WO2004023568A1 - 複数の発光素子を有する発光装置 - Google Patents

複数の発光素子を有する発光装置 Download PDF

Info

Publication number
WO2004023568A1
WO2004023568A1 PCT/JP2003/010922 JP0310922W WO2004023568A1 WO 2004023568 A1 WO2004023568 A1 WO 2004023568A1 JP 0310922 W JP0310922 W JP 0310922W WO 2004023568 A1 WO2004023568 A1 WO 2004023568A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
electrode
light emitting
leds
light
Prior art date
Application number
PCT/JP2003/010922
Other languages
English (en)
French (fr)
Inventor
Shiro Sakai
Jin-Ping Ao
Yasuo Ono
Original Assignee
Nitride Semiconductors Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31972605&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004023568(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2002249957A external-priority patent/JP3822545B2/ja
Priority to AT03794115T priority Critical patent/ATE500616T1/de
Priority to US10/525,998 priority patent/US7417259B2/en
Priority to EP18150767.4A priority patent/EP3389094A1/en
Priority to DE60336252T priority patent/DE60336252D1/de
Priority to EP09014623.4A priority patent/EP2154721B1/en
Priority to EP20030794115 priority patent/EP1553641B1/en
Application filed by Nitride Semiconductors Co.,Ltd. filed Critical Nitride Semiconductors Co.,Ltd.
Publication of WO2004023568A1 publication Critical patent/WO2004023568A1/ja
Priority to US11/705,205 priority patent/US7956367B2/en
Priority to US12/060,693 priority patent/US8129729B2/en
Priority to US12/139,927 priority patent/US7897982B2/en
Priority to US12/352,271 priority patent/US7569861B2/en
Priority to US12/352,280 priority patent/US7615793B2/en
Priority to US12/352,240 priority patent/US8097889B2/en
Priority to US12/352,296 priority patent/US8084774B2/en
Priority to US12/478,456 priority patent/US7667237B2/en
Priority to US12/479,380 priority patent/US7646031B2/en
Priority to US12/652,518 priority patent/US8680533B2/en
Priority to US12/958,947 priority patent/US8735918B2/en
Priority to US13/584,140 priority patent/US20120305951A1/en
Priority to US13/610,819 priority patent/US8735911B2/en
Priority to US13/890,878 priority patent/US9947717B2/en
Priority to US14/583,476 priority patent/US20150108497A1/en
Priority to US15/430,440 priority patent/US20170154922A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector

Definitions

  • Light emitting device having a plurality of light emitting elements
  • the present invention relates to a light emitting device in which a plurality of light emitting elements are formed on a substrate.
  • LEDs light-emitting elements
  • the conditions of use are a drive voltage of about 1 to 4 V and a drive current of about 20 mA.
  • a drive voltage of 1 to 4 V By the way, in recent years, short-wavelength LEDs using GaN-based compound semiconductors have been developed, and full-color or white solid-state light sources have been put into practical use.
  • an LED When an LED is applied to lighting applications, it may be used under conditions different from the above-mentioned operating conditions of a drive voltage of 1 to 4 V and a drive current of 20 mA. For this reason, a device has been devised to allow a large current to flow through the LED to increase the light emission output. In order to pass a large current, it is necessary to increase the pn junction area of the LED and keep the current density small.
  • An object of the present invention is to provide a light emitting device that can operate at a high driving voltage.
  • the present invention is characterized in that a plurality of GaN-based light-emitting elements are formed on an insulating substrate, and the plurality of light-emitting elements are monolithically connected in series.
  • the plurality of light emitting elements are preferably two-dimensionally arranged on the substrate. Suitable.
  • the plurality of light emitting elements may be divided into two groups, and the two light emitting elements may be connected in parallel to the two electrodes so as to have opposite polarities.
  • connection between the plurality of light emitting elements may be an edge wiring.
  • the electrical separation between the plurality of light emitting elements may be performed by a suffifier used as the substrate.
  • the plurality of light emitting elements are divided into two groups each having the same number, the light emitting element arrays of each set are arranged in a zigzag shape, and the two light emitting element arrays have two electrodes with opposite polarities. They may be connected in parallel, and the two sets of light emitting element arrays may be arranged alternately.
  • the light emitting element and the electrode may have a substantially square or triangular planar shape.
  • the plurality of light emitting elements and the electrodes may be arranged so that the overall shape is substantially square.
  • the electrode may be an AC power supply electrode.
  • the two sets of light emitting element arrays may have a common n-electrode.
  • a plurality of light emitting elements are formed monolithically, that is, on the same substrate, and these are connected in series to enable a high driving voltage.
  • DC driving is possible by connecting a plurality of light-emitting elements in one direction, but the light-emitting elements are divided into two sets, and each set of light-emitting elements (light-emitting element arrays) is connected to electrodes so that they have opposite polarities. By connecting, AC drive is also possible.
  • the number of each set may be the same or different.
  • two light emitting element arrays are arranged in a zigzag pattern, that is, a plurality of light emitting elements are arranged on a bent straight line, and the light emitting element arrays are alternately arranged to effectively utilize the board area.
  • Many light emitting elements can be connected.
  • a crossing portion of the wiring may occur.
  • by connecting the light emitting elements with an air bridge wiring a short circuit at the crossing portion can be effectively prevented.
  • the shape is arbitrary, for example, by forming the planar shape to be substantially square, the overall shape is also substantially square, and a standard mount structure can be used. Even when the light-emitting element and the electrode are not square, for example, triangular, if these triangular shapes are combined to form a substantially square as a whole, a standard mounting structure can be used similarly. Brief description of the drawings.
  • FIG. 1 is a basic configuration diagram of a light emitting device (LED).
  • FIG. 2 is an equivalent circuit diagram of the light emitting device.
  • FIG. 3 is a plan view of two LEDs.
  • FIG. 4 is a sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is another equivalent circuit diagram of the light emitting device.
  • FIG. 6 is an explanatory diagram in which forty LEDs are two-dimensionally arranged.
  • FIG. 7 is a circuit diagram of FIG.
  • FIG. 8 is an explanatory diagram in which six LEDs are two-dimensionally arranged.
  • FIG. 9 is a circuit diagram of FIG.
  • FIG. 10 is an explanatory diagram in which 14 LEDs are two-dimensionally arranged.
  • FIG. 11 is a circuit diagram of FIG.
  • FIG. 12 is an explanatory diagram in which six LEDs are two-dimensionally arranged.
  • FIG. 13 is a circuit diagram of FIG.
  • FIG. 14 is an explanatory diagram in which 16 LEDs are two-dimensionally arranged.
  • FIG. 15 is a circuit diagram of FIG.
  • FIG. 16 is an explanatory diagram in which two LEDs are arranged.
  • FIG. 17 is a circuit diagram of FIG.
  • FIG. 18 is an explanatory diagram in which four LEDs are secondarily arranged.
  • FIG. 19 is a circuit diagram of FIG.
  • FIG. 20 is an explanatory diagram in which three LEDs are two-dimensionally arranged.
  • FIG. 21 is a circuit diagram of FIG.
  • FIG. 22 is an explanatory diagram in which six LEDs are two-dimensionally arranged.
  • FIG. 23 is a circuit diagram of FIG.
  • FIG. 24 is an explanatory diagram in which five LEDs are two-dimensionally arranged.
  • FIG. 25 is a circuit diagram of FIG.
  • FIG. 26 is an explanatory diagram of another two-dimensional arrangement.
  • FIG. 27 is a circuit diagram of FIG.
  • FIG. 28 is an explanatory diagram of another two-dimensional arrangement.
  • FIG. 29 is a circuit diagram of FIG.
  • FIG. 30 is an explanatory diagram of another two-dimensional arrangement.
  • FIG. 31 is a circuit diagram of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows the basic configuration of LED 1 as a GaN-based compound semiconductor light emitting device in the present embodiment.
  • a GaN layer 12 a Si-doped n-type GaN layer 14, an InGaN light-emitting layer 16, an AlGaN layer 18, and a p-type GaN layer 20 are sequentially stacked on a substrate 10, and are in contact with the p-type GaN layer 20.
  • the n-electrode 24 is formed in contact with the p-electrode 22 and the n-type GaN layer 14.
  • the LED shown in Fig. 1 is manufactured by the following process. That is, first, a sapphire c-plane substrate is heat-treated in a hydrogen atmosphere at 1100 ° C. for 10 minutes using a MOCVD apparatus. Then, the temperature is lowered to 500 ° C., and silane gas and ammonia gas are supplied for 100 seconds to form a discontinuous SiN film on the substrate 10. This process is for reducing the dislocation density in the device, and the figure does not show the SiN film. Next, trimethylgallium and ammonia gas are supplied at the same temperature to grow the GaN layer to a thickness of 2 Onm.
  • the temperature was raised to 1050 ° C, and trimethylgallium and ammonia gas were supplied again to form an AND GaN (u-GaN) layer 12 and a Si-doped n-type GaN layer 14 to a thickness of 2 m each. Let it grow. After that, the temperature is lowered to about 700 ° C. to grow the InGaN light emitting layer 16 to a thickness of 2 nm.
  • the temperature is raised to 1000 ° C. to grow the AlGaN hole injection layer 18, and Next, a p-type GaN layer 20 is grown.
  • the wafer is taken out of the MOCVD apparatus, and a 10 nm thick Ni and a 10 nm thick Au are sequentially formed on the surface of the grown layer by vacuum evaporation.
  • the metal film becomes the p-type transparent electrode 22 by performing a heat treatment at 520 ° C. in a nitrogen gas atmosphere containing 5% oxygen.
  • a photoresist is applied to the entire surface, and etching for forming the n-type electrode is performed using the photoresist as a mask.
  • the etching depth is, for example, about 600 nm.
  • n-type GaN layer 14 On the n-type GaN layer 14 exposed by the etching, a Ti film having a thickness of 5 nm and a film thickness of 15 nm are formed, and a heat treatment is performed at 450 ° C. for 30 minutes in a nitrogen gas atmosphere to form an n-type electrode 24. Finally, the back surface of the substrate 10 is polished to 100 mm to cut out a chip, and the LED 1 is obtained by mounting.
  • one GaN-based LED 1 is formed on a substrate 10, but in the present embodiment, a plurality of LEDs 1 are formed on the substrate 10 in a monolithic and two-dimensional array, and each LED is connected.
  • a light emitting device chip
  • “monolithic” means that all elements are formed on one substrate.
  • FIG. 2 shows an equivalent circuit diagram of the light emitting device.
  • the light-emitting element groups formed in a two-dimensional array are divided into two sets each of which has the same number (four in the figure). It is connected in parallel with the electrode (drive electrode) so that it has the opposite polarity.
  • each LED string is connected in parallel to the electrodes so that their polarities are opposite to each other, even when using an AC power supply, one of the LED strings always emits light during each cycle of the power supply. Therefore, efficient light emission can be performed.
  • FIG. 3 shows a partial plan view of a plurality of LEDs formed monolithically on the substrate 10.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • a p-electrode 22 and an n-electrode 24 are formed on the upper surface of the LED 1 as shown in FIG.
  • the p-electrode 22 and the n-electrode 24 of the adjacent LEDs 1 are connected by air wiring 28, and a plurality of LEDs 1 are connected in series.
  • each LED 1 is simply shown for convenience of explanation. That is, Only the n-GaN layer 14, the p-GaN layer 20, the p-electrode 22, and the n-electrode 24 are shown.
  • the air bridge wiring 28 connects the p-electrode 22 to the n-electrode 24 via the air. This makes it necessary to arrange the electrodes along the etching grooves, compared to the method of applying an insulating film on the element surface, forming electrodes on this, and electrically connecting the P electrode 22 and the n electrode 24. This eliminates the problem of disconnection of wires and the thermal diffusion of elements constituting the insulating material from the insulating film to the n-layer and the P-layer, thereby deteriorating the LED 1.
  • the air wiring 28 is used not only between the LEDs 1 but also for the connection between the LEDs 1 and electrodes (not shown).
  • each LED 1 needs to be independent of each other and electrically insulated. For this reason, each LED 1 has a configuration separated on the sapphire substrate 10. Since sapphire is itself an insulator, it can electrically isolate LED 1 from each other. As described above, by using the sapphire substrate 10 as a resistor for electrically separating the LEDs, the electrical separation of the LEDs can be easily and reliably performed.
  • the light emitting element may be an MIS in addition to an LED having a pn junction.
  • FIG. 5 shows another equivalent circuit diagram of the light emitting device.
  • 20 LEDs 1 are connected in series to form one LED array, and two LED arrays (total of 40 LEDs) are connected in parallel to the power supply.
  • the drive voltage of LED 1 is set to 5 V, and the drive voltage of each LED array is 100 V.
  • the two LED arrays are connected in parallel to the power supply so as to have the opposite polarities as in Fig. 2, and one of the LED arrays always emits light regardless of the polarity of the power supply.
  • FIG. 6 specifically shows a two-dimensional array.
  • a total of 40 LEDs 1 are formed on a sapphire substrate 10, each of which is divided into two sets of 20 and connected in series by an air bridge wiring 28 to form two LED arrays.
  • each LED 1 is all the same square and the same size, and one LED array is 6 Pieces, 7 pieces and so on are arranged on a straight line.
  • the first row (6 pieces) and the second row (7 pieces) are formed in opposite directions from the top, and the 2nd row and 3rd row are They are formed in opposite directions.
  • the first and second columns and the second and third columns are spaced apart from each other. This is because the columns of the other LED array are inserted alternately as described later.
  • the rightmost LED 1 in the first column and the rightmost LED 1 in the second column are connected by air wiring 28.
  • the LED 1 at the left end of the second column and the LED 1 at the left end of the third column are also connected by the bridge wiring 28 to form a zigzag arrangement.
  • the leftmost LED 1 in the first column is connected to an electrode (pad) 32 formed on the upper left of the substrate 10 by a bridge wire 28, and the rightmost LED 1 in the third column is formed on the lower right of the substrate 10.
  • the other LED array is formed so as to be staggered in the gap between the one LED array described above. In other words, the other LED arrays are arranged in a straight line from the top, 7, 7, 6 and so on.
  • the first column from the top is the first and second columns of the LED array
  • the second column is formed between the second and third columns of one LED array
  • the third column is formed below the third column of one LED array. You.
  • the first and second columns, and the second and third columns of the other LED array are also formed so that the directions are opposite to each other, and the rightmost LED 1 in the first column is the second column.
  • the leftmost LED 1 in the second row is connected to the leftmost LED 1 in the third row by the air bridge wiring 28 to form a zigzag shape.
  • the leftmost LED in the first column of the other LED array is the board
  • the electrode 32 formed on the upper left of the 10 is connected by an air bridge wiring 28, and the LED 1 on the right end of the third column is connected to the electrode 32 formed on the lower right of the substrate 10 by an air wiring 28.
  • the polarities of the one LED array and the other LED array with respect to the electrode 32 are opposite to each other.
  • the overall shape of the light emitting device (chip) is rectangular. Note also that the two electrodes 32 to which power is supplied are formed spaced apart at diagonal positions of a rectangle.
  • FIG. 7 shows the circuit diagram of FIG. Each LED array is connected in series while bending in a zigzag fashion, and it will be clear that the two LED arrays are formed with each zigzag row between each other. With such an arrangement, many LEDs 1 can be arranged on a small substrate 10. Further, since only two electrodes 32 are required for 40 LEDs 1, the use efficiency of the substrate 10 can be improved also in this regard. In the case where the LEDs 1 are individually formed in order to separate the LEDs 1, it is necessary to cut and separate the wafer, whereas in the present embodiment, the separation of each LED 1 is performed by etching. As a result, the distance between the LEDs 1 can be reduced. Thus, the size of the sapphire substrate 10 can be further reduced.
  • the separation between the LEDs 1 is achieved by using a photoresist, reactive ion etching, and gate etching in combination to etch away the area other than the LEDs 1 until the substrate 10 is reached. Since each LED array emits light alternately, luminous efficiency and heat radiation characteristics can be improved. Also, by changing the number of LEDs 1 connected in series, the overall drive voltage can be changed. Also, when the area of the LED 1 is reduced, the driving voltage per LED can be increased. When 20 LEDs 1 are connected in series, a light output of about 15 OmW can be obtained when driven by commercial power (100 V, 60 Hz). The drive current in this case is about 2 OmA.
  • the air bridge wiring 28 is formed, for example, as follows.
  • a photoresist of 2 ⁇ m thickness is applied on the entire surface, and holes are formed in the shape of the air bridge wiring, and then post-baking is performed. Then, 10 nm of Ti and 10 nm of Au are deposited in this order by vacuum evaporation. Then, apply a 2m-thick photoresist on the entire surface again, and drill holes only in the area where air-edge wiring is to be formed. Next, using Ti and Au as electrodes, 3 to 5 m thick Au is attached to the entire surface of the electrode by ion plating in the electrolyte. So Thereafter, the sample is immersed in acetone, and the photoresist is dissolved and removed by ultrasonic cleaning, thereby completing the air wiring 28.
  • the two-dimensional array pattern By arranging a plurality of LEDs 1 in a two-dimensional array in this way, it is possible to effectively use the board area and drive it with a high drive voltage, especially with a commercial power supply. Various other patterns are possible. Generally, it is desirable that the two-dimensional array pattern satisfy the following conditions.
  • each LED it is desirable that the shape and electrode position of each LED be the same in order to apply a uniform current to each LED and obtain uniform light emission.
  • the LED has a planar shape close to a square.
  • the size of the two electrodes (bonding pads) is about 100 zm square, and it is desirable that they are separated from each other.
  • each LED is not essential, and for example, a planar triangle may be used as the shape of each LED. Even if the shape of each LED is triangular, the overall shape can be made substantially square by combining them.
  • FIG. 8 shows an example in which a total of six LEDs 1 are arranged two-dimensionally
  • FIG. 9 shows a circuit diagram thereof.
  • the arrangement of FIG. 8 is basically the same as the arrangement of FIG. 6, and a total of six LED arrays are divided into two sets each of the same number, and each of them is composed of three LEDs connected in series.
  • One of the LED arrays is arranged in a zigzag pattern, with one LED 1 in the first row and two LEDs 1 in the second row.
  • the LEDs in the first column and the rightmost LED 1 in the second column are connected in series by an airline wiring 28, and the two LEDs 1 in the second column are also connected in series by an airline wiring 28.
  • Electrodes (pads) 32 are formed on the upper left and lower left of the substrate 10, and the first row of LEDs 1 is connected to the upper left electrode 32 by air bridge wiring, and the second row of leftmost LEDs 1 is connected. Is connected to the electrode 32 at the lower left.
  • the other LED array is also arranged in a zigzag fashion, with two LEDs 1 in the first row and one LED 1 in the second row.
  • the first column of the other LED array is formed between the first column and the second column of the one LED array, and the second column of the other LED array is the second column of the one LED array. It is formed below the column.
  • the rightmost LED 1 in the first row is connected in series to the LED 1 in the second row by an bridge wiring 28, and the two LEDs 1 in the first row are also connected in series by an air wiring 28.
  • the leftmost LED 1 in the first column is connected to the upper left electrode 32 by air bridge wiring 28, and the second column LED 1 is connected to the lower left electrode 32 by air bridge wiring 28.
  • the two LED arrays are connected to the electrode 32 in parallel with each other, and are connected so as to have opposite polarities to each other. Therefore, when AC power is supplied, the two LED arrays emit light alternately.
  • Fig. 10 shows an example in which a total of 14 LEDs are arranged two-dimensionally
  • Fig. 11 shows the circuit diagram.
  • the total of 14 LED arrays are divided into two sets, each consisting of 7 LEDs connected in series.
  • One of the LED arrays is arranged in a zigzag pattern, with the first row from the top forming three LEDs 1 and the second row from four LEDs 1.
  • the leftmost LED in the first column and the leftmost LED 1 in the second column are connected in series by an air bridge wiring 28, and the three LEDs in the first column and the four LEDs 1 in the second column are connected. They are also connected in series by the air bridge wiring 28.
  • Electrodes (pads) 32 are formed on the upper right and lower right of the substrate 10, the rightmost LED 1 in the first column is connected to the upper right electrode 32 by air bridge wiring, and the rightmost LED 1 in the second column is Connected to lower right electrode 32.
  • the other LED array is also arranged in a zigzag fashion, with four LEDs 1 in the first row and three LEDs 1 in the second row.
  • the first column of the other LED array is formed between the first column and the second column of the one LED array, and the second column of the other LED array is the second column of the one LED array. Formed below the eyes.
  • the leftmost LED 1 in the first column is connected in series to the leftmost LED 1 in the second column by an air bridge wiring 28.
  • the four LEDs 1 in the first row and the three LEDs 1 in the second row are also connected in series.
  • the LED 1 at the right end of the first column is connected to the electrode 32 at the upper right by an air wire 28, and the LE 1 at the right end of the second column is D1 is connected to an electrode 32 at the lower right by air bridge wiring 28.
  • the two LED arrays are connected to the electrode 32 in parallel with each other, and are connected to have opposite polarities to each other. Therefore, when AC power is supplied, the two LED arrays emit light alternately.
  • each LED 1 is approximately the same shape and size as a square, and the two electrodes (pads) are also approximately square and are formed adjacently. Not (spaced apart), a combination of two LED arrays, the two LED arrays must be bent and intersected with each other on the chip, and the two LED arrays have opposite polarities Connected to the electrodes such that
  • FIG. 12 shows an example in which LEDs having a triangular planar shape are arranged two-dimensionally
  • FIG. 13 shows a circuit diagram thereof.
  • a total of six LEDs 1a, lb, lc, ld, 1e, and 1f are formed such that their planar shapes are triangular.
  • LED la and LED 1e are arranged so that two sides of the triangle oppose each other to form a substantially square shape
  • LEDs 1b and 1: f are arranged so that they oppose each other and form a substantially square.
  • the LED 1 d and the electrode 32 are connected to face each other
  • the LED lc and the electrode 32 are connected to face each other.
  • the two electrodes 32 also have a triangular planar shape similarly to the LED, and are similarly arranged to be substantially square.
  • the opposing sides of the LEDs constitute the n-electrode 24, that is, the two opposing LEDs share the n-electrode 24.
  • the LED and electrode 32 are also n-electrode connected. Also in this arrangement, a total of six LEDs are divided into two sets, as in the example described above.
  • One LED array is an array composed of LED la, LED lb, and LED 1c, and the p-electrode 22 of LED 1a is connected to the electrode 32 by air bridge wiring 28, and the n-electrode 24 is connected to the LED 1b. It is connected to the p-electrode 22 by air line wiring 28.
  • the n-electrode 24 of the LED 1 b is connected to the p-electrode 22 of the LED 1 c by an application wiring 28.
  • the n-electrode 24 of the LED 1c is connected to the electrode 32.
  • the other LED array is composed of LED ld, LED le, and LED 1f.
  • Electrode 32 and p electrode 22 of LED 1f are connected by air bridge wiring 28, and n electrode 24 of LED 1f is LED 1e.
  • the p electrode 22 of the LED 1 e is connected to the p electrode 22 of the LED 1 e and the p electrode 22 of the LED 1 d by the air wire 28.
  • n electrode 24 of LED 1 d is connected to electrode 32
  • the n-electrodes of LED 1a forming one LED array and LED 1e forming the other LED array are connected, and LED 1b forming one LED array and the other LED are formed.
  • the n-electrode of the LED 1f constituting the array is connected.
  • Circuit wiring can be reduced by sharing some n-electrodes of two sets of LED arrays.
  • the two LED arrays are connected in parallel to the electrode 32 and connected to have opposite polarities.
  • each LED has the same shape and the same size, and the LEDs 32 are formed in a triangular shape by opposing each LED on one side, so that the LEDs and the electrodes can be formed at a high density to reduce the required substrate area. it can.
  • FIG. 14 shows another example in which LEDs having a triangular planar shape are two-dimensionally arranged
  • FIG. 15 shows a circuit diagram thereof.
  • a total of 16 LEDs 1a to 1r are formed two-dimensionally.
  • LED 1a and 1j, lb and lk, lc and lm, Id and ln, le and lp, If and lq, 1g and 1r face each other on one side of the triangle.
  • An n-electrode 24 is commonly formed on the opposing sides.
  • the LED 1 i and the electrode 32 face each other, and the LED 1 h and the electrode 32 face each other.
  • One LED array LED la, lb, 1 c, 1 d, 1 e, 1 f, 1 g, is composed of lh, the other LED array LED 1 r, 1 q s 1 p, 1 n, 1 m , 1 k, 1 j, and li.
  • the n-electrode 24 of the LED 1b is connected to the p-electrode 22 of the LED 1c by the air bridge wiring 28, and the n-electrode 2 of the LED 1e is also connected to the p-electrode 22 of the LED 1f by the edge wiring 28.
  • the n-electrode 24 of LED 1 ⁇ 3 ⁇ 4 is also connected to the p-electrode 22 of the LED 1p by the air bridge wiring 28, and the 11-electrode 24 of the LED 1111 is also connected to the p-electrode 22 of the LED 1k by the air bridge wiring 28.
  • a crossover portion occurs as in FIG. 12, but a short circuit can be avoided by the air bridge wiring 28.
  • necessary wiring is reduced by using some of the n-electrodes 24 of the two sets of LED arrays in a shared structure.
  • the two LED arrays are connected in parallel to the electrodes 32 with polarities opposite to each other, so that AC driving is possible.
  • the LED arrays may be connected in the forward direction according to the direction of the polarity of the DC power supply. High voltage driving is possible by connecting multiple LEDs in series.
  • DC drive will be described.
  • FIG. 16 shows an example in which two LEDs are connected in series
  • FIG. 17 shows a circuit diagram thereof.
  • Each LED 1 has a rectangular planar shape, and the two LEDs are connected by edge wiring 28.
  • the electrode 32 is formed near each LED 1, and the electrode 32 and the LED 1 form a rectangular area. That is, the electrode 32 occupies a part of the rectangular area, and the LED 1 is formed in another area of the rectangular area.
  • Fig. 18 shows an example in which a total of four LEDs are arranged two-dimensionally
  • Fig. 19 shows the circuit diagram.
  • the LED 1 in Fig. 16 is divided into two parts, which are connected in parallel. It can be said that two sets of LED arrays consisting of two LEDs are connected in parallel in the forward direction. LEDs 1a and 1b make up one LED array, and LEDs 1c and 1d make up another LED array. LED la and LED 1 c share p-electrode 22 and n-electrode 24, and LED lb and LEDld also share p-electrode 22 and n-electrode 24. According to this configuration, there is an effect that the current is made uniform as compared with FIG.
  • FIG. 20 shows an example in which a total of three LEDs are two-dimensionally arranged
  • FIG. 21 shows a circuit diagram thereof.
  • the LEDs l a, lb, and l c are not the same shape, and an electrode 32 is formed on a part of the LED 1 a.
  • the n-electrode 24 of the LED 1a and the P-electrode of the LED 1b are connected by an air-bridge wiring 28 extending over the LED 1b.
  • Figure 22 shows an example in which a total of six LEDs are arranged two-dimensionally. Shows the circuit diagram. Each LED 1a ⁇ lf is the same shape and size. L ED 1 a to l: Connected in series. LEDs 1a to lc are arranged on a straight line, and LEDs 1d to lf are arranged on another straight line. The LED lc and the LED 1 d are connected by air wiring 28. Also in this example, the overall shape of the chip can be made substantially square.
  • FIG. 24 shows an example in which a total of five LEDs are two-dimensionally arranged
  • FIG. 25 shows a circuit diagram thereof.
  • the LEDs are the same shape (rectangular) and the same size. Also in this example, the overall shape can be substantially square.
  • the present invention has been described. However, the present invention is not limited to the embodiments, and various modifications are possible.
  • the pattern in the case where a plurality of light emitting elements (eg, LEDs) are two-dimensionally arranged can be other than the above-described pattern.
  • the number of wirings should be reduced by sharing electrodes between adjacent light emitting elements, the overall shape should be square or rectangular, multiple sets of light emitting element arrays should be connected in parallel to the electrodes, It is preferable that a plurality of sets of light emitting element arrays have opposite polarities, and a plurality of sets of light emitting element arrays are bent in a zigzag shape and combined.
  • Figures 26 to 31 illustrate some of these modifications.
  • Figure 26 shows a two-dimensional arrangement in the case of AC driving, in which a total of 40 LEDs are arranged.
  • FIG. 27 is a circuit diagram thereof. The difference from FIG. 6 is that some of the two sets of LED arrays share the n-electrode 24 (see FIG. 5).
  • the n-electrode 24 of the second LED from the right end of the first row of one LED array (shown in the figure) is connected to the LED located at the right end of the first row of the other LED array ( ⁇ in the figure). Shown) is shared with the n-electrode 24.
  • the edge wiring 28 at the end of the LED array portion a in the figure is formed in common without crossover.
  • Fig. 28 shows a two-dimensional arrangement in the case of AC drive, in which a total of 14 LEDs are arranged.
  • Figure 29 is the circuit diagram. The difference from FIG. 10 is that some of the two sets of LED arrays share the n-electrode 24.
  • the n-electrode 24 of the leftmost LED in the first row of one of the LED arrays is the second LED from the right end of the first row in the other LED array (indicated by ⁇ in the figure) Shared with n-electrode 24 Have been.
  • the air bridge wiring 28 at the end (y part in the figure) is formed in common.
  • FIG. 31 is a circuit diagram thereof. Also in this example, the air bridge wiring 28 at the end (a part) is commonly formed. Also in this configuration, it can be said that the n-electrode 24 in one LED array and the n-electrode 24 in the other LED array are shared.

Abstract

高い駆動電圧及び低い駆動電流で動作する発光装置。サファイア等の絶縁基板(10)上に複数のLED(1)を二次元的にモノリシック形成し、複数のLED(1)を直列接続してLEDアレイとする。2組のLEDアレイを互いに逆極性で電極(32)に接続する。LED(1)の間及びLED(1)と電極(32)間はエアブリッジ配線(28)とする。LEDアレイをシグザグ状に配置することで多数のLED(1)を形成し、高い駆動電圧と低い駆動電流を得る。2つのLEDアレイは逆極性であるため、電源として交流電源を使用できる。

Description

複数の発光素子を有する発光装置 技術分野
本発明は、 基板上に複数の発光素子が形成された発光装置に関する。 背景技術
発光素子 (LED) 等の発光手段が表示用途等に使用される場合には、 その使 用条件が駆動電圧約 1〜4V、 駆動電流が約 20mAとなっている。 ところで、 近年 G a N系化合物半導体を用いた短波長 LEDが開発され、 フルカラーや白色 等の固体光源が実用化されたことに伴い、 次第に LEDを照明用途にも応用する ことが検討されている。 LEDを照明用途に応用する場合に、 上述した駆動電圧 1〜4V、 駆動電流 20mAという使用条件とは異なる条件で使用される事態も 生じる。 このため、 LEDにより大電流を流し、 発光出力を大きくする工夫がな されている。 大電流を流すためには、 LEDの pn接合面積を大きくし、 電流密 度を小さく抑える必要がある。
LEDを照明用光源として使用する場合には、 電源として交流を使用し、 10 0V以上の駆動電圧で使用できることが便利である。 また、 同じ電力を投入して 同じ発光出力を得るのであれば、 低い電流値を保ちながら高い電圧を印加した方 が電力損失を小さくすることができる。 しかし、 従来の LEDでは、 必ずしも十 分に駆動電圧を高くすることはできなかった。 発明の開示
本発明の目的は、 高い駆動電圧で動作できる発光装置を提供することにある。 本発明は、 絶縁基板上に複数の GaN系発光素子が形成され、 前記複数の発光 素子がモノリシックに直列接続されることを特徴とする。
ここで、 前記複数の発光素子は、 前記基板上に二次元配置されていることが好 適である。
また、 前記複数の発光素子は 2組に分けられ、 2個の電極に互いに反対極性と なるように並列接続されてもよい。
前記複数の発光素子間の接続はエアプリッジ配線としてもよい。
前記複数の発光素子間の電気的な分離は、 前記基板として使用されるサフアイ ァにより行われてもよい。
また、 前記複数の発光素子は同数ずつ 2組に分けられ、 各組の発光素子アレイ はジグザグ状に配置し、 かつ、 2組の発光素子アレイは 2個の電極に互いに反対 極性となるように並列接続されてもよく、 前記 2組の発光素子アレイは、 互い違 いに配置してもよい。
また、 前記発光素子及び電極は、 平面形状が略正方形あるいは三角形状として もよい。
また、 前記複数の発光素子及び電極は、 全体形状が略正方形となるように配置 してもよい。
本発明において、 電極は、 交流電源用電極とすることができる。
また、 前記 2組の発光素子アレイは、 共通の n電極を有してもよい。
本発明では複数の発光素子をモノリシックに、 すなわち同一基板上に形成し、 これらを直列接続することで、 高駆動電圧を可能とする。 複数の発光素子を一方 向に接続することで直流駆動が可能となるが、 複数の発光素子を 2組に分け、 各 組の発光素子 (発光素子アレイ) を互いに逆極性となるように電極に接続するこ とで交流駆動も可能となる。 各組の個数は同数でもよく、 あるいは異なっていて もよい。
複数の発光素子を二次元配列する方法は種々存在するが、 基板専有面積をでき るだけ小さくすることが望ましい。 例えば、 2組の発光素子アレイをそれそれジ グザグ状に、 すなわち複数の発光素子を折れ曲がった直線上に配置し、 それそれ の発光素子アレイを互い違いに配置することで、 基板面積を有効活用して多数の 発光素子を接続することができる。 2組の発光素子ァレィを互い違いに配置する ことで、 配線の交叉部分が生じる場合もあるが、 発光素子間をエアブリッジ配線 で接続することにより交叉部分での短絡を有効に防止できる。 発光素子及び電極 の形状は任意であるが、 例えば平面形状が略正方形となるように形成することで 全体形状も略正方形となり、 標準的なマウント構造を使用できる。 発光素子及び 電極を正方形以外、 例えば三角形とした場合でも、 これらの三角形状を組み合わ せることで全体として略正方形を形成すれば、 同様に標準的なマウント構造を使 用できるようになる。 図面の簡単な説明 。
図 1は、 発光素子 (LED) の基本構成図である。
図 2は、 発光装置の等価回路図である。
図 3は、 2個の LEDの平面図である。
図 4は、 図 3の IV— IV断面図である。
図 5は、 発光装置の他の等価回路図である。
図 6は、 40個の LEDを二次元配列した説明図である。
図 7は、 図 6の回路図である。
図 8は、 6個の LEDを二次元配列した説明図である。
図 9は、 図 8の回路図である。
図 10は、 14個の LEDを二次元配列した説明図である。
図 11は、 図 10の回路図である。
図 12は、 6個の LEDを二次元配列した説明図である。
図 13は、 図 12の回路図である。
図 14は、 16個の LEDを二次元配列した説明図である。
図 15は、 図 14の回路図である。
図 16は、 2個の LEDを配列した説明図である。
図 17は、 図 16の回路図である。
図 18は、 4個の LEDを二次芫配列した説明図である。
図 19は、 図 18の回路図である。
図 20は、 3個の LEDを二次元配列した説明図である。
図 21は、 図 20の回路図である。
図 22は、 6個の LEDを二次元配列した説明図である。 図 23は、 図 22の回路図である。
図 24は、 5個の LEDを二次元配列した説明図である。
図 25は、 図 24の回路図である。
図 26は、 他の二次元配置説明図である。
図 27は、 図 26の回路図である。
図 28は、 他の二次元配置説明図である。
図 29は、 図 28の回路図である。
図 30は、 他の二次元配置説明図である。
図 31は、 図 30の回路図である。 発明を実施するための最良の形態
以下、 図面に基づき本発明の実施形態について説明する。
図 1には、 本実施形態において G a N系化合物半導体発光素子としての L E D 1の基本構成が示されている。 LED1は、 基板 10上に順次 GaN層 12、 S iド一プの n型 GaN層 14、 InGaN発光層 16、 AlGaN層 18、 p型 GaN層 20が積層され、 p型 GaN層 20に接して p電極 22、 n型 GaN層 14に接して n電極 24が形成される構成である。
図 1に示された LEDは以下のプロセスにより作製される。 すなわち、 まず、 MOCVD装置にてサファイア c面基板を水素雰囲気中で 1100°C;、 10分間 熱処理する。 そして、 温度を 500°Cまで降温させ、 シランガスとアンモニアガ スを 100秒間供給して不連続な S iN膜を基板 10上に形成する。 なお、 この プロセスはデバイス中の転位密度を低減させるためのものであり、 図では S iN 膜は省略している。 次に、 同一温度でトリメチルガリウム及びアンモニアガスを 供給して GaN層を 2 Onm厚成長させる。 温度を 1050°Cに昇温し、 再びト リメチルガリゥム及びアンモニアガスを供給してアンド一プ GaN (u-Ga N)層 12及び S iド一プの n型 GaN層 14を各 2〃m厚成長させる。 その後、 温度を 700°C程度まで降温して InGaN発光層 16を 2nm厚成長させる。 目標組成は x= 0. 15、 すなわち I n。. i5Gao.85Nである。 発光層 16成長 後、 温度を 1000°Cまで昇温して AlGaN正孔注入層 18を成長させ、 さら に p型 GaN層 20を成長させる。
p型 GaN層 20を成長させた後、 ウェハを MO CVD装置から取り出し、 N i 10 nm厚、 Au 10 nm厚を順次真空蒸着で成長層表面に形成する。 5 %の 酸素を含む窒素ガス雰囲気中で 520°C熱処理することで金属膜は p型透明電極 22となる。 透明電極形成後、 全面にフォトレジストを塗布し、 n型電極形成の ためのエッチングをフォトレジストをマスクとして行う。 エッチング深さは、 例 えば 600 nm程度である。 エッチングで露出した n型 G a N層 14上に T i 5 nm厚、 A15nm厚を形成し、 窒素ガス雰囲気中で 450 °C、 30分間熱処理 して n型電極 24を形成する。 最後に、 基板 10の裏面を 100〃mまで研磨し てチップを切り出し、 マウントすることで LED 1が得られる。
図 1では、 基板 10上に一つの GaN系 LED 1が形成されているが、 本実施 形態では、 基板 10上に LED 1をモノリシヅクに、 かつ二次元アレイ状に複数 形成し、 各 LEDを接続して発光装置 (チップ) を構成する。 ここで、 モノリシ ック」 とは、 1個の基板上に全ての素子が形成されていることを意味する。 図 2には、 発光装置の等価回路図が示されている。 図 2において、 2次元ァレ ィ状に形成された発光素子群は同数 (図では 4個) ずつ 2組に分けられ、 各組の LED 1はそれそれ直列接続され、 2組の LED列は電極 (駆動電極) に対して 逆極性となるように並列接続される。 このように L E D列が直列接続されること により、 各々の駆動電圧が加算された高い電圧で LED 1を駆動することができ る。 また、 各 LED列はその極性が互いに反対となるように電極に並列接続され ているので、 電源として交流電源を使用した場合にも、 電源の各周期中に必ずど ちらかの LED列が発光していることになるので、 効率のよい発光を行うことが できる。
図 3には、 基板 10上にモノリシックに形成された複数の LEDの部分的な平 面図が示されている。 また、 図 4は、 図 3の IV— IV断面図が示されている。 図 3において、 LED 1の上面には、 図 1に示されるように p電極 22及び n電 極 24が形成されている。 隣接する LED 1の p電極 22と n電極 24との間が エアプリヅジ配線 28により接続され、 複数の LED 1が直列接続される。 図 4において、 各 LED 1は説明の都合上簡略的に示されている。 すなわち、 n— GaN層 14、 p— GaN層 20、 p—電極 22、 n—電極 24のみが示さ れている。 実際には図 1に示されるように I nGaN発光層 16等が存在するこ とは云うまでもない。 エアブリッジ配線 28は、 p電極 22から n電極 24まで を空中を介して接続する。 これにより、 素子表面に絶縁膜を塗布し、 この上に電 極を形成して P電極 22と n電極 24とを電気的に接続する方法に比べ、 エッチ ング溝に沿って電極を配置する必要が無くなるので、 配線切れや絶縁膜から n層、 P層へ絶縁材料を構成する元素が熱拡散して L E D 1を劣化させるという問題を 回避できる。 エアプリヅジ配線 28は、 LED 1間のみならず LED 1と図示し ない電極との間の接続にも使用される。
また、 図 4に示されるように、 各 LED 1は互いに独立し、 電気的に絶縁され る必要がある。 このため、 各 LED 1はサファイア基板 10上で分離された構成 となっている。 サファイアはそれ自身絶縁体であるので、 LED 1をそれそれ電 気的に分離することができる。 このように、 サファイア基板 10を LEDの電気 的な分離を行うための抵抗体として使用することにより、 容易かつ確実に LED の電気的な分離を行うことができる。
なお、 発光素子としては、 pn接合を有する LEDの他、 MI Sとすることも できる。
図 5には、 発光装置の他の等価回路図が示されている。 図において、 20個の LED 1が直列接続されて 1つの LEDアレイを形成しており、 2つの LEDァ レイ (合計 40個の LED) が電源に並列に接続されている。 LED 1の駆動電 圧は 5 Vに設定されており、 各 LEDアレイの駆動電圧は 100Vとなっている。 2つの LEDアレイは図 2と同様に互いに反対極性となるように電源に並列接続 されており、 電源の極性がいずれであっても必ずどちらかの LEDアレイが発光 することになる。
図 6には、 二次元アレイが具体的に示されている。 図 2の等価回路図に対応す るものである。 図において、 サファイア基板 10上に合計 40個の LED 1が形 成されており、 それそれ 20個ずつ 2組に分けられ、 エアブリッジ配線 28によ り直列接続されて 2つの LEDアレイを形成している。 より詳細には、 各 LED 1は全て同形の正方形で同サイズであり、 1つの LEDアレイは上から 6個、 7 個、 7個とそれそれ直線上に配置され、 上から第 1列目 (6個) と第 2列目 (7 個) は互いに逆向きに形成され、 第 2列目と第 3列目も互いに逆向きに形成され る。 第 1列目と第 2列目、 第 2列目と第 3列目は互いに離間して配置されている。 これは、 後述するように他方の LEDアレイの列が交互に挿入されるためである。 第 1列目の右端の LED 1と第 2列目の右端の LED 1とはエアプリヅジ配線 2 8により接続される。 第 2列目の左端の LED 1と第 3列目の左端の LED 1も ェァブリッジ配線 28で接続されてジグザグ配列となる。 第 1列目の左端の L E D 1は基板 10の左上部に形成された電極 (パヅド) 32にェアブリッジ配線 2 8で接続され、 第 3列目の右端の LED 1は基板 10の右下部に形成された電極
(パッド) 32にエアブリッジ配線 28で接続される。 2つの電極 (パッド) 3 2も LED 1と同形の正方形である。 他方の LEDアレイは上述した一方の LE Dアレイの間隙に互い違いとなるように形成される。 すなわち、 他方の LEDァ レイは上から 7個、 7個、 6個とそれそれ直線上に配置され、 上から第 1列目は —方の LEDアレイの第 1列目と第 2列目の間に形成され、 第 2列目は一方の L EDアレイの第 2列目と第 3列目の間に形成され、 第 3列目は一方の LEDァレ ィの第 3列目の下に形成される。 他方の LEDアレイの第 1列目と第 2列目、 及 び第 2列目と第 3列目も互いに逆方向となるように形成され、 第 1列目の右端の LED 1は第 2列目の右端の LED 1にェアブリヅジ配線 28で接続され、 第 2 列目の左端の LED 1は第 3列の左端の LED 1にエアブリッジ配線 28で接続 されてジグザグ状となる。 他方の LEDアレイの第 1列目の左端の LEDは基板
10の左上部に形成された電極 32にェアブリッジ配線 28で接続され、 第 3列 目の右端の LED 1は基板 10の右下部に形成された電極 32にエアプリヅジ配 線 28で接続される。 一方の LEDアレイと他方の LEDアレイの電極 32に対 する極性は互いに逆である。 発光装置 (チップ) の全体形状は長方形である。 電 源が供給される 2つの電極 32は、 長方形の対角位置に離間して形成される点も 着目されたい。
図 7には、 図 6の回路図が示されている。 それそれの LEDアレイはジグザグ 状に屈曲しつつ直列接続され、 2つの L E Dアレイはジグザグ状の各列が互いの 列の間に形成される様子が明らかとなろう。 このような配置とすることで、 多数 の LED 1を小さな基板 10上に配置することができる。 また、 40個の LED 1に対して電極 32が 2個でよいので、 この点でも基板 10の使用効率を向上さ せることができる。 また、 各 LED 1を分離するために LED 1を個別に形成す る場合にはウェハをカツトして分離する必要があるのに対し、 本実施形態では各 LED 1の分離をエッチングで行うことができるので、 LED 1の間隔を狭くす ることができる。 これにより、 サファイア基板 10の大きさをより小さくするこ とができる。 LED 1同士の分離は、 フォトレジストや反応性イオンエッチング、 ゥェヅトエッチングを併用することで LED 1以外の領域を基板 10に達するま でエッチング除去することで達成される。 各 LEDアレイは交互に発光するので、 発光効率を向上できるとともに放熱特性も向上させることができる。 また、 直列 接続させる LED 1の数を変更すれば、 全体としての駆動電圧も変更できる。 ま た、 LED 1の面積を小さくすると、 1つの LED当たりの駆動電圧を高くする こともできる。 LED 1を 20個直列に接続した場合、 商用電源 (100 V、 6 0 H z) で駆動すると、 およそ 15 OmWの発光出力を得ることができる。 この 場合の駆動電流としては 2 OmA程度である。
なお、 図 7から分かるように、 2つの LEDアレイをジグザグ状に交互に配列 する場合、 ェアブリヅジ配線 28に交叉部分 34が必然的に発生する。 例えば、 他方の LEDアレイの第 1列目と第 2列目を接続する際に、 一方の LEDアレイ の第 1列目と第 2列目を接続するための配線部分と交叉する。 しかし、 本実施形 態のエアブリッジ配線 28は、 上述したように基板 10に接着しておらず、 基板 10から離れて空中を通過するので、 交叉部分 34においてエアブリッジ配線 2 8同士が接触し、 短絡することを容易に回避することができる。 エアブリッジ配 線 28を用いる利点の一つである。 エアブリッジ配線 28は、 例えば以下のよう にして形成される。 すなわち、 全面に 2〃mの厚さのフォトレジストを塗布し、 エアブリッジ配線の形状に穴を開けた後にポストべ一クする。 その上に、 真空蒸 着で Tiを 10nm、 Auを 10nm、 この順序で蒸着する。 さらにその上の全 面に 2 m厚さでフォトレジストを再度塗布し、 エアプリッジ配線を形成する部 分のみに穴を開ける。 次いで、 T iと Auを電極として電解液中でイオンプレー ティング (メツキ) により電極全面に 3〜 5 mの厚さの Auを付着させる。 そ の後、 試料をアセトンに浸し、 超音波洗浄によりフォトレジストを溶解除去して エアプリヅジ配線 28が完成する。
このように、 複数の LED 1を二次元アレイ状に配置することで、 基板面積を 有効に活用しつつ高駆動電圧、 特に商用電源での駆動も可能となるが、 二次元ァ レイのパターンとしてはこの他にも種々のパターンが可能である。 一般に、 二次 元アレイパターンとしては、 以下の条件を備えることが望ましい。
(1) 各 LEDに均一に電流を流し、 均一な発光を得るためには各 LEDの形状、 電極位置が同一であることが望ましい。
(2) ウェハをカットしてチップにするためには、 各 LEDの辺は直線であるこ とが望ましい。
(3) 光取り出し効率を向上させるため、 標準的なマウントを使用して周辺から の反射を利用するためには LEDは平面形状が正方形に近い形状が望ましい。
(4) 2つの電極 (ボンディングパット) の大きさは 100 zm角程度で、 互い に離れていることが望ましい。
(5) ウェハ面積の有効利用のため、 配線、 パッドの占める割合は小さい方が望 ましい。
もちろん、 これらは必須ではなく、 例えば各 LEDの形状としては平面形状三 角形を用いることも可能であろう。 各 LEDの形状が三角形であっても、 これら を組み合わせることで全体形状を略正方形とすることができる。 以下、 二次元ァ レイパターンの例をいくつか示す。
図 8には、 合計 6個の LED 1を二次元に配置した例が示されており、 図 9に はその回路図が示されている。 図 8の配置は、 基本的には図 6の配置と同様であ り、 合計 6個の LEDアレイは同数ずつ 2組に分けられ、 それそれ直列接続され た 3個の LEDから構成される。 一方の LEDアレイはジグザグ状に配列され、 上から第 1列目は 1個の LED 1、 第 2列目は 2個の LED 1が形成される。 第 1列目の L E Dと第 2列目の右端の L E D 1はエアプリヅジ配線 28で直列接続 され、 第 2列目の 2個の LED 1もエアプリヅジ配線 28で直列接続される。 基 板 10の左上部と左下部に電極 (パッド) 32が形成され、 第 1列目の LED 1 は左上部の電極 32にェアブリヅジ配線で接続され、 第 2列目の左端の LED 1 は左下部の電極 32に接続される。 他方の LEDアレイもジグザグ状に配列され、 上から第 1列目は 2個の LED 1、 第 2列目は 1個の LED 1が形成される。 他 方の LEDアレイの第 1列目は前記一方の LEDアレイの第 1列目と第 2列目の 間に形成され、 他方の LEDアレイの第 2列目は前記一方の LEDアレイの第 2 列目の下方に形成される。 第 1列目の右端の LED 1は第 2列目の LED 1にェ アブリヅジ配線 28で直列接続され、 第 1列目の 2個の LED 1同士もエアプリ ヅジ配線 28で直列接続される。 第 1列目の左端の LED 1は左上部の電極 32 にェアブリヅジ配線 28で接続され、 第 2列目の LED 1は左下部の電極 32に エアブリッジ配線 28で接続される。 図 9から分かるように、 この例でも 2つの LEDアレイは互いに並列に電極 32に接続され、 かつ、 互いに逆極性となるよ うに接続される。 したがって、 交流電源を供給した場合、 2つの LEDアレイは 交互に発光することになる。
図 10には、 合計 14個の LEDを二次元配置した例が示されており、 図 11 にはその回路図が示されている。 合計 14個の L E Dアレイは 2組に分けられ、 それそれ直列接続された 7個の LEDから構成される。 一方の LEDアレイはジ グザグ状に配列され、 上から第 1列目は 3個の LED 1、 第 2列目は 4個の LE D 1が形成される。 第 1列目の左端の LEDと第 2列目の左端の LED 1はエア ブリッジ配線 28で直列接続され、 第 1列目の 3個の LED同士、 及び第 2列目 の 4個の LED 1同士もェアブリヅジ配線 28で直列接続される。 基板 10の右 上部と右下部に電極 (パッド) 32が形成され、 第 1列目の右端の LED 1は右 上部の電極 32にェアブリッジ配線で接続され、 第 2列目の右端の LED 1は右 下部の電極 32に接続される。 他方の LEDアレイもジグザグ状に配列され、 上 から第 1列目は 4個の LED 1、 第 2列目は 3個の LED 1が形成される。 他方 の LEDアレイの第 1列目は前記一方の LEDアレイの第 1列目と第 2列目の間 に形成され、 他方の LEDアレイの第 2列目は前記一方の LEDアレイの第 2列 目の下方に形成される。 第 1列目の左端の LED 1は第 2列目の左端の LED 1 にエアブリッジ配線 28で直列接続される。 第 1列目の 4個の LED 1同士、 及 び第 2列目の 3個の LED 1同士も直列接続される。 第 1列目の右端の LED 1 は右上部の電極 32にエアプリヅジ配線 28で接続され、 第 2列目の右端の LE D 1は右下部の電極 32にェアブリヅジ配線 28で接続される。 図 1 1から分か るように、 この例でも 2つの LEDアレイは互いに並列に電極 32に接続され、 かつ、 互いに逆極性となるように接続される。 したがって、 交流電源を供給した 場合、 2つの LEDアレイは交互に発光することになる。
図 6、 図 8、 図 10の二次元パターンに共通する特徴としては、 各 LED 1が 略正方形の同形、 同サイズであること、 2つの電極 (パッド) も略正方形であり、 隣接形成されていない (離間形成されている) こと、 2つの LEDアレイの組み 合わせであること、 2つの LEDアレイは屈曲しつつチップ上に互いに交錯する ように形成されること、 2つの LEDアレイは互いに逆極性となるように電極に 接続されること、 等である。
図 12には、 平面形状が三角形の LEDを二次元配列した場合の例が示されて おり、 図 13にはその回路図が示されている。 図 12において、 合計 6個の LE D 1 a、 l b、 l c、 l d、 1 e、 1 fがその平面形状が三角形状となるように 形成されている。 LED l aと LED 1 eが三角形の一辺で対向して 2つで略正 方形となるように配置され、 LED 1 bと 1: fが対向して 2つで略正方形となる ように配置される。 また、 LED 1 dと電極 32が対向して接続し、 LED l c と電極 32が対向して接続する。 2つの電極 32も LEDと同様に平面形状が三 角形状であり、 同様に略正方形となるように配置される。 LED同士の対向する 辺は n電極 24を構成し、 すなわち、 対向する 2つの LEDは n電極 24を共有 する。 LEDと電極 32も n電極接続である。 この配置も、 上述した例と同様に 合計 6個の LEDは 2組に分けられる。 一方の LEDアレイは、 LED l a、 L ED l b、 LED 1 cからなるアレイであり、 L E D 1 aの p電極 22は電極 3 2にェアブリヅジ配線 28で接続され、 その n電極 24は LED 1 bの p電極 2 2とエアプリヅジ配線 28で接続される。 LED 1 bの n電極 24は LED 1 c の p電極 22とエアプリヅジ配線 28で接続される。 LED 1 cの n電極 24は 電極 32に接続される。 他方の LEDアレイは、 LED l d、 LED l e、 LE D 1 fから構成され、 電極 32と LED 1 fの p電極 22はェアブリヅジ配線 2 8で接続され、 LED 1 fの n電極 24は LED 1 eの p電極 22とエアプリヅ ジ配線 28で接続され、 LED 1 eの n電極 24と LED 1 dの p電極 22はェ アプリッジ配線 28で接続され、 LED 1 dの n電極 24は電極 32に接続され る
図 13において、 一方の LEDアレイを構成する LED 1 aと他方の LEDァ レイを構成する LED 1 eの n電極が接続されており、 一方の LEDアレイを構 成する LED 1 bと他方の LEDアレイを構成する LED 1 fの n電極が接続さ れている点にも着目されたい。 2組の LEDアレイのいくつかの n電極を共有す ることで、 回路配線を削減することができる。 また、 この例においても、 2つの LEDアレイは並列に電極 32に接続され、 かつ、 互いに逆極性となるように接 続される。 また、 各 LEDは同形、 同サイズであり、 各 LEDを一つの辺で対向 させるとともに電極 32も三角形状とすることで L E D及び電極を高密度に形成 して必要な基板面積を小さくすることができる。
図 14には、 平面形状が三角形の LEDを二次元配列した他の例が示されてお り、 図 15にはその回路図が示されている。 この例では、 合計 16個の LED 1 a〜 1 rが二次元形成されている。 L ED 1 aと 1 j、 lbと lk、 l cと lm、 I dと ln、 l eと lp、 I f と lq、 1 gと 1 rがそれそれ三角形の一つの辺 で対向する。 対向する辺には n電極 24が共通形成されている。 また、 LED 1 iと電極 32が対向し、 LED 1 hと電極 32が対向する。 一方の LEDアレイ は LED la、 lb、 1 c、 1 d、 1 e、 1 f、 1 g、 lhから構成され、 他方 の LEDアレイは LED 1 r、 1 qs 1 p、 1 n、 1 m、 1 k、 1 j、 l iから 構成される。 LED 1 bの n電極 24はェアブリヅジ配線 28により LED 1 c の p電極 22に接続され、 LED 1 eの n電極 2 もエアプリッジ配線 28によ り LED 1 fの p電極 22に接続される。 また、 L ED 1 <¾の n電極 24もエア プリヅジ配線 28により LED 1 pの p電極 22に接続され、 LED 1111の11電 極 24もェアブリヅジ配線 28により LED 1 kの p電極 22に接続される。 図 14においても、 図 12と同様に交叉部分が生じるが、 エアブリッジ配線 28に より短絡を回避できる。 また、 この例においても 2組の LEDアレイのいくつか の n電極 24を共有構造とすることで必要な配線を削減している。 また、 この例 においても 2つの LEDアレイは並列で互いに逆極性で電極 32に接続されてお り、 交流駆動が可能である。 図 12においては合計 6個の LEDの場合、 図 14 においては合計 16個の LEDの場合について示したが、 他の個数の LEDでも 同様に二次元配列できる。 本願出願人は、 38個の LEDを二次元配列した発光 装置も作成している。
以上、 交流駆動の場合について説明したが、 直流駆動も可能であることは言う までもない。 この場合、 LEDアレイを互いに逆極性となるように電極に接続す るのではなく、 直流電源の極性の向きに合わせて L E Dアレイを順方向に接続す ればよい。 複数の LEDを直列接続することで、 高電圧駆動が可能である。 以下、 直流駆動の場合についても説明する。
図 16には、 2個の LEDを直列接続した例が示されており、 図 17にはその 回路図が示されている。 各 LED 1は平面形状が矩形状であり、 2個の LED間 はエアプリッジ配線 28で接続される。 電極 32は各 LED 1の近傍に形成され ており、 電極 32と LED 1とで長方形の領域を形成する。 すなわち、 電極 32 は長方形領域の一部を占有し、 長方形領域の他の領域に LED 1が形成されてい る o
図 18には、 合計 4個の LEDを二次元配列した例が示されており、 図 19に はその回路図が示されている。 図 16の LED 1を 2個に分割し、 それぞれを並 列に接続したものである。 2個の LEDからなる LEDアレイを 2組並列に順方 向接続したと云うこともできる。 LED 1 aと 1 bで一つの LEDアレイを構成 し、 LED 1 cと 1 dでもう一つの LEDアレイを構成する。 LED laと LE D 1 cは p電極 22及び n電極 24を共有し、 LED lbと LEDl dも p電極 22及び n電極 24を共有する。 この構成によれば、 図 16に比べて電流が均一 化する効果がある。
図 20は、 合計 3個の LEDを二次元配列した例が示されており、 図 21には その回路図が示されている。 LED l a、 lb、 l cは同形ではなく、 LED 1 aの一部に電極 32が形成されている。 L ED 1 aの n電極 24と L ED 1 bの P電極は LED 1 bの上を跨ぐェアブリッジ配線 28で接続される。 各 LEDの 形状及び配置を工夫することで、 3個の LEDであっても発光装置 (チップ) 全 体の外観形状を略正方形とすることができる。
図 22には、 合計 6個の LEDを二次元配列した例が示されており、 図 23に はその回路図が示されている。 各 LED 1 a〜l fは同形、 同サイズである。 L ED 1 a〜l :Πま直列接続される。 LED 1 a〜l cは直線上に配置され、 LE D 1 d〜l fは他の直線上に配置される。 LED l cと LED 1 dはエアプリヅ ジ配線 28で接続される。 この例においても、 チップの全体形状を略正方形とす ることができる。
図 24には、 合計 5個の LEDを二次元配列した例が示されており、 図 25に はその回路図が示されている。 LEDl a~l eは同形 (長方形) 、 同サイズで ある。 この例においても、 全体形状を略正方形とすることができる。
以上、 本発明の実施形態について説明したが、 本発明はこれに限定されるもの ではなく種々の変更が可能である。 特に、 複数の発光素子 (LED等) を二次元 配置する場合のパターンは上述したパターン以外にも可能である。 この場合、 隣 接する発光素子間で電極を共有して配線を少なくすること、 全体形状を正方形あ るいは長方形とすること、 複数組の発光素子アレイを電極に並列接続すること、 交流駆動の場合に複数組の発光素子ァレィを互い逆極性とすること、 複数組の発 光素子アレイをそれそれジグザグ状に屈曲させて組み合わせること、 等が好適で ある。
図 26〜図 31には、 これらの変更例のいくつかが例示されている。 図 26は 交流駆動の場合の二次元配置であり、 合計 40個の LEDが配置されている。 図 27はその回路図である。 図 6と異なる点は、 2組の LEDアレイのいくつかが n電極 24を共有する点である (図 5参照) 。 例えば、 一方の LEDアレイの第 1列の右端から 2番目に位置する LED (図中ひで示す) の n電極 24は、 他方 の LEDアレイの第 1列の右端に位置する LED (図中^で示す) の n電極 24 と共有されている。 なお、 LEDアレイの端部 (図中ァ部分) におけるエアプリ ヅジ配線 28は、 交叉させることなく共通形成されている。
図 28は、 交流駆動の場合の二次元配置であり、 合計 14個の LEDが配置さ れている。 図 29はその回路図である。 図 10と異なる点は、 2組の LEDァレ ィのいくつかが n電極 24を共有する点である。 例えば、 一方の LEDアレイの 第 1列の左端の LED (図中ひで示す) の n電極 24は、 他方の LEDアレイの 第 1列の右端から 2番目に位置する LED (図中^で示す) の n電極 24と共有 されている。 また、 端部 (図中 y部分) におけるエアブリッジ配線 28は共通形 成されている。
図 30は、 交流駆動の場合の二次元配置であり、 合計 6個の LEDが配置され ている。 図 31はその回路図である。 この例においても、 端部 (ァ部) のエアプ リッジ配線 28が共通形成されている。 この構成も、 一方の LEDアレイにおけ る n電極 24と他方の LEDアレイにおける n電極 24が共有されていると云う ことができる。

Claims

請 求 の 範 囲
1 . 絶縁基板上に複数の G a N系発光素子が形成され、 前記複数の発光素子がモ ノリシックに直列接続されることを特徴とする発光装置。
2 . 請求項 1記載の装置において、
前記複数の発光素子は、 前記基板上に二次元配置されていることを特徴とする 発光装置。
3 . 請求項 1記載の装置において、
前記複数の発光素子は 2組に分けられ、 2個の電極に互いに反対極性となるよ うに並列接続されることを特徴とする発光装置。
4 . 請求項 1記載の装置において、
前記複数の発光素子間の接続はエアプリッジ配線であることを特徴とする発光 装置。
5 . 請求項 1記載の装置において、
前記複数の発光素子間の電気的な分離は、 前記基板として使用されるサフアイ ァにより行われることを特徴とする発光装置。
6 . 請求項 2記載の装置において、
前記複数の発光素子は同数ずつ 2組に分けられ、 各組の発光素子ァレイはジグ ザグ状に配置され、 かつ、 2組の発光素子アレイは 2個の電極に互いに反対極性 となるように並列接続されることを特徴とする発光装置。
7 . 請求項 6記載の装置において、
前記 2組の発光素子アレイは、 互い違いに配置されることを特徴とする発光装
8 . 請求項 6記載の装置において、
前記発光素子及び電極は、 平面形状が略正方形であることを特徴とする発光装 置。
9 . 請求項 6記載の装置において、
前記発光素子及び電極は、 平面形状が三角形状であることを特徴とする発光装 置。
1 0 . 請求項 2記載の装置において、
前記複数の発光素子及び電極は、 全体形状が略正方形となるように配置される ことを特徴とする発光装置。
1 1 . 請求項 1 0記載の装置において、
前記複数の発光素子からなる発光素子アレイはジグザグ状に配置されることを 特徴とする発光装置。 ,
1 2 . 請求項 6記載の装置において、
前記電極は、 交流電源用電極であることを特徴とする発光装置。
1 3 . 請求項 6記載の装置において、
前記 2組の発光素子アレイは、 共通の n電極を有することを特徴とする発光装 置。
PCT/JP2003/010922 2002-08-29 2003-08-28 複数の発光素子を有する発光装置 WO2004023568A1 (ja)

Priority Applications (22)

Application Number Priority Date Filing Date Title
EP20030794115 EP1553641B1 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting diodes
EP09014623.4A EP2154721B1 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting diodes
US10/525,998 US7417259B2 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting elements
EP18150767.4A EP3389094A1 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting elements
DE60336252T DE60336252D1 (de) 2002-08-29 2003-08-28 Lichtemittierendes bauelement mit lichtemittierenden dioden
AT03794115T ATE500616T1 (de) 2002-08-29 2003-08-28 Lichtemittierendes bauelement mit lichtemittierenden dioden
US11/705,205 US7956367B2 (en) 2002-08-29 2007-02-12 Light-emitting device having light-emitting elements connected in series
US12/060,693 US8129729B2 (en) 2002-08-29 2008-04-01 Light emitting device having light emitting elements and an air bridge line
US12/139,927 US7897982B2 (en) 2002-08-29 2008-06-16 Light emitting device having common N-electrode
US12/352,296 US8084774B2 (en) 2002-08-29 2009-01-12 Light emitting device having light emitting elements
US12/352,240 US8097889B2 (en) 2002-08-29 2009-01-12 Light emitting device having light emitting elements with a shared electrode
US12/352,271 US7569861B2 (en) 2002-08-29 2009-01-12 Light emitting device having light emitting elements
US12/352,280 US7615793B2 (en) 2002-08-29 2009-01-12 AC driven light—emitting device
US12/478,456 US7667237B2 (en) 2002-08-29 2009-06-04 Light emitting device having light emitting elements
US12/479,380 US7646031B2 (en) 2002-08-29 2009-06-05 Light emitting device having light emitting elements
US12/652,518 US8680533B2 (en) 2002-08-29 2010-01-05 Light-emitting device having light-emitting elements with a shared electrode
US12/958,947 US8735918B2 (en) 2002-08-29 2010-12-02 Light-emitting device having light-emitting elements with polygonal shape
US13/584,140 US20120305951A1 (en) 2002-08-29 2012-08-13 Light-emitting device having light-emitting elements
US13/610,819 US8735911B2 (en) 2002-08-29 2012-09-11 Light emitting device having shared electrodes
US13/890,878 US9947717B2 (en) 2002-08-29 2013-05-09 Light-emitting device having light-emitting elements and electrode spaced apart from the light emitting element
US14/583,476 US20150108497A1 (en) 2002-08-29 2014-12-26 Light-emitting device having light-emitting elements
US15/430,440 US20170154922A1 (en) 2002-08-29 2017-02-10 Light-emitting device having an array of light-emitting elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002/249957 2002-08-29
JP2002249957A JP3822545B2 (ja) 2002-04-12 2002-08-29 発光装置

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US10/525,998 A-371-Of-International US7417259B2 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting elements
US10525998 A-371-Of-International 2003-08-28
US11/705,205 Division US7956367B2 (en) 2002-08-29 2007-02-12 Light-emitting device having light-emitting elements connected in series
US12/060,693 Continuation US8129729B2 (en) 2002-08-29 2008-04-01 Light emitting device having light emitting elements and an air bridge line

Publications (1)

Publication Number Publication Date
WO2004023568A1 true WO2004023568A1 (ja) 2004-03-18

Family

ID=31972605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010922 WO2004023568A1 (ja) 2002-08-29 2003-08-28 複数の発光素子を有する発光装置

Country Status (10)

Country Link
US (17) US7417259B2 (ja)
EP (10) EP2157609A3 (ja)
KR (1) KR100697803B1 (ja)
CN (2) CN100421266C (ja)
AT (1) ATE500616T1 (ja)
DE (1) DE60336252D1 (ja)
ES (1) ES2362407T3 (ja)
RU (1) RU2295174C2 (ja)
TW (1) TWI280672B (ja)
WO (1) WO2004023568A1 (ja)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004337A1 (en) * 2004-06-30 2006-01-12 Seoul Opto-Device Co., Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
WO2006083065A1 (en) * 2005-02-04 2006-08-10 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of light emitting cells and method of fabricating the same
DE102005055997A1 (de) * 2005-05-02 2006-11-09 Hieke, Bernhard Homogene Lichtquelle
WO2007001124A1 (en) 2005-06-29 2007-01-04 Seoul Opto Device Co., Ltd. Light emitting diode having a thermal conductive substrate and method of fabricating the same
WO2008038918A1 (en) 2006-09-30 2008-04-03 Seoul Opto Device Co., Ltd. Light emitting diode having light emitting cell with different size and light emitting device thereof
NL1031772C2 (nl) * 2005-05-13 2008-05-14 Ind Tech Res Inst Wisselstroom licht uitzendende inrichting.
EP1973161A2 (en) 2007-03-19 2008-09-24 Seoul Opto-Device Co., Ltd. Light emitting diode
JP2008544569A (ja) * 2005-06-28 2008-12-04 ソウル オプト デバイス カンパニー リミテッド 交流用発光素子
US7474681B2 (en) 2005-05-13 2009-01-06 Industrial Technology Research Institute Alternating current light-emitting device
JP2009519604A (ja) * 2005-12-16 2009-05-14 ソウル オプト デバイス カンパニー リミテッド 改善された透明電極構造体を有する交流駆動型発光ダイオード
DE112007002696T5 (de) 2006-12-26 2009-11-05 Seoul Opto Device Co. Ltd., Ansan Licht emittierende Vorrichtung
JP2010510651A (ja) * 2006-11-20 2010-04-02 ソウル オプト デバイス カンパニー リミテッド 交流駆動型の発光素子
US7700960B2 (en) 2006-01-09 2010-04-20 Seoul Opto Device Co., Ltd. Light emitting diode with ITO layer and method for fabricating the same
US7709849B1 (en) 2008-12-17 2010-05-04 Seoul Semiconductor Co., Ltd. Light emitting diode having plurality of light emitting cells and method of fabricating the same
US7723737B2 (en) 2005-06-22 2010-05-25 Seoul Opto Device Co., Ltd. Light emitting device
US7763900B2 (en) 2005-01-26 2010-07-27 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of light emitting cells connected in series and method of fabricating the same
US7947993B2 (en) 2006-12-18 2011-05-24 Seoul Opto Device Co., Ltd. Light emitting device having isolating insulative layer for isolating light emitting cells from each other and method of fabricating the same
EP2341543A1 (en) 2009-12-31 2011-07-06 Seoul Opto Device Co., Ltd. Light emitting device and method of fabricating the same
US8030669B2 (en) 2004-09-13 2011-10-04 Rohm Co., Ltd. Semiconductor light emitting device
US8040050B2 (en) 2008-06-30 2011-10-18 Samsung Led Co., Ltd. AC driven light emitting device
KR20110121178A (ko) 2010-04-30 2011-11-07 서울옵토디바이스주식회사 복수개의 발광셀들을 갖는 발광 다이오드
WO2012009086A1 (en) 2010-07-14 2012-01-19 General Electric Company System and method for driving light emitting diodes
KR101121726B1 (ko) 2005-02-03 2012-03-23 서울반도체 주식회사 발광 장치
KR20120031473A (ko) 2011-12-27 2012-04-03 서울옵토디바이스주식회사 복수개의 발광셀들을 갖는 웨이퍼 레벨 발광 다이오드 패키지 및 그것을 제조하는 방법
US8154031B2 (en) * 2005-02-28 2012-04-10 Osram Opto Semiconductors Gmbh Module comprising radiation-emitting semiconductor bodies
US8183072B2 (en) 2008-12-31 2012-05-22 Seoul Opto Device Co., Ltd. Light emitting device having plurality of non-polar light emitting cells and method of fabricating the same
US8211724B2 (en) 2008-12-31 2012-07-03 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of non-polar light emitting cells and a method of fabricating the same
US8232571B2 (en) 2008-12-24 2012-07-31 Seoul Opto Device Co., Ltd. Light emitting device having plurality of light emitting cells and method of fabricating the same
US8247980B2 (en) 2008-06-30 2012-08-21 Samsung Led Co., Ltd. LED driving circuit and light emitting diode array device
US8288781B2 (en) 2008-09-30 2012-10-16 Seoul Opto Device Co., Ltd. Light emitting device and method of fabricating the same
KR101202175B1 (ko) 2012-03-26 2012-11-15 서울반도체 주식회사 발광 장치
US8338836B2 (en) 2006-11-21 2012-12-25 Seoul Opto Device Co., Ltd. Light emitting device for AC operation
KR101216938B1 (ko) 2004-10-28 2012-12-31 서울반도체 주식회사 다수의 셀이 결합된 발광 소자 및 이의 제조 방법 및 이를이용한 발광 장치
KR101216937B1 (ko) 2011-04-07 2012-12-31 서울반도체 주식회사 다수의 셀이 결합된 발광 소자 및 이의 제조 방법 및 이를 이용한 발광 장치
JP2013048162A (ja) * 2011-08-29 2013-03-07 Seiwa Electric Mfg Co Ltd 半導体発光素子及び発光装置
WO2013104250A1 (zh) 2012-01-10 2013-07-18 四川新力光源股份有限公司 交流电直接恒流驱动的白光led发光装置
US8507923B2 (en) 2007-10-29 2013-08-13 Seoul Opto Device Co., Ltd. Light emitting diode package
US8598598B2 (en) 2005-09-30 2013-12-03 Seoul Opto Device Co., Ltd. Light emitting device having vertically stacked light emitting diodes
US8614458B2 (en) 2006-02-09 2013-12-24 Seoul Opto Device Co., Ltd. Patterned substrate for light emitting diode and light emitting diode employing the same
US8629471B2 (en) 2010-07-22 2014-01-14 Seoul Opto Device Co., Ltd. Light emitting diode
US8704241B2 (en) 2005-05-13 2014-04-22 Epistar Corporation Light-emitting systems
KR20140081638A (ko) 2012-12-21 2014-07-01 서울바이오시스 주식회사 발광 다이오드 및 그것을 제조하는 방법
US8896216B2 (en) 2005-06-28 2014-11-25 Seoul Viosys Co., Ltd. Illumination system
US8901575B2 (en) 2005-08-09 2014-12-02 Seoul Viosys Co., Ltd. AC light emitting diode and method for fabricating the same
US8937327B2 (en) 2009-03-31 2015-01-20 Seoul Semiconductor Co., Ltd. Light emitting device having plurality of light emitting cells and method of fabricating the same
DE102014011893A1 (de) 2013-08-16 2015-02-19 Seoul Viosys Co., Ltd. Leuchtdiode
US9048409B2 (en) 2010-09-24 2015-06-02 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US9093627B2 (en) 2012-12-21 2015-07-28 Seoul Viosys Co., Ltd. Light emitting diode and method of fabricating the same
KR20160024370A (ko) 2016-02-11 2016-03-04 서울바이오시스 주식회사 웨이퍼 레벨 발광 다이오드 패키지 및 그것을 제조하는 방법
US9356212B2 (en) 2012-12-21 2016-05-31 Seoul Viosys Co., Ltd. Light emitting diode and method of fabricating the same
US9472593B2 (en) 2009-02-26 2016-10-18 Bridgelux, Inc. Light sources utilizing segmented LEDs to compensate for manufacturing variations in the light output of individual segmented LEDs
US9847371B2 (en) 2009-02-12 2017-12-19 Seoul Semiconductor Co., Ltd. Light emitting diode chip for high voltage operation and light emitting diode package including the same
US10580929B2 (en) 2016-03-30 2020-03-03 Seoul Viosys Co., Ltd. UV light emitting diode package and light emitting diode module having the same

Families Citing this family (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60336252D1 (de) 2002-08-29 2011-04-14 Seoul Semiconductor Co Ltd Lichtemittierendes bauelement mit lichtemittierenden dioden
US6957899B2 (en) * 2002-10-24 2005-10-25 Hongxing Jiang Light emitting diodes for high AC voltage operation and general lighting
US7213942B2 (en) * 2002-10-24 2007-05-08 Ac Led Lighting, L.L.C. Light emitting diodes for high AC voltage operation and general lighting
US7005679B2 (en) 2003-05-01 2006-02-28 Cree, Inc. Multiple component solid state white light
EP1658642B1 (en) 2003-08-28 2014-02-26 Panasonic Corporation Semiconductor light emitting device, light emitting module, lighting apparatus, display element and manufacturing method of semiconductor light emitting device
US7915085B2 (en) 2003-09-18 2011-03-29 Cree, Inc. Molded chip fabrication method
TW200529464A (en) * 2004-02-27 2005-09-01 Super Nova Optoelectronics Corp Gallium nitride based light-emitting diode structure and manufacturing method thereof
TW200501464A (en) 2004-08-31 2005-01-01 Ind Tech Res Inst LED chip structure with AC loop
US8981876B2 (en) 2004-11-15 2015-03-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Piezoelectric resonator structures and electrical filters having frame elements
WO2006068297A1 (en) * 2004-12-22 2006-06-29 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device, illumination module, illumination apparatus, method for manufacturing semiconductor light emitting device, and method for manufacturing semiconductor light emitting element
KR101274041B1 (ko) * 2004-12-31 2013-06-12 서울반도체 주식회사 발광 장치
US7221044B2 (en) 2005-01-21 2007-05-22 Ac Led Lighting, L.L.C. Heterogeneous integrated high voltage DC/AC light emitter
US7525248B1 (en) 2005-01-26 2009-04-28 Ac Led Lighting, L.L.C. Light emitting diode lamp
US7535028B2 (en) * 2005-02-03 2009-05-19 Ac Led Lighting, L.Lc. Micro-LED based high voltage AC/DC indicator lamp
US8272757B1 (en) 2005-06-03 2012-09-25 Ac Led Lighting, L.L.C. Light emitting diode lamp capable of high AC/DC voltage operation
KR100691497B1 (ko) * 2005-06-22 2007-03-09 서울옵토디바이스주식회사 발광 소자 및 이의 제조 방법
KR100616415B1 (ko) * 2005-08-08 2006-08-29 서울옵토디바이스주식회사 교류형 발광소자
KR101156452B1 (ko) * 2005-08-25 2012-06-13 서울옵토디바이스주식회사 다수의 셀이 결합된 발광 소자
CN100413071C (zh) * 2005-09-21 2008-08-20 杭州士兰明芯科技有限公司 使用交流电源的发光二极管灯及其制造方法
KR101158071B1 (ko) * 2005-09-28 2012-06-22 서울옵토디바이스주식회사 다수의 셀이 결합된 발광 소자 및 이의 제조 방법
KR100721454B1 (ko) * 2005-11-10 2007-05-23 서울옵토디바이스주식회사 광 결정 구조체를 갖는 교류용 발광소자 및 그것을제조하는 방법
US7948770B2 (en) * 2005-12-09 2011-05-24 Industrial Technology Research Institute AC—LED system in single chip with three metal contacts
KR101158073B1 (ko) * 2005-12-13 2012-06-22 서울옵토디바이스주식회사 다수개의 발광 셀이 어레이된 발광 소자
TWI331406B (en) * 2005-12-14 2010-10-01 Advanced Optoelectronic Tech Single chip with multi-led
KR101055772B1 (ko) 2005-12-15 2011-08-11 서울반도체 주식회사 발광장치
BRPI0620397A2 (pt) 2005-12-22 2011-11-16 Cree Led Lighting Solutions dispositivo de iluminação
JP2007281081A (ja) * 2006-04-04 2007-10-25 Rohm Co Ltd 半導体発光装置
US8969908B2 (en) 2006-04-04 2015-03-03 Cree, Inc. Uniform emission LED package
US8998444B2 (en) * 2006-04-18 2015-04-07 Cree, Inc. Solid state lighting devices including light mixtures
US7821194B2 (en) 2006-04-18 2010-10-26 Cree, Inc. Solid state lighting devices including light mixtures
US9335006B2 (en) 2006-04-18 2016-05-10 Cree, Inc. Saturated yellow phosphor converted LED and blue converted red LED
CN101128075B (zh) * 2006-08-18 2011-01-26 财团法人工业技术研究院 发光装置
US7714348B2 (en) * 2006-10-06 2010-05-11 Ac-Led Lighting, L.L.C. AC/DC light emitting diodes with integrated protection mechanism
US7897980B2 (en) * 2006-11-09 2011-03-01 Cree, Inc. Expandable LED array interconnect
US10295147B2 (en) 2006-11-09 2019-05-21 Cree, Inc. LED array and method for fabricating same
KR100898585B1 (ko) * 2006-11-16 2009-05-20 서울반도체 주식회사 다수의 셀이 결합된 발광 소자 및 그 제조 방법
US9024349B2 (en) 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
CN101652861B (zh) * 2007-01-22 2013-01-23 科锐公司 容错发光体、包含容错发光体的系统以及制造容错发光体的方法
EP3223313B1 (en) 2007-01-22 2021-04-14 Cree, Inc. Monolithic light emitter having multiple light emitting sub-devices
US20080198572A1 (en) 2007-02-21 2008-08-21 Medendorp Nicholas W LED lighting systems including luminescent layers on remote reflectors
KR20110110867A (ko) 2007-03-13 2011-10-07 서울옵토디바이스주식회사 교류용 발광 다이오드
JP4753904B2 (ja) 2007-03-15 2011-08-24 シャープ株式会社 発光装置
JP4474441B2 (ja) * 2007-06-29 2010-06-02 株式会社沖データ 発光パネル、表示装置及び光源装置
US7863635B2 (en) 2007-08-07 2011-01-04 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials
KR100889956B1 (ko) 2007-09-27 2009-03-20 서울옵토디바이스주식회사 교류용 발광다이오드
TWI369777B (en) * 2007-10-04 2012-08-01 Young Lighting Technology Corp Surface light source of backlight module in a flat panel display
CN101409318B (zh) * 2007-10-12 2010-06-09 台达电子工业股份有限公司 发光二极管芯片的制造方法
KR100928259B1 (ko) 2007-10-15 2009-11-24 엘지전자 주식회사 발광 장치 및 그 제조방법
US8637883B2 (en) 2008-03-19 2014-01-28 Cree, Inc. Low index spacer layer in LED devices
CN101960205B (zh) * 2008-03-28 2012-07-25 夏普株式会社 背光源单元和液晶显示装置
US8350461B2 (en) 2008-03-28 2013-01-08 Cree, Inc. Apparatus and methods for combining light emitters
US8461613B2 (en) 2008-05-27 2013-06-11 Interlight Optotech Corporation Light emitting device
KR101495071B1 (ko) * 2008-06-24 2015-02-25 삼성전자 주식회사 서브 마운트 및 이를 이용한 발광 장치, 상기 서브마운트의 제조 방법 및 이를 이용한 발광 장치의 제조 방법
US8058669B2 (en) 2008-08-28 2011-11-15 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitting diode integration scheme
EP2357676A4 (en) * 2008-10-17 2013-05-29 Univ Hokkaido Nat Univ Corp SEMICONDUCTOR LIGHT EMITTING ELEMENT ARRAY AND METHOD FOR MANUFACTURING THE SAME
WO2010050694A2 (ko) * 2008-10-29 2010-05-06 서울옵토디바이스주식회사 발광 다이오드
US8333631B2 (en) * 2009-02-19 2012-12-18 Cree, Inc. Methods for combining light emitting devices in a package and packages including combined light emitting devices
US7967652B2 (en) 2009-02-19 2011-06-28 Cree, Inc. Methods for combining light emitting devices in a package and packages including combined light emitting devices
JP5283539B2 (ja) * 2009-03-03 2013-09-04 シャープ株式会社 発光装置、発光装置ユニット、および発光装置製造方法
US8106403B2 (en) * 2009-03-04 2012-01-31 Koninklijke Philips Electronics N.V. III-nitride light emitting device incorporation boron
KR20100107165A (ko) * 2009-03-25 2010-10-05 삼성전기주식회사 Led 조명장치
TWI470824B (zh) 2009-04-09 2015-01-21 Huga Optotech Inc 電極結構及其發光元件
US8921876B2 (en) 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
WO2010146783A1 (ja) * 2009-06-15 2010-12-23 パナソニック株式会社 半導体発光装置、発光モジュール、および照明装置
US8558249B1 (en) 2009-06-30 2013-10-15 Applied Lighting Solutions, LLC Rectifier structures for AC LED systems
US7936135B2 (en) * 2009-07-17 2011-05-03 Bridgelux, Inc Reconfigurable LED array and use in lighting system
US20110037054A1 (en) * 2009-08-17 2011-02-17 Chan-Long Shieh Amoled with cascaded oled structures
US8324837B2 (en) * 2009-08-18 2012-12-04 Hung Lin Parallel light-emitting circuit of parallel LED light-emitting device and circuit board thereof
US20110049468A1 (en) * 2009-08-25 2011-03-03 Panasonic Corporation Led and led display and illumination devices
US8354680B2 (en) * 2009-09-15 2013-01-15 Seoul Opto Device Co., Ltd. AC light emitting diode having full-wave light emitting cell and half-wave light emitting cell
WO2011033433A1 (en) * 2009-09-17 2011-03-24 Koninklijke Philips Electronics N.V. Light-source module and light-emitting device
CN102630288B (zh) 2009-09-25 2015-09-09 科锐公司 具有低眩光和高亮度级均匀性的照明设备
KR20110041401A (ko) * 2009-10-15 2011-04-21 샤프 가부시키가이샤 발광 장치 및 그 제조 방법
US8872214B2 (en) 2009-10-19 2014-10-28 Sharp Kabushiki Kaisha Rod-like light-emitting device, method of manufacturing rod-like light-emitting device, backlight, illuminating device, and display device
US9324691B2 (en) 2009-10-20 2016-04-26 Epistar Corporation Optoelectronic device
US9435493B2 (en) 2009-10-27 2016-09-06 Cree, Inc. Hybrid reflector system for lighting device
DE102009051129A1 (de) * 2009-10-28 2011-06-01 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
US8557616B2 (en) * 2009-12-09 2013-10-15 Nano And Advanced Materials Institute Limited Method for manufacturing a monolithic LED micro-display on an active matrix panel using flip-chip technology and display apparatus having the monolithic LED micro-display
US9236532B2 (en) 2009-12-14 2016-01-12 Seoul Viosys Co., Ltd. Light emitting diode having electrode pads
US8511851B2 (en) 2009-12-21 2013-08-20 Cree, Inc. High CRI adjustable color temperature lighting devices
CN103474446B (zh) * 2010-01-15 2017-03-01 晶元光电股份有限公司 发光二极管阵列结构及其制造方法
US9243316B2 (en) 2010-01-22 2016-01-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Method of fabricating piezoelectric material with selected c-axis orientation
US8796904B2 (en) 2011-10-31 2014-08-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising piezoelectric layer and inverse piezoelectric layer
KR101601624B1 (ko) 2010-02-19 2016-03-09 삼성전자주식회사 멀티셀 어레이를 갖는 반도체 발광장치, 발광모듈 및 조명장치
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
WO2011115361A2 (ko) * 2010-03-15 2011-09-22 서울옵토디바이스주식회사 복수개의 발광셀들을 갖는 발광 장치
US8084775B2 (en) * 2010-03-16 2011-12-27 Bridgelux, Inc. Light sources with serially connected LED segments including current blocking diodes
JP2011199221A (ja) 2010-03-24 2011-10-06 Hitachi Cable Ltd 発光ダイオード
CN102214771A (zh) * 2010-04-02 2011-10-12 菱生精密工业股份有限公司 导线架型式的预铸模成型多芯片承载模组
WO2011126248A2 (en) 2010-04-06 2011-10-13 Seoul Opto Device Co., Ltd. Light emitting diode and method of fabricating the same
JP5522462B2 (ja) 2010-04-20 2014-06-18 東芝ライテック株式会社 発光装置及び照明装置
CN102270626B (zh) 2010-06-01 2013-12-25 展晶科技(深圳)有限公司 多晶封装发光二极管
US8684559B2 (en) 2010-06-04 2014-04-01 Cree, Inc. Solid state light source emitting warm light with high CRI
US8669125B2 (en) 2010-06-18 2014-03-11 Glo Ab Nanowire LED structure and method for manufacturing the same
TWI466284B (zh) * 2010-07-02 2014-12-21 Epistar Corp 光電元件
TWI557875B (zh) * 2010-07-19 2016-11-11 晶元光電股份有限公司 多維度發光裝置
TWI451596B (zh) * 2010-07-20 2014-09-01 Epistar Corp 一種陣列式發光元件
KR101142539B1 (ko) * 2010-08-18 2012-05-08 한국전기연구원 역방향 직렬접속된 발광셀 어레이가 구비된 교류용 발광다이오드 칩 구조
CN101982883A (zh) * 2010-09-01 2011-03-02 晶科电子(广州)有限公司 一种由倒装发光单元阵列组成的发光器件及其制造方法
US9035329B2 (en) * 2010-09-13 2015-05-19 Epistar Corporation Light-emitting device
KR101142965B1 (ko) 2010-09-24 2012-05-08 서울반도체 주식회사 웨이퍼 레벨 발광 다이오드 패키지 및 그것을 제조하는 방법
TWI472058B (zh) * 2010-10-13 2015-02-01 Interlight Optotech Corp 發光二極體裝置
TWI420959B (zh) * 2010-10-20 2013-12-21 Advanced Optoelectronic Tech 發光二極體模組
TW201233944A (en) * 2010-11-11 2012-08-16 Koninkl Philips Electronics Nv A LED assembly
US8556469B2 (en) 2010-12-06 2013-10-15 Cree, Inc. High efficiency total internal reflection optic for solid state lighting luminaires
RU2446511C1 (ru) * 2010-12-08 2012-03-27 Общество с ограниченной ответственностью "Новые Кремневые Технологии" (ООО НКТ) Полупроводниковый прибор
KR20120070278A (ko) * 2010-12-21 2012-06-29 삼성엘이디 주식회사 발광모듈 및 발광모듈 제조방법
WO2012093671A1 (ja) * 2011-01-07 2012-07-12 株式会社カネカ 有機el装置及び有機el装置の製造方法
US9516713B2 (en) * 2011-01-25 2016-12-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
US8962443B2 (en) * 2011-01-31 2015-02-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor device having an airbridge and method of fabricating the same
US9786811B2 (en) 2011-02-04 2017-10-10 Cree, Inc. Tilted emission LED array
KR101104767B1 (ko) * 2011-02-09 2012-01-12 (주)세미머티리얼즈 발광 장치
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
US9490771B2 (en) 2012-10-29 2016-11-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator comprising collar and frame
US9401692B2 (en) 2012-10-29 2016-07-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator having collar structure
US9490418B2 (en) 2011-03-29 2016-11-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator comprising collar and acoustic reflector with temperature compensating layer
DE102011015821B4 (de) 2011-04-01 2023-04-20 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterchip
US20120269520A1 (en) * 2011-04-19 2012-10-25 Hong Steve M Lighting apparatuses and led modules for both illumation and optical communication
DE102011102032A1 (de) 2011-05-19 2012-11-22 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleitermodul und Display mit einer Mehrzahl derartiger Module
US20120306390A1 (en) * 2011-06-03 2012-12-06 Taiwan Semiconductor Manufacturing Company, Ltd. Architecture for Supporting Modulized Full Operation Junction Ultra High Voltage (UHV) Light Emitting Diode (LED) Device
USD700584S1 (en) 2011-07-06 2014-03-04 Cree, Inc. LED component
US10842016B2 (en) 2011-07-06 2020-11-17 Cree, Inc. Compact optically efficient solid state light source with integrated thermal management
CN102255012B (zh) * 2011-07-15 2013-03-20 上海蓝光科技有限公司 一种高压直流发光二极管芯片制造方法及其结构
RU2465683C1 (ru) * 2011-08-09 2012-10-27 Вячеслав Николаевич Козубов Способ формирования светоизлучающих матриц
US20130175516A1 (en) * 2011-09-02 2013-07-11 The Procter & Gamble Company Light emitting apparatus
KR101220426B1 (ko) 2011-09-19 2013-02-05 서울옵토디바이스주식회사 복수의 발광 셀을 구비하는 발광 소자
US8350251B1 (en) 2011-09-26 2013-01-08 Glo Ab Nanowire sized opto-electronic structure and method for manufacturing the same
WO2013046419A1 (ja) * 2011-09-30 2013-04-04 創光科学株式会社 窒化物半導体素子及びその製造方法
RU2474920C1 (ru) * 2011-11-14 2013-02-10 Вячеслав Николаевич Козубов Способ формирования светоизлучающих матриц
TWI427760B (zh) * 2011-11-17 2014-02-21 Helio Optoelectronics Corp 高壓交流發光二極體結構
US9144121B2 (en) 2011-11-20 2015-09-22 Jacobo Frias, SR. Reconfigurable LED arrays and lighting fixtures
US20120087130A1 (en) * 2011-11-20 2012-04-12 Foxsemicon Integrated Technology, Inc. Alternating current led illumination apparatus
GB2496851A (en) 2011-11-21 2013-05-29 Photonstar Led Ltd Led light source with passive chromaticity tuning
CN104269424B (zh) * 2011-11-23 2017-01-18 俞国宏 一种集成电阻的发光二极管芯片
DE102012024599B4 (de) 2011-12-20 2020-07-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung mit optisch transparenten und funktionalen Bauelementen
EP2626901A1 (en) * 2012-02-10 2013-08-14 Oki Data Corporation Semiconductor light emitting apparatus, image displaying apparatus, mobile terminal, head-up display apparatus, image projector, head-mounted display apparatus, and image forming apparatus
RU2492550C1 (ru) * 2012-05-22 2013-09-10 Вячеслав Николаевич Козубов Способ формирования светоизлучающих матриц
JP5939055B2 (ja) * 2012-06-28 2016-06-22 住友電気工業株式会社 半導体装置及び半導体装置の製造方法
US8974077B2 (en) 2012-07-30 2015-03-10 Ultravision Technologies, Llc Heat sink for LED light source
US10388690B2 (en) 2012-08-07 2019-08-20 Seoul Viosys Co., Ltd. Wafer level light-emitting diode array
US20140056003A1 (en) * 2012-08-20 2014-02-27 John Frattalone Modular video and lighting displays
US9171826B2 (en) 2012-09-04 2015-10-27 Micron Technology, Inc. High voltage solid-state transducers and solid-state transducer arrays having electrical cross-connections and associated systems and methods
US9412922B2 (en) * 2012-09-07 2016-08-09 Seoul Viosys Co., Ltd. Wafer level light-emitting diode array
CN103681644B (zh) * 2012-09-14 2016-08-17 晶元光电股份有限公司 具有改进的热耗散和光提取的高压led
US9076950B2 (en) 2012-09-14 2015-07-07 Tsmc Solid State Lighting Ltd. High voltage LED with improved heat dissipation and light extraction
JP6068073B2 (ja) * 2012-09-18 2017-01-25 スタンレー電気株式会社 Ledアレイ
CN102903813B (zh) * 2012-09-29 2014-04-02 海迪科(南通)光电科技有限公司 集成图形阵列高压led器件的制备方法
US9385684B2 (en) 2012-10-23 2016-07-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator having guard ring
KR20140059985A (ko) * 2012-11-09 2014-05-19 엘지이노텍 주식회사 발광소자
US8558254B1 (en) * 2012-11-29 2013-10-15 Hong Kong Applied Science and Technology Research Institute Company Limited High reliability high voltage vertical LED arrays
CN103148381A (zh) * 2013-01-24 2013-06-12 左洪波 一种led灯封装结构
TW201431138A (zh) * 2013-01-25 2014-08-01 zhong-lin Wang 免封裝製程且免電路板式發光二極體裝置及其製造方法
JP6176032B2 (ja) * 2013-01-30 2017-08-09 日亜化学工業株式会社 半導体発光素子
RU2514055C1 (ru) * 2013-02-05 2014-04-27 Вячеслав Николаевич Козубов Способ размещения и соединения светоизлучающих элементов в гирляндах, размещаемых в монолитных светоизлучающих матрицах
TWI610416B (zh) * 2013-02-15 2018-01-01 首爾偉傲世有限公司 抗靜電放電的led晶片以及包含該led晶片的led封裝
US20140231852A1 (en) 2013-02-15 2014-08-21 Seoul Viosys Co., Ltd. Led chip resistant to electrostatic discharge and led package including the same
KR102006389B1 (ko) 2013-03-14 2019-08-02 삼성전자주식회사 발광 소자 패키지 및 발광 장치
CN103256574B (zh) * 2013-04-18 2015-02-04 李宪坤 一种led灯具智能布线方法及系统
CN104241262B (zh) 2013-06-14 2020-11-06 惠州科锐半导体照明有限公司 发光装置以及显示装置
US9583689B2 (en) * 2013-07-12 2017-02-28 Lite-On Opto Technology (Changzhou) Co., Ltd. LED package
CN104282823A (zh) * 2013-07-12 2015-01-14 光宝科技股份有限公司 发光二极管封装结构
TWI513068B (zh) * 2013-07-12 2015-12-11 Lite On Opto Technology Changzhou Co Ltd 發光二極體結構、發光二極體結構的金屬支架、及承載座模組
CN104425539A (zh) * 2013-09-05 2015-03-18 亚世达科技股份有限公司 发光二极管单元及发光装置
US9117733B2 (en) * 2013-10-18 2015-08-25 Posco Led Company Ltd. Light emitting module and lighting apparatus having the same
EP2881982B1 (en) * 2013-12-05 2019-09-04 IMEC vzw Method for fabricating cmos compatible contact layers in semiconductor devices
KR102122359B1 (ko) * 2013-12-10 2020-06-12 삼성전자주식회사 발광장치 제조방법
US9660064B2 (en) * 2013-12-26 2017-05-23 Intel Corporation Low sheet resistance GaN channel on Si substrates using InAlN and AlGaN bi-layer capping stack
TWI614920B (zh) 2014-05-19 2018-02-11 晶元光電股份有限公司 光電元件及其製造方法
US9577171B2 (en) * 2014-06-03 2017-02-21 Seoul Viosys Co., Ltd. Light emitting device package having improved heat dissipation efficiency
TWI556478B (zh) * 2014-06-30 2016-11-01 億光電子工業股份有限公司 發光二極體裝置
WO2016047217A1 (ja) * 2014-09-22 2016-03-31 株式会社村田製作所 半導体装置
KR102231646B1 (ko) 2014-10-17 2021-03-24 엘지이노텍 주식회사 발광 소자
AT516416B1 (de) 2014-10-21 2019-12-15 Zkw Group Gmbh Leiterplatte mit einer Mehrzahl von an der Leiterplatte in zumindest einer Gruppe angeordneter elektronischer Bauteile
KR101651923B1 (ko) 2014-12-31 2016-08-29 최운용 고전압 구동 발광소자 및 그 제조 방법
CN110690242B (zh) 2015-02-13 2023-06-30 首尔伟傲世有限公司 发光元件
KR102268107B1 (ko) * 2015-02-26 2021-06-22 엘지이노텍 주식회사 발광 소자
CN104992938A (zh) * 2015-07-20 2015-10-21 深圳市君和光电子有限公司 一种倒装集成led光源
DE102015114010A1 (de) * 2015-08-24 2017-03-02 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement, Verfahren zur Herstellung eines optoelektronischen Bauelements und Verfahren zum Betrieb eines optoelektronischen Bauelements
EP3378106B1 (en) * 2015-11-20 2019-10-02 Lumileds Holding B.V. Die bond pad design to enable different electrical configurations
KR20160082491A (ko) 2016-02-11 2016-07-08 최운용 고전압 구동 발광소자 및 그 제조 방법
KR101845907B1 (ko) * 2016-02-26 2018-04-06 피에스아이 주식회사 초소형 led 모듈을 포함하는 디스플레이 장치
CN105789400B (zh) * 2016-03-14 2018-08-14 聚灿光电科技股份有限公司 一种并联结构的led芯片及其制造方法
US20190237027A1 (en) * 2016-05-04 2019-08-01 Shenzhen China Star Optoelectronics Technology Co., Ltd Color temperature adjustment device and mthod of liquid crystal panel and liquid crystal panel
DE102016109951A1 (de) * 2016-05-31 2017-11-30 Valeo Schalter Und Sensoren Gmbh Lichterzeugungsvorrichtung für eine Kopf-oben-Anzeige eines Kraftfahrzeugs
JP6447580B2 (ja) 2016-06-15 2019-01-09 日亜化学工業株式会社 発光装置
CN109936890B (zh) 2017-12-18 2022-03-15 群创光电股份有限公司 电子装置
US20210036049A1 (en) * 2019-07-31 2021-02-04 Epistar Corporation Light emitting device and manufacturing method thereof
JP7014973B2 (ja) 2019-08-28 2022-02-02 日亜化学工業株式会社 発光装置
US11538849B2 (en) * 2020-05-28 2022-12-27 X Display Company Technology Limited Multi-LED structures with reduced circuitry
KR102447407B1 (ko) 2020-11-12 2022-09-27 주식회사 에스엘바이오닉스 반도체 발광소자
DE102021130804A1 (de) * 2021-11-24 2023-05-25 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Leuchtfolie, anzeigelement und verfahren zum betreiben einer leuchtfolie

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206873A (ja) * 1983-05-11 1984-11-22 株式会社東芝 発光表示装置
JP2000068555A (ja) * 1998-08-19 2000-03-03 Hitachi Ltd 照明システム
JP2001156331A (ja) * 1999-11-30 2001-06-08 Nichia Chem Ind Ltd 窒化物半導体発光素子
JP2001307506A (ja) * 2000-04-17 2001-11-02 Hitachi Ltd 白色発光装置および照明器具
JP2001351789A (ja) * 2000-06-02 2001-12-21 Toshiba Lighting & Technology Corp 発光ダイオード駆動装置

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829361Y2 (ja) * 1976-09-13 1983-06-28 シャープ株式会社 加熱調理装置のタ−ンテ−ブル
JPS54102886A (en) 1978-01-31 1979-08-13 Futaba Denshi Kogyo Kk Light emitting diode indicator
JPS556687A (en) 1978-06-29 1980-01-18 Handotai Kenkyu Shinkokai Traffic use display
JPS5517180A (en) * 1978-07-24 1980-02-06 Handotai Kenkyu Shinkokai Light emitting diode display
US4242281A (en) * 1978-11-17 1980-12-30 International Flavors & Fragrances Inc. Process for preparing 6-hydroxy-2,6-dimethylheptanal and intermediates thereof
JPS60960B2 (ja) * 1979-12-17 1985-01-11 松下電器産業株式会社 窒化ガリウム発光素子アレイの製造方法
JPS5714058A (en) * 1980-06-28 1982-01-25 Ricoh Co Ltd Printer
US4589745A (en) 1985-01-25 1986-05-20 Polaroid Corporation Geometric LED layout for line exposure
JPH0716001B2 (ja) 1986-05-21 1995-02-22 日本電気株式会社 電界効果トランジスタおよびその製造方法
JPH0783053B2 (ja) 1987-06-19 1995-09-06 三菱電機株式会社 半導体装置
US5187377A (en) * 1988-07-15 1993-02-16 Sharp Kabushiki Kaisha LED array for emitting light of multiple wavelengths
US4943539A (en) 1989-05-09 1990-07-24 Motorola, Inc. Process for making a multilayer metallization structure
JPH03229426A (ja) 1989-11-29 1991-10-11 Texas Instr Inc <Ti> 集積回路及びその製造方法
JPH0423154A (ja) 1990-05-18 1992-01-27 Hitachi Ltd 端末制御方法
JPH0423154U (ja) 1990-06-14 1992-02-26
JP2759117B2 (ja) 1990-11-28 1998-05-28 富士写真フイルム株式会社 感光材料処理装置
JPH04365382A (ja) 1991-06-13 1992-12-17 Toshiba Corp 半導体発光装置及びその駆動方法
JPH06104273A (ja) 1992-09-18 1994-04-15 Hitachi Ltd 半導体装置
US5298853A (en) * 1992-12-18 1994-03-29 Lubos Ryba Electrical apparatus for detecting relationships in three phase AC networks
US5376580A (en) * 1993-03-19 1994-12-27 Hewlett-Packard Company Wafer bonding of light emitting diode layers
JPH0786691A (ja) 1993-09-14 1995-03-31 Sony Corp 発光装置
US5463280A (en) * 1994-03-03 1995-10-31 National Service Industries, Inc. Light emitting diode retrofit lamp
JPH07272849A (ja) 1994-03-31 1995-10-20 Nippondenso Co Ltd 薄膜el表示器とその製造方法
JPH0856018A (ja) * 1994-08-11 1996-02-27 Rohm Co Ltd 半導体発光素子、および半導体発光素子の製造方法
US5693963A (en) * 1994-09-19 1997-12-02 Kabushiki Kaisha Toshiba Compound semiconductor device with nitride
JPH08111562A (ja) 1994-10-11 1996-04-30 Mitsubishi Electric Corp アレイ型半導体レーザ装置,及びその製造方法
US5608234A (en) 1994-11-14 1997-03-04 The Whitaker Corporation Semi-insulating edge emitting light emitting diode
US5936599A (en) * 1995-01-27 1999-08-10 Reymond; Welles AC powered light emitting diode array circuits for use in traffic signal displays
US5585648A (en) * 1995-02-03 1996-12-17 Tischler; Michael A. High brightness electroluminescent device, emitting in the green to ultraviolet spectrum, and method of making the same
WO1997012405A1 (en) 1995-09-25 1997-04-03 Nippon Sheet Glass Co., Ltd. Surface light-emitting element and self-scanning type light-emitting device
JP3905935B2 (ja) * 1995-09-01 2007-04-18 株式会社東芝 半導体素子及び半導体素子の製造方法
US5583349A (en) 1995-11-02 1996-12-10 Motorola Full color light emitting diode display
JPH09153644A (ja) 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd 3族窒化物半導体表示装置
JP2768343B2 (ja) * 1996-02-14 1998-06-25 日本電気株式会社 窒化iii族化合物半導体の結晶成長方法
KR100190080B1 (ko) * 1996-08-20 1999-06-01 윤종용 반도체 메모리 장치의 메모리 셀 테스트용 고전압 감지 회로
JPH10107316A (ja) * 1996-10-01 1998-04-24 Toyoda Gosei Co Ltd 3族窒化物半導体発光素子
US5977612A (en) * 1996-12-20 1999-11-02 Xerox Corporation Semiconductor devices constructed from crystallites
WO1998034285A1 (fr) 1997-01-31 1998-08-06 Matsushita Electronics Corporation Element electroluminescent, dispositif electroluminescent a semiconducteur, et leur procede de production
JPH10261818A (ja) 1997-03-19 1998-09-29 Fujitsu Ltd 発光半導体装置
JP3934730B2 (ja) 1997-03-28 2007-06-20 ローム株式会社 半導体発光素子
US5986324A (en) * 1997-04-11 1999-11-16 Raytheon Company Heterojunction bipolar transistor
EP0881686A3 (en) 1997-05-28 2000-04-19 Oki Data Corporation LED array and LED printer head
JP3505374B2 (ja) * 1997-11-14 2004-03-08 三洋電機株式会社 発光部品
EP0926744B8 (en) * 1997-12-15 2008-05-21 Philips Lumileds Lighting Company, LLC. Light emitting device
US6412971B1 (en) 1998-01-02 2002-07-02 General Electric Company Light source including an array of light emitting semiconductor devices and control method
US6081031A (en) 1998-06-29 2000-06-27 Semiconductor Components Industries, Llc Semiconductor package consisting of multiple conductive layers
JP4470237B2 (ja) 1998-07-23 2010-06-02 ソニー株式会社 発光素子,発光装置および表示装置並びに発光素子の製造方法
US6461019B1 (en) * 1998-08-28 2002-10-08 Fiber Optic Designs, Inc. Preferred embodiment to LED light string
JP3497741B2 (ja) * 1998-09-25 2004-02-16 株式会社東芝 半導体発光装置及び半導体発光装置の駆動方法
US6307218B1 (en) * 1998-11-20 2001-10-23 Lumileds Lighting, U.S., Llc Electrode structures for light emitting devices
JP2000182508A (ja) 1998-12-16 2000-06-30 Sony Corp 電界放出型カソード、電子放出装置、および電子放出装置の製造方法
JP4296644B2 (ja) 1999-01-29 2009-07-15 豊田合成株式会社 発光ダイオード
JP3702700B2 (ja) 1999-03-31 2005-10-05 豊田合成株式会社 Iii族窒化物系化合物半導体素子及びその製造方法
JP2000311876A (ja) * 1999-04-27 2000-11-07 Hitachi Ltd 配線基板の製造方法および製造装置
US6489637B1 (en) 1999-06-09 2002-12-03 Sanyo Electric Co., Ltd. Hybrid integrated circuit device
US6639354B1 (en) * 1999-07-23 2003-10-28 Sony Corporation Light emitting device, production method thereof, and light emitting apparatus and display unit using the same
CN1134849C (zh) * 1999-09-20 2004-01-14 晶元光电股份有限公司 发光二极管
JP2001168388A (ja) * 1999-09-30 2001-06-22 Sharp Corp 窒化ガリウム系化合物半導体チップ及びその製造方法ならびに窒化ガリウム系化合物半導体ウエハー
JP2001111109A (ja) 1999-10-07 2001-04-20 Sharp Corp 窒化ガリウム系化合物半導体発光素子
JP2001150718A (ja) 1999-11-26 2001-06-05 Kyocera Corp 発光素子アレイ
JP2001156381A (ja) 1999-11-30 2001-06-08 Kyocera Corp 光モジュール
US6410942B1 (en) 1999-12-03 2002-06-25 Cree Lighting Company Enhanced light extraction through the use of micro-LED arrays
JP2001177146A (ja) 1999-12-21 2001-06-29 Mitsubishi Cable Ind Ltd 三角形状の半導体素子及びその製法
US6547246B2 (en) * 1999-12-21 2003-04-15 Prime Table Games Llc Method and apparatus for playing elective wagering card game
US6885035B2 (en) 1999-12-22 2005-04-26 Lumileds Lighting U.S., Llc Multi-chip semiconductor LED assembly
US6514782B1 (en) * 1999-12-22 2003-02-04 Lumileds Lighting, U.S., Llc Method of making a III-nitride light-emitting device with increased light generating capability
US6486499B1 (en) 1999-12-22 2002-11-26 Lumileds Lighting U.S., Llc III-nitride light-emitting device with increased light generating capability
US6566808B1 (en) 1999-12-22 2003-05-20 General Electric Company Luminescent display and method of making
JP2001196634A (ja) 2000-01-07 2001-07-19 Nippon Sheet Glass Co Ltd 発光ダイオードモジュール
JP2002016290A (ja) * 2000-06-28 2002-01-18 Toshiba Lighting & Technology Corp Led光源装置
JP2002026384A (ja) 2000-07-05 2002-01-25 Nichia Chem Ind Ltd 集積型窒化物半導体発光素子
DE10038213A1 (de) 2000-08-04 2002-03-07 Osram Opto Semiconductors Gmbh Strahlungsquelle und Verfahren zur Herstellung einer Linsensform
DE10051159C2 (de) 2000-10-16 2002-09-19 Osram Opto Semiconductors Gmbh LED-Modul, z.B. Weißlichtquelle
JP2002208541A (ja) * 2001-01-11 2002-07-26 Shiro Sakai 窒化物系半導体装置及びその製造方法
US6891200B2 (en) 2001-01-25 2005-05-10 Matsushita Electric Industrial Co., Ltd. Light-emitting unit, light-emitting unit assembly, and lighting apparatus produced using a plurality of light-emitting units
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6547249B2 (en) * 2001-03-29 2003-04-15 Lumileds Lighting U.S., Llc Monolithic series/parallel led arrays formed on highly resistive substrates
DE10216008A1 (de) 2001-04-12 2002-10-24 Toyoda Gosei Kk LED-Lampe
US20020158261A1 (en) 2001-04-25 2002-10-31 Ming-Tang Lee Light emitting diode layout structure
JP3811624B2 (ja) 2001-04-27 2006-08-23 松下電器産業株式会社 半導体装置
EP1416219B1 (en) 2001-08-09 2016-06-22 Everlight Electronics Co., Ltd Led illuminator and card type led illuminating light source
US6641294B2 (en) 2002-03-22 2003-11-04 Emteq, Inc. Vehicle lighting assembly with stepped dimming
JP3822545B2 (ja) 2002-04-12 2006-09-20 士郎 酒井 発光装置
JP4195041B2 (ja) 2002-04-12 2008-12-10 ソウル セミコンダクター カンパニー リミテッド 発光装置
KR101052139B1 (ko) 2002-08-01 2011-07-26 니치아 카가쿠 고교 가부시키가이샤 반도체 발광 소자 및 그 제조 방법과 그것을 이용한 발광장치
US7034470B2 (en) 2002-08-07 2006-04-25 Eastman Kodak Company Serially connecting OLED devices for area illumination
DE60336252D1 (de) 2002-08-29 2011-04-14 Seoul Semiconductor Co Ltd Lichtemittierendes bauelement mit lichtemittierenden dioden
US7009199B2 (en) * 2002-10-22 2006-03-07 Cree, Inc. Electronic devices having a header and antiparallel connected light emitting diodes for producing light from AC current
US6957899B2 (en) 2002-10-24 2005-10-25 Hongxing Jiang Light emitting diodes for high AC voltage operation and general lighting
US20040109833A1 (en) * 2002-12-09 2004-06-10 Xiaozhong Tang High efficacy, low irritation aluminum salts and related products
TW200501464A (en) * 2004-08-31 2005-01-01 Ind Tech Res Inst LED chip structure with AC loop
JP4648780B2 (ja) * 2005-07-11 2011-03-09 Hoya株式会社 電子内視鏡用撮像素子パッケージ
US8901575B2 (en) * 2005-08-09 2014-12-02 Seoul Viosys Co., Ltd. AC light emitting diode and method for fabricating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206873A (ja) * 1983-05-11 1984-11-22 株式会社東芝 発光表示装置
JP2000068555A (ja) * 1998-08-19 2000-03-03 Hitachi Ltd 照明システム
JP2001156331A (ja) * 1999-11-30 2001-06-08 Nichia Chem Ind Ltd 窒化物半導体発光素子
JP2001307506A (ja) * 2000-04-17 2001-11-02 Hitachi Ltd 白色発光装置および照明器具
JP2001351789A (ja) * 2000-06-02 2001-12-21 Toshiba Lighting & Technology Corp 発光ダイオード駆動装置

Cited By (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7804098B2 (en) 2004-06-30 2010-09-28 Seoul Opto Device Co., Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
US7871839B2 (en) 2004-06-30 2011-01-18 Seoul Opto Device Co., Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
US8168988B2 (en) 2004-06-30 2012-05-01 Seoul Opto Device Co., Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
US8492775B2 (en) 2004-06-30 2013-07-23 Seoul Opto Device Co. Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
US7964880B2 (en) 2004-06-30 2011-06-21 Seoul Opto Device Co., Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
US8198643B2 (en) 2004-06-30 2012-06-12 Seoul Opto Device Co., Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
WO2006004337A1 (en) * 2004-06-30 2006-01-12 Seoul Opto-Device Co., Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
US8030669B2 (en) 2004-09-13 2011-10-04 Rohm Co., Ltd. Semiconductor light emitting device
KR101216938B1 (ko) 2004-10-28 2012-12-31 서울반도체 주식회사 다수의 셀이 결합된 발광 소자 및 이의 제조 방법 및 이를이용한 발광 장치
US8129848B2 (en) 2005-01-26 2012-03-06 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of light emitting cells connected in series and method of fabricating the same
US7763900B2 (en) 2005-01-26 2010-07-27 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of light emitting cells connected in series and method of fabricating the same
KR101121726B1 (ko) 2005-02-03 2012-03-23 서울반도체 주식회사 발광 장치
EP2259318A2 (en) 2005-02-04 2010-12-08 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of light emitting cells and method of fabricating the same
US7772602B2 (en) 2005-02-04 2010-08-10 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of light emitting cells and method of fabricating the same
US7772601B2 (en) 2005-02-04 2010-08-10 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of light emitting cells and method of fabricating the same
US7880183B2 (en) 2005-02-04 2011-02-01 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of light emitting cells and method of fabricating the same
WO2006083065A1 (en) * 2005-02-04 2006-08-10 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of light emitting cells and method of fabricating the same
US8154031B2 (en) * 2005-02-28 2012-04-10 Osram Opto Semiconductors Gmbh Module comprising radiation-emitting semiconductor bodies
DE102005055997A1 (de) * 2005-05-02 2006-11-09 Hieke, Bernhard Homogene Lichtquelle
NL1031772C2 (nl) * 2005-05-13 2008-05-14 Ind Tech Res Inst Wisselstroom licht uitzendende inrichting.
DE102006021648B4 (de) 2005-05-13 2021-08-19 Epistar Corp. Licht emittierende Vorrichtung für Wechselspannung und Herstellungsverfahren dafür
US8704241B2 (en) 2005-05-13 2014-04-22 Epistar Corporation Light-emitting systems
US9985074B2 (en) 2005-05-13 2018-05-29 Epistar Corporation Light-emitting device
US7474681B2 (en) 2005-05-13 2009-01-06 Industrial Technology Research Institute Alternating current light-emitting device
US9490234B2 (en) 2005-05-13 2016-11-08 Epistar Corporation Alternative current light-emitting systems
US9929208B2 (en) 2005-06-22 2018-03-27 Seoul Vlosys Co., Ltd. Light emitting device
US10340309B2 (en) 2005-06-22 2019-07-02 Seoul Viosys Co., Ltd. Light emitting device
US7723737B2 (en) 2005-06-22 2010-05-25 Seoul Opto Device Co., Ltd. Light emitting device
US8476648B2 (en) 2005-06-22 2013-07-02 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US8704246B2 (en) 2005-06-22 2014-04-22 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US7951626B2 (en) 2005-06-22 2011-05-31 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US8895957B2 (en) 2005-06-22 2014-11-25 Seoul Viosys Co., Ltd Light emitting device and method of manufacturing the same
US9209223B2 (en) 2005-06-22 2015-12-08 Seoul Viosys Co., Ltd. Light emitting device and method of manufacturing the same
US7977691B2 (en) 2005-06-22 2011-07-12 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US9627435B2 (en) 2005-06-22 2017-04-18 Seoul Viosys Co., Ltd. Light emitting device
EP3429316A1 (en) 2005-06-28 2019-01-16 Seoul Viosys Co., Ltd. Light emitting device for ac power operation
US9030110B2 (en) 2005-06-28 2015-05-12 Seoul Viosys Co., Ltd. Light emitting device for AC power operation
US8716946B2 (en) 2005-06-28 2014-05-06 Seoul Opto Device Co., Ltd. Light emitting device for AC power operation
EP2536255A1 (en) 2005-06-28 2012-12-19 Seoul Opto Device Co., Ltd. Light emitting device for AC power operation
US8866417B2 (en) 2005-06-28 2014-10-21 Seoul Viosys Co., Ltd. Light emitting device for AC power operation
EP2384088A2 (en) 2005-06-28 2011-11-02 Seoul Opto Device Co., Ltd. Light emitting device for AC power operation
US9445462B2 (en) 2005-06-28 2016-09-13 Seoul Viosys Co., Ltd. Light emitting device for AC power operation
US8896216B2 (en) 2005-06-28 2014-11-25 Seoul Viosys Co., Ltd. Illumination system
US8395332B2 (en) 2005-06-28 2013-03-12 Seoul Opto Device Co., Ltd. Light emitting device for AC power operation
JP2008544569A (ja) * 2005-06-28 2008-12-04 ソウル オプト デバイス カンパニー リミテッド 交流用発光素子
US10292220B2 (en) 2005-06-28 2019-05-14 Seoul Viosys Co., Ltd. Light emitting device for AC power operation
US8188687B2 (en) 2005-06-28 2012-05-29 Seoul Opto Device Co., Ltd. Light emitting device for AC power operation
US8860331B2 (en) 2005-06-28 2014-10-14 Seoul Viosys Co., Ltd. Light emitting device for AC power operation
JP2014195123A (ja) * 2005-06-28 2014-10-09 Seoul Viosys Co Ltd 発光装置
EP2367400A2 (en) 2005-06-28 2011-09-21 Seoul Opto Device Co., Ltd. Light emitting device for AC power operation
US8039846B2 (en) 2005-06-29 2011-10-18 Seoul Opto Device Co., Ltd. Light emitting diode having a thermal conductive substrate and method of fabricating the same
EP1905103A4 (en) * 2005-06-29 2011-01-19 Seoul Opto Device Co Ltd LUMINOUS DIODE WITH A THERMAL CONDUCTIVE SUBSTRATE AND METHOD OF MANUFACTURING THEREOF
EP1905103A1 (en) * 2005-06-29 2008-04-02 Seoul Opto-Device Co., Ltd. Light emitting diode having a thermal conductive substrate and method of fabricating the same
WO2007001124A1 (en) 2005-06-29 2007-01-04 Seoul Opto Device Co., Ltd. Light emitting diode having a thermal conductive substrate and method of fabricating the same
US8129207B2 (en) 2005-06-29 2012-03-06 Seoul Opto Device Co., Ltd. Light emitting diode having a thermal conductive substrate and method of fabricating the same
US8952397B2 (en) 2005-08-09 2015-02-10 Seoul Viosys Co., Ltd. AC light emitting diode and method for fabricating the same
US9368548B2 (en) 2005-08-09 2016-06-14 Seoul Viosys Co., Ltd. AC light emitting diode and method for fabricating the same
US8901575B2 (en) 2005-08-09 2014-12-02 Seoul Viosys Co., Ltd. AC light emitting diode and method for fabricating the same
US8598598B2 (en) 2005-09-30 2013-12-03 Seoul Opto Device Co., Ltd. Light emitting device having vertically stacked light emitting diodes
US9070573B2 (en) 2005-10-07 2015-06-30 Epistar Corporation Light-emitting systems
US9093292B2 (en) 2005-10-07 2015-07-28 Epistar Corporation Light-emitting systems
JP2009519604A (ja) * 2005-12-16 2009-05-14 ソウル オプト デバイス カンパニー リミテッド 改善された透明電極構造体を有する交流駆動型発光ダイオード
DE112006004103B4 (de) * 2005-12-16 2021-06-02 Seoul Viosys Co., Ltd. Wechselstrom-betriebenes Leuchtdiodenarray
US7994523B2 (en) 2005-12-16 2011-08-09 Seoul Opto Device Co., Ltd. AC light emitting diode having improved transparent electrode structure
DE112006002883B4 (de) 2005-12-16 2010-09-09 Seoul Opto-Device Co., Ltd. Wechselstrom betriebenes Leuchtdiodenarray
DE112006002927B4 (de) 2006-01-09 2010-06-02 Seoul Opto Device Co. Ltd., Ansan Licht emittierende Diode mit ITO-Schicht und Verfahren zur Herstellung einer solchen
US7998761B2 (en) 2006-01-09 2011-08-16 Seoul Opto Device Co., Ltd. Light emitting diode with ITO layer and method for fabricating the same
US7700960B2 (en) 2006-01-09 2010-04-20 Seoul Opto Device Co., Ltd. Light emitting diode with ITO layer and method for fabricating the same
US8614458B2 (en) 2006-02-09 2013-12-24 Seoul Opto Device Co., Ltd. Patterned substrate for light emitting diode and light emitting diode employing the same
US8895329B2 (en) 2006-02-09 2014-11-25 Seoul Viosys Co.,. Ltd. Patterned substrate for light emitting diode and light emitting diode employing the same
WO2008038918A1 (en) 2006-09-30 2008-04-03 Seoul Opto Device Co., Ltd. Light emitting diode having light emitting cell with different size and light emitting device thereof
US8299476B2 (en) 2006-09-30 2012-10-30 Seoul Opto Device Co., Ltd. Light emitting diode having light emitting cell with different size and light emitting device thereof
EP2154733A1 (en) 2006-09-30 2010-02-17 Seoul Opto Device Co., Ltd. Light emitting diode having light emitting cells with different size and light emitting device thereof
US8274089B2 (en) 2006-09-30 2012-09-25 Seoul Opto Device Co., Ltd. Light emitting diode having light emitting cell with different size and light emitting device thereof
US8339059B2 (en) 2006-11-20 2012-12-25 Seoul Opto Device Co., Ltd. Light emitting device for AC operation
JP2010510651A (ja) * 2006-11-20 2010-04-02 ソウル オプト デバイス カンパニー リミテッド 交流駆動型の発光素子
US8129917B2 (en) 2006-11-20 2012-03-06 Seoul Opto Device Co., Ltd. Light emitting device for AC operation
US8338836B2 (en) 2006-11-21 2012-12-25 Seoul Opto Device Co., Ltd. Light emitting device for AC operation
US7947993B2 (en) 2006-12-18 2011-05-24 Seoul Opto Device Co., Ltd. Light emitting device having isolating insulative layer for isolating light emitting cells from each other and method of fabricating the same
US8173459B2 (en) 2006-12-18 2012-05-08 Seoul Opto Device Co., Ltd. Light emitting device having isolating insulative layer for isolating light emitting cells from each other and method of fabricating the same
US8872419B2 (en) 2006-12-26 2014-10-28 Seoul Viosys Co., Ltd. Light emitting device
US8598775B2 (en) 2006-12-26 2013-12-03 Seoul Opto Device Co., Ltd. Light emitting device
DE112007002696T5 (de) 2006-12-26 2009-11-05 Seoul Opto Device Co. Ltd., Ansan Licht emittierende Vorrichtung
EP1973161A2 (en) 2007-03-19 2008-09-24 Seoul Opto-Device Co., Ltd. Light emitting diode
US8507923B2 (en) 2007-10-29 2013-08-13 Seoul Opto Device Co., Ltd. Light emitting diode package
US8040050B2 (en) 2008-06-30 2011-10-18 Samsung Led Co., Ltd. AC driven light emitting device
US8188654B2 (en) 2008-06-30 2012-05-29 Samsung Led Co., Ltd. AC driven light emitting device
US8754578B2 (en) 2008-06-30 2014-06-17 Samsung Electronics Co., Ltd. AC driven light emitting device connection structure
US8247980B2 (en) 2008-06-30 2012-08-21 Samsung Led Co., Ltd. LED driving circuit and light emitting diode array device
US9431377B2 (en) 2008-09-30 2016-08-30 Seoul Viosys Co., Ltd. Light emitting device and method of fabricating the same
US9337175B2 (en) 2008-09-30 2016-05-10 Seoul Viosys Co., Ltd. Light emitting device and method of fabricating the same
US8648369B2 (en) 2008-09-30 2014-02-11 Seoul Opto Device Co., Ltd. Light emitting device and method of fabricating the same
US9059015B2 (en) 2008-09-30 2015-06-16 Seoul Viosys Co., Ltd. Light emitting device and method of fabricating the same
US8288781B2 (en) 2008-09-30 2012-10-16 Seoul Opto Device Co., Ltd. Light emitting device and method of fabricating the same
US7709849B1 (en) 2008-12-17 2010-05-04 Seoul Semiconductor Co., Ltd. Light emitting diode having plurality of light emitting cells and method of fabricating the same
EP2200085A1 (en) 2008-12-17 2010-06-23 Seoul Semiconductor Co., Ltd. Light emitting diode having plurality of light emitting cells and method of fabricating the same
US7846755B2 (en) 2008-12-17 2010-12-07 Seoul Semiconductor Co., Ltd. Light emitting diode having plurality of light emitting cells and method of fabricating the same
US8232571B2 (en) 2008-12-24 2012-07-31 Seoul Opto Device Co., Ltd. Light emitting device having plurality of light emitting cells and method of fabricating the same
US8211724B2 (en) 2008-12-31 2012-07-03 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of non-polar light emitting cells and a method of fabricating the same
US8183072B2 (en) 2008-12-31 2012-05-22 Seoul Opto Device Co., Ltd. Light emitting device having plurality of non-polar light emitting cells and method of fabricating the same
US8648380B2 (en) 2008-12-31 2014-02-11 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of non-polar light emitting cells and a method of fabricating the same
US8294171B2 (en) 2008-12-31 2012-10-23 Seoul Opto Device Co., Ltd. Light emitting device having plurality of non-polar light emitting cells and method of fabricating the same
US9847371B2 (en) 2009-02-12 2017-12-19 Seoul Semiconductor Co., Ltd. Light emitting diode chip for high voltage operation and light emitting diode package including the same
US9634062B2 (en) 2009-02-26 2017-04-25 Bridgelux, Inc. Light sources utilizing segmented LEDs to compensate for manufacturing variations in the light output of individual segmented LEDs
US9472593B2 (en) 2009-02-26 2016-10-18 Bridgelux, Inc. Light sources utilizing segmented LEDs to compensate for manufacturing variations in the light output of individual segmented LEDs
US9913333B2 (en) 2009-02-26 2018-03-06 Bridgelux Inc. Light sources utilizing segmented LEDs to compensate for manufacturing variations in the light output of individual segmented LEDs
US10334674B2 (en) 2009-02-26 2019-06-25 Bridgelux Inc. Light sources utilizing segmented LEDs to compensate for manufacturing variations in the light output of individual segmented LEDs
US10966300B2 (en) 2009-02-26 2021-03-30 Bridgelux, Inc. Light sources utilizing segmented LEDs to compensate for manufacturing variations in the light output of individual segmented LEDs
US8937327B2 (en) 2009-03-31 2015-01-20 Seoul Semiconductor Co., Ltd. Light emitting device having plurality of light emitting cells and method of fabricating the same
US8258533B2 (en) 2009-12-31 2012-09-04 Seoul Opto Device Co., Ltd. Light emitting device and method of fabricating the same
EP2341543A1 (en) 2009-12-31 2011-07-06 Seoul Opto Device Co., Ltd. Light emitting device and method of fabricating the same
US8324650B2 (en) 2009-12-31 2012-12-04 Seoul Opto Device Co., Ltd. Light emitting device and method of fabricating the same
US8294170B2 (en) 2009-12-31 2012-10-23 Seoul Opto Device Co., Ltd. Light emitting device and method of fabricating the same
EP2455970A1 (en) 2009-12-31 2012-05-23 Seoul Opto Device Co., Ltd. Light emitting device and method of fabricating the same
KR20110121178A (ko) 2010-04-30 2011-11-07 서울옵토디바이스주식회사 복수개의 발광셀들을 갖는 발광 다이오드
US9516723B2 (en) 2010-07-14 2016-12-06 General Electric Company System and method for driving light emitting diodes
WO2012009086A1 (en) 2010-07-14 2012-01-19 General Electric Company System and method for driving light emitting diodes
US9202973B2 (en) 2010-07-22 2015-12-01 Seoul Viosys Co., Ltd. Light emitting diode
US8629471B2 (en) 2010-07-22 2014-01-14 Seoul Opto Device Co., Ltd. Light emitting diode
US9070851B2 (en) 2010-09-24 2015-06-30 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US9882102B2 (en) 2010-09-24 2018-01-30 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode and wafer-level light emitting diode package
US9048409B2 (en) 2010-09-24 2015-06-02 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US9543490B2 (en) 2010-09-24 2017-01-10 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US9153750B2 (en) 2010-09-24 2015-10-06 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US9219196B2 (en) 2010-09-24 2015-12-22 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US10879437B2 (en) 2010-09-24 2020-12-29 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US9293664B2 (en) 2010-09-24 2016-03-22 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US10892386B2 (en) 2010-09-24 2021-01-12 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
KR101216937B1 (ko) 2011-04-07 2012-12-31 서울반도체 주식회사 다수의 셀이 결합된 발광 소자 및 이의 제조 방법 및 이를 이용한 발광 장치
JP2013048162A (ja) * 2011-08-29 2013-03-07 Seiwa Electric Mfg Co Ltd 半導体発光素子及び発光装置
KR20120031473A (ko) 2011-12-27 2012-04-03 서울옵토디바이스주식회사 복수개의 발광셀들을 갖는 웨이퍼 레벨 발광 다이오드 패키지 및 그것을 제조하는 방법
WO2013104250A1 (zh) 2012-01-10 2013-07-18 四川新力光源股份有限公司 交流电直接恒流驱动的白光led发光装置
KR101202175B1 (ko) 2012-03-26 2012-11-15 서울반도체 주식회사 발광 장치
KR20140081638A (ko) 2012-12-21 2014-07-01 서울바이오시스 주식회사 발광 다이오드 및 그것을 제조하는 방법
US10256387B2 (en) 2012-12-21 2019-04-09 Seoul Viosys Co., Ltd. Light emitting diode
US9356212B2 (en) 2012-12-21 2016-05-31 Seoul Viosys Co., Ltd. Light emitting diode and method of fabricating the same
US9287462B2 (en) 2012-12-21 2016-03-15 Seoul Viosys Co., Ltd. Light emitting diode and method of fabricating the same
US9379282B1 (en) 2012-12-21 2016-06-28 Seoul Viosys Co., Ltd. Light emitting diode and method of fabricating the same
US9093627B2 (en) 2012-12-21 2015-07-28 Seoul Viosys Co., Ltd. Light emitting diode and method of fabricating the same
US9735329B2 (en) 2012-12-21 2017-08-15 Seoul Viosys Co., Ltd. Light emitting diode
US9634061B2 (en) 2012-12-21 2017-04-25 Seoul Viosys Co., Ltd. Light emitting diode
DE102014011893A1 (de) 2013-08-16 2015-02-19 Seoul Viosys Co., Ltd. Leuchtdiode
KR20160024370A (ko) 2016-02-11 2016-03-04 서울바이오시스 주식회사 웨이퍼 레벨 발광 다이오드 패키지 및 그것을 제조하는 방법
US10580929B2 (en) 2016-03-30 2020-03-03 Seoul Viosys Co., Ltd. UV light emitting diode package and light emitting diode module having the same

Also Published As

Publication number Publication date
US20050253151A1 (en) 2005-11-17
RU2005103616A (ru) 2005-10-10
US7615793B2 (en) 2009-11-10
EP2154721A2 (en) 2010-02-17
US8735911B2 (en) 2014-05-27
US8680533B2 (en) 2014-03-25
US20080179603A1 (en) 2008-07-31
EP2157609A2 (en) 2010-02-24
EP2154721B1 (en) 2019-08-07
US20090108275A1 (en) 2009-04-30
US20080246040A1 (en) 2008-10-09
EP1553641A4 (en) 2007-03-14
US8735918B2 (en) 2014-05-27
KR20050052474A (ko) 2005-06-02
TW200408148A (en) 2004-05-16
EP2149905A3 (en) 2014-05-07
US20090267089A1 (en) 2009-10-29
EP2154722A3 (en) 2012-11-28
DE60336252D1 (de) 2011-04-14
US20110073879A1 (en) 2011-03-31
US20100102329A1 (en) 2010-04-29
EP2154722A2 (en) 2010-02-17
EP1553641A1 (en) 2005-07-13
US20170154922A1 (en) 2017-06-01
US20150108497A1 (en) 2015-04-23
EP2157609A3 (en) 2014-05-07
CN1679177A (zh) 2005-10-05
EP1892764A1 (en) 2008-02-27
EP2149906A2 (en) 2010-02-03
EP2149907A2 (en) 2010-02-03
EP1892764B1 (en) 2016-03-09
US20130248900A1 (en) 2013-09-26
EP2149905A2 (en) 2010-02-03
US7667237B2 (en) 2010-02-23
EP1553641B1 (en) 2011-03-02
US7417259B2 (en) 2008-08-26
EP3389094A1 (en) 2018-10-17
CN100570883C (zh) 2009-12-16
ES2362407T3 (es) 2011-07-04
US20120305951A1 (en) 2012-12-06
US20090108273A1 (en) 2009-04-30
US8084774B2 (en) 2011-12-27
EP2101355A1 (en) 2009-09-16
RU2295174C2 (ru) 2007-03-10
CN100421266C (zh) 2008-09-24
ATE500616T1 (de) 2011-03-15
US7569861B2 (en) 2009-08-04
US9947717B2 (en) 2018-04-17
US7956367B2 (en) 2011-06-07
US7897982B2 (en) 2011-03-01
EP2149906A3 (en) 2014-05-07
US20090108274A1 (en) 2009-04-30
US8129729B2 (en) 2012-03-06
US20070138500A1 (en) 2007-06-21
US7646031B2 (en) 2010-01-12
US20090237935A1 (en) 2009-09-24
US8097889B2 (en) 2012-01-17
US20130003377A1 (en) 2013-01-03
CN101093849A (zh) 2007-12-26
KR100697803B1 (ko) 2007-03-20
EP2149907A3 (en) 2014-05-07
US20090108272A1 (en) 2009-04-30
EP2154722B1 (en) 2017-10-11
EP2154721A3 (en) 2014-05-07
TWI280672B (en) 2007-05-01

Similar Documents

Publication Publication Date Title
WO2004023568A1 (ja) 複数の発光素子を有する発光装置
JP3822545B2 (ja) 発光装置
JP4938821B2 (ja) 発光装置
JP4195041B2 (ja) 発光装置
JP4949211B2 (ja) 発光装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003794115

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057002666

Country of ref document: KR

Ref document number: 1020057002667

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038206226

Country of ref document: CN

Ref document number: 10525998

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2005103616

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020057002667

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1020057002666

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003794115

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020057002667

Country of ref document: KR