casings and to sealingly engage the exterior surfaces of the end portions of the first and second wellbore casings respectively on either side of
  • the method further includes regularly expanding and plastically deforming the overlapping portions of the first and second wellbore casing and regularly expanding and plastically deforming the tubular sleeve that was sealingly collapsed onto the overlapping portions of the first and second wellbore casings.
  • the exterior diameters of the first and second wellbore casings axially adjacent to the joint there between are substantially equal.
  • the inside diameters of the first wellbore casings and the inside diameter of the second wellbore casing are substantially equal.
  • the inside diameters of the first wellbore casing and the second wellbore casing are substantially constant.
  • the method may further include forming a wellbore casing within a borehole that traverses a subterranean formation including positioning first wellbore casing, second wellbore casing and additional wellbore casings within the borehole that overlaps one with the other and that are coupled to one another at a joint between each successive wellbore casing.
  • the method with additional wellbore casings would further includes additional tubular sleeves positioned to overlap each successive joint of the successive wellbore casings in causing each sleeve to collapse inwardly on the respective end portions of the first, second, and additional wellbore casings to sealingly engage the exterior surfaces of the respective end portions.
  • the method further includes the use of magnetic impulse energy to collapse the tubular sleeves onto the surfaces of the wellbore casings at the joints thereof, thereby facilitating sealing of the joints.

Abstract

A method of forming a wellbore casing within a borehole (10) that traverses a subterranean formation includes the steps of assembling a tubular liner by coupling a threaded portion (24) of a first tubular member (16) to a threaded portion (22) of a second tubular member (14) and coupling a tubular sleeve (40) to the threaded portions (22,24) of the first (16) and second (14) tubular members. The method further includes positioning the wellbore casing within the borehole (10). The step of coupling the tubular sleeve (40) through the threaded portions (22,24) of the first (16) and second (14) tubular members includes applying impulsive magnetic energy to the tubular sleeve (40).

Description

MAGNETIC IMPULSE APPLIED SLEEVE METHOD OF FORMING A WELLBORE
CASING
Cross Reference To Related Applications [0001] The present application claims the benefit of the filing dates of (1) U.S. provisional patent application serial no. 60/405,610, attorney docket no 25791.119, filed on 8/23/2002, the disclosure of which is incorporated herein by reference.
[0002] The present application is related to the following: (1) U.S. patent application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, (2) U.S. patent application serial no. 09/510,913, attorney docket no. 25791.7.02, filed on 2/23/2000, (3) U.S. patent application serial no. 09/502,350, attorney docket no. 25791.8.02, filed on 2/10/2000, (4) U.S. patent no. 6,328,113, (5) U.S. patent application serial no. 09/523,460, attorney docket no. 25791.11.02, filed on 3/10/2000, (6) U.S. patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, (7) U.S. patent application serial no. 09/511,941, attorney docket no. 25791.16.02, filed on 2/24/2000, (8) U.S. patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, (9) U.S. patent application serial no. 09/559,122, attorney docket no. 25791.23.02, filed on 4/26/2000, (10) PCT patent application serial no. PCT/US00/18635, attorney docket no. 25791.25.02, filed on 7/9/2000, (11) U.S. provisional patent application serial no. 60/162,671, attorney docket no. 25791.27, filed on 11/1/1999, (12) U.S. provisional patent application serial no. 60/154,047, attorney docket no. 25791.29, filed on 9/16/1999, (13) U.S. provisional patent application serial no. 60/159,082, attorney docket no. 25791.34, filed on 10/12/1999, (14) U.S. provisional patent application serial no. 60/159,039, attorney docket no.25791.36, filed on 10/12/1999, (15) U.S. provisional patent application serial no. 60/159,033, attorney docket no. 25791.37, filed on 10/12/1999, (16) U.S. provisional patent application serial no. 60/212,359, attorney docket no. 25791.38, filed on 6/19/2000, (17) U.S. provisional patent application serial no. 60/165,228, attorney docket no. 25791.39, filed on 11/12/1999, (18) U.S. provisional patent application serial no. 60/221,443, attorney docket no.25791.45, filed on 7/28/2000, (19) U.S. provisional patent application serial no. 60/221,645, attorney docket no. 25791.46, filed on 7/28/2000, (20) U.S. provisional patent application serial no. 60/233,638, attorney docket no.25791.47, filed on 9/18/2000, (21) U.S. provisional patent application serial no. 60/237,334, attorney docket no. 25791.48, filed on 10/2/2000, (22) U.S. provisional patent application serial no. 60/270,007, attorney docket no. 25791.50, filed on 2/20/2001, (23) U.S. provisional patent application serial no. 60/262,434, attorney docket no. 25791.51, filed on 1/17/2001, (24) U.S, provisional patent application serial no. 60/259,486, attorney docket no. 25791.52, filed on 1/3/2001, (25) U.S. provisional patent application serial no. 60/303,740, attorney docket no. 25791.61, filed on 7/6/2001, (26) U.S. provisional patent application serial no. 60/313,453, attorney docket no. 25791.59, filed on 8/20/2001, (27) U.S. provisional patent application serial no. 60/317,985, attorney docket no. 25791.67, filed on 9/6/2001, (28) U.S. provisional patent application serial no. 60/3318,386, attorney docket no. 25791.67.02, filed on 9/10/2001, (29) U.S. utility patent application serial no. 09/969,922, attorney docket no.25791.69, filed on 10/3/2001 , (30) U.S. utility patent application serial no. 10/016,467, attorney docket no. 25791.70, filed on 12/10/2001; (31) U.S. provisional patent application serial no. 60/343,674, attorney docket no. 25791.68, filed on 12/27/2001; (32) U.S. provisional patent application serial no. 60/346,309, attorney docket no 25791.92, filed on 1/7/2002; (33) U.S. provisional patent application serial no. 60/372,048, attorney docket no. 25791.93, filed on 4/12/2002; (34) U.S. provisional patent application serial no. 60/380,147, attorney docket no. 25791.104, filed on 5/6/2002; (35) U.S. provisional patent application serial no. 60/387,486, attorney docket no. 25791.107, filed on 6/10/2002; (36) U.S. provisional patent application serial no. 60/387,961, attorney docket no. 25791.108, filed on 6/12/2002; (37) U.S. provisional patent application serial no. 60/391,703, attorney docket no. 25791.90, filed on 6/26/2002; (38) U.S. provisional patent application serial no. 60/397,284, attorney docket no.25791.106, filed on 7/19/2002, and (39) U.S. provisional patent application serial no. 60/405,394, filed on 8/23/03, the disclosures of which are incorporated herein by reference.
Background of the Invention [0003] This invention relates generally to oil and gas exploration, and in particular to forming and repairing wellbore casings to facilitate oil and gas exploration.
[0004] Conventionally, when a wellbore is created, a number of casings are installed in the borehole to prevent collapse of the borehole wall and to prevent undesired outflow of drilling fluid into the formation or inflow of fluid from the formation into the borehole. The borehole is drilled in intervals whereby a casing which is to be installed in a lower borehole interval is lowered through a previously installed casing of an upper borehole interval. As a consequence of this procedure the casing of the lower interval is of smaller diameter than the casing of the upper interval. Thus, the casings are in a nested arrangement with casing diameters decreasing in downward direction. Cement annuli are provided between the outer surfaces of the casings and the borehole wall to seal the casings from the borehole wall. As a consequence of this nested arrangement a relatively large borehole diameter is required at the upper part of the wellbore. Such a large borehole diameter involves increased costs due to heavy casing handling equipment, large drill bits and increased volumes of drilling fluid and drill cuttings. Moreover, increased drilling rig time is involved due to required cement pumping, cement hardening, required equipment changes due to large variations in hole diameters drilled in the course of the well, and the large volume of cuttings drilled and removed. [0005] During oil exploration, a wellbore typically traverses a number of zones within a subterranean formation. Wellbore casings are then formed in the wellbore by radially expanding and plastically deforming tubular members that are coupled to one another by threaded connections. Existing methods for radially expanding and plastically deforming tubular members coupled to one another by threaded connections are not always reliable, and do not always produce satisfactory results. In particular, the threaded connections can be damaged during the radial expansion process. Furthermore, the threaded connections between adjacent tubular members, whether radially expanded or not, are typically not sufficiently coupled to permit the transmission of energy through the tubular members from the surface to the downhole location.
[0006] The present invention is directed to overcoming one or more of the limitations of the existing procedures for forming new sections of casing in a wellbore.
Summary of the Invention [0007] According to one aspect of the present invention, a method of forming a wellbore casing within a borehole that traverses a subterranean formation is provided that includes externally applied tubular sleeve for improved sealing a wellbore casing joints.
[0008] According to another aspect of the present invention, a method of forming a wellbore casing within a borehole that traverses a subterranean formation is provided that includes magnetic impulse method for externally applying a tubular sleeve for improved sealing of wellbore casing joints. [0009] According to another aspect of the present invention, a method of forming a wellbore casing within a borehole that traverses a subterranean formation is provided that includes expanding joined tubular members such as j oined wellbore casings with a tubular sleeve externally applied to the surfaces of the joined wellbore casing and overlapping the joint thereby maintaining an improved seal of the wellbore casing joints after expansion.
[00010] According to another aspect of the present invention, amethod of improving the seal of tubular members that are connected and then expanded is provided, that includes using a magnetic impulse method for externally applying a tubular sleeve to the joint between the tubular members prior to expanding the connected tubular members.
[00011] According to another aspect of the present invention, an improved method of connecting wellbore casing tubular member is provided that includes fonning raised ring portions to enhance surface contact stress in the coupling connection and subsequently applying inward radial force with a tubular sleeve imposed by magnetic impulse method for improved sealing of the joints between the tubular members.
Brief Description of the Drawings [0010] FIG. 1 is a fragmentary cross-sectional schematic illustration of a first tubular member, such a first wellbore casing, for placement within a borehole that traverses a subterranean formation. [0011] FIG. 2 is a fragmentary cross-sectional schematic illustration of the first tubular member, such as the first wellbore casing as in Fig. 1 and an aligned second tubular member, such as a second wellbore casing in position for coupling together and for placing the first and second tubular members, such as the depicted wellbore casings within a borehole.
[0012] FIG. 3 is a fragmentary cross-sectional schematic illustration of first and second wellbore casings of Fig. 2 after overlapping coupling as with the first female threads and second male threads providing a substantially continuous wellbore that may be radially expanded and plastically deformed at the overlapping portions of the first and second wellbore casings.
[0013] FIG. 4 is a fragmentary cross-sectional schematic illustration of the coupling joint of Fig. 3 after placing a tubular sleeve axially aligned with the first and second wellbore casings, and overlappingly positioned at the joint formed by coupling the first and second wellbore casings.
[0014] FIG. 5 is a fragmentary cross-sectional schematic illustration of the first and second wellbore casings and of the tubular sleeve of Fig.4 and further schematically depicting one illustration of a magnetic impulse apparatus positioned at the tubular sleeve for externally applying the tubular sleeve for improved sealing of the joint formed by coupling the wellbore casings together.
[0015] FIG. 6 is a fragmentary cross-sectional schematic illustration of the apparatus of Fig. 5, after applying magnetic impulse force to the tubular sleeve for improved sealing of the joint formed by coupling the first and second wellbore casings of Fig. 5.
[0016] FIG. 7 is a fragmentary cross-sectional schematic illustration of a joint of a first and second tubular member, such as a first and second wellbore casing, having a tubular sleeve externally applied to the adjacent external surfaces of the first and second tubular members at the overlapping joint there between prior to expanding the first and second tubular members at the area of the joint, according to one aspect of the present invention.
[0017] FIG. 8 is a fragmentary cross-sectional schematic illustration of the apparatus of Fig. 7, after the coupled portion of the first and second tubular member wellbore casings and the externally applied tubular sleeve have been radially expanded and plastically deformed according to one aspect of the present invention.
[0018] FIG. 9 is a fragmentary cross-sectional schematic illustration of the first female coupling and second male coupling and overlapping tubular sleeve with raised ridges interposed between the couplings to increase the surface to surface contact stress for maintaining sealing contact upon expanding and plastically deforming the coupling and tubular sleeve at the overlapping portions of the first and second tubular members.
[0019] Fig. 10 is a fragmentary cross-sectional schematic illustration of an alternative embodiment of the invention in which an interior tubular sleeve 41 is aligned with the coupling joint between tubular members and the interior tubular sleeve 41 is forced outward and applied to the interior surfaces of the tubular members by a magnetic impulse device.
Detailed Description of the Illustrative Embodiments [0020] Referring to Fig. 1, a borehole 10 that traverses a subterranean formation 12 includes a first tubular member 14, such as a first wellbore casing 14 that is positioned within and coupled to the borehole. In several exemplary embodiments, tubular members in the form of wellbore casings will be described and depicted. It will be understood that although the methods, particularly advantageous for forming wellbore casings, certain advantageous features may also be applicable to other tubular members as described and claimed herein. In an illustrative embodiment, the first wellbore casing 14 may, for example, be positioned within and coupled to the borehole 10 using any number of conventional methods and apparatus, that may or may not include radial expansion and plastic deformation of the first wellbore casing 14, and/or using one or more of the methods and apparatus disclosed in one or more of the following: (1) U.S. patent application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, (2) U.S. patent application serial no. 09/510,913, attorney docket no. 25791.7.02, filed on 2/23/2000, (3) U.S. patent application serial no. 09/502,350, attorney docket no. 25791.8.02, filed on 2/10/2000, (4) U.S. patent no. 6,328,113, (5) U.S. patent application serial no. 09/523,460, attorney docket no. 25791.11.02, filed on 3/10/2000, (6) U.S. patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, (7) U.S. patent application serial no. 09/511,941, attorney docket no. 25791.16.02, filed on 2/24/2000, (8) U.S. patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, (9) U.S. patent application serial no. 09/559,122, attorney docket no. 25791.23.02, filed on 4/26/2000, (10) PCT patent application serial no. PCT/US00/18635, attorney docket no. 25791.25.02, filed on 7/9/2000, (11) U.S. provisional patent application serial no. 60/162,671, attorney docket no. 25791.27, filed on 11/1/1999, (12) U.S. provisional patent application serial no. 60/154,047, attorney docket no. 25791.29, filed on 9/16/1999, (13) U.S. provisional patent application serial no. 60/159,082, attorney docket no. 25791.34, filed on 10/12/1999, (14) U.S. provisional patent application serial no. 60/159,039, attorney docket no. 25791.36, filed on 10/12/1999, (15) U.S. provisional patent application serial no. 60/159,033, attorney docket no. 25791.37, filed on 10/12/1999, (16) U.S. provisional patent application serial no. 60/212,359, attorney docket no. 25791.38, filed on 6/19/2000, (17) U.S. provisional patent application serial no. 60/165,228, attorney docket no. 25791.39, filed on 11/12/1999, (18) U.S. provisional patent application serial no. 60/221,443, attorney docket no. 25791.45, filed on 7/28/2000, (19) U.S. provisional patent application serial no. 60/221,645, attorney docket no. 25791.46, filed on 7/28/2000, (20) U.S. provisional patent application serial no. 60/233,638, attorney docket no. 25791.47, filed on 9/18/2000, (21) U.S. provisional patent application serial no. 60/237,334, attorney docket no. 25791.48, filed on 10/2/2000, (22) U.S. provisional patent application serial no. 60/270,007, attorney docket no. 25791.50, filed on 2/20/2001, (23) U.S. provisional patent application serial no. 60/262,434, attorney docket no. 25791.51, filed on 1/17/2001, (24) U.S, provisional patent application serial no. 60/259,486, attorney docket no. 25791.52, filed on 1/3/2001, (25) U.S. provisional patent application serial no. 60/303,740, attorney docket no. 25791.61, filed on 7/6/2001, (26) U.S. provisional patent application serial no. 60/313,453, attorney docket no. 25791.59, filed on 8/20/2001, (27) U.S. provisional patent application serial no. 60/317,985, attorney docket no. 25791.67, filed on 9/6/2001, (28) U.S. provisional patent application serial no. 60/3318,386, attorney docket no. 25791.67.02, filed on 9/10/2001, (29) U.S. utility patent application serial no. 09/969,922, attorney docket no. 25791.69, filed on 10/3/2001, (30) U.S. utility patent application serial no. 10/016,467, attorney docket no. 25791.70, filed on 12/10/2001; (31) U.S. provisional patent application serial no. 60/343,674, attorney docket no. 25791.68, filed on 12/27/2001; (32) U.S. provisional patent application serial no. 60/346,309, attorney docket no 25791.92, filed on 1/7/2002; (33) U.S. provisional patent application serial no. 60/372,048, attorney docket no. 25791.93, filed on 4/12/2002; (34) U.S. provisional patent application serial no. 60/380,147, attorney docket no. 25791.104, filed on 5/6/2002; (35) U.S. provisional patent application serial no. 60/387,486, attorney docket no. 25791.107, filed on 6/10/2002; (36) U.S. provisional patent application serial no. 60/387,961, attorney docket no. 25791.108, filed on 6/12/2002; (37) U.S. provisional patent application serial no. 60/391,703, attorney docket no. 25791.90, filed on 6/26/2002; (38) U.S. provisional patent application serial no. 60/397,284, attorney docket no. 25791.106, filed on 7/19/2002, and (39) U.S. provisional patent application serial no. 60/405,394, filed on 8/23/03, the disclosures of which are incorporated herein by reference.
[0021] Referring to Fig. 2, the second tubular member 16, such as second wellbore casing 16 is then overlappingly coupled to the first wellbore casing 14 for positioning within the borehole 10. In several exemplary embodiments, the first wellbore casing 14 may, for example, be coupled at a first coupling portion 18 to a second coupling portion 20 of the second wellbore casing 16 using any number of conventional methods and apparatus. For example as shown in Fig. 2, the coupling may comprise a male, or externally, threaded portion 24 engaged with a female, or internally, threaded portion 26. The method of coupling may or may not include radial expansion and plastic deformation of either of the wellbore casings 14 or 16 or both, and or using one of more of the methods disclosed in one of more of the following: (1) U.S. patent application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, (2) U.S. patent application serial no. 09/510,913, attorney docket no. 25791.7.02, filed on 2/23/2000, (3) U.S. patent application serial no. 09/502,350, attorney docket no. 25791.8.02, filed on 2/10/2000, (4) U.S. patent no. 6,328,113, (5) U.S. patent application serial no. 09/523,460, attorney docket no. 25791.11.02, filed on 3/10/2000, (6) U.S. patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, (7) U.S. patent application serial no. 09/511,941, attorney docket no. 25791.16.02, filed on 2/24/2000, (8) U.S. patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, (9) U.S. patent application serial no. 09/559,122, attorney docket no. 25791.23.02, filed on 4/26/2000, (10) PCT patent application serial no. PCT/US00/18635, attorney docket no. 25791.25.02, filed on 7/9/2000, (11) U.S. provisional patent application serial no. 60/162,671, attorney docket no. 25791.27, filed on 11/1/1999, (12) U.S. provisional patent application serial no. 60/154,047, attorney docket no. 25791.29, filed on 9/16/1999, (13) U.S. provisional patent application serial no. 60/159,082, attorney docket no. 25791.34, filed on 10/12/1999, (14) U.S. provisional patent application serial no. 60/159,039, attorney docket no. 25791.36, filed on 10/12/1999, (15) U.S. provisional patent application serial no. 60/159,033, attorney docket no. 25791.37, filed on 10/12/1999, (16) U.S. provisional patent application serial no. 60/212,359, attorney docket no. 25791.38, filed on 6/19/2000, (17) U.S. provisional patent application serial no. 60/165,228, attorney docket no. 25791.39, filed on 11/12/1999, (18) U.S. provisional patent application serial no. 60/221,443, attorney docket no. 25791.45, filed on 7/28/2000, (19) U.S. provisional patent application serial no. 60/221,645, attorney docket no. 25791.46, filed on 7/28/2000, (20) U.S. provisional patent application serial no. 60/233,638, attorney docket no. 25791.47, filed on 9/18/2000, (21) U.S. provisional patent application serial no. 60/237,334, attorney docket no. 25791.48, filed on 10/2/2000, (22) U.S. provisional patent application serial no. 60/270,007, attorney docket no. 25791.50, filed on 2/20/2001, (23) U.S. provisional patent application serial no. 60/262,434, attorney docket no. 25791.51, filed on 1/17/2001, (24) U.S, provisional patent application serial no. 60/259,486, attorney docket no. 25791.52, filed on 1/3/2001, (25) U.S. provisional patent application serial no. 60/303,740, attorney docket no. 25791.61, filed on 7/6/2001, (26) U.S. provisional patent application serial no. 60/313,453, attorney docket no. 25791.59, filed on 8/20/2001, (27) U.S. provisional patent application serial no. 60/317,985, attorney docket no. 25791.67, filed on 9/6/2001, (28) U.S. provisional patent application serial no. 60/3318,386, attorney docket no. 25791.67.02, filed on 9/10/2001, (29) U.S. utility patent application serial no. 09/969,922, attorney docket no. 25791.69, filed on 10/3/2001, (30) U.S. utility patent application serial no. 10/016,467, attorney docket no. 25791.70, filed on 12/10/2001; (31) U.S. provisional patent application serial no. 60/343,674, attorney docket no. 25791.68, filed on 12/27/2001; (32) U.S. provisional patent application serial no. 60/346,309, attorney docket no 25791.92, filed on 1/7/2002; (33) U.S. provisional patent application serial no. 60/372,048, attorney docket no. 25791.93, filed on 4/12/2002; (34) U.S. provisional patent application serial no. 60/380,147, attorney docket no. 25791.104, filed on 5/6/2002; (35) U.S. provisional patent application serial no. 60/387,486, attorney docket no. 25791.107, filed on 6/10/2002; (36) U.S. provisional patent application serial no. 60/387,961, attorney docket no. 25791.108, filed on 6/12/2002; (37) U.S. provisional patent application serial no. 60/391,703, attorney docket no. 25791.90, filed on 6/26/2002; (38) U.S. provisional patent application serial no. 60/397,284, attorney docket no. 25791.106, filed on 7/19/2002, and (39) U.S. provisional patent application serial no. 60/405,394, filed on 8/23/03, the disclosures of which are incorporated herein by reference.
[0022] Upon coupling the first and second tubular members, such as upon coupling the first and second wellbore casings 14 and 16, as depicted in Fig. 2, a first surface portion 26 and a second surface portion 28 are adjacently positionally in the axial direction and may or may not have the same or nearly the same outside diameters 32 and 34. It would understood that according to the foregoing methods and apparatus for expanding the wellbore casing, the depiction in Fig. 2 and Fig. 3 may or may not demonstrate an overlapping portion that has been previously expanded. In either instance, it is desirable for the present invention that the exterior first outside diameter 32 and the outside diameter 34 have the same or nearly the same dimensions. For further be seen that a joint 30 is formed there between that may include a small gap such as a bevel or partial channel on either member as is conventional for accommodating nicks or dents so that they will not interfere with complete coupling between the first and second wellbore casings.
[0023] Referring to Fig. 3, it will again be understood that the first wellbore casing 14 and the second wellbore casing 16 may or may not have been radially expanded in the depiction of Fig. 4. A tubular sleeve 40 is positioned overlapping the first surface portion 26 of the first wellbore casings 14 and also overlapping the second surface portion 28 of the second wellbore casing 16, thereby overlapping the joint 30 and axially extending in either direction there from at least partially over the overlapping coupling as well as partially over a portion of casing 16 that does not overlap first wellbore casing 14.
[0024] The tubular sleeve 40 is preferably composed of electrically conductive material that are suitably malleable or flowable to be shaped mechanically, as for example copper, aluminum, light metal, and metal alloys. Steel alloys and other metal alloys with suitable electrically conductivity and with suitable malleability or suitable flow behavior may also be used. The inside diameter 42, of the tubular sleeve 40 is only slightly larger than the outside diameter of at the joint 30 the first tubular member 14 or the second tubular member 16. This means a cylindrical gap 44 between the inside surface 46 of sleeve 40 and the first and outside surfaces 26 and 28 of wellbore casings 14 and 16 respectively. The outside diameter 48 of tubular sleeve 40 is slightly larger than the inside diameter 42 defining a thickness 49 that is relatively thin compared the thickness of the wellbore casings 14 and 16.
[0025] Fig. 5 is a schematic illustration of the overlapping wellbore casings 14 and 16 and the overlapping tubular sleeve 40, as in Fig. 4, and further schematically depicts a magnetic impulse energy applicator 50. The impulse energy applicator 50, according to one aspect of the present invention, is aligned with the tubular sleeve at a position overlapping the joint 30 and extending a distance over the surfaces 26 and 28 on either side of the joint 30. The magnetic impulse apparatus 50 may comprise an impulse conductor ring 52 having an inside diameter 54 slightly larger than the outside diameter of the ring 40, thereby leaving a small cylindrical gap 56 there between. Conductor ring 52 is interrupted with a radially extending gap (not shown) and is operatively connected to an impulse generator 58 such that the magnetic impulse power flows circumferentially around conductor ring 52 when applied from the impulse generator 58. This method applied to joints of wellbore casing has not heretofore been known, although there are conventional devices and it is a conventional concept for providing a magnetic impulse for shaping of cylindrical metal parts. Thus, the adaptation of one of more of the methods and apparatus according to one or more of the following may be used in connection with this aspect of the present invention: (1) U. S. Patent 5,444,963 issued to Steingroever, et al., August 29, 1995; (2) U. S. Patent 5,586,460 issued to Steingroever December 24, 1996; (3). U. S. Patent 5,953,805 issued to Steingroever September 21, 1999, as well as the techniques an apparatus is described on the web page of Magnetic-Physics, Inc., with reference to the shaping technique under the trademark Magnetopuls, the disclosures of which are incorporated by reference. [0026] With reference to Fig. 6, the method of applying the tubular sleeve to the joint of wellbore casing 14 and 16 may be more fully understood. The magnetic impulse generator 58 provides a magnetic in pulse to the conductor ring 52. The magnetic impulse causes a powerful magnetic field 60 to be produced and simultaneously causes a counter current magnetic pulse 62 to be produced within tubular sleeve 40. An extremely high concentration of magnetic flux at 64 results in the gap 56 between tubular sleeve 40 and impulse ring 52. This high flux concentration due to the magnetic impulse generates a large force 66 inward from the ring 52 thereby collapsing tubular sleeve 40 onto the surfaces 26 and 28 at the joint. This effectively forms a first sealing interface 70 between the first surface 26 and the inside surface 44 of the tubular sleeve, and also forms a sealing interface 72 between the inside surface 44 of the tubular sleeve and the surface 28 of the second wellbore casing. With sufficiently high force, the malleable or flowable material from which tubular sleeve 40 is made, flows at 74 into the joint gap 30. This method produces a surface to surface air tight metallic seal entirely over the coupling between the first wellbore casing 14 and the second wellbore casing 16. The strength of the tubular sleeve 40 also holds the joint together during the process of mechanical expansion of the wellbore casing at the joint.
[0027] In an exemplary embodiment, as illustrated in Figs. 7 and 8, the first and second tubular members, 14 and 16, and the tubular sleeve 40 may then be positioned within another structure 10 such as, for example, a wellbore 10, and radially expanded and plastically deformed, for example, by moving an expansion cone 80 through the interiors of the first and second tubular members 14 and 16. The tapered portions, 76 and 78, of the tubular sleeve 40 as may result from material flow due to large magnetic force of the type of material of sleeve 40 and facilitate the insertion and movement of the first and second tubular members 14 and 16 within and through the structure 10, and the movement of the expansion cone 80 through the interiors of the first and second tubular members, 14 and 16, may be from top to bottom or from bottom to top.
