WO2004033535A1 - ポリアリーレンスルフィド系樹脂の製造方法 - Google Patents

ポリアリーレンスルフィド系樹脂の製造方法 Download PDF

Info

Publication number
WO2004033535A1
WO2004033535A1 PCT/JP2003/012667 JP0312667W WO2004033535A1 WO 2004033535 A1 WO2004033535 A1 WO 2004033535A1 JP 0312667 W JP0312667 W JP 0312667W WO 2004033535 A1 WO2004033535 A1 WO 2004033535A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
washing
polyarylene sulfide
based resin
water
Prior art date
Application number
PCT/JP2003/012667
Other languages
English (en)
French (fr)
Inventor
Minoru Senga
Koichi Suga
Tomio Ohno
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to US10/530,027 priority Critical patent/US7317072B2/en
Priority to EP03748681A priority patent/EP1550685A4/en
Publication of WO2004033535A1 publication Critical patent/WO2004033535A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F228/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
    • C08F228/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a bond to sulfur
    • C08F228/04Thioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • C08G75/0213Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0254Preparatory processes using metal sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • C08G75/0281Recovery or purification

Definitions

  • the present invention relates to a method for producing a polyarylene sulfide-based resin, and more particularly, to recovering a part of the resin dissolved in the solvent when washing the polyarylene sulfide-based resin produced by polymerization with a solvent.
  • the present invention relates to a method for producing a polyarylene sulfide-based resin that improves the resin yield by utilizing the resin.
  • Polyarylene sulfide-based resins (hereafter referred to as “PAS-based resins”), especially polyphenylene sulfide (hereinafter sometimes referred to as “PPS-based resins”) resins have mechanical strength and heat resistance. It is known as an engineering plastic with excellent electrical properties, high flame resistance, excellent resistance to solvents, good electrical properties, and high rigidity, and is widely used as a material for electronic and electrical equipment parts. Used.
  • a dihalogenated aromatic compound such as p-dichlorobenzene in a non-protonic organic solvent such as N-methyl-2-pyrrolidone (hereinafter sometimes referred to as “NMP”) has conventionally been used.
  • NMP N-methyl-2-pyrrolidone
  • a method of reacting a sodium salt such as sodium sulfide with sodium has been used.
  • sodium halide is produced as a by-product, and since this sodium halide is insoluble in solvents such as NMP, it is taken into the resin.
  • the PAS resin is washed with a large amount of water.
  • sodium halide in the PAS-based resin could not be sufficiently removed.
  • Lithium halide by-produced during polymerization is soluble in many non-protonic organic solvents (solvents for polymerization) such as NMP, so it is possible to relatively easily reduce the lithium concentration in the resin. It becomes.
  • solvents for polymerization solvents for polymerization
  • a softened or molten polyylene sulfide resin is mixed with a solvent such as a mixed solvent of organic amide water.
  • a washing method has been proposed (see, for example, Japanese Patent Application Laid-Open Nos. 61-22023 and 7-270720).
  • these cleaning methods can effectively remove metal halides, but a part of the polyarylene sulfide resin dissolves in the liquid phase together with the metal halides. There was a problem that the yield of the obtained polyarylene sulfide resin was reduced.
  • the present inventors have proposed a method of using a solvent saturated with a PAS-based resin as a washing solution (see Japanese Patent Application Laid-Open No. 2000-27314). .
  • this method is applied to an actual manufacturing process, there are problems in that it is difficult to control the flow rate of the cleaning liquid in the cleaning process and that the piping of the manufacturing apparatus becomes complicated.
  • the mouth of the PAS-based resin is reduced, there is a problem that a part of the PAS-based resin dissolves in the washing solution and is lost together with the washing solution, so that a satisfactory yield cannot always be obtained. Disclosure of the invention
  • the present invention has been made in view of the above problems, and has been made in consideration of the problems caused by It is an object of the present invention to provide a method for producing a polyarylene sulfide-based resin that hardly causes loss of the resin when washing the resin with a solvent.
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that, by cooling the washing liquid that has washed the polyarylene sulfide-based resin and adding water to the z or washing liquid, the dissolved polymer is dissolved.
  • the present inventors have found that an arylene sulfide resin can be separated and recovered, and have completed the present invention based on such findings.
  • the present invention provides the following.
  • the polyarylene sulfide-based resin recovered by the method (2) is added to another polyarylene sulfide-based resin to be newly washed, and the non-protonic organic solvent is softened or melted.
  • FIG. 1 is a flow chart showing a continuous process of polymerization and washing to which the present invention is applied.
  • PAS-based resin polyarylene sulfide-based resin
  • PAS-based resin there is no particular limitation on the PAS-based resin to which the production method of the present invention can be applied.
  • PAS resins are generally known to have a substantially linear molecular structure without a branched or cross-linked structure and a structure having a branched or cross-linked structure depending on the production method. It is also valid for types.
  • the path Raa Lee sulfide unit 7 0 mole 0/0 or more repeating units more preferably include homopolymers or copolymers containing 8 0 mode or Le%.
  • copolymerized structural units examples include metaphenylene sulfide units, orthophenylene sulfide units,, p'-diphenylene ketones / refide units,, p 'diphenylene phenol / reduct units,, p '— Biphenylene sulfide units,, p' diphenylene ether sulfide units,, p 'diphenylene methylene sulfide units, p, p' diphenylene methyl sulfide units, naphthyl sulfide units, etc. Is mentioned.
  • the polyarylene sulfide of the present invention includes, in addition to the above-mentioned substantially linear polymer, a branched or cross-linked polyarylene polymer obtained by mixing and using a small amount of a monomer having three or more functional groups as a part of the monomer. Luffy, A blended polymer obtained by blending this with the linear polymer can also be applied to the production method of the present invention.
  • a PAS resin to which the production method of the present invention can be applied can be obtained by reacting a dihalogenated aromatic compound with a metal sulfide in a polar organic solvent.
  • dihalogenated aromatic compounds used in the production of this PAS-based resin include dihalogenbenzenes such as m-dihachibenzene and p-dihachibenzene; 2,3-dihalotoluene, 2,5-dihalobenzene.
  • a metal sulfide represented by an alkali metal compound such as sodium sulfide, lithium sulfide, and potassium sulfide can be mainly used. These may be used alone or in combination of two or more. Also, alkaline earth metal sulfides and other sulfur sources can be used in combination.
  • the nonprotonic organic solvent used in the present invention generally includes nonprotonic polar organic compounds (for example, amide compounds, ratatum compounds, urea compounds, organic compounds, cyclic organic phosphorus compounds, etc.). , As a sole solvent Alternatively, it can be suitably used as a mixed solvent.
  • nonprotonic polar organic compounds for example, amide compounds, ratatum compounds, urea compounds, organic compounds, cyclic organic phosphorus compounds, etc.
  • the amide compounds include, for example, N, N-dimethylformamide, N, N-getylformamide, N, N-dimethylacetamide, Examples include N, N-getyl acetate amide, N, N-dipropyl acetate amide, N, N-dimethylbenzoate amide and the like.
  • ratatam compounds include, for example, force prolatatam, N-methylcaprolatatam, N-ethylcaprolatatam, N-isopropyl force prolactam, N-isobutylcaprolatatam, N-normal propyl force prolatatam, Nonolemanolebutylcaprolatatam, N-alkylprolatatams such as N-cyclohexynoleprolactam, N-methyl-2-piridone (NMP), N-ethyl-2-pyrrolidone, N-isopropylone 2-pyrrolidone, N-isobutynole-2-pyrrolidone, N-n-propido / 2-pyrrolidone, N-nonoremanolebutyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone Don, N-methyl-1-methyl-2-pyrrolidone, N-ethyl-3-methyl-2
  • urea compound examples include tetramethyl urea, N, N'-dimethylethylene urea, N, N, -dimethyl propylene urea and the like.
  • examples of the organic compound include dimethyl sulfoxide, getinolenorethoxide, diphenorelesnorefone, 1-methynole-1-oxosulfolane, 1-ethynole 1-oxosnorreholane, and 1-phenyl One in one
  • the cyclic organophosphorus compound for example, 1-methyl-11-oxophosphorane, 1-normalpropyl-11-oxophosphorane, 1-phenyl-2-oxophosphorane, etc. be able to.
  • non-protonic polar organic compounds may be used alone or in combination of two or more, and further mixed with other solvent components which do not interfere with the object of the present invention. It can be used as an organic solvent.
  • organic solvent preferred are N-alkylcaprolatatam and N-alkylpyrrolidone, and particularly preferred is N-methinolay 2-pyrrolidone.
  • the non-protonic organic solvent in order to control the solubility of the PAS-based resin, it is necessary to add a certain ratio of water together with the non-protonic organic solvent as a washing solvent.
  • the water used by mixing with the non-protonic organic solvent is not particularly limited, but distilled water is preferred.
  • the mixing ratio of the non-protonic organic solvent to water is preferably 5545 to 95Z5 in terms of mass ratio (nonprotonic organic solvent / water), and particularly preferably 6553 to 90/10.
  • 70Z30 to 85Z15 is more preferable.
  • the mixing ratio of water exceeds 45% by mass, the PAS-based resin is unlikely to be softened or melted, and the PAS-based resin may be solidified. If the mixing ratio of water is less than 5% by mass, the PAS-based resin is completely dissolved to form a uniform solution, so that washing cannot be performed.
  • the concentration of the PAS-based resin at the time of washing is preferably 10 to 400 g, particularly preferably 50 to 300 g, for 1 liter of the non-protonic organic solvent and the PAS-based resin to be washed. And more preferably 100 to 250 g.
  • the amount of PAS resin during washing exceeds 400 g, the washing efficiency tends to decrease If the weight is less than 10 g, the economy is inferior.
  • the washing temperature is preferably 220 to 300 ° C, particularly preferably 230 to 270 ° C, and more preferably 240 to 260 ° C. If the washing temperature exceeds 300 ° C, the PAS resin will decompose, and if it is lower than 220 ° C, the PAS resin will not soften or melt.
  • the washing liquid is cooled, and / or water is added to precipitate and recover the dissolved PAS resin from the washing liquid.
  • the cooling is not particularly limited as long as the temperature at which the dissolved PAS-based resin forms a precipitate, but is generally preferably 200 ° C or lower, more preferably 150 ° C or lower, It is particularly preferable that the temperature be 100 ° C. or lower.
  • the amount of water added may be such that the dissolved PAS-based resin forms a precipitate.
  • the composition after adding water is N-methyl-2-pyrrolidone (NMP ) Is preferably added in an amount of more than 50% by mass, more preferably in an amount of more than 80% by mass.
  • NMP N-methyl-2-pyrrolidone
  • the washing solution in which the PAS-based resin is dissolved is concentrated by performing an operation such as distillation in advance.
  • a method of separating and recovering the PAS-based resin precipitated in this way means conventionally used for solid-liquid separation such as centrifugal separation, filtration, and stationary separation can be used.
  • the separated PAS-based resin may be added to the PAS-based resin to be subjected to the next washing in a wet state, or may be washed and dried to be recovered as a powdered solid PAS resin, which is then used as the PAS-based product. It can also be mixed with a system resin.
  • a process as shown in FIG. 1 in which polymerization and washing of a PAS-based resin are repeated a plurality of times can be employed.
  • a mixed solvent of non-protonic organic solvent and water (1st washing system), and a part of the PAS resin dissolved in this washing solution is precipitated and recovered (Polymer 2), and can be a continuous process to be directly recycled to the melt washing system (Case 1).
  • a process may be used in which the polymer 2 is purified, dried, and then mixed with the polymer 1 obtained through a washing treatment (Case 2).
  • an aqueous ammonium chloride solution (2.33 g of ammonium chloride, 28.7 g of water) and 28.7 g of N-methyl-1-pyrrolidone (NMP) are added, and the mixture is stirred at 260 ° C for 10 minutes. Then, after stirring was stopped and 10 minutes had elapsed, the liquid phase was extracted from the inner pipe. Next, a mixed solvent of NMP and water (NMP: 236 ml, water: 33.6 g) was added to the autoclave, and the autoclave was heated again. After stirring for 10 minutes, the stirring was stopped, and after 10 minutes had elapsed, the liquid phase was extracted from the inner pipe. Similarly, this washing operation was repeated four times.
  • the total amount of the cleaning liquid extracted from the inner pipe in four cleaning operations was collected, and as a result, the total was 138 g.
  • This washing solution was cooled to 50 ° C. to precipitate polyphenylene sulfide resin.
  • the precipitate was then centrifuged in a centrifuge to obtain 57.5 g of a wet polyphenylene sulfide resin. Since the liquid content was 80%, the recovered polyphenylene sulfide resin had a dry mass of 1.176 g.
  • the polymerization of benzene at the mouth of the mouth and the subsequent washing operation were performed in the same manner as in the comparative example, and a total of 138 g of the washing liquid extracted from the inner pipe was collected by four washing operations.
  • the recovered washing liquid was subjected to distillation under reduced pressure to remove 920 g of a fraction mainly composed of water and NMP. Cool the distillation residue to below 100 ° C, add 180 g of water and add polyphenylene sulfite. The resin was precipitated. The amount of water added at this time was equivalent to 82% with respect to NMP. Then, the precipitate was centrifuged in a centrifuge to obtain 96.5 g of a wet polyphenylene sulfide resin. Since the liquid content was 80 ° / 0 , the recovered polyphenylene sulfide resin had a dry mass of 19.3 g.
  • the polymerization reaction of benzene with a paradiclochloride and a washing operation were carried out in the same manner as in Example 2, and 1,380 g of the collected washing solution was subjected to distillation under reduced pressure to remove 920 g of a fraction mainly composed of water and NMP.
  • the distillation residue was cooled to below 100 ° C. and 1840 g of water was added to precipitate the polyphenylene sulfide resin.
  • the amount of water added at this time was equivalent to 82 ° / 0 with respect to NMP.
  • the precipitate was centrifuged in a centrifuge to obtain 96.5 g of a wet polyphenylene sulfide resin.
  • the recovered polyphenylene sulfide resin had a dry mass of 19.3 g. This was washed twice with 1840 g of hot water at 80 ° C. and then dried at 120 ° C. to obtain 17.8 g of a polyphenylene sulfide resin. Residues in this polyphenylene sulfide resin The amount of distillate was less than 10 ppm.

Abstract

本発明は、ポリアリーレンスルフィド系樹脂を軟化ないし溶融状態で、非プロトン性有機溶媒と水との混合溶媒で洗浄するに際し、洗浄液中に溶解した一部のポリアリーレンスルフィド系樹脂を回収し、具体的には、洗浄後の洗浄液を冷却し、及び/又は洗浄液に水を加えて、洗浄液中に溶解しているポリアリーレンスルフィド系樹脂を沈殿・分離させて回収し、再利用することを特徴とするポリアリーレンスルフィド系樹脂の製造方法である。 本発明によれば、重合により生成したポリアリーレンスルフィド系樹脂を溶媒で洗浄するに際し、該樹脂をほとんど損失させることのないポリアリーレンスルフィド系樹脂の製造方法を提供することができる。

Description

明 細 書 ポリアリーレンスルブイ ド系樹脂の製造方法 技術分野
本発明はポリアリーレンスルフィ ド系樹脂の製造方法に関し、 さらに詳 しくは重合により生成したポリアリーレンスルフィ ド系樹脂を溶媒で洗浄 するに際し、溶媒に溶解された一部の樹脂を回収'再利用することにより、 樹脂収量を向上させるポリアリーレンスルフィ ド系樹脂の製造方法に関す るものである。 背景技術
ポリアリーレンスルフィ ド系樹脂(以下、 「P A S系樹脂」 ということ力 S ある)、 中でも特にポリフエ二レンスルフイ ド (以下、 「P P S系樹脂」 と いうことがある) 樹脂は、 機械的強度, 耐熱性, 難燃性, 耐溶剤性等に優 れると共に、 良好な電気的特性や高い剛性を有するエンジニアリンダプラ スチックとして知られており、 電子 ·電気機器部品の素材等の各種材料と して広く用いられている。
これらの樹脂の製造には、 従来、 N—メチルー 2—ピロリ ドン (以下、 「N M P」 ということがある) 等の非プロ トン性有機溶媒中で p—ジクロ 口ベンゼン等のジハロゲン化芳香族化合物と硫化ナトリゥム等のナトリウ ム塩とを反応させるという方法が一般に用いられてきた。 しかしながら、 この方法においてはハロゲン化ナトリゥムが副生し、 このハロゲン化ナト リゥムは N M P等の溶媒に不溶であるため樹脂中に取り込まれてしまい、 重合後、 多量の水で P A S樹脂を洗浄しても、 P A S系樹脂中のハロゲン 化ナトリゥムを十分に取り除くことはできなかった。 そこで、 ナトリゥム塩に代えてリチウム塩を用いて重合を行うことが注 目されてきた。 重合中に副生するハロゲン化リチウムは NM P等の多くの 非プロ トン性有機溶媒 (重合用溶媒) に可溶であるので、 樹脂中のリチウ ム濃度を比較的容易に低減することが可能となる。 しかしながら、 副生し たハロゲン化リチウム等が不純物として、 P A S系樹脂中に残存し、 重合 後、 多量の水で洗浄しても十分に取り除くことはできなかった。
ポリァリーレンスルフィ ド系樹脂の製造において副生するアル力リ金属 ハロゲン化物を効果的に取り除く方法として、 軟化ないし溶融状態のポリ ァリーレンスルフィ ド樹脂を有機アミ ドー水混合溶媒等の溶媒で洗浄する 方法が提案されている (例えば、 特開昭 6 1— 2 2 8 0 2 3号公報、 特開 平 7— 2 0 7 0 2 7号公報参照)。 しかしながら、 これらの洗浄方法では、 アル力リ金属ハロゲン化物を効果的に除去することはできるが、 ポリアリ 一レンスルフィ ド樹脂の一部がアル力リ金属ハロゲン化物と一緒に液相に 溶解するため、 得られるポリアリーレンスルフィ ド樹脂の収率が低下する という問題があった。
この問題を解決することを目的として、 本発明者らは P A S系樹脂が飽 和した溶媒を洗浄液として使用する方法を提案した (特開 2 0 0 0— 2 7 3 1 7 4号公報参照)。 しかしながら、 この方法を実際の製造プロセスに適 用した場合には、 洗浄工程の洗浄液の流量の制御が難しい点や製造装置の 配管などが複雑になるという問題があり、 また、 この方法によれば P A S 系樹脂の口スは少なくなるものの、 P A S系樹脂の一部が洗浄液に溶解し て洗浄液とともに失われ必ずしも満足すべき収量が得られないという問題 があった。 発明の開示
本発明は上記の問題に鑑みなされたものであり、 重合により生成したポ リアリーレンスルフィ ド系樹脂を溶媒で洗浄するに際し、 該樹脂をほとん ど損失させることのないポリアリーレンスルフィ ド系樹脂の製造方法を提 供することを目的とするものである。
本発明者らは、 上記課題を解決するために鋭意研究を重ねた結果、 ポリ ァリーレンスルフイ ド系樹脂を洗浄した洗浄液を冷却すること及び z又は 洗浄液に水を加えることによって、 溶解したポリアリーレンスルフィ ド系 樹脂を分離回収することができることを見出し、 かかる知見に基づいて本 発明を完成した。
すなわち、 本発明は、 以下の内容を要旨するものである。
( 1 ) ポリアリーレンスルフイ ド系樹脂を軟化ないし溶融状態で、 非プロ トン性有機溶媒と水との混合溶媒で洗浄するに際し、 洗浄液中に溶解した 一部のポリアリーレンスルフィ ド系樹脂を回収し、 再利用することを特徴 とするポリアリーレンスルフィ ド系榭脂の製造方法。
( 2 ) 上記 (1 ) の方法において、 洗浄後の洗浄液を冷却し及び Z又は洗 浄液に水を加えて、 洗浄液中に溶解しているポリアリーレンスルフィ ド系 樹脂を沈殿■分離させて回収することを特徴とする、 ポリアリーレンスル フィ ド系樹脂の製造方法。
( 3 ) 上記 (2 ) の方法により回収したポリアリーレンスルフイ ド系樹脂 を、 別の新たに洗浄に供するポリアリーレンスルフィ ド系樹脂に加えて、 軟化ないし溶融状態で非プロ トン性有機溶媒と水との混合溶媒で洗浄する、 ポリアリーレンスルフィ ド系樹脂の製造方法。
( 4 ) 上記 (2 ) の方法により回収したポリアリーレンスルフイ ド系樹脂 を、粉碎'乾燥して粉末状として再利用に供する、ポリアリーレンスルフィ ド系樹脂の製造方法。 図面の簡単な説明 第 1図は、 本発明を応用した、 重合と洗浄との連続プロセスを示すフロ 一図である。 発明を実施するための最良の形態
本発明の製造方法においては、 ポリアリーレンスルフイ ド系樹脂 (P A S系樹脂) を軟化ないし溶融状態で洗浄することが必要であり、 固化状態 の P A S系樹脂の洗浄を行うと、 アル力リ金属ハロゲン化物等の不純物の 除去が充分に行われないという不都合がある。
本発明の製造方法を適用し得る P A S系樹脂に特に制限はなく、 例えば ージクロロベンゼンと、 硫黄源とを有機極性溶媒中でそれ自体公知の方 法により重縮合反応させることにより得られるポリアリーレンスルフィ ド 樹脂などが挙げられる。 P A S系樹脂は一般にその製造法により実質上線 状で分岐、 架橋構造を有しない分子構造のものと、 分岐や架橋構造を有す る構造のものが知られているが本発明においてはそのいずれのタイプのも のについても有効である。 P A S系樹脂としては、 繰り返し単位としてパ ラァリーレンスルフィ ド単位を 7 0モル0 /0以上、 さらに好ましくは 8 0モ ル%以上含有するホモポリマーまたはコポリマーが挙げられる。 共重合構 成単位としては、 例えばメタフエ二レンスルフィ ド単位、 オルソフヱ-レ ンスノレフイ ド単位、 , p ' —ジフエ二レンケトンス/レフイ ド単位、 , p ' ージフエエレンスノレホンス /レフイ ド単位、 , p ' —ビフエ二レンス ノレフイ ド単位、 , p ' ージフエ二レンエーテルスルフイ ド単位、 , p ' ージフエ二レンメチレンスノレフィ ド単位、 p, p ' ージフエ二レンクメニ ルスルフィ ド単位、 ナフチルスルフィ ド単位などが挙げられる。 また、 本 発明のポリアリーレンスルフィ ドとしては、 前記の実質上線状ポリマーの 他に、 モノマーの一部分として 3個以上の官能基を有するモノマーを少量 混合使用して重合した分岐または架橋ポリアリーレンスルフィ ドゃ、また、 これを前記の線状ポリマーにブレンドした配合ポリマーも本発明製造方法 の適用対象とすることができる。
本発明の製造方法を適用し得る P A S系樹脂は、 極性有機溶媒中でジハ ロゲン化芳香族化合物と金属硫化物とを反応させることによって得ること ができる。
この P A S系樹脂の製造に用いられるジハロゲン化芳香族化合物として は、 列えば m—ジハ口べンゼン, p—ジハ口ベンゼン等のジハロゲンベン ゼン類; 2, 3—ジハロ トルエン, 2, 5—ジハロ ト/レエン, 2, 6—ジ ノヽロ トルエン, 3, 4ージノヽロ トルエン, 2, 5—ジノヽロキシレン, 1— ェチル一 2, 5—ジハロベンゼン, 1, 2, 4 , 5—テトラメチルー 3, 6—ジノヽロベンゼン, 1ーノノレマノレへキシノレ一 2, 5 _ジノヽ口ベンゼン, 1—シク口へキシ /レー 2 , 5一ジノヽ口ベンゼンなどのジハロゲンァノレキノレ 置換ベンゼン類又はジハロゲンシクロアルキル置換ベンゼン類; 1—フエ 二ノレ一 2, 5一ジハ口ベンゼン, 1 —ベンジスレー 2 , 5一ジハ口ベンゼン, 1 - -トノレイスレー 2, 5一ジハロベンゼン等のジハロゲンァリ一ノレ置換 ベンゼン類; 4, 4, 一ジハロビフエ-ル等のジハロゲンビフエ二ル類; 1, 4—ジハロナフタレン, 1, 6—ジハロナフタレン, 2, 6一ジハロ ナフタレン等のジハロゲンナフタレン類などが挙げられる。
また、 この P A S系樹脂の製造に用いられる金属硫化物としては、 硫化 ナトリウム, 硫化リチウム、 硫化カリウム等のアルカリ金属化合物に代表 される金属硫化物を主として用いることができる。 これらは一種単独で、 または二種以上を混合して用いてもよい。 また、 アルカリ土類金属硫化物 や他の硫黄源を併用して用いることもできる。
本発明に用いられる非プロ トン性有機溶媒としては、 一般に、 非プロ ト ン性の極性有機化合物 (たとえば、 アミ ド化合物, ラタタム化合物, 尿素 化合物, 有機ィォゥ化合物, 環式有機リン化合物等) を、 単独溶媒として 又は混合溶媒として好適に使用することができる。
これらの非プロ トン性の極性有機化合物のうち、 上記アミ ド化合物とし ては、 たとえば、 N, N—ジメチルホルムアミ ド、 N, N—ジェチルホル ムアミ ド、 N, N—ジメチルァセトアミ ド、 N, N—ジェチルァセ トアミ ド、 N , N—ジプロピルァセ トアミ ド、 N, N—ジメチル安息香酸アミ ド などを挙げることができる。
また、 上記ラタタム化合物としては、 たとえば、 力プロラタタム、 N— メチルカプロラタタム、 N—ェチルカプロラタタム、 N—イソプロピル力 プロラクタム、 N—イソブチルカプロラタタム、 N—ノルマルプロピル力 プロラタタム、 N—ノノレマノレブチルカプロラタタム、 N—シクロへキシノレ 力プロラクタム等の N—アルキル力プロラタタム類、 N—メチルー 2—ピ 口リ ドン (N M P )、 N—ェチルー 2—ピロ リ ドン、 N—ィソプロピル一 2 —ピロ リ ドン、 N—イソブチノレ一 2 _ピロ リ ドン、 N—ノルマルプロピ /レ — 2—ピロ リ ドン、 N—ノノレマノレブチルー 2—ピロ リ ドン、 N—シクロへ キシルー 2—ピロ リ ドン、 N—メチル一 3ーメチルー 2—ピロ リ ドン、 N ーェチルー 3—メチルー 2—ピロリ ドン、 N—メチル一 3, 4, 5—トリ メチルー 2—ピロ リ ドン、 N—メチル一 2—ピぺリ ドン、 N—ェチルー 2 —ピペリ ドン、 N—イソプロピル一 2—ピペリ ドン、 N—メチルー 6—メ チルー 2—ピペリ ドン、 N—メチルー 3—ェチノレー 2—ピペリ ドンなどを 挙げることができる。
また、 前記尿素化合物としては、 たとえば、 テトラメチル尿素、 N, N ' ージメチルエチレン尿素、 N, N, ージメチルプロピレン尿素などを挙げ ることができる。
さらに、 前記有機ィォゥ化合物としては、 たとえば、 ジメチルスルホキ シド、 ジェチノレスノレホキシド、 ジフエエノレスノレホン、 1 ーメチノレ一 1 —ォ キソスルホラン、 1 ーェチノレー 1ーォキソスノレホラン、 1一フエ二ノレ一 1 ーォキソスルホランなどを、 また、 前記環式有機リン化合物としては、 た とえば、 1—メチル一 1—ォキソホスホラン、 1一ノルマルプロピル一 1 一ォキソホスホラン、 1一フエ二ルー 1一ォキソホスホランなどを挙げる ことができる。
これら各種の非プロ トン性極性有機化合物は、 それぞれ一種単独で又は 二種以上を混合して、 さらには、 本発明の目的に支障のない他の溶媒成分 と混合して、 前記非プロ トン性有機溶媒として使用することができる。 前記の各種の非プロ トン性有機溶媒の中でも、 好ましいのは N—アルキ ルカプロラタタム及び N—アルキルピロリ ドンであり、 特に好ましいのは N—メチノレー 2—ピロリ ドンである。
本発明においては、 PAS系樹脂の溶解性を制御するために、 洗浄溶媒 として非プロ トン性有機溶媒とともに一定割合の水を添加することが必要 であり、 上記の非プロ トン性有機溶媒と水との混合溶媒を PAS系樹脂の 洗浄に用いる。 非プロ トン性有機溶媒と混合して用いる水には特に制限は ないが、 蒸留水が好ましい。 非プロ トン性有機溶媒と水との混合比は質量 比 (非プロ トン性有機溶媒/水) で 5 5 45〜95Z5とすることが好 ましく、 6 5 3 5〜90/1 0が特に好ましく、 70Z30〜85Zl 5がさらに好ましい。
水の混合比率が 4 5質量%を超えると、 PAS系樹脂が軟化ないし溶融 状態になりにく く、 PAS系樹脂が固化する可能性がある。 また、 水の混 合比率が 5質量%未満では、 PAS系樹脂が全て溶解して均一な溶液とな るため、 洗浄することができない。
洗浄時の PAS系樹脂の濃度は、 非プロ トン性有機溶媒 1 リ ットルに対 し、 洗浄される P A S系樹脂を 1 0〜40 0 gとすることが好ましく、 特 に好ましくは 50〜 300 g、さらに好ましくは 1 00〜2 5 0 gである。 洗浄時の P A S系樹脂の量が 400 gを超えると洗浄効率が低下する傾向 にあり、 また、 1 0 g未満では経済性に劣るものとなる。
洗浄温度は、 2 20〜 300°Cが好ましく、 特に 2 30〜 2 70°Cが好 ましく、 さらに 240〜26 0°Cが好ましい。 洗浄温度が 300°Cを超え ると PAS系樹脂が分解し、 2 20°C未満では PAS系樹脂が軟化ないし 溶融しない。
本発明の製造方法においては、 上記のようにして PAS系樹脂を洗浄し た後、 この洗浄液を冷却し、 及び/又は水を加えることによって、 溶解し た PAS系樹脂を洗浄液から沈殿させて回収する。 この場合、 冷却は溶解 している P A S系樹脂が沈殿を生成する温度であれば特に制限はないが、 —般的には 200°C以下が好ましく、 1 5 0°C以下が更に好ましく、 1 0 0°C以下が特に好ましい。
また、 水を添加する場合は、 水の添加量は溶解している PAS系樹脂が 沈殿を生成する量であればよいが、 水を加えた後の組成が N—メチルー 2 一ピロリ ドン (NMP) などの溶剤に対して 5 0質量%より多くなる量を 添加することが好ましく、 80質量%より多くなる量を添加することがさ らに好ましい。 また、 PAS系樹脂が溶解している洗浄液を、 予め蒸留等 の操作に付して濃縮することがより好ましい。
このようにして沈殿した PAS系樹脂を分離 '回収する方法としては、遠 心分離、 濾過、 静置分離等の従来から固液分離に用いられている手段を用 いることができる。 分離された PAS系樹脂は、 湿潤状態のままで次の洗 浄に供する PAS系樹脂に加えてもよいし、 洗浄した後乾燥して粉末状の 固体 PAS樹脂として回収し、 これを製品の PAS系樹脂に混合すること もできる。
また、 本発明の応用として、 PAS系樹脂の重合と洗浄とを複数回繰り 返す第 1図に示すようなプロセスとすることができる。 例えば、 PAS系 樹脂を重合した後、 非プロ トン性有機溶媒と水との混合溶媒 (洗浄溶媒) で洗浄し(第 1洗浄系)、この洗浄液に溶解した一部の P A S系樹脂を沈殿' 回収し(ポリマー 2)、溶融洗浄系へ直接リサイクルする連続プロセスとす ることができる (C a s e 1)。 また、 場合によっては、 ポリマー 2を精 製'乾燥した後、洗浄処理を経て得られたポリマー 1に混合するプロセスと することもできる (C a s e 2)。 実施例
次に、 本発明を実施例によりさらに詳細に説明するが、 本発明はこれら の例によってなんら限定されるものではない。 ここで、 「%」 は、特に注記 しない限り質量基準である。
比較例:
1 リツトルのォートクレーブに硫化リチウム 2 5.0 g (0. 544モル)、 p—ジク口口ベンゼン 80. 0 g (0. 544モノレ)、水酸化リチウム一水和 物 1. 1 4 g (0. 0 2 7 2モル)、 水 4.4 1 g (0. 245モノレ) 及び NM P 2 3 5ミリ リツトルを入れ、 2 6 0°Cで 3時間重合反応を行った。
反応終了後、塩化アンモユウム水溶液 (塩化アンモニゥム 2. 3 3 g, 水 28. 7 g)及び N—メチル一 2—ピロリ ドン(NMP) 28. 7 gを加え、 26 0°Cで 1 0分間攪拌し、 攪拌を停止して 1 0分経過後にインナーパイ プより液相を抜き出した。 続いて、 NMP—水混合溶媒 (NMP : 2 36 ミリ リットル、 水: 3 3. 6グラム) をォートクレーブに加え、 ォートクレ ーブを再ぴ昇温し、 26 0°Cとなった時点で 1 0分間攪拌洗浄し、 攪拌を 停止して 1 0分経過後にインナーパイプより液相を抜き出した。 同様にし て、 この洗浄操作を 4回繰り返した。 その後、 オートクレーブの蓋を開け て、 ケーキ状をした精製されたポリフエ二レンスルフイ ド樹脂を得た。 こ のポリフエ二レンスルフィ ド樹脂を粉砕し、 残留する NMPを真空乾燥に よって除去した。 得られたポリフエエレンスルフィ ド樹脂の収量は 3 8 . 3グラムであり、 理論収量 (5 8 . 8グラム) の 6 5 %であった。 また、 ポリフエ-レンス ルフィ ド樹脂中に残留リチウム量は 1 0 p p m以下であった。
実施例 1 :
上記の比較例において、 4回の洗浄操作でィンナーパイプより抜き出さ れた洗浄液を全量回収した結果、 合計で 1 3 8 0グラムであった。 この洗 浄液を 5 0 °Cまで冷却し、 ポリフエ二レンスルフィ ド榭脂を沈殿させた。 次いで、 この沈殿物を遠心分離機にかけて遠心分離し、 湿潤状態のポリフ ェェレンスルフィ ド樹脂として 5 7 . 5グラムを得た。この含液率は 8 0 % であったので、 回収したポリフエ二レンスルフイ ド榭脂は、 乾燥質量とし て 1 1 . 7 6グラムであった。
次に、 同じ条件と方法でパラジクロロベンゼンの重合反応を行い、 反応 終了後の塩化アンモユウム水溶液 (塩化アンモニゥム 2 . 3 3 g, 水 2 8 . 7 g )及び NM P 2 8 . 7 gを加える際に、先ほど回収した湿潤状態のポリ フエ二レンスルフイ ド樹脂 5 7 . 5グラムを加えた。 その後の洗浄操作は 比較例と同一の条件と方法で行い、 ケーキ状をした精製されたポリフエ二 レンスルフィ ド樹脂を得た。 得られたポリフヱニレンスルフィ ド樹脂の収 量は 4 7 . 8グラムであり、 理論収量 ( 5 8 . 8グラム) の 8 1 %であつ た。 また、 このポリフエ二レンスルフイ ド樹脂中の残留リチウム量は 1 0 p p m以下であった。
実施例 2:
比較例と同様にしてパラジク口口ベンゼンの重合とその後の洗浄操作を 行い、 4回の洗浄操作でィンナーパイプより抜き出された洗浄液の全量の 1 3 8 0グラムを回収した。 この回収した洗浄液を減圧蒸留にかけて、 水 と N M Pを主成分とする留分 9 2 0グラムを除去した。 蒸留残渣を 1 0 0 °C以下に冷却し、 水 1 8 4 0グラムを加えて、 ポリフエエレンスルフィ ド樹脂を沈殿させた。 この時の添加した水の量は、 NMPに対して 8 2% に相当する量であった。 次いで、 この沈殿物を遠心分離機にかけて遠心分 離し、 湿潤状態のポリフエ-レンスルフイ ド樹脂として 96. 5グラムを 得た。 この含液率は 80 °/0であったので、 回収したポリフエ二レンスルフ イ ド樹脂は、 乾燥質量としては 1 9. 3グラムであった。
次に、 比較例と同一の条件と方法でパラジク口口ベンゼンの重合反応を 行い、 1回目の洗浄として NMP -水混合溶媒 (NMP : 2 3 6 m l , 水: 33. 6 g) を加える代わりに、 上記で回収した湿潤状態のポリフエエレ ンスルフィ ド樹脂として 96. 5グラムと NMP 3 00ミリ リ ツトルをォ 一トクレーブに加えて第 1回目の洗浄操作を行い、 以降は比較例と同様の 条件と方法によって精製されたポリフエ二レンスルフィ ド樹脂を得た。 得 られたポリフエ二レンスルフイ ド樹脂の収量は 5 3. 3グラムであり、 理 論収量 (5 8. 8グラム) の 9 1 %であった。 また、 残留リチウム量は、 10 ρ ρ m以下であった。
実施例 3:
実施例 2と同様にしてパラジクロ口ベンゼンの重合反応と洗浄操作を行 い、 回収した洗浄液 1 3 80グラムを減圧蒸留にかけて、 水と NMPを主 成分とする留分 9 2 0グラムを除去した。 蒸留残渣を 1 00°C以下に冷却 し、 水 1 840グラムを加えて、 ポリフエ二レンスルフイ ド樹脂を沈殿さ せた。 この時の添加した水の量は、 NMPに対して 8 2 °/0に相当する量で あった。 次いで、 この沈殿物を遠心分離機にかけて遠心分離し、 湿潤状態 のポリフエエレンスルフイ ド樹脂として 9 6. 5グラムを得た。 この含液 率は 80%であったので、 回収したポリフエ二レンスルフイ ド樹脂は、 乾 燥質量としては 1 9. 3グラムであった。 これを 80°Cの熱水 1 840グ ラムで 2回洗浄した後、 1 20°Cにて乾燥し、 1 7. 8グラムのポリフエ 二レンスルフィ ド樹脂を得た。 このポリフエ二レンスルフィ ド樹脂中の残 留リチウム量は 1 0 p p m以下であった。
一方、 上記の 4回の洗浄操作を経て精製されたポリフエ二レンスルフィ ド樹脂として 3 8 . 3グラムが得られた。 これと上記で回収して得られた ポリフエ二レンスルフイ ド樹脂を合計すると 5 6 . 1グラムとなり、 理論 収量 (5 8 . 8グラム) に対して 9 5 %の収率で回収できたこととなる。 産業上の利用可能性
本発明の製造方法によれば、 ポリアリーレンスルフィ ド系樹脂をほとん ど損失させることなく、 該樹脂から効果的にアル力リ金属ハロゲン化物を 除去することができ、 高い収率で精製したポリアリーレンスルフィ ド系樹 脂を得ることができる。

Claims

請 求 の 範 囲
1 . ポリアリーレンスルフイ ド系樹脂を軟化ないし溶融状態で、 非プロト ン性有機溶媒と水との混合溶媒で洗浄するに際し、 洗浄液中に溶解した一 部のポリアリーレンスルフィ ド系樹脂を回収し、 再利用することを特徴と するポリアリーレンスルフィ ド系樹脂の製造方法。
2 . 洗浄後の洗浄液を冷却し及ぴノ又は洗浄液に水を加えて、 洗浄液中に 溶解しているポリァリーレンスルフィ ド系樹脂を沈殿 ·分離させて回収す ることを特徴とする、 請求項 1記載のポリアリーレンスルフィ ド系樹脂の 製造方法。
3 . 請求項 2記載の方法により回収したポリアリーレンスルフィ ド系樹脂 を、 別の新たに洗浄に供するポリアリーレンスルフィ ド系樹脂に加えて、 軟化ないし溶融状態で非プロ トン性有機溶媒と水との混合溶媒で洗浄する ことを特徴とする、 ポリア,リーレンスルフィ ド系樹脂の製造方法。
4 . 請求項 2記載の方法により回収したポリアリーレンスルフィ ド系樹脂 を、粉砕 '乾燥して粉末状として再利用に供する、ポリアリーレンスルフィ ド系樹脂の製造方法。
PCT/JP2003/012667 2002-10-10 2003-10-02 ポリアリーレンスルフィド系樹脂の製造方法 WO2004033535A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/530,027 US7317072B2 (en) 2002-10-10 2003-10-02 Process for the production of polyarylene sulfide resins
EP03748681A EP1550685A4 (en) 2002-10-10 2003-10-02 METHOD FOR PRODUCING POLYARYLENE SULFIDE RESINS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002297656A JP2004131602A (ja) 2002-10-10 2002-10-10 ポリアリーレンスルフィド系樹脂の製造方法
JP2002-297656 2002-10-10

Publications (1)

Publication Number Publication Date
WO2004033535A1 true WO2004033535A1 (ja) 2004-04-22

Family

ID=32089279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012667 WO2004033535A1 (ja) 2002-10-10 2003-10-02 ポリアリーレンスルフィド系樹脂の製造方法

Country Status (6)

Country Link
US (1) US7317072B2 (ja)
EP (1) EP1550685A4 (ja)
JP (1) JP2004131602A (ja)
CN (1) CN1300220C (ja)
TW (1) TW200413443A (ja)
WO (1) WO2004033535A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4777610B2 (ja) 2003-12-26 2011-09-21 株式会社クレハ ポリアリーレンスルフィド及びその製造方法
CN103289093A (zh) * 2013-07-01 2013-09-11 四川宝利丰科技有限公司 制备线性高分子量聚苯硫醚的方法
JP6684206B2 (ja) 2013-09-25 2020-04-22 ティコナ・エルエルシー ポリアリーレンスルフィドの形成中における塩副生成物の分離
WO2015047718A1 (en) 2013-09-25 2015-04-02 Ticona Llc Multi-stage process for forming polyarylene sulfides
WO2015047717A1 (en) 2013-09-25 2015-04-02 Ticona Llc Method and system for separation of a polymer from multiple compounds
JP2016536377A (ja) 2013-09-25 2016-11-24 ティコナ・エルエルシー ポリアリーレンスルフィドを形成するためのスクラビングプロセス
US9562139B2 (en) 2013-09-25 2017-02-07 Ticona Llc Process for forming low halogen content polyarylene sulfides
US9388283B2 (en) 2013-09-25 2016-07-12 Ticona Llc Method of polyarylene sulfide crystallization
JP6803844B2 (ja) 2015-02-19 2020-12-23 ティコナ・エルエルシー 低粘度のポリアリーレンスルフィドを形成する方法
WO2016133739A1 (en) 2015-02-19 2016-08-25 Ticona Llc Method for forming a high molecular weight polyarylene sulfide
WO2016133740A1 (en) 2015-02-19 2016-08-25 Ticona Llc Method of polyarylene sulfide precipitation
WO2016153610A1 (en) 2015-03-25 2016-09-29 Ticona Llc Technique for forming a high melt viscosity polyarylene sulfide
CN106699688A (zh) * 2016-12-08 2017-05-24 斯芬克司药物研发(天津)股份有限公司 一种苯基哌嗪硫醚及其制备方法
US11407861B2 (en) 2019-06-28 2022-08-09 Ticona Llc Method for forming a polyarylene sulfide
JP2023508316A (ja) 2019-12-20 2023-03-02 ティコナ・エルエルシー ポリアリーレンスルフィドを形成するための方法
WO2023002877A1 (ja) * 2021-07-19 2023-01-26 東レ株式会社 ポリアリーレンスルフィドの分離方法およびポリアリーレンスルフィド樹脂組成物の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228023A (ja) * 1985-04-01 1986-10-11 Kureha Chem Ind Co Ltd ポリアリ−レンスルフィドの精製法
US4748231A (en) * 1986-11-21 1988-05-31 Phillips Petroleum Company Reprecipitation of poly(arylene sulfide) to increase molecular weight thereof
JPH0543690A (ja) * 1991-08-14 1993-02-23 Tosoh Corp ポリアリーレンスルフイドの精製方法
JPH05186593A (ja) * 1991-06-24 1993-07-27 Phillips Petroleum Co ポリ(アリーレンスルフィド)ポリマーの調製方法
JPH06192424A (ja) * 1992-10-23 1994-07-12 Phillips Petroleum Co ポリ(アリーレンスルフィド)ポリマーの精製方法
JPH06192423A (ja) * 1992-10-23 1994-07-12 Phillips Petroleum Co ポリ(アリーレンスルフィド)ポリマーの精製方法
JPH10507223A (ja) * 1994-10-13 1998-07-14 ヘキスト・アクチェンゲゼルシャフト ポリアリーレンスルフィドの再循環方法
JP2002533546A (ja) * 1998-12-31 2002-10-08 フイリツプス ピトローリアム カンパニー ポリ(アリーレンスルフィド)を製造する方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707528A (en) * 1971-01-12 1972-12-26 Phillips Petroleum Co Recovery of poly(arylene sulfide) reaction slurry constituents
US5247063A (en) * 1987-04-24 1993-09-21 Bayer Aktiengesellschaft Process for the purification of polyarylene sulphides
US5898061A (en) * 1996-03-11 1999-04-27 Idemitsu Petrochemical Co., Ltd. Continuous process for producing polyarylene sulfide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228023A (ja) * 1985-04-01 1986-10-11 Kureha Chem Ind Co Ltd ポリアリ−レンスルフィドの精製法
US4748231A (en) * 1986-11-21 1988-05-31 Phillips Petroleum Company Reprecipitation of poly(arylene sulfide) to increase molecular weight thereof
JPH05186593A (ja) * 1991-06-24 1993-07-27 Phillips Petroleum Co ポリ(アリーレンスルフィド)ポリマーの調製方法
JPH0543690A (ja) * 1991-08-14 1993-02-23 Tosoh Corp ポリアリーレンスルフイドの精製方法
JPH06192424A (ja) * 1992-10-23 1994-07-12 Phillips Petroleum Co ポリ(アリーレンスルフィド)ポリマーの精製方法
JPH06192423A (ja) * 1992-10-23 1994-07-12 Phillips Petroleum Co ポリ(アリーレンスルフィド)ポリマーの精製方法
JPH10507223A (ja) * 1994-10-13 1998-07-14 ヘキスト・アクチェンゲゼルシャフト ポリアリーレンスルフィドの再循環方法
JP2002533546A (ja) * 1998-12-31 2002-10-08 フイリツプス ピトローリアム カンパニー ポリ(アリーレンスルフィド)を製造する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1550685A4 *

Also Published As

Publication number Publication date
CN1703446A (zh) 2005-11-30
JP2004131602A (ja) 2004-04-30
US20060128819A1 (en) 2006-06-15
CN1300220C (zh) 2007-02-14
US7317072B2 (en) 2008-01-08
TW200413443A (en) 2004-08-01
EP1550685A1 (en) 2005-07-06
EP1550685A4 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
WO2004033535A1 (ja) ポリアリーレンスルフィド系樹脂の製造方法
US8530605B2 (en) Poly(arylene sulfide) and production process thereof
JP2000191785A (ja) ポリアリーレンスルフィドの製造方法
JP6295379B2 (ja) ポリアリーレンスルフィドを製造する方法及びポリアリーレンスルフィド
JP3490195B2 (ja) ポリアリーレンスルフィドの製造方法
JP6419311B2 (ja) 微粉ポリアリーレンスルフィドを製造する方法及び微粉ポリアリーレンスルフィド
JP2002293937A (ja) ポリアリーレンスルフィド副生塩の処理方法
WO2002081549A1 (fr) Procede de traitement de sels de sous-produits se presentant avec du sulfure de poylarylene
JP2011111548A (ja) アルカリ金属ハロゲン化物の連続回収方法
KR102251793B1 (ko) 폴리아릴렌 설파이드의 분리 정제 방법
JPH0768350B2 (ja) ポリアリ−レンスルフイドの製造方法
KR102251792B1 (ko) 폴리아릴렌 설파이드의 분리 회수 방법
JP2010144085A (ja) ポリフェニレンスルフィドの製造方法
JP6999269B2 (ja) ポリアリーレンスルフィドの製造方法
JP2007262341A (ja) ポリアリーレンスルフィド樹脂の精製方法
JP3490137B2 (ja) ポリアリーレンスルフィドの製造方法
JPH07207027A (ja) ポリアリーレンスルフィドの製造方法
JP3866821B2 (ja) 残留ハロゲン化リチウムの変性方法
KR20210147326A (ko) 폴리아릴렌 설파이드의 제조 방법
JP2021095539A (ja) ポリアリーレンスルフィドの製造方法
JP2024021682A (ja) ポリアリーレンスルフィド樹脂の製造方法
KR20210053727A (ko) 폴리아릴렌 설파이드의 제조방법
JP2004285093A (ja) ポリアリーレンスルフィド樹脂の精製方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003748681

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A12896

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003748681

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006128819

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10530027

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10530027

Country of ref document: US