WO2004029868A1 - アンテナ装置及びアンテナ装置を用いた通信装置 - Google Patents

アンテナ装置及びアンテナ装置を用いた通信装置 Download PDF

Info

Publication number
WO2004029868A1
WO2004029868A1 PCT/JP2003/010984 JP0310984W WO2004029868A1 WO 2004029868 A1 WO2004029868 A1 WO 2004029868A1 JP 0310984 W JP0310984 W JP 0310984W WO 2004029868 A1 WO2004029868 A1 WO 2004029868A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop coil
card
main surface
loop
narrow portion
Prior art date
Application number
PCT/JP2003/010984
Other languages
English (en)
French (fr)
Inventor
Hiraku Akiho
Yutaka Okazaki
Kazuo Goto
Akihiro Kikuchi
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to CNB038016346A priority Critical patent/CN100383816C/zh
Priority to DE60336799T priority patent/DE60336799D1/de
Priority to US10/497,111 priority patent/US7000837B2/en
Priority to EP03798378A priority patent/EP1477927B1/en
Publication of WO2004029868A1 publication Critical patent/WO2004029868A1/ja
Priority to US11/244,727 priority patent/US7183987B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2216Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in interrogator/reader equipment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07771Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card the record carrier comprising means for minimising adverse effects on the data communication capability of the record carrier, e.g. minimising Eddy currents induced in a proximate metal or otherwise electromagnetically interfering object
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07779Antenna details the antenna being of the inductive type the inductive antenna being a coil
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • G06K7/10336Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers the antenna being of the near field type, inductive coil
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • G06K7/10346Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers the antenna being of the far field type, e.g. HF types or dipoles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10366Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications
    • G06K7/10376Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications the interrogation device being adapted for being moveable
    • G06K7/10386Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications the interrogation device being adapted for being moveable the interrogation device being of the portable or hand-handheld type, e.g. incorporated in ubiquitous hand-held devices such as PDA or mobile phone, or in the form of a portable dedicated RFID reader
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/04Screened antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material

Definitions

  • the present invention relates to an antenna device for a reader / writer for writing and reading data to and from a non-contact type IC card that inductively couples an electromagnetic field, and a communication device using the antenna device.
  • the present invention relates to a communication device using this antenna device.
  • this application claims priority based on Japanese Patent Application No. 2002—284177, filed on September 27, 2002 in Japan, and Japanese Patent Application No. 2003-3739, filed on January 9, 2003.
  • This application is incorporated herein by reference.
  • RF ID Radio Frequency Identification
  • this RFID system has a non-contact IC card 100 and a reader / writer 101 that writes and reads data to and from this IC card 100.
  • RF ID system unlike the conventional contact-type IC card system, there is no need to load the IC card into the reader / writer or bring the metal contacts into contact, so that simple and high-speed writing of data is possible. And read.
  • This RF In the 1D system the necessary electric power is supplied to the IC card 100 from the electromagnetic field transmitted from the reader / writer 101, so there is no need to have a power source such as a battery in the IC card, and maintenance is easy. It is possible to provide a highly reliable, low cost and highly reliable IC card.
  • a loop antenna 100 capable of radiating an electromagnetic field having a certain magnetic field strength is used. 2 must be provided on the reader / writer 101 side.
  • the loop antenna 1 • 2 for the reader / writer 101 includes a loop coil 200 in which a conducting wire is wound in a plane as shown in FIG. This loop coil
  • Japanese Patent Application Laid-Open No. 2004-144048 discloses a main body antenna connected to a Reader / Writer module.
  • AG1, AG2, AG3, and the like of the lead light device RW described in Japanese Patent Application Laid-Open No. 8-29 are cited.
  • the loop antenna 102 for the reader / writer 101 having such a symmetric shape has a symmetric magnetic field distribution as shown in FIG.
  • FIG. 4 shows the force position dependence of the current intensity induced in the IC card 100 by the loop antenna 102.
  • the position is opposite to the center of the loop coil 200.
  • Two communicable areas S and S 2 ′ are formed.
  • the communicable area S is defined by a magnetic field generated from each of four sides of the loop antenna 1 ⁇ 2 on the reader / writer 101 side and the loop antenna 103 on the IC card 100 side facing each other.
  • the origin 0 on the horizontal axis indicates the center position of the loop antenna 102 on the reader / writer 1 ⁇ 1 side, and in the positive direction, the IC card 100 goes outward from the origin 0. Indicates the direction.
  • the vertical axis shows the induced current intensity generated by the magnetic field of the loop antenna 102 on the reader / writer 101 side in the loop antenna 103 on the IC card 100 side by electromagnetic induction.
  • the area where the value is equal to or greater than the value indicated by the dotted lines s and is the area that can communicate.
  • Such a loop antenna 102 for the reader / writer 101 cannot be directly attached to a metal housing made of Mg alloy or the like due to eddy currents and the like. For this reason, as shown in FIG. 5, when a metal housing 300 is used, a magnetic material sheet 301 is interposed between the metal housing 300 and the loop coil 200. A structure is adopted in which a resin sheet 302 made of polycarbonate or the like, which is a protective material, is arranged on the loop coil 200. Also in this case, the loop antenna 102 for the reader / writer 101 cannot efficiently radiate an electromagnetic field to the IC card 100, and the above-described IC card 100 and reader / writer 101 A problem arises when the range in which communication can be performed with the network becomes narrow.
  • the electric circuit board 400 inside the resin housing 400 is used so as not to generate electromagnetic induction noise in the electronic circuit. Since the spacer 402 must be arranged between the loop antenna 1 and the loop antenna 102, the dimension in the thickness direction increases.
  • conventional reader / writer Loop antenna 102 has almost the same size as loop antenna 103 on IC card 100 side. With such a conventional loop antenna 102 for the reader / writer 101, it is difficult to reduce the size and thickness.
  • the above-described reader / writer 101 may be mounted on a resin housing or a metal housing of a portable small electronic device.
  • a thinner loop antenna 102 for a reader / writer is required which is equal to or smaller than the outer shape of the IC card 1 • 0.
  • the size of the device is limited, so that even if the space arrangement is devised, the electromagnetic field radiated by the loop antenna 102 is not affected.
  • the electromagnetic field radiated by the loop antenna 102 is not affected.
  • a new method for reducing the influence of the metal casing on the loop antenna 102 and the influence of the electromagnetic field radiated by the loop antenna 102 itself on an electronic circuit board or the like is desired.
  • the desired transmission / reception position of the reader / writer 101 is not necessarily the loop antenna 100 due to the restriction of the installation location and the positional relationship with the location where other functions such as a keyboard are installed.
  • portable small electronic devices that does not become the center of 2 and that it wants to freely set the transmission / reception position in consideration of usability.
  • An object of the present invention is to provide a novel antenna device that can solve the problems of the conventional technology as described above, and a communication device using the antenna device.
  • Another object of the present invention is to use an antenna device and an antenna device capable of expanding a communicable range between an IC card and a reader / writer by controlling and effectively using a radiation electromagnetic field distribution. To provide a communication device.
  • Still another object of the present invention is to provide an antenna device for a reader / writer and a communication device using the antenna device, which can further reduce the size and increase the performance by reducing the influence of the material of the housing. Is to do.
  • the antenna device according to the present invention can be connected to a non-contact type Ic card by electromagnetic induction coupling.
  • the loop coil for performing electromagnetic induction coupling and the main surface of the loop coil facing the IC card face the opposite main surface.
  • a magnetic material in which the specific transmittance, and the product M s ⁇ t of the saturation magnetization M s and the thickness t are set based on the set communication range that is arranged and can communicate with the non-contact type IC card.
  • the specific transmittance t /, of the magnetic material is set to 30 or more, and the product M s ⁇ t of the saturation magnetization M s and the thickness of the magnetic material is set to 6 emu / cm 2 or more.
  • the coercive force Hc of the magnetic material is set to 10 Oe or less.
  • the magnetic body is formed of a soft magnetic material.
  • Soft magnetic materials include amorphous alloys, Co-Cr alloys, or: Fe-A1 alloys, Sendust alloys, Fe-Ni alloys, or Fe-Co-Ni.
  • a pressed sintered body of an alloy or a ferrite alloy is used.
  • the magnetic material constituting the antenna device according to the present invention includes a wide portion that is wider than the outermost width of the winding of the loop coil, and a narrow portion that is narrower than the innermost width of the winding of the loop coil. With the narrow portion penetrating the center of the loop, the wide portion faces the main surface of the loop coil opposite to the main surface facing the IC card, and the gap between the windings of the loop coil. On the side where the gap becomes narrower, the narrow portion is arranged to face the main surface of the loop coil facing the IC card.
  • the magnetic body constituting the antenna device according to the present invention includes a wide portion that is wider than the outermost width of the winding of the loop coil and a pair of notches cut out from one end. It has a narrow portion that is narrower than the innermost width of the wire, and a pair of pieces on both sides of the narrow portion sandwiching the pair of notches, and the narrow portion is located at the center of the loop coil.
  • the narrow portion faces the main surface of the loop coil opposite to the main surface facing the IC card
  • the narrow portion faces the main surface of the loop coil facing the IC card
  • a pair of parts are arranged facing the main surface of the loop coil opposite to the main surface facing the IC card.
  • the loop coil constituting the antenna device according to the present invention has an asymmetric shape in which a conducting wire is wound in a planar shape and the interval between the windings opposed to each other across the center is different. I have. In this loop coil, the interval between the windings differs in the direction in which the IC card is scanned. Further, the loop coil is desirably smaller than the loop coil on the IC card side to be inductively coupled.
  • the present invention relates to a communication device for performing data communication with a non-contact type Ic card by electromagnetic induction coupling, a loop coil for performing electromagnetic induction coupling, and a loop coil on a side opposite to a main surface of the loop coil facing the IC card.
  • the product of the non-transmissivity ju ', the saturation magnetization M s and the thickness of seven based on the set communication range that is located near the metal body facing the main surface and can communicate with the non-contact type IC card A magnetic material in which M s ⁇ t is set; a modulating means for modulating the loop coil with transmission data to the non-contact type IC card at a predetermined carrier frequency; Demodulating means for demodulating received data transmitted from the contact type IC card.
  • the magnetic material used here has a wide portion that is wider than the outermost width of the winding of the loop coil, and a narrow portion that is narrower than the innermost width of the winding of the loop coil.
  • Narrow part Is inserted through the center of the loop coil, and the narrow portion faces the main surface of the loop coil opposite to the main surface facing the IC card, and on the side where the winding interval of the loop coil becomes narrower
  • the narrow portion is arranged to face the main surface of the loop coil facing the IC card.
  • the magnetic body has a wider portion that is wider than the outermost width of the winding of the loop coil, and a pair of notches cut out from one end of the magnetic material that is wider than the innermost width of the winding of the loop coil.
  • a narrow portion having a narrow width, and a pair of pieces on both sides of the narrow portion sandwiching the pair of notches, wherein the narrow portion penetrates the center of the loop coil;
  • the narrow portion faces the main surface of the loop coil opposite to the main surface facing the IC card, the narrow portion faces the main surface of the loop coil facing the IC card, and a pair of pieces.
  • the part is arranged to face the main surface of the loop coil opposite to the main surface facing the IC card.
  • One side of the surface of the housing of the antenna device used for the communication device according to the present invention, on which the loop coil is provided, is formed to be shorter than the long length of the IC card.
  • FIG. 1 is a perspective view showing a conventional RFID system.
  • FIG. 2 is a plan view showing a conventional R / W loop antenna.
  • FIG. 3 is a diagram showing the magnetic field distribution by the conventional R / W loop antenna.
  • C Fig. 4 is the conduction current characteristic by which the communication performance with the IC card by the conventional R / W loop antenna is induced.
  • FIG. 4 is the conduction current characteristic by which the communication performance with the IC card by the conventional R / W loop antenna is induced.
  • FIG. 5 is a characteristic diagram showing a magnetic field distribution when a conventional R / W loop antenna is arranged in a metal housing.
  • FIG. 6 is a side view showing a state where a conventional R / W loop antenna is arranged in a resin housing.
  • FIG. 7 is a circuit diagram showing a configuration of the RFID system according to the present invention.
  • FIG. 8 is a plan view showing a planar asymmetric loop antenna.
  • FIG. 9 is a schematic diagram illustrating a magnetic field distribution in the Z direction by a plane asymmetrical type loop.
  • FIG. 10 is a plan view showing a three-dimensional asymmetrical type loop.
  • FIG. 11 is a plan view showing a magnetic sheet of the three-dimensional asymmetric loop antenna.
  • FIG. 12 is a schematic diagram showing a magnetic field distribution in the Z direction by a three-dimensional asymmetric loop antenna.
  • FIG. 13 is a plan view showing another example of the three-dimensional asymmetric loop antenna.
  • FIG. 14 is a plan view showing a magnetic sheet constituting the three-dimensional asymmetric loop antenna shown in FIG.
  • FIG. 15 is a schematic diagram showing a magnetic field distribution in the Z direction by the three-dimensional asymmetric loop antenna shown in FIG.
  • FIG. 16 is a schematic diagram showing a magnetic field distribution in the X direction by the stereo asymmetric loop antenna shown in FIG.
  • FIG. 17 is a schematic diagram showing a magnetic field distribution in the X direction by the stereo asymmetric loop antenna shown in FIG.
  • FIG. 18 is a characteristic diagram showing a relationship between the relative magnetic permeability of the magnetic sheet and the communication range.
  • FIG. 19 is a characteristic diagram showing a relationship between M s ⁇ t of the magnetic sheet and the communication distance.
  • FIG. 20 is a characteristic diagram showing the communication performance with the IC card by the plane symmetric loop antenna, the plane asymmetric loop antenna, and the three-dimensional asymmetric loop antenna in the case of a resin housing by using an induced current characteristic.
  • FIG. 21 is a characteristic diagram showing, in the case of a metal case, the communication performance of each loop antenna according to the present invention with an IC card by using an induced current characteristic.
  • FIG. 22 is a characteristic diagram showing the communication performance of each loop antenna with the IC card as an induced current characteristic when the magnetic sheet is not arranged.
  • FIG. 23 is a characteristic diagram showing the communication performance of each of the loop antennas with the IC card as an induced current characteristic when a magnetic sheet is arranged.
  • FIG. 24 is a plan view showing the configuration of the communication terminal device according to the present invention.
  • FIG. 25 is a cross-sectional view showing a three-dimensional asymmetric loop antenna arranged in a communication terminal device.
  • FIG. 26 is a schematic diagram showing a magnetic field distribution by a three-dimensional asymmetric loop antenna arranged in a communication terminal device.
  • FIG. 27 is a flowchart showing a manufacturing process of the magnetic sheet.
  • FIG. 28 is a schematic diagram showing an extruder.
  • FIG. 29 is a schematic diagram showing a coating device.
  • FIG. 30A is a plan view showing a magnetic sheet
  • FIG. 30B is a cross-sectional view showing a magnetic sheet.
  • FIG. 31 is a plan view showing a loop coil.
  • FIG. 32 is a plan view showing a three-dimensional asymmetric loop antenna.
  • FIG. 33 is a cross-sectional view of relevant parts showing a case where the magnetic sheet is soft in the three-dimensional asymmetric loop antenna.
  • FIG. 34 is a cross-sectional view of main parts showing a case where the magnetic sheet is hard in the three-dimensional asymmetric loop antenna.
  • the RFID system to which the present invention is applied includes a non-contact type IC card 1 and a reader / writer (hereinafter referred to as R / W) for writing and reading data to and from the IC card 1. 50.
  • the IC card 1 is, for example, a batteryless IC card having no power supply such as a battery compliant with IS 078010.
  • This IC card is the same size as a so-called credit card, that is, it is formed in a rectangular plate shape with a size enough to fit on the palm.
  • the IC card 1 is connected to an electromagnetic field on a substrate provided inside it.
  • a loop antenna 2 for transmitting and receiving data, and an IC (Integrated Circuit) 3 on which electronic circuits for performing various processes for writing and reading data are integrated.
  • a loop coil 4 in which a conducting wire is wound in a plane, and forms a resonance circuit with a capacitor 5 connected in parallel with the loop coil 4. I have.
  • the loop antenna 2 combines with an electromagnetic field radiated from a loop antenna on the R / W 50 side, which will be described later, converts the combined electromagnetic field into an electric signal, and supplies the electric signal to the IC 3.
  • the IC 3 is provided with a rectifier circuit 6 for rectifying and smoothing the electric signal supplied from the loop coil 4, a regulator 7 for converting the electric signal supplied from the rectifier circuit 6 into DC power, and a rectifier circuit 6.
  • HPF High Pass-F i Iter
  • demodulation circuit 9 for demodulating the high-frequency component signal input from HP 'F 8
  • demodulation circuit 9 Sequencer 10 for controlling writing and reading of data corresponding to data
  • memory 11 for storing data supplied from demodulation circuit 9, and modulation circuit 1 for modulating data transmitted by loop coil 4.
  • modulation circuit 1 for modulating data transmitted by loop coil 4.
  • the rectifier circuit 6 includes a diode 13, a resistor 14, and a capacitor 15. Among these, the anode terminal of diode 13 is connected to one end of loop coil 4 and capacitor 5, the force source terminal of diode 13 is connected to one end of resistor 14 and capacitor 15 and resistor 14 and capacitor The other end of 15 is connected to the other end of the loop coil 4 and the capacitor 5.
  • the rectifier circuit 6 outputs an electric signal obtained by rectifying and smoothing the electric signal supplied from the loop coil 4 to the regulator 7 and the HPF 8.
  • the regulator 7 is connected to the cathode terminal of the diode 13 of the rectifier circuit 6, the resistor 14, and one end of the capacitor 15. This regulator 7 suppresses the voltage fluctuation (data component) of the electric signal supplied from the rectifier circuit 6 and stabilizes it, and then supplies it to the sequencer 10 as DC power. As a result, voltage fluctuations that cause malfunction of the sequencer 10 or the like, for example, voltage fluctuations caused by the movement of the position of the IC card 1 and voltage fluctuations generated by a change in power consumption in the IC card 1 are suppressed.
  • the HPF 8 is composed of a capacitor 16 and a resistor 1 ⁇ , extracts a high-frequency component of the electric signal supplied from the rectifying circuit 6 described above, and outputs the high-frequency component to the demodulating circuit 9 (the demodulating circuit 9 is configured as described above.
  • the HPF 8 is connected to the other end of the capacitor 16 and one end of the resistor 17, and demodulates the high-frequency component signal input from the HPF 8, Output to the controller 10.
  • the sequencer 10 has a ROM (Read Only Memory) and a RAM (Random Access Memory) therein, and is connected to the demodulation circuit 9 described above. Then, the sequencer 10 stores the signal (command) input from the demodulation circuit 9 in the RAM, analyzes the signal according to a program stored in the ROM, and, based on the analysis result, Read the data stored in memory 11 as necessary. Alternatively, the data supplied from the demodulation circuit 9 is written into the memory 11. This sequencer 10 generates a response signal and supplies it to the modulation circuit 12 in order to return a response corresponding to the command.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the memory 11 is composed of a non-volatile memory such as an EEPROM (Electrically Erasable Programmable Read-Only Memory) that does not require power to hold the data overnight, and is connected to the sequencer 10 described above. .
  • the memory 11 stores data supplied from the demodulation circuit 9 based on the analysis result of the sequencer 10.
  • the modulation circuit 12 is composed of a series circuit of an impedance 18 and an FET (Field Effect Transistor) 19, of which one end of the impedance 18 has the power of the diode 13 of the rectifier circuit 6 described above.
  • the other end of impedance 18 is connected to the drain terminal of FET 19, the source terminal of FET 19 is connected to the ground point, and the gate terminal of FET 19 is connected to sequencer 10 I have.
  • the modulation circuit 12 is connected in parallel with the loop coil 4 constituting the above-described resonance circuit, and causes the FET 19 to perform a switching operation in response to a signal from the sequencer 10, and to control the impedance of the loop coil 4. It employs a so-called additional modulation method that varies the load of 18.
  • the R / W 50 includes a control circuit 51 for controlling data to be transmitted and received, a modulation circuit 52 for modulating data and power for the IC card 1 to operate, and a received signal.
  • a demodulation circuit 53 for demodulating data and a loop antenna 54 for transmitting and receiving data by coupling with an electromagnetic field are provided.
  • the control circuit 51 generates control signals for various controls according to, for example, an external command or a built-in program, controls the modulation circuit 52 and the demodulation circuit 53, and generates transmission data corresponding to the command. And the modulation circuit 52. Also, The control circuit 51 generates reproduction data based on the response data from the demodulation circuit 53 and outputs the reproduction data to the outside.
  • the transmitter modulates the transmission data input from the control circuit 51, and supplies the modulated signal to the loop antenna 54.
  • the demodulation circuit 53 demodulates the modulated wave from the loop antenna 54 and supplies the demodulated data to the control circuit 51.
  • the loop antenna 54 is composed of a loop coil in which a conducting wire is wound in a plane, radiates an electromagnetic field corresponding to the modulated wave supplied from the modulation circuit 52, and has a loop coil 4 on the IC side. Detect load fluctuations. Note that a resonance capacitor may be connected to the loop antenna 54 in parallel or in series, depending on the R / W 50 antenna drive circuit system.
  • the control circuit 51 of the R / W 50 performs the write operation based on the command.
  • transmission data serving as write data corresponding to the command is generated and supplied to the modulation circuit 52.
  • the modulation circuit 52 modulates the amplitude of the oscillation signal based on the input signal and supplies the modulated signal to the loop antenna 54.
  • Loop antenna 54 emits an electromagnetic wave corresponding to the input modulated signal.
  • the resonance frequency of the resonance circuit composed of the loop coil 4 and the capacitor 5 of the IC card 1 is set to, for example, 13.56 MHz as a value corresponding to the oscillation frequency that becomes the carrier frequency from R / W 50. Have been.
  • This resonance circuit receives the radiated electromagnetic field by a resonance operation, converts the received electromagnetic field into an electric signal, and supplies the electric signal to the IC 3.
  • the converted electric signal is input to a rectifier circuit 6, rectified and smoothed by the rectifier circuit 6, and then supplied to a regulator 7.
  • the regulator 7 suppresses voltage fluctuation due to the data signal of the electric signal supplied from the rectifier circuit 6 and stabilizes the voltage, and then supplies it to the sequencer 10 as DC power.
  • the signal rectified and smoothed by the rectification circuit 6 is supplied to the HPF 8 via the modulation circuit 12, where the high frequency component is extracted, and then supplied to the demodulation circuit 9.
  • the demodulation circuit 9 demodulates the input high frequency component signal and supplies it to the sequencer 10. Then, the sequencer 10 uses the signal input from the demodulation circuit 9 as a command and sends it to the RAM.
  • the data is stored, analyzed in accordance with a program stored in the ROM, and the write data supplied from the demodulation circuit 9 is written to the memory 11 based on the analyzed result.
  • the sequencer 10 reads the read data corresponding to the command from the memory 11.
  • the FET 19 of the modulation circuit 12 performs a switching operation in response to the reading data. That is, in the modulation circuit 12, when the FET 19 is turned on, the loop coil 4 is connected in parallel to the impedance 18 and when the FET 19 is turned off, the impedance 18 and the loop coil 4 are connected. The parallel connection is released.
  • the impedance of the loop antenna 54 on the R-side W 5 ⁇ side magnetically coupled to the loop antenna 2 on the IC card 1 changes in response to the reading data. Therefore, the terminal voltage of the loop antenna 5.4 fluctuates in accordance with the change in the impedance, and the RZW 50 receives the read data by demodulating the fluctuation by the demodulation circuit 53. Can be.
  • the antenna device 60 includes a loop coil 61 for inductively coupling an electromagnetic field, and a main coil on the opposite side of the main surface of the loop coil 61 facing the IC card 1. And a magnetic sheet 62 arranged opposite the surface.
  • the loop coil 61 is formed, for example, by etching a flexible insulating film such as a polyimide or a conductive metal foil film such as electrolytic copper formed on both surfaces of the substrate 63.
  • the method of manufacturing the loop coil 61 is not limited to the above-described example. For example, a method in which a conductor pattern serving as the loop coil 61 is printed using a conductor paste such as a silver paste, or a metal alloy may be used.
  • the conductor pattern which becomes the loop call 61 may be formed on the substrate by sputtering the get. Further, the loop coil 61 has an asymmetric shape in which the spacing and the line width between the windings facing each other across the center thereof are different in one direction. That is, this The loop coil 61 has an upper winding portion 61a having a wider space and a wider line width between the windings in one direction corresponding to the up and down direction indicated by the arrow Z in the figure and the middle between the windings. It has a lower winding portion 6 lb with a reduced spacing and line width.
  • the magnetic material sheet 62 has a rectangular shape larger than the loop coil 61 so that the loop coil 61 can be accommodated in the main surface.
  • the antenna device 60 has a structure in which a magnetic sheet 62 is bonded to a main surface of the loop coil 61 opposite to the main surface facing the IC card 1.
  • the magnetic field distribution by the antenna device 60 in one direction indicated by the arrow Z in FIG. 8 is, as shown in FIG. 9, the upper side winding in which the interval between the windings of the loop coil 61 and the line width are widened. This is emphasized in the line portion 61a. That is, the magnetic field distribution by the antenna device 60 is different from the symmetric magnetic field distribution shown in FIG. 3 described above, and is asymmetric.
  • the loop coil 61 has an asymmetric shape, and by controlling the radiated magnetic field distribution by the loop coil 61, the above-described IC card 1 can communicate with the R / W 50. It is possible to shift the communicable position in one direction while expanding the effective range. In the antenna device 60, since the size of the loop coil 61 can be made smaller than that of the loop coil 4 on the IC card 1, the size can be further reduced.