[0028] In an exemplary embodiment, during the radial expansion and plastic deformation of the first and second tubular members, 14 and 16, the tubular sleeve 40 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 40 may be maintained in circumferential tension and the overlapping end coupling portions, 18 and 20, of the first and second tubular members, 14 and 16, may be maintained in circumferential compression. [0029] In FIG. 9, a fragmentary cross-sectional schematic illustration shows an exemplary embodiment of method and apparatus in which first and second tubular members 114 and 116 are overlapping coupled together, as with a first coupling portion 118 and a second coupling portion 120 pressed together in surface-to-surface engagement, and with an overlapping tubular sleeve 40 applied to the exterior thereof and providing a substantially continuous tubular assembly that may be expanded and plastically deformed. The first coupling portion 118 and the second coupling portion 120 may be overlappingly coupled together, as with a first female coupling portion and a second male coupling portion pushed, slid or pressed together in surface-to-surface engagement, and An overlapping tubular sleeve 40 is applied to the coupling to provide sealing and to stress the tubular coupling portions toward each other. In an exemplary embodiment, one or more raised ridge rings 84(a-c) and corresponding troughs rings 86(a-c) are formed interposed between the first and second couplings to increase the surface to surface contact stress for maintaining sealing contact upon expanding and plastically deforming the coupling and tubular sleeve at the overlapping portions of the first and second tubular members. In this method and apparatus the peaks 88(a-c) of the ridges 84(a-c) have a small area of surface contact with the opposed coupling portion, compared to the entire overlapping coupling area, such that the stress or force per area of contact is significantly increased thereby facilitating the surface to surface seal at the coupling joint. Although the ridge rings 84 are shown formed in the second male coupling portion with the peaks toward the first female male coupling portion, it will be understood based upon this disclosure that the ridge rings 84 might alternatively be formed on the female coupling portion 118 with the peaks toward the female coupling portion 120. The tubular sleeve 40 as applied to the exterior of the overlapping tubular members increases the sealing stress. In a further exemplary embodiment, the tubular sleeve 40 acting together with the raised ridge rings 84 work together to maintain the seal when the tubular members 114 and 116 are expanded and plastically deformed as disclosed herein.
[0030] Fig 10 depicts another exemplary embodiment of the invention in which an interior tubular sleeve 41 is aligned with coupling joint between tubular members 14 and 16. Before or after expanding the tubular members the interior tubular sleeve 41 is forced outward by magnetic impulse device 51 in a conventional manner or the adaptation of one of more of the methods and apparatus according to one or more of the following may be used in connection with this aspect of the present invention: (1) U. S. Patent 5,444,963 issued to Steingroever, et al., August 29, 1995; (2) U. S. Patent 5,586,460 issued to Steingroever December 24, 1996; (3). U. S. Patent 5,953,805 issued to Steingroever September 21, 1999, as well as the techniques an apparatus is described on the web page of Magnetic-Physics, Inc., with reference to the shaping technique under the trademark Magnetopuls, the disclosures of which are incorporated by reference. The interior sleeve 41 is applied to the interior surfaces of the tubular members overlapping the coupling joint and thereby facilitates sealing and connection between the tubular members.
[0031 ] As more fully disclosed in US provisional patent application no. 60/405,394, attorney docket 29751.120 filed on 8/23/2002, the disclosure of which is incorporated herein by reference, one or more layers or coatings of softer material, preferably metallic material having a modulus of elasticity lower than the modulus of elasticity of the tubular members at the coupling joint, may be interposed between the joints, to facilitate sealing before and after expanding and plastically deforming joined tubular members such as wellbore casings. The interposed material may also be a material of the type having a lower melting point before deformation than after deformation. For example the material may be an exothermic material that initially releases energy upon stress or heat input thereby melting or plastically flowing at one temperature and subsequently without the further release of such heat energy having a higher melting point or plastic flow temperature.
[0032] In several exemplary embodiments, the first and second tubular members, 14 and 16, are radially expanded and plastically deformed using the expansion cone 80 in a conventional manner and/or using one or more of the methods and apparatus disclosed in one or more of the following: (1) U.S. patent application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, (2) U.S. patent application serial no. 09/510,913, attorney docket no. 25791.7.02, filed on 2/23/2000, (3) U.S. patent application serial no. 09/502,350, attorney docket no. 25791.8.02, filed on 2/10/2000, (4) U.S. patent application serial no. 09/440,338, attorney docket no. 25791.9.02, filed on 11/15/1999, (5) U.S. patent application serial no. 09/523,460, attorney docket no. 25791.11.02, filed on 3/10/2000, (6) U.S. patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, (7) U.S. patent application serial no. 09/511,941, attorney docket no. 25791.16.02, filed on 2/24/2000, (8) U.S. patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, (9) U.S. patent application serial no. 09/559,122, attorney docket no. 25791.23.02, filed on 4/26/2000, (10) PCT patent application serial no. PCT/US00/18635, attorney docket no. 25791.25.02, filed on 7/9/2000, (11) U.S. provisional patent application serial no.60/162,671, attorney docket no.25791.27, filed on 11/1/1999, (12) U.S. provisional patent application serial no. 60/154,047, attorney docket no. 25791.29, filed on 9/16/1999, (13) U.S. provisional patent application serial no. 60/159,082, attorney docket no. 25791.34, filed on 10/12/1999, (14) U.S. provisional patent application serial no. 60/159,039, attorney docket no. 25791.36, filed on 10/12/1999, (15) U.S. provisional patent application serial no. 60/159,033, attorney docket no.25791.37, filed on 10/12/1999, (16) U.S. provisional patent application serial no. 60/212,359, attorney docket no. 25791.38, filed on 6/19/2000, (17) U.S. provisional patent application serial no. 60/165,228, attorney docket no. 25791.39, filed on 11/12/1999, (18) U.S. provisional patent application serial no. 60/221,443, attorney docket no. 25791.45, filed on 7/28/2000, (19) U.S. provisional patent application serial no. 60/221,645, attorney docket no.25791.46, filed on 7/28/2000, (20) U.S. provisional patent application serial no. 60/233,638, attorney docket no. 25791.47, filed on 9/18/2000, (21) U.S. provisional patent application serial no.60/237,334, attorney docket no.25791.48, filed on 10/2/2000, (22) U.S. provisional patent application serial no. 60/270,007, attorney docket no. 25791.50, filed on 2/20/2001, (23) U.S. provisional patent application serial no. 60/262,434, attorney docket no.25791.51, filed on 1/17/2001, (24) U.S, provisional patent application serial no. 60/259,486, attorney docket no. 25791.52, filed on 1/3/2001, (25) U.S. provisional patent application serial no. 60/303,740, attorney docket no. 25791.61, filed on 7/6/2001, (26) U.S. provisional patent application serial no. 60/313,453, attorney docket no. 25791.59, filed on 8/20/2001, (27) U.S. provisional patent application serial no. 60/317,985, attorney docket no. 25791.67, filed on 9/6/2001, (28) U.S. provisional patent application serial no. 60/3318,386, attorney docket no. 25791.67.02, filed on 9/10/2001, (29) U.S. utility patent application serial no. 09/969,922, attorney docket no.25791.69, filed on 10/3/2001, (30) U.S. utility patent application serial no. 10/016,467, attorney docket no. 25791.70, filed on 12/10/2001; (31) U.S. provisional patent application serial no. 60/343,674, attorney docket no.25791.68, filed on 12/27/2001; (32) U.S. provisional patent application serial no. 60/346,309, attorney docket no 25791.92, filed on 1/7/2002; (33) U.S. provisional patent application serial no. 60/372,048, attorney docket no.25791.93, filed on 4/12/2002; (34) U.S. provisional patent application serial no. 60/380,147, attorney docket no. 25791.104, filed on 5/6/2002; (35) U.S. provisional patent application serial no. 60/387,486, attorney docket no. 25791.107, filed on 6/10/2002; (36) U.S. provisional patent application serial no. 60/387,961, attorney docket no. 25791.108, filed on 6/12/2002; (37) U.S. provisional patent application serial no. 60/391,703, attorney docket no. 25791.90, filed on 6/26/2002; (38) U.S. provisional patent application serial no. 60/397,284, attorney docket no.25791.106, filed on 7/19/2002, and (39) U.S. provisional patent application serial no. 60/405,394, filed on 8/23/03, the disclosures of which are incorporated herein by reference. [0033] In several alternative embodiments, the first and second tubular members, 14 and 16, are radially expanded and plastically deformed using other conventional methods for radially expanding and plastically deforming tubular members such as, for example, internal pressurization and/or roller expansion devices such as, for example, that disclosed in U.S. patent application publication no. US 2001/0045284 Al, the disclosure of which is incorporated herein by reference. [0034] The use of the tubular sleeve 40 during (a) the coupling of the first tubular member 19 to the second tubular member 16, (b) the placement of the first and second tubular members in the structure 10, (c) the radial expansion and plastic deformation of the first and second tubular members, and (d) magnetic impulse applying tubular sleeve to the overlapping coupling ends between the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 40 protects the exterior surfaces of the end portions, 18 and 20, of the first and second tubular members, 14 and 16, during handling and insertion of the tubular members within the structure 10. In this manner, damage to the exterior surfaces of the end portions, 18 and 20, of the first and second tubular member, 14 and 16, are prevented that could result in stress concentrations that could result in a catastrophic failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 40 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 16 to the first tubular member 14. In this manner, misalignment that could result in damage to the threaded connections, 22 and 24, of the first and second tubular members, 14 and 16, may be avoided. In addition, during the relative rotation of the second tubular member with respect to the first tubular member, required during the threaded coupling of the first and second tubular members, the tubular sleeve 40 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 40 can be easily rotated, that would indicate that the first and second tubular members, 14 and 16, are not fully threadably coupled and in intimate contact with the internal flange 36 of the tubular sleeve. Furthermore, the tubular sleeve 16 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 14 and 16. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 18 and 20, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 14 and 16, the tubular sleeve 40 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve and the exterior surfaces of the end portions, 18 and 20, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 22 and 24, of the first and second tubular members, 14 and 16, into the annulus between the first and second tubular members and the structure 10. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 14 and 16, the tubular sleeve 40 may be maintained in circumferential tension and the end portions, 18 and 20, of the first and second tubular members, 14 and 16, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve. In addition, the tubular sleeve 40 may also increase the collapse strength of the end portions, 18 and 20, of the first and second tubular members, 14 and 16.
[0035] A useful method of forming a wellbore casing within a borehole that traverses a subterranean formation has been described that includes a first wellbore casing for positioning within the borehole and coupling the first wellbore casing to the borehole, positioning a second wellbore casing within the borehole such that the second wellbore casing overlaps with and is coupled to a portion of the first wellbore casing thereby forming a joint, positioning a tubular sleeve so that it overlaps with and is coupled to at least a portion of the first wellbore casing and to a portion of the second wellbore casing, the tubular sleeve extending a length in either axial direction from the joint between the first and second wellbore casings, causing the tubular sleeve to collapse inwardly onto the respective end portions of the first and second wellbore casings and to sealingly engage the exterior surfaces of the end portions of the first and second wellbore casings respectively on either side of the joint there between, thereby facilitating sealing the joint.
[0036] In an exemplary embodiment, the method further includes regularly expanding and plastically deforming the overlapping portions of the first and second wellbore casing and regularly expanding and plastically deforming the tubular sleeve that was sealingly collapsed onto the overlapping portions of the first and second wellbore casings. In an exemplary embodiment, the exterior diameters of the first and second wellbore casings axially adjacent to the joint there between are substantially equal. In an exemplary embodiment, the inside diameters of the first wellbore casings and the inside diameter of the second wellbore casing are substantially equal. In an exemplary embodiment, the inside diameters of the first wellbore casing and the second wellbore casing are substantially constant.
[0037] It will further understood by those skilled in the art upon reading the foregoing disclosure and the claims that follow, and upon review of the drawings that the method may further include forming a wellbore casing within a borehole that traverses a subterranean formation including positioning first wellbore casing, second wellbore casing and additional wellbore casings within the borehole that overlaps one with the other and that are coupled to one another at a joint between each successive wellbore casing. In the method with additional wellbore casings would further includes additional tubular sleeves positioned to overlap each successive joint of the successive wellbore casings in causing each sleeve to collapse inwardly on the respective end portions of the first, second, and additional wellbore casings to sealingly engage the exterior surfaces of the respective end portions. The method further includes the use of magnetic impulse energy to collapse the tubular sleeves onto the surfaces of the wellbore casings at the joints thereof, thereby facilitating sealing of the joints. [0038] It is understood that variations may be made in the foregoing without departing from the scope of the invention. For example, the teachings of the present illustrative embodiments may be used to provide a wellbore casing, a pipeline, or a structural support. Furthermore, the elements and teachings of the various illustrative embodiments may be combined in whole or in part in some or all of the illustrative embodiments.
[0039] Although illustrative embodiments of the invention have been shown and described, a wide range of modification, changes and substitution is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.

Claims

ClaimsWhat is claimed is:
1. A method of forming a wellbore casing within a borehole that traverses a subterranean formation, comprising: assembling a tubular liner by a process comprising: coupling a threaded portion of a first tubular member to the threaded portion of a second tubular member; and coupling a tubular sleeve to the threaded portions of the first and second tubular members; positioning the tubular liner assembly within the borehole; and radially expanding and plastically deforming the tubular liner assembly within the borehole; wherein coupling the tubular sleeve to the threaded portions of the first and second tubular members comprises: applying impulsive magnetic energy to the tubular sleeve.
2. A method of forming a coupling between metallic tubular members comprising a process comprising the steps of: forming a female coupling portion on a first tubular member; forming a male coupling portion on a second tubular member; forming at least one raised ridge ring between the male and female coupling portions; coupling the female coupling portion of the first tubular member and the male portion of the second tubular member including pressing the coupling portions together in surface-to-surface contact; applying a tubular sleeve to exterior surfaces of the pressed together coupling portions of the first and second tubular members using a magnetic impulse generator; and radially expanding and plastically deforming the coupling between the tubular members with the tubular sleeve applied.
3. The process as in claim 2 wherein the step of coupling the male and female coupling portions together further comprises the step of forming at least one ridge ring interposed between the coupling portions to increase the surface-to-surface stress, thereby facilitating sealing between the first and second tubular members.
4. The process as in claim 2 wherein the step of coupling the male and female coupling portions together further comprises the step of forming a layer of material softer than the metallic tubular members interposed between the coupling portions to increase the surface-to- surface stress, thereby facilitating sealing between the first and second tubular members.
PCT/US2003/025677 2002-01-07 2003-08-18 Magnetic impulse applied sleeve method of forming a wellbore casing WO2004018824A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2003258274A AU2003258274A1 (en) 2002-08-23 2003-08-18 Magnetic impulse applied sleeve method of forming a wellbore casing
US10/525,332 US7377326B2 (en) 2002-08-23 2003-08-18 Magnetic impulse applied sleeve method of forming a wellbore casing
US10/546,076 US20070246934A1 (en) 2002-12-10 2005-08-17 Protective compression and tension sleeves for threaded connections for radially expandable tubular members
US11/866,809 US20080100064A1 (en) 2003-02-18 2007-10-03 Protective Compression and Tension Sleeves for Threaded Connections for Radially Expandable Tubular Members
US11/944,070 US20080066929A1 (en) 2002-01-07 2007-11-21 Protective Sleeve For Expandable Tubulars

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40561002P 2002-08-23 2002-08-23
US60/405,610 2002-08-23

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2003/019993 Continuation-In-Part WO2004010039A2 (en) 2002-07-19 2003-06-24 Protective sleeve for threaded connections for expandable liner hanger
US11/522,039 Continuation-In-Part US7617489B2 (en) 2006-09-15 2006-09-15 Method and system for detecting interprocedural vulnerability by analysis of source code

Related Child Applications (4)

Application Number Title Priority Date Filing Date
PCT/US2003/025676 Continuation-In-Part WO2004018823A2 (en) 2002-01-07 2003-08-18 Interposed joint sealing layer method of forming a wellbore casing
US10/525,402 Continuation-In-Part US7424918B2 (en) 2002-01-07 2003-08-18 Interposed joint sealing layer method of forming a wellbore casing
US10/528,223 Continuation-In-Part US7404444B2 (en) 2002-01-07 2003-08-18 Protective sleeve for expandable tubulars
PCT/US2003/025707 Continuation-In-Part WO2004027786A2 (en) 2002-01-07 2003-08-18 Protective sleeve for expandable tubulars

Publications (3)

Publication Number Publication Date
WO2004018824A2 true WO2004018824A2 (en) 2004-03-04
WO2004018824A3 WO2004018824A3 (en) 2004-07-29
WO2004018824B1 WO2004018824B1 (en) 2005-04-07

Family

ID=31946906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/025677 WO2004018824A2 (en) 2002-01-07 2003-08-18 Magnetic impulse applied sleeve method of forming a wellbore casing

Country Status (3)

Country Link
US (1) US7377326B2 (en)
AU (1) AU2003258274A1 (en)
WO (1) WO2004018824A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7384981B2 (en) 2001-11-14 2008-06-10 N.V. Nutricia Preparation for improving the action of receptors
US7665532B2 (en) 1998-12-07 2010-02-23 Shell Oil Company Pipeline
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
US7739917B2 (en) 2002-09-20 2010-06-22 Enventure Global Technology, Llc Pipe formability evaluation for expandable tubulars
US7740076B2 (en) 2002-04-12 2010-06-22 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
US7775290B2 (en) 2003-04-17 2010-08-17 Enventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US7793721B2 (en) 2003-03-11 2010-09-14 Eventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US7819185B2 (en) 2004-08-13 2010-10-26 Enventure Global Technology, Llc Expandable tubular
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
US7918284B2 (en) 2002-04-15 2011-04-05 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2472284C (en) * 2002-01-07 2011-10-11 Enventure Global Technology Protective sleeve for threaded connections for expandable liner hanger
CA2552722C (en) * 2004-01-12 2012-08-07 Shell Oil Company Expandable connection
EP1946272A2 (en) * 2005-09-28 2008-07-23 Enventure Global Technology, L.L.C. Method and apparatus for coupling expandable tubular members
WO2007047193A2 (en) * 2005-10-11 2007-04-26 Enventure Global Technology, L.L.C. Method and apparatus for coupling expandable tubular members
US8997855B2 (en) * 2006-09-27 2015-04-07 Baker Hughes Incorporated Reduction of expansion force via resonant vibration of a swage
US20100132956A1 (en) * 2008-12-01 2010-06-03 Enventure Global Technology, L.L.C. Expandable connection with metal to metal seal
US8230926B2 (en) * 2010-03-11 2012-07-31 Halliburton Energy Services Inc. Multiple stage cementing tool with expandable sealing element
US9523274B2 (en) 2013-07-02 2016-12-20 Baker Hughes Incorporated Telemetry system and method of communicating through a tubular
US9624743B2 (en) 2014-06-06 2017-04-18 Saudi Arabian Oil Company Electrodynamic and electromagnetic suspension system tractor
US10337298B2 (en) * 2016-10-05 2019-07-02 Tiw Corporation Expandable liner hanger system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3520049A (en) * 1965-10-14 1970-07-14 Dmitry Nikolaevich Lysenko Method of pressure welding
US4614233A (en) * 1984-10-11 1986-09-30 Milton Menard Mechanically actuated downhole locking sub
US5314014A (en) * 1992-05-04 1994-05-24 Dowell Schlumberger Incorporated Packer and valve assembly for temporary abandonment of wells
US20030067166A1 (en) * 2001-10-09 2003-04-10 Sivley Robert S. Radially expandable tubular connection

Family Cites Families (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US46818A (en) 1865-03-14 Improvement in tubes for caves in oil or other wells
US332184A (en) 1885-12-08 William a
US2734580A (en) * 1956-02-14 layne
US519805A (en) 1894-05-15 Charles s
US331940A (en) 1885-12-08 Half to ralph bagaley
US341237A (en) 1886-05-04 Bicycle
US802880A (en) 1905-03-15 1905-10-24 Thomas W Phillips Jr Oil-well packer.
US806156A (en) 1905-03-28 1905-12-05 Dale Marshall Lock for nuts and bolts and the like.
US984449A (en) * 1909-08-10 1911-02-14 John S Stewart Casing mechanism.
US958517A (en) 1909-09-01 1910-05-17 John Charles Mettler Well-casing-repairing tool.
US1166040A (en) 1915-03-28 1915-12-28 William Burlingham Apparatus for lining tubes.
US1233888A (en) 1916-09-01 1917-07-17 Frank W A Finley Art of well-producing or earth-boring.
US1494128A (en) 1921-06-11 1924-05-13 Power Specialty Co Method and apparatus for expanding tubes
US1597212A (en) 1924-10-13 1926-08-24 Arthur F Spengler Casing roller
US1590357A (en) 1925-01-14 1926-06-29 John F Penrose Pipe joint
US1589781A (en) 1925-11-09 1926-06-22 Joseph M Anderson Rotary tool joint
US1613461A (en) * 1926-06-01 1927-01-04 Edwin A Johnson Connection between well-pipe sections of different materials
US1756531A (en) 1928-05-12 1930-04-29 Fyrac Mfg Co Post light
US1880218A (en) 1930-10-01 1932-10-04 Richard P Simmons Method of lining oil wells and means therefor
US1981525A (en) 1933-12-05 1934-11-20 Bailey E Price Method of and apparatus for drilling oil wells
US2046870A (en) 1934-05-08 1936-07-07 Clasen Anthony Method of repairing wells having corroded sand points
US2122757A (en) 1935-07-05 1938-07-05 Hughes Tool Co Drill stem coupling
US2145168A (en) * 1935-10-21 1939-01-24 Flagg Ray Method of making pipe joint connections
US2087185A (en) 1936-08-24 1937-07-13 Stephen V Dillon Well string
US2187275A (en) * 1937-01-12 1940-01-16 Amos N Mclennan Means for locating and cementing off leaks in well casings
US2226804A (en) 1937-02-05 1940-12-31 Johns Manville Liner for wells
US2160263A (en) 1937-03-18 1939-05-30 Hughes Tool Co Pipe joint and method of making same
US2211173A (en) 1938-06-06 1940-08-13 Ernest J Shaffer Pipe coupling
US2204586A (en) 1938-06-15 1940-06-18 Byron Jackson Co Safety tool joint
US2246038A (en) 1939-02-23 1941-06-17 Jones & Laughlin Steel Corp Integral joint drill pipe
US2214226A (en) 1939-03-29 1940-09-10 English Aaron Method and apparatus useful in drilling and producing wells
US2301495A (en) 1939-04-08 1942-11-10 Abegg & Reinhold Co Method and means of renewing the shoulders of tool joints
US2273017A (en) * 1939-06-30 1942-02-17 Boynton Alexander Right and left drill pipe
US2371840A (en) 1940-12-03 1945-03-20 Herbert C Otis Well device
US2305282A (en) 1941-03-22 1942-12-15 Guiberson Corp Swab cup construction and method of making same
US2391886A (en) * 1941-07-21 1946-01-01 Eastman Kodak Co Monoazo tetrahydroquinoline compounds
US2416361A (en) * 1942-12-09 1947-02-25 Richard R Trexler Liquid dispensing apparatus
US2414493A (en) * 1943-01-13 1947-01-21 William E Urschel Coring device for fruits and vegetables
US2393199A (en) * 1943-03-06 1946-01-15 Gen Electric Welding apparatus
US2395506A (en) * 1943-05-15 1946-02-26 Goodrich Co B F Vulcanization of synthetic rubber
US2383214A (en) 1943-05-18 1945-08-21 Bessie Pugsley Well casing expander
US2415983A (en) * 1943-05-20 1947-02-18 Felix L Yerzley Shock and vibration insulator
US2415987A (en) * 1943-05-27 1947-02-18 W K Mitchell & Company Inc Apparatus for butt welding
US2394979A (en) * 1943-07-20 1946-02-19 Ephraim E Buckner Combination window sash, stop, and weather strip
US2414749A (en) * 1943-08-06 1947-01-21 H W Elliott Valve
US2415219A (en) * 1943-11-10 1947-02-04 Buda Co Variable gauge motor car
US2395734A (en) * 1943-11-12 1946-02-26 Michael L Georgopoulos Straw and milk container combination
US2415003A (en) * 1943-12-11 1947-01-28 Phillips Petroleum Co Purification of hydrofluoric acid
US2414750A (en) * 1944-05-06 1947-01-21 Jr Fred B Loucks Oxyacetylene cutting machine
US2414751A (en) * 1944-05-13 1947-01-21 Skinner Engine Co Valve
US2447629A (en) 1944-05-23 1948-08-24 Richfield Oil Corp Apparatus for forming a section of casing below casing already in position in a well hole
GB579876A (en) * 1944-06-20 1946-08-19 Callenders Cable & Const Co Improvements in wave guides for high frequency electric currents
US2415979A (en) * 1945-04-24 1947-02-18 United Aircraft Corp Combined spark plug and oscillatory circuit
US2415988A (en) * 1945-05-21 1947-02-18 Bert C Boeh Hand truck
US2500276A (en) 1945-12-22 1950-03-14 Walter L Church Safety joint
US2416556A (en) * 1946-01-22 1947-02-25 Clarence L Weeks Garment protector
US2546295A (en) 1946-02-08 1951-03-27 Reed Roller Bit Co Tool joint wear collar
US2609258A (en) 1947-02-06 1952-09-02 Guiberson Corp Well fluid holding device
US2583316A (en) * 1947-12-09 1952-01-22 Clyde E Bannister Method and apparatus for setting a casing structure in a well hole or the like
US2664952A (en) * 1948-03-15 1954-01-05 Guiberson Corp Casing packer cup
US2647847A (en) 1950-02-28 1953-08-04 Fluid Packed Pump Company Method for interfitting machined parts
US2627891A (en) * 1950-11-28 1953-02-10 Paul B Clark Well pipe expander
US2691418A (en) 1951-06-23 1954-10-12 John A Connolly Combination packing cup and slips
US2723721A (en) 1952-07-14 1955-11-15 Seanay Inc Packer construction
US3018547A (en) * 1952-07-30 1962-01-30 Babcock & Wilcox Co Method of making a pressure-tight mechanical joint for operation at elevated temperatures
US2877822A (en) 1953-08-24 1959-03-17 Phillips Petroleum Co Hydraulically operable reciprocating motor driven swage for restoring collapsed pipe
US2796134A (en) 1954-07-19 1957-06-18 Exxon Research Engineering Co Apparatus for preventing lost circulation in well drilling operations
US2812025A (en) 1955-01-24 1957-11-05 James U Teague Expansible liner
US2919741A (en) * 1955-09-22 1960-01-05 Blaw Knox Co Cold pipe expanding apparatus
US2907589A (en) 1956-11-05 1959-10-06 Hydril Co Sealed joint for tubing
US2929741A (en) 1957-11-04 1960-03-22 Morris A Steinberg Method for coating graphite with metallic carbides
US3067819A (en) 1958-06-02 1962-12-11 George L Gore Casing interliner
US3068563A (en) 1958-11-05 1962-12-18 Westinghouse Electric Corp Metal joining method
US3067801A (en) 1958-11-13 1962-12-11 Fmc Corp Method and apparatus for installing a well liner
US3015362A (en) * 1958-12-15 1962-01-02 Johnston Testers Inc Well apparatus
US3015500A (en) * 1959-01-08 1962-01-02 Dresser Ind Drill string joint
US3039530A (en) 1959-08-26 1962-06-19 Elmo L Condra Combination scraper and tube reforming device and method of using same
US3104703A (en) 1960-08-31 1963-09-24 Jersey Prod Res Co Borehole lining or casing
US3209546A (en) 1960-09-21 1965-10-05 Lawton Lawrence Method and apparatus for forming concrete piles
US3111991A (en) 1961-05-12 1963-11-26 Pan American Petroleum Corp Apparatus for repairing well casing
US3175618A (en) 1961-11-06 1965-03-30 Pan American Petroleum Corp Apparatus for placing a liner in a vessel
US3191680A (en) 1962-03-14 1965-06-29 Pan American Petroleum Corp Method of setting metallic liners in wells
US3167122A (en) * 1962-05-04 1965-01-26 Pan American Petroleum Corp Method and apparatus for repairing casing
US3179168A (en) 1962-08-09 1965-04-20 Pan American Petroleum Corp Metallic casing liner
US3203483A (en) 1962-08-09 1965-08-31 Pan American Petroleum Corp Apparatus for forming metallic casing liner
US3203451A (en) 1962-08-09 1965-08-31 Pan American Petroleum Corp Corrugated tube for lining wells
US3188816A (en) 1962-09-17 1965-06-15 Koch & Sons Inc H Pile forming method
US3233315A (en) * 1962-12-04 1966-02-08 Plastic Materials Inc Pipe aligning and joining apparatus
US3245471A (en) 1963-04-15 1966-04-12 Pan American Petroleum Corp Setting casing in wells
US3191677A (en) 1963-04-29 1965-06-29 Myron M Kinley Method and apparatus for setting liners in tubing
US3343252A (en) 1964-03-03 1967-09-26 Reynolds Metals Co Conduit system and method for making the same or the like
US3270817A (en) 1964-03-26 1966-09-06 Gulf Research Development Co Method and apparatus for installing a permeable well liner
US3354955A (en) 1964-04-24 1967-11-28 William B Berry Method and apparatus for closing and sealing openings in a well casing
US3326293A (en) 1964-06-26 1967-06-20 Wilson Supply Company Well casing repair
US3364993A (en) * 1964-06-26 1968-01-23 Wilson Supply Company Method of well casing repair
US3297092A (en) * 1964-07-15 1967-01-10 Pan American Petroleum Corp Casing patch
US3210102A (en) 1964-07-22 1965-10-05 Joslin Alvin Earl Pipe coupling having a deformed inner lock
US3353599A (en) 1964-08-04 1967-11-21 Gulf Oil Corp Method and apparatus for stabilizing formations
US3508771A (en) 1964-09-04 1970-04-28 Vallourec Joints,particularly for interconnecting pipe sections employed in oil well operations
US3358769A (en) 1965-05-28 1967-12-19 William B Berry Transporter for well casing interliner or boot
US3371717A (en) 1965-09-21 1968-03-05 Baker Oil Tools Inc Multiple zone well production apparatus
US3358760A (en) 1965-10-14 1967-12-19 Schlumberger Technology Corp Method and apparatus for lining wells
US3389752A (en) 1965-10-23 1968-06-25 Schlumberger Technology Corp Zone protection
FR1489013A (en) * 1965-11-05 1967-07-21 Vallourec Assembly joint for metal pipes
US3427707A (en) * 1965-12-16 1969-02-18 Connecticut Research & Mfg Cor Method of joining a pipe and fitting
US3422902A (en) * 1966-02-21 1969-01-21 Herschede Hall Clock Co The Well pack-off unit
US3397745A (en) 1966-03-08 1968-08-20 Carl Owens Vacuum-insulated steam-injection system for oil wells
US3412565A (en) 1966-10-03 1968-11-26 Continental Oil Co Method of strengthening foundation piling
US3498376A (en) 1966-12-29 1970-03-03 Phillip S Sizer Well apparatus and setting tool
US3424244A (en) * 1967-09-14 1969-01-28 Kinley Co J C Collapsible support and assembly for casing or tubing liner or patch
US3504515A (en) 1967-09-25 1970-04-07 Daniel R Reardon Pipe swedging tool
US3463228A (en) 1967-12-29 1969-08-26 Halliburton Co Torque resistant coupling for well tool
US3477506A (en) 1968-07-22 1969-11-11 Lynes Inc Apparatus relating to fabrication and installation of expanded members
US3489220A (en) * 1968-08-02 1970-01-13 J C Kinley Method and apparatus for repairing pipe in wells
US3528498A (en) 1969-04-01 1970-09-15 Wilson Ind Inc Rotary cam casing swage
US3532174A (en) 1969-05-15 1970-10-06 Nick D Diamantides Vibratory drill apparatus
US3631926A (en) * 1969-12-31 1972-01-04 Schlumberger Technology Corp Well packer
US3711123A (en) * 1971-01-15 1973-01-16 Hydro Tech Services Inc Apparatus for pressure testing annular seals in an oversliding connector
US3709306A (en) * 1971-02-16 1973-01-09 Baker Oil Tools Inc Threaded connector for impact devices
US3785193A (en) * 1971-04-10 1974-01-15 Kinley J Liner expanding apparatus
US3712376A (en) * 1971-07-26 1973-01-23 Gearhart Owen Industries Conduit liner for wellbore and method and apparatus for setting same
US3781966A (en) * 1972-12-04 1974-01-01 Whittaker Corp Method of explosively expanding sleeves in eroded tubes
US3866954A (en) * 1973-06-18 1975-02-18 Bowen Tools Inc Joint locking device
FR2234448B1 (en) * 1973-06-25 1977-12-23 Petroles Cie Francaise
BR7600832A (en) * 1975-05-01 1976-11-09 Caterpillar Tractor Co PIPE ASSEMBLY JOINT PREPARED FOR AN ADJUSTER AND METHOD FOR MECHANICALLY ADJUSTING AN ADJUSTER TO THE END OF A METAL TUBE LENGTH
US4069573A (en) * 1976-03-26 1978-01-24 Combustion Engineering, Inc. Method of securing a sleeve within a tube
US4190108A (en) * 1978-07-19 1980-02-26 Webber Jack C Swab
SE427764B (en) * 1979-03-09 1983-05-02 Atlas Copco Ab MOUNTAIN CULTURAL PROCEDURES REALLY RUCH MOUNTED MOUNTAIN
US4635333A (en) * 1980-06-05 1987-01-13 The Babcock & Wilcox Company Tube expanding method
US4423889A (en) * 1980-07-29 1984-01-03 Dresser Industries, Inc. Well-tubing expansion joint
NO159201C (en) * 1980-09-08 1988-12-07 Atlas Copco Ab PROCEDURE FOR BOLTING IN MOUNTAIN AND COMBINED EXPANSION BOLT AND INSTALLATION DEVICE FOR SAME.
US4368571A (en) * 1980-09-09 1983-01-18 Westinghouse Electric Corp. Sleeving method
US4366971A (en) * 1980-09-17 1983-01-04 Allegheny Ludlum Steel Corporation Corrosion resistant tube assembly
US4424865A (en) * 1981-09-08 1984-01-10 Sperry Corporation Thermally energized packer cup
US4429741A (en) * 1981-10-13 1984-02-07 Christensen, Inc. Self powered downhole tool anchor
JPS58107292A (en) * 1981-12-21 1983-06-25 Kawasaki Heavy Ind Ltd Method and device for treating welded joint part of pipe
US4501327A (en) * 1982-07-19 1985-02-26 Philip Retz Split casing block-off for gas or water in oil drilling
US4495073A (en) * 1983-10-21 1985-01-22 Baker Oil Tools, Inc. Retrievable screen device for drill pipe and the like
US4637436A (en) * 1983-11-15 1987-01-20 Raychem Corporation Annular tube-like driver
US4796668A (en) * 1984-01-09 1989-01-10 Vallourec Device for protecting threadings and butt-type joint bearing surfaces of metallic tubes
US4683944A (en) * 1985-05-06 1987-08-04 Innotech Energy Corporation Drill pipes and casings utilizing multi-conduit tubulars
JPS63167108A (en) * 1986-12-26 1988-07-11 三菱電機株式会社 Fixing device
JPS63293384A (en) * 1987-05-27 1988-11-30 住友金属工業株式会社 Frp pipe with screw coupling
US4892337A (en) * 1988-06-16 1990-01-09 Exxon Production Research Company Fatigue-resistant threaded connector
SE466690B (en) * 1988-09-06 1992-03-23 Exploweld Ab PROCEDURE FOR EXPLOSION WELDING OF Pipes
US5083608A (en) * 1988-11-22 1992-01-28 Abdrakhmanov Gabdrashit S Arrangement for patching off troublesome zones in a well
DE8902572U1 (en) * 1989-03-03 1990-07-05 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
US4995464A (en) * 1989-08-25 1991-02-26 Dril-Quip, Inc. Well apparatus and method
MY106026A (en) * 1989-08-31 1995-02-28 Union Oil Company Of California Well casing flotation device and method
BR9102789A (en) * 1991-07-02 1993-02-09 Petroleo Brasileiro Sa PROCESS TO INCREASE OIL RECOVERY IN RESERVOIRS
US5286393A (en) * 1992-04-15 1994-02-15 Jet-Lube, Inc. Coating and bonding composition
US5390735A (en) * 1992-08-24 1995-02-21 Halliburton Company Full bore lock system
US5275242A (en) * 1992-08-31 1994-01-04 Union Oil Company Of California Repositioned running method for well tubulars
US5361843A (en) * 1992-09-24 1994-11-08 Halliburton Company Dedicated perforatable nipple with integral isolation sleeve
US5492173A (en) * 1993-03-10 1996-02-20 Halliburton Company Plug or lock for use in oil field tubular members and an operating system therefor
US5388648A (en) * 1993-10-08 1995-02-14 Baker Hughes Incorporated Method and apparatus for sealing the juncture between a vertical well and one or more horizontal wells using deformable sealing means
AT404386B (en) * 1994-05-25 1998-11-25 Johann Dipl Ing Springer DOUBLE-WALLED THERMALLY INSULATED TUBING STRAND
UA67719C2 (en) * 1995-11-08 2004-07-15 Shell Int Research Deformable well filter and method for its installation
GB9524109D0 (en) * 1995-11-24 1996-01-24 Petroline Wireline Services Downhole apparatus
AU4149397A (en) * 1996-08-30 1998-03-19 Camco International, Inc. Method and apparatus to seal a junction between a lateral and a main wellbore
US5857524A (en) * 1997-02-27 1999-01-12 Harris; Monty E. Liner hanging, sealing and cementing tool
US6012874A (en) * 1997-03-14 2000-01-11 Dbm Contractors, Inc. Micropile casing and method
US6672759B2 (en) * 1997-07-11 2004-01-06 International Business Machines Corporation Method for accounting for clamp expansion in a coefficient of thermal expansion measurement
US6017168A (en) * 1997-12-22 2000-01-25 Abb Vetco Gray Inc. Fluid assist bearing for telescopic joint of a RISER system
US6012521A (en) * 1998-02-09 2000-01-11 Etrema Products, Inc. Downhole pressure wave generator and method for use thereof
US6167970B1 (en) * 1998-04-30 2001-01-02 B J Services Company Isolation tool release mechanism
US6009611A (en) * 1998-09-24 2000-01-04 Oil & Gas Rental Services, Inc. Method for detecting wear at connections between pin and box joints
US6823937B1 (en) * 1998-12-07 2004-11-30 Shell Oil Company Wellhead
US6679328B2 (en) * 1999-07-27 2004-01-20 Baker Hughes Incorporated Reverse section milling method and apparatus
JP2001137978A (en) * 1999-11-08 2001-05-22 Daido Steel Co Ltd Metal tube expanding tool
US6640895B2 (en) * 2000-07-07 2003-11-04 Baker Hughes Incorporated Expandable tubing joint and through-tubing multilateral completion method
US20040011534A1 (en) * 2002-07-16 2004-01-22 Simonds Floyd Randolph Apparatus and method for completing an interval of a wellbore while drilling
CA2472284C (en) * 2002-01-07 2011-10-11 Enventure Global Technology Protective sleeve for threaded connections for expandable liner hanger
US6681862B2 (en) * 2002-01-30 2004-01-27 Halliburton Energy Services, Inc. System and method for reducing the pressure drop in fluids produced through production tubing
US6843322B2 (en) * 2002-05-31 2005-01-18 Baker Hughes Incorporated Monobore shoe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3520049A (en) * 1965-10-14 1970-07-14 Dmitry Nikolaevich Lysenko Method of pressure welding
US4614233A (en) * 1984-10-11 1986-09-30 Milton Menard Mechanically actuated downhole locking sub
US5314014A (en) * 1992-05-04 1994-05-24 Dowell Schlumberger Incorporated Packer and valve assembly for temporary abandonment of wells
US20030067166A1 (en) * 2001-10-09 2003-04-10 Sivley Robert S. Radially expandable tubular connection

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7665532B2 (en) 1998-12-07 2010-02-23 Shell Oil Company Pipeline
US7384981B2 (en) 2001-11-14 2008-06-10 N.V. Nutricia Preparation for improving the action of receptors
US7740076B2 (en) 2002-04-12 2010-06-22 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
US7918284B2 (en) 2002-04-15 2011-04-05 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
US7739917B2 (en) 2002-09-20 2010-06-22 Enventure Global Technology, Llc Pipe formability evaluation for expandable tubulars
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
US7793721B2 (en) 2003-03-11 2010-09-14 Eventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US7775290B2 (en) 2003-04-17 2010-08-17 Enventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
US7819185B2 (en) 2004-08-13 2010-10-26 Enventure Global Technology, Llc Expandable tubular

Also Published As

Publication number Publication date
WO2004018824A3 (en) 2004-07-29
US20050247453A1 (en) 2005-11-10
WO2004018824B1 (en) 2005-04-07
AU2003258274A8 (en) 2004-03-11
US7377326B2 (en) 2008-05-27
AU2003258274A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
US7424918B2 (en) Interposed joint sealing layer method of forming a wellbore casing
US7377326B2 (en) Magnetic impulse applied sleeve method of forming a wellbore casing
US7918284B2 (en) Protective sleeve for threaded connections for expandable liner hanger
US7740076B2 (en) Protective sleeve for threaded connections for expandable liner hanger
US8047281B2 (en) Sleeve for expandable tubular threaded connection and method of expanding tubular thereof
US20060162937A1 (en) Protective sleeve for threaded connections for expandable liner hanger
US20080018099A1 (en) Protective compression and tension sleeves for threaded connections for radially expandable tubular members
WO2004023014A2 (en) Threaded connection for expandable tubulars
US20060113085A1 (en) Dual well completion system
US20100230958A1 (en) Method and Apparatus for coupling Expandable Tubular Members
US20070169939A1 (en) Wellbore casing and method of forming same
US20080136181A1 (en) Protective Compression and Tension Sleeves for Threaded Connections for Radially Expandable Tubular Members

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
B Later publication of amended claims

Effective date: 20040720

WWE Wipo information: entry into national phase

Ref document number: 10525332

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP