WO2004044484A2 - Enhanced thermal indicator light system and method for the use thereof - Google Patents

Enhanced thermal indicator light system and method for the use thereof Download PDF

Info

Publication number
WO2004044484A2
WO2004044484A2 PCT/US2003/032928 US0332928W WO2004044484A2 WO 2004044484 A2 WO2004044484 A2 WO 2004044484A2 US 0332928 W US0332928 W US 0332928W WO 2004044484 A2 WO2004044484 A2 WO 2004044484A2
Authority
WO
WIPO (PCT)
Prior art keywords
light
cladding
enhancer
light source
core
Prior art date
Application number
PCT/US2003/032928
Other languages
French (fr)
Other versions
WO2004044484A3 (en
Inventor
Steven Beno
Ervin Gaines
Mike Long
Original Assignee
General Binding Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Binding Corporation filed Critical General Binding Corporation
Priority to AU2003286439A priority Critical patent/AU2003286439A1/en
Publication of WO2004044484A2 publication Critical patent/WO2004044484A2/en
Publication of WO2004044484A3 publication Critical patent/WO2004044484A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • B32B37/182Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only one or more of the layers being plastic
    • B32B37/185Laminating sheets, panels or inserts between two discrete plastic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • B32B38/004Heat treatment by physically contacting the layers, e.g. by the use of heated platens or rollers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted along at least a portion of the lateral surface of the fibre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S362/00Illumination
    • Y10S362/802Position or condition responsive switch

Definitions

  • the present invention relates to a method and an indicator light system to provide
  • appliances operable temperature before the appliances can be used for their intended purposes.
  • appliances include laminators, binding machines, heat sealing machines, ovens, etc.
  • Larninators are machines that apply a polymer film over a substrate to improve the durability of the
  • laminators are better known for the application of polymeric films to paper documents, they are generally known for applying a protective medium on other substrates, such as
  • sealing food in polymer pouches for example, sealing food in polymer pouches.
  • Lamination is generally recognized to be a process requiring a heat source and a
  • a machine for applying a pressure to a thin laminate material to seal a substrate.
  • a document is fed into a laminator where a film is applied to the document, then pressurized and heat treated so that the film forms a transparent overlay that protects the document.
  • the heat usually, the heat
  • a hot roller, hot plate, cavity heat source, or thermal print head/platen assembly which is applied to a thin film mechanically positioned to force the film against the document.
  • the heat source typically converts electrical energy to thermal energy with a resistive
  • lamination may provide poor lamination or adhesion of the laminated layer. Furthermore, on
  • the heating element may become overheated. Any attempt at lamination when the heating element is overheated my result in scorched or melted film and/or damaged substrate. It is therefore
  • heating element is within the operable temperature range.
  • light tube that transmits light at the side surface, is flexible, and does not require
  • such a tube can be made by forming
  • cladding and includes a strip of reflecting layer extended between the cladding and the core.
  • a system may provide a means to amplify the effect of a relatively dim light source, such as, for example, a temperature indicator light.
  • the present invention provides an indicator system and a method to provide an
  • present invention is also directed to appliances, in particular laminators, incorporating such indicator
  • an indicator system comprises a light source that provides light
  • the linear light enhancer transmits light form the light source (preferably an LED) along the length of the linear light enhancer (preferably a light tube), to increase the ability
  • Another embodiment includes
  • the light enhancer is an optical fiber
  • the light enhance is a light tube, as defined herein. Further embodiments include the incorporation of such indicator systems in appliances that require a heating period, such
  • Figure 1 is a perspective view of an exemplary laminator that incorporates an
  • Figure 2 is an exploded view of the laminator shown in Figure 1 that incorporates
  • FIG. 3 is a circuit diagram illustrating the indicator system in a laminator. Detailed Description of a Preferred Embodiment
  • a thermal indicator according to the present invention comprises a light source
  • a power source is connected to the light source through an electronic circuit that provides sufficient power to illuminate the light source only when an operable temperature is reached for a heating element connected to the electronic circuit.
  • light sources are light emitting diodes and incandescent light bulbs.
  • enhancers include optical fibers, reflecting polymers, lenses and light tubes. Linear light enhancers
  • thermal indicator according to the present invention canbe incorporated with any appliance that has an element that operates at a particular temperature, for the purpose of
  • the indicator system is incorporated in a laminator 2 as shown in
  • the thermal indicator (see Figure 2), is seen through window 3, and is
  • Figure 2 provides an exploded view of laminator 2. The illustrative relevant parts
  • a set of light tube holders 4 include a set of light tube holders 4, a light tube 6, a light source 8 (preferably an light emitting
  • Switch circuit board 10 having a power switch 12 and a heater switch 14 (three- position shown, but numerous variations are possible) provide power to the main circuit board 16
  • the heaters 18 provide heat to a hot roller 20 which is driven by a motor 22 (also
  • a light tube according to U.S. Patent 5,982,969 is the
  • the linear light enhancer used to enhance the visualization of a LED.
  • the light tube comprises a tubular
  • the cladding having an outer surface, a core within the cladding having a higher index of refraction than the cladding and a reflecting layer in a strip extending between the cladding and the core.
  • the cladding is a fluoronated polymer
  • the core is an acrylic polymer
  • the reflecting layer is a fluoronated polymer
  • FIG. 3 provides an illustrative circuit
  • a switch circuit board 10 houses two switches.
  • Power switch 12 is an
  • Power LED 26 provides a visual indication that the machine is
  • Heater switch 14 is comiected to Junctions 28 and 30, and serves to provide power for
  • the heaters by utilizing various resistor values in the circuit that sets up the input for turning the
  • An AC Link 32 receives power from the switch circuit board 10 and feeds the motor
  • optional fuse 34 is used to prevent short circuits.
  • the current is converted to AC to DC where a diode 36 and a resistor 38 harvests a portion of the power wave, and is attenuated by the load regulator of the Zener diode 40 and
  • the power is transmitted through a network of 10K and 20K
  • NTC 48 is a thermally sensitive
  • thermoistor coefficient resistor
  • NTC 48 sends out a higher voltage signal. NTC 48 is also connected to the
  • the switch circuit board provides the appropriate voltage signal to
  • comparator 50 The signal is fed into an inverted input (-) and compared to non-inverted input (+).
  • the NPN transistor 52 switches on a three dimensional, bi-directional thyristor
  • Triac 54 controlled diode
  • the Triac 54 will conduct electricity to the heaters 18.
  • a second NTC sensor 56 operates in essentially the same fashion as NTC 48.
  • NTC 48 and 56 will increase the voltage signal fed into the inverted input, and the resulting output voltage signal from
  • comparator 50 is lowered to trigger the NPN transistor 52 to effectively shut down conductance to
  • the cycle of heating and cooling maintains the heaters within an operational range
  • Comparator 62 turns on LED 8 when the temperature of the unit is appropriate for
  • Comparator 62 shares the same signal as comparator 50 and is fed in as an non-inverted
  • the inverted signal (-) is a constant resulting from a voltage drop between an 120K and
  • comparator 62 sends out a signal to NPN transistor 66 to turn on LED 8. When the LED illuminates,
  • Comparator 68 works in conjunction with Comparator 62 to trigger LED 8.
  • Comparator 68 provides a signal that is inversely proportionate with the signal from Comparator 62
  • non-inverted signal (+) is a constant, and its inverted input (-) is a variable function of the
  • temperature sensor NTC 48 signal which decreases as the temperature of the heater increases.
  • comparators 50 and 58 the signals from comparators 62 and 68 are combined and sent to NPN
  • NPN transistor 66 is down-sized by a resistive circuit 70 and balanced by a load regulator 72 that is
  • Zener diode 74 a semi-conductor device that operates to limit voltage when reverse

Abstract

The present invention provides an indicator system, far an appliance to notify an appliance operator that an operable temperature is reached by an element of the appliance. The indicator system comprises a light source that provides light to a linear light enhancer. The linear light enhancer transmits light from the light source along the length of the linear light enhancer, to increase the ability of an appliance operator to observe the light from the light source. The light enhancer is an optical fiber or a light tube. The invention is also directed to the incorporation of such indicator systems in appliances that require a heating period, such as for example, laminators.

Description

Enhanced Thermal Indicator Light System and Method for the Use Thereof
Field of the Invention
[0001] The present invention relates to a method and an indicator light system to provide
an enhanced visual indication of an operable high-temperature status in an appliance.
Background of the Invention
[0002] Numerous appliances require a waiting period for heated elements to reach an
operable temperature before the appliances can be used for their intended purposes. Examples of such appliances include laminators, binding machines, heat sealing machines, ovens, etc.
Larninators are machines that apply a polymer film over a substrate to improve the durability of the
substrate. Though laminators are better known for the application of polymeric films to paper documents, they are generally known for applying a protective medium on other substrates, such as
for example, sealing food in polymer pouches.
[0003] Lamination is generally recognized to be a process requiring a heat source and a
machine for applying a pressure to a thin laminate material to seal a substrate. As one example, a document is fed into a laminator where a film is applied to the document, then pressurized and heat treated so that the film forms a transparent overlay that protects the document. Usually, the heat
source is a hot roller, hot plate, cavity heat source, or thermal print head/platen assembly which is applied to a thin film mechanically positioned to force the film against the document.
[0004] The heat source typically converts electrical energy to thermal energy with a resistive
heating element. This heat conversion process is a slow process. Moreover, as the document is fed through the laminator, the heated element cools quickly and may need to be reheated before it is able
to laminate the next document. Without properly reheating the element, the next attempt at
lamination may provide poor lamination or adhesion of the laminated layer. Furthermore, on
occasion, the heating element may become overheated. Any attempt at lamination when the heating element is overheated my result in scorched or melted film and/or damaged substrate. It is therefore
not surprising that various methods have been tried to make sure the laminator is used only when the
heating element is within the operable temperature range.
[0005] For manually operated laminators, it is desirable to provide a means to notify the
operator that a heating element has reached the appropriate temperature to laminate a substrate. Means for providing a visual indication that the heating element has reached the desired temperature
are well-known. The most common method is a light indicator that illuminates when the desired
temperature is reached. However, common light indicators are often too dim, and/or not sufficiently
sensitive to provide a reliable indication that the appropriate temperature is reached. It would be desirable to provide an enhanced visual indication that heated elements in an appliance have reached the desired temperature.
[0006] hi U.S. Patent 5,982,969, Sugiyama et al. discloses an optical transmission tube
(herein "light tube") that transmits light at the side surface, is flexible, and does not require
inordinate amounts of power. According to Sugiyama et al., such a tube can be made by forming
a tubular cladding with a core within the cladding that has a higher index of refraction than the
cladding, and includes a strip of reflecting layer extended between the cladding and the core. Such
a system may provide a means to amplify the effect of a relatively dim light source, such as, for example, a temperature indicator light. Summary of the Invention
[0007] The present invention provides an indicator system and a method to provide an
enhanced visual indication of a operative high-temperature status in an appliance. Further, the
present invention is also directed to appliances, in particular laminators, incorporating such indicator
systems and using such methods.
[0008] h one embodiment, an indicator system comprises a light source that provides light
to a linear light enhancer. The linear light enhancer transmits light form the light source (preferably an LED) along the length of the linear light enhancer (preferably a light tube), to increase the ability
of an appliance operator to observe the light from the light source. Another embodiment includes
incandescent light as a light source. In a further embodiment, the light enhancer is an optical fiber, ϊn another embodiment, the light enhance is a light tube, as defined herein. Further embodiments include the incorporation of such indicator systems in appliances that require a heating period, such
as for example, laminators.
Brief Description of the Drawing Figures
[0009] Figure 1 is a perspective view of an exemplary laminator that incorporates an
indicator system according to the invention.
[0010] Figure 2 is an exploded view of the laminator shown in Figure 1 that incorporates
an indicator system according to the invention.
[0011] Figure 3 is a circuit diagram illustrating the indicator system in a laminator. Detailed Description of a Preferred Embodiment
[0012] The invention is described by the following examples. It should be recognized that
variations based on the inventive features disclosed herein are within the skill of the ordinary artisan,
and that the scope of the invention should not be limited by the examples. To properly determine
the scope of the invention, an interested party should consider the claims herein, and any equivalent thereof, hi addition, all citations herein are incorporated by reference.
[0013] A thermal indicator according to the present invention comprises a light source
coupled to a linear light enhancer. A power source is connected to the light source through an electronic circuit that provides sufficient power to illuminate the light source only when an operable temperature is reached for a heating element connected to the electronic circuit. Among numerous examples of light sources are light emitting diodes and incandescent light bulbs. Linear light
enhancers include optical fibers, reflecting polymers, lenses and light tubes. Linear light enhancers
may also have a measure of flexibility which allows the light to be formed into different shapes,
aside from just straight lines.
[0014] Although the thermal indicator according to the present invention canbe incorporated with any appliance that has an element that operates at a particular temperature, for the purpose of
illustrating the invention, herein, the indicator system is incorporated in a laminator 2 as shown in
Figure 1. In relevant part, the thermal indicator (see Figure 2), is seen through window 3, and is
powered by power switch 12 and heater switch 14.
[0015] Figure 2 provides an exploded view of laminator 2. The illustrative relevant parts
include a set of light tube holders 4, a light tube 6, a light source 8 (preferably an light emitting
diode (LED)). Switch circuit board 10 having a power switch 12 and a heater switch 14 (three- position shown, but numerous variations are possible) provide power to the main circuit board 16
and the heaters 18. The heaters 18 provide heat to a hot roller 20 which is driven by a motor 22 (also
powered from switch circuit board 10). Note that the light source 8 is coupled to an end of light tube
6.
[0016] h a preferred embodiment, a light tube according to U.S. Patent 5,982,969 is the
linear light enhancer used to enhance the visualization of a LED.. The light tube comprises a tubular
cladding having an outer surface, a core within the cladding having a higher index of refraction than the cladding and a reflecting layer in a strip extending between the cladding and the core. Preferably, the cladding is a fluoronated polymer, the core is an acrylic polymer and the reflecting layer
incorporates light scattering particles.
[0017] Numerous electronic circuits are known for regulating the light source that indicates
a heating element has reached an operable temperature. Figure 3 provides an illustrative circuit
diagram for a laminator. A switch circuit board 10 houses two switches. Power switch 12 is an
on/off switch that provides power to the AC link 24 that feeds the main circuit board 16, and restricts
the voltage through the circuit. Power LED 26 provides a visual indication that the machine is
turned on. Heater switch 14 is comiected to Junctions 28 and 30, and serves to provide power for
the heaters by utilizing various resistor values in the circuit that sets up the input for turning the
heaters on and off.
[0018] An AC Link 32 receives power from the switch circuit board 10 and feeds the motor
22 used to drive the roller 20 that provide the pressure and heat to laminate the substrates. An
optional fuse 34 is used to prevent short circuits.
[0019] The current is converted to AC to DC where a diode 36 and a resistor 38 harvests a portion of the power wave, and is attenuated by the load regulator of the Zener diode 40 and
capacitor 42 to steady the power. The power is transmitted through a network of 10K and 20K
resistors, 44 and 46 respectively, to bring the voltage into the working range. The power is fed into
a first Negative Temperature Coefficient (NTC) sensor 48. NTC 48 is a thermally sensitive
coefficient resistor (thermistor) used to measure temperature changes across the heaters 18. When
the temperature is low, NTC 48 sends out a higher voltage signal. NTC 48 is also connected to the
switchboard circuit board via junction 30 which controls the operating temperature, depending on
the thickness of the laminate. The switch circuit board provides the appropriate voltage signal to
comparator 50. The signal is fed into an inverted input (-) and compared to non-inverted input (+).
[0020] As the temperature of the heater increases, the voltage signal to the inverted input
(-) will increase and reduce the output signal to NPN transistor 52. If the signal to the NPN transistor
52 is appropriate, the NPN transistor 52 switches on a three dimensional, bi-directional thyristor
(controlled diode; Triac 54) to power up the heaters 18. The Triac 54 is triggered into conduction
when the transistor applies a signal to a Triac conducting gate (not shown). When the latch
amperage of the gate of the Triac is reached, the Triac 54 will conduct electricity to the heaters 18.
[0021] A second NTC sensor 56 operates in essentially the same fashion as NTC 48.
However, it senses the temperatures of roller 20 that contact the lamination media, and feeds a signal
into the invert input (-) of comparator 58. The invert input signal is compared with the non-invert
signal (+), and the resulting signal is combined with the output for comparator 50. The combined
signal is filtered by a capacitor and resistor circuit 60 to clean the signal. When the combined signal
reaches the right magnitude, it triggers the NPN transistor 52 to activate the Triac gate.
[0022] When the heater temperature exceeds the required temperature, NTC 48 and 56 will increase the voltage signal fed into the inverted input, and the resulting output voltage signal from
comparator 50 is lowered to trigger the NPN transistor 52 to effectively shut down conductance to
the heaters 18. The cycle of heating and cooling maintains the heaters within an operational range
for lamination.
[0023] Comparator 62 turns on LED 8 when the temperature of the unit is appropriate for
lamination. Comparator 62 shares the same signal as comparator 50 and is fed in as an non-inverted
signal (+). The inverted signal (-) is a constant resulting from a voltage drop between an 120K and
7.5M resistive circuit 64. When the temperature of the heaters is operable for lamination,
comparator 62 sends out a signal to NPN transistor 66 to turn on LED 8. When the LED illuminates,
its signal is amplified by the light tube 6.
[0024] Comparator 68 works in conjunction with Comparator 62 to trigger LED 8.
Comparator 68 provides a signal that is inversely proportionate with the signal from Comparator 62
to ensure that LED 8 is activated only when the heaters reach the appropriate temperature range. Its
non-inverted signal (+) is a constant, and its inverted input (-) is a variable function of the
temperature sensor NTC 48 signal which decreases as the temperature of the heater increases. Like
comparators 50 and 58, the signals from comparators 62 and 68 are combined and sent to NPN
transistor 66 to turn on LED 8 when the temperature is operable for lamination. The signal from the
NPN transistor 66 is down-sized by a resistive circuit 70 and balanced by a load regulator 72 that is
made from a Zener diode 74 (a semi-conductor device that operates to limit voltage when reverse
biased by taking advantage of the breakdown properties of the PN junction) and capacitor 76. The
voltage is kept constant to reduce offset and fluctuations in the power and flickering in the LED. While a preferred embodiment of the present invention has been disclosed and described in considerable detail, it should be understood that many changes and modifications ma be made in
the structure and method shown without departing from the spirit or scope of the invention. Accordingly, the invention should not be limited, except according to the appended claims.

Claims

We claim:
1. A thermal indicator system comprising a light source coupled to a linear light enhancer,
wherein a power source is connected to the light source through an electronic circuit that provides
sufficient power to illuminate the light source only when an operable temperature is reached for a
heating element comiected to the electronic circuit.
2. The thermal indicator system according to claim 1 wherein the light source is a light
emitting diode.
3. The thermal indicator system according to claim 1 wherein the linear light enhancer is a
light tube.
4. The thermal indicator system according to claim 1 wherein the linear light enhancer is a
light tube comprising a tubular cladding having an outer surface, a core within the cladding having a higher index of refraction than the cladding and a reflecting layer in a strip extending between the cladding and the core.
5. The thermal indicator system according to claim 1 wherein the linear light enhancer is a
light tube comprising a tubular fluoronated polymer cladding having an outer surface, an acrylic
polymer core within the cladding having a higher index of refraction than the cladding and a
reflecting layer in a strip extending between the cladding and the core, wherein the reflecting layer incorporates light scattering particles.
10
6. The thermal indicator system according to claim 1 wherein the linear light enhancer is a
light tube comprising a tubular fluoronated polymer cladding having an outer surface, an acrylic
polymer core within the cladding having a higher index of refraction than the cladding and a
reflecting layer in a strip extending between the cladding and the core, wherein the reflecting layer incorporates light scattering particles, and the light source is a light emitting diode.
7. An appliance incorporating a thermal indicator system comprising a light source coupled
to a linear light enhancer, wherein a power source is connected to the light source through an electronic circuit that provides sufficient power to illuminate the light source only when an operable temperature is reached for a heating element in the appliance that is connected to the electronic
circuit.
8. The appliance according to claim 7 wherein the light source is a light emitting diode.
9. The appliance according to claim 7 wherein the linear light enhancer is a light tube.
10. The appliance according to claim 7 wherein the linear light enhancer is a light tube
comprising a tubular cladding having an outer surface, a core within the cladding having a higher index of refraction than the cladding and a reflecting layer in a strip extending between the cladding and the core.
11
11. The appliance according to claim 7 wherein the linear light enhancer is a light tube
comprising a tubular fluoronated polymer cladding having an outer surface, an acrylic polymer core
withm the cladding having a higher index of refraction than the cladding and a reflecting layer in a
strip extending between the cladding and the core, wherein the reflecting layer incorporates light
scattering particles.
12. The appliance according to claim 7 wherein the linear light enhancer is a light tube
comprising a tubular fluoronated polymer cladding having an outer surface, an acrylic polymer core within the cladding having a higher index of refraction than the cladding and a reflecting layer in a
strip extending between the cladding and the core, wherein the reflecting layer incorporates light scattering particles, and the light source is a light emitting diode.
13. The appliance according to claim 7 wherein the appliance is a laminator.
14. The appliance according to claim 8 wherein the appliance is a laminator.
15. The appliance according to claim 9 wherein the appliance is a laminator.
16. The appliance according to claim 12 wherein the appliance is a laminator.
12
17. A method of providing a visual indication that a heated element has reached its
operational temperature range comprising:
providing an indicator system comprising a light source coupled to a linear light enhancer,
wherein a power source is connected to the light source through an electronic circuit that is also
connected to heating element; and
providing sufficient power to illuminate the light source only when the heating element reaches an operable temperature.
18. The method according to claim 17 wherein the linear light enhancer is a light tube.
19. The method according to claim 17 wherein the linear light enhancer is a light tube and
the light source is a light emitting diode.
20. The method according to claim 17 wherein the linear light enhancer is a light tube
comprising a tubular fluoronated polymer cladding having an outer surface, an acrylic polymer core within the cladding having a higher index of refraction than the cladding and a reflecting layer in a
strip extending between the cladding and the core, wherein the reflecting layer incorporates light scattering particles, and the light source is a light emitting diode.
13
PCT/US2003/032928 2002-11-05 2003-10-15 Enhanced thermal indicator light system and method for the use thereof WO2004044484A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003286439A AU2003286439A1 (en) 2002-11-05 2003-10-15 Enhanced thermal indicator light system and method for the use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/287,641 US6834988B2 (en) 2002-11-05 2002-11-05 Enhanced thermal indicator light system and method for the use thereof
US10/287,641 2002-11-05

Publications (2)

Publication Number Publication Date
WO2004044484A2 true WO2004044484A2 (en) 2004-05-27
WO2004044484A3 WO2004044484A3 (en) 2004-07-08

Family

ID=32175737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/032928 WO2004044484A2 (en) 2002-11-05 2003-10-15 Enhanced thermal indicator light system and method for the use thereof

Country Status (3)

Country Link
US (1) US6834988B2 (en)
AU (1) AU2003286439A1 (en)
WO (1) WO2004044484A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060146553A1 (en) * 2004-10-08 2006-07-06 B/E Aerospace, Inc. Dimmable reading light with emergency lighting capability
US20080245480A1 (en) * 2007-01-05 2008-10-09 Acco Brands Usa Llc Laminator menu system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901758A (en) * 1973-05-14 1975-08-26 Seal Laminating apparatus utilizing offset rollers
US4484233A (en) * 1982-09-30 1984-11-20 Schiff Photo Mechanics High speed, high resolution programmable multiformatting hardcopy video printer
US5369246A (en) * 1993-08-16 1994-11-29 General Binding Corporation Temperature control for laminator
US5982969A (en) * 1997-04-24 1999-11-09 Bridgestone Corporation Optical transmission tube, making method, and linear illuminant system
US6302552B1 (en) * 2000-05-30 2001-10-16 Delphi Technologies, Inc. Illuminated pointer with tubular shaft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901758A (en) * 1973-05-14 1975-08-26 Seal Laminating apparatus utilizing offset rollers
US4484233A (en) * 1982-09-30 1984-11-20 Schiff Photo Mechanics High speed, high resolution programmable multiformatting hardcopy video printer
US5369246A (en) * 1993-08-16 1994-11-29 General Binding Corporation Temperature control for laminator
US5982969A (en) * 1997-04-24 1999-11-09 Bridgestone Corporation Optical transmission tube, making method, and linear illuminant system
US6302552B1 (en) * 2000-05-30 2001-10-16 Delphi Technologies, Inc. Illuminated pointer with tubular shaft

Also Published As

Publication number Publication date
US20040085753A1 (en) 2004-05-06
US6834988B2 (en) 2004-12-28
AU2003286439A8 (en) 2004-06-03
WO2004044484A3 (en) 2004-07-08
AU2003286439A1 (en) 2004-06-03

Similar Documents

Publication Publication Date Title
US5369246A (en) Temperature control for laminator
US5783909A (en) Maintaining LED luminous intensity
CA2591147C (en) Heated protective window for an optical scanning device
WO2003025481A1 (en) Devices and methods for sensing condensation conditions and for removing condensation from surfaces
DE69320667D1 (en) Glass ceramic hob with several heating zones
CA2416831A1 (en) Electric heating device
US10064243B2 (en) Heat mat with thermostatic control
US6834988B2 (en) Enhanced thermal indicator light system and method for the use thereof
CN103085439B (en) Laminater
CN201214443Y (en) Automobile steering wheel
GB2193617A (en) Radiant heating means
ES2118051B1 (en) DISPLAY SETS.
AUPQ272099A0 (en) Laminated anti-fogging mirror assembly
JPH09112940A (en) Rolled screen type heater
CN204823092U (en) Transmission roller device of hobbing press
KR100298104B1 (en) Thermal effect device with temperature indicator
GB2438225A (en) Automatic mirror demisting device
CN2526877Y (en) Sticking machine
CN2924616Y (en) Temperature control circuit for laminating machine
CA2328439A1 (en) Maintaining led luminous intensity
CN2318787Y (en) Multifunction temp. controller for electric blanket
CN212393015U (en) Electric heating pad
CN110090784A (en) Thermosol gelgun electric feeding glue control device
JP2000214721A (en) Fixing device and image forming device
ES481662A1 (en) Electric bedcover

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP