WO2004019051A1 - 磁気センサー - Google Patents

磁気センサー Download PDF

Info

Publication number
WO2004019051A1
WO2004019051A1 PCT/JP2003/001543 JP0301543W WO2004019051A1 WO 2004019051 A1 WO2004019051 A1 WO 2004019051A1 JP 0301543 W JP0301543 W JP 0301543W WO 2004019051 A1 WO2004019051 A1 WO 2004019051A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic sensor
thin film
magnetic
harmonic
polarization
Prior art date
Application number
PCT/JP2003/001543
Other languages
English (en)
French (fr)
Inventor
Yoshinori Tokura
Masashi Kawasaki
Hiroyuki Yamada
Yoshihiro Ogawa
Yoshio Kaneko
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology, Japan Science And Technology Agency filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2004530516A priority Critical patent/JP4185968B2/ja
Priority to AU2003211223A priority patent/AU2003211223A1/en
Priority to EP03792617A priority patent/EP1505404B1/en
Priority to US10/495,127 priority patent/US7084624B2/en
Publication of WO2004019051A1 publication Critical patent/WO2004019051A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/04Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam
    • G11C13/06Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam using magneto-optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • G01R33/0325Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect using the Kerr effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/095Magnetoresistive devices extraordinary magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • G11B11/10547Heads for reproducing using optical beam of radiation interacting with the magnetisation of an intermediate transfer element, e.g. magnetic film, included in the head
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier

Definitions

  • the present invention relates to a magnetic sensor, and particularly to a magneto-optical disk and a hard disk device.
  • This relates to a magnetic sensor element using a second harmonic that enables the spin information embedded in a solid such as a (HDD) to be read (reproduced) with high sensitivity and high spatial resolution.
  • a solid such as a (HDD)
  • the information recorded on the magneto-optical disk is reproduced by using the reflected light force effect, which is a magneto-optical effect.
  • FIG. 1 is an explanatory diagram of the principle of reproduction of such a conventional magneto-optical disk.
  • 1 is a semiconductor laser
  • 2, 4, and 5 are lenses
  • 3 is a polarizer
  • 6 is an analyzer
  • 7 is a photodiode
  • 8 is incident light
  • 9 is reflected light
  • 10 is a perpendicular magnetic recording film. Is shown.
  • the principle of reproduction of a magneto-optical disk is that the plane of polarization of reflected light 9 rotates with respect to the plane of polarization of incident light 8 due to the force effect.
  • the rotation angle of the polarization plane of the reflected light 9 is read to reproduce the memory.
  • the rotation angle at this time becomes largest when the direction of magnetization is parallel to the direction of travel of light.
  • a material having magnetization perpendicular to the surface of the medium is desired for the recording film.
  • the perpendicular magnetic layer increases the surface density and enables high-density recording. For this reason, this perpendicular magnetic recording system will become the mainstream in the future.
  • the memory capacity of the magneto-optical disk depends on the spot size of the semiconductor laser used for reproduction.
  • the reproduction wavelength of an ordinary semiconductor laser is about 0.78 wm to 0.65 m. Therefore, the size of the magnetization is limited to about the reading wavelength in terms of reading accuracy. This limits the recording capacity and is the biggest issue to be solved in the future.
  • inventions such as the MSR (magnetically induced super-resolution) method have been made. By using this, it is becoming possible to read even the magnetization size which is about half of the reproduction wavelength of a normal semiconductor laser. According to K. Shono [J. Magn. So c. Jpn. 19, Supple e.
  • TMR tunnel magnetic toresisti ve
  • the diameter of the reading element is a few mm at the prototype stage (So lineta l., Science, vo l. 289, p p. 1 530-1532, Sep. 2000 ) And 0.lm (1000 People) Since the following readings have yet to be made, they are still far from realizable for practical use. Disclosure of the invention
  • the first object of the present invention is to make it possible to reproduce magnetic recording even if the size of the recorded magnetization is as small as 100, 100, or several persons lattice size. It was done. As a result, the memory capacity of magneto-optical disks and HDDs will increase dramatically.
  • This method is fundamentally different from the conventional Kerr rotation mechanism and the magnetoresistive mechanism, and uses the rotation of the polarization plane of the second harmonic of the reflected light with respect to the incident light based on the nonlinear optical response theory of the asymmetry of the magnetic material. To provide a magnetic sensor.
  • the second purpose is a magnetic sensor that does not limit the incident light intensity, that is, a magnetic sensor that can directly read the magnetization recorded on the magneto-optical disk without irradiating the magneto-optical disk with the incident light itself. It is to provide a sensor. This is to unnecessarily raise the temperature of the recording medium to a high temperature during reproduction, and to avoid the risk that the recording medium is heated to a temperature higher than the magnetization transition temperature.
  • a magnetic field from a magneto-optical disk can be detected by injecting a semiconductor laser beam into a magnetic sensor element and detecting a second harmonic signal which is an output from the element. Becomes possible. Therefore, unlike the case where the conventional force effect is used as the reproducing method, it is possible to reproduce the information written on the magneto-optical disk without directly irradiating the magneto-optical disk with light.
  • a third object is to irradiate a semiconductor laser element for generating a second harmonic to one element of a magnetic sensor that reads magnetization recorded on a magneto-optical disk.
  • Use a magnetic sensor that has a sufficient S / N ratio To provide.
  • the rotation angle of the polarization plane obtained from the magnetic sensor element is several ten times to several hundred times larger than the rotation angle of the polarization plane obtained by the conventional Kerr effect (several degrees to several degrees). Because of the giant polarization rotation angle (several tens of degrees), a signal with a high S / N ratio can be obtained.
  • the wavelength of the incident wavelength and the wavelength of the second harmonic are as short as 1/2. If a wavelength filter is used, a reflected wave component having the same wavelength as the incident wave can be easily removed, so that a second harmonic signal having a high S / N ratio can be obtained. This is also an advantage compared with the conventional car rotation.
  • the magnetic recording can be reproduced even if the recorded magnetization size is very small, and the recording was performed on the magneto-optical disk without irradiating the magneto-optical disk with the incident light itself.
  • An object of the present invention is to provide a magnetic sensor capable of directly reading magnetization and obtaining a signal having a high S / N ratio.
  • a magnetic sensor element having a spatially asymmetric interface structure disposed on an object having spin information, wherein one solid material constituting the interface is a magnetic material;
  • the laser light irradiation means emits laser light having a frequency of ⁇ to the magnetic sensor element from the laser light irradiation means, thereby emitting the laser light from the magnetic sensor element.
  • the spin information of an object having spin information is read out by changing the rotation angle of the polarization plane of the second harmonic having a frequency of 2 ⁇ .
  • At least one magnetic material of the magnetic sensor element has an interface made of a ferromagnetic (including ferrimagnetic) material. It is characterized by having a structure.
  • At least one material of one element of the magnetic sensor is a ferromagnetic (including ferrimagnetic) thin film material, It is characterized by using a multilayer thin film material in which the interface is composed of a plurality of thin film materials.
  • at least one of the plurality of thin film materials is a transition metal or a transition metal oxide film.
  • the easy magnetization axis and the polarization axis are orthogonal to each other in at least one thin film or crystal flake of the magnetic sensor element in order to generate the second harmonic. It is characterized by using a material.
  • an oxide of Fe and an oxide of Fe as a material in which the axis of easy magnetization and the axis of polarization of the magnetic sensor element are orthogonal to each other. It is characterized by using a Fe oxide thin film.
  • an SrTi 3 crystal is used as a substrate material for supporting a plurality of thin film materials of the magnetic sensor element. It is characterized by the following.
  • the present invention is intended to realize a magnetic sensor as a recording / reproducing element which is indispensable for realizing a super-giant magneto-optical disk and HDD of several terabits (Tb) psi (persquare inch) region. Information is stored
  • Tb terabits
  • psi persquare inch
  • the minimum configuration requirement of this magnetic sensor is that at least one is made of a ferromagnetic material (including a ferromagnetic material) (claim 2).
  • the material other than one ferromagnetic material is not limited to a solid and may be a gas. If an interface composed of two types of materials can be defined, the polarization plane of the second harmonic of the reflected light (transmitted light) with respect to the incident light rotates with respect to the polarization plane of the incident light, and the magnetic field composed of several types of thin films A similar effect is produced with the sensor (claim 3).
  • the magnetic material may be a transition metal or a transition metal oxide (Claim 4), or may be an Mn oxide compound exhibiting various magnetisms (Claim 5).
  • Claim 10 shows the geometrical arrangement of the magnetic sensor.
  • Claims 11 to 17 show polarized magnetic (thin film) materials capable of forming a magnetic sensor using the second harmonic.
  • Claims 18 and 19 show the materials for the protective film or substrate of these multilayer films. These matrixes are identified as suitable materials with few misfits in terms of the thin film material being considered and the lattice constant.
  • a magnetic sensor capable of reading out spin information embedded in a solid.
  • an element which can reproduce even if the storage magnetic area is a few hundred or less than 100 or a very small area.
  • This element can also be used as a reading device for a hard disk drive (HDD). With this regenerative element, Allows storage capacity to be raised to the 100 Gbpsi range.
  • FIG. 1 is an explanatory view of the principle of reproduction of a conventional magneto-optical disk.
  • FIG. 2 is a principle diagram of a magnetic sensor using the first harmonic of the present invention.
  • FIG. 3 is a sectional view showing the structure of one element of the superlattice L SMO magnetic sensor of the present invention.
  • FIG. 4 is a diagram showing an arrangement relationship between a superlattice L SMO magnetic sensor element of the present invention and a laser beam.
  • FIG. 5 is a diagram showing the rotation characteristics of the polarization plane of the first harmonic of the superlattice LSM • magnetic sensor element of the present invention.
  • FIG. 6 is a diagram showing the incident angle dependence of the polarization plane of the second harmonic of the superlattice LSM0 magnetic sensor element of the present invention.
  • FIG. 7 is a diagram showing the temperature and magnetization dependence of the polarization plane of the second harmonic of the superlattice L SMO magnetic sensor element of the present invention.
  • FIG. 8 is a diagram showing the positional relationship between G a F e 0 3 crystal structure of the magnetic sensor-element and the laser beam of the present invention.
  • FIG. I is a principle diagram of a magnetic sensor using the first harmonic of the present invention.
  • 101 is a perpendicular magnetic recording film (an object having spin information: a recording medium)
  • 102 is a sensor element
  • 103 is a magnetic material
  • 104 is a laser beam having a frequency of ⁇
  • 105 is a second harmonic having a frequency of 1 ⁇ .
  • a laser beam 104 having a frequency ⁇ is incident on the sensor element 102 at an incident angle ⁇ .
  • the material forming the sensor element 102 is the magnetic body 103.
  • the magnetic material 103 is directed downward (data 0) or upward in the perpendicular magnetic recording film 101.
  • the +-magnetic field (magnetic flux density B) generated from the magnetization of (Data 1), and the spin direction of the magnetic domain is downward; the X direction (in the case of ferromagnetic material 103), or the magnetic domain Spin direction is upward.
  • a second harmonic 105 having a frequency of 2 ⁇ is generated, and the plane of polarization of the second harmonic 105 rotates once.
  • the spin direction of the perpendicular magnetic recording film 101 can be detected. Therefore, it functions as one element 102 of the magnetic sensor.
  • the present invention focused on this principle and constructed a magnetic sensor.
  • this principle can be used as a monitor of the spin state of the interface because it is sensitive to the interface, and furthermore, it utilizes the fact that the spin direction of this interface reacts to the magnetic field generated from the magnetic layer forming the memory.
  • the magnetic sensor using the first harmonic only needs to form an essentially asymmetric structure, in principle, it is only necessary to form an interface of several persons. That is, since the interface of several persons is a factor that limits the spatial resolution of the magnetic sensor, it is possible to read the magnetization of several persons. Actually, it depends on the flatness of the interface and the film thickness for forming a thin film as shown in the embodiment. However, the spatial resolution enables reading in a very small area in a very short time.
  • the present invention shows that this effect is enhanced when the material constituting these elements has an electric polarization ⁇ .
  • the polarization ⁇ faces the ⁇ -axis and the magnetic field is in the X-axis direction
  • a second harmonic is generated when the electric field vector ⁇ of the incident light has a y-direction component.
  • the secondary susceptibility ⁇ (2) is
  • X yyy (2) Ct MXPZ P yyy (2) occurs due to the presence of Pz. This indicates that polarized materials can enhance these effects.
  • the rotation angle of the plane of polarization is proportional to the magnitude of the generated magnetization. Since the magnitude of this magnetization is almost proportional to the external magnetic field at a weak magnetic field, it depends on the magnetic field strength at which the memory magnetization is generated.
  • FIG. 3 is a sectional view showing the structure of an LSM0 magnetic sensor element having a superlattice structure according to the present invention.
  • a (100) plane of SrTi 3 (abbreviation: STO) 201 was used as a substrate.
  • S r Mn0 3 (abbreviation; LSMO) 202 the stacking 1 0 molecule layer.
  • LaAlO 3 (abbreviation: LAO) 203 is laminated on it, and STO 204 is laminated on 3 molecular layers.
  • the film thickness of each single layer is 3.824 for LSMO 202, 3.750 for LAO 203, and 3.905 for ST ⁇ 204.
  • the 10 unit is 574.55 A. These molecular layers were laminated by a laser ablation method. The number of layers was determined by RHEED (reflection high energy electron diffraction) observation. The use of ST0201 for the substrate is intended to reduce the misfit of the lattice constant with the film laminated on top.
  • LSMO 202 is a ferromagnetic film and has an in-plane magnetization facilitating axis.
  • FIG. 4 is a diagram showing an arrangement of a superlattice L SMO magnetic sensor element of the present invention and a laser beam.
  • 301 indicates that the upper and lower interface structures of LSM ⁇ are different.
  • Reference numeral 302 denotes an incident laser beam having a frequency of ⁇
  • 303 denotes a second harmonic having a frequency of 2 ⁇ .
  • the superlattice-structured magnetic sensor element shown in Fig. 3 has an asymmetric structure. In other words, focusing on one magnetic film L SM022, the upper film is LAO 203 and the lower film is STO film 204. At this time, the upper interface structure and the lower interface structure of L SMO 202 are arranged differently.
  • the second harmonic generated from the upper interface and the second harmonic generated from the lower interface are reversed in phase with each other and erased. No harmonics 303 will occur. In other words, no I harmonic is generated at the interface where symmetry is preserved. Since the structure shown in the embodiment has asymmetry, the second harmonic 303 of p-polarized light is generated.
  • the polarization plane of the second harmonic 303 is a composite wave of the p wave coming from the asymmetry and the s wave coming from the magnetization.
  • the 10 basic units are stacked to increase the intensity signal of the second harmonic 303. If these laminated film units are transparent to the energy of the incident light 302, the signal intensity of the second harmonic 303 is expected to be large. In the embodiment, an incident energy of 1.55 eV was selected. Since the s-polarized light intensity of the second harmonic 303 is proportional to the magnetization intensity, the rotation angle of the polarized light depends on the magnetization intensity.
  • FIG. 5 is a diagram showing the rotation characteristic of the polarization plane of the first harmonic of the superlattice LSM0 magnetic sensor element.
  • the reference is + 0.35T, and ⁇ indicates the case of 0.35 ⁇ .
  • magnetization was generated by applying an external magnetic field of 0.35 Tesla (0.35 ⁇ ) in each of the + and-directions, and the polarization angle of the second harmonic was measured.
  • Figure 5 shows a measurement example of the polarization angle and the second harmonic (SHG) intensity at an incident energy of 1.55 eV, an incident angle of 13 °, and a sample temperature of 10K.
  • B + 0.35T
  • an analyzer should be placed on the output light side of the SHG to detect the intensity of the light coming out. This is the same as reading the "up spin” and "down spin” of the magnetization axis stored by one rotation of the magneto-optical force shown in FIG.
  • the analyzer adopts the arrangement of the polarization plane inclined at 45 °, so that the signal intensity difference at 45 ° in Figs. 6 (c) and (d) is read, so that + B (45 ° ), The difference in SHG intensity at one B (45 °) will be seen.
  • the signal strength changes about 50% of the maximum value of the SHG signal strength. Therefore, a rotation of the polarization angle of 33 ° is generated as a memory reproduction signal, which is a very large signal change, and a large reproduction signal can be obtained.
  • FIG. 6 is a diagram showing the incident angle dependence of the polarization plane of the first harmonic of the superlattice LSM magnetic sensor element of the present invention.
  • FIG. 6 (a) shows the incidence of one laser beam having a frequency ⁇ .
  • FIG. 6B shows the polarization plane of the second harmonic when the angle ⁇ 1 is 26 °, and
  • FIG. 6B shows the second plane when the incident angle ⁇ 2 of the laser beam with the frequency ⁇ is 13 °.
  • FIG. 6 (d) is a diagram showing the rotation angle ( ⁇ and the SH intensity characteristic) of the polarization plane in the case of FIG. 6 (b).
  • the laser beam 401 having a frequency ⁇ is incident.
  • a second harmonic 402 having a frequency of 2 ⁇ is obtained, and
  • a laser beam 501 having a frequency of 2 is incident, and a second harmonic 502 having a frequency of 2 ⁇ is obtained. .
  • the rotation angle of this plane of polarization depends on the angle of incidence ⁇ (see the inset in Figure 6). In other words, the smaller the angle of incidence ⁇ , the greater the rotation of the plane of polarization. Therefore, it is advantageous that the incident angle ⁇ is small, but it is necessary to devise an optical arrangement. Unlike ordinary magnetization detection by Kerr rotation (Kerr effect), the energy of the emitted light is twice as large, so it can be separated by using an appropriate optical filter.
  • FIG. 7 shows the temperature and magnetization dependence of the polarization plane of the second harmonic of the superlattice LS MO magnetic sensor element of the present invention.
  • Figure (a) shows the case where the temperature is 10K (Kino +0.35 )
  • Fig. 7 (b) shows the case where the temperature is 100 ⁇ (the difference between the temperature below +0.35 and the temperature of (The difference between 35 T is ⁇ 3.6 °)
  • Fig. 7 () shows the difference between +0.35 and ⁇ -0.35 at a temperature of 300 K ⁇ 0.3.
  • FIG. 7 (d) is a graph showing magnetic properties ( B / Mn) with respect to temperature (K). It can be seen that the rotation angle of the polarization plane of the second harmonic increases as the magnetization increases.
  • the angle of incidence ⁇ was 13 °, and the polarization plane of the second harmonic was rotated 33 ° in ten directions of the magnetic field.
  • the rotation angle is 0.35 ⁇ -350 OO e, and a relatively large external magnetic field is used due to the limitation of the experimental apparatus.
  • This superlattice material has been shown to exhibit the same magnitude of magnetization in an external field as 100 OO e. That is, it is shown that a rotation angle of about 33 ° can be obtained even with an external magnetic field of 10 O O e.
  • the current magneto-optical system that reads one rotation per force has sufficient accuracy industrially to read a rotation of about 0.1 °. If the leakage magnetic field from the perpendicular magnetization film is 1 ⁇ e, the rotation angle of the polarization plane of the first harmonic is about 0.3 °. This indicates that the identification can be performed with sufficient industrial accuracy.
  • this superlattice is 575 as shown in Fig. 3, a minimum magnetization size of about 575A is possible.
  • the signal processing technology is advanced, and it is possible to reduce the size of about 300 people to about half. Thus, it is possible to detect even the magnetization size of several hundred persons. In order to further improve the detection capability of a minute size, this unit may be reduced. In principle, it is possible to detect even a single layer of L SMO. There is a possibility that it has a very small size detection capability on the order of Angstrom.
  • the temperature shown in this example is 10 K, if a material having a sufficiently high ferromagnetic transition temperature is used as the magnetic material and the superlattice structure is used, the magnetic sensor using the second harmonic operates sufficiently at room temperature. I do.
  • a F e 0 3 orthorhombic crystal as a magnetic sensor element.
  • This crystal has an orthorhombic crystal structure, and is Fc 2 ln 'in the space group classification. What is the axis of easy magnetization of this crystal? Axis and polarization axis have b-axis structure.
  • Fig. 8 shows this crystal structure arrangement, the polarization direction of the incident light, and the SHG signal arrangement.
  • FIG. 8 is a diagram showing an arrangement relationship between G a F e 0 3 crystal structure of the magnetic sensor-element and the laser beam of the present invention.
  • 60 1 a magnetic sensor element comprising a GaF e0 3 orthorhombic crystal
  • the laser first light composed of several omega vibrations 602, 603 is a second harmonic wave composed of several 2 omega vibration.
  • the magnetic property of G a Fe 3 indicates ferrimagnetism.
  • the transition temperature at this time is 110 K.
  • the temperature dependency of GaFe 3 M of GaFe 3 is shown by the solid line in FIG. 9 (d).
  • Figure 9 is a case of incident energy 1. 5 5 eV, s-polarized incident light angle 26 ° in G a F e 0 3 magnetic sensor-element of the present invention, SHG intensity and polarization plane ferrimagnetic transition temperature T c ( 2K (Fig. 9 (c)), 180K just below Tc (Fig. 9 (b)), and 100K (Fig. 9 (a)) sufficiently lower than Tc. It is a measurement result of.
  • ⁇ 80 ° was obtained.
  • the relationship between the rotation angle and the temperature is indicated by ⁇ in Fig. 9 (d). This dependence shows good agreement with the tendency of the magnetization curve of GaFeC, and the rotation angle of the polarization plane shows good agreement with the magnetic susceptibility of this magnetic sensor.
  • Example 1 As shown in Example 1, a 45 ° polarizer is actually inserted on the SHG signal side to read the direction of the magnetic field. If it is about 180K, the output intensity of the polarizer can change by 100% of the maximum intensity of SHG.
  • the actual polarization rotation angle depends on the magnetic field intensity generated from the magnetization of the memory, and the rotation angle is small. 03001543 Therefore, the higher the ability to rotate sensitively to a magnetic field, the better.
  • the G a F e 0 3 crystals are produced by the floating zone melting method (Japanese Patent Application No. 200 2- 2 347 08) o
  • the Ga 2 -X F ex 0 by heating the tip of the sample rod composed of Ga 2 -XF ex 0 3 arranged vertically and the confocal heat source in a gas atmosphere, the Ga 2 -X F ex 0
  • the method is characterized in that a single crystal of Ga 2 XF ex ⁇ 3 having an orthorhombic crystal structure is produced by a floating melting zone method in which a floating melting zone is formed between the tips of a sample rod made of 3 .
  • This example is a single crystal flake. At present it is F i e 1 d
  • I on Be am (FIB) device If an I on Be am (FIB) device is used, it is possible to take out a crystal piece of 100 ⁇ m mouth with a film thickness of about 100 A and set it with its orientation kept. In other words, it is possible to detect a small magnetization size of about several hundred people.
  • FIB I on Be am
  • the present invention is not limited to the above embodiments, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
  • a magnetic sensor element capable of detecting a fine magnetic domain structure in a region of several hundred A by a method different from the conventional one. Since this element can detect even a fine magnetic domain structure of several OA, the big problem of the data reproducing device in the magnetic recording device is solved. As a result, it is possible to provide a huge magnetic memory device in the terabit area, and to provide a huge memory suitable for information communication and optical computers.
  • this sensor-one element is not limited to the practical use of only the reproducing device of the magnetic memory.
  • a current is passed through a coil, a magnetic field is generated.
  • the rotation of the polarization plane of the second harmonic can be easily controlled.
  • a polarizer is inserted on the output side, it is possible to easily turn off the light ⁇ N — OFF, and it can be applied as a current control type optical switch element in an optical communication network. It is also possible to create a function as an element.
  • an open / close sensor for example, a mobile phone
  • the invention can be applied not only to magnetic memories but also to basic elements in a wide range of information networks.
  • the magnetic sensor of the present invention has high sensitivity and high spatial resolution, and is particularly suitable as a device for reproducing magnetic memory. It is also applicable as a basic device related to optical communication.