  • the magnetic sheet 6 ′ 2 is disposed so as to face the main surface of the loop coil 61 opposite to the main surface of the loop coil 61 opposite to the IC card 1. Only the magnetic field distribution on the main surface side facing the IC card 1 can be emphasized. Therefore, in the antenna device 60 according to the present invention, the communicable range between the IC card 1 and the R / W 50 can be further increased by increasing the magnetic field strength.
  • the above-described loop antenna 54 on the R / W 50 side may be another antenna device 70 according to the present invention configured as shown in FIG.
  • the antenna device 70 shown in FIG. 10 includes a loop coil 71 for inductively coupling an electromagnetic field, and a magnetic sheet 72 that is superimposed so as to penetrate the center of the loop coil 71. ing.
  • the loop coil 71 is formed by, for example, etching a flexible insulating film such as polyimide or a conductive metal foil film such as electrolytic copper formed on both surfaces of the substrate 73.
  • the method for producing the loop coil 71 is not limited to the above-described example.
  • a conductor pattern that becomes the loop coil 71 may be printed using a conductor paste such as a silver paste, or a metal gate may be sputtered.
  • the conductor pattern which becomes the loop coil 71 may be formed on the substrate by the evening.
  • the loop coil 71 has an asymmetric shape in which the spacing and the line width between the windings facing each other across the center thereof are different in one direction. That is, the loop coil 71 has an upper winding portion 71a in which the distance between the windings and the line width are wide in one direction corresponding to the vertical direction indicated by arrow Z in FIG. It has a lower winding portion 7 lb in which the spacing between the windings and the line width are reduced. In the center of the loop coil 71, a through-hole 74 for allowing the magnetic sheet 72 to penetrate is provided.
  • the magnetic material sheet 72 includes a wide portion 72 a that is wider than the outermost width of the winding of the loop coil 71, and a wide portion 72.
  • a has a narrow portion 72b that is narrower than the innermost width of the winding of the loop coil 71 extending downward from the center of the lower end of a, and is formed in a substantially T-shape as a whole.
  • the wide portion 72a has a rectangular shape larger than the loop coil 71 such that the upper winding portion 7la of the loop coil 71 fits in its main surface.
  • the narrow portion 72b has a width sufficient to penetrate the through hole 74 of the loop coil 71, and has a lower side winding portion 7 of the loop coil 71 inside its main surface.
  • the loop coil 71 is formed in a rectangular shape smaller than the loop coil 71 so as to accommodate 1b.
  • the antenna device 70 has a through hole 74 of the loop coil 71, a magnetic material extending from the main surface side opposite to the main surface facing the IC card 1 toward the main surface side facing the IC card 1.
  • the magnetic sheet 72 is attached to the loop coil 71 with the narrow portion 72b of the sheet 72 penetrating therethrough. Therefore, in the magnetic sheet 72, on the upper side where the winding interval of the loop coil 71 is widened, one main surface of the wide portion 72a faces the IC card 1 of the loop coil 71. On the other side On the lower side facing the main surface, where the winding interval of the loop coil 71 is narrow, the other main surface side of the narrow portion 7 2 b faces the main surface facing the IC coil 1 of the loop coil 71. It is arranged.
  • the magnetic field distribution by the antenna device 70 in one direction corresponding to the vertical direction indicated by the middle arrow Z in FIG. 1 is, as shown in FIG. 12, the upper part where the winding interval and the line width of the loop coil 71 are widened. It becomes an asymmetrical one emphasized in the side winding part 71a.
  • the loop coil 71 has an asymmetric shape, and by controlling the radiated magnetic field distribution by the loop coil 71, the communicable range between the IC card 1 and the RZW 50 described above. It is possible to shift the position where communication is possible in one direction, while expanding the communication distance. Further, in the antenna device 70, the size of the loop coil 71 can be made smaller than that of the loop coil 4 on the IC card 1, so that further miniaturization is possible.
  • the wide portion 72a of the magnetic sheet 72 faces the IC force 1 of the loop coil 71 on the upper side where the winding interval of the loop coil 71 is widened.
  • the narrow portion 7 2b of the magnetic material sheet 7 2 has an IC card 1 of the loop coil 7 1.
  • the upper surface of the main surface of the loop coil 71 facing the IC card 1 has the winding interval and line width of the loop coil # 1 wider than the main surface of the loop coil 71. Only the magnetic field distribution of the line portion 71a can be emphasized.
  • the communicable range between the IC card 1 and the R / W 50 is increased by increasing the magnetic field strength on the upper side where the winding interval and the line width of the loop coil 71 are increased. Can be greatly expanded at one cylinder location.
  • the above-described loop antenna 54 on the R / W 50 side may be another antenna device 80 according to the present invention configured as shown in FIG.
  • the antenna device 80 shown in FIG. 13 includes a loop coil 81 for inductively coupling an electromagnetic field, and a magnetic sheet 82 superimposed while penetrating the center of the loop coil 81. I have.
  • the loop coil 81 etches an insulating film having flexibility such as polyimide force or a conductive metal foil film such as electrolytic copper formed on both surfaces of the substrate 83. And so on.
  • the method of manufacturing the loop coil 81 is not limited to the above-described example. For example, a method in which a conductor pattern serving as the loop coil 81 is printed using a conductive paste such as a silver paste, or a metal gate may be used. May be formed on the substrate by sputtering. Further, the loop coil 81 has an asymmetric shape in which the spacing and the line width between the windings opposing each other across the center thereof are different in one direction.
  • the loop coil 81 has an upper winding portion 81a in which the distance between the windings and the line width are increased in one direction corresponding to the vertical direction indicated by arrow Z in FIG. And a lower winding portion 8 lb in which the spacing and the line width between the windings are reduced.
  • a through hole 8 is provided in the center of the loop coil 81 for allowing the magnetic sheet 82 to pass therethrough.
  • the magnetic sheet 82 has a rectangular shape larger than the loop coil 81 so that the loop coil 81 fits within the main surface.
  • a pair of notches 85 which are a pair of slits cut straight from the lower end to the middle in one direction of the loop coil 81, are formed at predetermined intervals. They are formed in parallel.
  • the magnetic sheet 82 is located between the wide portion 82a that is wider than the outermost width of the winding of the loop coil 81 and the pair of cutouts 85.
  • the wide portion 82a has a rectangular shape larger than the loop coil 81 so that the upper winding portion 8la of the loop coil 81 is accommodated in the main surface thereof. I have.
  • the narrow portion 8 2 b has a width sufficient to penetrate the through hole 84 of the loop coil 81, and has a lower side winding portion 8 lb of the loop coil 81 within its main surface.
  • a rectangular shape smaller than the loop coil 81 is formed so that the central portion of the loop coil fits.
  • the pair of pieces 82c, 82c are formed in a rectangular shape so that the side of the lower winding portion 81b of the loop coil 81 fits in the main surface thereof.
  • the antenna device 80 shown in FIG. 13 has an IC force in the through hole 84 of the loop coil 81.
  • the narrow portion 8 2 b of the magnetic material sheet 8 2 penetrates from the main surface side opposite to the main surface opposite to t to Rupukoi Le 8 1 has a bonded together structure along the direction of the magnetic sheets 8 2 gar
  • the magnetic sheet 82, the upper side ⁇ interval loop coils 8 1 widens
  • One main surface of the wide portion 8 2 a faces the main surface of the loop coil 71 opposite to the main surface facing the IC card 1, and the lower side where the spacing between the windings of the loop coil 81 is reduced.
  • the other main surface of the narrow portion 8 2 b faces the main surface of the loop coil 8 1 facing the IC card 1, and one main surface of the pair of pieces 8 2 c, 8 2 c is the loop coil. 8 1 It is arranged facing the main surface opposite to the main surface facing IC card 1.
  • the magnetic field distribution by the antenna device 80 in one direction corresponding to the vertical direction indicated by the arrow Z in FIG. 13 shows that the winding interval and the line width of the loop coil 81 are wide as shown in FIG.
  • the upper-side winding portion 81a becomes an asymmetric shape emphasized.
  • the loop coil 81 is formed in an asymmetrical shape, and by controlling the radiated magnetic field distribution by the loop coil 81, the above-described IC force 1 and RZW 50 are formed. It is possible to shift the communicable position in one direction while expanding the communicable range of the.
  • the size of the loop coil 81 can be made smaller than that of the loop coil 4 on the IC card 1, the size can be further reduced.
  • the wide portion 82a of the magnetic material sheet 82 has a main surface facing the IC card 1 of the loop coil 81.
  • the narrow portion 8 2 b of the magnetic material sheet 82 is connected to the IC force 1 of the loop coil 81. Since the main surface of the loop coil 81 facing the IC card 1 is opposed to the main surface, the upper side winding of the loop coil 81 has a larger winding interval and line width. Only the magnetic field distribution of the line 81a can be emphasized.
  • the communicable range between the IC card 1 and the R / W 50 is enhanced by increasing the magnetic field strength on the upper side where the winding interval and the line width of the loop coil 81 are widened. Can be greatly expanded in one place.
  • the pair of pieces 82 c, 82 c of the magnetic sheet 82 are connected to the IC card 1 of the loop coil 81.
  • the main surface of the loop coil 81 opposite to the IC card 1 is located on the side of the loop coil 81.
  • the magnetic field distribution that is, the magnetic field distribution in the arrow X direction orthogonal to the arrow Z direction shown in FIG. 13 can be emphasized.
  • the above-described magnetic field distribution in the direction of arrow X by the antenna device 70 shown in FIG. 10 is emphasized by the wide portion 72 a of the magnetic sheet 72 larger than the loop coil 71 as shown in FIG. It will be.
  • the magnetic field distribution in the direction of arrow X by the antenna device 80 shown in FIG. 13 is, as shown in FIG. 17, due to the wide portion 82a of the magnetic sheet 72 larger than the loop coil 81.
  • the pair of pieces 82 c, 82 c of the magnetic sheet 82 are arranged to face the side of the lower winding 8 1 b of the loop coil 81. Therefore, it is emphasized on the side of the loop coil 81.
  • the strength of the magnetic field on the side of the loop coil 81 is increased, so that the IC card 1 and the R / W50 are smaller than the antenna device 70 shown in FIG. It is possible to greatly widen the communicable range of a device in a direction orthogonal to one direction.
  • the effective relative permeability at the communication frequency in the in-plane direction of the magnetic sheets 62, 72, and 82 is set to 30 or more, and the magnetic sheets 62, 72, and
  • the product Ms ⁇ t of the saturation magnetization amount Ms and the thickness t of 82 equal to or more than 6 emu / cm 2 , the communicable range between the IC card 1 and the R / W 50 can be increased.
  • the relative magnetic permeability ⁇ of the magnetic sheets 62, 72, and 82 is preferably set to 30 or more, and more preferably, By setting the relative magnetic permeability ′ of the magnetic sheets 62, 72, and 82 to 50 or more, the communicable range between the IC card 1 and the R / W50 is increased. Further expansion is possible.
  • the measurement results shown in FIG. 19 were obtained. That is, in order to extend the communication distance of these antenna devices 60, 70, and 80, the product M s ⁇ 7 of the saturation magnetization M s and the thickness t of the magnetic sheets 62, 72, and 82 is calculated as 6 e It is preferably at least mu / cm 2, more preferably at least 10 emu / cm 2 .
  • the magnetic sheets 62, 72, and 82 preferably have a holding force Hc of 100 e or less.
  • the relative magnetic permeability / 'in this measurement was determined at 13.56 MHz using, for example, a ring-shaped sample of ⁇ 7 mm prepared, and a lead coil wound around it for 5 turns, using a vector impedance analyzer or the like. It was measured and quantified by measuring the relative AC permeability at the carrier frequency. 'The saturation magnetization Ms in this measurement was measured using the general vibration sample method (V SM).
  • the magnetic sheets 62, 72, and 82 used in the antenna devices 60, 70, and 80 according to the present invention may be any soft material as long as the magnetic characteristics of the antenna devices 60, 70, and 80 according to the present invention are satisfied.
  • a magnetic material manufactured by an arbitrary manufacturing method can be used. Examples of magnetic materials include amorphous alloys, Co-Cr alloys, Fe-A1 alloys, sendast alloys (Fe-A1-Si), Fe-Ni alloys, Fe-C An o-Ni alloy or the like can be used, and these fine powders are mixed, dispersed, and applied with a rubber binder, or a soft magnetic thin plate made by a plating method or a sputtering method.
  • the antenna devices 60, 70, and 80 according to the present invention have the relative magnetic permeability // of the magnetic sheets 62, 72, and 82 and the magnetic sheets 62, 72, and 72 depending on the required communication range. It is characterized by setting the product Ms ⁇ t of the saturation magnetization Ms and the thickness t of the magnetic sheet 82, the relative permeability of these magnetic sheets 62, 72, and 82, and the product of the saturation magnetization Ms and the thickness t.
  • the size of the loop coils 61, 71, and 81 is made smaller than the loop coil 4 on the IC force 1 side by improving the communication performance. Therefore, for example, the thickness of the entire device can be reduced to 1 mm or less, and further reduction in size and thickness can be achieved.
  • the antenna devices 6 ⁇ , 70, 80 according to the present invention are not limited to those in which the intervals and the line widths between the respective windings of the loop coils 61, 71, 81 are simultaneously different.
  • the loop coils 61, 71 and 81 may be different from each other only in the interval between the windings.
  • one direction in which the loop coils 61, 71, 81 are asymmetrical can be set to any direction in which the radiated magnetic field distribution is desired to be widened.
  • the loop coils 61, 71: 81 may have an asymmetric shape in which the spacing and the line width between the windings are different, and in these Z and X directions, Alternatively, the loop coils 61, 71, and 81 may have an asymmetric shape in which the spacing and the line width between the windings are different.
  • the antenna devices 60, 70, and 80 according to the present invention change the radiated magnetic field distribution of the loop coils 61, 71: 81 according to the direction in which the loop coils 61, 71, 81 are asymmetric.
  • the read / write position of the R / W 50 with respect to the IC force 1 can be arbitrarily adjusted.
  • the antenna device according to the present invention (hereinafter, referred to as a planar asymmetric loop antenna) 60 shown in FIG. 8 and another antenna device according to the present invention shown in FIG. 70 and the conventional antenna device shown in Fig. 2 (hereinafter referred to as a plane-symmetrical loop antenna) 200 (However, a magnetic sheet is attached to the main surface opposite to the main surface facing the IC card). Regarding and, the comparison of the communication performance between the case where they are arranged in the resin housing shown in Fig. 20 and the case where they are arranged in the metal housing shown in Fig. 21 was carried out.
  • Fig. 20 and Fig. 21 are characteristic diagrams showing the card position dependence of the current intensity induced in the IC force by each loop antenna 60, 70, 200 arranged on the R / W side.
  • the origin 0 on the horizontal axis indicates the center position of each of the loop antennas 60, 70, and 200 on the R / W side, and the positive direction indicates the direction in which the IC card faces outward from the origin 0.
  • the vertical axis shows the magnetic field of each loop antenna 60, 70, 200 on the RW side. Indicates the intensity of the induced current generated in the loop antenna on the IC side by magnetic induction, and the area where the value is equal to or greater than the value indicated by the dotted line s in the figure is the communicable area.
  • thin line A shows the graph of the planar symmetric loop antenna 200
  • middle bold line B shows the graph of the planar asymmetric loop antenna 60
  • thick line C shows the three-dimensional loop antenna.
  • 4 shows a graph of an asymmetric type loop antenna 70.
  • Fig. 9 shows an asymmetric phase radiation magnetic field.
  • any of the loop antennas 60, 70, and 200 are compared with the case of the resin housing shown in FIG.
  • the planar asymmetric loop antenna 60 and the three-dimensional asymmetric loop antenna 70 of the present invention have more induction than the conventional planar symmetric loop antenna 200. It can be seen that the current drop is small and the effect of the housing material is small.
  • the communication area S 1, S that can communicate outward from the origin 0 continuously expands, so that It is possible to improve performance.
  • the cubic asymmetric loop antenna 70 is easy to use because the communicable area S can be greatly expanded at one location, and is easy to use, and has a lower impedance than the planar asymmetric loop antenna 60. It is possible to reduce power consumption.
  • the influence of the material of the housing can be reduced, and the communicable range compared to the conventional planar asymmetric loop antenna 200. It is possible to spread.
  • FIG. 22 shows each of the loop antennas 60, 70, and 200 described above.
  • the communication performance was compared between the case where no magnetic sheet was arranged on the main surface opposite to the main surface facing the 1C card and the case where the magnetic material sheet shown in Fig. 23 was arranged.
  • Figures 22 and 23 are characteristic diagrams showing the card position dependence of the current intensity induced in the IC card by each of the loop antennas 60, 70, 200 arranged on the R / W side.
  • the origin 0 on the horizontal axis indicates the center position of each loop antenna 60, 70, 200 on the R / W side, and the positive direction indicates the direction in which the IC card is directed outward from the origin 0.
  • the vertical axis indicates the induced current intensity generated by the magnetic field of each of the R / W side loop antennas 60, 70, and 200 in the IC card side loop antenna by electromagnetic induction.
  • the thin line A shows the graph of the planar symmetric loop antenna 200
  • the middle bold line B shows the graph of the planar asymmetric loop antenna 60
  • the thick line C shows the graph.
  • 3 shows a graph of a stereo asymmetric loop antenna 70.
  • the magnetic field intensity is increased when the magnetic sheet is arranged, and the induced current intensity can be increased as a result, as compared with the case where the magnetic sheet is not arranged.
  • arranging the magnetic sheet on the main surface of the loop antenna opposite to the main surface facing the IC card increases the induced current of the loop antenna on the IC card side by increasing the magnetic field strength. This is very effective in expanding the communicable range of R / W and reducing power consumption.
  • This communication terminal device 90 uses the above-described three-dimensional asymmetric loop antenna 70 as the loop antenna 54 for the RW 50.
  • the communication terminal device 90 to which the present invention is applied is a small electronic device called a PDA (Personal Digital Assistants) that can be carried by a user, and has, for example, an information communication function, a storage function, a camera function, and the like. It has a structure integrated in a module.
  • the communication terminal device 90 has a main body 91 and a panel 92, and the panel 92 can be opened and closed with respect to the main body 91 via a hinge mechanism 93.
  • the main unit 91 is provided with an input unit 94 composed of operation buttons and the like for performing various operations.Below the input unit 94, the above-described three-dimensional asymmetry of the R / W 50 is provided.
  • a mold loop antenna 70 is arranged.
  • the communication terminal device 90 includes a metal housing 97 made of an Mg alloy or the like in order to secure rigidity when the device is small, lightweight, and thin.
  • the above-described three-dimensional asymmetric loop antenna 70 is arranged, and a resin member 98 such as polycarbonate as a protective material is arranged thereon.
  • the case is not limited to such a metal case 97, but may be a non-metal case made of, for example, a high-rigidity plastic material.
  • the loop coil 71 of the three-dimensional asymmetric loop antenna 70 is arranged so that the above-described one direction is the scanning direction of the IC card 1, and the IC card 1
  • the scanning is performed from the side opposite to the input unit 94, that is, from the lower side where the winding interval and the line width of the loop coil 71 of the loop antenna 71 are narrow.
  • the magnetic field distribution due to the three-dimensional asymmetric loop antenna 70 is emphasized in the upper winding part 71 a where the winding interval and the line width of the lube coil ⁇ 1 are widened.
  • the communicable range S between the IC card and the R / W 50 is increased in one place. It can be greatly expanded.
  • the communication terminal device 90 can expand the communicable range between the IC card 1 and the R / W 50, and the IC terminal 1 Even when the card 1 is scanned, it is possible to appropriately write and read data to and from the IC card 1 irrespective of the location of the three-dimensional asymmetric loop antenna 70.
  • the communication terminal device 90 can communicate with the IC card 1 and the R / W 50 even when the metal casing 97 is used by arranging such a three-dimensional asymmetric loop antenna 70. It is possible to suppress the range from being narrowed.
  • the loop antenna 70 on the R / W 50 side can be made smaller than the loop antenna 2 on the IC card 1 side. And low power consumption is possible.
  • the magnetic sheet 72 described above is manufactured according to a flowchart shown in FIG.
  • step S1 a magnetic paint in which a magnetic powder, a solvent, and an additive are mixed in a binder made of a rubber-based resin is produced.
  • the magnetic powder an Fe-based magnetic material containing 96% by weight of Fe, 3% by weight of Cr, 0.3% by weight of Co, and other magnetic materials was used.
  • step S2 the magnetic paint is filtered to prepare a magnetic paint from which magnetic powder having a predetermined particle size or more has been removed from the binder.
  • step S3 using the extruder shown in FIG. 28, the magnetic paint 76 stored in the liquid storage section 75 is extruded from between a pair of rollers 77a and 77b, A long magnetic sheet 72 having a predetermined thickness is manufactured.
  • step S4 the long magnetic material sheet 72 is dried, and the binder is removed from the magnetic material sheet 72.
  • step S5 using a coating device shown in FIG. 29, the magnetic sheet 7 is sandwiched between a pair of rollers 78a and 78b while the magnetic sheet 72 is sandwiched therebetween. Apply adhesive 79 on one main surface of 2a.
  • step S6 the belt-shaped magnetic sheet 72 is stamped and pressed into a predetermined shape. As described above, a magnetic sheet 72 as shown in FIGS. 3OA and 30B is produced.
  • the loop coil 71 described above is prepared.
  • the loop coil 71 is formed by etching a flexible insulating film such as polyimide or a conductive metal foil film such as electrolytic copper formed on both surfaces of the substrate 73. It is formed.
  • the method of manufacturing the loop coil 71 is not limited to the above-described example. For example, a method in which a conductor pattern that becomes the loop coil 71 is printed using a conductor paste such as silver paste, or a metal target may be used. A conductor pattern serving as the loop coil 71 may be formed on the substrate by sputtering the heat sink. In the center of the loop coil 71, a through hole 74 for allowing the magnetic sheet 72 to penetrate is formed.
  • the narrow portion 7 2 b of the magnetic sheet 72 is passed through the through hole 74 of the loop coil 71, and the loop coil 71 and the magnetic sheet 72 are connected to each other. Paste in the direction of-. At this time, the surface of the magnetic sheet 72 on which the adhesive 79 is applied faces the main surface of the loop coil 71 facing the IC card 1. Then, on the lower side where the winding interval of the loop coil 71 becomes narrower, the narrow portion 72b is attached to the main surface of the loop coil 71 facing the IC card 1. As a result, the wide portion 72a can be attached to the above-described antenna housing concave portion 97a of the communication terminal device 90 on the upper side where the winding interval of the loop coil 71 is widened. '
  • the above-described three-dimensional asymmetric loop antenna 70 can be manufactured.
  • the three-dimensional asymmetric loop antenna 70 is easily manufactured by superimposing the magnetic material sheet 72 through the through hole 4 of the loop coil 7 1 and pasting it with the adhesive 79. It has a structure.
  • the magnetic material sheet 72 preferably has a relatively soft and flexible property.
  • the deformation of the upper coil part 71 a and the lower coil part 71 b of the loop coil 71 is suppressed by deformation of the magnetic sheet 72, and the three-dimensional asymmetric loop antenna 70
  • the overall thickness T i can be reduced.
  • FIG. 34 when the magnetic material sheet 72 is hard, Deformation of the upper side ⁇ portion 71 of the I le 7 1 a and the lower side ⁇ portion 71 b is increased, the overall thickness T 2 of the steric asymmetric Le one loop antenna 7 0 resulting in thick summer.
  • the present invention is not limited to the above-described examples, and it is understood by those skilled in the art that various changes, substitutions, or equivalents can be made without departing from the scope of the appended claims and the gist thereof. it is obvious.
  • INDUSTRIAL APPLICABILITY According to the antenna device of the present invention, the relative permeability ⁇ ′ and the saturation of the magnetic material disposed opposite to the main surface of the loop coil opposite to the main surface opposite to the IC card are determined.
  • M s t of the magnetization amount M s and the thickness t By optimizing the product M s t of the magnetization amount M s and the thickness t, the influence of the material of the housing is reduced, and the magnetic field distribution on the main surface of the loop coil facing the IC card is emphasized. It is possible to extend the communicable range between the IC card and the reader / writer. Therefore, it is possible to further reduce the size and performance of the antenna device and the communication device using the antenna device.

Abstract

 本発明は、非接触型のICカード(1)に対してデータの書込み及び読出しを行うための記録及び/又は再生装置に用いられるのアンテナ装置(60)であり、このアンテナ装置は、電磁界を放射しICカード側のループコイル(4)と磁気結合してデータの送受信を行うループコイル(61)と、ループコイルのICカードと対向する主面とは反対側の主面に対向して配置された磁性体シート(62)とを有し、磁性体シートは、必要な通信範囲に応じて、その比透磁率μ’と、その飽和磁化量Msと厚みtとの積Ms・tとが設定される。

Description

明細書 アンテナ装置及びアンテナ装置を用いた通信装置 技術分野 本発明は、 電磁場を誘導結合する非接触型の I Cカードに対してデータの書込 み及び読出しを行うためのリーダライ夕用のアンテナ装置及びこのアンテナ装置 を用いた通信装置に関す。
本出願は、 日本国において 2002年 9月 27日に出願された日本特許出願番 号 2002— 284177、 2003年 1月 9日に出願された日本特許出願番号 2003 - 3739を基礎として優先権を主張するものであり、 この出願は参照 することにより、 本出願に援用される。 景技術 最近、 鉄道の自動改札機や、 建物への入退出におけるセキュリティシステム、 電子マネーシステム等の分野では、 非接触式の I Cカードゃ I Cタグ等を用いた、 いわゆる RF I D (Radio Frequency Identification) システムが導入されいる < この R F I Dシステムは、 図 1に模式的に示すように、 非接触式 I Cカード 1 0 0と、 この I Cカード 100に対してデータの書込みや読出しを行うリーダライ タ 1 0 1とから構成されている。 この R F I Dシステムでは、 電磁誘導の原理に 基づいて、 リーダライ夕 1 01側のループアンテナ 102から電磁場が放射され ると、 放射された電磁場が誘導結合によって I Cカード 1 00側のループアンテ ナ 1 03と磁気的に結合し、 I Cカード 1 00とリーダライ夕 1 01との間で通 信が行われる。
このような RF I Dシステムでは、 従来の接触型 I Cカードシステムのように、 リーダライ夕に対して I Cカードを装填したり金属接点を接触させたりする手間 が省け、 簡易且つ高速にデ一夕の書込みや読出しを行うことができる。 この RF 1 Dシステムでは、 リーダライタ 1 0 1から送信される電磁場から I Cカード 1 0 0.に対して必要な電力が供給されるため、 I Cカード内に電池等の電源を持つ 必要がなく、 メンテナンス性に優れた且つ低価格で信頼性の高い I Cカードを提 供することができる。
' 上述した R F I Dシステムでは、 I Cカード 1 0 0とリーダライ夕 1 0 1 との 十分な通信可能な範囲を確保するために、 ある程度の磁界強度を持った電磁場を 放射することのできるループアンテナ 1 0 2をリーダライタ 1 0 1側に設ける必 要がある。
一般に、 リ一ダライタ 1 0 1用のループアンテナ 1 ◦ 2は、 図 2に示すような 平面状に導線が卷線されたループコイル 2 0 0を備えている。 このループコイル
2 0 0は、 その中心部を挟んで相対向する各卷線間の間隔及び線幅を等しく した 対称な形状に形成されている。 なお、 これらの具体例としては特鬨平 1 0— 1 4 4 0 4 8号公報に記載された Reader/Writerモジュールに接続された本体側アンテ ナゃ、 特開 2 0 0 1— 3 3 1 8 2 9号公報に記載されたリードライ ト装置 R Wの A G 1 , A G 2, A G 3等が挙げられる。
このような対称形状を有するリーダライ夕 1 0 1用のループアンテナ 1 0 2で は、 図 3に示すような対称な磁場分布となる。
このループアンテナ 1 0 2により I Cカード 1 0 0に誘導された電流強度の力 ード位置依存性を図 4に示すと、 ループコイル 2 0 0の中心部を挟んで相対向す る位置に、 2つの通信可能な領域 S , S 2 ' が形成される。 具体的に、 通信可 能な領域 S は、 リーダライ夕 1 0 1側のループアンテナ 1 ◦ 2と I Cカード 1 0 0側のループアンテナ 1 0 3との互いに対向する各 4辺から発生する磁界がそ れそれの位置で誘導結合した理想的な結合状態であるのに対して、 この通信可能 な領域 S i ' より外側になると、 リーダライ夕 1 0 1側のループアンテナ 1 0 2が 発生する磁場の向きが反転する中央の領域で I Cカード 1 0 0側のループアンテ ナ 1 0 3に錯交する磁場が互いに打ち消し合うために、 誘導電流が通信に必要な レベル以下となる。 さらに、 外側に向かうとリーダライタ 1◦ 1側のループアン テナ 1 0 2と I Cカード 1 0 0側のループアンテナ 1 0 3との 4辺のうち、 1辺 同士のみが結合するために、 通信可能な領域 S i ' より誘導電流が小さく且つ狭い 通信可能な領域 S 2 ' が現れる。
なお、 図 4において、 横軸の原点 0は、 リーダライ夕 1 ◦ 1側のル一プアンテ ナ 1 0 2の中心位置を示し、 正方向は、 I Cカード 1 0 0が原点 0から外側に向 かう方向を示す。 一方、 縦軸は、 リーダライタ 1 0 1側のループアンテナ 1 0 2 の磁界が電磁誘導によって I Cカード 1 0 0側のループアンテナ 1 0 3に発生さ せた誘導電流強度を示し、 図 4中点線 s, で示す値以上となる領域が通信可能な 領域となる。
ここで、 I Cカード 1 0 0側のループアンテナ 1 0 3とリーダライ夕 1 0 1側 のループアンテナ 1 0 2との中心位置が一致したところ、 すなわち原点 0から外 側にできるだけ通信可能な領域 S が連続的に広がるほど、 使い勝手がよいこと になる。
上述した従来のループコイル 2 0 0では、 原点 0から外側に向かうと、 通信可 能な領域 S i, から一旦外れて通信不可能な領域に入り、 更に外側に向かうことに よって通信可能な領域 S 2 ' に再び入ることになる。 実用的な観点からは、 通信可 能な領域 と通信可能な領域 S 2 ' との間に通信不可能な領域のない、 換言す れば、 通信可能な領域 のみを広げることが望ましい。
このようなリーダライ夕 1 0 1用のループアンテナ 1 0 2は、 渦電流の影響等 により M g合金等の金属筐体にそのまま取り付けて使用することができない。 こ のため、 図 5に示すように、 金属筐体 3 0 0を使用する場合には、 この金属筐体 3 0 0とループコイル 2 0 0との間に磁性体シート 3 0 1を介在させ、 このルー ブコイル 2 0 0上に保護材であるポリカーボネート等の樹脂シ一ト 3 0 2を配置 した構造としている。 この場合も、 リーダライ夕 1 0 1用のループアンテナ 1 0 2は、 I Cカード 1 0 0に対して効率よく電磁場を放射することができず、 上述 した I Cカード 1 0 0とリーダライタ 1 0 1との通信可能な範囲が狭くなるとい つた問題が発生してしまう。
さらに、 図 6に示すように、 樹脂筐体 4 0 0を使用した場合には、 電子回路に 電磁誘導ノイズを発生させないように、 この樹脂筐体 4 0 0内にある電気回路基 板 4 0 1 とループアンテナ 1 0 2との間にスぺーサ 4 0 2を配置しなければなら ず、 厚み方向の寸法が大きくなつてしまう。 さらに、 従来のリーダライ夕 1 0 1 用のループアンテナ 1 0 2は、 I Cカード 1 0 0側のループアンテナ 1 0 3とほ ぽ同じ大きさを有している。 このような従来のリーダライ夕 1 0 1用のループア ンテナ 1 0 2では、 小型化及び薄型化が困難である。
以上のような技術的な困難性がある一方で、 例えば携帯可能な小型電子機器の 樹脂筐体や金属筐体に、 上述したリーダライタ 1 0 1を搭載する場合がある。 こ の場合、 I Cカード 1 ◦ 0の外形よりも同等若しくは小さい且つ薄型のリーダラ ィ夕用のループアンテナ 1 0 2が必要となる。
上述した携帯可能な小型電子機器では、 固定設置型の電子機器とは異なり、 装 置の大きさに制約があるために、 空間配置を工夫したとしても、 ループアンテナ 1 0 2が放射する電磁場が内部に近接して配置された電子回路基板等に影響を与 えることを低減したり、 金属筐体によるループアンテナ 1 0 2への影響を低減す る目的で、 その内部空間を確保することに大きな制約がある。 したがって、 これ ら金属筐体によるループアンテナ 1 0 2への影響や、 ループアンテナ 1 0 2自身 が放射する電磁場の電子回路基板等に与える影響を低減する新たな方法が望まれ ている。
さらに、 携帯可能な小型電子機器では、 固定設置型の電子機器とは異なり、 低 消費電力化の要求が強く、 ループアンテナ 1 0 2の駆動電流を大きくする余裕が なく、 小さな駆動電流でも磁場強度を確保することのできる高効率なアンテナ構 造が新たに必要となる。
さらにまた、 携帯可能な小型電子機器では、 設置場所の制限や例えばキーボー ド等の他の機能を設置する場所との位置関係によって、 希望するリーダライタ 1 0 1の送受信位置が必ずしもループアンテナ 1 0 2の中心とはならず、 使い勝手 を考慮した送受信位置を自由に設定したいといった携帯可能な小型電子機器特有 の要求もある。
ところで、 空間配置以外の方法で金属筐体によるループアンテナ 1 0 2への影 響を低減し得る従来技術としては、 板状の磁性材料を使い金属体の影響を低減し た I Cタグ ' アンテナ (例えば、 特開 2 0 0 1— 3 3 1 7 7 2号公報参照。 ) や、 磁性材料を使いアンテナ磁界を偏向することにより金属体の影響を低減したカー ドローダ .アンテナ (例えば、 特開 2◦ 0 2— 1 2 3 7 9 9号公報参照。 ) があ る。
上述した従来の技術は、 何れも使用電力及び設置場所が材料的及び空間的に制 限された携帯可能な小型電子機器において、 最適な小型且つ薄型のリーダライタ 用のループアンテナを実現するものではない。 発明の開示 本発明の目的は、 上述したような従来の技術が有する問題点を解消することが できる新規なアンテナ装置及びこのアンテナ装置を用いた通信装置を提供するこ とにある。
本発明の他の目的は、 放射電磁界分布を制御し且つ有効利用することによって、 I Cカードとリーダライ夕との通信可能な範囲を拡大することを可能とするアン テナ装置及びこのアンテナ装置を用いた通信装置を提供することにある。
本発明のさらに他の目的は、 筐体の材質による影響を低減することによって、 更なる小型化及び高性能化を可能としたリーダライ夕用のアンテナ装置及びこの アンテナ装置を用いた通信装置を提供することにある。
本発明に係るアンテナ装置は、 電磁誘導結合により非接触型の I cカードとデ
—夕通信を行う通信装置に接続されるアンテナ装置において、 電磁誘導結合を行 うためのループコイルと、 このループコイルの I Cカードと対向する主面とは反 対側の主面に対向して配置され、 非接触型の I Cカードと通信が可能な設定され た通信範囲に基づいて比透過率 , と、 飽和磁化量 M sと厚み tとの積 M s · t とが設定された磁性体とを備える。
ここで、 磁性体の比透過率 t/, を 3 0以上とし、 さらに磁性体の飽和磁化量 M sと厚み七との積 M s · tを 6 e m u / c m 2以上とする。
また、 磁性体の保磁力 H cは、 1 0 O e以下とする。
磁性体は、 軟磁性材料により形成されている。 軟磁性材料には、 アモルファス 合金、 又は C o— C r系合金、 又は: F e— A 1系合金、 又はセンダスト合金、 又 は F e— N i合金、 又は F e— C 0— N i合金、 又はフェライ ト系合金のプレス 焼結体が用いられる。 本発明に係るアンテナ装置を構成する磁性体は、 ループコイルの卷線の最外幅 よりも幅広となる幅広部と、 ループコイルの卷線の最内幅よりも幅狭となる幅狭 部とを有し、 幅狭部がル一プの中心部に貫通した状態で、 幅広部がループコイル の I Cカードと対向する主面とは反対側の主面に対向し、 ループコイルの卷線間 隔が狭くなる側において、 幅狭部がループコイルの I Cカードと対向する主面に 対向して配置されている。
本発明に係るアンテナ装置を構成する磁性体は、 ループコイルの卷線の最外幅 よりも幅広となる幅広部と、 一端より切り欠かれた一対の切欠き部の間に上記ル ープコイルの卷線の最内幅よりも幅狭となる幅狭部と、 一対の切欠き部を挾んだ 幅狭部の両側に一対の片部とを有し、 幅狭部がループコイルの中心部に貫通した 状態で、 幅狭部がループコイルの I Cカードと対向する主面とは反対側の主面に 対向し、 幅狭部がループコイルの I Cカードと対向する主面に対向し、 且つ、 一 対の片部がループコイルの I Cカードと対向する主面とは反対側の主面に対向し て配置されている。
本発明に係るアンテナ装置を構成するループコイルは、 平面状に導線が卷線さ れるとともに、 その中心部を挟んで相対向する各卷線間の間隔を異ならせた非対 称形状とされている。 このループコイルは、 各卷線間の間隔が I Cカードが走査 される方向において異なっている。 さらに、 ループコイルは、 誘導結合される上 記 I Cカード側のループコイルよりも小さいことが望ましい。
本発明は、 電磁誘導結合により非接触型の I cカードとデータ通信を行う通信 装置において、 電磁誘導結合を行うためのループコイルと、 ループコイルの I C カードと対向する主面とは反対側の主面に対向した金属体近傍に配置され、 非接 触型の I Cカードと通信が可能な設定された通信範囲に基づいて非透過率 ju ' と、 飽和磁化量 M sと厚み七との積 M s · tとが設定された磁性体と、 ループコイル に対して非接触型 I Cカードに対する送信データを所定の搬送周波数にて変調し て供給する変調手段と、 ループコイルにて受信される非接触型 I Cカードから送 信される受信データを復調する復調手段とを備える。
ここで用いられる磁性体は、 ループコイルの卷線の最外幅よりも幅広となる幅 広部と、 ループコイルの卷線の最内幅よりも幅狭となる幅狭部とを有し、 幅狭部 がル一プコイルの中心部に貫通した状態で、 幅狭部がループコイルの I Cカード と対向する主面とは反対側の主面に対向し、 ル一プコイルの卷線間隔が狭くなる 側において、 幅狭部がループコイルの I Cカードと対向する主面に対向して配置 されている。
また、 磁性体は、 ループコイルの卷線の最外幅よりも幅広となる幅広部と、 一 端より切り欠かれた一対の切欠き部の間にループコイルの卷線の最内幅よりも幅 狭となる幅狭部と、 前記一対の切欠き部を挾んだ前記幅狭部の両側に一対の片部 とを有し、 幅狭部がループコイルの中心部に貫通した状態で、 幅狭部がループコ ィルの I Cカードと対向する主面とは反対側の主面に対向し、 幅狭部がループコ ィルの I Cカードと対向する主面に対向し、 且つ、 一対の片部がル一プコイルの I Cカードと対向する主面とは反対側の主面に対向して配置されている。
本発明に係る通信装置に用いられるアンテナ装置の筐体のループコイルが配設 される面の一辺は、 I Cカードの長編よりも短く形成されている。
本発明の'更に他の目的、 本発明によって得られる具体的な利点は、 以下におい て図面を参照して説明される実施の形態の説明から一層明らかにされるであろう 図面の簡単な説明 図 1は、 従来の R F I Dシステムを示す斜視図である。
図 2は、 従来の R /W用のループアンテナを示す平面図である。
図 3は、 従来の R /W用のループアンテナによる磁場分布を示特性す図である c 図 4は、 従来の R /W用のループアンテナによる I Cカードとの通信性能を誘 導電流特性で示す特性図である。
図 5は、 従来の R /W用のループアンテナを金属筐体に配置した場合の磁場分 布を示す特性図である。
図 6は、 従来の R /W用のループアンテナを樹脂筐体に配置した状態を示す側 面図である。
図 7は、 本発明に係る R F I Dシステムの構成を示す回路図である。
図 8は、 平面非対称型ループアンテナを示す平面図である。 図 9は、 平面非対称型ルー よる Z方向の磁場分布を示す模式図で ある。
図 1 0は、 立体非対称型ルー を示す平面図である。
図 1 1は、 立体非対称型ループアンテナの磁性体シートを示す平面図である。 図 1 2は、 立体非対称型ループアンテナによる Z方向の磁場分布を示す模式図 である。
図 1 3は、 立体非対称型ループアンテナの他の例を示す平面図である。
図 1 4は、 図 1 3に示す立体非対称型ループアンテナを構成する磁性体シ一ト を示す平面図である。
図 1 5は、 図 1 3に示す立体非対称型ループアンテナによる Z方向の磁場分布 を示す模式図である。
図 1 6は、 図 1 3に示す立体非対称型ループアンテナによる X方向の磁場分布 を示す模式図である。
図 1 7は、 図 1 3に示す立体非対称型ループアンテナによる X方向の磁場分布 を示す模式図である。
図 1 8は、 磁性体シートの比透磁率と通信範囲との関係を示す特性図である。 図 1 9は、 磁性体シートの M s · tと通信距離との関係を示す特性図である。 図 2 0は、 樹脂筐体の場合において、 平面対称型ループアンテナ、 平面非対称 型ループアンテナ及び立体非対称型ループアンテナによる I Cカードとの通信性 能を誘導電流特性で示す特性図である。
図 2 1は、 金属筐体の場合において、 本発明に係る各ループアンテナによる I Cカードとの通信性能を誘導電流特性で示す特性図である。
図 2 2は、 磁性体シートを配置しない場合において、 各ループアンテナによる I Cカードとの通信性能を誘導電流特性で示す特性図である。
図 2 3は、 磁性体シートを配置した場合において、 上記各ループアンテナによ る I Cカードとの通信性能を誘導電流特性で示す特性図である。
図 2 4は、 本発明に係る通信端末装置の構成を示す平面図である。
図 2 5は、 通信端末装置に配置された立体非対称型ループアンテナを示す断面 図である。 図 2 6は、 通信端末装置に配置された立体非対称型ループアンテナによる磁場 分布を示す模式図である。
図 2 7は、 磁性体シー卜の製造工程を示すフローチヤ一トである。
図 2 8は、 押出し成形機を示す模式図である。
図 2 9は、 塗布装置を示す模式図である。
図 3 0 Aは磁性体シートを示す平面図であり、 図 3 0 Bは磁性体シートを示す 断面図である。
図 3 1は、 ループコイルを示す平面図である。
図 3 2は、 立体非対称型ループアンテナを示す平面図である。
図 3 3は、 立体非対称型ループアンテナにおいて磁性体シートが柔らかい場合 を示す要部断面図である。
図 3 4は、 立体非対称型ループアンテナにおいて磁性体シー卜が硬い場合を示 す要部断面図である。 発明を実施するための最良の形態 以下、 本発明を適用したアンテナ装置及びこのアンテナ装置を用いた通信装置 を図面を参照して詳細に説明する。
本発明を適用した R F I Dシステムは、 図 7に示すように、 非接触型 I Cカー ド 1と、 この I Cカード 1に対してデータの書込み及び読出しを行う リーダライ 夕 (以下、 R /Wという。 ) 5 0とから構成されている。
I Cカード 1は、 例えば I S 0 7 8 1 0に準拠した電池等の電源を持たないバ ヅテリレスの I Cカードである。 この I C力一ドは、 いわゆるクレジットカード と同サイズ、 すなわち手のひらに乗る程度の大きさで矩形板状に形成されてなる ( I Cカード 1は、 その内部に設けられた基板上に、 電磁場と結合してデ一夕を送 受信するループアンテナ 2と、 データの書込み及び読出しを行うための各種処理 を行う電子回路が集積された I C ( Integrated Circuit) 3とを有している。 ループアンテナ 2は、 平面状に導線が卷線されたループコイル 4からなり、 こ のループコイル 4と並列に接続されたコンデンサ 5とともに共振回路を構成して いる。 そして、 このループアンテナ 2は、 後述する R /W 5 0側のル一プアンテ ナから放射された電磁場と結合し、 結合された電磁場を電気信号に変換した後、 I C 3に供給する。
I C 3は、 ループコイル 4から供給された電気信号を整流平滑する整流回路 6 と、 整流回路 6から供給された電気信号を直流電力に変換するレギユレ一夕 7と、 整流回路 6から供給された電気信号の高域成分を抽出する H P F (High Pass - F i I ter) 8と、 H P 'F 8から入力された高周波成分の信号を復調する復調回路 9と、 この復調回路 9から供給されるデータに対応してデータの書込み及び読出しを制 御するシーケンサ 1 0と、 復調回路 9から供給されるデータを記憶するメモリ 1 1 と、 ループコイル 4により送信するデ一夕を変調する変調回路 1 2 とを備えて いる。
整流回路 6は、 ダイオード 1 3、 抵抗 1 4及びコンデンサ 1 5から構成されて いる。 このうち、 ダイオード 1 3のアノード端子がループコイル 4及びコンデン サ 5の一端に接続され、 ダイオード 1 3の力ソード端子が抵抗 1 4及びコンデン サ 1 5の一端に接続され、 抵抗 1 4及びコンデンサ 1 5の他端がループコイル 4 及びコンデンサ 5の他端に接続されている。 この整流回路 6は、 ループコイル 4 から供給された電気信号を整流平滑した電気信号をレギユレ一夕 7及び H P F 8 に出力する。
レギユレ一夕 7は、 上述した整流回路 6のダイオード 1 3のカゾード端子、 抵 抗 1 4及びコンデンサ 1 5の一端と接続されている。 このレギユレ一夕 7は、 整 流回路 6から供給された電気信号の電圧変動 (データ成分) を抑制し、 安定化し た後、 直流電力としてシーケンサ 1 0に供給する。 これにより、 シーケンサ 1 0 等の誤動作の原因となる、 例えば I Cカード 1の位置が動くことにより発生する 電圧変動、 並びに I Cカード 1内の消費電力の変化により発生する電圧変動が抑 制される。
H P F 8は、 コンデンサ 1 6及び抵抗 1 Ίにより構成されており、 上述した整 流回路 6から供給された電気信号の高周波成分を抽出し、 復調回路 9に出力する ( 復調回路 9は、 上述した H P F 8のコンデンサ 1 6の他端及び抵抗 1 7の一端 と接続されており、 この H P F 8から入力された高周波成分の信号を復調し、 シ 一ケンサ 1 0に出力する。
シーケンサ 1 0は、 R O M (Read Only Memory) や R A M (Random Access Me mory) を内部に有し、 上述した復調回路 9と接続されている。 そして、 このシー ケンサ 1 0は、 復調回路 9から入力された信号 (コマンド) を R A Mに記憶させ、 R O Mに内蔵されているプログラムに従ってこれを解析し、 解析された結果に基 づぃ'て、 必要に応じてメモリ 1 1に格納されているデータを読み出す。 又はメモ リ 1 1に復調回路 9から供給されるデータを書き込む。 このシーケンサ 1 0は、 コマンドに対応するレスポンスを返すために、 レスポンス信号を生成し、 変調回 路 1 2に供給する。
メモリ 1 1は、 デ一夕の保持に電力を必要としない E E P R O M (El ectri cal ly Erasable Programma le Read- Only Memory) 等の不揮発'性メモリからなり、 上 述したシーケンサ 1 0と接続されている。 このメモリ 1 1は、 シーケンサ 1 0の 解析結果に基づいて、 復調回路 9から供給されるデータを記憶する。
変調回路 1 2は、 インピーダンス 1 8と F E T (Field Effect Trans istor) 1 9との直列回路から構成されており、 このうち、 インピーダンス 1 8の一端が上 述した整流回路 6のダイオード 1 3の力ソード端子に接続され、 インピーダンス 1 8の他端が F E T 1 9のドレイン端子と接続され、 F E T 1 9のソース端子が 接地点に接続され、 F E T 1 9のゲート端子がシーケンサ 1 0と接続されている。 この変調回路 1 2は、 上述した共振回路を構成するループコイル 4と並列に接続 されており、 F E T 1 9をシーケンサ 1 0からの信号に対応してスィ ヅチング動 作させ、 ループコイル 4に対するインピーダンス 1 8の負荷を変動させる、 いわ ゆる付加変調方式を採用している。
これに対して、 R /W 5 0は、 送受信するデータの制御を行う制御回路 5 1と、 データの変調及び I Cカード 1が稼働するために電力の変調を行う変調回路 5 2 及び受信されたデータの復調を行う復調回路 5 3と、 電磁場と結合してデータを 送受信するループアンテナ 5 4とを備えている。
制御回路 5 1は、 例えば外部からの指令や内蔵するプログラムに従って、 各種 制御用のコントロール信号を生成し、 変調回路 5 2及び復調回路 5 3を制御する とともに、 指令に対応した送信データを生成し、 変調回路 5 2に供給する。 また、 制御回路 5 1は、 復調回路 5 3からの応答データに基づいて、 再生データを生成 し外部に出力する。
変調回路 5 2は、 制御回路 5 1から入力された送信データを発信器が変調し、 この変調した信号をループアンテナ 5 4に供給する。
復調回路 5 3は、 ループアンテナ 5 4からの変調波を復調し、 この復調したデ 一夕を制御回路 5 1に供給する。
ループアンテナ 5 4は、 平面状に導線が卷線されたループコイルからなり、 変 調回路 5 2より供給された変調波に対応した電磁場を放射するとともに、 I C力 —ド 1側のループコイル 4の負荷変動を検出する。 なお、 ループアンテナ 5 4に は、 R /W 5 0のアンテナ駆動回路方式に応じて、 共振用のコンデンサが並列又 は直列に接続される場合もある。
以上のように構成される R F I Dシステムでは、 I Cカード 1に対して所定の デ一夕の書込みが指令されると、 この指令に基づいて、 R /W 5 0の制御回路 5 1が書込みのためのコマンド信号を生成するとともに、 指令に対応した書込デ一 タとなる送信データを生成し、 変調回路 5 2に供給する。 変調回路 5 2は、 入力 された信号に基づいて、 発振信号の振幅を変調し、 ループアンテナ 5 4に供給す る。 ループアンテナ 5 4は、 入力された変調信号に対応する電磁波を放射する。 ここで、 I Cカード 1のループコイル 4及びコンデンサ 5からなる共振回路の 共振周波数は、 R /W 5 0からのキヤリア周波数となる発振周波数に対応する値 として例えば 1 3 . 5 6 M H zに設定されている。 この共振回路は、 放射された 電磁場を共振動作により受信し、 受信した電磁場を電気信号に変換した後、 I C 3に供給する。 変換された電気信号は、 整流回路 6に入力され、 この整流回路 6 により整流平滑された後、 レギユレ一夕 7に供給される。 このレギユレ一夕 7は、 整流回路 6から供給された電気信号のデータ信号などによる電圧変動を抑制し、 安定化した後、 直流電力としてシーケンサ 1 0に供給する。
整流回路 6により整流平滑された信号は、 変調回路 1 2を介して H P F 8に供 給され、 高域成分が抽出された後、 復調回路 9に供給される。 この復調回路 9は、 入力された高周波成分の信号を復調し、 シーケンサ 1 0に供給する。 そして、 こ のシーケンサ 1 0は、 復調回路 9から入力された信号をコマンドとして R A Mに 記憶させ、 R O Mに内蔵されているプログラムに従ってこれを解析し、 解析され た結果に基づいて、 メモリ 1 1に復調回路 9から供給された書込デ一夕を書き込 む。
一方、 シーケンサ 1 0は、 復調回路 9から入力された信号がコマンドが読出指 令に対応するコマンドである場合に、 その指令に対応する読出デ一夕をメモリ 1 1から読み出す。 シーケンサ 1 0は、 読出デ一夕に対応して、 変調回路 1 2の F E T 1 9がスィヅチング動作される。 すなわち、 変調回路 1 2では、 F E T 1 9 がオンされると、 インピーダンス 1 8にループコイル 4が並列に接続され、 F E T 1 9がオフされると、 ィンピ一ダンス 1 8とループコイル 4との並列接続が解 除される。 その結果、 この I Cカード 1側のループアンテナ 2と磁気的に結合し ている Rノ W 5 ◦側のループアンテナ 5 4のィンピ一ダンスが、 読出デ一夕に対 応して変化する。 したがって、 ループアンテナ 5.4の端子電圧は、 そのインピー ダンスの変化に応じて変動することとなり、 R ZW 5 0は、 この変動分を復調回 路 5 3が復調することで、 読出データを受信することができる。
以上のようにして、 I Cカード 1と R /W 5 0との間で通信が行われ、 I C力 ―ド 1に対して R /W 5 0によるデ一夕の書込み及び読出しが非接触で行われる ところで、 上述した R /W 5 0側のループアンテナ 5 4は、 図 8に示すように 構成された本発明に係るアンテナ装置 6 0が用いられる。
本発明に係るアンテナ装置 6 0は、 図 8に示すように、 電磁場を誘導結合する ためのループコイル 6 1と、 このループコイル 6 1の I Cカード 1 と対向する主 面とは反対側の主面と対向して配置された磁性体シ一ト 6 2とを備えている。 ループコイル 6 1は、 例えばポリイミ ドゃマイ力等の可撓性を有する絶縁フィ ルム又は基板 6 3の両面に形成された電解銅等の導体金属箔膜をエッチングする などして形成される。 なお、 このループコイル 6 1の作製方法は、 上述した例に 限定されず、 例えば銀ペースト等の導体ペーストを用いてループコイル 6 1とな る導体パターンを印刷したものでもよく、 又は金属夕一ゲットをスパッ夕するこ とによって基板上にループコ ル 6 1となる導体パ夕一ンを形成してもよい。 また、 ループコイル 6 1は、 その中心部を挟んで相対向する各卷線間の間隔及 び線幅を一の方向において異ならせた非対称形状とされている。 すなわち、 この ループコイル 6 1は、 図&中矢印 Zで示す上下方向に当たる一の方向において、 その各卷線間の間隔及び線幅が広くなる上部側卷線部 6 1 aと、 その各卷線間の 間隔及び線幅が狭くなる下部側卷線部 6 l bとを有している。
一方、 磁性体シート 6 2は、 その主面内にル一プコイル 6 1が収まるように、 ループコイル 6 1よりも大きい矩形状をなしている。 そして、 このアンテナ装置 6 0は、 ループコイル 6 1の I Cカード 1と対向する主面とは反対側の主面に磁 性体シ一ト 6 2が貼り合わされた構造とされている。
この場合、 図 8中矢印 Zで示す一の方向のアンテナ装置 6 0による磁場分布は、 図 9に示すように、 ループコイル 6 1の各卷線間の間隔及び線幅が広くなる上部 側卷線部 6 1 aにおいて強調されたものとなる。 すなわち、 このアンテナ装置 6 0による磁場分布は、 前述した図 3に示すような対称な磁場分布とは異なり、 非 対称なものとなる。
本発明に係るアンテナ装置 6 0では、 ループコイル 6 1を非対称形状とし、 こ のループコイル 6 1による放射磁界分布を制御することによって、 上述した I C カード 1 と R /W 5 0との通信可能な範囲を広げることともに、 通信可能な位置 を一の方向においてシフトさせることが可能である。 このアンテナ装置 6 0では、 ループコイル 6 1の大きさを I Cカード 1側のループコイル 4よりも小さくする ことが可能なことから、 更なる小型化が可能である。
本発明に係るアンテナ装置 6 0では、 磁性体シート 6 ' 2をループコイル 6 1の I Cカード 1と対向する主面とは反対側の主面に対向配置することによって、 こ のループコイル 6 1の I Cカード 1と対向する主面側の磁場分布のみを強調する ことができる。 したがって、 本発明に係るアンテナ装置 6 0では、 磁界強度が増 強されることによって、 I Cカード 1 と R /W 5 0との通信可能な範囲を更に広 げることができる。
上述した R /W 5 0側のループアンテナ 5 4には、 図 1 ◦に示すように構成さ れた本発明に係る他のアンテナ装置 7 0であってもよい。
図 1 0に示すアンテナ装置 7 0は、 電磁場を誘導結合するためのル一プコイル 7 1と、 このループコイル 7 1の中心部を貫通した状態で重ね合わされた磁性体 シート 7 2とを有している。 ループコイル 7 1は、 例えばポリイミ ドゃマイ力等の可撓性を有する絶縁フィ ルム又は基板 7 3の両面に形成された電解銅等の導体金属箔膜をエッチングする などして形成される。 このループコイル 7 1の作製方法は、 上述した例に限定さ れず、 例えば銀ペースト等の導体ペーストを用いてループコイル 7 1となる導体 パターンを印刷したものでもよく、 又は金属夕一ゲヅトをスパッ夕することによ つて基板上にループコイル 7 1となる導体パ夕一ンを形成してもよい。
また、 ループコイル 7 1は、 その中心部を挟んで相対向する各卷線間の間隔及 び線幅を一の方向において異ならせた非対称形状とされている。 すなわち、 この ループコイル 7 1は、 図 1 0中矢印 Zで示す上下方向に当たる一の方向において、 その各卷線間の間隔及び線幅が広くなる上部側卷線部 7 1 aと、 その各卷線間の 間隔及び線幅が狭くなる下部側卷線部 7 l bとを有している。 また、 ループコィ ル 7 1の中心部には、 磁性体シート 7 2を貫通させるための貫通孔 7 4が設けら れている。
—方、 磁性体シート 7 2は、 図 1 ◦及び図 1 1に示すように、 ループコイル 7 1の卷線の最外幅よりも幅広となる幅広部 7 2 aと、 この幅広部 7 2 aの下端中 央部から下方に向かって延長されたループコイル 7 1の卷線の最内幅よりも幅狭 となる幅狭部 7 2 bとを有し、 全体として略 T字状に形成されている。 すなわち、 この磁性体シート 7 2において、 幅広部 7 2 aは、 その主面内にループコイル 7 1の上部側卷線部 7 l aが収まるように、 ル一プコイル 7 1よりも大きい矩形状 をなしている。 一方、 幅狭部 7 2 bは、 ループコイル 7 1の貫通孔 7 4を貫通す るのに十分な幅を有し、 且つ、 その主面内にループコイル 7 1の下部側卷線部 7 1 bが収まるように、 このループコイル 7 1よりも小さい矩形状に形成されてい る。
このアンテナ装置 7 0は、 ループコイル 7 1の貫通孔 7 4に、 I Cカード 1と 対向する主面とは反対側の主面側から I Cカード 1と対向する主面側に向かって、 磁性体シート 7 2の幅狭部 7 2 bが貫通した状態で、 このループコイル 7 1に磁 性体シート 7 2が貼り合わされた構造を有している。 したがって、 この磁性体シ —ト 7 2は、 ループコイル 7 1の卷線間隔が広くなる上部側において、 幅広部 7 2 aの一主面側がループコイル 7 1の I Cカード 1と対向する主面とは反対側の 主面に対向し、 ル一プコイル 7 1の卷線間隔が狭くなる下部側において、 幅狭部 7 2 bの他主面側がループコイル 7 1の I C力一ド 1と対向する主面に対向して 配置されている。
この場合、 図 1 ◦中矢印 Zで示す上下方向に当たる一の方向のアンテナ装置 7 0による磁場分布は、 図 1 2に示すように、 ループコイル 7 1の卷線間隔及び線 幅が広くなる上部側卷線部 7 1 aにおいて強調された非対称なものとなる。
• したがって、 このアンテナ装置 7 0では、 ル プコイル 7 1を非対称形状とし、 このループコイル 7 1による放射磁界分布を制御することによって、 上述した I Cカード 1 と R ZW 5 0との通信可能な範囲を広げることともに、 通信可能な位 置を一の方向においてシフトさせることが可能である。 また、 このアンテナ装置 7 0では、 ループコィル 7 1の大きさを I Cカード 1側のル一プコイル 4よりも 小さくすることが可能なことから、 更なる小型化が可能である。
このアンテナ装置 7 0では、 ループコイル 7 1の卷線間隔が広くなる上部側に おいて、 磁性体シ一ト 7 2の幅広部 7 2 aがループコイル 7 1の I C力一ド 1 と 対向する主面とは反対側の主面に対向し、 ループコイル 7 1の卷線間隔が狭くな る下部側において、 磁性体シート 7 2の幅狭部 7 2 bがループコィル 7 1の I C カード 1 と対向する主面に対向して配置されていることから、 このループコイル 7 1の I Cカード 1と対向する主面のうち、 ループコイル Ί 1の卷線間隔及び線 幅が広くなる上部側卷線部 7 1 aの磁場分布のみを強調することができる。
したがって、 このアンテナ装置 7 0では、 ループコイル 7 1の卷線間隔及び線 幅が広くなる上部側の磁界強度が増強されることによって、 I Cカード 1と R / W 5 0との通信可能な範囲を 1筒所において大きく広げることが可能である。 上述した R /W 5 0側のループアンテナ 5 4は、 図 1 3に示すように構成され た本発明に係る他のァンテナ装置 8 0であってもよい。
図 1 3に示すアンテナ装置 8 0は、 電磁場を誘導結合するためのループコイル 8 1 と、 このループコイル 8 1の中心部を貫通した状態で重ね合わされた磁性体 シート 8 2とを有している。
ループコイル 8 1は、 例えばポリイミ ドゃマイ力等の可撓性を有する絶緣フィ ルム又は基板 8 3の両面に形成された電解銅等の導体金属箔膜をエッチングする などして形成される。 なお、 このループコイル 8 1の作製方法は、 上述した例に 限定されず、 例えば銀ペースト等の導体ペーストを用いてループコイル 8 1とな る導体パターンを印刷したものでもよく、 又は金属夕ーゲヅトをスパッタするこ とによって基板上にループコイル 8 1 となる導体パターンを形成してもよい。 また、 ループコイル 8 1は、 その中心部を挾んで相対向する各卷線間の間隔及 び線幅を一の方向において異ならせた非対称形状とされている。 すなわち、 この ループコイル 8 1は、 図 1 3中矢印 Zで示す上下方向に相当する一の方向におい て、 その各卷線間の間隔及び線幅が広くなる上部側卷線部 8 1 aと、 その各卷線 間の間隔及び線幅が狭くなる下部側卷線部 8 l bとを有している。 また、 ループ コイル 8 1の中心部には、 磁性体シート 8 2を貫通させるための貫通孔 8 が設 けられている。
一方、 磁性体シート 8 2は、 図 1 3及び図 1 4に示すように、 その主面内にル —プコイル 8 1が収まるように、 ループコイル 8 1よりも大きい矩形状をなして いる。 そして、 この磁性体シート 8 2には、 その下端部からループコイル 8 1の 一の方向の中途部に直って切り込まれた一対のスリットである切欠き部 8 5が所 定の間隔で互いに平行に形成されている。 これにより、 磁性体シ一ト 8 2は、 こ のループコイル 8 1の卷線の最外幅よりも幅広となる幅広部 8 2 aと、 一対の切 欠き部 8 5の間に位置して、 幅広部 8 2 aの下端中央部から下方に向かって延長 されたループコイル 8 1の卷線の最内幅よりも幅狭となる幅狭部 8 2 bと、 一対 の切欠き部 8 5を挟んだ幅狭部 8 2 bの両側に位置して、 幅広部 8 2 aの下端部 から下方に向かって延長された一対の片部 8 2 c , 8 2 cとを有している。 この 磁性体シート 8 2において、 幅広部 8 2 aは、 その主面内にループコイル 8 1の 上部側卷線部 8 l aが収まるように、 ループコイル 8 1よりも大きい矩形状をな している。 一方、 幅狭部 8 2 bは、 ループコイル 8 1の貫通孔 8 4を貫通するの に十分な幅を有し、 且つ、 その主面内にループコイル 8 1の下部側卷線部 8 l b の中央部が収まるように、 このループコイル 8 1よりも小さい矩形状を形成され ている。 一対の片部 8 2 c, 8 2 cは、 その主面内にループコイル 8 1の下部側 卷線部 8 1 bの側方部が収まるように矩形状に形成されている。
図 1 3に示すアンテナ装置 8 0は、 ループコイル 8 1の貫通孔 8 4に、 I C力 一ド 1と対向する主面とは反対側の主面側から I cカード 1と対向する主面側に 向かって、 磁性体シート 8 2の幅狭部 8 2 bが貫通した状態で、 このループコィ ル 8 1に磁性体シート 8 2がーの方向に沿って貼り合わされた構造を有している t したがって、 この磁性体シート 8 2は、 ループコイル 8 1の卷線間隔が広くなる 上部側において、 幅広部 8 2 aの一主面側がループコイル 7 1の I Cカード 1 と 対向する主面とは反対側の主面に対向し、 ループコイル 8 1の卷線間隔が狭くな る下部側において、 幅狭部 8 2 bの他主面側がループコイル 8 1の I Cカード 1 と対向する主面に対向し、 且つ、 一対の片部 8 2 c , 8 2 cの一主面側がループ コイル 8 1の I Cカード 1 と対向する主面とは反対側の主面に対向して配置され ている。
この場合、 図 1 3中矢印 Zで示す上下方向に相当する一の方向のアンテナ装置 8 0による磁場分布は、 図 1 5に示すように、 ループコイル 8 1の卷線間隔及び 線幅が広くなる上部側卷線部 8 1 aにおいて強調された非対称なものとなる。 図 1 3に示すアンテナ装置 8 0では、 ループコイル 8 1を非対称形状とし、 こ のル一ブコイル 8 1による放射磁界分布を制御することによって、 上述した I C 力一ド 1と R ZW 5 0との通信可能な範囲を広げることともに、 通信可能な位置 を一の方向においてシフトさせることが可能である。 このアンテナ装置 8 0では、 ループコイル 8 1の大きさを I Cカード 1側のループコイル 4よりも小さくする ことが可能なことから、 更なる小型化が可能である。
このアンテナ装置 8 0では、 ル一プコイル 8 1の卷線間隔が広くなる上部側に おいて、 磁性体シート 8 2の幅広部 8 2 aがループコイル 8 1の I Cカード 1と 対向する主面とは反対側の主面に対向し、 ループコイル 8 1の卷線間隔が狭くな る下部側において、 磁性体シート 8 2の幅狭部 8 2 bがループコィル 8 1の I C 力一ド 1 と対向する主面に対向して配置されていることから、 このル一プコィル 8 1の I Cカード 1 と対向する主面のうち、 ループコイル 8 1の卷線間隔及び線 幅が広くなる上部側卷線部 8 1 aの磁場分布のみを強調することができる。
したがって、 このアンテナ装置 8 0では、 ループコイル 8 1の卷線間隔及び線 幅が広くなる上部側の磁界強度が増強されることによって、 I Cカード 1と R / W 5 0との通信可能な範囲を 1箇所において大きく広げることが可能である。 さらに、 このアンテナ装置 80では、 ループコイル 8 1の下部側卷線部 8 1 b の側方部において、 磁性体シート 82の一対の片部 82 c , 82 cがループコィ ル 8 1の I Cカード 1と対向する主面とは反対側の主面に対向して配置されてい ることから、 このループコイル 8 1の I Cカード 1と対向する主面のうち、 ル一 プコイル 8 1の側方側の磁場分布、 すなわち図 1 3中に示す矢印 Z方向と直交す る矢印 X方向の磁場分布を強調することができる。
ここで、 上述した図 1 0に示すアンテナ装置 70による矢印 X方向の磁場分布 は、 図 1 6に示すように、 ループコイル 7 1よりも大きい磁性体シート 72の幅 広部 72 aによって強調されたものとなる。 これに対して、 図 13に示すアンテ ナ装置 80による矢印 X方向の磁場分布は、 図 1 7に示すように、 ループコイル 8 1.よりも大きい磁性体シ一ト 72の幅広部 82 aによって強調されるのに加え て、 磁性体シ一ト 82の一対の片部 82 c, 82 cがループコイル 8 1の下部側 卷線部 8 1 bの側方部に対向して配置されることから、 更にループコイル 8 1の 側方側において強調されたものとなる。
したがって、 図 1 3に示すアンテナ装置 80では、 ループコイル 8 1の側方側 の磁界強度が增強されることによって、 上述した図 1 0に示すアンテナ装置 70 よりも I Cカード 1と R/W50との通信可能な範囲を一の方向と直交する方向 において大きく広げることが可能である。
ところで、 上述した本発明に係るアンテナ装置 60 , 70 , 80では、 磁性体 シート 62 , 72, 82の面内方向において通信周波数における実効比透磁率 , を 30以上とし、 磁性体シート 62 , 72, 82の飽和磁化量 Msと厚み tと の積 Ms · tを 6 emu/ cm2以上とすることによって、 I Cカード 1と R/W 50との通信可能な範囲を広げることが可能である。
具体的に、 磁性体シート 62 , 72, 82の通信周波数における実効比透磁率 JJL' と通信範囲との関係を調べたところ、 図 1 8に示すような測定結果が得られ た。 すなわち、 これらアンテナ装置 60 , 70 , 80の通信可能な範囲を広げる ためには、 磁性体シ一ト 62, 72, 82の比透磁率〃, を 30以上とすること が好ましく、 更に好ましくは、 磁性体シート 62 , 72 , 82の比透磁率 ' を 50以上とすることによって、 I Cカード 1と R/W50との通信可能な範囲を 更に広げることが可能である。
磁性体シート 62 , 72, 82の飽和磁化量 M sと厚み tとの積 M s · 七 と通 信距離との関係を調べたところ、 図 1 9に示すような測定結果が得られた。 すな わち、 これらアンテナ装置 60, 70, 80の通信距離を伸ばすためには、 磁性 体シート 62, 7 2 , 82の飽和磁化量 M sと厚み tとの積 M s · 七を 6 e mu /c m2以上とすることが好ましく、 さらに 1 0 emu/ cm 2以上とすることが 好ましい。
これら磁性体シート 62, 72 , 82は、 その保持力 H cが 100 e以下であ ることが好ましい。
なお、 本測定による比透磁率/ ' は、 例えば ø 7 mmのリング状のサンプルを 作製し、 これに導線コイルを 5ターン卷いてべク トルインピ一ダンスアナライザ 等を用いて 13. 56 MH zのキヤリァ周波数に ける交流比透磁率を測定し、 定量化したものである。'本測定による飽和磁化量 Msは、 一般的な振動試料法 (V SM) を用いて測定されたものである。
本発明に係るアンテナ装置 60 , 70 , 80に用いられる磁性体シート 62, 72, 82としては、 本発明に係るアンテナ装置 60 , 70, 80の磁気特性を 満足するものであれば、 任意の軟磁性材料を用いて任意の製法により作製された ものを用いることができる。 例えば、 磁性材料として、 アモルファス合金、 C o - C r系合金、 F e— A 1系合金、 センダス ト合金 (F e— A 1— S i)、 F e — N i合金、 F e— C o—N i合金等を用いることができ、 これらの各微粉末を ゴム系のバインダで混鍊、 分散、 塗布して作製されたものや、 メヅキ法やスパッ 夕法により軟磁性薄板としたもの、 又はフェライ ト系粉末をプレス焼結体とした バインダを含まない単一素材のみによるバルク薄板等を用いることができる。 上述したように、 本発明に係るアンテナ装置 60 , 70, 80は、 必要な通信 範囲に応じて、 磁性体シート 62, 72, 82の比透磁率//, と、 磁性体シート 62, 72, 82の飽和磁化量 Msと厚み tとの積 Ms · tとを設定することを 特徴としており、 これら磁性体シート 62 , 72 , 82の比透磁率 , 及び飽和 磁化量 Msと厚み tとの積 Ms . 七を最適化することによって、 I Cカード 1と R/W50との通信可能な範囲を広げることが可能である。 本発明に係るアンテナ装置 60 , 70, 80では、 通信性能を向上させること によって、 ループコイル 6 1 , 71 , 8 1の大きさを I C力一ド 1側のループコ ィル 4よりも小さくすることが可能なことから、 例えば装置全体の厚みを 1 mm 以下とすることが可能であり、 更なる小型化及び薄型化が可能である。
なお、 本発明に係るアンテナ装置 6◦ , 70, 80は、 上述したループコイル 6 1 , 7 1 , 8 1の各卷線間の間隔及び線幅を同時に異ならせたものに限定され ず、 例えばループコイル 6 1, 71 , 8 1の各卷線間の間隔のみを異ならせたも のであってもよい。 また、 ループコイル 6 1 , 7 1 , 8 1を非対称形状する一の 方向は、 放射磁界分布を広げたい任意の方向に設定することが可能である。 例え ば上述した矢印 Z方向と直交する矢印 X方向において、 ループコイル 6 1 , 7 1 : 81の各巻線間の間隔及び線幅を異ならせた非対称形状としてもよく、 これら Z 方向及び X方向において、 ル一プコイル 6 1 , 7 1, 8 1の各卷線間の間隔及び 線幅を異ならせた非対称形状としてもよい。
このように、 本発明に係るアンテナ装置 60 , 70 , 80は、 ループコイル 6 1 , 7 1 , 8 1を非対称形状とする方向によって、 このループコイル 6 1, 7 1 : 81の放射磁界分布を制御することが可能であり、 I C力一ド 1に対する R/W 50の読出し及び書込位置を任意に調整することが可能である。
次に、 上述した図 8に示す本発明に係るアンテナ装置 (以下、 平面非対称型ル ープアンテナという。 ) 60と、 図 1 0に示す本発明に係る他のアンテナ装置 (以下、 立体非対称型ループアンテナという。 )· 70と、 図 2に示す従来のアン テナ装置 (以下、 平面対称型ループアンテナという。 ) 200 (但し、 I Cカー ドと対向する主面とは反対側の主面に磁性体シートを配置した構成とする。 ) と について、 図 20に示す樹脂筐体に配置した場合と、 図 2 1に示す金属筐体に配 置した場合との通信性能の比較をそれそれ行った。
なお、 図 20及び図 2 1は、 R/W側に配置された各ループアンテナ 60 , 7 0 , 200により I C力一ドに誘導された電流強度のカード位置依存性を示す特 性図であり、 横軸の原点 0は、 R/W側の各ループアンテナ 60 , 70 , 2 00 の中心位置を示し、 正方向は、 I Cカードが原点 0から外側に向かった方向を示 す。 一方、 縦軸は、 R W側の各ループアンテナ 60, 70, 200の磁界が電 磁誘導によって I C力一ド側のループアンテナに発生させた誘導電流強度を示し、 図中点線 sで示す値以上となる領域が通信可能な領域となる。 なお、 図 2 0及び 図 2 1において、 細線 Aは、 平面対称型ループアンテナ 2 0 0のグラフを示し、 中太線 Bは、 平面非対称型ループアンテナ 6 0のグラフを示し、 太線 Cは、 立体 非対称型ル一ブアンテナ 7 0のグラフを示す。
図 2 0に示す樹脂筐体の場合には、 従来の平面対称型ループアンテナ 2 0 0に 2つの通信可能な領域 S , S 2 ' が形成されてしまい、 それぞれの通信可能な 範囲も狭くなつていることがわかる。 これに対して、 本発明に係る平面非対称型 ループアンテナ 6 0には、 2つの通信可能な領域 S S 2が形成されるものの、 領域 S!の通信可能な範囲を大きく広がっていることがわかる。 本発明に係る立体 非対称型ループアンテナ 7 0には、 通信可能な領域 Sが中央よりに一箇所のみ形 成されており、 その通信可能な範囲も他と比べて最も広がっていることがわかる。 このように、 通信可能な領域 Sがー箇所のみ形成されるのは、 立体非対称型のル —プアンテナ構造をとることによって、 図 1 2の磁場分布が示すように単一放射 磁場が形成されたためである。 一方、 図 9には、 非対称な相方向放射磁場が描か れている。
一方、 図 2 1に示す金属筐体の場合には、 この金属筐体の影響により何れのル —プアンテナ 6 0 , 7 0, 2 0 0も、 図 2 0に示す樹脂筐体の場合と比べて通信 可能な範囲が狭くなつているものの、 従来の平面対称型ループアンテナ 2 0 0に 比べて、 本発明の平面非対称型ループアンテナ 6 0及ぴ立体非対称型ループアン テナ 7 0の方が、 誘導電流の落ち込みが少なく、 筐体の材質による影響が少ない ことがわかる。
以上のことから、 本発明に係る平面非対称型ループアンテナ 6 0及び立体非対 称型ループアンテナ 7 0では、 原点 0から外側に通信可能な領域 S , Sが連続的 に広がることによって、 その通信性能を向上させることが可能である。 特に、 立 体非対称型ループアンテナ 7 0では、 通信可能な領域 Sを 1箇所において大きく 広げることが可能なことから、 使い勝手がよく、 また、 平面非対称型ループアン テナ 6 0に比べてィンピーダンスを低くすることが可能であり、 低消費電力化に 有利となっている。 これら平面非対称型ループアンテナ 6 ◦及び立体非対称型ループアンテナ 7 0 では、 筐体の材質による影響を少なくすることが可能であり、 従来の平面非対称 型ループアンテナ 2 0 0に比べて通信可能な範囲を広げることが可能である。 次に、 上述した各ループアンテナ 6 0, 7 0 , 2 0 0について、 図 2 2に示す
1 Cカードと対向する主面とは反対側の主面に磁性体シートを配置しない場合と、 図 2 3に示す磁性体シートを配置した場合との通信性能の比較を行った。
なお、 図 2 2及び図 2 3は、 R /W側に配置された各ループアンテナ 6 0 , 7 0 , 2 0 0により I Cカードに誘導された電流強度のカード位置依存性を示す特 性図であり、 横軸の原点 0は、 R /W側の各ループアンテナ 6 0 , 7 0 , 2 0 0 の中心位置を示し、 正方向は、 I Cカードが原点 0から外側に向かった方向を示 す。 一方、 縦軸は、 R /W側の各ループアンテナ 6 0 , 7 0 , 2 0 0の磁界が電 磁誘導によって I Cカード側のループアンテナに発生させた誘導電流強度を示す。 なお、 図.2 2及び図 2 3において、 細線 Aは、 平面対称型ループアンテナ 2 0 0 のグラフを示し、 中太線 Bは、 平面非対称型ループアンテナ 6 0のグラフを示し、 太線 Cは、 立体非対称型ループアンテナ 7 0のグラフを示す。
図 2 2及び図 2 3に示すように、 本発明に係る各ループアンテナ 6 0, 7 0,
2 0 0は、 何れも磁性体シートを配置しない場合に比べて、 磁性体シートを配置 した場合の方が磁場強度を強め、 結果として誘導電流強度を増強できることがわ かる。 このように、 磁性体シートをループアンテナの I Cカードと対向する主面 とは反対側の主面に配置することは、 磁界強度の増強によって I Cカード側のル ープアンテナの誘導電流を高めることになり、 R /Wの通信可能な範囲の拡大及 び低消費電力化を図る上で大変有効である。
次に、 上述した R F I Dシステムの適用例として、 図 2 4に示す通信端末装置 9 0について説明する。 この通信端末装置 9 0は、 R W 5 0用のループアンテ ナ 5 4として、 上述した立体非対称型ループアンテナ 7 0を用いている。
本発明が適用された通信端末装置 9 0は、 P D A (Personal Digital Assi sta nts) と呼ばれるユーザが持ち運び可能な小型電子機器であり、 例えば情報通信機 能や、 ストレージ機能、 カメラ機能等を一つのモジュール内に集約した構造を有 している。 この通信端末装置 9 0は、 本体部 9 1と、 パネル部 9 2とを有し、 ヒンジ機構 9 3を介してパネル部 9 2が本体部 9 1に対して開閉可能とされている。 本体部 9 1には、 各種操作を行うための操作ボタン等からな.る入力部 9 4が設けられて おり、 この入力部 9 4の下方には、 上述した R /W 5 0の立体非対称型ル一プア ンテナ 7 0が配置されている。
本体部 9 1の内部には、 各部を制御するマイクロコンピュータ (C P U ) が設 けられている。 一方、 パネル部 9 2には、 液晶表示パネルからなる表示部 9 5が 設けられており、 入力部 9 4による操作状態や、 R /W 5 0による I Cカード 1 からの読出しデータ等を C P Uの制御のもとで表示することができる。 ヒンジ機 構 9 3には、 C C Dカメラ 9 6が搭載されており、 入力部 9 4を操作し、 この C C Dカメラ 9 6により撮影された画像を表示部 9 5に表示することも可能である c 本発明に係る通信端末装置 9 0は、 図 2 5に示すように、 小型軽量薄型化した 場合の剛性を確保するため、 M g合金等の金属筐体 9 7からなり、 この金属筐体 9 7に形成されたアンテナ収納凹部 9 7 aに、 上述した立体非対称型ループアン テナ 7 0が配置され、 その上に保護材であるポリカーボネート等の樹脂部材 9 8 が配置された構造となっている。 なお、 筐体は、 このような金属筐体 9 7に限ら ず、 例えば高剛性プラスチック材等からなる非金属筐体であつてもよい。
また、 この立体非対称型ループアンテナ 7 0のループコイル 7 1は、 上述した 一の方向が I Cカード 1の走査方向となるように配置されており、 I Cカード 1 は、 この通信端末装置 9 0の入力部 9 4とは反対側、 すなわちループアンテナ 7 ◦のループコイル 7 1の卷線間隔及び線幅が狭くなる下部側から走査されること になる。
この場合、 立体非対称型ル一プアンテナ 7 0による磁場分布は、 図 2 6に示す ように、 ルーブコィル Ί 1の卷線間隔及び線幅が広くなる上部側卷線部 7 1 aに おいて強調されたものとなり、 このループコイル 7 1の卷線間隔及び線幅が広く なる上部側の磁界強度が增強されることによって、 I Cカードと R /W 5 0との 通信可能な範囲 Sを 1箇所において大きく広げることが可能である。
したがって、 本発明に係る通信端末装置 9 0は、 I Cカード 1と R /W 5 0と の通信可能な範囲を拡大することが可能であり、 入力部 9 4とは反対側から I C カード 1が走査される場合でも、 立体非対称型ループアンテナ 7 0の設置場所の 制約によらず、 I Cカード 1に対するデ一夕の書込み及び読出しを適切に行うこ とが可能である。
この通信端末装置 9 0は、 金属筐体 9 7を用いた場合でも、 このような立体非 対称型ループアンテナ 7 0を配置することによって、 I Cカード 1と R /W 5 0 との通信可能な範囲が狭まるのを抑制することが可能である。
さらに、 本発明に係る通信端末装置 9 0では、 I Cカード 1側のループアンテ ナ 2よりも R /W 5 0側のループアンテナ 7 0を小さくすることも可能なことか ら、 更なる小型化及び低消費電力化が可能である。
次に、 上述した通信端末装置 9 0に搭載された立体非対称型ループアンテナ 7 0の製造方法の一例について説明する。
この立体非対称型ループアンテナ 7 0を製造する際には、 先ず、 図 2 7に示す フロ一チヤ一卜に従って、 上述した磁性体シート 7 2を作製する。
この磁性体シート 7 2を作製する際は、 先ず、 ステヅプ S 1において、 ゴム系 樹脂からなるバインダ中に、 磁性粉、 溶剤及び添加物を混合した磁性塗料を作製 する。 なお、 ここでは、 磁性粉として、 F e 9 6重量%、 C rを 3重量%、 C o を 0 . 3璽量%及びその他の磁性材料を含有する F e系磁性材料を用いた。 次に、 ステップ S 2において、 この磁性塗料を濾過し、 バインダ中から所定の 粒径以上となる磁性粉を除去した磁性塗料を作製する。
次に、 ステップ S 3において、 図 2 8に示す押出し成形機を用いて、 液溜め部 7 5に溜められた磁性塗料 7 6を一対のローラ 7 7 a, 7 7 bの間から押し出し ながら、 所定の厚みとなる長尺状の磁性体シ一ト 7 2を作製する。
次に、 ステップ S 4において、 長尺状の磁性体シート 7 2を乾燥させ、 この磁 性体シート 7 2中からバインダを除去する。
次に、 ステヅプ S 5において、 図 2 9に示す塗布装置を用いて、 一対のローラ 7 8 a , 7 8 bの間で帯状の磁性体シート 7 2を挟み込みながら、 この磁性体シ —ト 7 2 aの一主面上に接着剤 7 9を塗布する。
次に、 ステップ S 6において、 帯状の磁性体シート 7 2を所定の形状に型抜き プレスする。 以上のようにして、 図 3 O A及び図 3 0 Bに示すような磁性体シート 7 2が作 製される。
次に、 図 3 1に示すように、 上述したル一プコイル 7 1を用意する。 上述した ように、 このループコイル 7 1は、 ポリイミ ドゃマイ力等の可撓性を有する絶縁 フィルム又は基板 7 3の両面に形成された電解銅等の導体金属箔膜をエッチング するなどして形成される。 このループコイル 7 1の作製方法は、 上述した例に限 定されず、 例えば銀ペース ト等の導体ぺ一ストを用いてループコイル 7 1となる 導体パターンを印刷したものでもよく、 又は金属ターゲヅ トをスパヅタすること によって基板上にループコイル 7 1 となる導体パターンを形成してもよい。 また、 ループコイル 7 1の中心部には、 磁性体シ一ト 7 2を貫通させるための貫通孔 7 4が形成される。
次に、 図 3 2に示すように、 ループコイル 7 1の貫通孔 7 4に、 磁性体シート 7 2の幅狭部 7 2 bを貫通させ、 このループコイル 7 1と磁性体シート 7 2とを —の方向に沿って貼り合わせる。 このとき、 磁性体シート 7 2は、 接着剤 7 9が 塗布された面をループコイル 7 1の I Cカード 1と対向する主面と対向するよう にする。 そして、 ループコイル 7 1の卷線間隔が狭くなる下部側において、 幅狭 部 7 2 bをループコイル 7 1の I Cカード 1と対向する主面に貼り付ける。 これ により、 ループコイル 7 1の卷線間隔が広くなる上部側において、 幅広部 7 2 a を上述した通信端末装置 9 0のアンテナ収納凹部 9 7 aに貼り付けることができ る。 '
以上のようにして、 上述した立体非対称型ループアンテナ 7 0を作製すること ができる。 このように、 立体非対称型ループアンテナ 7 0は、 ループコイル 7 1 の貫通孔マ 4に磁性体シート 7 2を貫通させた状態で重ね合わせ、 接着剤 7 9に より貼り付けた製造が容易な構造を有している。
また、 磁性体シート 7 2は、 図 3 3に示すように、 比較的柔らかいフレキシブ ル性を有するものが好ましい。 この場合、 磁性体シート 7 2に変形によってルー プコィル 7 1の上部側卷線部 7 1 aと下部側卷線部 7 1 bとの変形を抑制し、 こ の立体非対称型ループアンテナ 7 0の全体の厚み T iを薄くすることができる。 こ れに対して、 図 3 4に示すように、 磁性体シート 7 2が硬い場合には、 ループコ ィル 7 1の上部側卷線部 7 1 aと下部側卷線部 7 1 bとの変形が大きくなり、 立 体非対称型ル一プアンテナ 7 0の全体の厚み T 2が厚くなつてしまう。
なお、 本発明は、 上述の例に限定されるものではなく、 添付の請求の範囲及び その主旨を逸脱することなく、 様々な変更、 置換又はその同等のものを行うこと ができることは当業者にとって明らかである。 産業上の利用可能性 本発明に係るアンテナ装置によれば、 ループコイルの I Cカードと対向する主 面とは反対側の主面に対向して配置された磁性体の比透磁率〃' 及び飽和磁化量 M sと厚み tとの積 M s · tを最適化することによって、 筐体の材質による影響 を低減し、 このループコイルの I Cカードと対向する主面側の磁場分布を強調す ることが可能であり、 I Cカードとリーダライ夕との通信可能な範囲を広げるこ とが可能である。 したがって、 このアンテナ装置及びこのアンテナ装置を用いた 通信装置の更なる小型化及び高性能化が可能である。

Claims

請求の範囲
1. 電磁誘導結合により非接触型の I Cカードとデータ通信を行う通信装置に接 続されるアンテナ装置において、
上記電磁誘導結合を行うためのループコイルと、
上記ループコイルの上記 I Cカードと対向する主面とは反対側の主面に対向し て配置され、 上記非接触型の I Cカードと通信が可能な設定された通信範囲に基 づいて比透過率 ' と、 飽和磁化量 M sと厚み七との積 M s · 七とが設定された 磁性体と
を備えることを特徴とするアンテナ装置。
2. 上記磁性体の比透過率 ' を 30以上とし、 さらに上記磁性体の飽和磁化量 Msと厚み tとの積 Ms · tを 6 emu/cm2以上とすることを特徴とする請求 の範囲第 1項記載のアンテナ装置。
3. 上記磁性体の保磁力 H cを 1 00 e以下とすることを特徴とする請求の範囲 第 1項記載のアンテナ装置。
4. 上記磁性体は、 軟磁性材料から生成されることを特徴とする請求の範囲第 1 項記載のアンテナ装置。
5. 上記軟磁性材料は、 アモルファス合金、 又は C o— Cr系合金、 又は F e— A1系合金、 又はセンダスト合金、 又は F e— Ni合金、 又は; F e— C o— N i 合金、 又はフェライ ト系合金のプレス焼結体であることを特徴とする請求の範囲 第 4項記載のアンテナ装置。
6. 上記磁性体は、 上記ループコイルの卷線の最外幅よりも幅広となる幅広部と、 上記ループコィルの卷線の最内幅よりも幅狭となる幅狭部とを有し、
上記幅狭部が上記ループの中心部に貫通した状態で、 上記幅広部が上記ループ コイルの I Cカードと対向する主面とは反対側の主面に対向し、 上記ループコィ ルの卷線間隔が狭くなる側において、 上記幅狭部がループコイルの I Cカードと 対向する主面に対向して配置されていることを特徴とする請求の範囲第 1項記載
7. 上記磁性体は、 上記ループコイルの卷線の最外幅よりも幅広となる幅広部と、 一端より切り欠かれた一対の切欠き部の間に上記ループコイルの卷線の最内幅よ りも幅狭となる幅狭部と、 前記一対の切欠き部を挟んだ前記幅狭部の両側に一対 の片部とを有し、
上記幅狭部が上記ループコイルの中心部に貫通した状態で、 上記幅狭部が上記 ループコイルの I Cカードと対向する主面とは反対側の主面に対向し、 上記幅狭 部がループコイルの I cカードと対向する主面に対向し、 iつ、 上記一対の片部 が上記ループコイルの I Cカードと対向する主面とは反対側の主面に対向して配 置されていることを特徴とする請求の範囲第 1項記載のアンテナ装置。
8 . 上記ル一プコイルは、 平面状に導線が卷線されるとともに、 その中心部を挟 んで相対向する各卷線間の間隔を異ならせた非対称形状とされていることを特徴 とする請求の範囲第 1項記載のアンテナ装置。
9 . 上記ループコイルは、 上記各卷線間の間隔を上記 I Cカードが走査される方 向において異ならせたことを特徴とする請求の範囲第 8項記載のアンテナ装置。
1 0 . 上記ループコイルは、 誘導結合される上記 I Cカード側のループコイルよ りも小さいことを特徴とする請求の範囲第 8項記載のアンテナ装置。
1 1 . 電磁誘導結合により非接触型の I cカードとデータ通信を行う通信装置に おいて、
上記電磁誘導結合を行うためのループコイル手段と、
上記ループコイルの上記 I C力一ドと対向する主面とは反対側の主面に対向し た金属体近傍に配置され、 上記非接触型の I Cカードと通信が可能な設定された 通信範囲に基づいて非透過率 ' と、 飽和磁化量 M sと厚み tとの積 M s · 七と が設定された磁性体と
上記ループコイルに対して上記非接触型 I Cカードに対する送信データを所定 の搬送周波数にて変調して供給する変調手段と、
上記ループコイル手段にて受信される上記非接触型 I Cカードから送信される 受信データを復調する復調手段と
を備えることを特徴とする通信装置。
1 2 . 上記磁性体は、 上記ループコイルの卷線の最外幅よりも幅広となる幅広部 と、 上記ループコイルの卷線の最内幅よりも幅狭となる幅狭部とを有し、 上記幅狭部が上記ループコイルの中心部に貫通した状態で、 上記幅狭部が上記 ループコイルの I Cカードと対向する主面とは反対側の主面に対向し、 上記ルー プコイルの卷線間隔が狭くなる側において、 上記幅狭部がループコイルの I C力 ―ドと対向する主面に対向して配置されていることを特徴とする請求の範囲第 1 1項記載の通信装置。
1 3 . 上記磁性体は、 上記ループコィルの卷線の最外幅よりも幅広となる幅広部 と、 一端より切り欠かれた一対の切欠き部の間に上記ループコイルの卷線の最内 幅よりも幅狭となる幅狭部と、 上記一対の切欠き部を挟んだ前記幅狭部の両側に —対の片部とを有し、
上記幅狭部が上記ループコイルの中心部に貫通した状態で、 上記幅狭部が上記 ループコイルの I Cカードと対向する主面とは反対側の主面に対向し、 上記幅狭 部がループコイルの I Cカードと対向する主面に対向し、 且つ、 上記一対の片部 が上記ループコイルの I C力一ドと対向する主面とは反対側の主面に対向して配 置されていることを特徴とする請求の範囲第 1 1項記載の通信装置。
1 4 . 上記アンテナ装置の筐体の上記ループコイルが配設される面の一辺は、 上 記 I Cカードの長編よりも短いことを特徴とする請求の範囲第 1 1項記載の通信 装置。
PCT/JP2003/010984 2002-09-27 2003-08-28 アンテナ装置及びアンテナ装置を用いた通信装置 WO2004029868A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CNB038016346A CN100383816C (zh) 2002-09-27 2003-08-28 天线装置以及使用天线装置的通信装置
DE60336799T DE60336799D1 (de) 2002-09-27 2003-08-28 Antenneneinrichtung und kommunikationseinrichtung mit der antenneneinrichtung
US10/497,111 US7000837B2 (en) 2002-09-27 2003-08-28 Antenna device and communication device using antenna device
EP03798378A EP1477927B1 (en) 2002-09-27 2003-08-28 Antenna device and communication device using antenna device
US11/244,727 US7183987B2 (en) 2002-09-27 2005-10-06 Antenna apparatus, and communications apparatus using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-284177 2002-09-27
JP2002284177 2002-09-27
JP2003003739A JP3975918B2 (ja) 2002-09-27 2003-01-09 アンテナ装置
JP2003-3739 2003-01-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10497111 A-371-Of-International 2003-08-28
US11/244,727 Continuation US7183987B2 (en) 2002-09-27 2005-10-06 Antenna apparatus, and communications apparatus using same

Publications (1)

Publication Number Publication Date
WO2004029868A1 true WO2004029868A1 (ja) 2004-04-08

Family

ID=32044643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010984 WO2004029868A1 (ja) 2002-09-27 2003-08-28 アンテナ装置及びアンテナ装置を用いた通信装置

Country Status (6)

Country Link
US (2) US7000837B2 (ja)
EP (1) EP1477927B1 (ja)
JP (1) JP3975918B2 (ja)
CN (1) CN100383816C (ja)
DE (1) DE60336799D1 (ja)
WO (1) WO2004029868A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8638268B2 (en) 2010-09-30 2014-01-28 Murata Manufacturing Co., Ltd. Coil antenna and antenna structure
WO2015170612A1 (ja) * 2014-05-09 2015-11-12 デクセリアルズ株式会社 アンテナ装置、及び電子機器

Families Citing this family (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273734B2 (ja) * 2002-09-25 2009-06-03 ソニー株式会社 アンテナ装置
JP4232474B2 (ja) * 2002-09-27 2009-03-04 ソニー株式会社 通信機能付き電子機器
JP3870921B2 (ja) * 2003-04-01 2007-01-24 セイコーエプソン株式会社 非接触識別タグ
JP2004364199A (ja) * 2003-06-06 2004-12-24 Sony Corp アンテナモジュール及びこれを備えた携帯型通信端末
US7339120B2 (en) * 2003-06-26 2008-03-04 Matsushita Electric Industrial Co., Ltd. Electromagnetic wave shield
JP2005102101A (ja) * 2003-09-01 2005-04-14 Matsushita Electric Ind Co Ltd ゲートアンテナ装置
US20050140564A1 (en) * 2003-10-29 2005-06-30 Matsushita Electric Industrial Co., Ltd. Loop antenna
US7508305B2 (en) * 2003-12-26 2009-03-24 Semiconductor Energy Laboratory Co., Ltd. Packing material, tag, certificate, paper money, and securities
JP4463574B2 (ja) * 2004-01-23 2010-05-19 株式会社リコー Icタグ用リーダ/ライタ及びicタグ用リーダ/ライタを有する装置
DE102004020816A1 (de) 2004-04-22 2005-11-17 Atmel Germany Gmbh Verfahren und Schaltung zur Lastmodulation in einer Verbindung aus einem Sendeschwingkreis und einem Empfangsschwingkreis
US7362285B2 (en) 2004-06-21 2008-04-22 Lutron Electronics Co., Ltd. Compact radio frequency transmitting and receiving antenna and control device employing same
JP4649183B2 (ja) * 2004-11-30 2011-03-09 株式会社東芝 無線通信端末
JP4814510B2 (ja) * 2004-11-30 2011-11-16 パナソニック株式会社 携帯端末
CN101053115B (zh) * 2004-12-14 2012-05-30 富士通株式会社 天线和非接触型标签
JPWO2006075359A1 (ja) * 2005-01-11 2008-06-12 富士通株式会社 Icタグ収納ケース
US8063843B2 (en) * 2005-02-17 2011-11-22 Crucible Intellectual Property, Llc Antenna structures made of bulk-solidifying amorphous alloys
US7592967B2 (en) * 2005-06-06 2009-09-22 Lutron Electronics Co., Inc. Compact antenna for a load control device
JP4414940B2 (ja) 2005-06-14 2010-02-17 ソニーケミカル&インフォメーションデバイス株式会社 アンテナ装置及びアンテナ装置の調整方法
JP4414942B2 (ja) 2005-06-30 2010-02-17 ソニーケミカル&インフォメーションデバイス株式会社 アンテナ装置
EP1912282B1 (en) * 2005-08-02 2010-03-17 Panasonic Corporation Antenna unit for noncontact communication and mobile communication device provided with such antenna unit
NL1030664C2 (nl) * 2005-12-13 2007-06-14 Meco Equip Eng Werkwijze voor het verbinden van sporen aan tegenover elkaar gelegen zijden van een drager.
FI119010B (fi) * 2006-01-09 2008-06-13 Pulse Finland Oy RFID-antenni
US7519328B2 (en) 2006-01-19 2009-04-14 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US9064198B2 (en) 2006-04-26 2015-06-23 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US9048819B2 (en) * 2006-11-18 2015-06-02 RF Micron, Inc. Method and apparatus for detecting RF field strength
TWI333309B (en) * 2006-11-20 2010-11-11 Unihan Corp Isolation circuit with good surge and rfi immunity
GB2446622A (en) * 2007-02-14 2008-08-20 Sharp Kk Wireless interface
JP4367717B2 (ja) * 2007-03-26 2009-11-18 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 近距離無線通信用アンテナおよび携帯機器
US8235299B2 (en) 2007-07-04 2012-08-07 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
CN102915462B (zh) 2007-07-18 2017-03-01 株式会社村田制作所 无线ic器件
EP2188867A4 (en) * 2007-09-13 2014-12-10 Qualcomm Inc ANTENNA FOR WIRELESS ELECTRICITY APPLICATIONS
JP5174424B2 (ja) * 2007-10-24 2013-04-03 デクセリアルズ株式会社 アンテナ回路及びその抵抗低減方法、並びにトランスポンダ
US20090159657A1 (en) * 2007-12-19 2009-06-25 Taisys Technologies Co., Ltd. Contactless integrated circuit card system
US8350196B2 (en) * 2008-02-06 2013-01-08 Tsi Technologies Llc Radio frequency antenna for heating devices
JP5267463B2 (ja) 2008-03-03 2013-08-21 株式会社村田製作所 無線icデバイス及び無線通信システム
JP4508266B2 (ja) * 2008-05-12 2010-07-21 セイコーエプソン株式会社 コイルユニット及びそれを用いた電子機器
JP4609604B2 (ja) 2008-05-21 2011-01-12 株式会社村田製作所 無線icデバイス
CN104077622B (zh) 2008-05-26 2016-07-06 株式会社村田制作所 无线ic器件系统及无线ic器件的真伪判定方法
JP4671001B2 (ja) * 2008-07-04 2011-04-13 株式会社村田製作所 無線icデバイス
WO2010021217A1 (ja) 2008-08-19 2010-02-25 株式会社村田製作所 無線icデバイス及びその製造方法
CN102143808A (zh) * 2008-09-05 2011-08-03 三洋电机株式会社 线性电动机及具备线性电动机的携带式设备
KR20110069831A (ko) * 2008-10-03 2011-06-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 변조회로 및 그것을 갖는 반도체장치
DE112009002384B4 (de) 2008-11-17 2021-05-06 Murata Manufacturing Co., Ltd. Antenne und Drahtlose-IC-Bauelement
JP4752909B2 (ja) 2008-12-24 2011-08-17 株式会社村田製作所 磁性体アンテナ及びアンテナ装置
WO2010079830A1 (ja) 2009-01-09 2010-07-15 株式会社村田製作所 無線icデバイス、無線icモジュール、および無線icモジュールの製造方法
WO2010087429A1 (ja) 2009-01-30 2010-08-05 株式会社村田製作所 アンテナ及び無線icデバイス
JP5510450B2 (ja) 2009-04-14 2014-06-04 株式会社村田製作所 無線icデバイス
CN103022661B (zh) 2009-04-21 2014-12-03 株式会社村田制作所 电子设备及天线装置的谐振频率设定方法
JP4883136B2 (ja) * 2009-05-15 2012-02-22 株式会社村田製作所 コイルアンテナ
JP5532678B2 (ja) 2009-05-26 2014-06-25 ソニー株式会社 通信装置、アンテナ装置、並びに通信システム
JP4905506B2 (ja) * 2009-06-22 2012-03-28 株式会社村田製作所 アンテナ装置
DE102009027123A1 (de) * 2009-06-23 2010-12-30 Bundesdruckerei Gmbh RFID-Lesegerät und RFID-System
EP2461424B1 (en) * 2009-07-28 2015-12-16 Dexerials Corporation Production method for antenna device
US8752277B2 (en) 2009-07-28 2014-06-17 Dexerials Corporation Method for producing antenna device
JP4798317B2 (ja) 2009-09-25 2011-10-19 株式会社村田製作所 アンテナ装置及び携帯端末
WO2011036962A1 (ja) * 2009-09-25 2011-03-31 株式会社村田製作所 アンテナ装置及び携帯端末
WO2011040393A1 (ja) 2009-09-30 2011-04-07 株式会社村田製作所 回路基板及びその製造方法
JP5304580B2 (ja) 2009-10-02 2013-10-02 株式会社村田製作所 無線icデバイス
WO2011055703A1 (ja) 2009-11-04 2011-05-12 株式会社村田製作所 通信端末及び情報処理システム
WO2011062238A1 (ja) 2009-11-20 2011-05-26 株式会社村田製作所 アンテナ装置及び移動体通信端末
JP5487919B2 (ja) * 2009-12-01 2014-05-14 株式会社村田製作所 磁性体アンテナ及び携帯端末
WO2011077877A1 (ja) * 2009-12-24 2011-06-30 株式会社村田製作所 アンテナ及び携帯端末
CN102474000B (zh) * 2009-12-24 2015-07-22 株式会社村田制作所 天线及便携终端
JP5403146B2 (ja) 2010-03-03 2014-01-29 株式会社村田製作所 無線通信デバイス及び無線通信端末
WO2011108340A1 (ja) 2010-03-03 2011-09-09 株式会社村田製作所 無線通信モジュール及び無線通信デバイス
WO2011111509A1 (ja) 2010-03-12 2011-09-15 株式会社村田製作所 無線通信デバイス及び金属製物品
WO2011118379A1 (ja) 2010-03-24 2011-09-29 株式会社村田製作所 Rfidシステム
JP5135450B2 (ja) * 2010-03-31 2013-02-06 デクセリアルズ株式会社 アンテナ装置、通信装置
JP5630499B2 (ja) 2010-03-31 2014-11-26 株式会社村田製作所 アンテナ装置及び無線通信デバイス
EP2515377A4 (en) * 2010-04-12 2014-12-24 Murata Manufacturing Co ANTENNA DEVICE AND TERMINAL COMMUNICATION DEVICE
JP2011238016A (ja) * 2010-05-10 2011-11-24 Sony Corp 非接触通信媒体、アンテナパターン配置媒体、通信装置及びアンテナ調整方法
GB2495418B (en) 2010-07-28 2017-05-24 Murata Manufacturing Co Antenna apparatus and communication terminal instrument
WO2012020748A1 (ja) 2010-08-10 2012-02-16 株式会社村田製作所 プリント配線板及び無線通信システム
JP5625813B2 (ja) * 2010-08-12 2014-11-19 株式会社村田製作所 通信端末装置
JP5510547B2 (ja) 2010-08-12 2014-06-04 株式会社村田製作所 アンテナ装置及び通信端末装置
KR101234301B1 (ko) * 2010-08-12 2013-02-18 가부시키가이샤 무라타 세이사쿠쇼 통신단말장치
CN103492794A (zh) * 2010-08-13 2014-01-01 任恩奭 镶嵌薄板(膜),其制造方法及天线
WO2012043432A1 (ja) 2010-09-30 2012-04-05 株式会社村田製作所 無線icデバイス
JP5758909B2 (ja) 2010-10-12 2015-08-05 株式会社村田製作所 通信端末装置
CN102971909B (zh) * 2010-10-21 2014-10-15 株式会社村田制作所 通信终端装置
JP5472153B2 (ja) 2010-12-24 2014-04-16 株式会社村田製作所 アンテナ装置、アンテナ付きバッテリーパックおよび通信端末装置
JP5848120B2 (ja) * 2010-12-28 2016-01-27 デクセリアルズ株式会社 アンテナモジュール、通信装置及びアンテナモジュールの製造方法
CN105048058B (zh) 2011-01-05 2017-10-27 株式会社村田制作所 无线通信器件
JP5304956B2 (ja) 2011-01-14 2013-10-02 株式会社村田製作所 Rfidチップパッケージ及びrfidタグ
CN103119786B (zh) 2011-02-28 2015-07-22 株式会社村田制作所 无线通信器件
JP5630566B2 (ja) 2011-03-08 2014-11-26 株式会社村田製作所 アンテナ装置及び通信端末機器
WO2012137717A1 (ja) 2011-04-05 2012-10-11 株式会社村田製作所 無線通信デバイス
JP5482964B2 (ja) 2011-04-13 2014-05-07 株式会社村田製作所 無線icデバイス及び無線通信端末
FR2974259B1 (fr) * 2011-04-18 2013-06-07 Commissariat Energie Atomique Recepteur alimente par une interface sans fil de type inductif
US9155172B2 (en) 2011-05-13 2015-10-06 Lutron Electronics Co., Inc. Load control device having an electrically isolated antenna
WO2012157596A1 (ja) 2011-05-16 2012-11-22 株式会社村田製作所 無線icデバイス
CN103370834B (zh) 2011-07-14 2016-04-13 株式会社村田制作所 无线通信器件
DE112012001977T5 (de) 2011-07-15 2014-02-20 Murata Manufacturing Co., Ltd. Funkkommunikationsvorrichtung
JP5660217B2 (ja) 2011-07-19 2015-01-28 株式会社村田製作所 アンテナ装置、rfidタグおよび通信端末装置
CN102263327A (zh) * 2011-08-04 2011-11-30 瑞声声学科技(深圳)有限公司 射频识别天线的制作方法
CN102437414A (zh) * 2011-08-04 2012-05-02 瑞声声学科技(深圳)有限公司 射频识别天线的制作方法
US10518518B2 (en) 2013-01-18 2019-12-31 Féinics Amatech Teoranta Smart cards with metal layer(s) and methods of manufacture
US10733494B2 (en) 2014-08-10 2020-08-04 Féinics Amatech Teoranta Contactless metal card constructions
JP5418737B2 (ja) 2011-09-09 2014-02-19 株式会社村田製作所 アンテナ装置および無線デバイス
JP5284449B2 (ja) 2011-11-29 2013-09-11 株式会社東芝 電子機器
WO2013080991A1 (ja) 2011-12-01 2013-06-06 株式会社村田製作所 無線icデバイス及びその製造方法
KR101185503B1 (ko) * 2011-12-19 2012-09-24 에이큐 주식회사 폴드 형태의 엔에프씨 안테나
WO2013095428A1 (en) * 2011-12-21 2013-06-27 Intel Corporation Interleaved coil and ferrite configuration to facilitate near field coupling
WO2013115019A1 (ja) 2012-01-30 2013-08-08 株式会社村田製作所 無線icデバイス
WO2013115017A1 (ja) * 2012-02-02 2013-08-08 株式会社村田製作所 アンテナ装置
JP5464307B2 (ja) 2012-02-24 2014-04-09 株式会社村田製作所 アンテナ装置および無線通信装置
US8907858B2 (en) * 2012-04-11 2014-12-09 Intel Corporation Integrated antennas for near field coupling integration
CN104487985B (zh) 2012-04-13 2020-06-26 株式会社村田制作所 Rfid标签的检查方法及检查装置
EP2669999B1 (en) * 2012-05-31 2018-11-14 Nxp B.V. Adjustable antenna
USD761736S1 (en) * 2012-08-09 2016-07-19 Sony Corporation Non-contact type data carrier
US10552722B2 (en) 2014-08-10 2020-02-04 Féinics Amatech Teoranta Smartcard with coupling frame antenna
US10824931B2 (en) 2012-08-30 2020-11-03 Féinics Amatech Teoranta Contactless smartcards with multiple coupling frames
TWI456233B (zh) * 2012-11-02 2014-10-11 Electronics Testing Ct Taiwan 近場電磁探棒
US11354558B2 (en) 2013-01-18 2022-06-07 Amatech Group Limited Contactless smartcards with coupling frames
US10599972B2 (en) 2013-01-18 2020-03-24 Féinics Amatech Teoranta Smartcard constructions and methods
US11551051B2 (en) 2013-01-18 2023-01-10 Amatech Group Limiied Coupling frames for smartcards with various module opening shapes
US11354560B2 (en) 2013-01-18 2022-06-07 Amatech Group Limited Smartcards with multiple coupling frames
USD737255S1 (en) * 2013-01-28 2015-08-25 Sony Corporation Non-contact type data reader
JP5741782B1 (ja) * 2013-08-13 2015-07-01 株式会社村田製作所 アンテナ装置、カード型デバイスおよび電子機器
JP5913773B2 (ja) 2013-11-21 2016-04-27 レノボ・シンガポール・プライベート・リミテッド 近距離無線通信に使用するアンテナおよび携帯式電子機器
US9461500B2 (en) 2013-11-21 2016-10-04 Htc Corporation Wireless charging receiving device and wireless charging system using the same
US10505257B2 (en) * 2014-01-17 2019-12-10 Dexerials Corporation Antenna device and electronic apparatus
JP6287271B2 (ja) * 2014-01-31 2018-03-07 株式会社村田製作所 3軸アンテナ
KR101762778B1 (ko) 2014-03-04 2017-07-28 엘지이노텍 주식회사 무선 충전 및 통신 기판 그리고 무선 충전 및 통신 장치
USD747684S1 (en) * 2014-05-16 2016-01-19 Samsung Electronics Co., Ltd. Battery cover for electronic device
KR20160129336A (ko) * 2015-04-30 2016-11-09 엘지전자 주식회사 이동 단말기
KR101926594B1 (ko) * 2015-08-20 2018-12-10 주식회사 아모텍 무선충전형 안테나유닛 및 이를 포함하는 무선전력 충전모듈
CN105574455B (zh) * 2015-11-09 2018-01-30 北京中电华大电子设计有限责任公司 一种用于磁场耦合通讯的调制电路
US10535996B2 (en) * 2016-04-25 2020-01-14 Lutron Technology Company Llc Controllable electrical outlet having a resonant loop antenna
US10061947B2 (en) * 2016-06-21 2018-08-28 Christopher J. Duca Wireless user authentication system
US9922761B2 (en) * 2016-07-29 2018-03-20 Samsung Electro-Mechanics Co., Ltd. Magnetic material and device for transmitting data using the same
USD850424S1 (en) 2016-12-14 2019-06-04 AQ Corporation Flexible PCB dual antenna module for use in smartphone
US10003120B2 (en) 2016-09-02 2018-06-19 AQ Corporation Smartphone antenna in flexible PCB
US10074891B2 (en) 2016-09-02 2018-09-11 AQ Corporation Smartphone antenna in flexible PCB
US10547112B2 (en) 2016-09-02 2020-01-28 AQ Corporation Smartphone antenna in flexible PCB
WO2018220059A1 (en) 2017-05-30 2018-12-06 Firmenich Sa Malodour counteracting and fragrance delivery system
KR101883109B1 (ko) * 2017-07-20 2018-07-27 삼성전기주식회사 안테나 모듈
KR102056262B1 (ko) * 2018-11-27 2019-12-16 주식회사 아모텍 무선충전형 안테나유닛 및 이를 포함하는 무선전력 충전모듈
JP7283127B2 (ja) * 2019-02-27 2023-05-30 Tdk株式会社 コイル部品
US11303011B2 (en) 2019-11-27 2022-04-12 AQ Corporation Smartphone antenna in flexible PCB

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816745A (ja) * 1994-06-24 1996-01-19 Seiko Instr Inc Icカードシステム
JPH09284038A (ja) * 1996-04-17 1997-10-31 Nhk Spring Co Ltd 非接触データキャリアのアンテナ装置
JPH10107531A (ja) * 1996-09-30 1998-04-24 Toshiba Corp アンテナ装置及び情報処理装置並びに無線通信システム
JPH10157353A (ja) * 1996-11-27 1998-06-16 Toshiba Corp 無線カードおよびその製造方法
JP2000068891A (ja) * 1998-08-24 2000-03-03 Toshiba Corp 情報処理装置
JP2000162314A (ja) * 1998-11-26 2000-06-16 Mitsubishi Heavy Ind Ltd 移動体検出装置
JP2002298095A (ja) * 2001-04-02 2002-10-11 Nec Tokin Corp 非接触型icカードリーダ/ライタ及び非接触型icカードリーダ
JP2002324215A (ja) * 2001-02-03 2002-11-08 Samsung Electronics Co Ltd リーダーコイルアンテナ及びこれを用いた非接触カード認証システム
JP2003099733A (ja) * 2001-09-25 2003-04-04 Nec Tokin Corp Icカードリーダライタのアンテナユニット

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4117878C2 (de) * 1990-05-31 1996-09-26 Toshiba Kawasaki Kk Planares magnetisches Element
JP2713529B2 (ja) * 1992-08-21 1998-02-16 三菱電機株式会社 信号受信用コイルおよびこれを使用した非接触icカード
US5434396A (en) * 1992-11-10 1995-07-18 Xicor Inc. Wireless powering and communication system for communicating data between a host system and a stand-alone device
FR2706649B1 (fr) * 1993-06-14 1998-05-07 Hitachi Maxell Système de transfert de données comportant un connecteur à couplage électromagnétique et connecteur à couplage électromagnétique de ce système.
JPH0844833A (ja) * 1994-08-03 1996-02-16 Mitsubishi Denki Semiconductor Software Kk 非接触icカード用リーダライタ及び非接触icカード用リーダライタシステム
JP3519491B2 (ja) * 1995-03-31 2004-04-12 株式会社東海理化電機製作所 Icカード
JP3337865B2 (ja) * 1995-04-22 2002-10-28 ソニーケミカル株式会社 合成ループアンテナ
JPH09139698A (ja) 1995-11-15 1997-05-27 Matsushita Electric Works Ltd 移動体識別装置のデータキャリア
DE19542900A1 (de) 1995-11-17 1997-05-22 Cubit Electronics Gmbh Kontaktloser Datenträger
JPH10261055A (ja) * 1997-03-21 1998-09-29 Toshiba Corp 無線式携帯端末装置
DE69838364T2 (de) * 1997-06-20 2008-05-29 Hitachi Kokusai Electric Inc. Schreib-/Lesevorrichtung, Stromversorgungssystem und Kommunikationssystem
JP3418322B2 (ja) * 1997-08-28 2003-06-23 日本電信電話株式会社 使用状態表示機能付きicカードおよびicカードシステム
CA2246305A1 (en) * 1997-09-03 1999-03-03 Unitika Ltd. Portable terminal and method for the identification of articles
US6129277A (en) * 1998-08-03 2000-10-10 Privicon, Inc. Card reader for transmission of data by sound
JP2001028510A (ja) * 1999-07-13 2001-01-30 Yoshikawa Rf System Kk データキャリア用アンテナ及びそれを用いたデータキャリア
JP2002074300A (ja) * 2000-08-31 2002-03-15 Shinko Electric Ind Co Ltd 非接触型icカ−ド及びその製造方法
US6975834B1 (en) * 2000-10-03 2005-12-13 Mineral Lassen Llc Multi-band wireless communication device and method
JP4556081B2 (ja) * 2000-10-13 2010-10-06 ソニー株式会社 カード処理装置、およびカード取引端末装置
JP2003036421A (ja) * 2001-07-23 2003-02-07 Shinko Electric Ind Co Ltd 非接触型icカードおよびこれに用いる平面コイル
WO2003056499A2 (en) * 2001-12-24 2003-07-10 Digimarc Id Systems Llc Pet based multi-multi-layer smart cards
US20040104268A1 (en) * 2002-07-30 2004-06-03 Bailey Kenneth Stephen Plug in credit card reader module for wireless cellular phone verifications
JP4273734B2 (ja) * 2002-09-25 2009-06-03 ソニー株式会社 アンテナ装置
EP1570418B1 (en) * 2002-12-11 2010-08-04 American Express Travel Related Services Company Inc. Foldable transaction card systems
US6992630B2 (en) * 2003-10-28 2006-01-31 Harris Corporation Annular ring antenna

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816745A (ja) * 1994-06-24 1996-01-19 Seiko Instr Inc Icカードシステム
JPH09284038A (ja) * 1996-04-17 1997-10-31 Nhk Spring Co Ltd 非接触データキャリアのアンテナ装置
JPH10107531A (ja) * 1996-09-30 1998-04-24 Toshiba Corp アンテナ装置及び情報処理装置並びに無線通信システム
JPH10157353A (ja) * 1996-11-27 1998-06-16 Toshiba Corp 無線カードおよびその製造方法
JP2000068891A (ja) * 1998-08-24 2000-03-03 Toshiba Corp 情報処理装置
JP2000162314A (ja) * 1998-11-26 2000-06-16 Mitsubishi Heavy Ind Ltd 移動体検出装置
JP2002324215A (ja) * 2001-02-03 2002-11-08 Samsung Electronics Co Ltd リーダーコイルアンテナ及びこれを用いた非接触カード認証システム
JP2002298095A (ja) * 2001-04-02 2002-10-11 Nec Tokin Corp 非接触型icカードリーダ/ライタ及び非接触型icカードリーダ
JP2003099733A (ja) * 2001-09-25 2003-04-04 Nec Tokin Corp Icカードリーダライタのアンテナユニット

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8638268B2 (en) 2010-09-30 2014-01-28 Murata Manufacturing Co., Ltd. Coil antenna and antenna structure
WO2015170612A1 (ja) * 2014-05-09 2015-11-12 デクセリアルズ株式会社 アンテナ装置、及び電子機器

Also Published As

Publication number Publication date
EP1477927B1 (en) 2011-04-20
JP3975918B2 (ja) 2007-09-12
EP1477927A1 (en) 2004-11-17
EP1477927A4 (en) 2009-04-22
DE60336799D1 (de) 2011-06-01
US7183987B2 (en) 2007-02-27
CN1610923A (zh) 2005-04-27
US20060028384A1 (en) 2006-02-09
US20050001031A1 (en) 2005-01-06
JP2004166176A (ja) 2004-06-10
CN100383816C (zh) 2008-04-23
US7000837B2 (en) 2006-02-21

Similar Documents

Publication Publication Date Title
WO2004029868A1 (ja) アンテナ装置及びアンテナ装置を用いた通信装置
JP4232474B2 (ja) 通信機能付き電子機器
US7198198B2 (en) Antenna device and communication device using antenna device
JP4414942B2 (ja) アンテナ装置
CN101243581B (zh) 天线装置
JP4264534B2 (ja) データ通信装置、非接触データ送受信システム、及びアンテナ装置
JP2007233508A (ja) Icタグ用補助シート及び無線icタグシート
JP2007074139A (ja) 通信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 20038016346

Country of ref document: CN

Ref document number: 10497111

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003798378

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003798378

Country of ref document: EP