WO2004044659A2 - Videohologramm und einrichtung zur rekonstruktion von videohologrammen - Google Patents

Videohologramm und einrichtung zur rekonstruktion von videohologrammen Download PDF

Info

Publication number
WO2004044659A2
WO2004044659A2 PCT/DE2003/003791 DE0303791W WO2004044659A2 WO 2004044659 A2 WO2004044659 A2 WO 2004044659A2 DE 0303791 W DE0303791 W DE 0303791W WO 2004044659 A2 WO2004044659 A2 WO 2004044659A2
Authority
WO
WIPO (PCT)
Prior art keywords
video
viewer
hologram
video hologram
reconstruction
Prior art date
Application number
PCT/DE2003/003791
Other languages
English (en)
French (fr)
Other versions
WO2004044659A3 (de
Inventor
Armin Schwerdtner
Original Assignee
Seereal Technologies Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP09168975.2A priority Critical patent/EP2138911B1/de
Priority to BR0316222-2A priority patent/BR0316222A/pt
Priority to DE50311875T priority patent/DE50311875D1/de
Priority to EP03788795A priority patent/EP1563346B1/de
Priority to US10/534,877 priority patent/US7839548B2/en
Priority to JP2004550657A priority patent/JP4473133B2/ja
Priority to AT03788795T priority patent/ATE441877T1/de
Application filed by Seereal Technologies Gmbh filed Critical Seereal Technologies Gmbh
Priority to EP09168963.8A priority patent/EP2138910B1/de
Priority to MXPA05005229A priority patent/MXPA05005229A/es
Publication of WO2004044659A2 publication Critical patent/WO2004044659A2/de
Publication of WO2004044659A3 publication Critical patent/WO2004044659A3/de
Priority to IL168538A priority patent/IL168538A/en
Priority to HK06107036.5A priority patent/HK1087198A1/xx
Priority to US11/427,629 priority patent/US8314981B2/en
Priority to US11/427,640 priority patent/US7315408B2/en
Priority to US11/427,638 priority patent/US20060238843A1/en
Priority to US11/427,655 priority patent/US20060238844A1/en
Priority to US11/427,649 priority patent/US20060238840A1/en
Priority to US11/427,645 priority patent/US7924484B2/en
Priority to US11/427,644 priority patent/US7929189B2/en
Priority to US11/937,991 priority patent/US8027071B2/en
Priority to US12/902,309 priority patent/US8174744B2/en
Priority to US13/216,761 priority patent/US8384974B2/en
Priority to US13/748,643 priority patent/US8941902B2/en
Priority to US14/592,227 priority patent/US9989920B2/en
Priority to US15/997,217 priority patent/US10884377B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/16Processes or apparatus for producing holograms using Fourier transform
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2286Particular reconstruction light ; Beam properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0841Encoding method mapping the synthesized field into a restricted set of values representative of the modulator parameters, e.g. detour phase coding
    • G03H2001/0858Cell encoding wherein each computed values is represented by at least two pixels of the modulator, e.g. detour phase coding
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2236Details of the viewing window
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2236Details of the viewing window
    • G03H2001/2242Multiple viewing windows
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • G03H2001/2263Multicoloured holobject
    • G03H2001/2271RGB holobject
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/303D object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/20Coherence of the light source
    • G03H2222/22Spatial coherence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/34Multiple light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2226/00Electro-optic or electronic components relating to digital holography
    • G03H2226/05Means for tracking the observer

Definitions

  • the invention relates to a nideohologram and a device for the reconstruction of nideoholograms with an optical system, consisting at least of a light source, a lens and the video hologram from cells arranged in a matrix or in another way, which are arranged in a regular manner and have at least one opening per cell that is controllable in amplitude and / or phase and a viewer level at the location of the light source image.
  • AOM acousto-optical modulators
  • CGH computer generated holograms
  • EASLM electronically addressable spatial light modulators
  • OASLM optically addressable spatial light modulator
  • the extent of the reconstructed Fourier hologram is greater than the periodicity interval, neighboring diffraction orders overlap.
  • the resolution ie the pitch of the openings
  • the edges of the reconstructed are increasingly disturbed by overlap from the higher diffraction orders.
  • the usable reconstruction is thereby increasingly restricted in its extent.
  • the required pitch in the hologram approaches the light wavelength.
  • the CGH In order to be able to display scenes that are as large as possible, the CGH must also be large. Both requirements require a large CGH with a large number of openings, which is currently not feasible in the form of displays with controllable openings (see EP 0 992 163 B1). CGH with controllable openings are therefore only one or a few inches in size, whereby the pitches are still considerably above 1 ⁇ m.
  • the hologram values must be calculated from the scenes to be reconstructed.
  • Fourier transformations of data streams of this size far exceed the performance of currently usable computers and preclude a hologram calculation based on local computers.
  • a transmission of this amount of information via data networks is currently not feasible for normal users.
  • the image is updated when the viewer position changes by constantly recalculating the part of the hologram that generates the image for the new viewer position. However, this partially nullifies the reduction in computing effort.
  • the video holograms according to the invention and devices for the reconstruction of video holograms with controllable openings provide that at least one viewer window is formed in the viewer level in a periodicity interval as a direct or inverse Fourier transform of the video hologram, through which a viewer can see a three-dimensional scene as a reconstruction.
  • the extent of the observer window corresponds at most to the periodicity interval in the plane of the Fourier reverse transformation at the location of the light source image.
  • the viewer window spans a truncated cone that contains the entire three-dimensional scene as a Fresnel transform of the video hologram.
  • the viewer window is approximately limited and positioned to one eye, a viewer's eye relief or to another suitable area.
  • a viewer window is assigned to the other eye of the viewer analogously. This takes place in that the light source under consideration is offset accordingly or by adding a second real or virtual, sufficiently coherent light source at another suitable location to complement a light source pair in the optical system. In this way, two-eyed viewing of the three-dimensional scene is made possible by two associated viewing windows.
  • the content of the video hologram can be changed in synchronization with the activation of the second viewer window according to the eye position, i.e. can be recoded. If there are several viewers, a corresponding number of viewer windows can be generated by switching on additional light sources.
  • Another essential concept of the invention for the device for the reconstruction of a video hologram is to arrange the optical system and the video hologram in such a way that the higher diffraction orders of the video hologram for the first viewer window have a zero or an intensity minimum at the location of the second Have viewer window. This prevents crosstalk from a viewer window for one eye to the other eye of a viewer or to other viewers.
  • the decrease in the intensity of the light towards higher diffraction orders due to the finite width of the openings in the video hologram and / or the minima of the intensity curve is thus advantageously used.
  • a sinc 2 function arises as the intensity curve, which drops quickly and represents a sin 2 function which decreases with increasing distances.
  • the scene can be viewed completely through the remaining viewing window.
  • These requirements for pitch and hologram size correspond to the Space-Bandwith products can already meet the displays available today.
  • the tracking of the viewing window is made possible by mechanical or ⁇ electronic offset of the light sources, realized by moving mirrors or by light sources that can be positioned in another suitable manner. With the shifting of the light source images, the observer windows also shift This ensures that the viewer sees the reconstructed three-dimensional scene and also theirs on the move
  • the colored reconstruction of a video hologram is also effectively possible. It is provided that the reconstruction takes place with at least three openings for the primary colors in amplitude and / or phase that can be controlled per cell, the coding for the openings being carried out separately for each primary color. Another possibility for the color reconstruction of a video hologram is to carry out at least three reconstructions in the basic colors carried out in succession on the basis of the device according to the invention.
  • holographic representations of extended spatial scenes by means of controllable displays, such as TFT flat displays, in real time and for large viewing angles.
  • controllable displays such as TFT flat displays
  • These video holograms are advantageously applicable in the television, multimedia, game and construction sector, in the military and in medical technology and in other fields of economy and society.
  • the three-dimensional scenes can be computer generated or otherwise generated.
  • Fig. 1 is a schematic representation of a video hologram and a device for
  • Fig. 2 is a schematic representation of a device for the reconstruction of
  • FIG. 4 shows an intensity curve of the light in the viewer plane as a function of the diffraction orders
  • Fig. 5 is a schematic representation of a device for the reconstruction of
  • a device for the reconstruction of video holograms consists of the video hologram, a sufficiently coherent real or virtual point or line light source and an optical system.
  • the video hologram itself is composed of cells arranged in the form of a matrix or in another regular manner, which contain at least one opening per cell which can be controlled in amplitude and / or phase.
  • the optical system for the reconstruction of the video hologram can be used in a known manner e.g. simply by means of an optical imaging system, consisting of a point or line-shaped laser and a sufficiently coherent light source.
  • FIG. 1 The basic arrangement of video hologram and reconstruction is shown in FIG. 1.
  • a light source 1 In the direction of light, a light source 1, a lens 2, a hologram 3 and an observer plane 4 are arranged one behind the other.
  • the viewer level 4 corresponds to the Fourier level of the inverse transformation of the video hologram with the diffraction orders.
  • the light source 1 is imaged into the observer plane 4 by an optical system, represented by the lens 2. If a hologram 3 is used, it is represented in the observer plane 4 as a Fourier inverse transformation.
  • the hologram 3 with periodic openings produces equidistantly continued diffraction orders in the observer plane 4, the holographic coding being carried out in the higher diffraction orders, for example by means of the so-called detour phase effect. Since the intensity decreases towards higher diffraction orders, the 1st or the 1st is usually used. Diffraction order chosen as viewer window 5. Unless expressly stated otherwise, the first diffraction order is used to explain the invention.
  • the extent of the reconstruction was chosen so that its size coincides with the periodicity interval of the 1st diffraction order in the observer level 4. Thus higher diffraction orders follow each other without a gap, but also without an overlap.
  • the selected 1st diffraction order forms the reconstructed hologram 3 as a Fourier transform, but does not represent the actual three-dimensional scene 6. It only serves as an observer window 5 through which the three-dimensional scene 6 can be viewed (see FIG. 2).
  • the actual three-dimensional scene 6 is indicated in the form of a circle in the interior of the light beam of the 1st diffraction order.
  • the scene therefore lies within the reconstruction cone, which is spanned by the hologram 3 and the viewer window 5.
  • the scene is created as a Fresnel transform of the hologram, while the viewer window is part of the Fourier transform.
  • the three-dimensional scene is made up of points. With the viewer window 5 as the base and the selected point 7 in the scene 6 as the tip, a cone is projected through this point onto the hologram 3. A projection area 8 is created in the video hologram 3, in which this point is encoded holographically.
  • the path lengths from the point 7 under consideration to the cells of the hologram 3 can be determined. With this reconstruction, the size of the observer window 5 is maintained in the periodicity interval. If, on the other hand, the point 7 under consideration was encoded in the entire hologram 3 in the example, the reconstructed would be extended beyond the periodicity interval. The viewer zones from neighboring diffraction orders would overlap, the viewer seeing a periodic continuation of the point 7 under consideration. A surface encoded in this way would appear washed out due to multiple overlays in its contours.
  • the drop in intensity to higher diffraction orders is advantageously used to suppress crosstalk to other viewing windows.
  • 4 shows schematically an intensity profile of the light over the diffraction orders, which arises from the width of the openings in the CGH.
  • the diffraction orders are plotted on the abscissa.
  • the first diffraction order represents the viewer window 5 for the left eye, that is to say the left viewer window, through which the three-dimensional scene 6 can be viewed.
  • the crosstalk into a viewing window for the right eye is suppressed by the decrease in intensity to higher orders and additionally by the zero of the intensity distribution.
  • the viewer can of course also view the scene 6 of the hologram 3 with both eyes (see FIG. 5).
  • the 1st diffraction order was chosen according to the position of the light source 1.
  • the left viewing window 5 is created there analogously.
  • the two light sources 1 and 1 ' are used to represent the corresponding three-dimensional scenes 6 and 6' (not shown here) in a fixed position with respect to the eyes.
  • the hologram 3 is re-encoded each time the light sources 1 and 1 'are switched on.
  • the two light sources 1 and 1 'are are used to represent the corresponding three-dimensional scenes 6 and 6' (not shown here) in a fixed position with respect to the eyes.
  • the hologram 3 is re-encoded each time the light sources 1 and 1 'are switched on.
  • the two light sources 1 and 1 'are switched on are switched on.
  • Light sources 1 and 1 simultaneously reconstruct the hologram 3 on the two viewing windows 5 and 5'.
  • the light sources 1 and 1 ' are adjusted so that the two viewer windows 5 and 5' remain localized on the viewer's eyes. This also applies to movements in the normal, i.e. perpendicular to the video hologram. Furthermore, several viewers can also view a three-dimensional scene by creating additional viewer windows by switching on additional light sources.

Abstract

Die Erfindung betrifft Videohologramme und Einrichtungen zur Rekonstruktion von Videohologrammen mit einem optischen System, bestehend aus Lichtquelle (1), Linse (2) und dem Videohologramm (3) aus matrixförmig oder regulär angeordneten Zellen mit mindestens einer in Amplitude und/oder Phase steuerbaren Öffnung je Zelle. Die Videohologramme und Einrichtungen zur Rekonstruktion derselben zeichnen sich dadurch aus, daß holografische Videodarstellungen ausgedehnter räumlicher Objekte (6) in einem weiten Betrachterbereich mittels steuerbarer Displays in Echtzeit realisierbar sind, wobei die Objekte entweder computergeneriert oder auf andere Weise erzeugt werden. Das Space-­Bandwith-Produkt (SBP) des Hologramms wird dabei auf ein Minimum reduziert, indem das Periodizitätsintervall des Fourierspektrums in der Rücktransformationsebene als Betrachterfenster (5) genutzt wird, durch welches das Objekt im davorliegenden Raum sichtbar wird. Die Beweglichkeit des/der Betrachter wird durch Nachführen des Betrachterfensters erreicht. Vorteilhafte Anwendungen bieten sich im Fernseh-, Multimedia-, Spiele- und Konstruktionsbereich, in der Militär- und Medizintechnik sowie in anderen Bereichen von Wirtschaft und Gesellschaft.

Description

Nideohologramm und Einrichtung zur Rekonstruktion von Nideohologrammen
Die Erfindung betrifft ein Nideohologramm und eine Einrichtung zur Rekonstruktion von Nideohologrammen mit einem optischen System, bestehend wenigstens aus einer Lichtquelle, einer Linse und dem Videohologramm aus matrixförmig oder in anderer Weise regulär angeordneten Zellen mit mindestens einer in Amplitude und/oder Phase steuerbaren Öffnung je Zelle sowie einer Betrachterebene am Ort des Lichtquellenbildes.
Es sind Einrichtungen zur Rekonstruktion von Videohologrammen mit akustooptischen Modulatoren (AOM) bekannt (Stephen A. Benton, Joel S. Kollin: Three dimensional display System, US 5,172,251). Diese akustooptischen Modulatoren wandeln elektrische Signale in optische Wellenfronten um, die dann durch Ablenkspiegel zu zweidimensionalen holografϊschen Flächen innerhalb eines Videoframes zusammengesetzt werden. Die Wellenfronten werden über weitere optische Elemente als eine für den Betrachter sichtbare Szene rekonstruiert. Die verwendeten optischen Mittel, wie Linsen und Ablenkelemente, haben die Ausdehnung der rekonstruierten Szenen und sind mit ihrer großen Bautiefe voluminös und schwer. Sie lassen sich kaum miniaturisieren und sind daher in ihrem Anwendungsbereich beschränkt.
Eine andere Möglichkeit, grosse Videohologramme zu erzeugen, bietet das sogenannte Tiling- Verfahren mit Computer Generierten Hologrammen (CGH). Nach diesem aus WO 00/75698 AI und US 6,437,919 Bl bekannten Verfahren werden kleine CGHs mit kleinem Pitch über eine Abbildungsoptik zusammengesetzt. Dafür werden in einem ersten Schritt schnelle Matrizen mit kleinem Pitch (in der Regel EASLM: Electronisch Adressierbare Spatiale Licht-Modulatoren) mit der nötigen Information beschrieben, auf ein holografisch geeignetes Medium abgebildet und zu einem größeren Videohologramm zusammengesetzt. Das verwendete Medium ist in der Regel ein Optisch Adressierbarer Spatialer Licht- Modulator (OASLM). In einem zweiten Schritt wird das zusammengesetzte Videohologramm mit kohärentem Licht in Transmission oder Reflexion rekonstruiert.
Bei den beispielsweise aus WO 01/95016 AI oder Fukaya u.a. „Eye-position tracking type electro-holographic display using liquid crystal devices", Proceedings of EOS Topical meeting on Diffractive Optics, 1997, bekannt gewordenen CGH mit matrixförmigen oder auf andere Weise regulär angeordneten steuerbaren Öffnungen wird die Beugung an kleinen Öffnungen für die Kodierung der Szenen angewendet. Die von den Öffnungen ausgehenden Wellenfronten konvergieren in Objektpunkten der dreidimensionalen Szene, bevor sie den Betrachter erreichen. Je kleiner der Pitch und damit die Grosse der Öffnungen in den CGH ist, umso grösser ist der Beugungswinkel, also der Betrachterwinkel. Eine Vergrösserung des Betrachterwinkels bedeutet bei diesen bekannten Verfahren daher eine Vergrösserung der Auflösung.
Bei Fourierhologrammen findet bekanntlich die Rekonstruktion in eine Ebene als direkte oder inverse Fouriertransformierte des Hologramms statt. Diese Rekonstruierte setzt sich periodisch mit einem Periodizitätsintervall fort, dessen Ausdehnung umgekehrt proportional zum Pitch im Hologramm ist.
Wenn die Ausdehnung der Rekonstruierten des Fourierhologramms grösser als das Periodizitätsintervall ist, überlappen sich benachbarte Beugungsordnungen. Mit zunehmender Verringerung der Auflösung, also wachsendem Pitch der Öffnungen, werden die Ränder der Rekonstruierten durch Überlappung aus den höheren Beugungsordnungen zunehmend gestört. Die nutzbare Rekonstruktion wird dadurch in ihrer Ausdehnung mehr und mehr eingeschränkt.
Will man größere Periodizätsintervalle und damit also grössere Betrachterwinkel erzielen, nähert sich der erforderliche Pitch im Hologramm der Lichtwellenlänge. Um dann möglichst große Szenen darstellen zu können, müssen aber auch die CGH entsprechend groß sein. Beide Forderungen verlangen ein großes CGH mit sehr vielen Öffnungen, das in Form von Displays mit steuerbaren Öffnungen gegenwärtig nicht realisierbar ist (s. EP 0 992 163 B 1). CGH mit steuerbaren Öffnungen sind daher nur ein oder wenige Zoll gross, wobei die Pitches noch erheblich über 1 μm liegen.
Beide Parameter, Pitch und Hologrammgrösse, werden durch das sogenannte Space- Bandwith-Produkt (SBP) als Anzahl der Öffnungen im Hologramm beschrieben. Soll die Rekonstruktion von einem CGH mit steuerbaren Öffnungen mit 50 cm Breite so erfolgen, dass ein Betrachter die Szene im Abstand von 1 m innerhalb eines horizontalen Betrachterfensters von 50 cm sehen kann, beträgt das SPB in horizontaler Richtung etwa
0,5*10°. Dem entsprechen im CGH 500.000 steuerbare Öffnungen mit einem Abstand von 1 μm. Bei einem Aspekt- Verhältnis von 4:3 ergeben sich in vertikaler Richtung entsprechend 375.000 Öffnungen. Das CGH enthält somit 3,75*10u Öffnungen, wenn man drei Farbsubpixel berücksichtigt. Diese Zahl verdreifacht sich noch, wenn man bedenkt, dass im CGH mit steuerbaren Öffnungen meist nur Amplituden beeinflusst werden können. Die Phasenkodierung erfolgt dann über den sogenannten Detourphasen-Effekt, wofür mindestens drei äquidistante Öffnungen je Abtastpunkt erforderlich sind. SLM mit so vielen steuerbaren Öffnungen sind derzeit nicht bekannt.
Die Hologrammwerte müssen aus den zu rekonstruierenden Szenen berechnet werden. Bei einer Farbtiefe von 1 Byte für jede der drei Grundfarben und einer Frame-Rate von 50 Hz benötigt ein CGH einen Informationsfluss von 50*1012 = 0,5*1014 Byte/s. Fouriertransformationen von Datenströmen dieser Grosse übersteigen die Leistung derzeit einsetzbarer Rechner bei weitem und schliessen eine Hologramm-Berechnung auf Basis lokaler Rechner aus. Aber auch eine Übertragung dieser Informationsmenge über Datennetze ist für den normalen Nutzer gegenwärtig nicht realisierbar.
Um die umfangreichen Rechenvorgänge zu verringern, wird beispielsweise auch vorgeschlagen, das Hologramm nicht vollständig zu berechnen, sondern nur in den Teilen, die direkt vom Betrachter eingesehen werden können oder die sich ändern. In der oben schon genannten Patentschrift WO 01/95016 AI wird ein solches Hologramm beschrieben, das aus adressierbaren Subregionen besteht, wie etwa das genannte Tiling-Hologramm. Ausgangspunkt der Berechnungen ist eine sogenannte effektive Austrittspupille, die mit der Augenpupille des Betrachters in der jeweiligen Position zusammenfallen kann. Die
Nachführung des Bildes bei einer Veränderung der Betrachterposition erfolgt durch ständige Neuberechnung des Hologrammteiles, der das Bild für die neue Betrachterposition erzeugt. Dadurch wird aber die Senkung des Rechenaufwandes zum Teil wieder zunichte gemacht.
Die Nachteile der bekannten Verfahren bestehen zusammengefasst darin, dass die
Anordnungen mit akusto-optischen Modulatoren zu voluminös sind und nicht auf heutige aus der Flachbildschirmtechnik bekannte Abmessungen reduziert werden können, dass die Videohologramme nach dem Tiling- Verfahren zweistufige Verfahren mit grossem technologischen Aufwand sind, die sich schwerlich auf Desktop-Grösse reduzieren lassen und dass schließlich die Anordnungen auf der Basis von SLM mit steuerbaren Öffnungen zu klein sind, um grosse Szenen rekonstruieren zu können. Dazu fehlen momentan steuerbare grosse SLM mit extrem kleinen Pitches sowie die erforderlichen Rechenleistungen und die erforderliche hohe Bandbreite der Netzwerke. Der Erfindung liegt die Aufgabe zugrunde, die angeführten Nachteile zu umgehen und ausgedehnte Videodarstellungen von Hologrammen in Echtzeit und für grosse Betrachterwinkel zu ermöglichen.
Diese Aufgabe wird erfϊndungsgemäß mit den im Patentanspruch 1 aufgeführten Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Patentansprüchen 2 bis 10 angegeben.
Die erfindungsgemässen Videohologramme und Einrichtungen zur Rekonstruktion von Videohologrammen mit steuerbaren Öffnungen sehen vor, dass in der Betrachterebene mindestens ein Betrachterfenster in einem Periodizitätsintervall als direkte oder inverse Fouriertransformierte des Videohologramms gebildet wird, durch das hindurch ein Betrachter eine dreidimensionale Szene als Rekonstruktion sehen kann. Die Ausdehnung des Betrachterfensters entspricht maximal dem Periodizitätsintervall in der Ebene der Fourier- Rücktransformation am Ort des Lichtquellenbildes. Das Betrachterfenster spannt zusammen mit dem Hologramm einen Kegelstumpf auf, der die gesamte dreidimensionale Szene als Fresnel-Transformierte des Videohologramms enthält.
Das Betrachterfenster ist in Ausbildung der Erfindung in etwa auf ein Auge, einen Augenabstand eines Betrachters oder auf einen anderen geeigneten Bereich begrenzt und positioniert.
Im Rahmen der Erfindung ist vorgesehen, dass dem anderen Auge des Betrachters analog ein Betrachterfenster zugeordnet wird. Das erfolgt dadurch, dass die betrachtete Lichtquelle entsprechend versetzt oder durch Zuschalten einer zweiten reellen oder virtuellen, hinreichend kohärenten Lichtquelle an einem anderen geeigneten Ort zu einem Lichtquellenpaar im optischen System ergänzt wird. Auf diese Weise wird die beidäugige Betrachtung der dreidimensionalen Szene durch zwei zugehörige Betrachterfenster ermöglicht. Dabei kann der Inhalt des Videohologramms synchron mit dem Zuschalten des zweiten Betrachterfensters entsprechend der Augenposition geändert, d.h. umkodiert werden. Bei mehreren Betrachtern können so durch Zuschalten weiterer Lichtquellen entsprechend viele Betrachterfenster erzeugt werden.
Für die Einrichtung zur Rekonstruktion eines Videohologramms besteht ein anderer wesentlicher Erfindungsgedanke darin, das optische System und das Videohologramm so anzuordnen, dass die höheren Beugungsordnungen des Videohologramms für das erste Betrachterfenster eine Nullstelle bzw. ein Intensitätsminimum am Ort des zweiten Betrachterfensters aufweisen. Damit wird ein Übersprechen eines Betrachterfensters für ein Auge auf das andere Auge eines Betrachters oder auf andere Betrachter verhindert. Der Intensitätsabfall des Lichts zu höheren Beugungsordnungen hin aufgrund der endlichen Breite der Öffnungen des Videohologramms oder/und der Minima des Intensitätsverlaufs wird so vorteilhaft ausgenutzt. Bei zum Beispiel rechteckigen Öffnungen entsteht als Intensitätsverlauf eine sinc2-Funktion, die schnell abfällt und eine mit grösser werdenden Abständen abnehmende sin2-Funktion darstellt.
Für das Videohologramm sind nur so viele Werte zu berechnen, wie das Display Öffnungen hat. Auf die gleiche Anzahl von Werten ist die Übertragung der Daten vom Computer oder vom Netz auf das Display als Hologramm beschränkt. Der Datenstrom unterscheidet sich daher praktisch nicht von dem heute schon durch die übliche Displaytechnik zu verarbeitenden Datenstrom. Das soll anhand eines Beispiels verdeutlicht werden. Reduziert man das Betr achter fenster durch Wahl eines hinreichend grob auflösenden Displays beispielsweise von horizontal 50 cm und vertikal 37,5 cm auf 1 cm x 1 cm, so entspricht das einer Reduzierung der Anzahl der Öffnungen im Hologramm auf 1/1875. In gleicher Weise wird bei einem Transfer über ein Netzwerk die erforderliche Bandbreite reduziert. Bei den nach bekannten Verfahren hergestellten Videohologrammen mit erforderlichen 10 1 Ö" ffnungen reduzieren sich di •ese i •m Beispiel auf etwa 5*10 R Pixel. Durch das verbleibende Betrachterfenster kann die Szene vollständig betrachtet werden. Diese Anforderungen an Pitch und Hologrammgrösse entsprechend dem Space-Bandwith-Produkt können heute verfügbare Displays bereits erfüllen. Damit können auf kostengünstige Weise grosse Echtzeit- Videohologramme auf Displays mit großem Pitch für einen großen Betrachterbereich realisiert werden. Die Nachführung des Betrachterfensters (Tracking) wird durch mechanischen oder ■ elektronischen Versatz der Lichtquellen, durch bewegliche Spiegel oder von auf andere geeignete Weise positionierbare Lichtquellen realisiert. Mit dem Verschieben der Lichtquellenbilder verschieben sich auch die Betrachterfenster. Bewegt sich der Betrachter, wird/werden die Lichtquelle/n so im Raum verschoben, dass die Betrachterfenster den Augen des Betrachters folgen. Dadurch wird gesichert, dass die Betrachter auch bei Bewegung die rekonstruierte dreidimensionale Szene sehen und andererseits ihre
Bewegungsfreiheit nicht eingeschränkt ist. Für die Positionsdetektion der Betrachter sind verschiedene Systeme bekannt, die hier vorteilhaft einsetzbar sind, beispielsweise auf Magnetsensoren basierende. Mit den erfindungsgemäßen Mitteln ist auch die farbige Rekonstruktion eines Videohologramms effektiv möglich. Dabei ist vorgesehen, dass die Rekonstruktion mit mindestens drei für die Grundfarben in Amplitude und/oder Phase steuerbaren Öffnungen je Zelle erfolgt, wobei die Kodierung für die Öffnungen für jede Grundfarbe separat vorgenommen wird. Eine andere Möglichkeit der farbigen Rekonstruktion eines Videohologramms besteht darin, wenigstens drei nacheinander ausgeführte Rekonstruktionen in den Grundfarben auf der Grundlage der erfindungsgemäßen Einrichtung durchzuführen.
Mit der vorliegenden Erfindung können vorteilhafterweise holografische Darstellungen von ausgedehnten räumlichen Szenen mittels steuerbarer Displays, wie TFT-Flachdisplays, in Echtzeit und für grosse Betrachterwinkel erzeugt werden. Diese Videohologramme sind vorteilhafterweise im Fernseh-, Multimedia-, Spiele- und Konstruktionsbereich, in der Militär- und in der Medizintechnik und in anderen Bereichen von Wirtschaft und Gesellschaft anwendbar. Die dreidimensionalen Szenen können computergeneriert oder auf andere Weise erzeugt werden.
Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird im folgenden näher beschrieben.
Es zeigen
Fig. 1 eine prinzipielle Darstellung eines Videohologramms und einer Einrichtung zur
Rekonstruktion von Videohologrammen mit der Entstehung der Beugungsordnungen und der Lage eines Betrachterfensters,
Fig. 2 eine prinzipielle Darstellung einer Einrichtung zur Rekonstruktion von
Videohologrammen mit einer dreidimensionalen Szene, die durch ein
Betrachterfenster hindurch betrachtet werden kann, Fig. 3 eine prinzipielle Darstellung einer Einrichtung zur Rekonstruktion von Videohologrammen mit der Kodierung der dreidimensionalen Szene in einem
Teil des Videohologramms, so dass die Beugungsordnungen nicht überlappen, Fig. 4 einen Intensitätsverlauf des Lichtes in der Betrachterebene in Abhängigkeit von den Beugungsordnungen und Fig. 5 eine prinzipielle Darstellung einer Einrichtung zur Rekonstruktion von
Videohologrammen mit der Lage der Betrachterfenster für beide Augen eines Betrachters hinsichtlich der Beugungsordnungen zur Vermeidung von Übersprechen.
Eine Einrichtung zur Rekonstruktion von Videohologrammen besteht aus dem Videohologramm, einer hinreichend kohärenten reellen oder virtuellen punkt- oder linienformigen Lichtquelle und aus einem optischen System. Das Videohologramm selbst setzt sich aus matrixförmig oder in anderer Weise regulär angeordneten Zellen zusammen, die mindestens eine in Amplitude und/oder Phase steuerbare Öffnung je Zelle enthalten. Das optische System zur Rekonstruktion des Videohologramms lässt sich in bekannter Weise z.B. einfach durch ein optisches Abbildungssystem, bestehend aus einem punkt- oder linienformigen Laser und einer hinreichend kohärenten Lichtquelle realisieren.
Die grundsätzliche Anordnung von Videohologramm und Rekonstruktion zeigt Fig. 1. In Lichtrichtung sind hintereinander eine Lichtquelle 1, eine Linse 2, ein Hologramm 3 und eine Betrachterebene 4 angeordnet. Der Betrachterebene 4 entspricht die Fourierebene der Rücktransformation des Videohologramms mit den Beugungsordnungen.
Die Lichtquelle 1 wird durch ein optisches System, repräsentiert durch die Linse 2, in die Betrachterebene 4 abgebildet. Setzt man ein Hologramm 3 ein, so wird es in der Betrachterebene 4 als Fourier-Rücktransformation dargestellt. Das Hologramm 3 mit periodischen Öffnungen erzeugt äquidistant fortgesetzte Beugungsordnungen in der Betrachterebene 4, wobei die holografische Kodierung, beispielsweise mittels des sogenannten Detourphasen-Effektes, in die höheren Beugungsordnungen erfolgt. Da die Intensität nach höheren Beugungsordnungen hin abnimmt, wird in der Regel die 1. oder die -1. Beugungsordnung als Betrachterfenster 5 gewählt. Wenn nicht ausdrücklich anders angegeben, wird zur Darlegung der Erfindung im weiteren von der 1. Beugungsordnung ausgegangen.
Die Ausdehnung der Rekonstruktion wurde hier so gewählt, dass sie in ihrer Größe mit dem Periodizitätsintervall der 1. Beugungsordnung in der Betrachterebene 4 übereinstimmt. Somit schliessen sich höhere Beugungsordnungen ohne Lücke, aber auch ohne Überlappung aneinander an. Die ausgewählte 1. Beugungsordnung bildet zwar als Fouriertransformierte die Rekonstruierte des Hologramms 3, stellt aber nicht die eigentliche dreidimensionale Szene 6 dar. Sie dient nur als Betrachterfenster 5, durch das hindurch die dreidimensionale Szene 6 betrachtet werden kann (s. Fig. 2). Im Inneren des Lichtbündels der 1. Beugungsordnung ist die eigentliche dreidimensionale Szene 6 in Form eines Kreises angedeutet. Die Szene liegt also innerhalb des Rekonstruktionskegels, der vom Hologramm 3 und dem Betrachter fenster 5 aufgespannt wird. Die Szene entsteht als Fresnel-Transformierte des Hologramms, während das Betrachterfenster ein Teil der Fourier-Transformierten ist.
Die Fig. 3 zeigt dazu die holografische Kodierung. Die dreidimensionale Szene ist aus Punkten aufgebaut. Mit dem Betrachterfenster 5 als Basis und dem ausgewählten Punkt 7 in der Szene 6 als Spitze wird ein Kegel durch diesen Punkt hindurch verlängert auf das Hologramm 3 projiziert. Es entsteht ein Projektionsgebiet 8 im Videohologramm 3, in dem dieser Punlct holografisch kodiert wird. Zur Berechnung der Phasenwerte kann man die Weglängen vom betrachteten Punkt 7 zu den Zellen des Hologramms 3 bestimmen. Mit dieser Rekonstruktion wird die Grosse des Betrachterfensters 5 im Periodizitätsintervall eingehalten. Würde im Beispiel dagegen der betrachtete Punkt 7 im gesamten Hologramm 3 kodiert, wäre die Rekonstruierte über das Periodizitätsintervall hinaus ausgedehnt. Die Betrachterzonen aus benachbarten Beugungsordnungen würden sich überlappen, wobei der Betrachter eine periodische Fortsetzung des betrachteten Punktes 7 sehen würde. Eine so kodierte Oberfläche würde durch Mehrfachüberlagerungen in ihren Konturen verwaschen erscheinen.
Vorteilhafterweise wird der Intensitätsabfall zu höheren Beugungsordnungen hin zur Unterdrückung des Übersprechens auf andere Betrachterfenster genutzt. Die Fig. 4 zeigt dazu schematisch einen Intensitätsverlauf des Lichts über die Beugungsordnungen, der durch die Breite der Öffnungen im CGH entsteht. Auf der Abszisse sind die Beugungsordnungen aufgetragen. Die 1. Beugungsordnung stellt das Betrachterfenster 5 für das linke Auge, also das linke Betrachterfenster, dar, durch das die dreidimensionale Szene 6 betrachtet werden kann. Das Übersprechen in ein Betrachterfenster für das rechte Auge wird durch den Abfall der Intensität zu höheren Ordnungen und zusätzlich noch durch die Nullstelle der Intensitätsverteilung unterdrückt. Der Betrachter kann die Szene 6 des Hologramms 3 natürlich auch mit beiden Augen betrachten (s. Fig. 5). Für das rechte Auge wurde als rechtes Betrachterfenster 5' die -1. Beugungsordnung zur Lichtquelle 1 ' gewählt. Wie aus der Zeichnung ersichtlich ist, spricht diese Intensität nur mit einem sehr geringen Wert auf das linke Auge über. Er entspricht hier der -6. Beugungsordnung.
Für das linke Auge wurde die 1. Beugungsordnung entsprechend der Lage der Lichtquelle 1 gewählt. Dort entsteht analog das linke Betrachtungsfenster 5. Erfindungsgemäss werden mit den zwei Lichtquellen 1 und 1 ' die entsprechenden dreidimensionalen Szenen 6 und 6' (hier nicht gezeigt) ortsfest bezüglich der Augen dargestellt. Dazu wird das Hologramm 3 beim Zuschalten der Lichtquellen 1 und 1 ' jeweils neu kodiert. Alternativ können die beiden
Lichtquellen 1 und 1 ' gleichzeitig das Hologramm 3 an den beiden Betrachterfenstern 5 und 5' rekonstruieren.
Bewegt sich der Betrachter, werden die Lichtquellen 1 und 1 ' so nachgeführt, dass die beiden Betrachterfenster 5 und 5' auf den Augen des Betrachters lokalisiert bleiben. Dies gilt auch bei Bewegungen in der Normalen, also senkrecht zum Videohologramm. Weiterhin können auch mehrere Betrachter eine dreidimensionale Szene betrachten, indem durch Zuschalten weiterer Lichtquellen zusätzliche Betrachterfenster entstehen.

Claims

Patentansprüche
1. Videohologramm und Einrichtung zur Rekonstruktion von Videohologrammen mit einem optischen System, bestehend aus mindestens einer reellen oder virtuellen punkt- und/oder linienformigen, hinreichend kohärenten Lichtquelle und einer Linse, sowie dem
Videohologramm aus matrixförmig oder in anderer Weise regulär angeordneten Zellen mit mindestens einer in Amplitude und/oder Phase steuerbaren Öffnung je Zelle und einer Betrachterebene am Ort des Lichtquellenbildes, dadurch gekennzeichnet, dass in der Betrachterebene ein Betrachterfenster (5) in einem Periodizitätsintervall der Rekonstruktion als Fouriertransformierte des Videohologramms (3) lokalisiert ist, durch welches hindurch eine dreidimensionale Szene (6) betrachtbar ist, und dass die Ausdehnung des Betrachterfensters (5) nicht größer als das Periodizitätsintervall ist.
2. Videohologramm und Einrichtung nach Patentanspruch 1, dadurch gekennzeichnet, dass das Betrachterfenster (5) in etwa auf ein Auge, einen Augenabstand eines Betrachters oder auf einen anderen geeigneten Bereich begrenzt und positioniert ist.
3. Videohologramm und Einrichtung nach Patentanspruch 1, dadurch gekennzeichnet, dass dem anderen Auge des Betrachters ein zweites Betrachterfenster (5') durch Zuschalten einer zweiten reellen oder virtuellen, hinreichend kohärenten Lichtquelle (1 ') an einem anderen geeigneten Ort zu einem Lichtquellenpaar im optischen System zugeordnet ist.
4. Videohologramm und Einrichtung nach Patentanspruch 3, dadurch gekennzeichnet, dass das optische System und das Videohologramm (3) so angeordnet sind, dass die höheren Beugungsordnungen des Videohologramms (3) für das erste Betrachterfenster (5) eine Nullstelle bzw. ein Intensitätsminimum am Ort des zweiten Betrachterfensters (5') aufweisen.
5. Videohologramm und Einrichtung nach Patentanspruch 4, dadurch gekennzeichnet, dass synchron mit dem Zuschalten des zweiten Betrachterfensters (5') das Videohologramm (3) für das zweite Auge umkodierbar ist.
6. Videohologramm und Einrichtung nach den Patentansprüchen 3 bis 5, dadurch gekennzeichnet, dass für mehrere Betrachter mehrere Lichtquellen zuschaltbar sind.
7. Videohologramm und Einrichtung nach einem der Patentansprüche 1 bis 6, dadurch gekennzeichnet, dass die Lichtquellen durch mechanischen oder elektronischen Versatz, durch bewegliche Spiegel, oder auf andere geeignete Weise positionierbar sind.
8. Videohologramm und Einrichtung nach einem der Patentansprüche 1 bis 7, dadurch gekennzeichnet, dass die Information zur Bestimmung der Position der Lichtquellen von wenigstens einem Positionsgeber in Abhängigkeit von der Position des oder der Betrachter geliefert wird.
9. Videohologramm und Einrichtung nach Patentanspruch 1, dadurch gekennzeichnet, dass die farbige Rekonstruktion eines Videohologramms (3) aus matrixförmig oder regulär angeordneten Zellen mit mindestens drei für die Grundfarben in Amplitude und/oder Phase steuerbaren Öffnungen je Zelle erfolgt, wobei die Kodierung für die Öffnungen für jede Grundfarbe separat erfolgt.
10. Videohologramm und Einrichtung nach Patentanspruch 1, dadurch gekennzeichnet, dass die farbige Rekonstruktion durch wenigstens drei nacheinander ausgeführte Rekonstruktionen in den Grundfarben erfolgt.
PCT/DE2003/003791 2002-11-13 2003-11-11 Videohologramm und einrichtung zur rekonstruktion von videohologrammen WO2004044659A2 (de)

Priority Applications (24)

Application Number Priority Date Filing Date Title
AT03788795T ATE441877T1 (de) 2002-11-13 2003-11-11 Einrichtung zur rekonstruktion von videohologrammen
DE50311875T DE50311875D1 (de) 2002-11-13 2003-11-11 Einrichtung zur rekonstruktion von videohologrammen
EP03788795A EP1563346B1 (de) 2002-11-13 2003-11-11 Einrichtung zur rekonstruktion von videohologrammen
US10/534,877 US7839548B2 (en) 2002-11-13 2003-11-11 Video hologram and device for reconstructing video holograms
JP2004550657A JP4473133B2 (ja) 2002-11-13 2003-11-11 映像ホログラムおよび映像ホログラム再生装置
EP09168975.2A EP2138911B1 (de) 2002-11-13 2003-11-11 Einrichtung zur Rekonstruktion von Videohologrammen
EP09168963.8A EP2138910B1 (de) 2002-11-13 2003-11-11 Einrichtung zur Rekonstruktion von Videohologrammen
BR0316222-2A BR0316222A (pt) 2002-11-13 2003-11-11 Holograma de vìdeo e dispositivo para reconstruir hologramas de vìdeo
MXPA05005229A MXPA05005229A (es) 2002-11-13 2003-11-11 Holograma de video y dispositivo para la reconstruccion de hologramas de video.
IL168538A IL168538A (en) 2002-11-13 2005-05-11 Video hologram and device for reconstructing video holograms
HK06107036.5A HK1087198A1 (en) 2002-11-13 2006-06-21 Video hologram and device for reconstructing video holograms
US11/427,629 US8314981B2 (en) 2002-11-13 2006-06-29 Video hologram and device for reconstructing video holograms with window at image plane
US11/427,644 US7929189B2 (en) 2002-11-13 2006-06-29 Video hologram and device for reconstructing video holograms using geometrical calculation
US11/427,645 US7924484B2 (en) 2002-11-13 2006-06-29 Video hologram and device for reconstructing video holograms with small region encoding
US11/427,640 US7315408B2 (en) 2002-11-13 2006-06-29 Video hologram and device for reconstructing video holograms for large objects
US11/427,638 US20060238843A1 (en) 2002-11-13 2006-06-29 Video hologram and device for reconstructing video holograms using a fresnel transform
US11/427,655 US20060238844A1 (en) 2002-11-13 2006-06-29 Video hologram and device for reconstructing video holograms using wavefront at eyes
US11/427,649 US20060238840A1 (en) 2002-11-13 2006-06-29 Video hologram and device for reconstructing video holograms with time sequential encoding
US11/937,991 US8027071B2 (en) 2002-11-13 2007-11-09 Video hologram and device for reconstructing video holograms for large objects
US12/902,309 US8174744B2 (en) 2002-11-13 2010-10-12 Video hologram and device for reconstructing video holograms
US13/216,761 US8384974B2 (en) 2002-11-13 2011-08-24 Method of computing a hologram by determining wavefronts at an observer eye position
US13/748,643 US8941902B2 (en) 2002-11-13 2013-01-24 Display device for displaying a reconstruction of an object
US14/592,227 US9989920B2 (en) 2002-11-13 2015-01-08 Method of computing a hologram for reconstructing an object using a display device
US15/997,217 US10884377B2 (en) 2002-11-13 2018-06-04 Method of computing a hologram for reconstructing an object using a display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10253292.3 2002-11-13
DE10253292 2002-11-13

Related Child Applications (11)

Application Number Title Priority Date Filing Date
US10/534,877 A-371-Of-International US7839548B2 (en) 2002-11-13 2003-11-11 Video hologram and device for reconstructing video holograms
US10534877 A-371-Of-International 2003-11-11
US11/427,649 Division US20060238840A1 (en) 2002-11-13 2006-06-29 Video hologram and device for reconstructing video holograms with time sequential encoding
US11/427,629 Division US8314981B2 (en) 2002-11-13 2006-06-29 Video hologram and device for reconstructing video holograms with window at image plane
US11/427,638 Division US20060238843A1 (en) 2002-11-13 2006-06-29 Video hologram and device for reconstructing video holograms using a fresnel transform
US11/427,644 Division US7929189B2 (en) 2002-11-13 2006-06-29 Video hologram and device for reconstructing video holograms using geometrical calculation
US11/427,655 Division US20060238844A1 (en) 2002-11-13 2006-06-29 Video hologram and device for reconstructing video holograms using wavefront at eyes
US11/427,645 Division US7924484B2 (en) 2002-11-13 2006-06-29 Video hologram and device for reconstructing video holograms with small region encoding
US11/427,640 Continuation US7315408B2 (en) 2002-11-13 2006-06-29 Video hologram and device for reconstructing video holograms for large objects
US11/427,640 Division US7315408B2 (en) 2002-11-13 2006-06-29 Video hologram and device for reconstructing video holograms for large objects
US12/902,309 Division US8174744B2 (en) 2002-11-13 2010-10-12 Video hologram and device for reconstructing video holograms

Publications (2)

Publication Number Publication Date
WO2004044659A2 true WO2004044659A2 (de) 2004-05-27
WO2004044659A3 WO2004044659A3 (de) 2004-07-15

Family

ID=32308559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/003791 WO2004044659A2 (de) 2002-11-13 2003-11-11 Videohologramm und einrichtung zur rekonstruktion von videohologrammen

Country Status (13)

Country Link
US (14) US7839548B2 (de)
EP (3) EP2138910B1 (de)
JP (5) JP4473133B2 (de)
KR (2) KR100891293B1 (de)
CN (3) CN101349889B (de)
AT (1) ATE441877T1 (de)
BR (1) BR0316222A (de)
DE (2) DE10353439B4 (de)
HK (2) HK1087198A1 (de)
IL (1) IL168538A (de)
MX (1) MXPA05005229A (de)
RU (2) RU2293365C2 (de)
WO (1) WO2004044659A2 (de)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006027228A1 (en) * 2004-09-08 2006-03-16 Seereal Technologies Gmbh Method and device for encoding and reconstructing computer-generated video holograms
WO2006066919A1 (en) 2004-12-23 2006-06-29 Seereal Technologies Gmbh A method of computing a hologram
WO2006119920A1 (en) * 2005-05-06 2006-11-16 Seereal Technologies Gmbh Device for holographic reconstruction of three-dimensional scenes
WO2007071391A2 (en) 2005-12-22 2007-06-28 Seereal Technologies S.A. Method for the compensation of an inhomogeneous brightness perception in holographically reconstructed scenes
WO2007073731A1 (de) * 2005-12-22 2007-07-05 Seereal Technologies S.A. Verfahren zur multimodalen darstellung von bildinhalten auf einer anzeigeeinrichtung für videohologramme und multimodale anzeigeeinrichtung
DE102006042324A1 (de) * 2006-09-01 2008-03-13 Seereal Technologies S.A. Verfahren zum Generieren computer-generierter Videohologramme in Echtzeit mittels Teilhologrammen
DE102007005822A1 (de) 2007-01-31 2008-08-07 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit optischer Wellennachführung
DE102007005823A1 (de) 2007-01-31 2008-08-07 Seereal Technologies S.A. Optische Wellenfrontkorrektur für ein holographisches Projektionssystem
DE102007011561A1 (de) * 2007-03-02 2008-09-04 Seereal Technologies S.A. Einrichtung zur Korrektur der Wellenlängenabhängigkeit in beugungsbasierten optischen Systemen
DE102007011560A1 (de) 2007-03-02 2008-09-04 Seereal Technologies S.A. Vorrichtung zur Minimierung der verbeugungsbedingten Dispersion in Lichtmodulatoren
DE102007018266A1 (de) 2007-04-10 2008-10-16 Seereal Technologies S.A. Holographisches Projektionssystem mit einer optischen Wellennachführung und Mitteln zum Korrigieren der holographischen Rekonstruktion
DE102007023740A1 (de) 2007-05-16 2008-11-20 Seereal Technologies S.A. Verfahren zur Generierung von Videohologrammen für eine holographische Wiedergabeeinrichtung mit wahlfreier Adressierung
DE102007023737A1 (de) 2007-05-16 2008-11-20 Seereal Technologies S.A. Verfahren zum Generieren von Videohologrammen in Echtzeit zur Erweiterung einer 3D-Rendering-Graphikpipeline
WO2008138981A2 (de) 2007-05-16 2008-11-20 Seereal Technologies S.A. Analytisches verfahren zur berechnung von videohologrammen in echtzeit
DE102007024235A1 (de) 2007-05-21 2008-11-27 Seereal Technologies S.A. Holografisches Rekonstruktionssystem sowie -verfahren mit erweitertem Sichtbarkeitsbereich
DE102007024237A1 (de) 2007-05-21 2008-11-27 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit einer optischen Wellennachführung
DE102007024236A1 (de) 2007-05-21 2008-11-27 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit einer Anordnung von steuerbaren Mikroprismen
DE102007023739A1 (de) 2007-05-16 2008-12-04 Seereal Technologies S.A. Verfahren zum Rendern und Generieren von Farbvideohologrammen in Echtzeit
DE102007025069A1 (de) 2007-05-21 2008-12-24 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit einer Nachführung der Rekonstruktion
DE102007023738A1 (de) * 2007-05-16 2009-01-08 Seereal Technologies S.A. Verfahren und Einrichtung zum Rekonstruieren einer dreidimensionalen Szene in einem holographischen Display
GB2453815A (en) * 2007-10-19 2009-04-22 Seereal Technologies Sa Spatial light modulator using electrowetting cells
DE102007051521A1 (de) 2007-10-19 2009-04-23 Seereal Technologies S.A. Dynamische Wellenformereinheit
JP2009524096A (ja) * 2006-01-20 2009-06-25 シーリアル テクノロジーズ ソシエテ アノニム 再構成空間拡大用ホログラフィック投影装置
DE102008000116A1 (de) 2008-01-21 2009-07-30 Seereal Technologies S.A. Beleuchtungseinheit für ein holographisches Rekonstruktionssystem
DE102008000589A1 (de) 2008-03-11 2009-10-15 Seereal Technologies S.A. Verfahren zur Kodierung von computergenerierten Hologrammen in pixelierten Lichtmodulatoren
DE102008054438A1 (de) 2008-12-09 2010-06-24 Seereal Technologies S.A. Optisches Bauteil zum Ablenken von das optische Bauteil durchlaufende Lichtstrahlen
WO2012004016A1 (de) 2010-07-06 2012-01-12 Seereal Technologies S.A. Strahlenaufweitung und verschiedenartige kollimatoren für holografische bzw. stereoskopische displays
US8218210B2 (en) 2006-09-01 2012-07-10 Seereal Technologies S.A. Method for generating computer-generated video holograms in real time by means of propagation
US8218211B2 (en) 2007-05-16 2012-07-10 Seereal Technologies S.A. Holographic display with a variable beam deflection
US8358454B2 (en) 2007-09-17 2013-01-22 Seereal Technologies S.A. Holographic display having improved reconstruction quality
US8368743B2 (en) 2006-09-01 2013-02-05 Seereal Technologies S.A. Interface and circuit arrangement, in particular for holographic encoding units or holographic reproduction devices
DE102011053037A1 (de) 2011-08-26 2013-02-28 Seereal Technologies S.A. Beleuchtungsvorrichtung
US8441703B2 (en) 2007-07-27 2013-05-14 Seereal Technologies S.A. Method and device for holographically reconstructing a scene
CN103116228A (zh) * 2011-11-16 2013-05-22 乐金显示有限公司 使用透射型液晶显示面板的空间光调制面板及使用该空间光调制面板的3d显示装置
WO2013079622A1 (de) 2011-12-01 2013-06-06 Seereal Technologies S.A. Verfahren zur kodierung eines hologramms in einer lichtmodulationseinrichtung
US8487980B2 (en) 2007-05-16 2013-07-16 Seereal Technologies S.A. Holographic display with communications
US8687252B2 (en) 2007-06-13 2014-04-01 Seereal Technologies S.A. Device for light modulation
US9581965B2 (en) 2007-05-16 2017-02-28 Seereal Technologies S.A. Analytic method for computing video holograms in real time
DE102008040581B4 (de) * 2008-07-21 2017-06-01 Seereal Technologies S.A. Steuerbare Lichtmodulationseinrichtung
WO2017149064A1 (en) 2016-03-02 2017-09-08 Seereal Technologies S.A. Illumination device
DE112016006094T5 (de) 2015-12-28 2018-12-06 Seereal Technologies S.A. Anzeigevorrichtung und Verfahren zum Optimieren der Bildqualität
WO2019110647A1 (de) 2017-12-07 2019-06-13 Seereal Technologies S.A. Head-up-display
US10353344B2 (en) 2013-06-06 2019-07-16 Seereal Technologies S.A. Device and method for calculating holographic data
US10678188B2 (en) 2006-09-01 2020-06-09 Seereal Technologies S.A. Method for generating a head up display for an aircraft using video holograms in real time with the help of sub-holograms
WO2022033996A2 (de) 2020-08-10 2022-02-17 Seereal Technologies S.A. Vorrichtung und verfahren zur berechnung von hologrammdaten

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9903032D0 (en) * 1999-02-11 1999-03-31 Symbian Ltd Messaging architecture
US7839548B2 (en) * 2002-11-13 2010-11-23 Seereal Technologies Gmbh Video hologram and device for reconstructing video holograms
DE102005021155B3 (de) 2005-04-29 2006-11-23 Seereal Technologies Gmbh Steuerbare Beleuchtungseinrichtung
DE102006003741B4 (de) 2006-01-18 2009-08-27 Seereal Technologies S.A. Verfahren zum Kodieren eines computergenerierten Hologramms
DE102006018689A1 (de) * 2006-04-13 2007-10-25 Seereal Technologies S.A. Verfahren zum Rendern und Generieren computergenerierter Videohologramme in Echtzeit
DE102006024356B4 (de) 2006-05-19 2016-09-29 Seereal Technologies S.A. Holographische Projektionsvorrichtung zur Rekonstruktion von Szenen und Verfahren zur holographischen Rekonstruktion
DE102006041637B4 (de) * 2006-09-05 2010-11-25 Seereal Technologies S.A. Wiedergabevorrichtung und Verfahren zum Nachführen eines Betrachterfensters
DE102006042467A1 (de) * 2006-09-09 2008-03-27 Seereal Technologies S.A. Verfahren und Vorrichtung zur Kodierung von computergenerierten Hologrammen in pixelierten Lichtmodulatoren
DE102006043297B4 (de) * 2006-09-14 2010-12-09 Seereal Technologies S.A. Wiedergabevorrichtung und Verfahren mit Mitteln zum Nachführen eines Betrachterfensters
TWI422999B (zh) * 2006-10-26 2014-01-11 Seereal Technologies Sa 全像顯示裝置、其製造方法及產生全像重建的方法
JP2010507823A (ja) * 2006-10-26 2010-03-11 シーリアル テクノロジーズ ソシエテ アノニム 小型のホログラフィック・ディスプレイ装置
GB0709379D0 (en) * 2007-05-16 2007-06-27 Seereal Technologies Sa Smart display extended
US8958137B2 (en) * 2006-10-26 2015-02-17 Seereal Technologies S.A. Holographic display device with 2D encoding
TWI432002B (zh) * 2006-10-26 2014-03-21 Seereal Technologies Sa 行動電話系統及其使用方法
DE102006062376B4 (de) 2006-12-19 2018-03-22 Seereal Technologies S.A. Verfahren und Wiedergabeeinrichtung zum Reduzieren von Speckle
DE102006062377B4 (de) 2006-12-19 2018-03-22 Seereal Technologies S.A. Verfahren und holographische Wiedergabeeinrichtung zum Reduzieren von Speckle
DE102006062413A1 (de) 2006-12-21 2008-06-26 Seereal Technologies S.A. Holographische Projektionsvorrichtung zur Vergrößerung eines Sichtbarkeitsbereichs
GB0716829D0 (en) * 2007-08-31 2007-10-10 Seereal Technologies Sa Holographic display
WO2009050294A2 (en) * 2007-10-19 2009-04-23 Seereal Technologies S.A. Light modulating device
GB2454246B (en) * 2007-11-02 2010-03-10 Light Blue Optics Ltd Holographic image display systems
MD3896G2 (ro) * 2008-01-25 2009-12-31 Государственный Университет Молд0 Dispozitiv pentru reconstrucţia hologramelor multiplexe
DE102008002692B4 (de) 2008-06-26 2019-02-21 Seereal Technologies S.A. Displayeinrichtung zur dreidimensionalen holographischen oder stereoskopischen Darstellung räumlicher Objekte und Verfahren zum Ermitteln einer Apodisationsfunktion für eine Apodisationsmaske
USRE45394E1 (en) 2008-10-20 2015-03-03 X6D Limited 3D glasses
USD603445S1 (en) 2009-03-13 2009-11-03 X6D Limited 3D glasses
USD666663S1 (en) 2008-10-20 2012-09-04 X6D Limited 3D glasses
USD624952S1 (en) 2008-10-20 2010-10-05 X6D Ltd. 3D glasses
US8542326B2 (en) 2008-11-17 2013-09-24 X6D Limited 3D shutter glasses for use with LCD displays
CA2684513A1 (en) * 2008-11-17 2010-05-17 X6D Limited Improved performance 3d glasses
USD646451S1 (en) 2009-03-30 2011-10-04 X6D Limited Cart for 3D glasses
US8927801B2 (en) 2009-04-13 2015-01-06 The Procter & Gamble Company Absorbent articles comprising wetness indicators
USD672804S1 (en) 2009-05-13 2012-12-18 X6D Limited 3D glasses
USD650956S1 (en) 2009-05-13 2011-12-20 X6D Limited Cart for 3D glasses
USD669522S1 (en) 2010-08-27 2012-10-23 X6D Limited 3D glasses
USD671590S1 (en) 2010-09-10 2012-11-27 X6D Limited 3D glasses
USD692941S1 (en) 2009-11-16 2013-11-05 X6D Limited 3D glasses
USD662965S1 (en) 2010-02-04 2012-07-03 X6D Limited 3D glasses
CN106933082B (zh) * 2010-04-01 2021-03-12 视瑞尔技术公司 用于在全息系统中编码包含透明物体的三维场景的方法和装置
USD664183S1 (en) 2010-08-27 2012-07-24 X6D Limited 3D glasses
KR101670927B1 (ko) * 2010-11-05 2016-11-01 삼성전자주식회사 디스플레이 장치 및 방법
US8913149B1 (en) 2010-11-30 2014-12-16 Integrity Applications Incorporated Apparatus and techniques for enhanced resolution imaging
DE102011005154B4 (de) 2010-12-22 2022-03-31 Seereal Technologies S.A. Lichtmodulationsvorrichtung für ein holographisches oder ein autostereoskopisches Display
US9291828B2 (en) 2010-12-22 2016-03-22 Seereal Technologies S.A. Combined light modulation device for tracking users
KR101841624B1 (ko) * 2012-01-25 2018-03-26 삼성전자주식회사 고속으로 3d 홀로그램을 생성하는 방법 및 장치
KR102015590B1 (ko) 2012-01-26 2019-08-28 시리얼 테크놀로지즈 에스.에이. 관찰자 추적 방식 디스플레이
US9581966B1 (en) 2012-02-15 2017-02-28 Integrity Applications Incorporated Systems and methodologies related to 3-D imaging and viewing
US9934614B2 (en) 2012-05-31 2018-04-03 Microsoft Technology Licensing, Llc Fixed size augmented reality objects
US9354606B1 (en) 2012-07-31 2016-05-31 Integrity Applications Incorporated Systems and methodologies related to generating projectable data for 3-D viewing
USD711959S1 (en) 2012-08-10 2014-08-26 X6D Limited Glasses for amblyopia treatment
US9219905B1 (en) 2012-08-31 2015-12-22 Integrity Applications Incorporated Systems and methodologies related to formatting data for 3-D viewing
WO2014052564A1 (en) 2012-09-26 2014-04-03 The Procter & Gamble Company Liquid-activated formulation with permanent colorant
AU2013237745A1 (en) 2012-10-09 2014-04-24 Aristocrat Technologies Australia Pty Limited A gaming system and a method of gaming
CN103186090B (zh) * 2013-03-14 2015-08-26 北京工业大学 数字全息成像在线重构显示系统及方法
US9310769B2 (en) * 2013-03-28 2016-04-12 Disney Enterprises, Inc. Coarse integral holographic display
FR3015743A1 (fr) * 2013-12-23 2015-06-26 Orange Procede de traitement d'une sequence d'images holographiques, dispositifs, signaux, dispositifs et programme d'ordinateur associes
KR102208960B1 (ko) 2014-04-09 2021-01-28 삼성전자주식회사 홀로그래픽 디스플레이
US9473764B2 (en) 2014-06-27 2016-10-18 Microsoft Technology Licensing, Llc Stereoscopic image display
KR20160027384A (ko) * 2014-08-29 2016-03-10 전자부품연구원 투명-디스플레이와 홀로그램을 이용한 전시 장치
DE102015101203B4 (de) 2015-01-28 2021-06-17 Seereal Technologies S.A. Lichtmodulationsvorrichtung und holographische Anzeigevorrichtung
KR101800929B1 (ko) 2015-01-29 2017-11-23 한국전자통신연구원 홀로그래픽 디스플레이 왜곡 보정 방법 및 장치
KR102384223B1 (ko) 2015-02-26 2022-04-07 삼성전자주식회사 3차원 영상 표시용 광 변조 신호 형성 방법, 3차원 영상 표시 방법 및 장치
EP3114528B1 (de) * 2015-03-04 2019-11-06 Facebook Technologies, LLC Zerstreute projektion für ein system der virtuellen realität
DE102015205873A1 (de) 2015-04-01 2016-10-06 Seereal Technologies S.A. Verfahren zur Berechnung von Hologrammen zur holographischen Rekonstruktion von zweidimensionalen und/oder dreidimensionalen Szenen
CN105223796B (zh) * 2015-09-08 2018-09-11 北京邮电大学 基于近眼显示设备的全息图计算方法及装置
KR102481579B1 (ko) * 2016-05-18 2022-12-26 시리얼 테크놀로지즈 에스.에이. 홀로그램을 생성하기 위한 방법
CN108020977A (zh) 2016-10-28 2018-05-11 京东方科技集团股份有限公司 显示装置及其显示方法
RU2650086C1 (ru) 2016-12-22 2018-04-06 Самсунг Электроникс Ко., Лтд. Устройство отображения голографических изображений и способ функционирования блока управления, содержащегося в нем
US10969740B2 (en) 2017-06-27 2021-04-06 Nvidia Corporation System and method for near-eye light field rendering for wide field of view interactive three-dimensional computer graphics
CN109581850B (zh) * 2017-09-29 2021-03-05 京东方科技集团股份有限公司 全息显示方法和全息显示装置
CN108305320B (zh) * 2018-02-09 2021-06-04 重庆大学 用于提高大视野全息成像质量的自适应滑动窗重建方法
WO2020018899A1 (en) * 2018-07-20 2020-01-23 Flex-N-Gate Advanced Product Development, Llc Animated 3d image multiplier
US11002987B2 (en) 2018-07-20 2021-05-11 Flex-N-Gate Advanced Product Development, Llc Floating image generation
WO2020035206A1 (de) 2018-08-16 2020-02-20 Seereal Technologies S.A. Lichtmodulationsvorrichtung
US11454928B2 (en) 2018-11-06 2022-09-27 Samsung Electronics Co., Ltd. Holographic display apparatus and method for providing expanded viewing window
KR102510926B1 (ko) * 2020-10-14 2023-03-16 울산과학기술원 디더링 마스크에 기반한 홀로그램 색상 지정 시스템 및 홀로그램 색상 지정 방법
US11798370B2 (en) 2020-10-26 2023-10-24 Lnw Gaming, Inc. Gaming machine and method with symbol array alteration
US11907435B1 (en) 2021-08-02 2024-02-20 Omar Kevin Ubilla Transformable apparatus with retractable display
WO2024058438A1 (ko) * 2022-09-15 2024-03-21 삼성전자 주식회사 홀로그램 영상을 제공하는 전자 장치 및 전자 장치의 동작 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798864A (en) * 1994-03-24 1998-08-25 Olympus Optical Co., Ltd. Projection type image display apparatus
WO1999000993A1 (en) * 1997-06-28 1999-01-07 The Secretary Of State For Defence Autostereoscopic display
GB2363273A (en) * 2000-06-09 2001-12-12 Secr Defence Computation time reduction for three dimensional displays

Family Cites Families (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028323A (en) * 1968-02-19 1977-06-07 Ciba-Geigy Ag Process for making azo compounds by coupling with nitrosated heterocyclic primary amines
US3635726A (en) * 1968-09-20 1972-01-18 Griffith Laboratories Method of producing soy protein concentrates
US3966982A (en) * 1973-06-18 1976-06-29 Dravo Corporation Process and apparatus for treating oleaginous seed material
US3957353A (en) * 1974-03-08 1976-05-18 The Board Of Trustees Of The Leland Stanford University Multiemulsion transparency providing separate phase and amplitude control
US3897574A (en) * 1974-03-21 1975-07-29 Central Soya Co Purification of ethanol extractant in soy protein concentrate process
US4188399A (en) * 1974-12-23 1980-02-12 Miles Laboratories, Inc. Process for preparing a heat coagulable viscous protein
CA1066329A (en) * 1976-03-16 1979-11-13 Edward J. Falk Tandem brake master cylinder
US4285862A (en) * 1976-09-30 1981-08-25 General Foods, Limited Protein isolate product
US4072670A (en) * 1976-10-26 1978-02-07 Mead Johnson & Company Low phytate isoelectric precipitated soy protein isolate
US4091120A (en) * 1976-11-15 1978-05-23 Mead Johnson & Company Liquid dietary product containing soy protein membrane isolate
US4151828A (en) * 1977-06-28 1979-05-01 Solarpower, Inc. Solar energy collection tube
US4321280A (en) * 1977-12-01 1982-03-23 General Foods Corporation Textured oil seed protein products
US4284656A (en) * 1979-12-14 1981-08-18 Hwa Stephen C P Novel protein curd product and process of preparation
US4346122A (en) * 1980-12-29 1982-08-24 A. E. Staley Manufacturing Company Low-viscosity, high-NSI, heat-gelling soy isolates
US4435438A (en) * 1980-12-29 1984-03-06 A. E. Staley Manufacturing Company Soy isolate suitable for use in imitation cheese
US4368151A (en) * 1981-08-10 1983-01-11 A. E. Staley Manufacturing Company 7S And 11S vegetable protein fractionation and isolation
US4460613A (en) * 1982-11-01 1984-07-17 Ralston Purina Company Basal material for the preparation of tofu
US4530788A (en) * 1982-12-03 1985-07-23 Stauffer Chemical Company Oil seed proteins evidencing improved functionality
US4500454A (en) * 1982-12-03 1985-02-19 Stauffer Chemical Company Vegetable protein evidencing improved solution viscosity
US4493854A (en) * 1983-09-20 1985-01-15 The United States Of America As Represented By The Secretary Of Agriculture Production of defatted soybean products by supercritical fluid extraction
US5290959A (en) * 1985-09-10 1994-03-01 Vitamins, Inc. Mass separation of materials
US5086166A (en) * 1987-02-13 1992-02-04 The Texas A&M University System Protein foods and food ingredients and processes for producing them from defatted and undefatted oilseeds
US5097017A (en) * 1989-12-20 1992-03-17 Central Soya Company, Inc. Process for making soy protein concentrate
US5172251A (en) 1990-04-12 1992-12-15 Massachusetts Institute Of Technology Three dimensional display system
US5191449A (en) * 1992-02-03 1993-03-02 Cfc Applied Holographics Animated holographic stereogram display
JPH0627864A (ja) * 1992-07-10 1994-02-04 Fujitsu Ltd 計算機ホログラムの作成方法及び装置
JPH0635391A (ja) * 1992-07-20 1994-02-10 Fujitsu Ltd 立体表示装置
US5798964A (en) * 1994-08-29 1998-08-25 Toshiba Corporation FRAM, FRAM card, and card system using the same
JP2765489B2 (ja) * 1994-09-30 1998-06-18 不二製油株式会社 大豆たん白及びその製造法
JP2989115B2 (ja) * 1995-03-27 1999-12-13 浜松ホトニクス株式会社 立体表示方法および立体表示装置
CA2146811C (en) * 1995-04-11 2003-07-01 David Michael Moore Dean Method and apparatus for presenting stereoscopic images
US5936069A (en) * 1995-12-06 1999-08-10 Iowa State University Research Foundation Process for producing improved soy protein concentrate from genetically-modified soybeans
ES2120878B1 (es) * 1996-01-05 1999-06-01 Alejo Trevijano Jose Javier Sistema estereoscopico electronico.
EP0793152B1 (de) * 1996-02-29 2007-06-06 Hamamatsu Photonics K.K. Holographisches Abbildungs- und Anzeigegerät und Verfahren
WO1997037547A1 (en) * 1996-04-09 1997-10-16 E.I. Du Pont De Nemours And Company Novel isoflavone-enriched soy protein product and method for its manufacture
US6108440A (en) * 1996-06-28 2000-08-22 Sony Corporation Image data converting method
JP3546618B2 (ja) * 1996-12-19 2004-07-28 不二製油株式会社 大豆蛋白の製造法
US6171640B1 (en) * 1997-04-04 2001-01-09 Monsanto Company High beta-conglycinin products and their use
JP3798511B2 (ja) * 1997-06-11 2006-07-19 浜松ホトニクス株式会社 計算機ホログラム表示装置
GB2330471A (en) 1997-10-15 1999-04-21 Secr Defence Production of moving images for holography
US6330088B1 (en) 1998-02-27 2001-12-11 Zebra Imaging, Inc. Method and apparatus for recording one-step, full-color, full-parallax, holographic stereograms
US6710920B1 (en) * 1998-03-27 2004-03-23 Sanyo Electric Co., Ltd Stereoscopic display
DE19825192A1 (de) * 1998-06-05 1999-12-16 Joerg Gutjahr Projektionsschirm
WO2000003309A1 (en) 1998-07-10 2000-01-20 Digilens Inc. Projection system based on reconfigurable holographic optics
JP2000059822A (ja) * 1998-08-06 2000-02-25 Toshiba Corp 立体映像表示装置
JP4026242B2 (ja) * 1998-08-19 2007-12-26 松下電器産業株式会社 光学式3次元動画表示装置
JP3505404B2 (ja) * 1998-10-16 2004-03-08 理想科学工業株式会社 ホログラムパターン決定装置、その決定方法及び記録媒体
US6844458B2 (en) * 1998-11-20 2005-01-18 Ip Holdings, L.L.C. Vegetable oil refining
EP1008919A1 (de) * 1998-12-09 2000-06-14 Communauté Européenne (CE) Computergestütztes Verfahren und Vorrichtung zur Wiedergabe von dreidimensionalen Bildern
GB2350962A (en) 1999-06-09 2000-12-13 Secr Defence Brit Holographic displays
US6335043B1 (en) * 1999-08-03 2002-01-01 Haokui Jiang Method for extracting soybean proteins using an enzyme
US6665100B1 (en) * 1999-08-10 2003-12-16 Zebra Imaging, Inc. Autostereoscopic three dimensional display using holographic projection
US6677327B1 (en) * 1999-11-24 2004-01-13 Archer-Daniels-Midland Company Phytosterol and phytostanol compositions
IL134701A0 (en) * 2000-02-23 2001-04-30 J P M E D Ltd Homogeneous solid matrix containing vegetable proteins
DE10008710C2 (de) * 2000-02-24 2002-01-10 Loh Optikmaschinen Ag Vorrichtung zum zentrierenden Spannen von optischen Linsen für deren Randbearbeitung
WO2002013633A1 (en) * 2000-08-11 2002-02-21 Food & Packaging Centre Management Limited Oil seed processing
WO2002015712A2 (en) * 2000-08-18 2002-02-28 Central Soya Company, Inc. Soy protein product and process for its manufacture
CN2439045Y (zh) * 2000-08-31 2001-07-11 深圳市泛彩溢实业有限公司 全息液晶显示器
EP1323352B1 (de) * 2000-09-29 2007-06-13 Fuji Oil Company, Ltd. Verfahren zur herstellung von sojabohneneiweiss
GB0027103D0 (en) * 2000-11-07 2000-12-20 Secr Defence Improved 3D display
JP2002149045A (ja) * 2000-11-15 2002-05-22 Victor Co Of Japan Ltd ホログラム記録媒体
US6630195B1 (en) * 2000-11-21 2003-10-07 Cargill, Incorporated Process for producing oilseed protein products
US7175869B2 (en) * 2000-11-30 2007-02-13 Kraft Foods Holdings, Inc. Method of deflavoring soy-derived materials using electrodialysis
US20040161513A1 (en) * 2000-11-30 2004-08-19 Kraft Foods Holdings, Inc. Method of preparation of high quality soy-containing meat and meat analog products
US7037547B2 (en) * 2000-11-30 2006-05-02 Kraft Foods Holdings, Inc. Method of deflavoring soy-derived materials for use in beverages
US6787173B2 (en) * 2000-11-30 2004-09-07 Kraft Foods Holdings, Inc. Method of deflavoring soy-derived materials
US20040161512A1 (en) * 2000-11-30 2004-08-19 Kraft Foods Holdings, Inc. Method of deflavoring soy-derived materials for use in dough-based and baked products
US7045163B2 (en) * 2000-11-30 2006-05-16 Kraft Foods Holdings, Inc. Method of deflavoring soy-derived materials
US20040170743A1 (en) * 2000-11-30 2004-09-02 Kraft Foods Holdings, Inc. Method of deflavoring soy-derived materials confectionary type products
US6576253B2 (en) * 2000-12-05 2003-06-10 Pbm Pharmaceuticals, Inc. Food bars containing nutritional supplements
JP4632331B2 (ja) 2000-12-19 2011-02-16 大日本印刷株式会社 光学複製用ホログラム原版の作製方法
US6797288B2 (en) * 2001-01-16 2004-09-28 Solae, Llc Gelling vegetable protein
KR100425293B1 (ko) * 2001-02-01 2004-03-30 삼성전자주식회사 입체 영상 표시 장치
US6803068B2 (en) * 2001-02-20 2004-10-12 Solae, Llc Highly soluble, high molecular weight soy protein
RU2316223C2 (ru) * 2001-05-04 2008-02-10 Баркон Ньютрасайнс (Мб) Корп. Производство белкового изолята из семян масличных культур
GB2379351A (en) * 2001-09-04 2003-03-05 Holographic Imaging Llc Illuminating a computer generated hologram
US20030059514A1 (en) * 2001-09-10 2003-03-27 Villagran Francisco Valentino Compositions comprising soy protein and processes of their preparation
AU2002342482B2 (en) * 2001-11-20 2008-04-03 Burcon Nutrascience (Mb) Corp. Continuous process for production of oil seed protein isolate
US7090863B2 (en) * 2001-11-30 2006-08-15 Inpharma S.A. Hypocholesterolemic composition and methods of use
CN100382717C (zh) * 2001-12-13 2008-04-23 伯康营养科学(Mb)公司 改进的油籽蛋白的回收
MXPA04011022A (es) * 2002-05-07 2005-07-14 Solae Llc Producto de proteina de soya alto en saponinas y bajo en isoflavonas y proceso para producir el mismo.
DK1515614T3 (da) * 2002-06-21 2009-01-19 Burcon Nutrascience Mb Corp Proteinekstraktion fra canolaoliefrömel
GB2391475B (en) * 2002-08-10 2005-02-02 Reckitt Benckiser A packaged hair-removing layer, its manufacture and its use
US7839548B2 (en) * 2002-11-13 2010-11-23 Seereal Technologies Gmbh Video hologram and device for reconstructing video holograms
US20060019017A1 (en) * 2002-12-09 2006-01-26 Navpreet Singh Soy protein concentrate with high gel strength and the process for making the same
US7018668B2 (en) * 2003-02-06 2006-03-28 Procter & Gamble Co. Low fat creamer compositions
CN1771470B (zh) * 2003-02-12 2010-09-29 大日本印刷株式会社 计算机合成全息图
US7645468B2 (en) * 2003-06-20 2010-01-12 Burcon Nutrascience (Mb) Corp. Oil seed meal preparation
US20050084470A1 (en) * 2003-10-15 2005-04-21 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Skin care and cleansing compositions containing oil seed product
US20050095345A1 (en) * 2003-11-04 2005-05-05 Schillinger John A. Soy products and soy product production methods and apparatus
WO2005063039A1 (ja) * 2003-12-26 2005-07-14 Fuji Oil Company, Limited クリーム類、その起泡物若しくは乾燥化粉末並びにそれらの製造法
US20050220979A1 (en) * 2004-04-02 2005-10-06 Craig Baumer High soy protein nuggets and applications in food products
GB2416108A (en) * 2004-07-16 2006-01-18 Solae Llc Protein-containing dairy product
US7556836B2 (en) * 2004-09-03 2009-07-07 Solae, Llc High protein snack product
US20060062889A1 (en) * 2004-09-17 2006-03-23 Solae, Llc. Soy protein-containing composition
US7169425B2 (en) * 2004-09-17 2007-01-30 Solae, Llc Size exclusion chromatography process for the preparation of an improved soy protein-containing composition
US20060121176A1 (en) * 2004-12-06 2006-06-08 Solae, Llc Soy protein-containing composition having improved functionality
US7332192B2 (en) * 2004-12-17 2008-02-19 Solae, Llc Soy protein isolate
DE102004063838A1 (de) * 2004-12-23 2006-07-06 Seereal Technologies Gmbh Verfahren und Einrichtung zum Berechnen computer generierter Videohologramme
US20070014896A1 (en) * 2005-07-18 2007-01-18 Wong Theodore M Calcium containing soy protein isolate composition
US20070031577A1 (en) * 2005-07-20 2007-02-08 Novozymes A/S Method for producing a soy protein product
US20070042103A1 (en) * 2005-08-17 2007-02-22 Solae, Llc. Isolated Soy Protein Having High Molecular Weight Protein Fractions and Low Molecular Weight Protein Fractions
US20070042106A1 (en) * 2005-08-17 2007-02-22 Solae, Llc High Protein Food Bars Comprising Sugar Alcohols and Having Improved Texture and Shelf-Life
WO2007041470A2 (en) * 2005-09-30 2007-04-12 Archer-Daniels-Midland Company High-protein soy-wheat crisps
US20070092633A1 (en) * 2005-10-25 2007-04-26 Navpreet Singh Soy protein product with a high sterol and tocopherol content and process for its manufacture
DE102007005822A1 (de) * 2007-01-31 2008-08-07 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit optischer Wellennachführung
JP5206951B2 (ja) * 2008-06-24 2013-06-12 株式会社ニコン 画像表示装置
KR101759252B1 (ko) * 2011-01-21 2017-07-19 삼성전자주식회사 액티브 셔터를 이용한 3차원 홀로그래피 영상 표시 장치
JP5903805B2 (ja) * 2011-08-31 2016-04-13 ブラザー工業株式会社 現像装置およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798864A (en) * 1994-03-24 1998-08-25 Olympus Optical Co., Ltd. Projection type image display apparatus
WO1999000993A1 (en) * 1997-06-28 1999-01-07 The Secretary Of State For Defence Autostereoscopic display
GB2363273A (en) * 2000-06-09 2001-12-12 Secr Defence Computation time reduction for three dimensional displays

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MEANO K ET AL: "ELECTRO-HOLOGRAPHIC DISPLAY USING 15MEGA PIXELS LCD" PROCEEDINGS OF THE SPIE, SPIE, BELLINGHAM, VA, US, Bd. 2652, 1996, Seiten 15-23, XP000923279 ISSN: 0277-786X *
MISHINA T ET AL: "Combination enlargement method of viewing zone for computer-generated holography" PRACTICAL HOLOGRAPHY XIV AND HOLOGRAPHIC MATERIALS VI, SAN JOSE, CA, USA, 24-25 JAN. 2000, Bd. 3956, Seiten 184-192, XP002278763 Proceedings of the SPIE - The International Society for Optical Engineering, 2000, SPIE-Int. Soc. Opt. Eng, USA ISSN: 0277-786X *
MISHINA T ET AL: "VIEWING-ZONE ENLARGEMENT METHOD FOR SAMPLED HOLOGRAM THAT USES HIGH-ORDER DIFFRACTION" APPLIED OPTICS, OPTICAL SOCIETY OF AMERICA,WASHINGTON, US, Bd. 41, Nr. 8, 10. März 2002 (2002-03-10), Seiten 1489-1499, XP001102391 ISSN: 0003-6935 *
See also references of EP1563346A2 *

Cited By (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7400431B2 (en) 2004-09-08 2008-07-15 Seereal Technologies Gmbh Method for encoding video holograms for holographically reconstructing a scene
KR100923523B1 (ko) * 2004-09-08 2009-10-27 씨리얼 테크놀로지스 게엠베하 컴퓨터 생성 비디오 홀로그램을 인코딩하고 재구성하는방법 및 장치
WO2006027228A1 (en) * 2004-09-08 2006-03-16 Seereal Technologies Gmbh Method and device for encoding and reconstructing computer-generated video holograms
DE102004044111B4 (de) * 2004-09-08 2015-05-07 Seereal Technologies Gmbh Verfahren und Vorrichtung zum Kodieren und Rekonstruieren von computergenerierten Videohologrammen
US9740167B2 (en) * 2004-12-23 2017-08-22 Seereal Technologies Gmbh Method of generating a holographic reconstruction of an object using observer tracking
US11392085B2 (en) 2004-12-23 2022-07-19 Seereal Technologies Gmbh Devices and methods for generating a holographic reconstruction of an object
WO2006066919A1 (en) 2004-12-23 2006-06-29 Seereal Technologies Gmbh A method of computing a hologram
JP2008525830A (ja) * 2004-12-23 2008-07-17 シーリアル、テクノロジーズ、ゲーエムベーハー コンピュータ生成ビデオホログラムを計算する方法及びデバイス
JP2008525832A (ja) * 2004-12-23 2008-07-17 シーリアル、テクノロジーズ、ゲーエムベーハー ホログラムを計算する方法
JP2012128432A (ja) * 2004-12-23 2012-07-05 Seereal Technologies Gmbh コンピュータ生成ビデオホログラムを計算する方法及びデバイス
JP2011221543A (ja) * 2004-12-23 2011-11-04 Seereal Technologies Gmbh ホログラムを計算する方法
US7969633B2 (en) 2004-12-23 2011-06-28 Seereal Technologies Gmbh Method and device for computing computer-generated video holograms
EP2290473A2 (de) 2004-12-23 2011-03-02 SeeReal Technologies GmbH Verfahren und Vorrichtung zum Berechnen und Anzeigen eines computergenerierten Video-Hologramms
CN101088053B (zh) * 2004-12-23 2011-01-19 视瑞尔技术公司 一种计算全息图的方法
US8804220B2 (en) * 2004-12-23 2014-08-12 Seereal Technologies Gmbh Method of computing a hologram
CN102063046B (zh) * 2004-12-23 2014-02-26 视瑞尔技术公司 一种应用显示装置生成物体的全息再现的方法
EP2290473A3 (de) * 2004-12-23 2014-11-26 SeeReal Technologies GmbH Verfahren und Vorrichtung zum Berechnen und Anzeigen eines computergenerierten Video-Hologramms
JP2017198994A (ja) * 2004-12-23 2017-11-02 シーリアル、テクノロジーズ、ゲーエムベーハーSeereal Technologies Gmbh ホログラムを計算する方法
US7636184B2 (en) 2004-12-23 2009-12-22 Seereal Technologies Gmbh Method and device for computing computer-generated video holograms
US20150036199A1 (en) * 2004-12-23 2015-02-05 Seereal Technologies Gmbh Method of computing a hologram
JP2015200893A (ja) * 2004-12-23 2015-11-12 シーリアル、テクノロジーズ、ゲーエムベーハーSeereal Technologies Gmbh ホログラムを計算する方法
TWI409719B (zh) * 2004-12-23 2013-09-21 Seereal Technologies Gmbh 計算全像影像之方法
US7535607B2 (en) 2005-05-06 2009-05-19 Seereal Technologies S.A. Device for holographic reconstruction of three-dimensional scenes
US8526088B2 (en) 2005-05-06 2013-09-03 Seereal Technologies Gmbh Device for holographic reconstruction of three-dimensional scenes
WO2006119920A1 (en) * 2005-05-06 2006-11-16 Seereal Technologies Gmbh Device for holographic reconstruction of three-dimensional scenes
WO2007071391A2 (en) 2005-12-22 2007-06-28 Seereal Technologies S.A. Method for the compensation of an inhomogeneous brightness perception in holographically reconstructed scenes
JP2009520994A (ja) * 2005-12-22 2009-05-28 シーリアル テクノロジーズ ソシエテ アノニム ビデオホログラム用表示装置における画像コンテンツのマルチモード表示方法及びマルチモード表示装置
JP2009520998A (ja) * 2005-12-22 2009-05-28 シーリアル テクノロジーズ ソシエテ アノニム ホログラフィックに再構成されたシーンにおける不均一な輝度知覚を補償する方法
US8208012B2 (en) 2005-12-22 2012-06-26 Seereal Technologies S.A. Method for the multimodal representation of image contents on a display unit for video holograms, and multimodal display unit
WO2007073731A1 (de) * 2005-12-22 2007-07-05 Seereal Technologies S.A. Verfahren zur multimodalen darstellung von bildinhalten auf einer anzeigeeinrichtung für videohologramme und multimodale anzeigeeinrichtung
JP2009524096A (ja) * 2006-01-20 2009-06-25 シーリアル テクノロジーズ ソシエテ アノニム 再構成空間拡大用ホログラフィック投影装置
DE102006042324B4 (de) * 2006-09-01 2014-06-18 Seereal Technologies S.A. Verfahren zum Generieren computer-generierter Videohologramme in Echtzeit mittels Teilhologrammen
DE102006042324A1 (de) * 2006-09-01 2008-03-13 Seereal Technologies S.A. Verfahren zum Generieren computer-generierter Videohologramme in Echtzeit mittels Teilhologrammen
US8218210B2 (en) 2006-09-01 2012-07-10 Seereal Technologies S.A. Method for generating computer-generated video holograms in real time by means of propagation
US10678188B2 (en) 2006-09-01 2020-06-09 Seereal Technologies S.A. Method for generating a head up display for an aircraft using video holograms in real time with the help of sub-holograms
US11460808B2 (en) 2006-09-01 2022-10-04 Seereal Technologies S.A. Method for generating a head up display for an aircraft using video holograms in real time with the help of sub-holograms
US8368743B2 (en) 2006-09-01 2013-02-05 Seereal Technologies S.A. Interface and circuit arrangement, in particular for holographic encoding units or holographic reproduction devices
US8462409B2 (en) 2007-01-31 2013-06-11 Seereal Technologies S.A. Optical wave correction for a holographic projection system
US8294966B2 (en) 2007-01-31 2012-10-23 Seereal Technologies S.A. Holographic reconstruction system with optical wave tracking means
DE102007005823A1 (de) 2007-01-31 2008-08-07 Seereal Technologies S.A. Optische Wellenfrontkorrektur für ein holographisches Projektionssystem
DE102007005822A1 (de) 2007-01-31 2008-08-07 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit optischer Wellennachführung
DE102007011561B4 (de) * 2007-03-02 2016-03-17 Seereal Technologies S.A. Einrichtung zur Korrektur der Wellenlängenabhängigkeit in beugungsbasierten optischen Systemen
DE102007011560A1 (de) 2007-03-02 2008-09-04 Seereal Technologies S.A. Vorrichtung zur Minimierung der verbeugungsbedingten Dispersion in Lichtmodulatoren
DE102007011561A1 (de) * 2007-03-02 2008-09-04 Seereal Technologies S.A. Einrichtung zur Korrektur der Wellenlängenabhängigkeit in beugungsbasierten optischen Systemen
US8395833B2 (en) 2007-04-10 2013-03-12 Seereal Technologies S.A. Holographic projection system with optical wave tracking and with means for correcting the holographic reconstruction
DE102007018266A1 (de) 2007-04-10 2008-10-16 Seereal Technologies S.A. Holographisches Projektionssystem mit einer optischen Wellennachführung und Mitteln zum Korrigieren der holographischen Rekonstruktion
US8325401B2 (en) 2007-05-16 2012-12-04 Seereal Technologies S.A. Method for generating video holograms in real-time for enhancing a 3D-rendering graphic pipeline
US9946224B2 (en) 2007-05-16 2018-04-17 Seereal Technologies S.A. Holographic display
DE102007023740A1 (de) 2007-05-16 2008-11-20 Seereal Technologies S.A. Verfahren zur Generierung von Videohologrammen für eine holographische Wiedergabeeinrichtung mit wahlfreier Adressierung
US8218211B2 (en) 2007-05-16 2012-07-10 Seereal Technologies S.A. Holographic display with a variable beam deflection
DE102007023737A1 (de) 2007-05-16 2008-11-20 Seereal Technologies S.A. Verfahren zum Generieren von Videohologrammen in Echtzeit zur Erweiterung einer 3D-Rendering-Graphikpipeline
US11269295B2 (en) 2007-05-16 2022-03-08 Seereal Technologies S.A. Holographic display
US10761481B2 (en) 2007-05-16 2020-09-01 Seereal Technologies S.A. Holographic display
WO2008138981A2 (de) 2007-05-16 2008-11-20 Seereal Technologies S.A. Analytisches verfahren zur berechnung von videohologrammen in echtzeit
US9829860B2 (en) 2007-05-16 2017-11-28 Seereal Technologies S.A. Analytic method for computing video holograms in real time
US9581965B2 (en) 2007-05-16 2017-02-28 Seereal Technologies S.A. Analytic method for computing video holograms in real time
US9368052B2 (en) 2007-05-16 2016-06-14 Seereal Technologies S.A. Holographic display
DE102007023785A1 (de) 2007-05-16 2008-12-04 Seereal Technologies S.A. Analytisches Verfahren zu Berechnung von Videohologrammen in Echtzeit
DE102007023739A1 (de) 2007-05-16 2008-12-04 Seereal Technologies S.A. Verfahren zum Rendern und Generieren von Farbvideohologrammen in Echtzeit
DE102007023738A1 (de) * 2007-05-16 2009-01-08 Seereal Technologies S.A. Verfahren und Einrichtung zum Rekonstruieren einer dreidimensionalen Szene in einem holographischen Display
DE102007023740B4 (de) * 2007-05-16 2009-04-09 Seereal Technologies S.A. Verfahren zur Generierung von Videohologrammen für eine holographische Wiedergabeeinrichtung mit wahlfreier Adressierung
TWI409716B (zh) * 2007-05-16 2013-09-21 Seereal Technologies Sa A computer device for generating a video image and for expanding Real - time generation of image - like image of 3D rendering drawing pipeline
US8487980B2 (en) 2007-05-16 2013-07-16 Seereal Technologies S.A. Holographic display with communications
DE102007024235A1 (de) 2007-05-21 2008-11-27 Seereal Technologies S.A. Holografisches Rekonstruktionssystem sowie -verfahren mit erweitertem Sichtbarkeitsbereich
DE102007024236A1 (de) 2007-05-21 2008-11-27 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit einer Anordnung von steuerbaren Mikroprismen
US8462408B2 (en) 2007-05-21 2013-06-11 Seereal Technologies S.A. Holographic reconstruction system with an optical wave tracking means
DE102007025069B4 (de) 2007-05-21 2018-05-24 Seereal Technologies S.A. Holographisches Rekonstruktionssystem
DE102007025069A1 (de) 2007-05-21 2008-12-24 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit einer Nachführung der Rekonstruktion
US8446654B2 (en) 2007-05-21 2013-05-21 Seereal Technologies S.A. Holographic reconstruction system and method with an enlarged visibility region
US8294965B2 (en) 2007-05-21 2012-10-23 Seereal Technologies S.A. Holographic reconstruction system and method with a sequence of visibility regions
US8405891B2 (en) 2007-05-21 2013-03-26 Seereal Technologies S.A. Holographic reconstruction system with an arrangement of controllable microcells
US8379079B2 (en) 2007-05-21 2013-02-19 Seereal Technologies S.A. Holographic reconstruction system with a tracking device for the reconstruction
DE102007024237A1 (de) 2007-05-21 2008-11-27 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit einer optischen Wellennachführung
US8687252B2 (en) 2007-06-13 2014-04-01 Seereal Technologies S.A. Device for light modulation
US8441703B2 (en) 2007-07-27 2013-05-14 Seereal Technologies S.A. Method and device for holographically reconstructing a scene
TWI416287B (zh) * 2007-09-17 2013-11-21 Seereal Technologies Sa Improve the quality of the reconstruction of the whole image display
US8358454B2 (en) 2007-09-17 2013-01-22 Seereal Technologies S.A. Holographic display having improved reconstruction quality
GB2453815B (en) * 2007-10-19 2009-11-04 Seereal Technologies Sa Spatial light modulator using electrowetting cells
GB2459315B (en) * 2007-10-19 2010-10-20 Seereal Technologies Sa Spatial light modulator using electowetting cells
GB2453815A (en) * 2007-10-19 2009-04-22 Seereal Technologies Sa Spatial light modulator using electrowetting cells
GB2453817B (en) * 2007-10-19 2010-06-09 Seereal Technologies Sa Spatial light modulator using electrowetting cells
US8243355B2 (en) 2007-10-19 2012-08-14 Seereal Technologies S.A. Dynamic wavefront shaping unit
GB2453817A (en) * 2007-10-19 2009-04-22 Seereal Technologies Sa Spatial light modulator using electrowetting cells
DE102007051521A1 (de) 2007-10-19 2009-04-23 Seereal Technologies S.A. Dynamische Wellenformereinheit
GB2459315A (en) * 2007-10-19 2009-10-21 Seereal Technologies Sa Spatial light modulator using electrowetting cells
DE102008000116A1 (de) 2008-01-21 2009-07-30 Seereal Technologies S.A. Beleuchtungseinheit für ein holographisches Rekonstruktionssystem
US8553302B2 (en) 2008-03-11 2013-10-08 Seereal Technologies S.A. Method for encoding computer-generated holograms using a correction function
DE102008000589A1 (de) 2008-03-11 2009-10-15 Seereal Technologies S.A. Verfahren zur Kodierung von computergenerierten Hologrammen in pixelierten Lichtmodulatoren
DE102008040581B4 (de) * 2008-07-21 2017-06-01 Seereal Technologies S.A. Steuerbare Lichtmodulationseinrichtung
DE102008054438A1 (de) 2008-12-09 2010-06-24 Seereal Technologies S.A. Optisches Bauteil zum Ablenken von das optische Bauteil durchlaufende Lichtstrahlen
US9395690B2 (en) 2010-07-06 2016-07-19 Seereal Technologies S.A. Beam divergence and various collimators for holographic or stereoscopic displays
US10295959B2 (en) 2010-07-06 2019-05-21 Seereal Technologies S.A. Beam divergence and various collimators for holographic or stereoscopic displays
US11385594B2 (en) 2010-07-06 2022-07-12 Seereal Technologies S.A. Beam divergence and various collimators for holographic or stereoscopic displays
WO2012004016A1 (de) 2010-07-06 2012-01-12 Seereal Technologies S.A. Strahlenaufweitung und verschiedenartige kollimatoren für holografische bzw. stereoskopische displays
DE102011053037A1 (de) 2011-08-26 2013-02-28 Seereal Technologies S.A. Beleuchtungsvorrichtung
WO2013030013A1 (de) 2011-08-26 2013-03-07 Seereal Technologies S.A. Beleuchtungsvorrichtung eines holographischen displays
CN103116228A (zh) * 2011-11-16 2013-05-22 乐金显示有限公司 使用透射型液晶显示面板的空间光调制面板及使用该空间光调制面板的3d显示装置
US10585394B2 (en) 2011-12-01 2020-03-10 Seereal Technologies S.A. Method for encoding a hologram in a light modulation device
WO2013079622A1 (de) 2011-12-01 2013-06-06 Seereal Technologies S.A. Verfahren zur kodierung eines hologramms in einer lichtmodulationseinrichtung
DE102011056006A1 (de) 2011-12-01 2013-06-27 Seereal Technologies S.A. Verfahren zur Kodierung eines Hologramms in einer Lichtmodulationseinrichtung
US9581963B2 (en) 2011-12-01 2017-02-28 Seereal Technologies S.A. Method for encoding a hologram in a light modulation device
US10353344B2 (en) 2013-06-06 2019-07-16 Seereal Technologies S.A. Device and method for calculating holographic data
US11635731B2 (en) 2013-06-06 2023-04-25 Seereal Technologies S.A. Device and method for calculating holographic data
DE112016006094T5 (de) 2015-12-28 2018-12-06 Seereal Technologies S.A. Anzeigevorrichtung und Verfahren zum Optimieren der Bildqualität
DE112017001110T5 (de) 2016-03-02 2018-12-27 Seereal Technologies S.A. Beleuchtungsvorrichtung
WO2017149064A1 (en) 2016-03-02 2017-09-08 Seereal Technologies S.A. Illumination device
WO2019110647A1 (de) 2017-12-07 2019-06-13 Seereal Technologies S.A. Head-up-display
US11327305B2 (en) 2017-12-07 2022-05-10 Seereal Technologies S.A. Head-up display
WO2022033996A2 (de) 2020-08-10 2022-02-17 Seereal Technologies S.A. Vorrichtung und verfahren zur berechnung von hologrammdaten

Also Published As

Publication number Publication date
CN1711509A (zh) 2005-12-21
US8384974B2 (en) 2013-02-26
CN102520604B (zh) 2015-10-28
EP1563346A2 (de) 2005-08-17
US7924484B2 (en) 2011-04-12
JP6249977B2 (ja) 2017-12-20
JP2010146019A (ja) 2010-07-01
US8174744B2 (en) 2012-05-08
BR0316222A (pt) 2005-10-04
DE50311875D1 (de) 2009-10-15
CN102520604A (zh) 2012-06-27
RU2005118086A (ru) 2006-01-20
US20060238837A1 (en) 2006-10-26
US9989920B2 (en) 2018-06-05
CN101349889B (zh) 2012-04-25
EP2138910B1 (de) 2020-05-13
KR20050055052A (ko) 2005-06-10
CN100437393C (zh) 2008-11-26
US20110026089A1 (en) 2011-02-03
JP5788427B2 (ja) 2015-09-30
US20060238838A1 (en) 2006-10-26
US7315408B2 (en) 2008-01-01
EP2138911A2 (de) 2009-12-30
JP4473133B2 (ja) 2010-06-02
RU2293365C2 (ru) 2007-02-10
US8941902B2 (en) 2015-01-27
HK1128338A1 (en) 2009-10-23
US20060238840A1 (en) 2006-10-26
US7929189B2 (en) 2011-04-19
WO2004044659A3 (de) 2004-07-15
MXPA05005229A (es) 2005-10-18
JP2013156646A (ja) 2013-08-15
EP2138911B1 (de) 2022-06-22
US8027071B2 (en) 2011-09-27
US20060238844A1 (en) 2006-10-26
KR20080035668A (ko) 2008-04-23
KR100915431B1 (ko) 2009-09-03
JP2006506660A (ja) 2006-02-23
US20060238843A1 (en) 2006-10-26
HK1087198A1 (en) 2006-10-06
KR100891293B1 (ko) 2009-04-06
EP2138910A2 (de) 2009-12-30
US8314981B2 (en) 2012-11-20
IL168538A (en) 2010-11-30
DE10353439B4 (de) 2009-07-09
US7839548B2 (en) 2010-11-23
EP2138911A3 (de) 2011-10-26
US20150192899A1 (en) 2015-07-09
JP2018028680A (ja) 2018-02-22
CN101349889A (zh) 2009-01-21
RU2007105102A (ru) 2008-08-20
US20110304895A1 (en) 2011-12-15
US10884377B2 (en) 2021-01-05
EP1563346B1 (de) 2009-09-02
US20130265626A1 (en) 2013-10-10
US20190137933A1 (en) 2019-05-09
EP2138910A3 (de) 2011-10-26
US20080252950A1 (en) 2008-10-16
RU2363025C2 (ru) 2009-07-27
US20060055994A1 (en) 2006-03-16
JP5371801B2 (ja) 2013-12-18
ATE441877T1 (de) 2009-09-15
US20060238839A1 (en) 2006-10-26
DE10353439A1 (de) 2004-06-09
JP6701143B2 (ja) 2020-05-27
JP2015156029A (ja) 2015-08-27
US20060238836A1 (en) 2006-10-26

Similar Documents

Publication Publication Date Title
EP2138910B1 (de) Einrichtung zur Rekonstruktion von Videohologrammen
DE102004044111B4 (de) Verfahren und Vorrichtung zum Kodieren und Rekonstruieren von computergenerierten Videohologrammen
EP1880252B1 (de) Projektionsvorrichtung und verfahren zur holographischen rekonstruktion von szenen
DE102005023743B4 (de) Projektionsvorrichtung und Verfahren zur holographischen Rekonstruktion von Szenen
DE102007045332B4 (de) Holographisches Display zum Rekonstruieren einer Szene
DE102006062377B4 (de) Verfahren und holographische Wiedergabeeinrichtung zum Reduzieren von Speckle
EP1974246B1 (de) Projektionsvorrichtung zur holographischen rekonstruktion von szenen
DE102007023785B4 (de) Analytisches Verfahren zu Berechnung von Videohologrammen in Echtzeit und holographische Wiedergabeeinrichtung
DE102007025069B4 (de) Holographisches Rekonstruktionssystem
DE102006062376B4 (de) Verfahren und Wiedergabeeinrichtung zum Reduzieren von Speckle
DE112007003043B4 (de) Holographische Projektionsvorrichtung und Verfahren zum Beobachten einer rekonstruierten Szene
DE102007023738A1 (de) Verfahren und Einrichtung zum Rekonstruieren einer dreidimensionalen Szene in einem holographischen Display
DE102007019277A1 (de) Einrichtung zur Erzeugung von holografischen Rekonstruktionen mit Lichtmodulatoren
EP2181361B1 (de) Holographische rekonstruktionseinrichtung
DE102015205873A1 (de) Verfahren zur Berechnung von Hologrammen zur holographischen Rekonstruktion von zweidimensionalen und/oder dreidimensionalen Szenen
WO2008025844A1 (de) Verfahren zum generieren computer-generierter videohologramme in echtzeit mittels propagation
DE102006004299A1 (de) Verfahren zur Datenkompression computergenerierter Videohologramme

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): BR CN IL IN JP KR MX NO PH RU SE SG TR US ZA

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1-2005-500748

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 168538

Country of ref document: IL

Ref document number: 1020057008370

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006055994

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 20038A3105X

Country of ref document: CN

Ref document number: 10534877

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004550657

Country of ref document: JP

Ref document number: PA/A/2005/005229

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2003788795

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057008370

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1221/CHENP/2005

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2005118086

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2003788795

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0316222

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10534877

Country of ref document: US