Abstract

記録された磁化のサイズが微小サイズであっても磁気記録が再生可能であり、入射光そのものを光磁気ディスクに照射せずに光磁気ディスクに記録された磁化を直接読み取ることができ、かつS/N比の高い信号を得ることができる磁気センサーを提供する。垂直記録媒体(101)に配置される電気分極を有する磁気センサー素子(102)と、この磁気センサー素子(102)に作用するレーザー光発生手段とを備え、前記磁気センサー素子(102)への前記レーザー光発生手段からの振動数ωのレーザー光(104)の入射により、前記磁気センサー素子(102)から出射する振動数2ωの第2高調波(105)の偏光面の回転角度φの変化により垂直記録媒体(101)の情報を読み出す。

Description

明 細 書 磁気センサ一 技術分野
本発明は、磁気センサーに係り、特に、光磁気ディスクやハードディスク装置
(H D D )等の固体内に埋め込まれたスピン情報を高感度、 高空間分解能で読み 出す (再生する) ことを可能にする、 第 2高調波を用いた磁気センサ一素子に関 するものである。 背景技術
光磁気ディスクに記録された情報の再生には、 従来、磁気光学効果である反射 光の力一効果を用いている。
第 1図はかかる従来の光磁気ディスクの再生原理の説明図である。
この図において、 1は半導体レーザー、 2, 4, 5はレンズ、 3は偏光子、 6 は検光子、 7はフォトダイオード、 8は入射光、 9は反射光、 1 0は垂直磁気記 録膜を示している。
この図に示すように、 光磁気ディスクの再生原理としては、 反射光 9の偏光面 が力一効果により入射光 8の偏光面に対して回転する。 この反射光 9の偏光面の 回転角を読み取り記憶を再生させる。 このときの回転角度は磁化の向きと光の進 行方向とが平行である場合に最も大きくなる。 このことから記録膜としては媒体 の面に垂直な磁化を持つ材料が望まれる。 また、 面に垂直な磁化を持つという条 件には、垂直磁ィ匕にすると面密度が高まり、 高密度記録ができるという利点があ る。 このことから、 この垂直磁気記録方式は今後の主流になる。
また、光磁気ディスクのメモリ容量は、再生に用いる半導体レーザーのスポッ トサイズに依存する。 通常の半導体レーザ一の再生波長は 0 . 7 8 w m〜0 . 6 5 m程度である。 したがって、 読み取り精度の面から、 磁化のサイズが読み取 り波長程度に制限される。 これは記録容量の制限となり今後の解決すべき最も大 きな課題となっている。 これに対して、 MSR (磁気誘起超解像) 方式などの発明がなされている。 こ れを用いれば、 通常の半導体レーザーの再生波長の半分程度の磁化サイズでも読 出し可能となりつつある。 K. Shono 〔J. Ma g n. So c. J p n. 1 9, Supp l e. S I ( 1999 ) 177 ] によれば、 赤色レーザーの波長で 0. 3 mの記録マークを再生しており、 3. 5インチ MOディスクで 1. 3G Bの記録容量を実現している。 し力、し、 これも高々波長の半分程度の読み出しサ ィズであり、 0. l m (1000人) 以下の微細な磁化サイズを再生すること は困難である。 よって、 おのずと限界が見えており深刻な解決すべき課題である ことに変わりはない。
さらに、 情報の再生に磁気光学効果を利用する従来の方法では、 記録が書き込 まれた光磁気ディスクに直接半導体レーザー光を入射する。 この入射光による温 度上昇が光磁気ディスクの磁性材料のスピン整列温度(キュリ一温度 T c ) 以上 になると記憶が消去されてしまう。 そこで読み取り用の入射光はこの転移温度 T c以上にならないように、 入射強度を制限しなければならないという問題点があ る。 これはひいては再生信号の S/N比向上に制限を与える結果となり、 再生信 号処理系に過大な負荷を発生させている。
上記は、 光磁気ディスクでの記録デ一夕再生上の問題点を述べたが、 ハードデ イスク装置 (HDD) の磁気抵抗機構を用いた再生デバイスにおいても同様な技 術的課題を持っている。 記録用の磁性材料の微細化が進むにつれて、 再生も高感 度で超微細領域の磁気を読み取る必要がある。
HDDのデータ読み出し技術の次世代技術として、 TMR (tunne 1 i n g magne t o r e s i s t i ve) ヘッド (Fuj i kat a e t a 1. , The 8 th J o i nt MMM- I n t e r ma g Conf e r enc e Ab s t r ac t s, p 492, Jan. 200 1) , また、 次々世 代技術として EMR (ext r aor d i nary magne t o r e s i s t i ve) の開発がしのぎを削っている。
この次々世代技術といわれている E MRでも試作段階では、 読み取り素子の直 径は数 mm (So l i n e t a l. , Sc i enc e, vo l. 289, p p. 1 530 - 1532, Sep. 2000) であり、 0. l m (1000 人) 以下の読み取りはこれからであるため、 実用化には実現にはまだ遠い段階に ある。 発明の開示
情報産業の肥大化、 また画像情報の記憶等により、 記憶容量増大の要求は現在 とどまることを知らない。 そのために、 メモリサイズの微小化動向にもさらなる 限りない微小化要求が発生している。 2 0 0 4年には 1 O O G b p s iのメモリ 容量実現のために、 磁性材料サイズは 3 0 n m ( 3 0 O A ) 程度に微小化してい る。 また、 1 0 0 7年には 1 0 0 0 G b p s iのメモリ容量を実現するために、 1 0 n m ( 1 0 0人)程度のサイズになるとの予測である。
そこで、 本発明の第一の目的は、 記録された磁化のサイズが数 1 0 0、 数 1 0、 もしくは数人格子サイズといつた微小サイズであつても、 なお磁気記録が再生可 能にしたものである。 この結果、 光磁気ディスクや H D Dのメモリ容量は飛躍的 に増大する。 この方法は従来のカー回転機構や磁気抵抗機構と原理的に異なり、 磁性材料の非対称性が持つ非線形性光学応答理論に基づいた入射光に対する反射 光の第 2高調波の偏光面の回転を用いた磁気センサーを提供するものである。 第二の目的は、 入射光強度に制限を与えない磁気センサー、 すなわち入射光そ のものを光磁気ディスクに照射せずに、 光磁気ディスクに記録された磁化を直接 読み取ることを可能ならしめる磁気センサーを提供することにある。 これは再生 時、 不必要に記録媒体の温度を高温に上昇させ、記録媒体が磁化の転移温度より 高い温度に熱せられるリスクを回避するためである。
本発明の磁気センサ一によれば、 磁気センサ一素子へ半導体レーザー光を入射 し、 その素子からの出力である第 2高調波信号を検出することによって、 光磁気 ディスクからの磁界を検知することが可能となる。 したがって、 再生法として従 来の力一効果を利用する場合と異なり、光磁気ディスクに直接光を照射すること なく光磁気ディスク上に書き込まれた情報を再生することが可能となる。
第三の目的は、 光磁気ディスクに記録された磁化を読み取る磁気センサ一素子 へ、 第 2高調波を発生させるための半導体レーザ一を照射するが、 その入射光強 度が小さくてもなお、得られる再生信号の S /N比が十分である磁気センサーを 提供することにある。 この磁気センサーによれば、磁気センサー素子から得られ る偏光面の回転角度が従来のカー効果で得られる偏光面の回転角度に対して数 1 0倍〜数 1 0 0倍程度 (数度〜数十度) の巨大偏光回転角度であるため、 S /N 比の高い信号を得ることができる。 ちなみに、 従来の力一回転方法での偏光面の 回転は、 T b F eでは 0 . 3 ° ( T c = 1 3 0 °C ) 、 G d F eでは 0 . 3 5 ° ( T c = 2 2 0 °C ) である。
また、 入射波長と第 2高調波の波長とは波長が 1 / 2と短くなる。 波長フィル ターを用いれば、 入射波と同じ波長の反射波成分を容易に除去できるから、 S / N比の高い第 2高調波の信号を得ることが可能となる。 これも従来のカー回転を 使つた場合と比較して有利な点である。
以上のように、 本発明は、記録された磁化のサイズが微小サイズであっても磁 気記録が再生可能であり、 入射光そのものを光磁気ディスクに照射せずに光磁気 ディスクに記録された磁化を直接読み取ることができ、 かつ S /N比の高い信号 を得ることができる磁気センサ一を提供することを目的とする。
本発明は、 上記目的を達成するために、
〔 1〕 磁気センサ一において、 スピン情報を有する物体に配置される空間的に 非対称性を有する界面構造を有し、 その界面を構成する一つの固体材料が磁性体 である磁気センサ一素子と、 この磁気センサ一素子に作用するレーザー光照射手 段とを備え、 このレーザ一光照射手段から前記磁気センサー素子へ振動数 ωのレ 一ザ一光を入射することにより、 前記磁気センサ一素子から出射する振動数 2 ω の第 高調波の偏光面の回転角度の変化によりスピン情報を有する物体のスピン 情報を読み出すことを特徴とする。
〔 2〕 上記 〔 1〕 記載の磁気センサーにおいて、 前記第 2高調波を発生するた めに前記磁気センサー素子の少なくとも一つの磁性体材料が強磁性 (フェリ磁性 を含む) 材料で界面を構成した構造を持つことを特徴とする。
〔3〕 上記 〔2〕 記載の磁気センサーにおいて、前記第 2高調波を発生するた めに前記磁気センサ一素子の少なくとも一つの材料が強磁性(フヱリ磁性を含 む) 薄膜材料で、 他の材料が複数の薄膜材料で界面を構成した多層薄膜材料を用 いることを特徴とする。 〔 4〕 上記 〔 3〕 記載の磁気センサーにおいて、前記複数の薄膜材料として少 なくとも一つは遷移金属、 もしくは遷移金属酸化物膜を用いることを特徴とする。
〔 5〕 上記 〔 4〕記載の磁気センサ一において、 前記複数の薄膜材料として少 なくとも一つは酸化 M n化合物膜を用いることを特徴とする。
〔 6〕 上記 〔 5〕記載の磁気センサーにおいて、 前記複数の薄膜材料として少 なくとも一つは (A ,— B x ) M n 0 3 ( 0≤x≤ 1 ) で、 Aとして C a, S r, B aなどのアル力リ土類元素もしくは L aなどの希土類元素、 Yや B iからなる 元素、 Bとして A以外の C a, S r , B aなどのアルカリ土類元素もしくは L a などの希土類元素、 Yや B iからなる酸化物を用いることを特徴とする。
〔7〕 上記 〔6〕 記載の磁気センサ一において、 少なくとも一つの膜が (Aい B x ) M n 0 3 ( 0≤x≤ 1 ) で、 その他の複数の膜からなる膜構成を単位ュ ニットとして、 この単位ュニットを複数回繰り返して構成する多層膜を少なくと も一つ薄膜材料として用いることを特徴とする。
〔 8〕 上記 〔 1〕 記載の磁気センサ一において、前記第 2高調波を発生するた めに前記磁気センサー素子の少なくとも一つの薄膜、 もしくは結晶薄片で容易磁 化軸と分極軸とが直交する材料を用いることを特徴とする。
〔9〕 上記 〔8〕 記載の磁気センサ一において、 第 2高調波を発生するために 前記磁気センサ一素子の容易磁化軸と分極とが直交する一つの薄膜材料とその他 の複数の薄膜材料を用いることを特徴とする。
〔 1 0〕 上記 〔9〕 記載の磁気センサーにおいて、 前記第 2高調波を発生する ために前記磁気センサー素子の容易磁化軸と分極軸とが直交する材料において容 易磁化軸に垂直な電場成分を持つ光を入射させ、 この光に反射もしくは透過する 光の第 高調波成分を用いることを特徴とする。
〔 1 1〕 上記 〔 1 0〕 記載の磁気センサ一において、前記磁気センサー素子の 複数の薄膜材料として少なくとも一つは遷移金属膜、 もしくは遷移金属酸化物膜 を用いることを特徴とする。
〔 1 2〕 上記 〔 1 1〕記載の磁気センサ一において、 前記磁気センサー素子の 複数の薄膜材料として少なくとも一つは酸化 M n化合物膜を用いることを特徴と する。 〔 1 3〕 上記 〔 1 2〕 記載の磁気センサーにおいて、 前記磁気センサー素子の 複数の薄膜材料として少なくとも—つは (A!- x Bx ) Mn〇3 (0≤x≤ 1 ) で、 Aとして C a, S r, B aなどのアルカリ土類元素もしくは L aなどの希土 類元素、 Yや B iからなる元素、 Bとして A以外の C a, S r, B aなどのアル カリ土類元素もしくは L aなどの希土類元素、 Yや B iからなる酸化物を用いる ことを特徴とする。
〔 1 4〕 上記 〔 1 3〕 記載の磁気センサ一において、 前記磁気センサ一素子の 少なくとも一つの膜が (Α,-χ Βχ ) Μη03 (0≤x≤ 1 ) で、 その他の複数 膜からなる膜構成を単位ュニットととして、 この単位ュニットを複数回繰り返し て構成する多層膜を少なくとも一つ薄膜材料として用いることを特徴とする。
〔 1 5〕 上記 〔 1 0〕 、 〔 1 1〕 又は 〔 1 2〕 記載の磁気センサーにおいて、 前記磁気センサー素子の容易磁ィ匕軸と分極軸とが直交する材料として F eの酸化 物および F e酸化薄膜を用いることを特徴とする。
〔 1 6〕 上記 〔 1 5〕 記載の磁気センサ一において、前記磁気センサー素子の 容易磁化軸と分極軸とが直交する材料として G a -x F ex 03 結晶および薄膜 を用いることを特徴とする。
〔 1 7〕 上記 〔 1 8〕 記載の磁気センサーにおいて、 前記磁気センサー素子の 容易磁化軸と分極軸とが直交する材料として G a F ex 03 結晶および薄膜 で F e (鉄) の組成; Xの範囲が 0. 7≤x≤ l . 5の材料で斜方晶の結晶構造 を持った材料を用いることを特徴とする。
〔 1 8〕 上記 〔2〕 から 〔 1 7〕 の何れか 1項記載の磁気センサーにおいて、 前記磁気センサ一素子の遷移金属酸化物薄膜を S r T i 03 薄膜で上下を挟んだ 多層構造を用いることを特徴とする。
〔 1 9〕 上記 〔 2〕 から 〔 1 7〕 の何れか 1項記載の磁気センサ一において、 前記磁気センサ一素子の複数の薄膜材料を支持する基板材料として S r T i〇3 結晶を用いることを特徴とする。
本発明は、 数テラビット (Tb) p s i (p e r s quar e i nc h) 領域の超巨大光磁気光ディスク、 HDDを実現する際に欠かせない記録再生素子 としての磁気センサーを実現するにあたって、前記従来技術では情報が記憶され た最小単位の磁気ドメイン構造が 1 0 0 0人程度以下の場合、 その記録の再生が 困難になるであろう磁気センサーの課題を解決するために、本発明者等は第 2高 調波を用いた磁気センサーを発明した (請求項 1 ) 。
この磁気センサーは少なくとも一つが強磁性材料 (フヱリ磁性材料を含む) で あることを最小の構成要件とする (請求項 2 ) 。
一つの強磁性材料以外の材料は固体に限らず気体でも構わない。 二種の材料か らなる界面を定義できれば、 入射光に対する反射光 (透過光) の第 2高調波の偏 光面は、 入射光の偏光面に対して回転し、数種の薄膜からなる磁気センサ一にお いても同様な効果が発生する (請求項 3 ) 。 この磁性材料は遷移金属であっても よいし、遷移金属酸化物でもよい (請求項 4 ) 、 また、 各種の磁性を示す酸化 M n化合物であってもよい (請求項 5 ) 。
また、実施例に示したような (A ,— x B x ) M n 03 ( 0≤x≤ 1 ) で、 Aと して C a, S r, B aなどのアルカリ土類元素もしくは L aなどの希土類元素、 Yや B i元素、 Bとして A以外の C a , S r , B aなどのアルカリ土類元素もし くは L aなどの希土類元素、 Yや B i元素からなる酸化物でもよい (請求項 6、 7 )
第 2高調波を磁気センサ一に利用する場合、 磁化の容易磁化軸と分極軸が直交 する材料であっても、 同様な効果が発生する (請求項 8、 9 ) 。 この磁気センサ —の幾何学的配置について示したのが請求項 1 0である。 分極を持った磁性 (薄 膜) 材料で、 第 2高調波を利用した磁気センサーを構成することが可能な材料を 示したのが請求項 1 1から 1 7である。 これらの多層膜の保護膜もしくは基板と なる材料を請求項 1 8、 1 9に示した。 これらの母体は考えられている薄膜材料 と格子定数の点でミスフイツ卜の少ない適切な材料として特定される。
〔作用〕
本発明によれば、 固体内に埋め込まれたスピン情報を読み出すことを可能とす る磁気センサーを提供することができる。 これにより、 光磁気ディスクの再生素 子として、 その記憶磁気領域が 1 0 0 0人以下の数百人、 もしくは数人の微小領 域であっても再生可能な素子を提供できる。 この素子はハードディスク装置 (H D D ) の読み出し装置としても実用可能である。 この再生素子を使えば、一気に 記憶容量を 1 0 0 0 G b p s i領域へ引き上げることを可能にする。 図面の簡単な説明
第 1図は、 従来の光磁気ディスクの再生原理の説明図である。
第 2図は、 本発明の第 1高調波を使つた磁気センサ一の原理図である。
第 3図は、 本発明の超格子 L S M O磁気センサ一素子の構造を示す断面図であ る。
第 4図は、 本発明の超格子 L S M O磁気センサー素子とレーザー光との配置関 係を示す図である。
第 5図は、 本発明の超格子 L S M◦磁気センサー素子の第 1高調波の偏光面の 回転特性を示す図である。
第 6図は、 本発明の超格子 L S M 0磁気センサー素子の第 2高調波の偏光面の 入射角依存性を示す図である。
第 7図は、 本発明の超格子 L S M O磁気センサ一素子の第 2高調波の偏光面の 温度と磁化依存性を示す図である。
第 8図は、 本発明の G a F e 0 3 磁気センサ一素子の結晶構造とレーザー光と の配置関係を示す図である。
第 9図は、 本発明の G a F e 0 3 磁気センサー素子の第 1高調波の偏光面の温 度と磁化依存性を示す図である。 発明を実施するための最良の形態
以下、 図面に基づいて本発明の実施の形態について詳細に説明する。
第 I図は本発明の第 1高調波を使った磁気センサ一の原理図である。
この図において、 1 0 1は垂直磁気記録膜 (スピン情報を有する物体:記録媒 体) 、 1 0 2はセンサ一素子、 1 0 3は磁性体、 1 0 4は振動数 ωのレーザー光、
1 0 5は振動数 1 ωの第 2高調波である。
そこで、振動数 ωのレーザー光 1 0 4をセンサー素子 1 0 2に入射角 αで入射 する。 このときセンサー素子 1 0 2を構成する材料が磁性体 1 0 3であるとする。 この磁性体 1 0 3は垂直磁気記録膜 1 0 1の下向き (データ 0 ) もしくは上向き (データ 1 ) の磁化から発生する +—の磁界 (磁束密度 =B) を感じて、 磁気ド メインのスピンの向きが下向き; X方向 (強磁性体 1 0 3の場合) 、 あるいは磁 気ドメインのスピンの向きが上向きに向く。 このような磁性体 1 0 3からは振動 数 2 ωの第 2高調波 1 0 5が発生し、 その偏光面は もしくは一 回転する。 この偏光面を観察することにより垂直磁気記録膜 1 0 1のスピンの向きを検知可 能にする。 従って、 磁気センサ一素子 1 0 2として機能する。
磁性体界面からの第 2高調波の偏光面が回転することは、 Pu s t o g owa
CPhy s . R e v. B 4 9 ( 1 9 9 4 ) 1 0 0 3 1〕 らが F e金属薄膜にて理 論的に予測し、 R a s i n g CPhy s . Re v. L e t t . 7 4 ( 1 9 9 5 )
3 6 9 2 , J. Ap 1. Phy s . 7 9 ( 1 9 9 6 ) 6 1 8 1〕 らがスパッタ —膜で形成した F e /C r膜において第 2高調波の偏光面の回転を観察した。 この回転角は 3 4° で、 今までのカー回転角 (0. 0 3° ) とは桁違いに大き い回転角を示した。 この原理は界面を形成することにより材料の非対称性を導入 し、 これによつて第 2高調波が発生することを利用する。
本発明はこの原理に着目して磁気センサーを構築した。 すなわち、 この原理は 界面に敏感であることから界面のスピン状態のモニターとして利用でき、 さらに、 この界面のスピンの向きがメモリを構成する磁ィ匕から発生する磁界に反応するこ とを利用して、 磁気センサーとして用いることに成功した。
この第 高調波を使った磁気センサ一は、 本質的には非対称性を持った構造を 形成すればよいので、 原理としては数人の界面が形成できればよいことになる。 すなわち、 数人の界面が磁気センサ一の空間分解能を制限する因子となるので、 数人領域の磁化を読み取ることが可能になるのである。 実際は界面の平坦度や、 実施例で示すように薄膜を形成する膜厚にも依存することになるが、 その空間分 解能はまさに極限の微小領域までデ一夕の読み取りを可能とする。
さらに、 本発明ではこれらの素子を構成する材料が電気分極 Ρをもった場合に、 この効果が大きくなることを示す。 第 2図において、 分極 Ρが ζ軸を向き、磁ィ匕 が X軸方向の場合、 入射光の電場べクトル Εが y方向成分を持つ場合に第 2高調 波が発生する。 二次の感受率 χ ( 2 ) は、
X yyy ( 2 ) = Ct M X P Z と表現され、 Pzの存在により ¾ yyy (2) が発生する。 これは分極を持った材 料がこれらの効果を強調できることを示している。 偏光面の回転角度は発生した 磁化の大きさに比例する。 この磁化の大きさは弱磁場では外部磁場にほぼ比例す るから、 メモリの磁化が発生する磁界強度に依存することになる。
したがって、 得られる偏光面の回転角度が大きいほど、 検知できる磁界強度下 限を小さくできる。 第 2図で示したような垂直磁化の場合は、記録データ 0, 1 でスピンの向きが反転する。 したがつて偏光面の角度はブラスとマイナス方向に 回転することになる。 このことも磁化の向きの信号を容易に読み取ることを可能 にする。 実際の磁気メモリの磁区からの漏れ磁界は数ェルステツドである。 実施 例に示す非常に大きな偏光面の回転はこの微小漏れ磁場を十分検知可能とする。 〔実施例 1:]
超格子構造で磁気センサ一素子として適用した具体例を以下に示す。
第 3図は本発明の超格子構造の L S M 0磁気センサー素子の構造を示す断面図 である。
この超格子は基板として、 S rT i〇3 (略称; STO) 20 1の ( 1 00) 面を用いた。 その上に L a。. S r Mn03 (略称; LSMO) 202を 1 0分子層積層する。 その上に LaAl 03 (略称; LAO) 203を 2分子層、 STO 204を 3分子層積層する。 それぞれの単層での膜厚は LSMO 20 2が 3. 824人、 LAO 203が 3. 750人、 S T〇 204が 3. 90 5人であ る。 この L SMO 20 2、 LAO 203. STO 204の構造を 1単位として 1 0単位さらに積層する。 1単位の膜厚は 57. 4 5 Aとなる。 1 0単位は 574. 55 Aである。 これらの分子層はレーザーアブレーシヨン法で積層した。 また、 この積層数は RHEED 〔反射高エネルギー電子線回折〕 観察により決定した。 基板に ST020 1を用いたのは上部に積層する膜との格子定数のミスフイツト を小さくする目的である。 ここで LSMO 202は強磁性膜であり、面内に磁化 容易化軸を持つ。
第 4図は本発明の超格子 L SMO磁気センサー素子とレーザー光との配置を示 す図である。
この図において、 30 1は L SM〇の上部界面構造と下部界面構造が異なるよ うに配置されている磁性膜 (超格子構造の磁気センサ一素子) 、 3 0 2は振動数 ωの入射レーザー光、 3 0 3は振動数 2 ωの第 2高調波である。
そこで、 入射レーザ一光 3 0 としては電場べクトルが素子の表面内にある S 波偏光を用いる。 このときの入射角をひとする。 このときに発生する第 2高調波 3 0 3は界面の非対称性が存在する場合、 ρ偏光となる。 第 3図に示した超格子 構造の磁気センサ一素子の構造は非対称性を持った構造となつている。 すなわち、 一つの磁性膜 L SM02 0 2に注目すると、 その上部の膜は L AO 2 0 3であり、 下部の膜は STO膜 2 0 4となるようになつている。 この時 L SMO 2 0 2の上 部界面構造と下部界面構造が異なるように配置されている。
これがもし、 上部の膜が S TO 2 04である場合は、 上部界面から発生する第 2高調波と下部界面から発生する第 2高調波 3 0 3は互いに位相を反転させ消去 することから第 2高調波 3 0 3は発生しないことになる。 すなわち対称性が保存 された界面では第 I高調波が発生しない。 実施例に示された構造は非対称性を持 つことから p偏光の第 2高調波 3 0 3が発生することになる。
さらに磁化が L SMO 2 0 2に発生すると発生した第 2高調波 3 0 3は s偏光 となる。 したがって、 実施例に示した超格子材料からなる構造においては第 2高 調波 3 0 3の偏光面は非対称性からくる p波と磁化からくる s波との合成波にな る。 基本単位を 1 0単位積層したのは第 2高調波 3 0 3の強度信号を強くするた めである。 これらの積層膜単位が入射光 3 0 2のエネルギーに対して透明であれ ば、 第 2高調波 3 0 3の信号強度も大きいことが予想される。 実施例では 1. 5 5 eVの入射エネルギーを選んだ。 この第 2高調波 3 0 3の s偏光強度は磁化の 強度に比例するから偏光の回転角は磁化の強度に依存することになる。
第 5図はその超格子 L S M 0磁気センサ一素子の第 1高調波の偏光面の回転特 性を示す図である。 ここで、 參は +0. 3 5T、 〇は一0. 3 5 Τの場合を示し ている。
実験では外部磁場を +方向、 —方向のそれぞれ 0. 3 5テスラ (0. 3 5Τ) かけて磁化を発生させ、 第 2高調波の偏光角度を測定した。
入射エネルギー 1. 5 5 e V、 入射角度 1 3° 、 試料温度 1 0 Kの場合の偏光 角度と第 2高調波 (SHG) 強度の測定例を第 5図に示す。 B = + 0. 3 5Tの 場合 (a) と B =—0. 3 5Tの場合 (b) との偏光角度相対回転角度は 2 = 3 3° と期待された大きな回転角度が得られている。 磁気センサー素子としては SHGの出力光側に検光子をいれて、 これから出てくる光の強弱を検知すればよ い。 これは第 1図で示した光磁気力一回転で記憶された磁化軸の "up s p i n" "down s p i n" を読み出すのと同じである。
実際には検光子は 4 5 ° に傾けた偏光面の配置をとるので第 6図 ( c ) 、 (d) の 45° での信号強度差を読み取ることになるため、 +B (4 5° ) 、 一 B (4 5° ) での SHG強度差をみることとなる。 SHG信号強度最大値に対し て約 50%の信号強度の変化値になる。 したがって、 3 3° の偏光角度の回転は 大変大きな信号変化であるメモリ再生信号として発生することになり、 大きな再 生信号を得ることができるのである。
第 6図は本発明の超格子 L S M◦磁気センサー素子の第 1高調波の偏光面の入 射角依存性を示す図であり、 第 6図 (a) は振動数 ωのレーザ一光の入射角度 α 1 が 26° の場合の第 2高調波の偏光面を示す図、 第 6図 (b) は振動数 ωのレ —ザ一光の入射角度 α 2 が 1 3° の場合の第 2高調波の偏光面を示す図、 第 6図
(c) は第 6図 (a) の場合の偏光面の回転角 (^と SH強度特性図、 第 6図
(d) は第 6図 (b) の場合の偏光面の回転角 (^と SH強度特性図である。 ここ で、 第 6図 (a) においては、 振動数 ωのレーザー光 40 1が入射し、 振動数 2 ωの第 2高調波 402が得られる。 また、 第 6図 (b) においては、 振動数 の レーザー光 50 1が入射し、 振動数 2ωの第 2高調波 502が得られる。
この偏光面の回転角 は入射角度 αに依存する (第 6図挿入図参照) 。 つまり、 入射角度 αが小さいほど偏光面の回転 は大きくなる。 したがって、 入射角度 α が小さい方が有利であるが、 一方で光学配置上の工夫が必要となる。 通常のカー 回転 (カー効果) による磁化検知と違い出射光のエネルギーは 2倍であることか ら、 適切な光学フィル夕一を用いれば分離可能である。
入射角度 が 26° での偏光面の回転の温度依存性は LSMOの磁化の温度 依存性を反映している。 磁化が大きくなるにしたがい、 回転角 (^は大きくなる。 第 7図に本発明の超格子 L S MO磁気センサー素子の第 2高調波の偏光面の温 度と磁化依存性を示した。 第 7図 (a) は温度が 1 0Kの場合 (きの +0. 3 5 Tと〇の一0. 3 5 Τの差が ± 7. 9° ) 、 第 7図 (b) は温度が 1 0 0 Κの場 合 (參の + 0. 3 5下と〇のー 0. 3 5 Tの差が ± 3. 6° ) 、 第7図 ( ) は 温度が 3 0 0 Kの場合 の + 0. 3 5丁と〇のー0. 3 5丁の差が± 0.
° ) である。 第 7図 (d) は温度 (K) に対する磁ィ匕 ( B /Mn) 特性図であ る。 磁化が大きくなるに従って、 第 2高調波の偏光面の回転角 も大きくなるこ とが判る。
超格子 L SMOは入射角度 αが 1 3° で、 第 2高調波の偏光面は磁場の十、 一 向きで 3 3° 回転する結果が得られた。 この回転角は実施例では 0. 3 5Τ- 3 5 0 O O eで実験装置上の制限から比較的大きな外部磁場を用いているが、 第 7 図 (d) の磁化データに示したように、 この超格子材料は 1 0 O O eと同じ大き さの外場での磁化の大きさを示すことが判っている。 すなわち 1 0 O O eの外部 磁場でも 3 3° 程度の回転角は得られることを示している。 現在の力一回転を読 む磁気光学系は 0. 1° 程度の回転を読むのに十分な精度を工業的に有している。 垂直磁化膜からの漏れ磁場が 1〇 eであれば、 第 1高調波の偏光面の回転角度は 0. 3° 程度である。 これは工業的に十分な精度を有して識別できることを示し ている。
この超格子の膜厚は第 3図に示したように 57 5人であるから、 最小磁化サイ ズは 5 7 5 A程度は可能である。 実際には信号処理技術が進んでいることからさ らに半分程度の 3 0 0人程度のサイズは可能である。 このように数 1 0 0人の磁 化サイズにおいても検出可能である。 さらに微小サイズの検知能力を向上させる には、 このユニットを減少させればよい。 原理的には一層でも可能であるから L SMOの単一膜厚 3. 8 2人のサイズまで検知可能になる可能性を持っている。 まさしくオングストロームオーダ一の微小サイズの検知能力を有する可能性があ る。
この実施例で示された温度は 1 0Kであるが、強磁性転移温度が十分高温の材 料を磁性材料として超格子構造を用いれば、 第 2高調波を用いた磁気センサーは 室温で十分動作する。
〔実施例 2〕
G a F e 03 斜方晶結晶を磁気センサー素子として適用した具体例を示す。 この結晶は結晶構造が斜方晶構造を持ち、 空間群の分類表示では F c 2 lnであ ' る。 この結晶の磁化容易化軸は。軸、 分極軸は b軸構造を持つ。 この結晶構造配 置と光との入射光の偏光方向、 SHG信号配置を第 8図に示した。
第 8図は本発明の G a F e 03 磁気センサ一素子の結晶構造とレーザー光との 配置関係を示す図である。 ここでは、 GaF e03 の分極軸 b軸を 軸、 磁ィ匕容 易化軸を X軸となるように配置し、 レーザ一光は b軸と平行、 すなわち z軸方向 から入射する。
この図において、 60 1は GaF e03 斜方晶結晶からなる磁気センサー素子、 602は振動数 ωからなるレーザ一光、 603は振動数 2 ωからなる第 2高調波 である。
G a F e〇 3 の磁気的性質はフェリ磁性を示す。 このときの転移温度は 1 1 0 Kである。 GaF e〇3 の磁ィ匕 Mの温度依存性を第 9図 (d) の実線で示した。 第 9図は本発明の G a F e 03 磁気センサ一素子における入射エネルギー 1. 5 5 eV、 s偏光入射光角度 26° の場合で、 SHG強度と偏光面をフェリ磁性 転移温度 T c (2 1 0K) より上の温度 2 50K 〔第 9図 (c) 〕 、 Tc直下の 1 80K 〔第 9図 (b) 〕 、 Tcより十分低い温度の 1 00K 〔第 9図 (a) 〕 での測定結果である。
このときの磁場は c軸に平行に印加しており、 磁場の強さは実験の配置上の問 題から B = +0. 35Tの場合と、 B =—0. 35Tの場合である。
偏光面の回転角度 は、 2 50 Kのとき^ = 0、 1 80Kのとき = ±4 5。 、 1 00Kのとき ±80° と大変巨大な値が得られた。 この回転角と温度との関係 を第 9図 (d) の〇で示す。 この依存性は GaF eC の磁化曲線の傾向と良い 一致を示すことが判り、 偏光面の回転角度はこの磁気センサーの磁化率と良い一 致を示す。 1 00Kでの SHGの偏光回転角は ± 80° (± 0. 3 5T) となり、 偏光角度相対回転角度は 2 = 1 60° と大変巨大な偏光回転角が得られた。 実 施例 1で示したように実際には SHG信号側に 45° の偏光子を入れ磁場の向き を読み取ることとなるので、 1 00 Kでは回転しすぎである。 1 80K程度であ れば、 偏光子の出力強度は SHGの最大強度 1 00%変化となり得る。 実際の偏 光回転角度はメモリの磁化からの発生する磁界強度に依存し、 回転角は小さくな 03001543 るから磁場に敏感に回転する能力が高ければ高いほどよい。
この G a F e 03 結晶は浮遊熔融帯法で作製される (特願 200 2— 2 347 08) o
すなわち、 上下に配置される Ga2- X F ex 03 からなる試料棒の先端をガス 雰囲気下で共焦点に配置される熱源が加熱することにより前記上下に配置される Ga2-x F ex 03 からなる試料棒の先端間に浮遊熔融帯域を形成する浮遊熔融 帯法により、斜方晶の結晶構造をもった G a 2 X F ex 〇3 の単結晶を生成する ことを特徴とする。
そこで、 Ga2-x F ex3 で x= 1の場合が、 Tc = 2 1 0 Kである。 = 1. 4であれば T c = 360 Kであるから室温で上記のような効果が発生する。 したがって、室温での磁気センサー素子として実用に供することができる。
この実施例は単結晶薄片である。 現在単結晶薄片を取り出すことは F i e 1 d
I on Be am (F I B)装置を用いれば、 数 1 00 A程度の膜厚で 1 00 ; um口の結晶片を取り出し、 方位を出したままセットすることは可能である。 す なわち、 数 100人程度の微小磁化サイズの検出が可能である。
なお、 本発明は上記実施例に限定されるものではなく、 本発明の趣旨に基づい て種々の変形が可能であり、 これらを本発明の範囲から排除するものではない。 以上、 詳細に説明したように、本発明によれば、従来と異なる方式で数 1 00 A領域の微細磁区構造を検知できる磁気センサ一素子を提供することができる。 この素子は数 1 OAの微細磁区構造でも検知可能であることから、磁気記録装置 におけるデータ再生装置の大きな課題が解決することとなる。 これにより、 テラ ビット領域の巨大な磁気メモリデバイスを提供することが可能になり、 情報通信 や光コンピュータにふさわしい巨大メモリを提供することが可能となる。
また、 このセンサ一素子は磁気メモリの再生装置のみの実用に限らない。 例え ば、 コイルに電流を流せば、磁界が発生する。 これを使って第 2高調波の偏光面 の回転を容易に制御できる。 これは出力側に偏光子を入れれば、 簡単に光を〇N — OFFすることも可能で、光通信ネットワークにおける電流制御型光スィッチ 素子として応用展開することも可能であるし、 さらに、 光変調素子としての機能 を作ることも可能である。 また、 微小領域の磁場を敏感に検知することが可能であるから、 例えば、 微小 磁石を一方に配置し、 他方にここで提案された磁気センサーを搭載すれば、 開閉 センサー (たとえば、 携帯電話の開閉センサ一) としての応用も可能である。 こ のように磁気メモリ用にとどまらず広範な情報ネットワークの中の基本素子とし ての発明の応用が考えられる。 産業上の利用可能性
本発明の磁気センサ一は、 高感度でかつ高い空間分解能を有し、 特に、 磁気メ モリの再生デバィスとして好適である。 また、光通信関係の基本デバィスとして も適用可能である。

Claims

請 求 の 範 囲
1 .
( a ) スピン情報を有する物体に配置される、 空間的に非対称性を有する界面構 造を有し、 その界面を構成する一つの固体材料が磁性体である磁気センサ一素子 と、
( b ) 該磁気センサー素子に作用するレーザー光照射手段とを備え、
( c ) 該レーザー光照、射手段から前記磁気センサ一素子へ振動数 ωのレーザー光 を入射することにより、 前記磁気センサ一素子から出射する振動数 2 ωの第 2高 調波の偏光面の回転角度の変化によりスピン情報を有する物体のスピン情報を読 み出すことを特徴とする磁気センサ一。
2 . 請求項 1記載の磁気センサ一において、前記第 2高調波を発生するために 前記磁気センサー素子の少なくとも一つの磁性体材料が強磁性 (フヱリ磁性を含 む) 材料で界面を構成した構造を持つことを特徴とする磁気センサ一。
3 . 請求項 2記載の磁気センサーにおいて、前記第 2高調波を発生するために 前記磁気センサ一素子の少なくとも一つの材料が強磁性 (フヱリ磁性を含む) 薄 膜材料で、他の材料が複数の薄膜材料で界面を構成した多層薄膜材料を用いるこ とを特徴とする磁気センサー。
4 . 請求項 3記載の磁気センサ一において、前記複数の薄膜材料として少なく とも一つは遷移金属、 もしくは遷移金属酸化物膜を用いることを特徴とする磁気 センサ一。
5 . 請求項 4記載の磁気センサーにおいて、前記複数の薄膜材料として少なく とも一つは酸化 Μ η化合物膜を用いることを特徴とする磁気センサー。
6 . 請求項 5記載の磁気センサ一において、前記複数の薄膜材料として少なく とも一つは (Α , - Β χ ) Μ η〇3 ( 0≤χ≤ 1 ) で、 Αとして C a , S r , B aなどのアルカリ土類元素もしくは L aなどの希土類元素、 Yや B iからなる元 素、 Bとして A以外の C a , S r , B aなどのアルカリ土類元素もしくは L aな どの希土類元素、 Yや B iからなる酸化物を用いることを特徴とする磁気センサ
7. 請求項 6記載の磁気センサ一において、 前記複数の薄膜材料として少なく とも一つの膜が (A,- Βχ ) Μη〇3 (0≤χ≤ 1 ) で、 その他の複数の膜か らなる膜構成を単位ュニットとして、 この単位ュニットを複数回繰り返して構成 する多層膜を少なくとも一つ薄膜材料として用いることを特徴とする磁気センサ
8. 請求項 1記載の磁気センサーにおいて、 前記第 2高調波を発生するために 前記磁気センサー素子の少なくとも一つの薄膜、 もしくは結晶薄片で容易磁化軸 と分極軸とが直交する材料を用いることを特徴とする磁気センサ一。
9. 請求項 8記載の磁気センサーにおいて、 前記第 2高調波を発生するために 前記磁気センサ一素子の容易磁化軸と分極とが直交する一つの薄膜材料とその他 の複数の薄膜材料を用いることを特徴とする磁気センサ一。
1 0. 請求項 9記載の磁気センサ一において、 前記第 2高調波を発生するため に前記磁気センサー素子の容易磁化軸と分極軸とが直交する材料において容易磁 化軸に垂直な電場成分を持つ光を入射させ、 該光に反射もしくは透過する光の第 2高調波成分を用いることを特徴とする磁気センサ一。
1 1. 請求項 1 0記載の磁気センサ一において、前記磁気センサー素子の複数 の薄膜材料として少なくとも一つは遷移金属膜、 もしくは遷移金属酸化物膜を用 いることを特徴とする磁気センサ一。
1 2. 請求項 1 1記載の磁気センサ一において、 前記磁気センサ一素子の複数 の薄膜材料として少なくとも一つは酸化 Μ η化合物膜を用いることを特徴とする 磁気センサ一。
1 3. 請求項 1 2記載の磁気センサ一において、 前記磁気センサー素子の複数 の薄膜材料として少なくとも一つは (Α,— χ Bx ) Mn03 ( 0≤x≤ 1 ) で、 Aとして C a, S r, B aなどのアルカリ土類元素もしくは L aなどの希土類元 素、 Yや B iからなる元素、 Bとして A以外の C a, S r , B aなどのアルカリ 土類元素もしくは L aなどの希土類元素、 Yや B iからなる酸化物を用いること を特徴とする磁気センサ一。
1 4. 請求項 1 3記載の磁気センサ一において、 前記磁気センサー素子の少な くとも一つの膜が (A,— x Bx ) Mn〇3 ( 0 ≤ x≤ \ ) で、 その他の複数膜か らなる膜構成を単位ュニッ卜ととして、 この単位ュニットを複数回繰り返して構 成する多層膜を少なくとも一つ薄膜材料として用いることを特徴とする磁気セン サ一
1 5 . 請求項 1 0、 1 1又は 1 2記載の磁気センサーにおいて、 前記磁気セン サ一素子の容易磁化軸と分極軸とが直交する材料として F eの酸化物および F e 酸化薄膜を用いることを特徴とする磁気センサ一。
1 6 . 請求項 1 5記載の磁気センサ一において、 前記磁気センサー素子の容易 磁化軸と分極軸とが直交する材料として G a 2 - x F e x 0 3 結晶および薄膜を用 いることを特徴とする磁気センサ一。
1 7 . 請求項 1 6記載の磁気センサ一において、前記磁気センサー素子の容易 磁化軸と分極軸とが直交する材料として G a 2一 F 0 3 結晶および薄膜で F e (鉄) の組成; Xの範囲が 0 . 7≤ X≤ 1 . 5の材料で斜方晶の結晶構造を持 つた材料を用いることを特徴とする磁気センサー。
1 8 . 請求項 2から 1 7の何れか 1項に記載の磁気センサ一において、 前記磁 気センサ一素子の遷移金属酸化物薄膜を S r T i 03 薄膜で上下を挟んだ多層構 造を用いることを特徴とする磁気センサー。
1 9 . 請求項 2力、ら 1 7の何れか 1項に記載の磁気センサ一において、前記磁 気センサー素子の複数の薄膜材料を支持する基板材料として S r T i 0 3 結晶を 用いることを特徴とする磁気センサ一。
PCT/JP2003/001543 2002-08-23 2003-02-14 磁気センサー WO2004019051A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004530516A JP4185968B2 (ja) 2002-08-23 2003-02-14 磁気センサー
AU2003211223A AU2003211223A1 (en) 2002-08-23 2003-02-14 Magnetic sensor
EP03792617A EP1505404B1 (en) 2002-08-23 2003-02-14 Magnetic sensor
US10/495,127 US7084624B2 (en) 2002-08-23 2003-02-14 Magnetic sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-243942 2002-08-23
JP2002243942 2002-08-23

Publications (1)

Publication Number Publication Date
WO2004019051A1 true WO2004019051A1 (ja) 2004-03-04

Family

ID=31944112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001543 WO2004019051A1 (ja) 2002-08-23 2003-02-14 磁気センサー

Country Status (6)

Country Link
US (1) US7084624B2 (ja)
EP (1) EP1505404B1 (ja)
JP (1) JP4185968B2 (ja)
KR (1) KR100813449B1 (ja)
AU (1) AU2003211223A1 (ja)
WO (1) WO2004019051A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007034093A (ja) * 2005-07-29 2007-02-08 Japan Science & Technology Agency 光学装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7738217B2 (en) * 2006-02-13 2010-06-15 Hitachi Global Storage Technologies Netherlands B.V. EMR magnetic head having a magnetic flux guide and a body formed at a tail end of a slider
WO2009073736A1 (en) * 2007-12-03 2009-06-11 President And Fellows Of Harvard College Spin based magnetometer
US7881006B2 (en) * 2008-02-08 2011-02-01 Seagate Technology Llc Long-term asymmetry tracking in magnetic recording devices
US9348000B1 (en) * 2012-12-20 2016-05-24 Seagate Technology Llc Magneto optic kerr effect magnetometer for ultra-high anisotropy magnetic measurements
JP5995923B2 (ja) * 2014-08-06 2016-09-21 古河電気工業株式会社 光ファイバ母材および光ファイバの製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985001144A1 (en) * 1983-09-05 1985-03-14 Sony Corporation Photomagnetic recording and reproducing apparatus having device for detecting direction of magnetization of magnetic recording medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2517831A2 (fr) * 1981-12-04 1983-06-10 Thomson Csf Tete de mesure pour magnetometre et magnetometre comprenant une telle tete
US5038103A (en) * 1985-04-22 1991-08-06 The United States Of America As Represented By The Secretary Of The Navy Optical fiber magnetometer
FR2621412B1 (fr) * 1987-10-05 1990-09-14 Bull Sa Dispositif de lecture optique et d'ecriture magnetique d'un support d'informations
DE69029048T2 (de) * 1989-04-19 1997-03-20 Hitachi Ltd Magnetooptische Aufzeichnungs- und Wiedergabeverfahren, magnetooptische Speichervorrichtung
CA2036890C (en) * 1990-02-28 1996-02-13 Hiroyuki Katayama Magneto-optic recording disk and method of reproducing recorded signals
US5784347A (en) * 1995-02-13 1998-07-21 Hitachi, Ltd. Optical disk device having optical phase compensator
US6134011A (en) * 1997-09-22 2000-10-17 Hdi Instrumentation Optical measurement system using polarized light
JP4382333B2 (ja) * 2002-03-28 2009-12-09 株式会社東芝 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985001144A1 (en) * 1983-09-05 1985-03-14 Sony Corporation Photomagnetic recording and reproducing apparatus having device for detecting direction of magnetization of magnetic recording medium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOOPMANS BERT ET AL.: "Observation of large kerr angles in the nonlinear optical response from magnetic multilayers", PHYSICAL REVIEW LETTERS, vol. 74, no. 18, 1 May 1995 (1995-05-01), pages 3692 - 3695, XP002977644 *
See also references of EP1505404A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007034093A (ja) * 2005-07-29 2007-02-08 Japan Science & Technology Agency 光学装置
JP4576629B2 (ja) * 2005-07-29 2010-11-10 独立行政法人科学技術振興機構 光学装置

Also Published As

Publication number Publication date
JPWO2004019051A1 (ja) 2005-12-15
AU2003211223A8 (en) 2004-03-11
US7084624B2 (en) 2006-08-01
JP4185968B2 (ja) 2008-11-26
KR100813449B1 (ko) 2008-03-13
EP1505404A4 (en) 2009-04-22
KR20050032023A (ko) 2005-04-06
AU2003211223A1 (en) 2004-03-11
EP1505404B1 (en) 2011-01-12
US20050012937A1 (en) 2005-01-20
EP1505404A1 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
US8483019B2 (en) Magneto-optical device with an optically induced magnetization
Meiklejohn Magnetooptics: A thermomagnetic recording technology
JP4358773B2 (ja) 磁気抵抗効果素子、磁気センサー、再生ヘッド、複合ヘッド、磁気情報再生装置、磁気情報記録再生装置、および、磁気情報の再生方法
JP3249052B2 (ja) 磁気抵抗効果素子およびその製造方法とその素子を備えた磁気ヘッド
US6504665B1 (en) Method and apparatus for magnetic recording
EP1505404B1 (en) Magnetic sensor
JP2006505083A (ja) 磁化方向が逆平行である反強磁性二重層構造の記録層を具える熱補助型記録媒体
US5116693A (en) Unique system of FE/PD for magneto-optical recording and magnetic switching devices
JPS62184644A (ja) 光磁気メモリ用媒体及び該媒体を使用した記録方法
JP4044030B2 (ja) 磁気センサー装置
WO2005024968A1 (ja) トンネルジャンクション素子
JPH0316007A (ja) 磁気記録装置及び磁気ヘツド
Nur-E-Alam et al. Magneto-optical visualisation for high-resolution forensic data recovery using advanced thin film nano-materials
JPH11185312A (ja) 光磁気記録媒体
JP2546481B2 (ja) 熱シャッターおよび記録媒体
JP3381960B2 (ja) 光磁気記録媒体
JP2000306375A (ja) 磁気抵抗素子及び磁気メモリ素子
JP2000299517A (ja) 磁気抵抗素子及び磁気メモリ素子
Ohldag et al. Solving a Forefront Problem in Materials Science
JPH0456363B2 (ja)
JPH0386954A (ja) 光磁気記録装置
Buschow et al. High-Density Recording Materials
JPH0793837A (ja) 磁気記録再生方法およびそれを利用した再生ヘッド
Vasiliev et al. Magneto-optical visualisation for high-resolution forensic data recovery using advanced thin film nano-materials
JPH06162582A (ja) 光磁気記録媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004530516

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003792617

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10495127

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047008369

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003792617

Country of ref document: EP