WO2004034680A1 - System and method for simulation of performance of measurement-based algorithms for slotted wireless communications - Google Patents

System and method for simulation of performance of measurement-based algorithms for slotted wireless communications Download PDF

Info

Publication number
WO2004034680A1
WO2004034680A1 PCT/US2003/031632 US0331632W WO2004034680A1 WO 2004034680 A1 WO2004034680 A1 WO 2004034680A1 US 0331632 W US0331632 W US 0331632W WO 2004034680 A1 WO2004034680 A1 WO 2004034680A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
algorithm
users
transmission power
new
Prior art date
Application number
PCT/US2003/031632
Other languages
French (fr)
Inventor
Paul Marinier
Frank La Sita
Eldad Zeira
Original Assignee
Interdigital Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Technology Corporation filed Critical Interdigital Technology Corporation
Priority to AU2003284011A priority Critical patent/AU2003284011A1/en
Priority to EP03776239A priority patent/EP1550288A4/en
Publication of WO2004034680A1 publication Critical patent/WO2004034680A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/04Scheduled or contention-free access

Definitions

  • the present invention relates to simulation of wireless communication systems. 'More particularly, the present invention relates to a system and method for performing simulations to evaluate the performance of resource allocation algorithms in a slotted communication system.
  • Measurement-based F-DCA algorithms base the timeslot allocation or re-allocation decision for a given user on interference, received power (path loss) and transmission power measurements performed by the mobile unit and its serving base station in all candidate timeslots.
  • the program When the performance of an F-DCA algorithm is simulated, prior to each invocation the program must provide the simulated F-DCA algorithm with the interference and transmission power levels that would be reported by the relevant nodes of the system. Additionally, all users are allocated a channel before the start of the power balancing procedure. However, those levels are not available before the power balancing procedure is executed. Since the interference and transmission power levels are not available prior to the channel allocation, this type of methodology fails to perform any meaningful validation of an F-DCA algorithm.
  • the present invention is a system and method for simulating a
  • Each potential user is individually analyzed to determine whether the addition of that user will adversely impact the interference levels within each timeslot. If the new potential user does not introduce a unacceptable level of interference in any of the timeslots, the user is admitted. Once the new user is admitted, a power balancing is performed on each of the slots and time slots are reallocated between users as necessary. This process is repeated for each new potential user seeking entry into the system.
  • Figure 1 is a flow diagram of the method for validating a Call
  • FIG. 2 is a flow diagram of a Power Balancing process implemented in accordance with the present invention.
  • Figure 3 is a flow diagram of the method for validating a
  • Figure 4 is a flow diagram of the method for validating an Escape algorithm in accordance with the present invention.
  • wireless transmit/receive unit includes, but is not limited to, a user, user equipment, mobile station, fixed or mobile subscriber unit, or any other type of device capable of operating in a wireless environment.
  • Node B includes, but is not limited to, a base station, site controller, access point or other interfacing device in a wireless environment. While base-to-mobile transmissions will be described hereinafter, the inventive concepts are also applicable to peer-to-peer communications.
  • the following describes briefly several examples of functions of the different F-DCA algorithms that can be validated. These algorithms are well known to those of skill in the art.
  • F-DCA Call admission control (CAC) algorithm which is responsible for allocating additional dedicated physical channels to a user that was possibly not occupying any dedicated physical channels.
  • the algorithm can also deny access to any additional physical channel if it evaluates that the connection would be unsustainable.
  • the algorithm is also utilized if a user already has a low bit rate connection and wants to use a higher bit rate connection requiring more dedicated channels.
  • Escape algorithm which attempts to change the physical channel allocation of a user experiencing excessive interference, or occupying a timeslot where there is a shortage of base station transmission power in the downlink.
  • the simulation method for these validations includes performing a large number of snapshots, in. which a certain number of users are randomly introduced in the system. Statistics are collected over all snapshots and subsequently analyzed to obtain performance metrics for the system.
  • DL downlink
  • UL uplink
  • transmission power of a user means, in the case of the DL, the power that the Node B serving the user must transmit in a given timeslot to support the connection.
  • UL uplink
  • interference level of the user means, in the case of the UL, the interference (including thermal noise) that the Node B serving (or potentially serving) the user perceives in a given timeslot. In the case of the DL, it means the interference (including thermal noise) that the user perceives in a given timeslot.
  • the method 10 starts the snapshot with a system where no user is present, (i.e., an empty system), (step 11).
  • a new candidate user is picked and the interference levels of this user are calculated in each time slot (step 12).
  • the transmission powers of already admitted users (if any) are used to perform this computation.
  • the CAC algorithm is invoked (step 13) for the new candidate user, using the interference levels. It should be noted that the transmission power levels may also be utilized in step 13 depending on the specifics of the algorithm computed in step 12. It is then determined whether this new candidate user is admitted by the CAC algorithm (step 14). If the CAC algorithm has not admitted the new candidate user, this event is recorded as a "block" event (step 18) and the method 10 proceeds to step 17.
  • step 15 the transmission power(s) of the newly admitted user in each of its allocated slots is computed, based on the interference levels computed in step 12. A complete power balancing process is then performed (step 16).
  • step 16 At the end of the power balancing process as summarized by step 16, the transmission powers of all admitted users are up-to-date. In step 17, it is determined whether there remains at least one new candidate user to be introduced in the system. If so, the method returns to step 12. Otherwise the snapshot is complete.
  • a complete simulation comprises the execution of a large number of snapshots.
  • key statistics such as the number of blocked users (step 18) and the number of dropped users (step 16) are recorded.
  • the performance of the CAC algorithm is then characterized by the average percentage of users in a snapshot that have been blocked and dropped, for a given number of users that attempted to connect to the system at each snapshot.
  • the number of users for which connection is attempted e.g., offered users
  • a power balancing is performed in accordance with the present invention by executing the method 20 as shown.
  • the interference level of each user is computed, based on the latest computed transmission powers of all users, (step 22). It is then determined whether the interference level of any user exceeds a certain threshold (Ithrs) (step 23). If the interference level exceeds the threshold Ithrs, the user is dropped and the event is recorded as a "drop" event (step 24). The method 20 then returns to step 22. If the interference does not exceed the threshold Ithrs, the transmission power of every user is updated based on the interference levels and their quality requirements, (for example required signal-to-interference ratio), (step 25).
  • step 27 applies to a simulation performed in the DL only. In case of an UL simulation, one proceeds directly to step 29.
  • the selected user is the one that has the largest transmission power in the concerned timeslot.
  • step 29 the connection quality of every user is evaluated. This is preferably performed by computing the signal-to-interference ratio (SIR). For example, a user meets its connection quality requirement if its SIR is within a certain window around the SIR target, (such as within 0.5 dB of the SIR target). If any user does not meet the connection quality requirement, the method 20 returns to step 22. Otherwise, the method 20 of power balancing is complete.
  • SIR signal-to-interference ratio
  • the method 30 for validating the performance of a Background algorithm will be described with reference to Figure 3.
  • This method 30 is similar to the method of validating the CAC algorithm (shown in Figure 1), except that invoking the CAC algorithm with a new user is replaced from time to time by invoking the Background algorithm. It is preferable to alternate invoking the CAC and Background algorithms, although it is possible to try other sequences, (for example, the CAC algorithm is invoked three times for each time the Background algorithm is invoked, or vice-versa). Since certain steps shown in Figure 3 are similar to certain steps shown in Figure 1, these steps are identically numbered 11-17 and the description of these steps will not be repeated. However, new steps 39, 40 and 41 are additionally implemented to validate the Background algorithm.
  • step 39 following the completion of the power balancing process (step 16), the Background algorithm is invoked, using the transmission powers and interference levels of all users. It is then determined whether or not the Background algorithm has modified the slot allocation of any user. If not, the process 30 proceeds directly to step 17. Otherwise, the transmission power(s) of the affected user in its newly allocated slot(s) is computed, and a complete power balancing is performed (step 41). Step 17 is then entered to determine whether any new users need to be added. If so, step 12 is re-entered and the procedure 30 is repeated. If not, the snapshot is complete.
  • the Escape algorithm is validated by modifying the power balancing part of the snapshot to give an opportunity for users that would normally be dropped, (due to excessive interference, excessive user transmission power or excessive total base station transmission power), to be re-allocated to other physical channels.
  • Validation of the Escape algorithm as implemented with power balancing is shown by the method 40 of Figure 4. Since certain steps shown in Figure 4 are similar to certain steps shown in Figure 2, these steps are identically numbered 21-29 and the description of these steps will not be repeated. However, new steps 50, 51 and 52 are additionally implemented to validate the Escape algorithm.
  • step 23 if the interference of a user exceeds the threshold Ithrs, the Escape algorithm can be invoked for this user if allowed; (which is optional at step 50). It should be noted that invoking the Escape algorithm (step 51) is not required; it is optional. Should a system designer not desire this option at all, steps 50-52 will be eliminated and the method 40 of Figure 4 will be the same as the method 20 of Figure 2. However, as will be explained hereinafter, the Escape algorithm may be selectively invoked. Accordingly, the method 40 will be described as selectively providing this option. [0035] The Escape algorithm is performed using the interference levels previously computed in step 22. The Escape algorithm attempts to find a new slot allocation for the concerned user.
  • step 52 If this user's physical channels are moved to the new slots, the Escape is determined as successful (step 52) and the procedure 40 returns to step 22. If the Escape algorith does not find a new slot allocation, the user is dropped, the event is recorded as a "drop" event (step 24) and the procedure returns to step 22. Similarly, in step 26, if the transmission power of a user exceeds the maximum allowed, the Escape algorithm can be invoked for the user and steps 50-52 are entered. Likewise, in step 27, if the total transmission power of a Node B exceeds the maximum allowed, the Escape algorithm can be invoked for the selected user and steps 50-52 are implemented. [0036] It is up to the system designer to determine whether or not the
  • Escape is permitted when the conditions in steps 23, 26 or 27 occur. This may be permitted on a selective bases. For example, one may permit a call to enter the Escape algorithm in the conditions where the interference is exceeded (step 23) or when the total base station power exceeds the maximum (step 27), but possibly not when the user transmission power exceeds the maximum (step 26).
  • channel allocation algorithms use values for interference and/or transmission power that are measured by the WTRU and/or Node B, and then report these to the entity which runs the algorithm (e.g. the Remote Network Controller). The measurement process performed by the WTRU or the Node B is not exact due to various factors such as the limited duration of the measurement, or biases in the radio equipment.
  • the values used by the channel allocation algorithm will often contain errors with respect to the actual value of the quantity. This error can negatively affect the performance of the algorithm. Accordingly, if a system designer desires to assess the performance degradation of the algorithm due to the errors, a random error may be added to the parameters used by the aforementioned algorithms, (such as interference, power or transmission power), prior to invoking the algorithms in steps 13, 39 or 51.
  • the effect of errors in the measurement of interference levels, path loss and transmission power levels are the modeled by modifying those quantities according to the added errors and using the modified quantities upon invoking the algorithms.

Abstract

A simulation is used to determine the effect of additional users on a communications system, such as a slotted wireless communications system. Users are sequentially added and determinations are made as to whether criteria for the additional user fall within predetermined limits. If the criteria are met, the user is accepted by the simulation and a power balancing is performed for all users. The simulation is repeated for each additional user. If the parameters are not within predetermined limits, the user is dropped. The simulation presents the system in a series of 'snapshots' of communications activity.

Description

[0001] SYSTEM AND METHOD FOR SIMULATION
OF PERFORMANCE OF MEASUREMENT-BASED '
ALGORITHMS FOR SLOTTED WIRELESS COMMUNICATIONS
[0002] FIELD OF INVENTION
[0003] The present invention relates to simulation of wireless communication systems. 'More particularly, the present invention relates to a system and method for performing simulations to evaluate the performance of resource allocation algorithms in a slotted communication system.
[0004] BACKGROUND
[0005] Current mobile radio communication systems rely on sophisticated radio resource management algorithms to maximize their performance in terms of capacity, coverage, and network stability. System designers generally employ computer-based simulation techniques to estimate the benefit of specific algorithms prior to implementing them in an actual system. However, since a mobile radio system involves multiple transmitters and receivers interacting with each other, it is difficult to predict the performance gains of some of those schemes in an analytical manner.
[0006] One widely known current source of information on system-level simulations of mobile radio systems is a technical report of the third generation partnership project (3GPP), that contains the basic methodology for static snapshot-based simulation of wireless systems. The term "static" means that modeling of dynamic effects due to movement of users, call arrival and departures is not attempted. Rather, simulation of possible realizations of the system configuration in terms of user placement ("i.e. snapshots") is performed at specific instants of time. In each snapshot, the transmission power requirements of each user are computed by iterative power balancing where the mutual interference between users is modeled. It is then found whether or not users can sustain a viable connection; for example, if there is a sufficient signal-to- interference ratio (SIR). If not, those events are recorded for statistical analysis. These simulations also permit extraction of other statistics, such as distributions of transmission power, interference levels, etc. The accuracy of those statistics improves as the number of simulated snapshots increases. [0007] There are several radio resource management algorithms that are used in the prior art. For example, those algorithms that are responsible for the user-to-timeslot allocation, (also known as fast dynamic channel allocation (F- DCA)), are particularly critical to the performance of time slotted communication systems. Although some aspects of the prior art methodology are generally applicable to the simulation of time division duplex (TDD) systems, this methodology falls far short of what is required to evaluate the performance of measurement-based F-DCA algorithms.
[0008] Measurement-based F-DCA algorithms base the timeslot allocation or re-allocation decision for a given user on interference, received power (path loss) and transmission power measurements performed by the mobile unit and its serving base station in all candidate timeslots. When the performance of an F-DCA algorithm is simulated, prior to each invocation the program must provide the simulated F-DCA algorithm with the interference and transmission power levels that would be reported by the relevant nodes of the system. Additionally, all users are allocated a channel before the start of the power balancing procedure. However, those levels are not available before the power balancing procedure is executed. Since the interference and transmission power levels are not available prior to the channel allocation, this type of methodology fails to perform any meaningful validation of an F-DCA algorithm.
[0009] SUMMARY
[0010] The present invention is a system and method for simulating a
- multi-user time-slotted communication system. . Each potential user is individually analyzed to determine whether the addition of that user will adversely impact the interference levels within each timeslot. If the new potential user does not introduce a unacceptable level of interference in any of the timeslots, the user is admitted. Once the new user is admitted, a power balancing is performed on each of the slots and time slots are reallocated between users as necessary. This process is repeated for each new potential user seeking entry into the system.
[0011] BRIEF DESCRIPTION OF THE DRAWINGS
[0012] Figure 1 is a flow diagram of the method for validating a Call
Admission Control algorithm in accordance with one embodiment of the present invention.
[0013] Figure 2 is a flow diagram of a Power Balancing process implemented in accordance with the present invention.
[0014] Figure 3 is a flow diagram of the method for validating a
Background algorithm in accordance with the present invention.
[0015] Figure 4 is a flow diagram of the method for validating an Escape algorithm in accordance with the present invention.
[0016] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0017] The present invention will be described with reference to the drawing figures wherein like numerals represent like elements throughout. [0018] The present invention is applicable to the evaluation of all slotted wireless communications. For simplicity in describing the present invention, the invention will be described for use with a 3GPP communication syste utilizing the TDD mode. However, the invention is applicable to many different types of wireless communication systems.
[0019] As used hereinafter, the terminology "wireless transmit/receive unit" (WTRU) includes, but is not limited to, a user, user equipment, mobile station, fixed or mobile subscriber unit, or any other type of device capable of operating in a wireless environment. As used hereinafter, the terminology "Node B" includes, but is not limited to, a base station, site controller, access point or other interfacing device in a wireless environment. While base-to-mobile transmissions will be described hereinafter, the inventive concepts are also applicable to peer-to-peer communications. [0020] The following describes briefly several examples of functions of the different F-DCA algorithms that can be validated. These algorithms are well known to those of skill in the art. This is not an exhaustive list and it should be understood by those of skill in the art that the present methodology may be applied to simulate or validate many other algorithms. These algorithms base the timeslot allocation or re-allocation decision for a given user on interference, received power (path loss) and transmission power measurements performed by a WTRU and/or its serving Node B in all candidate timeslots. The referenced example algorithms which are validated are:
1. F-DCA Call admission control (CAC) algorithm, which is responsible for allocating additional dedicated physical channels to a user that was possibly not occupying any dedicated physical channels. The algorithm can also deny access to any additional physical channel if it evaluates that the connection would be unsustainable. The algorithm is also utilized if a user already has a low bit rate connection and wants to use a higher bit rate connection requiring more dedicated channels.
2. Background algorithm, which periodically revises the channel allocations of all users. The physical channel allocation of a user may be changed if the algorithm predicts that this would result in a gain in terms of system performance, (e.g., reduced interference).
3. Escape algorithm, which attempts to change the physical channel allocation of a user experiencing excessive interference, or occupying a timeslot where there is a shortage of base station transmission power in the downlink.
[0021] The simulation method for these validations includes performing a large number of snapshots, in. which a certain number of users are randomly introduced in the system. Statistics are collected over all snapshots and subsequently analyzed to obtain performance metrics for the system. [0022] Referring to Figure 1, a flow diagram of the method 10 for validating the CAC algorithm is shown. It should be noted that the method 10 applies to either the downlink (DL) or the uplink (UL). Additionally, in the following, it should be understood that "transmission power of a user" means, in the case of the DL, the power that the Node B serving the user must transmit in a given timeslot to support the connection. In the case of the UL, it means the power that the user must transmit in a given timeslot to support the connection. It should also be understood that "interference level of the user" means, in the case of the UL, the interference (including thermal noise) that the Node B serving (or potentially serving) the user perceives in a given timeslot. In the case of the DL, it means the interference (including thermal noise) that the user perceives in a given timeslot.
[0023] The method 10 starts the snapshot with a system where no user is present, (i.e., an empty system), (step 11). A new candidate user is picked and the interference levels of this user are calculated in each time slot (step 12). The transmission powers of already admitted users (if any) are used to perform this computation. The CAC algorithm is invoked (step 13) for the new candidate user, using the interference levels. It should be noted that the transmission power levels may also be utilized in step 13 depending on the specifics of the algorithm computed in step 12. It is then determined whether this new candidate user is admitted by the CAC algorithm (step 14). If the CAC algorithm has not admitted the new candidate user, this event is recorded as a "block" event (step 18) and the method 10 proceeds to step 17. If the CAC algorithm has admitted the new candidate user, the process continues to step 15. In step 15, the transmission power(s) of the newly admitted user in each of its allocated slots is computed, based on the interference levels computed in step 12. A complete power balancing process is then performed (step 16).
[0024] The power balancing process will be described in greater detail hereinafter with reference to Figure 2. Generally, however, during the course of the power balancing process, some of the admitted users may be dropped by the system due to excessive interference or lack of transmission power. Each of these events is also recorded as a "drop" event for collecting statistics. [0025] At the end of the power balancing process as summarized by step 16, the transmission powers of all admitted users are up-to-date. In step 17, it is determined whether there remains at least one new candidate user to be introduced in the system. If so, the method returns to step 12. Otherwise the snapshot is complete.
[0026] A complete simulation comprises the execution of a large number of snapshots. In each snapshot, key statistics such as the number of blocked users (step 18) and the number of dropped users (step 16) are recorded. The performance of the CAC algorithm is then characterized by the average percentage of users in a snapshot that have been blocked and dropped, for a given number of users that attempted to connect to the system at each snapshot. Typically, the number of users for which connection is attempted (e.g., offered users) is kept the same over all snapshots of a simulation. The lower the percentage of dropped or blocked users for a given number of offered users, the better performance the algorithm exhibits.
[0027] It should be noted that it often desired to study the performance of a channel allocation algorithm in a specific direction (i.e. UL or DL) only. In that case, the applicable simulations are performed for the specific direction. If it is desired to study both directions, then the simulations are performed separately for UL and DL. For a "joint" simulation, the simulations are done in both UL and DL, however, a user blocked or dropped in one direction would be considered to be blocked or dropped in the other direction.
[0028] Referring to the flow diagram of Figure 2, a power balancing is performed in accordance with the present invention by executing the method 20 as shown. After the method 20 is commenced in step 21, the interference level of each user is computed, based on the latest computed transmission powers of all users, (step 22). It is then determined whether the interference level of any user exceeds a certain threshold (Ithrs) (step 23). If the interference level exceeds the threshold Ithrs, the user is dropped and the event is recorded as a "drop" event (step 24). The method 20 then returns to step 22. If the interference does not exceed the threshold Ithrs, the transmission power of every user is updated based on the interference levels and their quality requirements, (for example required signal-to-interference ratio), (step 25). [0029] It is then determined whether the transmission power of any user exceeds the allowed maximum. If the transmission power of a user exceeds a maximum allowable level, the user is dropped, the event is recorded as a "drop" event (step 24) and the method 20 returns to step 22. If the transmission power of a user does not exceed the maximum allowable level, the method 20 proceeds to step 27. Step 27 applies to a simulation performed in the DL only. In case of an UL simulation, one proceeds directly to step 29. For a DL simulation, it is determined whether the total transmission power of a Node B in any timeslot exceeds the allowed maximum. If so, one of the users occupying the concerned timeslot is selected (step 28) and the user is dropped and the event is recorded as a "drop" event (step 24). Preferably, the selected user is the one that has the largest transmission power in the concerned timeslot.
[0030] If the total transmission power of a Node B does not exceed the maximum in any timeslot, the method 20 continues to step 29, where the connection quality of every user is evaluated. This is preferably performed by computing the signal-to-interference ratio (SIR). For example, a user meets its connection quality requirement if its SIR is within a certain window around the SIR target, (such as within 0.5 dB of the SIR target). If any user does not meet the connection quality requirement, the method 20 returns to step 22. Otherwise, the method 20 of power balancing is complete.
[0031] The method 30 for validating the performance of a Background algorithm will be described with reference to Figure 3. This method 30 is similar to the method of validating the CAC algorithm (shown in Figure 1), except that invoking the CAC algorithm with a new user is replaced from time to time by invoking the Background algorithm. It is preferable to alternate invoking the CAC and Background algorithms, although it is possible to try other sequences, (for example, the CAC algorithm is invoked three times for each time the Background algorithm is invoked, or vice-versa). Since certain steps shown in Figure 3 are similar to certain steps shown in Figure 1, these steps are identically numbered 11-17 and the description of these steps will not be repeated. However, new steps 39, 40 and 41 are additionally implemented to validate the Background algorithm.
[0032] Referring to step 39, following the completion of the power balancing process (step 16), the Background algorithm is invoked, using the transmission powers and interference levels of all users. It is then determined whether or not the Background algorithm has modified the slot allocation of any user. If not, the process 30 proceeds directly to step 17. Otherwise, the transmission power(s) of the affected user in its newly allocated slot(s) is computed, and a complete power balancing is performed (step 41). Step 17 is then entered to determine whether any new users need to be added. If so, step 12 is re-entered and the procedure 30 is repeated. If not, the snapshot is complete.
[0033] The Escape algorithm is validated by modifying the power balancing part of the snapshot to give an opportunity for users that would normally be dropped, (due to excessive interference, excessive user transmission power or excessive total base station transmission power), to be re-allocated to other physical channels. Validation of the Escape algorithm as implemented with power balancing is shown by the method 40 of Figure 4. Since certain steps shown in Figure 4 are similar to certain steps shown in Figure 2, these steps are identically numbered 21-29 and the description of these steps will not be repeated. However, new steps 50, 51 and 52 are additionally implemented to validate the Escape algorithm.
[0034] Referring to step 23, if the interference of a user exceeds the threshold Ithrs, the Escape algorithm can be invoked for this user if allowed; (which is optional at step 50). It should be noted that invoking the Escape algorithm (step 51) is not required; it is optional. Should a system designer not desire this option at all, steps 50-52 will be eliminated and the method 40 of Figure 4 will be the same as the method 20 of Figure 2. However, as will be explained hereinafter, the Escape algorithm may be selectively invoked. Accordingly, the method 40 will be described as selectively providing this option. [0035] The Escape algorithm is performed using the interference levels previously computed in step 22. The Escape algorithm attempts to find a new slot allocation for the concerned user. If this user's physical channels are moved to the new slots, the Escape is determined as successful (step 52) and the procedure 40 returns to step 22. If the Escape algorith does not find a new slot allocation, the user is dropped, the event is recorded as a "drop" event (step 24) and the procedure returns to step 22. Similarly, in step 26, if the transmission power of a user exceeds the maximum allowed, the Escape algorithm can be invoked for the user and steps 50-52 are entered. Likewise, in step 27, if the total transmission power of a Node B exceeds the maximum allowed, the Escape algorithm can be invoked for the selected user and steps 50-52 are implemented. [0036] It is up to the system designer to determine whether or not the
Escape is permitted when the conditions in steps 23, 26 or 27 occur. This may be permitted on a selective bases. For example, one may permit a call to enter the Escape algorithm in the conditions where the interference is exceeded (step 23) or when the total base station power exceeds the maximum (step 27), but possibly not when the user transmission power exceeds the maximum (step 26). [0037] It should be noted that in an actual system application, channel allocation algorithms use values for interference and/or transmission power that are measured by the WTRU and/or Node B, and then report these to the entity which runs the algorithm (e.g. the Remote Network Controller). The measurement process performed by the WTRU or the Node B is not exact due to various factors such as the limited duration of the measurement, or biases in the radio equipment. Therefore, the values used by the channel allocation algorithm will often contain errors with respect to the actual value of the quantity. This error can negatively affect the performance of the algorithm. Accordingly, if a system designer desires to assess the performance degradation of the algorithm due to the errors, a random error may be added to the parameters used by the aforementioned algorithms, (such as interference, power or transmission power), prior to invoking the algorithms in steps 13, 39 or 51. The effect of errors in the measurement of interference levels, path loss and transmission power levels are the modeled by modifying those quantities according to the added errors and using the modified quantities upon invoking the algorithms. [0038] Although the present invention has been described in detail, it is to be understood that the invention is not limited thereto, and that various changes can be made therein without departing from the spirit and scope of the invention, which is defined by the attached claims.

Claims

CLAIMS What is claimed is:
1. A method for simulating a multi-user slotted cornmunication system, comprising:
(a) selecting a new user requiring at least one time slot;
(b) computing, for said at least one time slot, a new interference level as a result of selecting said new user;
(c) invoking a first algorithm to determine whether said new user should be admitted into the system based upon said new interference level and, if said new user should not be admitted, recording a blocking event and proceeding to step (f); otherwise proceeding to step (d)
(d) allocating applicable slot(s) to said user based upon said interference levels;
(e) performing a power balancing of all users in the system; and
(f) determining whether there are additional new users to add to system and, if so, returning to step (a).
2. The method of claim 1, wherein step (e) further comprises:
(el) invoking a second algorithm using the interference levels of all users in the system; and
(e2) determining whether the slot allocation of any user should be modified and, if so, computing the transmission power of users affected by said modified slot allocation.
3. The method of claim 1, wherein step (e) further comprises:
(el) computing the interference level of each user; (e2) determining whether the interference level of each user exceeds a first threshold and if so, recording a drop user event;
4. The method of claim 3, wherein step (e) further comprises:
(e3) updating the transmission power of each user.
5. The method of claim 4, wherein step (e) further comprises: (e4) determining whether the transmission power of a user exceeds a maximum threshold and, if so, recording a drop user event; and
6. The method of claim 5, wherein each user has a quality requirement and step (e) further comprises:
(e5) determining whether users meets their quality requirements.
7. The method of claim 6, wherein step (e) further comprises: (e6) determining whether the total downlink transmission power in a time slot exceeds the allowed maximum power and, if so, dropping the user in the time slot that has the largest transmission power and recording a drop user event.
8. The method of claim 7, wherein step (e6) further includes determining whether a third algorithm should be implemented.
9. The method of claim 8, wherein said third algorithm is an Escape algorithm.
PCT/US2003/031632 2002-10-07 2003-10-07 System and method for simulation of performance of measurement-based algorithms for slotted wireless communications WO2004034680A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003284011A AU2003284011A1 (en) 2002-10-07 2003-10-07 System and method for simulation of performance of measurement-based algorithms for slotted wireless communications
EP03776239A EP1550288A4 (en) 2002-10-07 2003-10-07 System and method for simulation of performance of measurement-based algorithms for slotted wireless communications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41707002P 2002-10-07 2002-10-07
US60/417,070 2002-10-07

Publications (1)

Publication Number Publication Date
WO2004034680A1 true WO2004034680A1 (en) 2004-04-22

Family

ID=32093958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/031632 WO2004034680A1 (en) 2002-10-07 2003-10-07 System and method for simulation of performance of measurement-based algorithms for slotted wireless communications

Country Status (4)

Country Link
US (1) US7336957B2 (en)
EP (1) EP1550288A4 (en)
AU (1) AU2003284011A1 (en)
WO (1) WO2004034680A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107699A3 (en) * 2005-04-01 2008-01-24 Interdigital Tech Corp Method and apparatus for validating radio resource control messages

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009801A1 (en) * 2000-08-01 2002-02-07 Endius Incorporated Method and apparatus for securing vertebrae
US7392165B2 (en) * 2002-10-21 2008-06-24 Fisher-Rosemount Systems, Inc. Simulation system for multi-node process control systems
US7801105B2 (en) * 2005-05-25 2010-09-21 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling radio resources for symmetric service data connections
US7970400B2 (en) * 2005-05-25 2011-06-28 Telefonaktiebolaget Lm Ericsson (Publ) Connection type handover of voice over internet protocol call based on resource type
US8289952B2 (en) * 2005-05-25 2012-10-16 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced VoIP media flow quality by adapting speech encoding based on selected modulation and coding scheme (MCS)
US20060268848A1 (en) * 2005-05-25 2006-11-30 Telefonaktiebolaget Lm Ericsson (Publ) Connection type handover of voice over internet protocol call based low-quality detection
US20060268900A1 (en) * 2005-05-25 2006-11-30 Telefonaktiebolaget Lm Ericsson (Publ) Local switching of calls setup by multimedia core network
CN1301037C (en) * 2005-09-12 2007-02-14 北京交通大学 Distributed intelligence call acceptance control method and device
US8554234B2 (en) * 2007-06-26 2013-10-08 Telcordia Technologies, Inc. Method and procedures for automatic calibration of a wireless communications system simulation
US8571485B2 (en) * 2008-10-15 2013-10-29 Elektrobit System Test Oy Data collection and simulation
CN106304299A (en) 2015-05-15 2017-01-04 北京三星通信技术研究有限公司 The distribution method of a kind of ascending power and subscriber equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551057A (en) * 1994-06-08 1996-08-27 Lucent Technologies Inc. Cellular mobile radio system power control
US6351650B1 (en) * 1999-01-28 2002-02-26 Qualcomm Incorporated System and method for forward link power balancing in a wireless communication system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085335A (en) * 1997-10-02 2000-07-04 Nortel Networks Limited Self engineering system for use with a communication system and method of operation therefore
US6078812A (en) * 1997-12-15 2000-06-20 Ericsson Inc. System and method for adaptive channel allocation
US6775233B1 (en) * 1999-08-31 2004-08-10 Lucent Technologies Inc. Rate processor sharing method and apparatus for scheduling data transmissions in a CDMA wireless communication system
SE516662C2 (en) * 1999-11-26 2002-02-12 Ericsson Telefon Ab L M Power allocation method for downlink channels in a downlink power limited communication system
CN1173492C (en) * 2000-03-10 2004-10-27 三星电子株式会社 Power control apparatus and method in wireless communication system using scheduled packet dats ervice channel
US6987729B1 (en) * 2000-05-11 2006-01-17 Lucent Technologies Inc. Method and apparatus for admission management in wireless communication systems
US7068607B2 (en) * 2000-08-31 2006-06-27 Telefonktiebolaget Lm Ericsson (Publ) Bandwidth broker for cellular radio access networks
US6594499B1 (en) * 2000-09-25 2003-07-15 Telefonaktiebolaget Lm Ericsson (Publ) Downlink power control in a cellular telecommunications network
GB2371712B (en) * 2000-11-28 2004-09-29 Nokia Networks Oy Power change estimation for communication system
US20020119796A1 (en) * 2000-12-29 2002-08-29 Telefonaktiebolaget Lm Ericsson System and method for improved mobile communication admission and congestion control
US7245922B2 (en) * 2001-02-01 2007-07-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for controlling quality of service for multiple services through power setting
US7327740B2 (en) * 2001-05-25 2008-02-05 Telefonaktiebolaget Lm Ericsson (Publ) Facilitating reliable connection admission control for telecommunications system using AAL2 signaling
US6934555B2 (en) * 2001-06-29 2005-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Software analysis tool for CDMA system
US6876857B1 (en) * 2001-07-20 2005-04-05 Cisco Technology, Inc. System and method for performing admission control functions in a data network
US6757542B2 (en) * 2001-09-27 2004-06-29 Telefonaktiebolaget Lm Ericsson Total radio network solution for GSM/EDGE
US6947750B2 (en) * 2002-02-01 2005-09-20 Nokia Corporation Method and system for service rate allocation, traffic learning process, and QoS provisioning measurement of traffic flows
US6704286B2 (en) 2002-05-28 2004-03-09 Interdigital Technology Corporation Modeling of hybrid time-code division multiple access communication systems
FR2851401B1 (en) * 2003-02-19 2005-05-20 Inst Nat Rech Inf Automat DEVICE AND METHOD FOR CONTROLLING THE ADMISSION AND CONGESTION OF THE CONFIGURATION OF A WIRELESS COMMUNICATION NETWORK

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551057A (en) * 1994-06-08 1996-08-27 Lucent Technologies Inc. Cellular mobile radio system power control
US6351650B1 (en) * 1999-01-28 2002-02-26 Qualcomm Incorporated System and method for forward link power balancing in a wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1550288A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107699A3 (en) * 2005-04-01 2008-01-24 Interdigital Tech Corp Method and apparatus for validating radio resource control messages
US8320923B2 (en) 2005-04-01 2012-11-27 Interdigital Technology Corporation Method and apparatus for validating radio resource control messages

Also Published As

Publication number Publication date
US7336957B2 (en) 2008-02-26
AU2003284011A1 (en) 2004-05-04
EP1550288A1 (en) 2005-07-06
EP1550288A4 (en) 2009-12-23
US20040116127A1 (en) 2004-06-17

Similar Documents

Publication Publication Date Title
EP1688008B1 (en) Method and apparatus for performance evaluation of a mobile telephony network
KR100757884B1 (en) Method and apparatus for characterization, adjustment and optimization of wireless networks
KR100688140B1 (en) Transmission power level estimation
US8184532B2 (en) Estimation of interference variation caused by the addition or deletion of a connection
US8218450B2 (en) Throughput estimation method and system
US7142523B1 (en) Methods and apparatus for design, adjustment or operation of wireless networks using pre-frequency-assignment optimization
US7336957B2 (en) System and method for simulation of performance of measurement-based algorithms for slotted wireless communications
US7330723B2 (en) Communication performance calculation method and communication performance calculation apparatus in mobile communication system, and blocking probability calculation method and blocking probability calculation apparatus in communication system, and recording medium
JP3795464B2 (en) Method and system for planning and / or evaluation of downlink coverage in (CDMA) wireless networks
US6925066B1 (en) Methods and apparatus for design, adjustment or operation of wireless networks using multi-stage optimization
EP1510019B1 (en) Modeling of hybrid time-code division multiple access communication systems
EP1079646B1 (en) Communication performance and blocking probability calculation method, apparatus in mobile communication system, and recording medium
KR100709959B1 (en) Wireless communication method and apparatus for implementing call admission control based on common measurements
Nasreddine et al. On the computation of the maximum capacity of TDMA-CDMA/TDD systems
Dandanelle Efficient Frequency Grouping Algorithms for iDEN

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003776239

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003776239

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP