WO2004045752A1 - Mixing and pulverizing device - Google Patents

Mixing and pulverizing device Download PDF

Info

Publication number
WO2004045752A1
WO2004045752A1 PCT/JP2003/014254 JP0314254W WO2004045752A1 WO 2004045752 A1 WO2004045752 A1 WO 2004045752A1 JP 0314254 W JP0314254 W JP 0314254W WO 2004045752 A1 WO2004045752 A1 WO 2004045752A1
Authority
WO
WIPO (PCT)
Prior art keywords
small
chambers
chamber
small chamber
mixing
Prior art date
Application number
PCT/JP2003/014254
Other languages
French (fr)
Japanese (ja)
Inventor
Sukeyoshi Sekine
Original Assignee
Sukeyoshi Sekine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sukeyoshi Sekine filed Critical Sukeyoshi Sekine
Priority to JP2004553153A priority Critical patent/JP4203757B2/en
Priority to AU2003277642A priority patent/AU2003277642A1/en
Publication of WO2004045752A1 publication Critical patent/WO2004045752A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/422Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path between stacked plates, e.g. grooved or perforated plates

Definitions

  • the present invention relates to an apparatus for mixing various substances into a fluid for pulverization and micronization, and a method for mixing, pulverization and micronization of substances using the same.
  • the present invention relates to a method and an apparatus capable of realizing mixing, pulverization, and micronization of substances without using mechanical power, and further capable of accelerating a reaction process such as various modifications.
  • a device described in Japanese Patent Application Laid-Open No. 58-138382 is known as a static mixing device having no mechanical power.
  • the openings are arranged in close contact with each other so as to face each other, from the small room of the first structure to the plurality of small rooms of the second structure that are arranged oppositely, and from the small room of the second structure.
  • the fluid to be uniformly mixed flows into the plurality of small chambers of the first structure arranged. In this way, the fluid collides with the walls of multiple compartments, and attempts to achieve uniform mixing by repeating the complicated dispersion, inversion, vortex, radial dispersion, and aggregation of the flow.
  • the peripheral portion of the first and second structures has a front opening which is arranged in a honeycomb shape.
  • the shape of the chamber was not the same as the shape at the center of the first and second structures, and one or two sides had to be cut out. Where the notch exists, a short path of the fluid flow occurs, and eventually the fluid flows to the place having the least resistance to the flow. It was difficult to achieve the purpose of achieving a proper mixing.
  • the inventor of the present application has described that in a static mixing apparatus, a plurality of small chambers each having an open front surface are provided in a honeycomb shape over the entire surface of one side surface (over the entire area).
  • the shape and structure of the short path were improved by modifying the structure of the first and second structures around the first and second structures. Suppressing the occurrence, the fluid collides with the walls of multiple chambers, causing complex dispersion, inversion, vortex, radial dispersion, and aggregation of the flow to be repeated, and it is not limited to uniform mixing but mixed with the fluid And pulverization / micronization devices that can also pulverize, atomize, and modify existing materials (Japanese Patent Application Laid-Open No. 2002-126628, Japanese Patent Application Japanese Patent Application Laid-Open No. 2002-111111, 336, Japanese Unexamined Patent Publication No. 2002-284463. Disclosure of the invention
  • the inventor of the present invention has found that mixed, pulverized particles can be more effectively and efficiently mixed, pulverized, and finely divided, and the shape and structure of the apparatus are simple and the production cost can be reduced.
  • the present invention has been completed by further improving the above-mentioned mixing and pulverizing microparticle forming apparatus, which has been proposed above, in order to develop a chemical conversion apparatus.
  • the inventor of the present invention has examined the above-mentioned mixing and pulverizing device, which was previously proposed. From the small chamber of one of the structures arranged with the open front sides facing each other, When the fluid flows into the small chamber of the other structure, the fluid flows into the small chamber and is compressed, and the fluid begins to flow out of the small chamber and is released and diffused In the former case, the force in the compression direction is stronger, and in the latter case it is effectively released and diffused to a smaller pressure, and the pressure difference between the two is greater It was found that if possible, more effective and efficient mixing, pulverization, and fine-graining could be performed to promote various reaction processes such as reforming.
  • the mixing and pulverizing device invented by the inventor of the present application has the following structure.
  • the mixing and pulverizing device of the present invention has a first structure in which a plurality of small chambers each having an open front surface are provided from one end located upstream on one side to the other end located downstream.
  • the object and the second structure are arranged in close contact with the front openings of the small chambers facing each other, so that the small chambers of the first structure to the small chambers of the second structure, From the small chamber of the structure to the small chamber of the first structure, the space of each small chamber is sequentially communicated from the upstream side to the downstream side to form a fluid flow path.
  • the plurality of small chambers provided in the first structure and the second structure are arranged in order of one, one, and two from the upstream side to the downstream side.
  • the format is repeated one or more times, and the one small chamber is located at the center with respect to the center line of the small chamber passing from the upstream side to the downstream side of the first and second structures.
  • the two small chambers are arranged symmetrically with respect to the center line of the small chamber and have a shape and structure symmetric with respect to the center line of the small chamber. is there.
  • the front face is open.
  • the first and second structures each of which has a plurality of small chambers extending from one end located on the upstream side of one side to the other end located on the downstream side, have a front opening of each of the small chambers.
  • a unique aspect of the present invention in which the space portions of the respective small chambers are sequentially communicated toward the side to form a fluid material flow path is a mode in which a small chamber having an open front surface is arranged with the openings facing each other.
  • the first and second structures are, as described above, from upstream to downstream, respectively.
  • the form in which the compartments are arranged in the order of one, one, and two is repeated one or more times, and the one compartment is centered on the first and second structures.
  • the invention has a shape and structure symmetrical with respect to the center line of the small chamber passing from the upstream side to the downstream side, and the two small chambers are arranged line-symmetrically with respect to the center line of the small chamber, and
  • the first and second structures formed so as to have a shape and structure symmetrical with respect to the center line, and the first and second structures formed as described above are located on the upstream side of one of the structures. If the fluid chambers are arranged so as to be opposed to each other so as to form a fluid flow path starting from the small chamber and continuing to one downstream chamber in either one of the structures, the invention belongs to the present invention. is there.
  • one cell in one structure ⁇ one cell in the other structure-two cells in one structure ⁇ one cell in the other structure ⁇ one cell in one structure
  • Small chamber ⁇ two small chambers in the other structure ⁇ one small chamber in one structure ⁇ one small chamber in the other structure ⁇ one Two chambers in one structure ⁇
  • the mixing and pulverization device of the present invention has the above-described characteristic structure, a fluid in which a substance to be mixed, pulverized, and pulverized is mixed is press-fitted into the fluid flow path from the upstream side.
  • the fluid flows smoothly through the fluid flow path without losing balance, and is compressed when flowing from two small chambers in one of the structures to one small chamber in the other structure.
  • packing pressure When a strong force in one direction is applied (this phenomenon is referred to as “packing pressure”), the flow from one small chamber in one of the structures to two small chambers in the other structure In addition, it spreads well, evenly, and effectively (this phenomenon is called “explosion”).
  • This micronization in the mixing and pulverization micronization apparatus of the present invention enables the object to be pulverized and micronized to be spherical fine particles.
  • the fluid substance flow path is formed in the above-described form, and it is not necessary to dispose a small chamber over the entire surface (the entire area) of one side surface of the first and second structures.
  • the small chambers are arranged in order of one, one, and two from the side located on the upstream side to the side located on the downstream side. Therefore, it is easy to manufacture, and the manufacturing cost can be kept low.
  • the plurality of small chambers provided in the first structure and the second structure are one each from the upstream side to the downstream side. And the form in which the two cells are arranged in this order is repeated one or more times, and the one small chamber has its center positioned from the upstream side to the downstream side of the first and second structures. Shape and structure symmetrical with respect to the center line of the cell
  • the two small chambers are arranged symmetrically with respect to the center line of the small chamber, and instead of having a shape and structure symmetrical with respect to the center line of the small chamber, the small chamber is located upstream. From the side to the downstream side, one, one, and two pieces are arranged in this order as long as the form is repeated one or more times. You can also
  • the arrangement of the plurality of small chambers in each of the first structure and the second structure is one from the upstream side to the downstream side.
  • the fluid flow path is one small chamber in one structure ⁇ one small chamber in the other structure-two small chambers in one structure-one in the other structure One small chamber ⁇ One small chamber in one structure ⁇ Two small chambers in the other structure ⁇ One small chamber in one structure ⁇ One small chamber in the other structure ⁇ One structure As long as they are continuous in a pattern of two small chambers ⁇ one small chamber in the other structure, even if the particle size after treatment is not uniform, it can be mixed, crushed, and atomized. Material to be made into fine particles with a particle size of 0.5 to 8 microns Is the partial possible.
  • Another mixing and pulverizing apparatus of the present invention also includes a plurality of small chambers each having an open front surface from one end located upstream on one side to the other end located downstream.
  • the first structure and the second structure are arranged in close contact with the front openings of the small chambers facing each other, so that the small chambers of the first structure to the small chambers of the second structure, From the small chamber of the second structure to the small chamber of the first structure, the space of each small chamber is sequentially communicated from the upstream side to the downstream side to form a fluid flow path.
  • the plurality of small chambers are arranged one or two times in order from the upstream side to the downstream side once or two times, and the one small chamber is the It has a shape and structure symmetrical with respect to the center line of the small chamber passing the center from the upstream side to the downstream side of the first and second structures, and the two small chambers are aligned with the center line of the small chamber. It is arranged symmetrically with respect to the center, and has a shape and structure symmetrical with respect to the center line of the cell.
  • One small chamber 60 force plate located on the upstream side of one of the structures and the other one facing the other structure
  • One small chamber 70 located on the upstream side of the structure, and then, from the one small chamber 70 of the other opposite structure, the one small chamber 6 of the one structure
  • one next small chamber located downstream from the next two small chambers 61a and 61b in the one structure6 is intended to be formed continuously to 2.
  • the fluid flow path is one small chamber in one structure ⁇ one small chamber in the other structure ⁇ two small chambers in one structure-one small chamber in the other structure ⁇ one structure One small chamber in a structure ⁇ Two small rooms in the other structure ⁇ One small room in one structure ⁇ One small room in the other structure ⁇ Two small rooms in one structure ⁇
  • the other It is a single chamber in the above structure, which is a continuous pattern.
  • the fluid flow path shown in FIG. 8 (a) is one small chamber in one structure ⁇ one small chamber in the other structure ⁇ two small chambers in one structure-the other structure 2 small rooms in one structure ⁇ 1 small room in one structure ⁇ 1 small room in the other structure ⁇ 2 small rooms in one structure ⁇ 2 small rooms in the other structure ⁇ one structure ,
  • the cross-sectional area of the fluid flow path formed between the opposing small chambers are the same in all of the fluid flow paths, so that the fluid in which the substance to be treated is mixed flows in a well-balanced manner, and the fine particles have a more uniform particle size It is desirable for making fine particles.
  • the fluid inflow pipe connected to the inlet located on the upstream side has a gas injection port between the upstream side and the inlet. It can be a structure having a portion.
  • the fluid flow part of the gas injection part that is continuous with the fluid flow part of the fluid flow pipe has an inner diameter smaller than the inner diameter of the fluid flow part of the fluid flow pipe. It is desirable that a gas injection pipe having an inner diameter smaller than the inner diameter of the fluid flow part of the gas injection part is connected to the fluid flow part of the gas injection part.
  • a locally high pressure portion and a low pressure portion are locally generated during the complicated flow of the fluid in the fluid distribution channel.
  • a cavitation phenomenon occurs in which a myriad of minute bubbles are generated in the fluid at the part where the pressure is locally reduced.
  • the strong shock wave generated when the innumerable minute bubbles generated by the cavitation phenomenon are repelled causes the mixing and pulverizing and pulverizing processing mixed in the fluid material. Objects are subjected to strong pressure, and crushing and atomization are promoted.
  • the above-mentioned cavitation phenomenon can be more effectively performed on a larger scale. Can be generated. And, by this, the object of the mixing and pulverization Pulverization and atomization can be further promoted.
  • the fluid flow section of the gas injection section that is continuous with the fluid flow section of the fluid inflow pipe has an inner diameter smaller than the inner diameter of the fluid flow section of the fluid inflow pipe.
  • the structure is used so that the pressure in the fluid flowing part of the gas injection part is lower than the pressure in the fluid flowing part of the fluid inflow pipe.
  • the fluid flowing through the fluid flow part of the gas injection part is The flow velocity is higher than the flow velocity of the fluid flowing through the fluid flowing portion of the fluid inflow pipe.
  • the substance to be subjected to the mixing and pulverization processing flowing therein is compressed by pressurization and instantaneous explosive release,
  • the effects of compression, dispersion and release, generation of turbulence in the flow channel, addition of holding pressure and release pressure are continuously applied, and the material to be particulated can be decomposed by stress, and fine particles are generated and granulated.
  • the effect is obtained. That is, as explained by the so-called dissipation theory, extremely excellent mixing, pulverization, and micronization are performed.
  • fibrous substances can be micronized into spherical particles.
  • the members constituting the mixing and pulverizing microparticulation apparatus of the present invention such as first and second structures, semi-cylindrical bodies, cylindrical bodies, lids, etc., in which a plurality of small chambers having a front opening are provided, are defined as carbon.
  • a catalytic effect can be obtained by forming from a variety of metal composite materials such as copper, carbon and aluminum, carbon and magnesium, carbon and tungsten, carbon and titanium oxide, and mineral materials such as ceramics and tourmaline.
  • the first structure and the second structure in which the small chamber with the front opening constituting the mixing and pulverizing / micronizing device of the present invention is provided are molded articles of resin or synthetic resin, the small cell with the front opening is formed. It can be manufactured with high accuracy.
  • a plurality of N-poles and S-poles such as magnets for generating magnetic force, are provided on the outer periphery of the first and second structures, the semi-cylindrical body, and the cylindrical body that constitute the mixing and pulverization microparticle forming apparatus of the present invention, respectively. Then, the fluid to be mixed / crushed into fine particles can be re-molecularized by magnetic force, so that the mixing power can be further increased and fine particles can be promoted.
  • the semi-cylindrical body is divided into two parts, The structure can be fitted and fixed to the provided concave portion, or can be removed. Therefore, assembly, disassembly and maintenance are extremely easy.
  • a first structure 2 and a second structure 22 having a plurality of small chambers arranged and formed on one side are integrally formed with the semi-cylindrical bodies 40a and 40b, respectively.
  • the structure that forms the fluid flow path can be easily attached and detached, so that the fluid flow path can be formed using structures made of different materials, and substances that mix and become fine
  • the optimal mixing and fine particle treatment can be performed for
  • the proportion of the substance contained in the fluid stream, etc., the size of the front opening small chamber provided in the structure for forming the fluid flow path By changing the number, shape, and material of the material, it is possible to perform the optimal mixing and pulverization processing on the substance to be mixed and pulverized into fine particles.
  • the semi-cylindrical body, the cylindrical body, the structure for forming the fluid flow path, and the like in the mixing and pulverizing fine particle forming apparatus of the present invention are formed of a heat conductive material such as copper, aluminum, and carbon. By doing so, it can be used as a heat exchanger, and it has the effect of simultaneously mixing and atomizing and heat exchange.
  • the fluid When a fluid in which the substance to be atomized is mixed is press-fitted into the fluid flow path of the mixing and pulverizing atomizer of the present invention, the fluid is formed by small chambers having front openings facing each other. Through the fluid flow path, in this process, it repeatedly flows into and out of one small chamber to two small chambers and from two small chambers to one small chamber. Receives strong compression and. As a result, the substance to be finely divided can be made ultrafine and molecular.
  • the mixing and pulverizing device of the present invention under the critical condition and supercritical condition of the material to be micronized, it can be used as an industrial waste, for example, a hardly decomposable substance such as an environmental pollutant. Dioxins and the like can be decomposed and detoxified.
  • a method of use mixing of the substance to be decomposed with the solvent, and further, ultrafine particle and molecularization of the substance to be decomposed, and also promotes reactive decomposition, thereby achieving excellent decomposition. Processing can be enabled.
  • ultrasonic irradiation means electromagnetic wave irradiation means, infrared and far-infrared irradiation means, laser irradiation means, plasma generation means, etc. in combination, ultrafine particles and molecular Can be further promoted, and the reaction decomposition can be further promoted, so that a more advanced decomposition treatment can be achieved.
  • Fig. 1 (a) shows the first structure used in the mixing and pulverization micronization device of the present invention.
  • Fig. 1 (b) is a plan view showing the surface of the second structure used in the mixing and pulverizing and atomizing apparatus according to the present invention in which the small chamber is provided.
  • Fig. 1 (c) shows the first and second structures shown in Figs. 1 (a) and (b) in close contact with the small chambers with their open sides facing each other to form a fluid flow path. The top view explaining the arrangement state of the small chamber at the time of being performed.
  • FIG. 2 (a) is a diagram of one embodiment in which the first and second structures are closely arranged to form a fluid material flow path, as viewed from the entrance side
  • FIG. 2 (b) is a diagram of FIG. a) A view of the state where the first and second structures are arranged in close contact as viewed from the entrance side
  • FIG. 2 (c) shows a fluid material flow path in which the first and second structures are arranged in close contact
  • FIG. 5 is a view of another embodiment for forming the pit viewed from the entrance side.
  • FIG. 3 is a perspective view showing an embodiment of the mixing / crushing fine particle forming apparatus of the present invention.
  • FIG. 4 (a) is a diagram for explaining a fluid material flow path in another mixing / crushing and finely pulverizing apparatus of the present invention, and shows a state corresponding to FIG. 1 (c), and FIG. 4 (b).
  • Fig. 4 is a diagram illustrating the state of Fig. 4 (a) from the side.
  • FIG. 5 (a) is a diagram for explaining the flow path of the fluid material in another mixing / crushing micronization device of the present invention, and shows a state corresponding to FIG. 1 (c), (FIG. 5b)
  • Fig. 5 is a diagram illustrating the state of Fig. 5 (a) from the side.
  • FIG. 6 (a) is a diagram illustrating a fluid distribution path in another mixing / crushing micronization device of the present invention, and is a diagram showing a state corresponding to FIG. 1 (c), and FIG. () Is a diagram for explaining the state of FIG. 6 (a) from the side.
  • FIG. 7 is a view for explaining a flow path of a fluid material in another mixing and pulverizing apparatus of the present invention, and is a view corresponding to FIG. 1 (c).
  • FIG. 8 (a) is a view for explaining the flow path of a fluid material in still another mixing / crushing and finely pulverizing apparatus of the present invention, and is a view showing a state corresponding to FIG. 1 (c).
  • FIG. 8 (b) is a diagram for explaining the cross-sectional area of the fluid flow path formed by the opposed small chambers in FIG. 8 (a).
  • Fig. 9 (a) is an electron micrograph of carbon powder (1200 ° C treated charcoal) before being subjected to mixing and pulverization using the mixing and pulverization micropulverizer of the present invention.
  • (B) is an electron microscope of carbon powder (2800 ° C.-treated charcoal) before being subjected to mixing and pulverization using the mixing and pulverization / pulverization apparatus of the present invention. Photo.
  • Fig. 10 (a) is an electron micrograph of the charcoal treated at 1200 ° C after being treated for 5 minutes by the mixing and pulverizing and atomizing device of the present invention
  • Fig. 10 (b) is a micrograph of Fig. 10 ( Electron micrograph at magnification of a).
  • Fig. 11 (a) is an electron micrograph of the 2800 ° C-treated charcoal after being treated for 5 minutes by the mixing and pulverizing micronizing device of the present invention
  • Fig. 11 (b) is Fig. 11 (a). An electron micrograph at an enlarged magnification of).
  • FIG. 12 is a front view illustrating an embodiment when the mixing and pulverizing device of the present invention is used as a device for converting soybeans to ultrafine particles.
  • FIG. 13 (a) is a block diagram illustrating one embodiment of the mixing and pulverization microparticulation in which the micronization method using the mixing and pulverization micronization apparatus of the present invention is employed, and FIG. 13 (b).
  • Fig. 13 is a block diagram for explaining another embodiment
  • Fig. 13 (c) is a block diagram for explaining still another embodiment.
  • FIG. 14 is a block diagram illustrating an embodiment in which waste plastics and virgin plastics are finely treated by continuous supercritical processing using the mixing and pulverizing finely divided apparatus of the present invention.
  • FIG. 15 is a cross-sectional view, with a part omitted, for explaining a gas injection section provided in the mixing / crushing / micronizing apparatus of the present invention.
  • FIG. 1 (a) shows the surface of the first structure 2 employed in the mixing and pulverizing and atomizing device of the present invention, in which a plurality of small chambers 3a, 3b, ..., and 14 are provided with a front opening.
  • FIG. Fig. 1 (b) shows a plurality of small chambers 24, ..., 35a, 35b with a front opening of the second structure 22 used in the mixing and pulverizing and atomizing apparatus of the present invention. It is a top view showing the surface which has.
  • the plurality of chambers provided in the first structure 2 are denoted by reference numerals 4, 5, 6a, 6b, 7, 8, 9a, 9b, 10 and 11 in FIG. 1 (a). , 12a, 12b, one from the upstream side (the right side in Fig. 1 (a)) to the downstream side (the left side in Fig. 1 (a)). , In which the two arrangements are repeated one or more times.
  • the plurality of small chambers provided in the first and second structures according to the present invention are one, one, one from one end located on the upstream side to the other end located on the downstream side.
  • the form in which two pieces are arranged in order is repeated once or more than once.
  • one small chamber 4, 5 in FIG. 1 (a) Next, two small chambers 6a and 6b are arranged in order.
  • two small chambers 3a and 3b are followed by one small chamber 4 and 5 Are arranged in order.
  • one cell 5 is followed by two cells 6a, 6b,
  • one small chamber 7 is arranged in order, and from the upstream side (the right side in Fig. 1 (a)) to the downstream side (the left side in Fig. 1 (a)).
  • Fig. 1 (b) In the configuration shown in Fig. 1 (b), from the upstream side (in Fig. 1 (b), right side) to the downstream side (in Fig. 1 (b), left side) First, one small room 24, one small room 25, and then two small rooms 26a and 26b are arranged in this order. The downstream side (the left side in Fig. 1 (b)) Two small chambers 35a, 35b are arranged in order following one small chamber 33, one small chamber 34.
  • one small chamber 4, 5, 7, 8, 10, 11, 13, 14, 24, 25, 2 7, 28, 30, 30, 31, 33, and 34 are the center lines 3 of the small chamber 4, etc. that pass through the center of the first and second structures 2, 22 from the upstream side to the downstream side. It has a shape and structure symmetrical to 7. Also, two cells 3a and 3b, 6a and 6b, 9a and 9b, 12a and 12b, 26a and 26b, 29a and 29b, 32 a and 32b, and 35a and 35b are arranged symmetrically with respect to the center line 37 of the small chamber 4 and the like, and at the same time, with respect to the center line 37 of the small chamber 4 and the like. It has a symmetrical shape and structure.
  • each of the small chambers 3a, 3b, 4, etc. has the same pentagonal shape and structure.
  • Fig. 1 (a) and Fig. 1 (b) the portions indicated by reference numerals 16a and 36a are the inlets through which the fluid to be mixed, crushed and atomized flows in. . 6b and 36b are discharge ports from which the fluid that has undergone the mixing, crushing, and micronization treatments is discharged.
  • the front opening of ⁇ 35b is as shown in Fig. 2 (The first structure 2 faces the open side of the small chamber downward in Fig. 2, and the second structure 22 (The side with the opening facing upwards in Fig. 2)) and oppose each other, and adhere both structures in the directions indicated by arrows 53a and 53b.
  • a hollow cylindrical body 55 having an inner diameter covers the outside of the semi-cylindrical body 40a 40b as shown in FIG.
  • the lids 57 a 57 b forming the inlet 56 a and the discharge 56 b are respectively connected to the inlet side of the cylindrical body 55 (inside the inlet 16 a of the fluid flow passage). 36a) and the discharge part side (inside, the side facing the discharge port 16b36b of the fluid flow path), and the mixing and pulverization microparticulation apparatus of the present invention. It can be.
  • the first structure 2 and the second structure 22 are formed so as to be in close contact with each other so that the open sides of the small chambers provided on one side face each other.
  • only one fluid material flow path is formed from the inlet side (upstream side) to the discharge side (downstream side), similarly, if desired, the opening sides of the plurality of small chambers having the front opening face each other.
  • FIG. 1 shows the first and second structures 2, 22 shown in FIGS. 1 (a) and 1 (b) with the openings of a plurality of small chambers facing each other as shown in FIG.
  • FIG. 2 (c) shows the arrangement of the small chambers when a road is formed, as viewed from above in FIG.
  • Fig. 1 (a), (b), (c)
  • the shape of the opening of each compartment 3a, 3b, 4, 5 2 4 2 5 2 6a 2 6b 3 5a 3 5b Is a pentagon.
  • FIG. 4 (a) is a diagram corresponding to FIG. 1 (c) in the case where the shape of each of the small chambers provided in the first structure 2 and the second structure 22 is elliptical.
  • FIG. 4 (b) is a diagram for explaining FIG. 4 (a) from the side.
  • parts corresponding to the parts described in FIGS. 1 (a) to (c) are denoted by the same reference numerals.
  • the small chambers 3a3b4 of the first structure 2 and the small chambers 2 4 2 5 2 6a2 6b of the second structure 22 are provided.
  • the spaces of the small chambers are sequentially communicated from the upstream side to the downstream side.
  • the fluids to be mixed, crushed and atomized from the inlets 16a and 36a into the fluid passage are treated as shown in Figs. 4 (a) and 4 (b).
  • arrows 41a and 41b they flow into two small chambers 3b and 3a located on the upstream side of the other structure 2.
  • next chamber located downstream from the two small chambers 3 b and 3 a in the opposite structure 2 As shown by the arrow 43, it flows into one small chamber 4 of the rank.
  • next two small cells located downstream of the one next small chamber 25 in the one structure 22. Flows into the small chambers 26a and 26b as indicated by arrows 44a and 44b.
  • one small chamber 4, 5,. 3 and 3 4 have shapes and structures symmetrical with respect to the center line 37 of the small chamber 4 and the like passing from the upstream to the downstream of the first and second structures 2 and 22 at the center thereof.
  • the two chambers 3a and 3b, ⁇ , 35a and 35b are the centerlines of chamber 4, etc. It is arranged symmetrically with respect to 37 and has a shape and structure symmetrical with respect to the center line 37 of the small chamber 4 and the like.
  • the fluid flows in a well-balanced manner everywhere in the fluid flow path, and the fluid flows from the two small chambers of one structure to one small chamber of the other structure, causing the fluid to flow during the packing pressure.
  • the difference between the pressure and the pressure becomes extremely large, so that the material mixed in the fluid can be pulverized and atomized very efficiently, and the particles can be effectively atomized into a true sphere.
  • the arrangement of the small chambers in each of the structures was changed from the upstream side to the downstream side in order of one, one, and two, and the substances to be mixed, crushed, and atomized were processed.
  • two small chambers in one structure ⁇ one small chamber in the other structure ⁇ one small chamber in one structure
  • Cell ⁇ one cell in one structure ⁇ two cells in the other structure ⁇ one cell in one structure ⁇ one cell in the other structure ⁇ one cell in the other structure ⁇ one cell 2 small chambers ⁇ 1 small chamber in the other structure ⁇ one structure
  • the fluid to be treated at a relatively low pressure is applied to the present invention.
  • the fluid to be processed was passed smoothly, and the pulverization and micronization could be easily realized by the above-mentioned arrangement.
  • the fluid material flow passages arranged in the order of 1, 1, and 2 are also required for the size of the chamber, the object to be pulverized, and the object to be atomized.
  • the purpose of mixing, pulverization and atomization will not be sufficiently achieved.On the other hand, if it is repeated too many times, the mixing and pulverization from the upstream to the downstream of the pulverizer will be performed. Since the length becomes too large, which hinders production and handling, the fluid that has passed once through the fluid flow path of one mixing / milling / micronizing device is circulated again, and the mixing / milling / micronizing device is again used. In consideration of the workability of pulverizing and atomizing by passing through the fluid material flow path, it is preferable that the flow path in the order of 1, 1, and 2 is formed so as to be repeated at least twice.
  • FIGS. 1 (a), (b), (c) In the embodiment shown, the flow path in the order of 1, 1, 2 is repeated four times.
  • FIG. 5 (a) is a view corresponding to FIG. 1 (c) in a case where the shapes of the small chambers provided in the first structure 2 and the second structure 22 are square.
  • FIG. 5 (b) is a diagram for explaining FIG. 5 (a) from the side.
  • FIG. 6 (a) is a diagram corresponding to FIG. 1 (c) in the case where the shapes of the small chambers provided in the first structure 2 and the second structure 22 are octagons.
  • FIG. 6 (b) is a diagram for explaining FIG. 6 (a) from the side.
  • FIG. 7 shows that, in the small chambers provided in the first structure 2, the small chambers indicated by reference numerals 6a, 6b, and 8 have hexagonal shapes, and the other first structures 2 is a diagram corresponding to FIG. 1 (c) in a case where the shape of each of the small chambers provided in the second structure 22 and each of the small rooms provided in the second structure 22 is circular.
  • 5 (a), 5 (b), 6 (a), 6 (b) and 7 correspond to the parts described in FIGS. 1 (a) to (c).
  • the same reference numerals are given to the portions and the description thereof is omitted.
  • the circular chamber and the hexagonal chamber are mixed in a plurality of small chambers, but the center line 37 passing through the centers of the small chambers 27, 28, etc.
  • the small chambers denoted by reference numerals 6a and 6b, the small chambers denoted by reference numerals 29b and 29a, and the like have mutually symmetrical shapes and structures, and each of the small chambers 27, 2 As long as 8 mag has a shape and structure that is symmetrical with respect to the center line 3 7, As shown in FIG. 7, it is also possible to adopt a mode in which small chambers having different shapes and structures are provided.
  • the first and second structures 2 and 22 are arranged from the upstream side to the downstream side. , 1, 1, 2, 1, 1, 2, are arranged in this order.Each of the small chambers is symmetrical with respect to its center line 37. Each of the two chambers is arranged symmetrically with respect to the center line 37, and has a shape and structure symmetric with respect to the center line 37.
  • the shape, structure and arrangement of the small chambers are not limited in this way, but in any case, from the upstream side to the downstream side, the first and second structures 2 and 2 are both one, one, two and one , One, two, and three small chambers are arranged in this order.
  • FIG. 8 (a) is a view corresponding to FIG. 1 (c) in another embodiment of the present invention.
  • parts corresponding to the parts described in FIGS. 1 (a) to (c) are denoted by the same reference numerals.
  • the first structure 2 includes one small chamber 60, two small chambers 61a, 61b, and one small chamber 62 from the upstream side.
  • Two small chambers 6 3 a, 6 3 b, one small chamber 64, two small chambers 65 a, 65 b, and one small chamber 66 are arranged in this order
  • the second structure 22 From the upstream side, one small room 70, 2 small rooms 7 1a, 7 1b, 1 small room 7 2, 2 small rooms 7 3a, 7 3b, 1 small room 7 4, 2 small rooms 7 5a, 7 5b,
  • One small room 76 is arranged in order.
  • one chamber 60, 62, 64, 66, 70, 72, 74, 76 has the center of the first and second structures. It has a symmetrical shape and structure with respect to the center line 37 of the small chamber that passes from the upstream side to the downstream side of the object, and has two small chambers 6 la and 61 b, 63 a and 63 b, 65 a And 65b, 71a and 71b, 73a and 73b, 75a and 75b are arranged symmetrically with respect to the centerline 37 and the centerline 3
  • the shape and structure are symmetrical to 7.
  • the first structural body 2 and the second structural body 22 are formed by closely adhering the small chambers with the open front sides facing each other.
  • the road is 1 small room 60 ⁇ 1 small room 70 ⁇ 2 small rooms 6 1a, 6 1b ⁇ 2 small rooms 7 1a, 7 1b ⁇ 1 small room 6 2 ⁇ 1 Small room 7 2 ⁇ 2 small rooms 6 3a, 6 3b ⁇ 2 small rooms 7 3a, 7 3b ⁇ 1 small room 6 4 ⁇ 1 small room 74 ⁇ 2 small rooms 6 5a, 6 5b ⁇ 2 small chambers 7 5a, 7 5b ⁇ l small chambers 6 6 ⁇ 1 small chamber 76
  • small chambers are arranged in the first and second structures in the order of one, one, and two, and one small chamber—one Small chamber ⁇ 2 small chambers ⁇ 1 small chamber ⁇ 1 small chamber ⁇ 2 small chambers ⁇ 1 small chamber ⁇ 1 small chamber does not communicate with the fluid flow path, but Fig. 8 (a) In the illustrated embodiment, one small room ⁇ one small room ⁇ two small rooms ⁇ two small rooms ⁇ one small room ⁇ one small room ⁇ two small rooms—two small rooms ⁇ one small room Small room ⁇ One small room ⁇ Two small rooms ⁇ Two small rooms ⁇ Two small rooms ⁇ One small room ⁇ One small room ⁇ Two small rooms ⁇ Two small rooms ⁇ Two small rooms ⁇ Two small rooms ⁇ Two small rooms ⁇ Two small rooms ⁇ Two small rooms ⁇ Two small rooms ⁇ Two small rooms ⁇ Two small rooms ⁇ Two small rooms ⁇ Two small rooms communicate with the fluid passage.
  • FIG. 8 (a) In the case of the mixing-crushing micronization apparatus of the present invention having the fluid flow path of the illustrated embodiment, other than the above-mentioned point that the packing pressure and the explosion phenomenon occur gently, The effects are the same as in the embodiment of FIGS.
  • the mixing-pulverization device of the present invention having the fluid material flow path of the embodiment shown in FIG. 8 (a), as shown in FIG. 8 (b), the mixing-pulverization device is formed by the portions of the opposing small chambers.
  • Cross section of fluid flow path (reference numbers 81, 82, 83, 84, 8) 5, 86, 87, 88) are the same in all fluid flow paths to achieve good balun flow, and are almost uniform with all of the micronized particles. It is desirable to make fine particles having a particle size.
  • the shape of the small chamber is a hexagonal cross section, but various shapes such as a circular cross section can be used as long as the above conditions are satisfied. can do.
  • the cross-sectional shape of the small chamber is not limited to the illustrated one, and various shapes such as an equilateral triangular shape can be adopted as long as the above-described conditions are satisfied. .
  • FIG. 15 shows the fluid material inlet pipe connected to the inlet 56a (Fig. 3) of the mixing and pulverizing device from the upstream side (right side in Fig. 3 and Fig. 15).
  • FIG. 4 illustrates a mixing / pulverizing / micronizing apparatus of the present invention in a form including a gas injection section 112 up to an inlet section 56a.
  • Fluid inflow pipe 1 1 1 Gas inlet 1 1 4 connected to fluid flow 1 1 4 Fluid flow 1 1 2
  • Inner diameter r 1 of 1 1 3 Fluid flow in fluid inflow pipe 1 1 1 It is smaller than the inner diameter R of 1 1 4.
  • a gas injection pipe 1 15 is connected to the fluid flow section 1 13 of the gas injection section 1 12.
  • the inner diameter r 2 of the gas injection pipe 1 15 is smaller than the inner diameter r 1 of the fluid flow section 1 13 of the gas injection section 112.
  • a locally high pressure portion and a low pressure portion are locally generated in the course of the complicated flow of the fluid material in the fluid material channel described above.
  • a cavitation phenomenon occurs in which a myriad of minute bubbles are generated in the fluid at the part where the pressure is locally reduced.
  • the strong shock wave generated when the innumerable fine bubbles generated by the cavitation phenomenon are blown off is mixed and pulverized into particles.
  • the object to be treated is subject to strong impact, and crushing and atomization are promoted.
  • the inner diameter r 1 of the fluid flow portion 1 1 3 of the gas injection portion 1 1 2 which is continuous with the fluid flow portion 1 1 4 of the fluid flow pipe 1 1 1 1
  • the pressure in the fluid flow portion 113 is lower than the pressure in the fluid flow portion 114.
  • the flow rate of the fluid flowing through the fluid flow section 1] .3 of the gas injection section 1 1 2 is equal to the flow rate of the fluid flowing through the fluid flow section 1 1 4 of the fluid inlet pipe 1 1 1. Faster than faster.
  • the gas from the gas injection pipe 115 is efficiently converted into fine bubbles and injected into the fluid flowing part 113. That is, in the fluid material flowing through the fluid inflow pipe 1 1 1 as shown by the arrow 1 1 4, innumerable minute bubbles are injected at the gas injection section 1 12, and the innumerable minute bubbles are injected.
  • the fluidized material flows as indicated by arrows 114, and flows from the inlet 56a into the mixing / pulverizing / micronizing device of the present invention.
  • the inner diameter R of the fluid flow section 114, the inner diameter r1 of the fluid flow section 113, and the inner diameter r2 of the gas injection pipe 115 increase the ejector phenomenon more effectively. Therefore, it is necessary to satisfy the relationship of R>r1> r2.
  • the magnitudes of R, rl, and r2 are suitable so that the ejector phenomenon occurs most effectively according to the characteristics of the fluid, such as the viscosity of the fluid, while satisfying this relationship. It can be determined as appropriate.
  • the gas injected from the direction of arrow 1 17 is not shown, but its flow rate and injection pressure are adjusted by interposing a pressure system, a flow control valve, and the like. be able to.
  • the ejector phenomenon occurs due to the fact that the pressure in the fluid flow section 113 is low and the flow velocity of the fluid flowing in the fluid flow section 113 is high. Since it is generated effectively, gas can be easily injected without having to use a particularly high injection pressure.
  • the mixing / crushing / micronization method proposed by the present invention includes mixing an object to be subjected to the mixing / milling / micronization treatment with a liquid (fluid) such as water, liquid carbon dioxide, or the like, and applying a predetermined pressure (for example, 1 to 5 OMP a), which is pulverized into fine particles having a desired particle size range by press-fitting from the inlet of the mixing and pulverizing fine particle forming apparatus of the present invention to the discharge part side. is there.
  • a liquid such as water, liquid carbon dioxide, or the like
  • Another mixing and pulverization fine particle method proposed by the present invention is the above-mentioned mixing and pulverization fine particle method, wherein the mixed and pulverized fine particles of the present invention are further subjected to the predetermined pressure (for example, 1 to 50 MPa).
  • a gas is injected into the liquid (fluid) flowing into the inlet of the gasifier, and more preferably, a gas is injected in the form of fine bubbles, and the liquid (fluid) injected with the gas is injected into the liquid (fluid).
  • the fluid) is pulverized into fine particles having a desired particle size range by press-in from the inlet of the mixing / pulverizing / micronizing device of the present invention toward the discharge side.
  • the object to be subjected to the mixing and crushing and finely pulverizing treatment is subjected to a pretreatment such as a pulverizing treatment, a pulverizing treatment, and the like, and then to water, It is desirable to mix it with carbon dioxide and other liquids (fluids) and feed it under pressure into the mixing and pulverizing device of the present invention. Further, it is desirable to inject a gas into the liquid (fluid), more preferably to inject a gas in the form of fine bubbles, and to pump the mixture into the mixing / crushing / micronizing apparatus of the present invention. .
  • Each of the first and second structures 2, 22 is a semi-cylindrical body, and its size (width in the vertical direction in Fig. 1 (a)) is 44 mm, and its length (1st (The size in the horizontal direction in Fig. (A)) Force S i 99.5 mm.
  • FIG. 1 (a) the portions denoted by reference numerals 51 and 51 are guide pin holes having a diameter of 4 mm and a depth of 4 mm, and are denoted by reference numerals 52 and 52 in FIG. 1 (b).
  • the part shown is a guide bin 4 mm in diameter and 4 mm in height.
  • the first and second structures 2 and 22 are arranged in such a manner that the openings of the small chambers are opposed to each other and closely attached to each other to form a fluid flow path.
  • These guide bin holes 51 and guide bins 52 are provided for alignment.
  • Each of the small chambers 3a, 3b, 4, 5, ..., 33, 34, 35a, and 35b was a regular pentagon with a side size of 5 mm, and the depth was 4 mm.
  • a plurality of small chambers 3a, 3b, ..., 14, 24, ..., 35a ... which are provided on one side of each of the first structure 2 and the second structure 22
  • the front opening of 35b is as shown in Fig. 2 (a).
  • the opening side of the small chamber is turned to the right in Fig. 2 (a.).
  • the object 22 faces the opening side of the small chamber toward the left side in Fig. 2 (a)), and the two structures are brought into close contact from the directions of arrows 53a and 53b to form one cylindrical body 55.
  • Fig. 3 The front opening of 35b is as shown in Fig. 2 (a).
  • the SUS440 lids 57a and 57b forming the inlet 56a and the discharge 56b are respectively connected to the inlet side of the cylindrical body 55 (inside of the fluid flow path). Attach it to the inlet 16a, 36a facing side), and to the discharge side (inside, the side facing the fluid flow outlet 16ba, 36b).
  • first structure 2 and the second structure 22 are arranged in close contact with the open sides of the small chambers facing each other, and the mixing / pulverization of the present invention in which a fluid material flow path is formed inside.
  • the first structure 2 and the second structure 22 are both semi-cylindrical bodies, and the two are closely arranged with the open side of the small chamber facing each other, and the mixed structure of the present invention is crushed.
  • the fluid flow path is the first It is formed only at the contact portion between the structure 2 and the second structure 22 of the semi-cylindrical body.
  • a form as shown in FIG. 2 (c) can be adopted.
  • the first and second structures 2, 22 are each provided with a small chamber of the configuration as shown in FIGS. 1 (a) and 1 (b).
  • both are plate bodies, and their width (the size in the vertical direction in Fig. 1 (a)) is 44 mm, and the length (the size in the horizontal direction in Fig. 1 (a)).
  • the size is 109.5 mm, and the thickness shown in the vertical direction in Fig. 2 (c) is 11.5 mm.
  • the front opening of b is the first structure 2 with the small chamber opening side facing the lower side in Fig. 2 (c).
  • the open side of the small chamber is opposed to each other (upward in Fig. 2 (c)), and both structures are brought into close contact from the directions of arrows 53a and 53b.
  • a hollow cylindrical body 55 (made of SUS440 and having a length of 109.5 mm) having an inner diameter corresponding to the outer diameter of the semi-cylindrical bodies 40a and 40b, as shown in FIG. Cover the outside of the semi-cylindrical body 40a, 4Ob.
  • the SUS440 lids 57a and 57b forming the inlet 56a and the outlet 56b, respectively, are placed on the inlet side of the cylindrical body 55 (inside, the inlet 1 6a, 36a) and the discharge side (inside, the side facing the fluid flow passage outlets 16ba, 36b). In this way, the mixing / crushing microparticulation device of the present invention can be provided.
  • soybeans When soybeans are pulverized with a dry pulverizer (dry pulverized fiber: fiber length: about 10 to 200 / im) and mixed with water, the fiber becomes about 2.5 to 3 times containing water. When swelled and observed with an electron microscope, countless fibrous soybean fibers of different sizes could be observed.
  • dry pulverizer dry pulverized fiber: fiber length: about 10 to 200 / im
  • Carbon powder prepared to a particle size of less than 200 microns (carbon treated at 1200 ° C and coal treated at 280 ° C) is mixed with pure water, and a pressure of 30 MPa is applied using a pressure pump.
  • the mixing and pulverizing device 1 as shown by arrow 59a, the material that passed through the fluid flow path and was discharged from the outlet 58b as shown by arrow 59b is re-used.
  • Mixing at a pressure of 3 OMPa using a pressure pump ⁇ Circulation treatment as shown by arrow 59a in the pulverizing and atomizing device 1 (about 20 liters of carbon powder mixed water per minute is mixed.
  • FIG. 9 (a) is an electron micrograph of the carbon powder treated at 1200 ° C. before being fed into the mixing and pulverizing and atomizing device 1 (when the carbon powder is mixed with pure water).
  • FIG. 9 (b) is an electron micrograph of the 280 ° C.-treated carbon powder before being pumped into the mixing and pulverizing and atomizing device 1 (when mixed with pure carbon powder).
  • FIGS. 10 (a) and (b) are electron micrographs of carbon powder after a circulation treatment of 120 ° C.-treated carbon powder for 5 minutes.
  • FIGS. 11 (a) and (b) are electron micrographs of carbon powder after circulating for 5 minutes at 280 ° C.-treated carbon powder.
  • the carbon subjected to the mixing and pulverization / micronization method of the present invention using the mixing and pulverization / micronization method of the present invention using the mixing and pulverization / micronization apparatus 1 of the present invention was turned into true spherical fine particles.
  • FIG. 12 is an overall configuration diagram showing an embodiment in which the mixing and pulverizing device of the present invention described in Embodiment 1 is employed in a device for converting soybeans to ultrafine particles.
  • the mixing and pulverizing apparatus 100 using soybeans as ultra-fine particles (the mixing and pulverizing apparatus according to the present invention described in Example 1) can be moved by wheels 101 attached thereto. It has become.
  • a power motor 103 for enabling the operation of the pressure pump 102 is provided in the lower part of the mixing and pulverizing device 100, and an inverter 107 is mounted.
  • a hopper 104 for charging soybeans is mounted on the top of the mixing and pulverizing and atomizing device 100, and is installed near the discharge port 105 of the mixing and pulverizing and atomizing device 100.
  • the fluid in which the soybeans are mixed When the fluid in which the soybeans are mixed is put into the hopper 104, the fluid passes through a pipe, receives an appropriate pressure from the pressure pump 102, and flows through the mixing / pulverization fine-particle device 100. It flows into the entrance (not shown). Then, the fluid flows in the fluid flow path described in FIGS. 1 (a) to 1 (c) of the first embodiment as described in FIG. At this time, the soybeans pumped into the small chambers are subjected to the action of continuous strong compression (packing pressure) and instantaneous release (explosion), and are destroyed by the internal and external discharge pressures at which the soybeans explode. Continued to be ultra-fine, and collected from the outlet 105 Emitted to 106. As explained in Fig.
  • Fig. 15 shows the fluid material inlet pipe 1 1 1 connected to the inlet 56a (Fig. 3) of the mixing and pulverizing atomizer, on the upstream side (Fig. 3, right side in Fig. 15).
  • 4 is a view for explaining a mixing / crushing / micronizing apparatus according to the present invention, which is provided with a gas injection section 112 between the inlet and the inlet section 56a.
  • Fluid inflow pipe 1 1 1 Gas inlet 1 1 4 connected to fluid flow 1 1 4 Fluid flow 1 1 2
  • Inner diameter r 1 of 1 1 3 Fluid flow in fluid inflow pipe 1 1 1 It is smaller than the inner diameter R of 1 1 4.
  • a gas injection pipe 1 15 is connected to the fluid flow section 1 13 of the gas injection section 1 12.
  • the inner diameter r 2 of the gas injection pipe 1 15 is smaller than the inner diameter r 1 of the fluid flow section 1 13 of the gas injection section 112.
  • the air sent from the direction of the arrow 117 is injected into the fluid mixed with the object of the mixing and pulverization / micronization treatment.
  • the gas to be injected is not limited to air, and various gases that can be used as a solvent or the like can be injected.
  • FIGS. 13 (a) to 13 (c) show various implementations in which the process for implementing the micronization method of the present invention by the mixing and milling micronization apparatus of the present invention described in the first embodiment is employed. It is a block diagram explaining a form.
  • FIG. 13 (a) is a block diagram schematically illustrating an embodiment of wet pulverization by the mixing and pulverization fine-granulating apparatus according to the present invention.
  • the raw material is put into a coarse-grain pulverizer for coarsely pulverizing the raw material, and the coarse-grained raw material is pumped to a heater by a pump, and the coarse particles are pulverized by the action in the fluid flow path of the apparatus of the present invention.
  • the raw material is converted to fine particles and stored in a container as a desired fine particle diameter.
  • Fine particles that do not pass through the filter are returned to the coarse particle grinder again by the return pipe, converted into ultra-fine particles in the same process, stored in the container, and then stored in the container. (Processing line).
  • Fig. 13 (b) is a block diagram schematically illustrating an embodiment in which the present apparatus is combined with an ultrasonic wave, an electromagnetic wave, a laser light apparatus, and a plasma generator to form a reaction processing apparatus including continuous supercritical processing using carbon dioxide.
  • FIG. 13 (b) is a block diagram schematically illustrating an embodiment in which the present apparatus is combined with an ultrasonic wave, an electromagnetic wave, a laser light apparatus, and a plasma generator to form a reaction processing apparatus including continuous supercritical processing using carbon dioxide.
  • the raw material previously coarsely ground and an extraction solvent for example, carbon dioxide
  • an extraction solvent for example, carbon dioxide
  • the raw material previously coarsely ground and an extraction solvent are mixed through a pressure pump and a dry pump to form a mixture, and the mixture is brought to a supercritical condition by a pressure pump and a heater. Pressure and temperature. Then, it is pressure-fed into a cylindrical body constituting the device of the present invention, and continuously supercritically processed while the mixture under supercritical conditions is converted into ultrafine particles in the cylindrical body.
  • the thus treated product is subsequently reacted or decomposed by ultrasonic waves, electromagnetic waves, laser light, plasma, or the like.
  • the product obtained in this way is collected in a collection container, and the liquefied extraction solvent is gasified by a pressure control valve (not shown) and recycled.
  • Fig. 13 (c) outlines an embodiment of the present invention, a high-frequency, ultrasonic, laser light, and plasma generator combined with a reaction processing apparatus including continuous supercritical processing using various solvents. It is a block diagram.
  • the liquid extraction solvent and the substance to be decomposed are mixed by a pressure pump, pressurized and heated to a supercritical condition of the substance to be decomposed by a heating pump, and pumped into a cylindrical body constituting the apparatus of the present invention. Then, the mixture under the supercritical condition in the cylindrical body is continuously subjected to the supercritical treatment while being made into ultrafine particles. Next, the thus-treated product is subsequently reacted or decomposed by ultrasonic waves, electromagnetic waves, laser light, plasma, or the like.
  • the device shown in FIG. The gas injection section described in the figure is provided, and the gas By injecting a myriad of fine air bubbles into a fluid material efficiently, the cavitation phenomenon can be effectively and large-scale generated in the fluid material flowing through the device, and mixing, pulverization, and atomization can be achieved. It can be performed more efficiently.
  • FIG. 14 shows another example in which the process in which the micronization method of the present invention is carried out by the mixing / milling micronization apparatus of Example 1 described with reference to FIGS. 2 (a) and (b) is employed. It is a block diagram explaining embodiment.
  • the waste plastic which has been pulverized in advance and the carbon dioxide used in the extraction solvent, the oxidation reaction, and the hydrolysis are directed to the inlet opening of the cylindrical body constituting the device of the present invention by a pressure pump and a pressure pump. And the cylindrical body 55 of the mixing / pulverizing / micronizing device 1 is heated by a heater such as a heater.
  • the applied pressure and temperature are set to a pressure of 7.38 MPa or more, which is a supercritical condition of carbon dioxide, and a temperature of 31 ° C or more.
  • the fluid that has been mixed with the waste plastics that have been pulverized in advance and is under supercritical conditions passes through the above-mentioned fluid material flow path from the inlet opening of the cylindrical body that constitutes the apparatus of the present invention. To the outlet 58b.
  • the waste plastic is continuously supercritically processed while being pulverized into fine particles in the cylindrical body constituting the apparatus of the present invention.
  • the treated material discharged from the outlet is separated into gas and plastic powder by a cooling device and a decompression device.
  • the separated powder is collected in a collection container, and the gas is returned and reused.
  • carbon dioxide was used in the extraction solvent, the oxidation reaction, and the hydrolysis.However, when performing the critical treatment and the supercritical treatment while performing the pulverization and fine particle treatment on the object to be treated. Any extraction solvent other than carbon dioxide can be used as long as it can be used for extraction.
  • waste plastics such as polyethylene, polystyrene, polyethylene terephthalate, and polychlorinated vinyl
  • waste plastics such as polyethylene, polystyrene, polyethylene terephthalate, and polychlorinated vinyl
  • virgin materials and synthetic resins are described.
  • the gas injection section described in FIG. 15 is provided immediately before the present apparatus (mixing / milling apparatus according to the present invention) in the figure.
  • waste plastics so-called virgin materials, synthetic resins, etc.
  • virgin materials so-called virgin materials, synthetic resins, etc.
  • the refrigeration required very high costs.
  • the mixed and pulverized materials are converted into a gas and a processed material (a powder-like material). It was very difficult to separate.
  • the micronization method of the present invention is performed by the mixing and pulverization micronization apparatus of the present invention and the treatment is performed as shown in FIGS. 14 and 13 (b) and (c), the pulverized fine particles can be obtained.
  • the critical treatment the supercritical treatment is performed continuously, and the gas and the processed material (powder-like material) can be separated continuously and easily.
  • the mixing and pulverizing device of the present invention is, so to speak, continuously pulverizing dry powders and granules in a wet process, and converting the fluid subjected to the pulverization and pulverization process under the wet pressure to atmospheric pressure. By simply spraying the powder, it is possible to continuously obtain dry fine powder.
  • the powder to be treated may be degraded by heat.However, according to the present invention, as described above, under the supercritical condition, Since the object to be pulverized and atomized can be mixed with carbon dioxide in a liquid state and the object to be atomized can be mixed, the atomization treatment can be performed without altering the granular material to be processed.

Abstract

A mixing and pulverizing device, wherein first and second structures having small chambers with opened front faces arranged in the order of one, one, and two units from the upstream side to the downstream side are disposed close to each other with the open sides of the small chambers opposed to each other, and fluid flow passages allowing one small chamber of one structure to communicate with one small chamber of the other structure, two small chambers positioned on the downstream side of the one small chamber of the one structure, the following one small chamber positioned on the downstream side of the one small chamber of the other structure, the following one small chamber positioned on the downstream side of the two small chambers of the one structure, two small chambers positioned on the downstream side of the following one small chamber of the other structure, and the one small chamber next to the following one small chamber positioned on the downstream side of the following one small chamber of the one structure are formed.

Description

糸田 混合 ·粉砕微粒子化装置 技術分野  Itoda Mixing / Pulverizing and atomizing equipment Technical field
本発明は、 種々の物質を流体に混合し、 粉砕、 微粒子化する装置と、 これ らを用いた物質の混合、 粉砕、 微粒子化方法に関する。 特に、 機械的動力を 用いることなしに物質の混合、 粉砕、 微粒子化を実現し、 更には、 種々の改 質、 等の反応工程を促進させることのできる方法と装置に関する。 背景技術  TECHNICAL FIELD The present invention relates to an apparatus for mixing various substances into a fluid for pulverization and micronization, and a method for mixing, pulverization and micronization of substances using the same. In particular, the present invention relates to a method and an apparatus capable of realizing mixing, pulverization, and micronization of substances without using mechanical power, and further capable of accelerating a reaction process such as various modifications. Background art
従来、 機械動力を有しない静止型混合装置としては、 日本国 特開昭 5 8 - 1 3 3 8 2 2号公報に記載されているものが知られている。 これは、 前面 が開口している小室を一側面の全面に (全域に亘つて) ハニカム状に複数個 備えている第一の構造物と第二の構造物とを、 それぞれの前記小室の前面開 口を互いに対向させて密着配置し、 第一の構造物の小室から、 対向配置され ている第二の構造物の複数個の小室へ、 また、 第二の構造物の小室から、 対 向配置されている第一の構造物の複数個の小室へと、 均一混合すべき流体を 流動させるものである。 これによつて、 流体が複数の小室の壁に衝突し、 流 れの複雑な分散、 反転、 渦流、 放射状の分散、 集合を繰り返すことにより均 —な混合を実現しようとしたものである。  BACKGROUND ART Conventionally, as a static mixing device having no mechanical power, a device described in Japanese Patent Application Laid-Open No. 58-138382 is known. This means that a first structure and a second structure having a plurality of small chambers each having an open front surface in a honeycomb shape (over the entire area) on one side surface are provided on the front surface of each of the small chambers. The openings are arranged in close contact with each other so as to face each other, from the small room of the first structure to the plurality of small rooms of the second structure that are arranged oppositely, and from the small room of the second structure. The fluid to be uniformly mixed flows into the plurality of small chambers of the first structure arranged. In this way, the fluid collides with the walls of multiple compartments, and attempts to achieve uniform mixing by repeating the complicated dispersion, inversion, vortex, radial dispersion, and aggregation of the flow.
しかし、 この日本国 特開昭 5 8— 1 3 3 8 2 2号公報に記載されている 装置では、 第一、 第二の構造物の周辺部分になるとハニカム状に配置されて いる前面開口の小室の形状が、 第一、 第二の構造物の中心部における形状と 同一にならず、 一辺、 又は、 二辺が切り欠けた形状にならざるを得なかった。 この切り欠け部が存在するところでは流体の流れのショートパスが発生し、 結局、 流体は最も流動に対する抵抗の少ないところへ流れてしまうので、 前 述した流体の複雑な流動現状を生起させて均一な混合を実現するという目的 を達成することが困難であった。  However, in the device described in Japanese Patent Application Laid-Open No. 58-133382, the peripheral portion of the first and second structures has a front opening which is arranged in a honeycomb shape. The shape of the chamber was not the same as the shape at the center of the first and second structures, and one or two sides had to be cut out. Where the notch exists, a short path of the fluid flow occurs, and eventually the fluid flows to the place having the least resistance to the flow. It was difficult to achieve the purpose of achieving a proper mixing.
また、 日本国 特開昭 5 8— 1 3 3 8 2 2号公報に記載されている静止型 混合装置は、 流体の混合のみに焦点を当てたものであるため、 混合を行いな がら物質の粉砕、 微粒子化、 改質、 等の作用、 効果を発揮させることはでき なかった。 In addition, a stationary type described in Japanese Patent Application Laid-Open No. 58-1333382 Since the mixing device focuses only on the mixing of fluids, it was not possible to exert the functions and effects of pulverizing, atomizing, reforming, etc. the substances while mixing.
本願の発明者は、 静止型混合装置において、 前面が開口している小室を一 側面の全面に (全域に亘つて) ハニカム状に複数個備えている第一、 第二の 構造物の小室の形状 ·構造に工夫を加え、 第一、 第二の構造物の周辺でも、 中心部側に配置されている小室と同一形状 ·構造の小室が配備されるように して、 前述したショートパスの発生を抑え、 複数の小室の壁に流体が衝突す ることによる流れの複雑な分散、 反転、 渦流、 放射状の分散、 集合を繰り返 させ、 均一な混合だけにとどまらず、 流体に混合されている物質の粉砕、 微 粒子化、 改質をも可能にする混合 ·粉砕微粒子化装置を提案している (日本 国 特開 2 0 0 2— 1 2 6 4 8 7号公報、 日本国 特開 2 0 0 2— 1 1 1 9 8 3 6号公報、 日本国 特開 2 0 0 2 _ 2 8 4 6 3号公報) 。 発明の開示  The inventor of the present application has described that in a static mixing apparatus, a plurality of small chambers each having an open front surface are provided in a honeycomb shape over the entire surface of one side surface (over the entire area). The shape and structure of the short path were improved by modifying the structure of the first and second structures around the first and second structures. Suppressing the occurrence, the fluid collides with the walls of multiple chambers, causing complex dispersion, inversion, vortex, radial dispersion, and aggregation of the flow to be repeated, and it is not limited to uniform mixing but mixed with the fluid And pulverization / micronization devices that can also pulverize, atomize, and modify existing materials (Japanese Patent Application Laid-Open No. 2002-126628, Japanese Patent Application Japanese Patent Application Laid-Open No. 2002-111111, 336, Japanese Unexamined Patent Publication No. 2002-284463. Disclosure of the invention
本願発明者は、 混合、 粉砕、 微粒子化をより一層効果的、 効率的に行うこ とができ、 なおかつ、 装置の形状、 構造が簡素で、 製造コス トを抑えること も可能な混合 ·粉砕微粒子化装置を開発すべく、 先に提案した前述の混合 · 粉砕微粒子化装置に更に改良を加えて本願発明を完成させたものである。  The inventor of the present invention has found that mixed, pulverized particles can be more effectively and efficiently mixed, pulverized, and finely divided, and the shape and structure of the apparatus are simple and the production cost can be reduced. The present invention has been completed by further improving the above-mentioned mixing and pulverizing microparticle forming apparatus, which has been proposed above, in order to develop a chemical conversion apparatus.
先に提案した前述の混合 ·粉砕微粒子化装置について本願発明者が検討を 加えたところ、 前面の開口している側を互いに対向させて配置されているど ちらかの構造物の小室から、 対向する他方の構造物の小室に流体が流動して いく際、 流体が小室に流入して圧縮されるようになる状態と、 流体が小室か ら流出していこうとして解放、 拡散されるようになる状態とがあり、 前者の ときに、 より強い圧縮方向の力を受け、 後者のときに、 より小さな圧力にな るように効果的に解放、 拡散され、 両者の間の圧力の差がより大きくなれば、 より効果的、 効率的に、 混合、 粉砕、 微粒子化を行い、 改質、 等の種々の反 応工程の促進を実現できることを見出した。  The inventor of the present invention has examined the above-mentioned mixing and pulverizing device, which was previously proposed. From the small chamber of one of the structures arranged with the open front sides facing each other, When the fluid flows into the small chamber of the other structure, the fluid flows into the small chamber and is compressed, and the fluid begins to flow out of the small chamber and is released and diffused In the former case, the force in the compression direction is stronger, and in the latter case it is effectively released and diffused to a smaller pressure, and the pressure difference between the two is greater It was found that if possible, more effective and efficient mixing, pulverization, and fine-graining could be performed to promote various reaction processes such as reforming.
そして、 前述した流体が小室に流入して圧縮されるようになる状態のとき に受ける圧縮方向の力と、 流体が小室から流出していこうとして解放、 拡散 されるようになる状態のときの解放、 拡散によって低下された圧力との間の 差を最大にするためには、 複数個の小室の配置位置、 各小室の形状、 構造に 重要な意義があることを見出した。 The force in the compression direction that is applied when the above-mentioned fluid flows into the small chamber and becomes compressed, and the fluid is released and diffused as it tries to flow out of the small chamber In order to maximize the difference between release and diffusion-reduced pressure when conditions occur, the location of multiple cells, the shape and structure of each cell is of significant significance I found that.
かかる知見から本願発明者が発明した混合 ·粉碎微粒子化装置は以下の構 造からなるものである。  Based on this finding, the mixing and pulverizing device invented by the inventor of the present application has the following structure.
本発明の混合 ·粉砕微粒子化装置は、 前面が開口している小室を一側面の 上流側に位置する一端側から下流側に位置する他端側に向けて複数個備えて いる第一の構造物と第二の構造物とが、 それぞれの前記小室の前面開口を互 いに対向させて密着配置されることによって、 第一の構造物の小室から第二 の構造物の小室、 第二の構造物の小室から第一の構造物の小室へと、 上流側 から下流側に向かって各小室の空間部が順次連通されて流体物流路が形成さ れているものである。  The mixing and pulverizing device of the present invention has a first structure in which a plurality of small chambers each having an open front surface are provided from one end located upstream on one side to the other end located downstream. The object and the second structure are arranged in close contact with the front openings of the small chambers facing each other, so that the small chambers of the first structure to the small chambers of the second structure, From the small chamber of the structure to the small chamber of the first structure, the space of each small chamber is sequentially communicated from the upstream side to the downstream side to form a fluid flow path.
ここで、 前記第一の構造物及び第二の構造物に備えられている複数個の小 室は、 上流側から下流側に向かって、 1個、 1個、 2個の順で配置される形 式が一回又は複数回繰り返されるものであり、 当該 1個の小室は、 その中心 を前記第一、 第二の構造物の上流側から下流側へ通る当該小室の中心線に対 して対称な形状、 構造を有し、 前記 2個の小室は当該小室の中心線に対して 線対称に配置されていると共に、 当該小室の中心線に対して対称な形状、 構 造を有するものである。  Here, the plurality of small chambers provided in the first structure and the second structure are arranged in order of one, one, and two from the upstream side to the downstream side. The format is repeated one or more times, and the one small chamber is located at the center with respect to the center line of the small chamber passing from the upstream side to the downstream side of the first and second structures. The two small chambers are arranged symmetrically with respect to the center line of the small chamber and have a shape and structure symmetric with respect to the center line of the small chamber. is there.
そして、 前記の流体物流路が連続する形態が、 本発明の混合 ·粉砕微粒子 化装置では、 第 4図 (a ) 、 ( b ) を参照して説明すると、 以下のようにな つている。 どちらか一方の構造物(例えば、 第一の構造物 2 )の上流側に位置 する 1個の小室 4から、 対向する他方の構造物(例えば、 第二の構造物 2 2 ) の上流側に位置する 2個の小室 2 6 a 、 2 6 b へ、 続いて当該対向する他方 の構造物 2 2における当該 2個の小室 2 6 a 、 2 6 bから、 前記一方の構造 物 2における前記 1個の小室 4より下流側に位置する次位の 1個の小室 5 へ、 続いて、 当該一方の構造物 2における当該次位の 1個の小室 5から、 前記対 向する他方の構造物 2 2における 2個の小室 2 6 a 、 2 6 bより下流側に位 置する次位の 1個の小室 2 7 へ、 続いて、 当該他方の構造物 2 2における当 該次位の 1個の小室 2 7から、 前記一方の構造物 2における前記次位の 1個 の小室 5より下流側に位置する次位の 2個の小室 6 a 、 6 b へ、 引き続いて、 当該一方の構造物 2における当該次位の 2個の小室 6 a 、 6 bから、 前記他 方の構造物 2 2における前記次位の 1個の小室 2 7より下流側に位置する次 々位の 1個の小室 2 8 へ、 続いて、 当該他方の構造物 2 2における前記次々 位の 1個の小室 2 8から、 前記一方の構造物 2における前記次位の 2個の小 室 6 a 、 6 bより下流側に位置する次々位の 1個の小室 7へと流体物流路が 連続するものである。 The above-described form in which the fluid material flow path is continuous is as follows, with reference to FIGS. 4 (a) and 4 (b), in the mixing and pulverizing / micronizing apparatus of the present invention. From one small chamber 4 located on the upstream side of one of the structures (for example, the first structure 2), to the upstream side of the other opposite structure (for example, the second structure 22) To the two small chambers 26 a and 26 b located, and then from the two small chambers 26 a and 26 b in the other opposing structure 22 to the one in the one structure 2 To the next one small chamber 5 located downstream from the second small chamber 4, and then from the one next small chamber 5 in the one structure 2 to the other opposite structure 2 2 to the next lower chamber 27 located downstream of the two chambers 26a and 26b, and then to the lower chamber 26 of the other structure 22. From the small chamber 27, one of the next order in the one structure 2 To the next two small chambers 6 a and 6 b located downstream from the small chamber 5 of the second structure, and subsequently to the other two small chambers 6 a and 6 b in the one structure 2. To the next one small chamber 28 located downstream from the next one small chamber 27 in the one structure 22, and then to the next small chamber 28 in the other structure 22. The fluid flow path is continuous from one small chamber 28 to one next small chamber 7 located downstream of the next two small chambers 6 a and 6 b in the one structure 2. Is what you do.
なお、 前述した、 どちらか一方の構造物の上流側に位置する 1個の小室か らスタートして、 当該どちらか一方の構造物における下流側の一個の小室ま で続く、 前面が開口している小室を一側面の上流側に位置する一端側から下 流側に位置する他端側に向けて複数個備えている第一、 第二の構造物が、 そ れぞれの小室の前面開口を互いに対向させて密着配置されることによって、 第一の構造物の小室から第二の構造物の小室、 第二の構造物の小室から第一 の構造物の小室へと、 上流側から下流側に向かって各小室の空間部が順次連 通されて流体物流路が形成されている本発明に特有の形態は、 前面が開口し ている小室を当該開口を互いに対向させて配置される第一、 第二の構造物が、 それぞれ、 前述したように、 上流側から下流側に向かって、 1個、 1個、 2 個の順で小室が配置される形式が一回又は複数回繰り返され、 当該 1個の小 室は、 その中心を第一、 第二の構造物の上流側から下流側へ通る当該小室の 中心線に対して対称な形状、 構造を有し、 前記 2個の小室は当該小室の中心 線に対して線対称に配置されていると共に、 当該小室の中心線に対して対称 な形状、 構造を有するように形成され、 このように形成された第一、 第二の 構造物が、 前述した、 どちらか一方の構造物の上流側に位置する 1個の小室 からスタートして、 当該どちらか一方の構造物における下流側の一個の小室 まで続く流体物流路が形成されるように対向配置されているものであれば、 総て本発明に属するものである。  In addition, starting from one small chamber located on the upstream side of either one of the above-mentioned structures, and continuing to one small room on the downstream side of either one of the structures, the front face is open. The first and second structures, each of which has a plurality of small chambers extending from one end located on the upstream side of one side to the other end located on the downstream side, have a front opening of each of the small chambers. Are placed in close contact with each other so as to oppose each other, so that from the small chamber of the first structure to the small chamber of the second structure, and from the small chamber of the second structure to the small chamber of the first structure, from the upstream to the downstream A unique aspect of the present invention in which the space portions of the respective small chambers are sequentially communicated toward the side to form a fluid material flow path is a mode in which a small chamber having an open front surface is arranged with the openings facing each other. The first and second structures are, as described above, from upstream to downstream, respectively. The form in which the compartments are arranged in the order of one, one, and two is repeated one or more times, and the one compartment is centered on the first and second structures. It has a shape and structure symmetrical with respect to the center line of the small chamber passing from the upstream side to the downstream side, and the two small chambers are arranged line-symmetrically with respect to the center line of the small chamber, and The first and second structures formed so as to have a shape and structure symmetrical with respect to the center line, and the first and second structures formed as described above are located on the upstream side of one of the structures. If the fluid chambers are arranged so as to be opposed to each other so as to form a fluid flow path starting from the small chamber and continuing to one downstream chamber in either one of the structures, the invention belongs to the present invention. is there.
すなわち、 一方の構造物における 1個の小室→他方の構造物における 1個 の小室—一方の構造物における 2個の小室→他方の構造物における 1個の小 室→一方の構造物における 1個の小室→他方の構造物における 2個の小室→ 一方の構造物における 1個の小室→他方の構造物における 1個の小室→一方 の構造物における 2個の小室→他方の構造物における 1個の小室、 とレ、ぅノ、 ° ターンからなるように流体物流路が形成されている形態であれば、 どちらか 一方の構造物の出発点となる小室の数が 1個であると 2個であるとを問わな いものである。 That is, one cell in one structure → one cell in the other structure-two cells in one structure → one cell in the other structure → one cell in one structure Small chamber → two small chambers in the other structure → one small chamber in one structure → one small chamber in the other structure → one Two chambers in one structure → One small chamber in the other structure, and one of the structures if the fluid flow path is formed so as to consist of と, ぅ, and ° turns It does not matter whether the number of small rooms that serve as the starting point for a building is one or two.
本発明の混合 ·粉砕微粒子化装置は、 前述した特徴的な構造を備えている ことにより、 混合、 粉砕、 微粒子化すべき物質が混合されている流体が前記 流体物流路に上流側から圧入されると、 当該流体はバランスを崩すことなく、 スムーズに前記流体物流路を流動し、 どちらか一方の構造物における 2個の 小室から、 他方の構造物における 1個の小室に流入する際に圧縮される方向 への強い力を受け (この現象を 「包圧」 とレ、う) 、 一方、 どちらか一方の構 造物における 1個の小室から、 他方の構造物における 2個の小室に流入する 際に、 バランスよく、 均等、 かつ効果的に拡散 (この現象を 「爆散」 とい う) する。  Since the mixing and pulverization device of the present invention has the above-described characteristic structure, a fluid in which a substance to be mixed, pulverized, and pulverized is mixed is press-fitted into the fluid flow path from the upstream side. The fluid flows smoothly through the fluid flow path without losing balance, and is compressed when flowing from two small chambers in one of the structures to one small chamber in the other structure. When a strong force in one direction is applied (this phenomenon is referred to as “packing pressure”), the flow from one small chamber in one of the structures to two small chambers in the other structure In addition, it spreads well, evenly, and effectively (this phenomenon is called “explosion”).
そして、 前記の特徴的な構造を備えていることにより、 この包圧の際に受 ける強い圧力と、 爆散によって小さくなる圧力との間の差が極めて大きくな り、 しかも、 これが連続的に繰り返されるので、 きわめて効果的、 かつ、 効 率よく、 混合、 粉砕、 微粒子化を行うことができるのである。  And, by providing the above-mentioned characteristic structure, the difference between the strong pressure received at the time of the packing pressure and the pressure reduced by the explosion becomes extremely large, and this is repeated continuously. Therefore, it is possible to mix, grind, and finely granulate very effectively and efficiently.
本発明の混合 ·粉砕微粒子化装置におけるこの微粒子化は、 粉砕、 微粒子 化する対象物を真球状の微粒子にできるものである。  This micronization in the mixing and pulverization micronization apparatus of the present invention enables the object to be pulverized and micronized to be spherical fine particles.
しかも、 前述した形態で流体物流路が形成されているだけで十分であり、 第一、 第二の構造物の一側面の全面 (全域) に亘つて小室を配備する必要は なく、 第一、 第二の構造物の一側面において、 その上流側に位置する側から、 下流側に位置する側に向かって、 小室が、 1個、 1個、 2個の順で配置され ていれば良いので、 製造が容易で、 なおかつ、 製造コス トを低く抑えること も可能になる。  In addition, it is sufficient that the fluid substance flow path is formed in the above-described form, and it is not necessary to dispose a small chamber over the entire surface (the entire area) of one side surface of the first and second structures. On one side of the second structure, it is only necessary that the small chambers are arranged in order of one, one, and two from the side located on the upstream side to the side located on the downstream side. Therefore, it is easy to manufacture, and the manufacturing cost can be kept low.
なお前述した本発明の混合 ·粉砕微粒子化装置において、 前記第一の構造 物及び第二の構造物に備えられている複数個の小室は、 上流側から下流側に 向かって、 1個、 1個、 2個の順で配置される形式が一回又は複数回繰り返 されるものであって、 当該 1個の小室は、 その中心を前記第一、 第二の構造 物の上流側から下流側へ通る当該小室の中心線に対して対称な形状、 構造を 有し、 前記 2個の小室は当該小室の中心線に対して線対称に配置されている と共に、 当該小室の中心線に対して対称な形状、 構造を有する形態に代えて、 小室が、 上流側から下流側に向かって、 1個、 1個、 2個の順で配置される 形式が一回又は複数回繰り返されるものでありさえすれば、 それぞれの形状、 構造に特に限定をつけないようにすることもできる。 In the mixing and pulverizing device of the present invention described above, the plurality of small chambers provided in the first structure and the second structure are one each from the upstream side to the downstream side. And the form in which the two cells are arranged in this order is repeated one or more times, and the one small chamber has its center positioned from the upstream side to the downstream side of the first and second structures. Shape and structure symmetrical with respect to the center line of the cell The two small chambers are arranged symmetrically with respect to the center line of the small chamber, and instead of having a shape and structure symmetrical with respect to the center line of the small chamber, the small chamber is located upstream. From the side to the downstream side, one, one, and two pieces are arranged in this order as long as the form is repeated one or more times. You can also
混合 ·粉砕 ·微粒子化すべき物質をほぼ均一な粒径を有する微粒子へと混 合 -粉砕 ·微粒子化する場合には、 前述したように、 小室の形状、 構造は、 前記 1個の小室 4、 5 (第1図 (a ) )、 3 3、 3 4 (第1図 (b ) )等が、 そ の中心を前記第一、 第二の構造物の上流側から下流側へ通る当該小室の中心 線 3 7に対して対称な形状、 構造を有し、 前記 2個の小室 3 a、 3 b (第 1図 ( a ) ;)〜 3 5 a、 3 5 b (第 1図 (b ) )等は当該小室 4、 5、 3 3、 3 4等 の中心線 3 7に対して線対称に配置されていると共に、 当該小室 4、 5、 3 3、 3 4等の中心線 3 7に対して対称な形状、 構造を有することが望ましレ、。 しかし、 小室の形状、 構造をこのように限定しなくても、 複数個の小室の 配置形式を第一の構造物、 第二の構造物とも、 上流側から下流側に向けて 1 個、 1個、 2個の順とし、 流体物流路が、 一方の構造物における 1個の小室 →他方の構造物における 1個の小室—一方の構造物における 2個の小室—他 方の構造物における 1個の小室→一方の構造物における 1個の小室→他方の 構造物における 2個の小室→一方の構造物における 1個の小室→他方の構造 物における 1個の小室→—方の構造物における 2個の小室→他方の構造物に おける 1個の小室、 というパターンで連続するものでありさえすれば、 処理 後の粒径の大きさが不均一であっても、 混合 ·粉砕 ·微粒子化すべき物質を 粒径 0 . 5 ミクロン〜 8ミクロン程度の微粒子にすることが十分可能である。 本発明の他の混合 ·粉砕微粒子化装置は、 同じく、 前面が開口している小 室を一側面の上流側に位置する一端側から下流側に位置する他端側に向けて 複数個備えている第一の構造物と第二の構造物とが、 それぞれの前記小室の 前面開口を互いに対向させて密着配置されることによって、 第一の構造物の 小室から第二の構造物の小室、 第二の構造物の小室から第一の構造物の小室 へと、 上流側から下流側に向かって各小室の空間部が順次連通されて流体物 流路が形成されているものである。 そして、 前記複数個の小室は、 上流側から下流側に向かって、 1個、 2個 の順で配置される形式が一回又は複数回繰り返されるものであり、 当該 1個 の小室は、 その中心を前記第一、 第二の構造物の上流側から下流側へ通る当 該小室の中心線に対して対称な形状、 構造を有し、 前記 2個の小室は当該小 室の中心線に対して線対称に配置されていると共に、 当該小室の中心線に対 して対称な形状、 構造を有するものである。 Mixing / Pulverization ・ Mixing the substance to be micronized into fine particles having a substantially uniform particle size -Pulverization ・ When micronizing, as described above, the shape and structure of the small chamber 5 (Fig. 1 (a)), 33, and 34 (Fig. 1 (b)), etc., of the small chamber passing through the center from the upstream side to the downstream side of the first and second structures. It has a shape and structure symmetrical with respect to the center line 37, and the two small chambers 3a, 3b (FIG. 1 (a);) to 35a, 35b (FIG. 1 (b) ) Etc. are arranged symmetrically with respect to the center line 37 of the small room 4, 5, 33, 34, etc., and are aligned with the center line 37 of the small room 4, 5, 33, 34, etc. It is desirable to have a symmetrical shape and structure. However, even if the shape and structure of the small chambers are not limited in this way, the arrangement of the plurality of small chambers in each of the first structure and the second structure is one from the upstream side to the downstream side. The fluid flow path is one small chamber in one structure → one small chamber in the other structure-two small chambers in one structure-one in the other structure One small chamber → One small chamber in one structure → Two small chambers in the other structure → One small chamber in one structure → One small chamber in the other structure → One structure As long as they are continuous in a pattern of two small chambers → one small chamber in the other structure, even if the particle size after treatment is not uniform, it can be mixed, crushed, and atomized. Material to be made into fine particles with a particle size of 0.5 to 8 microns Is the partial possible. Another mixing and pulverizing apparatus of the present invention also includes a plurality of small chambers each having an open front surface from one end located upstream on one side to the other end located downstream. The first structure and the second structure are arranged in close contact with the front openings of the small chambers facing each other, so that the small chambers of the first structure to the small chambers of the second structure, From the small chamber of the second structure to the small chamber of the first structure, the space of each small chamber is sequentially communicated from the upstream side to the downstream side to form a fluid flow path. The plurality of small chambers are arranged one or two times in order from the upstream side to the downstream side once or two times, and the one small chamber is the It has a shape and structure symmetrical with respect to the center line of the small chamber passing the center from the upstream side to the downstream side of the first and second structures, and the two small chambers are aligned with the center line of the small chamber. It is arranged symmetrically with respect to the center, and has a shape and structure symmetrical with respect to the center line of the cell.
更に、 流体物流路が連続する形態は、 第 8図 (a ) を用いて説明すると、 どちらか一方の構造物の上流側に位置する 1個の小室 6 0力ゝら、 対向する他 方の構造物の上流側に位置する 1個の小室 7 0 へ、 続いて、 当該対向する他 方の構造物における当該 1個の小室 7 0から、 前記一方の構造物における前 記 1個の小室 6 0より下流側に位置する次位の 2個の小室 6 1 a 、 6 1 b へ、 続いて、 当該一方の構造物における当該次位の 2個の小室 6 1 a 、 6 1 bか ら、 前記対向する他方の構造物における前記 1個の小室 7 0より下流側に位 置する次位の 2個の小室 7 1 a 、 7 1 b へ、 続いて、 当該他方の構造物にお ける当該次位の 2個の小室 7 1 a 、 7 1 bから、 前記一方の構造物における 前記次位の 2個の小室 6 1 a 、 6 1 bより下流側に位置する次位の 1個の小 室 6 2へと連続して形成されるものである。 すなわち、 流体物流路が、 一方 の構造物における 1個の小室→他方の構造物における 1個の小室→一方の構 造物における 2個の小室—他方の構造物における 1個の小室→一方の構造物 における 1個の小室→他方の構造物における 2個の小室→一方の構造物にお ける 1個の小室→他方の構造物における 1個の小室→一方の構造物における 2個の小室→他方の構造物における 1個の小室、 というパターンで連続する ものである。  Further, the form in which the fluid material flow path is continuous will be described with reference to FIG. 8 (a). One small chamber 60 force plate located on the upstream side of one of the structures and the other one facing the other structure One small chamber 70 located on the upstream side of the structure, and then, from the one small chamber 70 of the other opposite structure, the one small chamber 6 of the one structure To the next two small chambers 6 1a and 6 1b located downstream from 0, and then from the two next small chambers 6 1a and 6 1b in the one structure, The next two small chambers 71 a and 71 b located downstream of the one small chamber 70 in the other opposing structure, and then the second chamber 71 b in the other structure From the next two small chambers 71a and 71b, one next small chamber located downstream from the next two small chambers 61a and 61b in the one structure6 is intended to be formed continuously to 2. In other words, the fluid flow path is one small chamber in one structure → one small chamber in the other structure → two small chambers in one structure-one small chamber in the other structure → one structure One small chamber in a structure → Two small rooms in the other structure → One small room in one structure → One small room in the other structure → Two small rooms in one structure → The other It is a single chamber in the above structure, which is a continuous pattern.
この第 8図 (a ) 図示の、 流体物流路が、 一方の構造物における 1個の小 室→他方の構造物における 1個の小室→一方の構造物における 2個の小室— 他方の構造物における 2個の小室→一方の構造物における 1個の小室→他方 の構造物における 1個の小室→一方の構造物における 2個の小室→他方の構 造物における 2個の小室→一方の構造物における 1個の小室→他方の構造物 における 1個の小室、 というパターンで連続するものである場合には、 前述 した第一の発明である 1 、 2 、 1 、 1 、 2 、 1 、 1 、 2 、 1 、 1 、 2 、 1 、 1、 2、 1、 1、 2の個数の順で小室の空間が連続されて流体物流路が形成 されている場合に比較して、 包圧、 爆散現象が穏やかに起こるので、 微粒子 の粒径を小さくできる効率に劣るが、 より小さな圧力で処理対象物たる物質 が混合されている流体を装置内に圧送するだけで混合 ·粉砕 ·微粒子化処理 を行えるので有利である。 The fluid flow path shown in FIG. 8 (a) is one small chamber in one structure → one small chamber in the other structure → two small chambers in one structure-the other structure 2 small rooms in one structure → 1 small room in one structure → 1 small room in the other structure → 2 small rooms in one structure → 2 small rooms in the other structure → one structure , One chamber in the other structure → one chamber in the other structure, and the above-mentioned first invention of 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, Compared to the case where the space of the small chamber is continuous in the order of 1, 2, 1, 1 and 2 to form a fluid flow path, the pressure of wrapping and explosion occur more gently, so the particle size of the fine particles Although it is inferior in efficiency to reduce the particle size, it is advantageous because mixing, pulverization, and fine particle treatment can be performed only by pumping a fluid containing the substance to be treated with a smaller pressure into the apparatus.
なお、 この場合、 対向する小室と小室との間に形成される流体物流路の横 断面積 (第 8図 ( b ) 中、 斜線部 8 1、 8 2、 8 3、 8 4、 8 5、 8 6、 8 7、 8 8 ) は流体物流路の総てにおいて同一であることが、 処理対象物たる 物質が混合されている流体をバランスよく流動させ、 より均一な粒径を有す る微粒子に微粒子化する上で望ましい。  In this case, the cross-sectional area of the fluid flow path formed between the opposing small chambers (the hatched portions 81, 82, 83, 84, 85, in Fig. 8 (b)) 8, 8 7, 8 8) are the same in all of the fluid flow paths, so that the fluid in which the substance to be treated is mixed flows in a well-balanced manner, and the fine particles have a more uniform particle size It is desirable for making fine particles.
なお、 前述した本発明のいずれの混合 ·粉砕微粒子化装置においても、 そ の上流側に位置する入り口部に接続している流体物流入管が、 上流側から当 該入り口部までの間に気体注入部を備えている構造にすることができる。 こ の場合、 前記流体物流入管の流体物流動部に連続している気体注入部の流体 物流動部は、 前記流体物流入管における流体物流動部の内径より小さな内径 を有していると共に、 当該気体注入部の流体物流動部の内径より小さい内径 を有する気体注入管が当該気体注入部の流体物流動部に接続されている構造 にすることが望ましい。  In any of the mixing and pulverizing apparatus of the present invention described above, the fluid inflow pipe connected to the inlet located on the upstream side has a gas injection port between the upstream side and the inlet. It can be a structure having a portion. In this case, the fluid flow part of the gas injection part that is continuous with the fluid flow part of the fluid flow pipe has an inner diameter smaller than the inner diameter of the fluid flow part of the fluid flow pipe. It is desirable that a gas injection pipe having an inner diameter smaller than the inner diameter of the fluid flow part of the gas injection part is connected to the fluid flow part of the gas injection part.
前述したいずれの本発明の混合 ·粉砕微粒子化装置においても、 流体物流 路中における流体物の複雑な流動の過程で、 局所的に圧力の高い部分と圧力 の低い部分とが生じる。 この結果、 局所的に圧力の低下した部分で、 流体物 中に無数の微小な気泡が発生するキヤビテーション現象が生じる。  In any of the above-described mixing and pulverizing device of the present invention, a locally high pressure portion and a low pressure portion are locally generated during the complicated flow of the fluid in the fluid distribution channel. As a result, a cavitation phenomenon occurs in which a myriad of minute bubbles are generated in the fluid at the part where the pressure is locally reduced.
本発明の混合 ·粉砕微粒子化装置によれば、 このキヤビテーション現象に よって発生した無数の微小な気泡がはじける際に生じる強い衝撃波によって、 流体物中に混入している混合 ·粉砕微粒子化処理の対象物が強い圧力を受け、 粉砕、 微粒子化が促進されている。  According to the mixing and pulverizing apparatus of the present invention, the strong shock wave generated when the innumerable minute bubbles generated by the cavitation phenomenon are repelled causes the mixing and pulverizing and pulverizing processing mixed in the fluid material. Objects are subjected to strong pressure, and crushing and atomization are promoted.
混合 ·粉砕微粒子化装置の入り口部に接続している流体物流入管に配備さ れている気体注入部から所望の気体を注入することにより、 前記のキヤビテ ーシヨン現象をより効果的、 より大規模に発生させることができる。 そして、 これによつて、 流体物中に混入している混合 ·粉砕微粒子化処理の対象物の 粉砕、 微粒子化をより一層促進することができる。 By injecting the desired gas from the gas injection section provided in the fluid inflow pipe connected to the inlet of the mixing and pulverization / pulverization device, the above-mentioned cavitation phenomenon can be more effectively performed on a larger scale. Can be generated. And, by this, the object of the mixing and pulverization Pulverization and atomization can be further promoted.
なお、 前記の気体注入部において、 流体物流入管の流体物流動部に連続し ている気体注入部の流体物流動部が、 流体物流入管における流体物流動部の 内径より小さな内径を有している構造にするのは、 気体注入部の流体物流動 部における圧力を、 流体物流入管の流体物流動部における圧力より低くする ためである。 なお、 このように、 気体注入部の流体物流動部は、 流体物流入 管における流体物流動部の内径より小さな内径になっているので、 気体注入 部の流体物流動部を流動する流体物の流速は、 流体物流入管の流体物流動部 を流動している流体物の流速より速くなっている。  In the gas injection section, the fluid flow section of the gas injection section that is continuous with the fluid flow section of the fluid inflow pipe has an inner diameter smaller than the inner diameter of the fluid flow section of the fluid inflow pipe. The structure is used so that the pressure in the fluid flowing part of the gas injection part is lower than the pressure in the fluid flowing part of the fluid inflow pipe. As described above, since the fluid flow part of the gas injection part has an inner diameter smaller than the inner diameter of the fluid flow part of the fluid inflow pipe, the fluid flowing through the fluid flow part of the gas injection part is The flow velocity is higher than the flow velocity of the fluid flowing through the fluid flowing portion of the fluid inflow pipe.
そして、 気体注入管の内径が、 気体注入部の流体物流動部の内径より小さ くなつていることにより、 ェジェクタ一現象が生じ、 気体は、 気体注入管か ら気体注入部の流体物流動部内に微小な気泡となって効率よく注入される。 これによつて、 前述したキヤビテーシヨン現象をより効果的、 より大規模に 発生させることに貢献できる。  When the inner diameter of the gas injection pipe is smaller than the inner diameter of the fluid flow section of the gas injection section, an ejector phenomenon occurs, and gas flows from the gas injection pipe into the fluid flow section of the gas injection section. Into small bubbles to be injected efficiently. This can contribute to the above-mentioned cavitation phenomenon being generated more effectively and on a larger scale.
以上説明したように本発明の混合 ·粉砕微粒子化装置と方法によれば、 以 下に述べるような優れた作用効果が得られる。  As described above, according to the apparatus for mixing and pulverizing fine particles of the present invention, the following excellent effects can be obtained.
本発明の混合 ·粉砕微粒子化装置中に形成されている流体物流路によれば、 ここを流動する混合 ·微粒子化処理を施すべき物質には、 加圧による圧縮と 瞬時の爆発的な解放、 圧縮と分散 ·解放、 流路内での乱流の生起、 抱圧力及 び解放圧の付加という作用が、 連続的に加えられ、 被微粒子化材の応力分解 ができ、 微粒子の生成及び造粒を得る効果を奏する。 すなわち、 いわゆる散 逸理論によって説明されるところにより、 極めて優れた、 混合、 粉砕、 微粒 子化が行われる。  According to the fluid flow path formed in the mixing and pulverizing apparatus of the present invention, the substance to be subjected to the mixing and pulverization processing flowing therein is compressed by pressurization and instantaneous explosive release, The effects of compression, dispersion and release, generation of turbulence in the flow channel, addition of holding pressure and release pressure are continuously applied, and the material to be particulated can be decomposed by stress, and fine particles are generated and granulated. The effect is obtained. That is, as explained by the so-called dissipation theory, extremely excellent mixing, pulverization, and micronization are performed.
特に、 微粒子化においては、 繊維状物質をも真球状の微粒子にまで、 微粒 子化することができる。  In particular, in the case of micronization, fibrous substances can be micronized into spherical particles.
前面開口の小室が複数個配備されている第一、 第二の構造物、 半円柱体、 円筒体、 蓋体、 等の本発明の混合 ·粉砕微粒子化装置を構成する部材を、 炭 素と銅、 炭素とアルミ、 炭素とマグネシユウム、 炭素とタングステン、 炭素 と酸化チタン等の多種多様な金属複合材料や、 セラミックス及びトルマリン 等の鉱物材料、 等によって形成することにより、 触媒効果が得られる 本発明の混合 ·粉砕微粒子化装置を構成する前面開口の小室が配備されて いる第一の構造物、 第二の構造物を、 樹脂又は合成樹脂の成型品とすれば、 前面開口の小室を精度よく製造することができる。 The members constituting the mixing and pulverizing microparticulation apparatus of the present invention, such as first and second structures, semi-cylindrical bodies, cylindrical bodies, lids, etc., in which a plurality of small chambers having a front opening are provided, are defined as carbon. A catalytic effect can be obtained by forming from a variety of metal composite materials such as copper, carbon and aluminum, carbon and magnesium, carbon and tungsten, carbon and titanium oxide, and mineral materials such as ceramics and tourmaline. If the first structure and the second structure in which the small chamber with the front opening constituting the mixing and pulverizing / micronizing device of the present invention is provided are molded articles of resin or synthetic resin, the small cell with the front opening is formed. It can be manufactured with high accuracy.
本発明の混合 ·粉砕微粒子化装置を構成する第一、 第二の構造物、 半円柱 体、 円筒体の外周に、 磁力を発生する磁石等の N極及び S極をそれぞれ複数 対向させて配備すれば、 混合 ·粉碎微粒子化処理すべき流動物を、 磁力によ つて再分子化することができ、 より混合力が高められ、 また、 微粒子化を促 進できる。  A plurality of N-poles and S-poles, such as magnets for generating magnetic force, are provided on the outer periphery of the first and second structures, the semi-cylindrical body, and the cylindrical body that constitute the mixing and pulverization microparticle forming apparatus of the present invention, respectively. Then, the fluid to be mixed / crushed into fine particles can be re-molecularized by magnetic force, so that the mixing power can be further increased and fine particles can be promoted.
また、 本発明の混合 ·粉砕微粒子化装置を構成する半円柱体、 円筒体内へ の、 流体物流路を形成するための構造物の取り付け、 取り外しは、 半円柱体 を二分割し、 半円柱に設けられている凹部に前記構造物を嵌合固定する、 あ るいは取り外すようにして行うことができる。 そこで、 組み立て、 分解、 メ ンテナンスが極めて容易である。 また、 一側面に複数個の小室が配備、 形成 されている第一の構造物 2、 第二の構造物 2 2が、 それぞれ、 半円柱体 4 0 a、 4 0 bと一体的に成形されているように放電加工によって、 直接、 半円 柱体 4 0 a 、 4 O bと第一の構造物 2、 第二の構造物 2 2との一体物を製造 することによって、 組み立て性よく、 高精度に流体物流路、 混合 ·粉砕微粒 子化装置を製造することもできる。  In addition, for attaching and detaching a structure for forming a fluid flow path to and from the semi-cylindrical body and the cylindrical body constituting the mixing and pulverizing fine particle forming apparatus of the present invention, the semi-cylindrical body is divided into two parts, The structure can be fitted and fixed to the provided concave portion, or can be removed. Therefore, assembly, disassembly and maintenance are extremely easy. In addition, a first structure 2 and a second structure 22 having a plurality of small chambers arranged and formed on one side are integrally formed with the semi-cylindrical bodies 40a and 40b, respectively. By directly manufacturing the semi-cylindrical body 40a, 4Ob with the first structure 2 and the second structure 22 by electric discharge machining as described in It is also possible to manufacture a fluid flow path, a mixing / crushing and fine-granulating device with high precision.
このように、 流体物流路を形成する構造物の取り付け、 取り外しを簡単に 行うことができるので、 それぞれ材質が異なる構造物を用いて流体物流路を 形成することができ、 混合、 微粒子化する物質に対して最適の混合処理、 微 粒子化処理を行うことができる。  In this way, the structure that forms the fluid flow path can be easily attached and detached, so that the fluid flow path can be formed using structures made of different materials, and substances that mix and become fine The optimal mixing and fine particle treatment can be performed for
例えば、 混合処理、 微粒子化処理を行う物質の特性、 流体流に含まれてい るその割合、 等に応じて、 流体物流路を形成するための構造体に備えられて いる前面開口の小室の大きさ、 数、 形状を替えたり、 その材質を替えること により、 混合,粉砕微粒子化する物質に対して最適の混合処理、 微粒子化処 理を行うことができる。  For example, according to the characteristics of the substance to be subjected to the mixing process and the atomization process, the proportion of the substance contained in the fluid stream, etc., the size of the front opening small chamber provided in the structure for forming the fluid flow path By changing the number, shape, and material of the material, it is possible to perform the optimal mixing and pulverization processing on the substance to be mixed and pulverized into fine particles.
また、 産業廃棄物を粉砕し、 流体化したものを、 圧力をかけて純酸素の気 体と一緒に本発明の装置の流体物流路内に注入すると、 各小室を流通する際 に受ける分散、 衝突、 渦流の繰り返し作用により、 混合 ·微粒子化する物質 における結合された分子同士を分解し、 無害化することができる。 In addition, when the industrial waste is pulverized and fluidized, pressure is injected into the fluid flow path of the apparatus of the present invention together with the pure oxygen gas under pressure, whereby the dispersion received when flowing through each small chamber is reduced. Substances that mix and become fine due to the repeated action of collisions and eddies The decomposed molecules can be detoxified.
また、 本発明の混合 ·粉砕微粒子化装置における半円柱体、 円筒体、 流体 物流路を形成するための構造体などを、 熱導伝性の素材、 例えば、 銅、 アル ミ及びカーボン等により成形することで、 熱交換器として使用可能となり、 混合 *微粒子化と、 熱交換を同時に行える効果を奏する。  In addition, the semi-cylindrical body, the cylindrical body, the structure for forming the fluid flow path, and the like in the mixing and pulverizing fine particle forming apparatus of the present invention are formed of a heat conductive material such as copper, aluminum, and carbon. By doing so, it can be used as a heat exchanger, and it has the effect of simultaneously mixing and atomizing and heat exchange.
微粒子化すべき物質が混合されている流体を、 本発明の混合 ·粉砕微粒子 化装置の流体物流路に圧入すれば、 当該流体は、 互いに対向している前面開 口の小室同士によって形成されている流体物流路を通り、 この過程で、 一つ の小室から二つの小室へ、 また、 二つの小室から一つの小室へ繰り返し流入 及び流出し、 そのたびごとに、 瞬時開放による爆発的解放圧と、 強い圧縮と を繰り返し受ける。 これによつて、 微粒子化すべき物質を超微粒子化及び分 子化することができる。  When a fluid in which the substance to be atomized is mixed is press-fitted into the fluid flow path of the mixing and pulverizing atomizer of the present invention, the fluid is formed by small chambers having front openings facing each other. Through the fluid flow path, in this process, it repeatedly flows into and out of one small chamber to two small chambers and from two small chambers to one small chamber. Receives strong compression and. As a result, the substance to be finely divided can be made ultrafine and molecular.
また、 本発明の混合,粉砕微粒子化装置を、 微粒子化すべき物質の臨界条 件下、 超臨界条件下で用いることにより、 産業廃棄物、 例えば、 環境汚染物 質等の難分解性物質であるダイォキシン類等を、 分解し、 無害化処理するこ とができる。 すなわち、 このような使用方法にすることによって、 被分解物 質と溶媒との混合、 更に、 被分解物質の超微粒子化、 分子化を促進させ、 か つ、 反応分解を促進させ、 優れた分解処理を可能にできる。 この際に、 更に、 超音波照射手段、 電磁波照射手段、 赤外線及び遠赤外線照射手段、 レーザ照 射手段、 プラズマ発生手段、 等を組み合わせて使用することにより、 被分解 物質の超微粒子化、 分子化を一層促進させ、 かつ、 反応分解を一層促進させ、 一層進んだ分解処理を可能にできる。  In addition, by using the mixing and pulverizing device of the present invention under the critical condition and supercritical condition of the material to be micronized, it can be used as an industrial waste, for example, a hardly decomposable substance such as an environmental pollutant. Dioxins and the like can be decomposed and detoxified. In other words, by adopting such a method of use, mixing of the substance to be decomposed with the solvent, and further, ultrafine particle and molecularization of the substance to be decomposed, and also promotes reactive decomposition, thereby achieving excellent decomposition. Processing can be enabled. At this time, by further using ultrasonic irradiation means, electromagnetic wave irradiation means, infrared and far-infrared irradiation means, laser irradiation means, plasma generation means, etc. in combination, ultrafine particles and molecular Can be further promoted, and the reaction decomposition can be further promoted, so that a more advanced decomposition treatment can be achieved.
また、 本発明の混合 ·粉砕微粒子化装置を、 臨界条件下、 超臨界条件下で 用いることにより、 加工食品の原料や、 薬品の原料を連続処理し、 各原料の 酵素、 胞子の失活処理、 殺菌処理、 脱臭処理を効率よく、 安全に、 かつ、 連 続的に行うことができる。 また、 化学物質の化学反応を制御し、 化学物質の 生成、 分解、 等の処理を行うこともできる。 図面の簡単な説明  In addition, by using the mixing and pulverizing microparticle forming apparatus of the present invention under critical conditions and supercritical conditions, raw materials of processed foods and chemicals are continuously processed, and enzymes and spores of each raw material are inactivated. In addition, sterilization and deodorization can be performed efficiently, safely and continuously. It can also control the chemical reaction of chemical substances, and perform processes such as the generation and decomposition of chemical substances. BRIEF DESCRIPTION OF THE FIGURES
第 1図 (a ) は本発明の混合 ·粉砕微粒子化装置に採用される第一の構造 物において小室が配備されている面を表す平面図、 第 1図 (b) は本発明の 混合 ·粉砕微粒子化装置に採用される第二の構造物において小室が配備され ている面を表す平面図、 第 1図 (c) は第 1図 (a ) 、 (b) 図示の第一、 第二の構造物が小室の開口している側を互いに対向させて密着配置され流体 物流路が形成された際の小室の配置状態を説明する平面図。 Fig. 1 (a) shows the first structure used in the mixing and pulverization micronization device of the present invention. Fig. 1 (b) is a plan view showing the surface of the second structure used in the mixing and pulverizing and atomizing apparatus according to the present invention in which the small chamber is provided. Fig. 1 (c) shows the first and second structures shown in Figs. 1 (a) and (b) in close contact with the small chambers with their open sides facing each other to form a fluid flow path. The top view explaining the arrangement state of the small chamber at the time of being performed.
第 2図 (a ) は第一、 第二の構造物を密着配置して流体物流路を形成する 一つの実施形態を入り口部側から見た図、 第 2図 (b) は第 2図 (a ) 図示 の第一、 第二の構造物が密着配置された状態を入り口部側から見た図、 第 2 図 (c) は第一、 第二の構造物を密着配置して流体物流路を形成する他の実 施形態を入り口部側から見た図。  FIG. 2 (a) is a diagram of one embodiment in which the first and second structures are closely arranged to form a fluid material flow path, as viewed from the entrance side, and FIG. 2 (b) is a diagram of FIG. a) A view of the state where the first and second structures are arranged in close contact as viewed from the entrance side, and FIG. 2 (c) shows a fluid material flow path in which the first and second structures are arranged in close contact. FIG. 5 is a view of another embodiment for forming the pit viewed from the entrance side.
第 3図は本発明の混合 ·粉砕微粒子化装置の一実施形態を表す斜視図。 第 4図 (a ) は本発明の他の混合 ·粉砕微粒子化装置における流体物流路 を説明する図であって、 第 1図 ( c ) に対応する状態を表す図、 第 4図 (b) は第 4図 (a ) の状態を側面から説明する図。  FIG. 3 is a perspective view showing an embodiment of the mixing / crushing fine particle forming apparatus of the present invention. FIG. 4 (a) is a diagram for explaining a fluid material flow path in another mixing / crushing and finely pulverizing apparatus of the present invention, and shows a state corresponding to FIG. 1 (c), and FIG. 4 (b). Fig. 4 is a diagram illustrating the state of Fig. 4 (a) from the side.
第 5図 (a ) は本発明の他の混合 ·粉砕微粒子化装置における流体物流路 を説明する図であって、 第 1図 (c ) に対応する状態を表す図、 (第 5図 b) は第 5図 (a) の状態を側面から説明する図。  FIG. 5 (a) is a diagram for explaining the flow path of the fluid material in another mixing / crushing micronization device of the present invention, and shows a state corresponding to FIG. 1 (c), (FIG. 5b) Fig. 5 is a diagram illustrating the state of Fig. 5 (a) from the side.
第 6図 (a ) は、 本発明の他の混合 ·粉砕微粒子化装置における流体物流 路を説明する図であって、 第 1図 (c ) に対応する状態を表す図、 第 6図 (b) は第 6図 (a ) の状態を側面から説明する図。  FIG. 6 (a) is a diagram illustrating a fluid distribution path in another mixing / crushing micronization device of the present invention, and is a diagram showing a state corresponding to FIG. 1 (c), and FIG. () Is a diagram for explaining the state of FIG. 6 (a) from the side.
第 7図は本発明の他の混合 ·粉砕微粒子化装置における流体物流路を説明 する図であって、 第 1図 (c) に対応する状態を表す図。  FIG. 7 is a view for explaining a flow path of a fluid material in another mixing and pulverizing apparatus of the present invention, and is a view corresponding to FIG. 1 (c).
第 8図 (a ) は本発明の更に他の混合 ·粉砕微粒子化装置における流体物 流路を説明する図であって、 第 1図 (c) に対応する状態を表す図、 第 8図 (b) は第 8図 (a) において対向する小室によって形成される流体物流路 横断面積を説明する図。  FIG. 8 (a) is a view for explaining the flow path of a fluid material in still another mixing / crushing and finely pulverizing apparatus of the present invention, and is a view showing a state corresponding to FIG. 1 (c). FIG. 8 (b) is a diagram for explaining the cross-sectional area of the fluid flow path formed by the opposed small chambers in FIG. 8 (a).
第 9図 (a ) は本発明の混合 ·粉砕微粒子化装置を用いて混合 ·粉砕微粒 子化処理を行う前の炭素粉末 (1 200°C処理炭) についての電子顕微鏡写 真、 第 9図 (b) は本発明の混合 ·粉砕微粒子化装置を用いて混合 ·粉砕微 粒子化処理を行う前の炭素粉末 (28 00°C処理炭) についての電子顕微鏡 写真。 Fig. 9 (a) is an electron micrograph of carbon powder (1200 ° C treated charcoal) before being subjected to mixing and pulverization using the mixing and pulverization micropulverizer of the present invention. (B) is an electron microscope of carbon powder (2800 ° C.-treated charcoal) before being subjected to mixing and pulverization using the mixing and pulverization / pulverization apparatus of the present invention. Photo.
第 1 0図 (a ) は本発明の混合 ·粉砕微粒子化装置によって 5分間処理を 行った後の 1 200°C処理炭の電子顕微鏡写真、 第 1 0図 (b) は第 1 0図 (a) の倍率を拡大した電子顕微鏡写真。  Fig. 10 (a) is an electron micrograph of the charcoal treated at 1200 ° C after being treated for 5 minutes by the mixing and pulverizing and atomizing device of the present invention, and Fig. 10 (b) is a micrograph of Fig. 10 ( Electron micrograph at magnification of a).
第 1 1図 (a ) は本発明の混合 ·粉砕微粒子化装置によって 5分間処理を 行った後の 2800°C処理炭の電子顕微鏡写真、 第 1 1図 (b) は第 1 1図 ( a ) の倍率を拡大した電子顕微鏡写真。  Fig. 11 (a) is an electron micrograph of the 2800 ° C-treated charcoal after being treated for 5 minutes by the mixing and pulverizing micronizing device of the present invention, and Fig. 11 (b) is Fig. 11 (a). An electron micrograph at an enlarged magnification of).
第 1 2図は本発明の混合 ·粉砕微粒子化装置が大豆を超微粒子化する装置 として用いられる際の一実施形態を説明する正面図。  FIG. 12 is a front view illustrating an embodiment when the mixing and pulverizing device of the present invention is used as a device for converting soybeans to ultrafine particles.
第 1 3図 (a ) は本発明の混合 ·粉砕微粒子化装置を用いた微粒子化方法 が採用されている混合 ·粉砕微粒子化の一実施形態を説明するプロック図、 第 1 3図 (b) は他の実施形態を説明するブロック図、 第 1 3図 (c) は更 に他の実施形態を説明するプロック図。  FIG. 13 (a) is a block diagram illustrating one embodiment of the mixing and pulverization microparticulation in which the micronization method using the mixing and pulverization micronization apparatus of the present invention is employed, and FIG. 13 (b). Fig. 13 is a block diagram for explaining another embodiment, and Fig. 13 (c) is a block diagram for explaining still another embodiment.
第 1 4図は本発明の混合 ·粉砕微粒子化装置を用い、 連続超臨界処理によ つて廃プラスチック、 バージンプラスチックの微粒子化処理を行う実施形態 を説明するプロック図。  FIG. 14 is a block diagram illustrating an embodiment in which waste plastics and virgin plastics are finely treated by continuous supercritical processing using the mixing and pulverizing finely divided apparatus of the present invention.
第 1 5図は、 本発明の混合 ·粉砕微粒子化装置に備えられている気体注入 部を説明する一部を省略した断面図。  FIG. 15 is a cross-sectional view, with a part omitted, for explaining a gas injection section provided in the mixing / crushing / micronizing apparatus of the present invention.
符号の説明  Explanation of reference numerals
1 :混合 .粉砕微粒子化装置  1: Mixing and crushing and fine-graining equipment
2 :第一の構造物 2: First structure
22 :第二の構造物 22: Second structure
3 a、 3 b、 4、 5、 6 a、 6 b、 7、 8、 9 a、 9 b、 1 0、 1 1、 1 2 a、 1 2 b、 1 3、 1 4 :小室  3a, 3b, 4, 5, 6a, 6b, 7, 8, 9a, 9b, 10, 11, 12, 12a, 12b, 13, 14: Small chamber
24、 25、 2 6 a、 2 6 b、 2 7、 28、 2 9 a、 29 b、 30、 3 1、24, 25, 26a, 26b, 27, 28, 29a, 29b, 30, 3, 1,
32 a、 32 b、 33、 34、 35 a、 35 b :小室 32a, 32b, 33, 34, 35a, 35b: Small room
5 1 : ガイ ドビン孔  5 1: Guide bin hole
52 : ガイ ドビン  52: Guy Dobin
40 a、 40 b :半円柱体  40 a, 40 b: semi-cylindrical body
55 :円筒体 5 6 a :入り口部 55: Cylindrical body 5 6 a: Entrance
5 6 b :排出部 5 6 b: Discharge section
5 7 a , 5 7 b :蓋体  5 7 a, 5 7 b: Lid
1 00 :混合 ·粉砕微粒子化装置 1 00: Mixing and crushing / micronizing device
1 0 2 :圧力ポンプ 発明を実施するための最良の形態 10 2: Best mode for carrying out the invention
以下、 添付図面を参照して本発明の好ましい実施形態を説明する。  Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
第 1図 (a ) は本発明の混合 ·粉砕微粒子化装置に採用される第一の構造 物 2の、 前面開口の複数の小室 3 a、 3 b、 〜、 1 4が配備されている面を 表す平面図である。 第 1図 (b) は本発明の混合 ·粉砕微粒子化装置に採用 される第二の構造物 2 2の、 前面開口の複数の小室 2 4、 〜、 3 5 a、 3 5 bが配備されている面を表す平面図である。  Fig. 1 (a) shows the surface of the first structure 2 employed in the mixing and pulverizing and atomizing device of the present invention, in which a plurality of small chambers 3a, 3b, ..., and 14 are provided with a front opening. FIG. Fig. 1 (b) shows a plurality of small chambers 24, ..., 35a, 35b with a front opening of the second structure 22 used in the mixing and pulverizing and atomizing apparatus of the present invention. It is a top view showing the surface which has.
第一の構造物 2に備えられている複数の小室は、 第 1図 (a ) 中、 符号 4、 5、 6 a、 6 b、 7、 8、 9 a、 9 b、 1 0、 1 1、 1 2 a 、 1 2 bで示す ように、 上流側 (第 1図 (a ) 中、 右側) から下流側 (第 1図 (a ) 中、 左 側) に向かって、 1個、 1個、 2個の順で配置される形式が一回又は複数回 繰り返されるものである。  The plurality of chambers provided in the first structure 2 are denoted by reference numerals 4, 5, 6a, 6b, 7, 8, 9a, 9b, 10 and 11 in FIG. 1 (a). , 12a, 12b, one from the upstream side (the right side in Fig. 1 (a)) to the downstream side (the left side in Fig. 1 (a)). , In which the two arrangements are repeated one or more times.
第 1図 (a ) 図示の形態では、 第 1図 (a ) 中、 上流側 (第 1図 (a ) 中、 右側) から下流側 (第 1図 (a ) 中、 左側) に向かって、 最初に 2個の小室 3 a、 3 bが配備され、 引き続いて 1個の小室 4、 1個の小室 5と順に配備 され、 下流側 (第 1図 (a ) 中、 左側) は、 1個の小室 1 3、 1個の小室 1 4力 2個の小室 I 2 a、 1 2 bに引き続いて順に配備されている。  In the configuration shown in Fig. 1 (a), from the upstream side in Fig. 1 (a) (right side in Fig. 1 (a)) to the downstream side (left side in Fig. 1 (a)) Initially, two small rooms 3a and 3b are deployed, followed by one small room 4 and one small room 5 in this order, and one downstream (one left in Fig. 1 (a)) The small chambers 13, 1 small chamber 14 power 2 small chambers I 2a, 1 2b are arranged in succession.
本発明でいうところの第一、 第二の構造物に備えられている複数の小室が、 上流側に位置する一端側から下流側に位置する他端側に向かって、 1個、 1 個、 2個の順で配置される形式が一回又は複数回繰り返されるとは、 第 1図 (a ) 図示のような形態の他に、 第 1図 (a ) 中、 1個の小室 4、 5に引き 続いて、 2個の小室 6 a、 6 bが順番に配置される形式、 第 1図 (a ) 中、 2個の小室 3 a 、 3 bに引き続いて、 1個の小室 4、 5が順番に配置される 形式、 第 1図 (a ) 中、 1個の小室 5に引き続いて、 2個の小室 6 a 、 6 b、 引き続いて、 1個の小室 7が順番に配置される形式、 そして、 上流側 (第 1 図 (a ) 中、 右側) から下流側 (第 1図 (a ) 中、 左側) に向かって、 これ らの形式が種々組み合わされ、 繰り返される形式を総て含むものである。 The plurality of small chambers provided in the first and second structures according to the present invention are one, one, one from one end located on the upstream side to the other end located on the downstream side. The form in which two pieces are arranged in order is repeated once or more than once. In addition to the form shown in FIG. 1 (a), one small chamber 4, 5 in FIG. 1 (a) Next, two small chambers 6a and 6b are arranged in order. In Fig. 1 (a), two small chambers 3a and 3b are followed by one small chamber 4 and 5 Are arranged in order. In Fig. 1 (a), one cell 5 is followed by two cells 6a, 6b, Subsequently, one small chamber 7 is arranged in order, and from the upstream side (the right side in Fig. 1 (a)) to the downstream side (the left side in Fig. 1 (a)). These forms are combined in various ways and include all repeated forms.
第 1図 (b) 図示の形態では、 第 1図 (b) 中、 上流側 (第 1図 (b) 中、 右側) から下流側 (第 1図 (b) 中、 左側) に向かって、 最初に 1個の小室 2 4、 1個の小室 2 5、 引き続いて 2個の小室 2 6 a、 2 6 bと順に配備さ れ、 下流側 (第 1図 (b) 中、 左側) は、 2個の小室 3 5 a 、 3 5 b力 1 個の小室 3 3、 1個の小室 3 4に引き続いて順に配備されている。  Fig. 1 (b) In the configuration shown in Fig. 1 (b), from the upstream side (in Fig. 1 (b), right side) to the downstream side (in Fig. 1 (b), left side) First, one small room 24, one small room 25, and then two small rooms 26a and 26b are arranged in this order. The downstream side (the left side in Fig. 1 (b)) Two small chambers 35a, 35b are arranged in order following one small chamber 33, one small chamber 34.
第一の構造物 2においても、 第二の構造物 2 2においても、 1個の小室 4、 5、 7、 8、 1 0、 1 1、 1 3、 1 4、 2 4、 2 5、 2 7、 2 8、 3 0、 3 1、 3 3、 34は、 その中心を第一、 第二の構造物 2、 2 2の上流側から下 流側へ通る当該小室 4、 等の中心線 3 7に対して対称な形状、 構造を有して いる。 また、 2個の小室 3 a と 3 b、 6 a と 6 b、 9 aと 9 b、 1 2 a と 1 2 b、 2 6 aと 2 6 b、 2 9 a と 2 9 b、 3 2 a と 3 2 b、 3 5 a と 3 5 b とは、 小室 4、 等の中心線 3 7に対して線対称に配置されていると共に、 当 該小室 4、 等の中心線 3 7に対して対称な形状、 構造を有している。  In each of the first structure 2 and the second structure 22, one small chamber 4, 5, 7, 8, 10, 11, 13, 14, 24, 25, 2 7, 28, 30, 30, 31, 33, and 34 are the center lines 3 of the small chamber 4, etc. that pass through the center of the first and second structures 2, 22 from the upstream side to the downstream side. It has a shape and structure symmetrical to 7. Also, two cells 3a and 3b, 6a and 6b, 9a and 9b, 12a and 12b, 26a and 26b, 29a and 29b, 32 a and 32b, and 35a and 35b are arranged symmetrically with respect to the center line 37 of the small chamber 4 and the like, and at the same time, with respect to the center line 37 of the small chamber 4 and the like. It has a symmetrical shape and structure.
第 1図 (a ) 〜 (c ) 図示の形態では、 小室 3 a、 3 b、 4、 等は、 いず れも、 五角形状の同一の形状、 構造を有している。  1 (a) to 1 (c) In the illustrated embodiment, each of the small chambers 3a, 3b, 4, etc. has the same pentagonal shape and structure.
第 1図 (a ) 、 第 1図 (b) 中、 符号 1 6 a、 3 6 aで示されている部分 は、 混合、 粉砕、 微粒子化処理を受ける流体が流入してくる流入口である。 また、 符号]. 6 b、 3 6 bで示されている部分は、 混合、 粉砕、 微粒子化処 理を受けた流体が排出されていく排出口である。  In Fig. 1 (a) and Fig. 1 (b), the portions indicated by reference numerals 16a and 36a are the inlets through which the fluid to be mixed, crushed and atomized flows in. . 6b and 36b are discharge ports from which the fluid that has undergone the mixing, crushing, and micronization treatments is discharged.
この、 第一の構造物 2と、 第二の構造物 2 2の、 それぞれの一側面に配備 されている複数の小室 3 a、 3 b、 〜、 1 4、 2 4、 〜、 3 5 a〜 3 5 bの 前面開口を第 2図図示のように (第一の構造物 2は小室の開口している側を 第 2図中、 下側に向け、 第二の構造物 2 2は小室の開口している側を第 2図 中、 上側に向けて) 互いに対向させ、 矢示 5 3 a、 5 3 b方向から両構造物 を密着させる。 ついで、 両側から矢示 5 4 a、 5 4 bのように半円柱体 4 0 a、 4 0 bで挟み込んで、 第一の構造物 2と、 第二の構造物 2 2とが密着配 置されている状態で挟持し、 当該半円柱体 4 0 a 、 4 O bの外径に対応する 内径を有する中空の円筒体 5 5で第 3図図示のようにこの半円柱体 4 0 a 4 0 bの外側を覆う。 次に、 入り口部 5 6 a、 排出部 5 6 bをそれぞれ形成 する蓋体 5 7 a 5 7 bをそれぞれ前記円筒体 5 5の入り口部側 (内部で、 流体物流路の流入口 1 6 a 3 6 aが面している側) 、 排出部側 (内部で、 流体物流路の排出口 1 6 b 3 6 bが面している側) に取り付けて、 本発明 の混合 ·粉砕微粒子化装置とすることができる。 A plurality of small chambers 3a, 3b, ..., 14, 24, ..., 35a provided on one side of each of the first structure 2 and the second structure 22 As shown in Fig. 2, the front opening of ~ 35b is as shown in Fig. 2 (The first structure 2 faces the open side of the small chamber downward in Fig. 2, and the second structure 22 (The side with the opening facing upwards in Fig. 2)) and oppose each other, and adhere both structures in the directions indicated by arrows 53a and 53b. Then, sandwiched between the semi-cylindrical bodies 40a and 40b as indicated by arrows 54a and 54b from both sides, the first structure 2 and the second structure 22 are closely arranged. Corresponding to the outer diameter of the semi-cylindrical body 40a, 4Ob A hollow cylindrical body 55 having an inner diameter covers the outside of the semi-cylindrical body 40a 40b as shown in FIG. Next, the lids 57 a 57 b forming the inlet 56 a and the discharge 56 b are respectively connected to the inlet side of the cylindrical body 55 (inside the inlet 16 a of the fluid flow passage). 36a) and the discharge part side (inside, the side facing the discharge port 16b36b of the fluid flow path), and the mixing and pulverization microparticulation apparatus of the present invention. It can be.
第 2図図示の形態では、 第一の構造物 2と第二の構造物 2 2とが、 一側面 に設けられている小室の開口している側を互いに対向させて密着配置されて 形成した流体物流路が入り口側(上流側)から排出側(下流側)に向かって 1本 のみ形成されているが、 所望に応じて、 同様に、 前面開口の複数の小室の開 口側を互いに対向させて密着配置される他の第一の構造物と第二の構造物と の組み合わせを複数段積層することにより、 入り口側(上流側)から排出側(下 流側)に向かって流体物流路が複数本並列されて形成される構成にすることも できる。  In the embodiment shown in FIG. 2, the first structure 2 and the second structure 22 are formed so as to be in close contact with each other so that the open sides of the small chambers provided on one side face each other. Although only one fluid material flow path is formed from the inlet side (upstream side) to the discharge side (downstream side), similarly, if desired, the opening sides of the plurality of small chambers having the front opening face each other. By laminating a plurality of combinations of other first structures and second structures that are arranged in close contact with each other, the fluid flow path from the inlet side (upstream side) to the discharge side (downstream side) is stacked. May be formed in parallel with each other.
第 1図 (a ) 、 (b) 図示の第一、 第二の構造物 2、 2 2を第 2図図示の ように、 複数個の小室の開口を互いに対向させて密着配置し、 流体物流路を 形成した場合の各小室の配置関係を第 2図中、 上側から見た状態を示したも のが第]図 (c) である。  As shown in FIG. 1, the first and second structures 2, 22 shown in FIGS. 1 (a) and 1 (b) are closely arranged with the openings of a plurality of small chambers facing each other as shown in FIG. FIG. 2 (c) shows the arrangement of the small chambers when a road is formed, as viewed from above in FIG.
第 1図 (a ) 、 (b) 、 ( c ) 図示の形態では、 各小室 3 a、 3 b、 4、 5 2 4 2 5 2 6 a 2 6 b 3 5 a 3 5 bの開口の形状は五角形 である。  Fig. 1 (a), (b), (c) In the illustrated form, the shape of the opening of each compartment 3a, 3b, 4, 5 2 4 2 5 2 6a 2 6b 3 5a 3 5b Is a pentagon.
第 4図 (a ) は、 第一の構造物 2、 第二の構造物 2 2に配備されている各 小室の形状が楕円形である場合における第 1図 (c ) に対応する図である。 第 4図 (b) は、 第 4図 (a ) を側面から説明する図である。 第 4図 (a ) 第 4図 (b) 中、 第 1図 (a ) 〜 (c ) で説明した部分に対応する部分には 同一の符号をつけてある。  FIG. 4 (a) is a diagram corresponding to FIG. 1 (c) in the case where the shape of each of the small chambers provided in the first structure 2 and the second structure 22 is elliptical. . FIG. 4 (b) is a diagram for explaining FIG. 4 (a) from the side. In FIG. 4 (a) and FIG. 4 (b), parts corresponding to the parts described in FIGS. 1 (a) to (c) are denoted by the same reference numerals.
本発明の混合 ·粉砕微粒子化装置において、 第一の構造物 2の小室 3 a 3 b 4等から、 第二の構造物 2 2の小室 2 4 2 5 2 6 a 2 6 b、 等 また、 その逆 (第二の構造物 2 2の小室から第一の構造物 2の小室へ) へと、 上流側から下流側に向かって各小室の空間部が順次連通されて形成さ れる流体物通路を、 混合、 粉砕、 微粒子化処理される流体が流動していく状 態を、 第 4図 (a ) 、 第 4図 (b ) を用いて説明する。 In the mixing and pulverization device of the present invention, the small chambers 3a3b4 of the first structure 2 and the small chambers 2 4 2 5 2 6a2 6b of the second structure 22 are provided. In the opposite direction (from the small chamber of the second structure 22 to the small chamber of the first structure 2), the spaces of the small chambers are sequentially communicated from the upstream side to the downstream side. The state in which the fluid to be mixed, pulverized, and atomized is flowing through the fluid passage will be described with reference to FIGS. 4 (a) and 4 (b).
流入口 1 6 a 、 3 6 aから流体物通路内に圧送されてきた混合、 粉砕、 微 粒子化処理されるべき流体は、 第 4図 (a ) 、 第 4図 (b ) 図示のように、 どちらか一方の構造物 (第 4図 (a ) 、 第 4図 (b ) 図示の場合は、 第二の 構造物 2 2 ) の上流側に位置する 1個の小室 2 4から、 対向する他方の構造 物 2の上流側に位置する 2個の小室 3 b、 3 aに、 矢示 4 1 a 、 4 1 bで示 すように流入する。  The fluids to be mixed, crushed and atomized from the inlets 16a and 36a into the fluid passage are treated as shown in Figs. 4 (a) and 4 (b). The one small chamber 24 located on the upstream side of one of the structures (FIGS. 4 (a) and 4 (b), the second structure 22) in the case shown in FIG. As shown by arrows 41a and 41b, they flow into two small chambers 3b and 3a located on the upstream side of the other structure 2.
ついで、 構造物 2における当該 2個の小室 3 b、 3 aから、 前記一方の構 造物 2 2における前記 1個の小室 2 4より下流側に位置する次位の 1個の小 室 2 5に、 矢示 4 2 a、 4 2 bで示すように流入する。  Next, from the two small chambers 3b and 3a in the structure 2, the next small chamber 25 located downstream of the one small chamber 24 in the one structure 22 is formed. , Arrows 4 2a and 4 2b enter as shown.
次に、 当該一方の構造物 2 2における当該次位の 1個の小室 2 5から、 前 記対向する他方の構造物 2における前記 2個の小室 3 b、 3 aより下流側に 位置する次位の 1個の小室 4に、 矢示 4 3で示すように流入する。  Next, from the next small chamber 25 in the one structure 22, the next chamber located downstream from the two small chambers 3 b and 3 a in the opposite structure 2 As shown by the arrow 43, it flows into one small chamber 4 of the rank.
つぎに、 当該他方の構造物 2における当該次位の 1個の小室 4から、 前記 一方の構造物 2 2における前記次位の 1個の小室 2 5より下流側に位置する 次位の 2個の小室 2 6 a、 2 6 bに、 矢示 4 4 a、 4 4 bで示すように流入 する。  Next, from the one next small chamber 4 in the other structure 2, the next two small cells located downstream of the one next small chamber 25 in the one structure 22. Flows into the small chambers 26a and 26b as indicated by arrows 44a and 44b.
ついで、 当該一方の構造物 2 2における当該次位の 2個の小室 2 6 a、 2 6 bから、 前記他方の構造物 2における前記次位の 1個の小室 4より下流側 に位置する次々位の 1個の小室 5に、 矢示 4 5 a、 4 5 bで示すように流入 する。  Next, from the next two small chambers 26 a and 26 b in the one structure 22, one after another located downstream from the one next small chamber 4 in the other structure 2. As shown by arrows 45a and 45b, it flows into one of the small chambers 5 as shown by arrows.
次に、 当該他方の構造物 2における前記次々位の 1個の小室 5から、 前記 一方の構造物 2 2における前記次位の 2個の小室 2 6 a、 2 6 bより下流側 に位置する次々位の 1個の小室 2 7に、 矢示 4 6で示すように流入する。 ここで、 本発明の混合 ·粉砕微粒子化装置においては、 前述したように、 第一の構造物 2においても、 第二の構造物 2 2においても、 1個の小室 4、 5、 〜、 3 3、 3 4は、 その中心を第一、 第二の構造物 2、 2 2の上流側か ら下流側へ通る当該小室 4、 等の中心線 3 7に対して対称な形状、 構造を有 し、 2個の小室 3 a と 3 b、 〜、 3 5 a と 3 5 bとは、 小室 4、 等の中心線 3 7に対して線対称に配置されていると共に、 当該小室 4、 等の中心線 3 7 に対して対称な形状、 構造を有している。 Next, it is located downstream from the next two small chambers 26 a and 26 b in the one structure 22 from the one next small chamber 5 in the other structure 2. As shown by arrows 46, it flows into one of the small chambers 27 one after another. Here, in the mixing and pulverization microparticulation apparatus of the present invention, as described above, in each of the first structure 2 and the second structure 22, one small chamber 4, 5,. 3 and 3 4 have shapes and structures symmetrical with respect to the center line 37 of the small chamber 4 and the like passing from the upstream to the downstream of the first and second structures 2 and 22 at the center thereof. And the two chambers 3a and 3b, ~, 35a and 35b are the centerlines of chamber 4, etc. It is arranged symmetrically with respect to 37 and has a shape and structure symmetrical with respect to the center line 37 of the small chamber 4 and the like.
そこで、 構造物 2 2の小室 2 4から構造物 2の小室 3 b、 3 aへ矢示 4 1 a、 4 1 bのように流体が分岐して流れ込んでいく際の流体が流れ込む角度、 距離、 等の条件は、 矢示 4 1 a方向も、 4 1 b方向も同一となる。  Therefore, as shown by arrows 4 1a and 4 1b from the small chamber 24 of the structure 2 2 to the small chambers 3 b and 3 a of the structure 2 The conditions of,, etc. are the same in the directions indicated by the arrows 41a and 41b.
また、 構造物 2の小室 3 b、 3 aから構造物 2 2の小室 2 5へ矢示 4 2 a、 Also, an arrow 4 2 a from the small chambers 3 b and 3 a of the structure 2 to the small chamber 25 of the structure 22.
4 2 bのように流体が合流して流れ込んでいく際の流体が流れ込む角度、 距 離、 等の条件は、 矢示 4 2 a方向も、 4 2 b方向も同一となる。 When the fluids merge and flow as in 42b, the conditions such as the angle at which the fluid flows, the distance, and the like are the same in the directions indicated by arrows 42a and 42b.
この結果、 流体物流路のどこにおいても、 流体がバランスよく流れ、 一方 の構造物の 2個の小室から他方の構造物の 1個の小室に流体が流れ込んでい く包圧の際に流体が受ける強い圧力と、 一方の構造物の 1個の小室から他方 の構造物の 2個の小室に流体が流れ込んでいく爆散の際の解放、 拡散によつ て流体から圧力が解き放たれ、 より低い圧力になるときとの圧力の差が非常 に大きくなり、 流体に混合されている物質の粉砕、 微粒子化を極めて効率よ く行い、 真球状への微粒子化を効果的に行うことができる。  As a result, the fluid flows in a well-balanced manner everywhere in the fluid flow path, and the fluid flows from the two small chambers of one structure to one small chamber of the other structure, causing the fluid to flow during the packing pressure. High pressure experienced and release during diffusion of fluid from one chamber of one structure into two chambers of the other, releasing pressure from fluid due to diffusion, lower The difference between the pressure and the pressure becomes extremely large, so that the material mixed in the fluid can be pulverized and atomized very efficiently, and the particles can be effectively atomized into a true sphere.
また、 発明者の実験によれば、 各構造物における小室の配置を、 上流側か ら下流側に向けて 1個、 1個、 2個の順とし、 混合、 粉砕、 微粒子化処理さ れる物質が混合されている流体が、 前記のように構成されている流体物流路 中を、 一方の構造物における 2個の小室→他方の構造物における 1個の小室 →一方の構造物における 1個の小室—他方の構造物における 2個の小室→一 方の構造物における 1個の小室→他方の構造物における 1個の小室→一方の 構造物における 2個の小室→他方の構造物における 1個の小室→一方の構造 物における 1個の小室→他方の構造物における 2個の小室→一方の構造物に おける 1個の小室→他方の構造物における 1個の小室→一方の構造物におけ る 2個の小室→他方の構造物における 1個の小室→一方の構造物における 1 個の小室と、 1、 1、 2の関係の繰り返しで一方の構造物の小室から他方の 構造物の小室への移動が行われると、 比較的低い圧力で処理すべき流体を本 発明の混合 ·粉砕微粒子化装置の流体物流路に圧入するだけで、 スムーズに、 処理すべき流体を通過させ、 前述した配置形式により粉碎、 微粒子化を簡易 に実現することができた。 なお、 本発明においては、 前記のように、 上流から下流に向けて、 1、 1、 2の順で配置される流体物流路は、 小室の大きさ、 粉砕、 微粒子化すべき対 象物にもよるが、 少なくとも 1 、 1、 2の順での流路が 2回以上繰り返され るように形成することが望ましい。 少なくとも 2回は繰り返されなければ、 混合、 粉砕、 微粒子化の目的が十分達成されず、 その一方、 あまりに多くの 回数繰り返されるようにすると、 混合 ·粉砕微粒子化装置の上流側から下流 側までの長さが大きくなつてしまい、 製造、 取り扱いに支障をきたすので、 1機の混合 ·粉砕微粒子化装置の流体物流路を一回通過した流体を循環して、 再度、 当該混合 ·粉砕微粒子化装置の流体物流路を通過させて粉砕、 微粒子 化を行う作業性、 等も考慮し、 1、 1、 2の順での流路が少なくとも 2回以 上繰り返されるように形成することが望ましい。 According to the experiments of the inventor, the arrangement of the small chambers in each of the structures was changed from the upstream side to the downstream side in order of one, one, and two, and the substances to be mixed, crushed, and atomized were processed. Is mixed in the fluid flow path configured as described above, two small chambers in one structure → one small chamber in the other structure → one small chamber in one structure Small chamber—two small chambers in the other structure → one small chamber in one structure → one small chamber in the other structure → two small chambers in one structure → one in the other structure Cell → one cell in one structure → two cells in the other structure → one cell in one structure → one cell in the other structure → one cell 2 small chambers → 1 small chamber in the other structure → one structure When one of the small chambers is moved from the small chamber of one structure to the small chamber of the other structure by repeating the relationship of 1, 1, and 2, the fluid to be treated at a relatively low pressure is applied to the present invention. By simply press-fitting into the fluid flow path of the mixing and pulverization / micronization device, the fluid to be processed was passed smoothly, and the pulverization and micronization could be easily realized by the above-mentioned arrangement. In the present invention, as described above, from the upstream to the downstream, the fluid material flow passages arranged in the order of 1, 1, and 2 are also required for the size of the chamber, the object to be pulverized, and the object to be atomized. However, it is preferable to form the flow path in the order of at least 1, 1, and 2 twice or more. If it is not repeated at least twice, the purpose of mixing, pulverization and atomization will not be sufficiently achieved.On the other hand, if it is repeated too many times, the mixing and pulverization from the upstream to the downstream of the pulverizer will be performed. Since the length becomes too large, which hinders production and handling, the fluid that has passed once through the fluid flow path of one mixing / milling / micronizing device is circulated again, and the mixing / milling / micronizing device is again used. In consideration of the workability of pulverizing and atomizing by passing through the fluid material flow path, it is preferable that the flow path in the order of 1, 1, and 2 is formed so as to be repeated at least twice.
第 1図 (a ) 、 (b ) 、 ( c ) 図示の形態は、 1、 1、 2の順での流路が 4回繰り返されているものである。  FIGS. 1 (a), (b), (c) In the embodiment shown, the flow path in the order of 1, 1, 2 is repeated four times.
第 5図 (a ) は、 第一の構造物 2、 第二の構造物 2 2に配備されている各 小室の形状が正方形状である場合における第 1図 (c ) に対応する図である。 第 5図 (b ) は、 第 5図 (a ) を側面から説明する図である。 第 6図 (a ) は、 第一の構造物 2、 第二の構造物 2 2に配備されている各小室の形状が八 角形である場合における第 1図 (c ) に対応する図である。 第 6図 (b ) は、 第 6図 (a ) を側面から説明する図である。 第 7図は、 第一の構造物 2に配 備されている小室中、 符号 6 a、 6 b、 8で表されている部分の小室の形状 が六角形で、 その他の第一の構造物 2に配備されている小室、 第二の構造物 2 2に配備されている各小室の形状が円形である場合における第 1図 (c ) に対応する図である。 第 5図 (a ) 、 第 5図 (b ) 、 第 6図 (a ) 、 第 6図 ( b ) 、 第 7図中、 第 1図 (a ) 〜 (c ) で説明した部分に対応する部分に は同一の符号をつけてそれらの説明を省略する。  FIG. 5 (a) is a view corresponding to FIG. 1 (c) in a case where the shapes of the small chambers provided in the first structure 2 and the second structure 22 are square. . FIG. 5 (b) is a diagram for explaining FIG. 5 (a) from the side. FIG. 6 (a) is a diagram corresponding to FIG. 1 (c) in the case where the shapes of the small chambers provided in the first structure 2 and the second structure 22 are octagons. . FIG. 6 (b) is a diagram for explaining FIG. 6 (a) from the side. Fig. 7 shows that, in the small chambers provided in the first structure 2, the small chambers indicated by reference numerals 6a, 6b, and 8 have hexagonal shapes, and the other first structures 2 is a diagram corresponding to FIG. 1 (c) in a case where the shape of each of the small chambers provided in the second structure 22 and each of the small rooms provided in the second structure 22 is circular. 5 (a), 5 (b), 6 (a), 6 (b) and 7 correspond to the parts described in FIGS. 1 (a) to (c). The same reference numerals are given to the portions and the description thereof is omitted.
第 7図の実施形態においては、 複数の小室の中に円形のものと六角形形状 のものとが混在しているが、 小室 2 7、 2 8等の中心を通る中心線 3 7に対 して、 符号 6 a、 6 bで示される小室同士、 符号 2 9 b、 2 9 aで示される 小室同士、 等が互いに対称な形状、 構造とされていて、 各 1個の小室 2 7、 2 8等も、 中心線 3 7に対して線対称な形状、 構造になっていさえすれば、 第 7図図示のように、 異なる形状、 構造の小室が配備されている形態にする こともできる。 In the embodiment shown in FIG. 7, the circular chamber and the hexagonal chamber are mixed in a plurality of small chambers, but the center line 37 passing through the centers of the small chambers 27, 28, etc. The small chambers denoted by reference numerals 6a and 6b, the small chambers denoted by reference numerals 29b and 29a, and the like have mutually symmetrical shapes and structures, and each of the small chambers 27, 2 As long as 8 mag has a shape and structure that is symmetrical with respect to the center line 3 7, As shown in FIG. 7, it is also possible to adopt a mode in which small chambers having different shapes and structures are provided.
なお、 第 1図、 第 4図、 第 5図、 第 6図、 第 7図図示の実施形態では、 第 —の構造物 2、 第二の構造物 2 2の上流側から下流側に向けて、 1個、 1個、 2個、 1個、 1個、 2個、 の順で配置される小室は、 いずれも、 各 1個の小 室はその中心線 3 7に対して線対称な形状、 構造であり、 各 2個の小室は、 前記中心線 3 7に対して互いに線対称に配置され、 かつ、 中心線 3 7に対し て互いに線対称な形状、 構造になっているが、 各小室の形状、 構造、 配置を このように限定せず、 ともかく、 上流側から下流側に向けて第一、 第二の構 造物 2、 2 2とも、 1個、 1個、 2個、 1個、 1個、 2個、 の順で小室が配 置され、 一方の構造物 2 2における 1個の小室 2 4→他方の構造物 2におけ る 2個の小室 3 b、 3 a→—方の構造物 2 2における 1個の小室 2 5→他方 の構造物 2における 1個の小室 4→一方の構造物 2 2における 2個の小室 2 6 a 、 2 6 b→他方の構造物 2における 1個の小室 5→—方の構造物 2 2に おける 1個の小室 2 7→他方の構造物 2における 2個の小室 6 b、 6 a→— 方の構造物 2 2における 1個の小室 2 8、 と流体物流路が形成されていくよ うにすることもできる。  In the embodiments shown in FIGS. 1, 4, 5, 6, and 7, the first and second structures 2 and 22 are arranged from the upstream side to the downstream side. , 1, 1, 2, 1, 1, 1, 2, are arranged in this order.Each of the small chambers is symmetrical with respect to its center line 37. Each of the two chambers is arranged symmetrically with respect to the center line 37, and has a shape and structure symmetric with respect to the center line 37. The shape, structure and arrangement of the small chambers are not limited in this way, but in any case, from the upstream side to the downstream side, the first and second structures 2 and 2 are both one, one, two and one , One, two, and three small chambers are arranged in this order. One small chamber 24 in one structure 22 → two small chambers 3 b, 3 a → in the other structure 2 One chamber 2 5 in structure 2 2 One small chamber 4 in one structure 2 → two small chambers 26 a and 26 b in one structure 2 2 → one small chamber 5 in the other structure 2 → one structure 2 2 1 chamber 2 7 → 2 chambers 6 b, 6 a in the other structure 2 → 1 chamber 2 8 in the other structure 2 2 so that the fluid flow path is formed You can also.
このようにすれば、 混合 ·粉砕 ·微粒子化処理を受けて微粒子化された物 質が、 いずれも、 ほぼ均一な粒径を有するようにすることが、 第 1図、 第 4 図、 第 5図、 第 6図、 第 7図図示の実施形態の場合に比べて難しくなるが、 粒径を均一に揃えることを特に要求されず、 かえって、 不均一な粒径のもの が混在するように微粒子化した方がよい場合にはこのような形態にすること もできる。  By doing so, it is possible to ensure that the particles that have been subjected to the mixing, pulverization, and micronization treatments have substantially uniform particle diameters, as shown in FIGS. 1, 4, and 5. Although it is more difficult than in the case of the embodiment shown in FIGS. 6, 6 and 7, it is not particularly required to make the particle diameter uniform, and rather, the fine particles are mixed so that those having uneven particle diameters are mixed. Such a form can also be adopted when it is better to make it.
第 8図 (a ) は、 この発明の他の実施形態における第 1図 (c ) に対応す る図である。 第 8図 (a ) 中、 第 1図 (a ) 〜 (c ) で説明した部分に対応 する部分には同一の符号をつけてある。  FIG. 8 (a) is a view corresponding to FIG. 1 (c) in another embodiment of the present invention. In FIG. 8 (a), parts corresponding to the parts described in FIGS. 1 (a) to (c) are denoted by the same reference numerals.
第 8図 (a ) 図示の実施形態では、 第一の構造物 2には、 上流側から、 1 個の小室 6 0、 2個の小室 6 1 a、 6 1 b、 1個の小室 6 2、 2個の小室 6 3 a 、 6 3 b、 1個の小室 6 4、 2個の小室 6 5 a、 6 5 b、 1個の小室 6 6が順に配備され、 第二の構造物 2 2には、 上流側から、 1個の小室 7 0、 2個の小室 7 1 a、 7 1 b , 1個の小室 7 2、 2個の小室 7 3 a、 7 3 b、 1個の小室 7 4、 2個の小室 7 5 a 、 7 5 b、 1個の小室 7 6が順に配備さ れている。 Fig. 8 (a) In the illustrated embodiment, the first structure 2 includes one small chamber 60, two small chambers 61a, 61b, and one small chamber 62 from the upstream side. , Two small chambers 6 3 a, 6 3 b, one small chamber 64, two small chambers 65 a, 65 b, and one small chamber 66 are arranged in this order, and the second structure 22 From the upstream side, one small room 70, 2 small rooms 7 1a, 7 1b, 1 small room 7 2, 2 small rooms 7 3a, 7 3b, 1 small room 7 4, 2 small rooms 7 5a, 7 5b, One small room 76 is arranged in order.
第 8図 (a ) 図示のように、 1個の小室 6 0、 6 2、 6 4、 6 6、 7 0、 7 2、 7 4、 7 6は、 その中心を第一、 第二の構造物の上流側から下流側へ 通る当該小室の中心線 3 7に対して対称な形状、 構造を有し、 2個の小室 6 l a と 6 1 b、 6 3 a と 6 3 b、 6 5 a と 6 5 b、 7 1 aと 7 1 b、 7 3 a と 7 3 b、 7 5 aと 7 5 bは、 前記中心線 3 7に対して線対称に配置されて いると共に、 中心線 3 7に対して対称な形状、 構造になっている。  Fig. 8 (a) As shown in the figure, one chamber 60, 62, 64, 66, 70, 72, 74, 76 has the center of the first and second structures. It has a symmetrical shape and structure with respect to the center line 37 of the small chamber that passes from the upstream side to the downstream side of the object, and has two small chambers 6 la and 61 b, 63 a and 63 b, 65 a And 65b, 71a and 71b, 73a and 73b, 75a and 75b are arranged symmetrically with respect to the centerline 37 and the centerline 3 The shape and structure are symmetrical to 7.
この第 8図 (a ) 図示の実施形態では、 第一の構造物 2と第二の構造物 2 2とを小室の開口している前面側を互いに対向させて密着配置して形成した 流体物流路は、 1個の小室 6 0→ 1個の小室 7 0→2個の小室 6 1 a、 6 1 b→ 2個の小室 7 1 a、 7 1 b→ l個の小室 6 2→ 1個の小室 7 2→2個の 小室 6 3 a 、 6 3 b→ 2個の小室 7 3 a、 7 3 b→ 1個の小室 6 4→ 1個の 小室 74→ 2個の小室 6 5 a、 6 5 b→ 2個の小室 7 5 a、 7 5 b→ l個の 小室 6 6→ 1個の小室 7 6と連通するようになる。  In the embodiment shown in FIG. 8 (a), the first structural body 2 and the second structural body 22 are formed by closely adhering the small chambers with the open front sides facing each other. The road is 1 small room 60 → 1 small room 70 → 2 small rooms 6 1a, 6 1b → 2 small rooms 7 1a, 7 1b → 1 small room 6 2 → 1 Small room 7 2 → 2 small rooms 6 3a, 6 3b → 2 small rooms 7 3a, 7 3b → 1 small room 6 4 → 1 small room 74 → 2 small rooms 6 5a, 6 5b → 2 small chambers 7 5a, 7 5b → l small chambers 6 6 → 1 small chamber 76
すなわち、 前述した第 1図〜第 7図の実施形態のように、 1個、 1個、 2 個の順で第一、 第二の構造物に小室が配置され、 1個の小室— 1個の小室→ 2個の小室→ 1個の小室→ 1個の小室→ 2個の小室→ 1個の小室→ 1個の小 室と流体物流路が連通するのではなく、 第 8図 (a ) 図示の実施形態では、 1個の小室→ 1個の小室→ 2個の小室→ 2個の小室→ 1個の小室→ 1個の小 室→ 2個の小室— 2個の小室→ 1個の小室→ 1個の小室→ 2個の小室→ 2個 の小室→ 1個の小室→ 1個の小室→ 2個の小室→ 2個の小室と流体物流路が 連通する。  That is, as in the above-described embodiment of FIGS. 1 to 7, small chambers are arranged in the first and second structures in the order of one, one, and two, and one small chamber—one Small chamber → 2 small chambers → 1 small chamber → 1 small chamber → 2 small chambers → 1 small chamber → 1 small chamber does not communicate with the fluid flow path, but Fig. 8 (a) In the illustrated embodiment, one small room → one small room → two small rooms → two small rooms → one small room → one small room → two small rooms—two small rooms → one small room Small room → One small room → Two small rooms → Two small rooms → One small room → One small room → Two small rooms → Two small rooms communicate with the fluid passage.
この第 8図 (a ) 図示の実施形態の流体物流路を有する本発明の混合 -粉 砕微粒子化装置の場合、 前述した包圧、 爆散現象が穏やかに起きる点を除け ば、 他の、 作用、 効果は、 第 1図〜第 7図の実施形態の場合と同様である。 なお、 第 8図 (a ) 図示の実施形態の流体物流路を有する本発明の混合 - 粉砕微粒子化装置の場合、 第 8図 (b) 図示のように、 対向する小室同士の 部分で形成される流体物流路の横断面積 (符号 8 1、 8 2、 8 3、 8 4、 8 5、 8 6、 8 7、 8 8で示されている) は、 流体物流路の総てにおいて同一 であることがバランのよい流動を実現し、 微粒子化されたいずれの微粒子と もほほ均一な粒径を有する微粒子にする上で望ましい。 FIG. 8 (a) In the case of the mixing-crushing micronization apparatus of the present invention having the fluid flow path of the illustrated embodiment, other than the above-mentioned point that the packing pressure and the explosion phenomenon occur gently, The effects are the same as in the embodiment of FIGS. In addition, in the case of the mixing-crushing micronization device of the present invention having the fluid material flow path of the embodiment shown in FIG. 8 (a), as shown in FIG. 8 (b), the mixing-pulverization device is formed by the portions of the opposing small chambers. Cross section of fluid flow path (reference numbers 81, 82, 83, 84, 8) 5, 86, 87, 88) are the same in all fluid flow paths to achieve good balun flow, and are almost uniform with all of the micronized particles. It is desirable to make fine particles having a particle size.
なお、 第 8図 (a ) 、 第 8図 (b ) 図示の実施形態では、 小室の形状は横 断面正六角形としているが、 前述した条件を満たす限り、 横断面円形、 等、 種々の形状とすることができる。  In the embodiment shown in FIGS. 8 (a) and 8 (b), the shape of the small chamber is a hexagonal cross section, but various shapes such as a circular cross section can be used as long as the above conditions are satisfied. can do.
第 1図〜第 7図図示の実施形態においても、 小室の横断面形状は図示のも のに限定されれず、 前述した条件を満たす限り、 正三角形形状、 等、 種々の 形状を採用可能である。  Also in the embodiment shown in FIGS. 1 to 7, the cross-sectional shape of the small chamber is not limited to the illustrated one, and various shapes such as an equilateral triangular shape can be adopted as long as the above-described conditions are satisfied. .
第 1 5図は、 混合 ·粉砕微粒子化装置の入り口部 5 6 a (第 3図) に接続 している流体物流入管 1 1 1力 上流側 (第 3図、 第 1 5図中右側) から入 り口部 5 6 aまでの間に気体注入部 1 1 2を備えている形態の本発明の混合 •粉砕微粒子化装置を説明するものである。  Fig. 15 shows the fluid material inlet pipe connected to the inlet 56a (Fig. 3) of the mixing and pulverizing device from the upstream side (right side in Fig. 3 and Fig. 15). FIG. 4 illustrates a mixing / pulverizing / micronizing apparatus of the present invention in a form including a gas injection section 112 up to an inlet section 56a.
流体物流入管 1 1 1の流体物流動部 1 1 4に連続している気体注入部 1 1 2の流体物流動部 1 1 3の内径 r 1は、 流体物流入管 1 1 1における流体物 流動部 1 1 4の内径 Rより小くなつている。  Fluid inflow pipe 1 1 1 Gas inlet 1 1 4 connected to fluid flow 1 1 4 Fluid flow 1 1 2 Inner diameter r 1 of 1 1 3 Fluid flow in fluid inflow pipe 1 1 1 It is smaller than the inner diameter R of 1 1 4.
この気体注入部 1 1 2の流体物流動部 1 1 3には、 気体注入管 1 1 5が接 続されている。 気体注入管 1 1 5の内径 r 2は、 気体注入部 1 1 2の流体物 流動部 1 1 3の内径 r 1より小さくなっている。  A gas injection pipe 1 15 is connected to the fluid flow section 1 13 of the gas injection section 1 12. The inner diameter r 2 of the gas injection pipe 1 15 is smaller than the inner diameter r 1 of the fluid flow section 1 13 of the gas injection section 112.
本発明の混合 ·粉砕微粒子化装置においては前述した流体物流路中におけ る流体物の複雑な流動の過程で、 局所的に圧力の高い部分と圧力の低い部分 とが生じる。 この結果、 局所的に圧力の低下した部分で、 流体物中に無数の 微小な気泡が発生するキヤビテーション現象が生じる。  In the mixing and pulverizing device of the present invention, a locally high pressure portion and a low pressure portion are locally generated in the course of the complicated flow of the fluid material in the fluid material channel described above. As a result, a cavitation phenomenon occurs in which a myriad of minute bubbles are generated in the fluid at the part where the pressure is locally reduced.
本発明の混合 ·粉砕微粒子化装置では、 このキヤビテーション現象によつ て発生した無数の微小な気泡がはじける際に生じる強い衝撃波によって、 流 体物中に混入している混合 ·粉砕微粒子化処理の対象物が強い衝撃を受け、 粉砕、 微粒子化が促進されている。  In the mixing and pulverizing device according to the present invention, the strong shock wave generated when the innumerable fine bubbles generated by the cavitation phenomenon are blown off is mixed and pulverized into particles. The object to be treated is subject to strong impact, and crushing and atomization are promoted.
第 1 5図図示のように、 混合 ·粉砕微粒子化装置の入り口部に接続してい る流体物流入管 1 1 1に配備されている気体注入部 1 1 2から気体を注入す ることにより、 前記のキヤビテーシヨン現象をより効果的、 より大規模に発 生させることができる。 そして、 これによつて、 流体物中に混入している混 合 ·粉砕微粒子化処理の対象物の粉砕、 微粒子化をより一層促進することが できる。 As shown in FIG. 15, by injecting gas from the gas injection section 112 provided in the fluid inflow pipe 111 connected to the inlet of the mixing and pulverization / micronization apparatus, More effective, larger-scale cavitation phenomenon You can live. Thus, the pulverization and pulverization of the object to be subjected to the mixing / pulverization pulverization processing mixed in the fluid substance can be further promoted.
前記のように、 流体物流入管 1 1 1の流体物流動部 1 1 4に連続している 気体注入部 1 1 2の流体物流動部 1 1 3の内径 r 1が、 流体物流入管 1 1 1 における流体物流動部 1 1 4の内径 Rより小くなつているので、 流体物流動 部 1 1 3における圧力は、 流体物流動部 1 1 4における圧力より低くなつて いる。 また、 気体注入部 1 1 2の流体物流動部 1 ]. 3を流動する流体物の流 速は、 流体物流入管 1 1 1の流体物流動部 1 1 4を流動している流体物の流 速より速くなつている。  As described above, the inner diameter r 1 of the fluid flow portion 1 1 3 of the gas injection portion 1 1 2 which is continuous with the fluid flow portion 1 1 4 of the fluid flow pipe 1 1 1 Since the inner diameter R of the fluid flow portion 114 is smaller than the inner diameter R of the fluid flow portion 113, the pressure in the fluid flow portion 113 is lower than the pressure in the fluid flow portion 114. Also, the flow rate of the fluid flowing through the fluid flow section 1] .3 of the gas injection section 1 1 2 is equal to the flow rate of the fluid flowing through the fluid flow section 1 1 4 of the fluid inlet pipe 1 1 1. Faster than faster.
そして、 気体注入管 1 1 5の内径 r 2が、 気体注入部 1 1 2の流体物流動 部 1 1 3の内径 r 1より小さくなつていることにより、 ェジェクタ一現象が 生じる。  When the inner diameter r2 of the gas injection pipe 115 is smaller than the inner diameter r1 of the fluid flowing part 113 of the gas injection part 112, an ejector phenomenon occurs.
このェジェクタ一現象によって、 気体注入管 1 1 5からの気体は効率よく 微小な気泡となって流体物流動部 1 1 3内に注入される。 すなわち、 流体物 流入管 1 1 1中を矢印 1 1 4のように流動してきた流体物中に、 気体注入部 1 1 2で無数の微小な気泡が注入され、 この無数の微小な気泡が注入された 流体物が、 矢印 1 1 4のように流動して、 入り口部 5 6 aから本発明の混合 •粉砕微粒子化装置の中に流動していく。  By this ejector phenomenon, the gas from the gas injection pipe 115 is efficiently converted into fine bubbles and injected into the fluid flowing part 113. That is, in the fluid material flowing through the fluid inflow pipe 1 1 1 as shown by the arrow 1 1 4, innumerable minute bubbles are injected at the gas injection section 1 12, and the innumerable minute bubbles are injected. The fluidized material flows as indicated by arrows 114, and flows from the inlet 56a into the mixing / pulverizing / micronizing device of the present invention.
なお、 ここで、 前述したように、 流体物流動部 1 1 3における圧力が低く なっていること、 流体物流動部 1 1 3を流動する流体物の流速が速くなつて いることにより、 前記のェジェクタ一現象がより一層効果的に発生し、 より 微小な気泡が効率よく流体物中に注入される。  Here, as described above, due to the fact that the pressure in the fluid flow section 113 is low and the flow velocity of the fluid flowing in the fluid flow section 113 is increasing, The ejector phenomenon occurs more effectively, and finer bubbles are efficiently injected into the fluid.
そこで、 これらによって、 前述したキヤビテ一シヨン現象をより効果的、 より大規模に発生させることが可能になる。  Thus, these make it possible to generate the above-described cavitation phenomenon more effectively and on a larger scale.
なお、 流体物流動部 1 1 4の内径 R、 流体物流動部 1 1 3の内径 r 1、 気 体注入管 1 1 5の内径 r 2は、 前述したェジェクタ一現象をより効果的に発 生させるために、 R〉 r 1〉 r 2の関係を満たしている必要がある。 そして、 R、 r l、 r 2の大きさは、 この関係を満たしている下で、 流体物の粘度な ど、 流体物の特性に応じて、 最も効果的にェジェクタ一現象が生じるよう適 宜に定めることができる。 The inner diameter R of the fluid flow section 114, the inner diameter r1 of the fluid flow section 113, and the inner diameter r2 of the gas injection pipe 115 increase the ejector phenomenon more effectively. Therefore, it is necessary to satisfy the relationship of R>r1> r2. The magnitudes of R, rl, and r2 are suitable so that the ejector phenomenon occurs most effectively according to the characteristics of the fluid, such as the viscosity of the fluid, while satisfying this relationship. It can be determined as appropriate.
なお、 第 1 5図中において、 矢印 1 1 7方向から注入される気体は、 図示 してはいないが、 圧力系、 流量調節弁などを介在させることにより、 その流 量、 注入圧力を調整することができる。  In FIG. 15, the gas injected from the direction of arrow 1 17 is not shown, but its flow rate and injection pressure are adjusted by interposing a pressure system, a flow control valve, and the like. be able to.
ただし、 前述したように、 流体物流動部 1 1 3における圧力が低くなつて いること、 流体物流動部 1 1 3を流動する流体物の流速が速くなつているこ とにより、 ェジェクタ一現象が効果的に発生するので、 特に高い注入圧力に しなくても、 簡単に、 気体を注入することができる。  However, as described above, the ejector phenomenon occurs due to the fact that the pressure in the fluid flow section 113 is low and the flow velocity of the fluid flowing in the fluid flow section 113 is high. Since it is generated effectively, gas can be easily injected without having to use a particularly high injection pressure.
本発明が提案する混合 ·粉砕微粒子化方法は、 混合 ·粉砕微粒子化処理を 行う対象物を、 水、 液体状の二酸化炭素、 等々の液体 (流動体) に混合し、 所定の圧力 (例えば、 1〜5 O M P a ) で、 前述した本発明の混合 ·粉砕微 粒子化装置の入り口部から排出部側に向けて圧入することにより、 所望の粒 径範囲の微粒子に粉砕、 微粒子化するものである。  The mixing / crushing / micronization method proposed by the present invention includes mixing an object to be subjected to the mixing / milling / micronization treatment with a liquid (fluid) such as water, liquid carbon dioxide, or the like, and applying a predetermined pressure (for example, 1 to 5 OMP a), which is pulverized into fine particles having a desired particle size range by press-fitting from the inlet of the mixing and pulverizing fine particle forming apparatus of the present invention to the discharge part side. is there.
本発明が提案する他の混合 ·粉砕微粒子化方法は、 前記の混合 ·粉砕微粒 子化方法において、 更に、 前記所定の圧力 (例えば、 l〜5 0 M P a ) で本 発明の混合 ·粉砕微粒子化装置の入り口部に流入していく前記液体 (流動 体) に対して、 気体を注入し、 より好ましくは、 微小な気泡をの形態で気体 を注入し、 この気体が注入された前記液体 (流動体) を前述した本発明の混 合 ·粉砕微粒子化装置の入り口部から排出部側に向けて圧入することにより、 所望の粒径範囲の微粒子に粉砕、 微粒子化するものである。  Another mixing and pulverization fine particle method proposed by the present invention is the above-mentioned mixing and pulverization fine particle method, wherein the mixed and pulverized fine particles of the present invention are further subjected to the predetermined pressure (for example, 1 to 50 MPa). A gas is injected into the liquid (fluid) flowing into the inlet of the gasifier, and more preferably, a gas is injected in the form of fine bubbles, and the liquid (fluid) injected with the gas is injected into the liquid (fluid). The fluid) is pulverized into fine particles having a desired particle size range by press-in from the inlet of the mixing / pulverizing / micronizing device of the present invention toward the discharge side.
本発明が提案する前述したいずれの混合 ·粉砕微粒子化方法においても、 混合 ·粉砕微粒子化処理を行う対象物について、 粉砕処理、 粉末化処理、 等 の前処理を行った後、 水、 液体状の二酸化炭素、 等々の液体 (流動体) に混 合して本発明の混合 ·粉砕微粒子化装置内に圧送することが望ましい。 さら には、 当該液体 (流動体) に気体を注入して、 より好ましくは、 微小な気泡 をの形態で気体を注入して、 本発明の混合 ·粉砕微粒子化装置内に圧送する ことが望ましい。  In any of the above-mentioned methods of mixing and crushing and finely pulverizing proposed by the present invention, the object to be subjected to the mixing and crushing and finely pulverizing treatment is subjected to a pretreatment such as a pulverizing treatment, a pulverizing treatment, and the like, and then to water, It is desirable to mix it with carbon dioxide and other liquids (fluids) and feed it under pressure into the mixing and pulverizing device of the present invention. Further, it is desirable to inject a gas into the liquid (fluid), more preferably to inject a gas in the form of fine bubbles, and to pump the mixture into the mixing / crushing / micronizing apparatus of the present invention. .
また、 所望の粒径範囲の微粒子に粉砕、 微粒子化できるまで、 排出部から 排出された処理済みの流動体を、 入り口部側に戻して、 再度、 圧入 ·圧送す る処理を繰り返す循環処理を行うこともできる。 (実施例 1 ) In addition, a circulating process in which the processed fluid discharged from the discharge unit is returned to the inlet side and press-in and pressure-feeding is repeated until the processed fluid discharged from the discharge unit is pulverized and atomized into fine particles having a desired particle size range. You can do it too. (Example 1)
SUS 404を用い、 第 1図 (a ) 、 (b) 図示の第一、 第二の構造物 2、 22を準備した。  Using SUS404, the first and second structures 2 and 22 shown in FIGS. 1 (a) and (b) were prepared.
第一、 第二の構造物 2、 2 2は、 いずれも半円柱体であり、 大きさは、 幅 (第 1図 (a ) 中、 上下方向の大きさ) が 44mm、 長さ (第 1図 (a ) 中、 左右方向の大きさ) 力 S i 09. 5 mmである。  Each of the first and second structures 2, 22 is a semi-cylindrical body, and its size (width in the vertical direction in Fig. 1 (a)) is 44 mm, and its length (1st (The size in the horizontal direction in Fig. (A)) Force S i 99.5 mm.
第 1図 (a ) 中、 符号 5 1、 5 1で表している部分は、 直径 4mm、 深さ 4 mmのガイ ドピン孔であり、 第 1図 (b) 中、 符号 5 2、 5 2で表してい る部分は、 直径 4mm、 高さ 4 mmのガイ ドビンである  In FIG. 1 (a), the portions denoted by reference numerals 51 and 51 are guide pin holes having a diameter of 4 mm and a depth of 4 mm, and are denoted by reference numerals 52 and 52 in FIG. 1 (b). The part shown is a guide bin 4 mm in diameter and 4 mm in height.
第一、 第二の構造体 2、 2 2を第 2図 (a ) 図示のように、 小室の開口し ている側を互いに対向させて密着配置して流体物流路を形成する際の、 位置 合わせ用にこれらのガイ ドビン孔 5 1、 ガイドビン 52が備えられている。 小室 3 a、 3 b、 4、 5、 〜、 3 3、 34、 3 5 a、 3 5 bはいずれも一 辺の大きさが 5 mmの正五角形とし、 その深さを 4 mmとした。  As shown in FIG. 2 (a), the first and second structures 2 and 22 are arranged in such a manner that the openings of the small chambers are opposed to each other and closely attached to each other to form a fluid flow path. These guide bin holes 51 and guide bins 52 are provided for alignment. Each of the small chambers 3a, 3b, 4, 5, ..., 33, 34, 35a, and 35b was a regular pentagon with a side size of 5 mm, and the depth was 4 mm.
この、 第一の構造物 2と、 第二の構造物 2 2の、 それぞれの一側面に配備 されている複数の小室 3 a、 3 b、 〜、 1 4、 24、 〜、 3 5 a〜3 5 bの 前面開口を第 2図 (a ) 図示のように (第一の構造物 2は小室の開口してい る側を第 2図 (a.) 中、 右側に向け、 第二の構造物 22は小室の開口してい る側を第 2図 (a ) 中、 左側に向けて) 互いに対向させ、 矢示 53 a、 53 b方向から両構造物を密着させて、 一つの円柱体 55 (第 3図) とする。  A plurality of small chambers 3a, 3b, ..., 14, 24, ..., 35a ... which are provided on one side of each of the first structure 2 and the second structure 22 The front opening of 35b is as shown in Fig. 2 (a). (In the first structure 2, the opening side of the small chamber is turned to the right in Fig. 2 (a.). The object 22 faces the opening side of the small chamber toward the left side in Fig. 2 (a)), and the two structures are brought into close contact from the directions of arrows 53a and 53b to form one cylindrical body 55. (Fig. 3).
次に、 入り口部 5 6 a、 排出部 5 6 bをそれぞれ形成する SUS 440製 の蓋体 5 7 a、 5 7 bをそれぞれ円筒体 5 5の入り口部側 (内部で、 流体物 流路の流入口 1 6 a、 36 aが面している側) 、 排出部側 (内部で、 流体物 流路の排出口 1 6 b a、 36 bが面している側) に取り付ける。  Next, the SUS440 lids 57a and 57b forming the inlet 56a and the discharge 56b are respectively connected to the inlet side of the cylindrical body 55 (inside of the fluid flow path). Attach it to the inlet 16a, 36a facing side), and to the discharge side (inside, the side facing the fluid flow outlet 16ba, 36b).
こうして、 第一の構造物 2と第二の構造物 22とが、 小室の開口している 側を互いに対向させて密着配置され、 内部に流体物流路が形成されている本 発明の混合 ·粉砕微粒子化装置 1を準備する。  In this way, the first structure 2 and the second structure 22 are arranged in close contact with the open sides of the small chambers facing each other, and the mixing / pulverization of the present invention in which a fluid material flow path is formed inside. Prepare the atomizer 1.
このように第一の構造物 2、 第二の構造物 22をいずれも半円柱体とし、 両者を、 小室の開口している側を互いに対向させて密着配置して本発明の混 合♦粉砕微粒子化装置 1とした場合には、 流体物流路は、 半円柱体の第一の 構造物 2と、 半円柱体の第二の構造物 22との当接部にしか形成されない。 これに代えて、 第 2図 (c) 図示のような形態にすることもできる。 As described above, the first structure 2 and the second structure 22 are both semi-cylindrical bodies, and the two are closely arranged with the open side of the small chamber facing each other, and the mixed structure of the present invention is crushed. In the case of the atomization device 1, the fluid flow path is the first It is formed only at the contact portion between the structure 2 and the second structure 22 of the semi-cylindrical body. Alternatively, a form as shown in FIG. 2 (c) can be adopted.
第 2図 (c) 図示のような形態では、 第一、 第二の構造物 2、 2 2は、 そ れぞれ、 第 1図 (a ) 、 (b) 図示の形態の小室を備えているが、 両者とも 板体であって、 その大きさは、 幅 (第 1図 (a) 中、 上下方向の大きさ) が 44 mm, 長さ (第 1図 (a ) 中、 左右方向の大きさ) が 1 09. 5 mm, 第 2図 (c) の上下方向で示す厚さが 1 1. 5mmである。  In the configuration as shown in FIG. 2 (c), the first and second structures 2, 22 are each provided with a small chamber of the configuration as shown in FIGS. 1 (a) and 1 (b). However, both are plate bodies, and their width (the size in the vertical direction in Fig. 1 (a)) is 44 mm, and the length (the size in the horizontal direction in Fig. 1 (a)). The size is 109.5 mm, and the thickness shown in the vertical direction in Fig. 2 (c) is 11.5 mm.
この、 第一の構造物 2と、 第二の構造物 2 2の、 それぞれの一側面に配備 されている複数の小室 3 a、 3 b、 〜、 1 4、 24、 〜、 35 a〜 3 5 bの 前面開口を第 2図 (c) 図示のように (第一の構造物 2は小室の開口してい る側を第 2図 (c) 中、 下側に向け、 第二の構造物 2 2は小室の開口してい る側を第 2図 (c) 中、 上側に向けて) 互いに対向させ、 矢示 53 a、 5 3 b方向から両構造物を密着させる。  A plurality of small chambers 3a, 3b, ..., 14, 24, ..., 35a to 3 provided on one side of each of the first structure 2 and the second structure 22 (B) As shown in Fig. 2 (c), the front opening of b is the first structure 2 with the small chamber opening side facing the lower side in Fig. 2 (c). In 22, the open side of the small chamber is opposed to each other (upward in Fig. 2 (c)), and both structures are brought into close contact from the directions of arrows 53a and 53b.
次に、 半円柱体 40 a、 40 bの外径に対応するの内径を有する中空の円 筒体 55 (SUS 440製で長さは 1 09. 5mm) で、 第 3図図示のよう にこの半円柱体 40 a、 4 O bの外側を覆う。  Next, a hollow cylindrical body 55 (made of SUS440 and having a length of 109.5 mm) having an inner diameter corresponding to the outer diameter of the semi-cylindrical bodies 40a and 40b, as shown in FIG. Cover the outside of the semi-cylindrical body 40a, 4Ob.
次に、 入り口部 56 a、 排出部 56 bをそれぞれ形成する SUS 440製 の蓋体 5 7 a、 5 7 bをそれぞれ円筒体 55の入り口部側 (内部で、 流体物 流路の流入口 1 6 a、 36 aが面している側) 、 排出部側 (内部で、 流体物 流路の排出口 1 6 b a、 3 6 bが面している側) に取り付ける。 このように して、 本発明の混合 ·粉砕微粒子化装置とすることもできる。  Next, the SUS440 lids 57a and 57b forming the inlet 56a and the outlet 56b, respectively, are placed on the inlet side of the cylindrical body 55 (inside, the inlet 1 6a, 36a) and the discharge side (inside, the side facing the fluid flow passage outlets 16ba, 36b). In this way, the mixing / crushing microparticulation device of the present invention can be provided.
(実験例 1 )  (Experimental example 1)
第 2図 (a ) 、 (b) を用いて説明した実施例 1の混合 ·粉砕微粒子化装 置 1を用い、 以下のように本発明の混合 ·粉砕微粒子化方法を実施する実験 を行った。  Using the mixing and pulverizing device 1 of Example 1 described with reference to FIGS. 2 (a) and 2 (b), an experiment was conducted to implement the mixing and pulverizing method of the present invention as follows.
大豆 2. 0 Kgを乾式粉砕機にて粉砕し (乾式粉砕繊維:繊維長さ : 1 0 〜200 // m程度) 、 これを水 1 0リ ッ トルに混合したものを、 圧力ポンプ を用いて、 20MP aの圧力で、 混合 '粉砕微粒子化装置 1内に矢示 59 a のように送り込み、 流体物流路内を通過して排出口 58 bから矢示 5 9 bの ように排出させ、 これを、 再度、 圧力ポンプを用いて 2 OMP aの圧力で混 合 ·粉砕微粒子化装置 1内に矢示 5 9 aのように送り込む循環処理を行い、 1分経過後、 3分経過後、 5分経過後に大豆繊維を採取して光学電子顕微鏡 にて大豆繊維の状況を観察した。 2.0 kg of soybeans is pulverized by a dry pulverizer (dry pulverized fiber: fiber length: about 10 to 200 // m) and mixed with 10 liters of water using a pressure pump. At a pressure of 20 MPa, the mixture is fed into the pulverizing and atomizing device 1 as shown by arrow 59a, passes through the fluid flow path, and is discharged from the outlet 58b as shown by arrow 59b, This was mixed again at a pressure of 2 OMPa using a pressure pump. A circulation process is performed as shown by arrow 59a in the pulverizing and atomizing device 1, and after 1 minute, 3 minutes, and 5 minutes, the soybean fiber is collected, and the soybean fiber is collected using an optical electron microscope. Was observed.
大豆を乾式粉砕機にて粉砕したもの (乾式粉砕繊維:繊維長さ : 1 0〜2 0 0 /i m程度) を水に混合すると、 水分を含んで繊維が 2 . 5倍〜 3倍程度 に膨張し、 これを電子顕微鏡で観察すると、 大きさの異なる繊維状の大豆繊 維が無数に観察できた。  When soybeans are pulverized with a dry pulverizer (dry pulverized fiber: fiber length: about 10 to 200 / im) and mixed with water, the fiber becomes about 2.5 to 3 times containing water. When swelled and observed with an electron microscope, countless fibrous soybean fibers of different sizes could be observed.
循環処理開始後 1分経過した時点では、 大豆繊維はまだ多少見られたが、 大豆の微粒子が、 数多くみられるようになった。  One minute after the start of the circulation treatment, some soybean fiber was still seen, but many soybean fine particles began to be seen.
循環処理開始後 3分経過した時点では、 大豆繊維はほとんど観察できなく なり、 ほぼ大豆の微粒子のみという状態になっていた。  Three minutes after the start of the circulation treatment, the soybean fiber was hardly observable, and almost soybean fine particles were found.
循環処理開始後 5分経過した時点では、 繊維状の大豆繊維はなくなり、 真 球状の大豆の微粒子 (粒径: 0 . 5ミクロン〜 8ミクロン) のみが観察でき た。  Five minutes after the start of the circulation treatment, the fibrous soybean fiber disappeared, and only spherical soybean fine particles (particle size: 0.5 to 8 microns) were observed.
繊維質粉体を流体と混合し、 攪拌、 分散、 破壊、 等、 種々の処理を施して も、 ほぼ真球状に微粒子化することは従来できなかった。 しかし本発明の混 合 ·粉砕微粒子化装置 1によれば、 この実験のように、 繊維質材を真球に近 い状態に微粒子化することができた。  Even if a fibrous powder is mixed with a fluid and subjected to various treatments such as stirring, dispersion, destruction, etc., it has not been possible to form a substantially spherical particle. However, according to the mixing and pulverizing apparatus 1 of the present invention, as in this experiment, the fibrous material could be atomized into a state close to a true sphere.
(実験例 2 )  (Experimental example 2)
第 2図 (a ) 、 ( b ) を用いて説明した実施例 1の混合 ·粉砕微粒子化装 置 1を用い、 以下のように本発明の混合 ·粉砕微粒子化方法を実施する実験 を行った。  Using the mixing and pulverizing device 1 of Example 1 described with reference to FIGS. 2 (a) and 2 (b), an experiment was conducted to implement the mixing and pulverizing method of the present invention as follows.
粒径 2 0 0ミクロン以下に調製した炭素粉末 ( 1 2 0 0 °C処理炭と 2 8 0 0 °C処理炭) を純水に混合し、 圧力ポンプを用いて、 3 0 M P aの圧力で、 混合 ·粉砕微粒子化装置 1内に矢示 5 9 aのように送り込み、 流体物流路内 を通過して排出口 5 8 bから矢示 5 9 bのように排出されたものを、 再度、 圧力ポンプを用いて 3 O M P aの圧力で混合 ·粉砕微粒子化装置 1内に矢示 5 9 aのように送り込む循環処理(1分間あたり約 2 0リツ トルの炭素粉末混 合水が混合 ·粉砕微粒子化装置 1を通過する。 )を行い、 5分経過後に光学電 子顕微鏡にて炭素粉末の様態を観察した。 第 9図 (a ) は、 混合 ·粉砕微粒子化装置 1内に圧送する前 (炭素粉末を 純水に混合する時) の 1 2 0 0 °C処理炭粉末の電子顕微鏡写真である。 第 9 図 (b ) は、 混合 ·粉砕微粒子化装置 1内に圧送する前 (炭素粉末 純水に 混合する時) の 2 8 0 0 °C処理炭粉末の電子顕微鏡写真である。 Carbon powder prepared to a particle size of less than 200 microns (carbon treated at 1200 ° C and coal treated at 280 ° C) is mixed with pure water, and a pressure of 30 MPa is applied using a pressure pump. In the mixing and pulverizing device 1, as shown by arrow 59a, the material that passed through the fluid flow path and was discharged from the outlet 58b as shown by arrow 59b is re-used. Mixing at a pressure of 3 OMPa using a pressure pump · Circulation treatment as shown by arrow 59a in the pulverizing and atomizing device 1 (about 20 liters of carbon powder mixed water per minute is mixed. After passing through a pulverizing and atomizing device 1.), the state of the carbon powder was observed with an optical electron microscope after 5 minutes. FIG. 9 (a) is an electron micrograph of the carbon powder treated at 1200 ° C. before being fed into the mixing and pulverizing and atomizing device 1 (when the carbon powder is mixed with pure water). FIG. 9 (b) is an electron micrograph of the 280 ° C.-treated carbon powder before being pumped into the mixing and pulverizing and atomizing device 1 (when mixed with pure carbon powder).
第 1 0図 (a ) 、 (b ) は、 1 2 0 0 °C処理炭粉末について循環処理を 5 分間行った後の炭素粉末の電子顕微鏡写真である。  FIGS. 10 (a) and (b) are electron micrographs of carbon powder after a circulation treatment of 120 ° C.-treated carbon powder for 5 minutes.
第 1 1図 (a ) 、 (b ) は、 2 8 0 0 °C処理炭粉末について循環処理を 5 分間行った後の炭素粉末の電子顕微鏡写真である。  FIGS. 11 (a) and (b) are electron micrographs of carbon powder after circulating for 5 minutes at 280 ° C.-treated carbon powder.
本願発明の混合 ·粉砕微粒子化装置 1を用いて本発明の混合 ·粉砕微粒子 化方法による混合 ·粉砕微粒子化処理が行われた炭素は、 真球状の微粒子に なっていた。  The carbon subjected to the mixing and pulverization / micronization method of the present invention using the mixing and pulverization / micronization method of the present invention using the mixing and pulverization / micronization apparatus 1 of the present invention was turned into true spherical fine particles.
(実施例 2 )  (Example 2)
第 1 2図は前記の実施例 1で説明した本発明の混合 ·粉砕微粒子化装置が 大豆を超微粒子化する装置に採用されている場合の一実施例を示す全体構成 図である。 大豆を超微粒子とする混合 ·粉砕微粒子化装置 1 0 0 (実施例 1で 説明した本発明の混合 ·粉砕微粒子化装置である。 )は、 これに取り付けられ ている車輪 1 0 1によって移動可能となっている。 混合 ·粉砕微粒子化装置 1 0 0内下部に圧力ポンプ 1 0 2を動作可能とする動力モーター 1 0 3が設 置されており、 また、 インバーター 1 0 7が取り付けられている。 混合 ·粉 砕微粒子化装置 1 0 0の上部には大豆を投入するホッパー 1 0 4が取り付け られており、 混合 ·粉砕微粒子化装置 1 0 0の排出口 1 0 5の近傍に設置さ れているのは、 超微粒子化された大豆超微粒子粒を回収する回収容器 1 0 6 である。  FIG. 12 is an overall configuration diagram showing an embodiment in which the mixing and pulverizing device of the present invention described in Embodiment 1 is employed in a device for converting soybeans to ultrafine particles. The mixing and pulverizing apparatus 100 using soybeans as ultra-fine particles (the mixing and pulverizing apparatus according to the present invention described in Example 1) can be moved by wheels 101 attached thereto. It has become. A power motor 103 for enabling the operation of the pressure pump 102 is provided in the lower part of the mixing and pulverizing device 100, and an inverter 107 is mounted. A hopper 104 for charging soybeans is mounted on the top of the mixing and pulverizing and atomizing device 100, and is installed near the discharge port 105 of the mixing and pulverizing and atomizing device 100. There is a collection container 106 for collecting the ultrafine soybean ultrafine particles.
大豆が混合されている流体がホッパー 1 0 4に投入されると、 これは、 配 管を通り、 圧力ポンプ 1 0 2により適宜の圧力を受けて、 混合 ·粉砕微粒子 化装置 1 0 0の流入口 (図示せず) に流入する。 そして、 実施例 1の第 1図 ( a ) 〜 (c ) で説明した流体物流路中を、 第 4図で説明したように流動す る。 この時、 各小室等に圧送された大豆は、 連続的に強い圧力による強い圧 縮 (包圧) と、 瞬時解放 (爆散) という作用を受け、 大豆が自ら爆発する内 外放圧力により破壊され続け、 超微粒子化され、 排出口 1 0 5から回収容器 1 0 6に排出される。 大豆が混合されている流体が第 4図で説明したように、 流体物流路中を流動する際に受ける連続的な強い圧力による強い圧縮 (包 圧) と、 瞬時解放 (爆散) という作用によって、 大豆が自ら爆発する内外放 圧力により破壊され続け、 超微粒子化される現象は、 いわゆる散逸理論によ つて説明されるものである。 When the fluid in which the soybeans are mixed is put into the hopper 104, the fluid passes through a pipe, receives an appropriate pressure from the pressure pump 102, and flows through the mixing / pulverization fine-particle device 100. It flows into the entrance (not shown). Then, the fluid flows in the fluid flow path described in FIGS. 1 (a) to 1 (c) of the first embodiment as described in FIG. At this time, the soybeans pumped into the small chambers are subjected to the action of continuous strong compression (packing pressure) and instantaneous release (explosion), and are destroyed by the internal and external discharge pressures at which the soybeans explode. Continued to be ultra-fine, and collected from the outlet 105 Emitted to 106. As explained in Fig. 4, the fluid in which soy is mixed is strongly compressed by the continuous strong pressure that is applied when flowing through the fluid flow path (packing pressure) and instantaneously released (explosion). The phenomenon in which soybeans continue to be destroyed by internal and external discharge pressures that explode and become ultrafine particles is explained by the so-called dissipation theory.
(実施例 3 )  (Example 3)
第 1 5図は、 混合 ·粉砕微粒子化装置の入り口部 5 6 a (第 3図) に接続 している流体物流入管 1 1 1が、 上流側 (第 3図、 第 1 5図中右側) から入 り口部 5 6 aまでの間に気体注入部 1 1 2を備えている形態の本発明の混合 ·粉砕微粒子化装置を説明するものである。  Fig. 15 shows the fluid material inlet pipe 1 1 1 connected to the inlet 56a (Fig. 3) of the mixing and pulverizing atomizer, on the upstream side (Fig. 3, right side in Fig. 15). 4 is a view for explaining a mixing / crushing / micronizing apparatus according to the present invention, which is provided with a gas injection section 112 between the inlet and the inlet section 56a.
流体物流入管 1 1 1の流体物流動部 1 1 4に連続している気体注入部 1 1 2の流体物流動部 1 1 3の内径 r 1は、 流体物流入管 1 1 1における流体物 流動部 1 1 4の内径 Rより小くなつている。  Fluid inflow pipe 1 1 1 Gas inlet 1 1 4 connected to fluid flow 1 1 4 Fluid flow 1 1 2 Inner diameter r 1 of 1 1 3 Fluid flow in fluid inflow pipe 1 1 1 It is smaller than the inner diameter R of 1 1 4.
この気体注入部 1 1 2の流体物流動部 1 1 3には、 気体注入管 1 1 5が接 続されている。 気体注入管 1 1 5の内径 r 2は、 気体注入部 1 1 2の流体物 流動部 1 1 3の内径 r 1より小さくなっている。  A gas injection pipe 1 15 is connected to the fluid flow section 1 13 of the gas injection section 1 12. The inner diameter r 2 of the gas injection pipe 1 15 is smaller than the inner diameter r 1 of the fluid flow section 1 13 of the gas injection section 112.
気体注入部 1 1 2において、 矢印 1 1 7方向から送られてきた空気を、 混 合 ·粉砕微粒子化処理の対象物が混入されている流体物中に注入するもので ある。  In the gas injection section 112, the air sent from the direction of the arrow 117 is injected into the fluid mixed with the object of the mixing and pulverization / micronization treatment.
注入する気体は、 空気のみに限られず、 溶媒等として使用可能な種々の気 体を注入することができる。  The gas to be injected is not limited to air, and various gases that can be used as a solvent or the like can be injected.
(実施例 4 )  (Example 4)
第 1 3図 (a ) 〜 (c ) は、 前記の実施例 1で説明した本発明の混合 '粉 砕微粒子化装置による本発明の微粒子化方法が実施されるプロセスが採用さ れる種々の実施形態を説明するプロック図である。  FIGS. 13 (a) to 13 (c) show various implementations in which the process for implementing the micronization method of the present invention by the mixing and milling micronization apparatus of the present invention described in the first embodiment is employed. It is a block diagram explaining a form.
第 1 3図 (a ) は、 本発明に係る混合,粉砕微粒子化装置による湿式微粉 砕の一実施例の概略を説明するプロック図である。 原料を粗粒粉砕する粗粒 粉砕機に投入し、 粗粒粉砕された原料をポンプにて加熱器へと圧送し、 本発 明の装置の流体物流路における作用によって前記の粗粒粉砕されている原料 を微粒子化させ、 所望する微粒子径として、 容器内に貯蔵しするものである。 本発明の装置と容器との間にフィルタ一等を設けフィルターを通過しない微 粒子はリターン配管によって再度粗粒粉砕機に戻され、 同様の工程において 超微粒子とし、 容器内へと貯蔵され次工程 (加工ライン) へと運ばれる。 FIG. 13 (a) is a block diagram schematically illustrating an embodiment of wet pulverization by the mixing and pulverization fine-granulating apparatus according to the present invention. The raw material is put into a coarse-grain pulverizer for coarsely pulverizing the raw material, and the coarse-grained raw material is pumped to a heater by a pump, and the coarse particles are pulverized by the action in the fluid flow path of the apparatus of the present invention. The raw material is converted to fine particles and stored in a container as a desired fine particle diameter. Fine particles that do not pass through the filter, such as a filter provided between the apparatus of the present invention and the container, are returned to the coarse particle grinder again by the return pipe, converted into ultra-fine particles in the same process, stored in the container, and then stored in the container. (Processing line).
第 1 3図 (b ) は本装置と超音波及び電磁波及びレーザー光装置、 プラズ マ発生装置を複合し二酸化炭素による連続超臨界処理を含む反応処理装置と した一実施例の概略を説明するブロック図である。  Fig. 13 (b) is a block diagram schematically illustrating an embodiment in which the present apparatus is combined with an ultrasonic wave, an electromagnetic wave, a laser light apparatus, and a plasma generator to form a reaction processing apparatus including continuous supercritical processing using carbon dioxide. FIG.
予め粗粒粉砕された原料と、 抽出溶媒、 例えば、 二酸化炭素を、 圧送ボン プ及び乾式ポンプを介して混合して混合物とし、 加圧ポンプ、 加熱器により、 その混合物の超臨界条件下となる圧力及び温度にする。 そして、 本発明の装 置を構成する筒状体内に圧送し、 当該筒状体内にて超臨界条件下にある混合 物を超微粒子化しつつ、 連続的に超臨界処理する。 次いで、 このように処理 されたものを、 引き続いて、 超音波、 電磁波、 レーザ光、 プラズマ等により 反応させ、 あるいは分解するものである。  The raw material previously coarsely ground and an extraction solvent, for example, carbon dioxide, are mixed through a pressure pump and a dry pump to form a mixture, and the mixture is brought to a supercritical condition by a pressure pump and a heater. Pressure and temperature. Then, it is pressure-fed into a cylindrical body constituting the device of the present invention, and continuously supercritically processed while the mixture under supercritical conditions is converted into ultrafine particles in the cylindrical body. Next, the thus treated product is subsequently reacted or decomposed by ultrasonic waves, electromagnetic waves, laser light, plasma, or the like.
これによつて得られた製品は、 回収容器へと回収され、 液化された抽出溶 媒は圧力制御弁 (図示せず) によりガス化されリサイクルされる。  The product obtained in this way is collected in a collection container, and the liquefied extraction solvent is gasified by a pressure control valve (not shown) and recycled.
第 1 3図 (c ) は本装置と高周波及び超音波及びレーザー光装置、 プラズ マ発生装置を複合し種々の溶媒による連続超臨界処理を含む反応処理装置と した一実施例の概略を説明するブロック図である。 液体の抽出溶媒と被分解 物質を圧送ポンプにより混合し、 加熱ポンプにて被分解物質の超臨界条件下 まで加圧及び加熱し、 本発明の装置を構成する筒状体内に圧送する。 そして、 当該筒状体内にて超臨界条件下にある混合物を超微粒子化しつつ、 連続的に 超臨界処理する。 次いで、 このように処理されたものを、 引き続いて、 超音 波、 電磁波、 レーザ光、 プラズマ等により反応させ、 あるいは分解するもの である。 これらの一連の処理によって、 分子間の衝突及び分解等が連続的に 発生し化学反応が促進される。 分解された生成物は冷却器、 気液分離器によ り気体と液体へと分離され、 気体は無害化され、 液体の抽出溶媒はリターン 配管によってリサイクルされるものである。  Fig. 13 (c) outlines an embodiment of the present invention, a high-frequency, ultrasonic, laser light, and plasma generator combined with a reaction processing apparatus including continuous supercritical processing using various solvents. It is a block diagram. The liquid extraction solvent and the substance to be decomposed are mixed by a pressure pump, pressurized and heated to a supercritical condition of the substance to be decomposed by a heating pump, and pumped into a cylindrical body constituting the apparatus of the present invention. Then, the mixture under the supercritical condition in the cylindrical body is continuously subjected to the supercritical treatment while being made into ultrafine particles. Next, the thus-treated product is subsequently reacted or decomposed by ultrasonic waves, electromagnetic waves, laser light, plasma, or the like. Through a series of these processes, collisions and decomposition between molecules occur continuously, and the chemical reaction is promoted. The decomposed product is separated into gas and liquid by a cooler and a gas-liquid separator, the gas is rendered harmless, and the liquid extraction solvent is recycled by return piping.
なお、 第 1 3図 (a ) 〜 (c ) のいずれの形態においても、 図示していな いが図中の本装置 (本願発明に係る混合 ·粉砕微粒子化装置) の直前に、 第 1 5図で説明した気体注入部を設け、 ェジェクタ一現象を利用して、 気体の 微小な気泡を無数に、 効率よく流体物中に注入することにより、 本装置内を 流動していく流体物中においてキヤビテーシヨン現象を効果的にかつ大規模 に生起させ、 混合、 粉砕、 微粒子化を一層効率よく行うことができる。 In all of the embodiments shown in FIGS. 13 (a) to (c), although not shown in the figure, the device shown in FIG. The gas injection section described in the figure is provided, and the gas By injecting a myriad of fine air bubbles into a fluid material efficiently, the cavitation phenomenon can be effectively and large-scale generated in the fluid material flowing through the device, and mixing, pulverization, and atomization can be achieved. It can be performed more efficiently.
(実施例 5 )  (Example 5)
第 1 4図は、 第 2図 (a ) 、 ( b ) を用いて説明した実施例 1の混合 ·粉 砕微粒子化装置による本発明の微粒子化方法が実施されるプロセスが採用さ れる他の実施形態を説明するプロック図である。  FIG. 14 shows another example in which the process in which the micronization method of the present invention is carried out by the mixing / milling micronization apparatus of Example 1 described with reference to FIGS. 2 (a) and (b) is employed. It is a block diagram explaining embodiment.
予め粉砕されている廃プラスチックと、 抽出溶媒、 酸化反応、 加水分解で 使用される二酸化炭素とを、 圧送ポンプ及び加圧ポンプにより、 本発明の装 置を構成する筒状体の入口開口に向けて圧送すると共に、 ヒーター等の加熱 体により混合 ·粉砕微粒子化装置 1の円筒体 5 5を加熱する。 ここで、 加え る圧力、 温度は、 二酸化炭素の超臨界条件である圧力 7 . 3 8 M P a以上、 温度 3 1 °C以上としておく。  The waste plastic which has been pulverized in advance and the carbon dioxide used in the extraction solvent, the oxidation reaction, and the hydrolysis are directed to the inlet opening of the cylindrical body constituting the device of the present invention by a pressure pump and a pressure pump. And the cylindrical body 55 of the mixing / pulverizing / micronizing device 1 is heated by a heater such as a heater. Here, the applied pressure and temperature are set to a pressure of 7.38 MPa or more, which is a supercritical condition of carbon dioxide, and a temperature of 31 ° C or more.
こうして、 予め粉砕されている廃プラスチックが混入されていて、 超臨界 条件下におかれている流体が、 本発明の装置を構成する筒状体の入口開口か ら、 前述した流体物流路を通って、 排出口 5 8 bに向けて圧送される。  In this way, the fluid that has been mixed with the waste plastics that have been pulverized in advance and is under supercritical conditions passes through the above-mentioned fluid material flow path from the inlet opening of the cylindrical body that constitutes the apparatus of the present invention. To the outlet 58b.
これによつて、 本発明の装置を構成する筒状体内において、 廃プラスチッ クが粉砕微粒子化されつつ、 連続的に超臨界処理される。  As a result, the waste plastic is continuously supercritically processed while being pulverized into fine particles in the cylindrical body constituting the apparatus of the present invention.
処理されて排出口から排出された処理物は、 冷却装置及び減圧装置により、 気体と、 プラスチックのパウダー物とに分離される。 分離された、 パウダー 物は回収容器に回収され、 気体はリターンされて再利用される。  The treated material discharged from the outlet is separated into gas and plastic powder by a cooling device and a decompression device. The separated powder is collected in a collection container, and the gas is returned and reused.
なお、 この実施例においては、 二酸化炭素を、 抽出溶媒、 酸化反応、 加水 分解で使用するようにしていたが、 処理対象物について、 粉砕微粒子化処理 を行いつつ臨界処理、 超臨界処理を行う際に使用し得る抽出溶媒であれば、 二酸化炭素以外を使用することが可能である。  In this example, carbon dioxide was used in the extraction solvent, the oxidation reaction, and the hydrolysis.However, when performing the critical treatment and the supercritical treatment while performing the pulverization and fine particle treatment on the object to be treated. Any extraction solvent other than carbon dioxide can be used as long as it can be used for extraction.
また、 この実施例においては、 ポリエチレン、 ポリスチレン、 ポリエチレ ンテレフタレート、 ポリ塩化ビュルなどの廃プラスチックを微粉末化する場 合を説明したが、 廃プラスチックに限らず、 いわゆるバージン材ゃ、 合成樹 脂についても、 第 1 4図で説明したのと同様の処理により、 粉砕微粒子化し つつ、 連続的に超臨界処理して、 微粉末化することが可能である。 更に、 この第 1 4図図示の実施例においても、 図示していないが図中の本 装置 (本願発明に係る混合 ·粉砕微粒子化装置) の直前に、 第 1 5図で説明 した気体注入部を設け、 ェジ クタ一現象を利用して、 気体の微小な気泡を 無数に、 効率よく流体物中に注入することにより、 本装置内を流動していく 流体物中においてキヤビテーシヨン現象を効果的にかつ大規模に生起させ、 混合、 粉砕、 微粒子化を一層効率よく行うことができる。 Further, in this embodiment, the case of pulverizing waste plastics such as polyethylene, polystyrene, polyethylene terephthalate, and polychlorinated vinyl has been described. However, not only waste plastics but also so-called virgin materials and synthetic resins are described. Also, by the same processing as described with reference to FIG. 14, it is possible to continuously pulverize the fine particles and continuously pulverize them by supercritical processing. Further, in the embodiment shown in FIG. 14, although not shown, the gas injection section described in FIG. 15 is provided immediately before the present apparatus (mixing / milling apparatus according to the present invention) in the figure. By injecting a myriad of fine gas bubbles into a fluid efficiently using the ejector phenomenon, the cavitation phenomenon is effectively achieved in the fluid flowing through the device. And can be mixed and crushed and made into fine particles more efficiently.
従来、 廃プラスチックや、 いわゆるバージン材、 合成樹脂などについては、 ペレツト状になっているこれらのものを冷凍した後、 粉砕して粉末化してい た。 常温のペレッ ト状のものから粉末化する技術がなかったためである。 し かし、 この冷凍には、 非常に高いコストが必要であった。  Conventionally, waste plastics, so-called virgin materials, synthetic resins, etc., have been pelletized, frozen and then pulverized into powder. This is because there was no technology for powdering pellets at room temperature. However, the refrigeration required very high costs.
本発明の装置を用いれば、 このような冷凍処理を行う必要なしに、 低コス トで、 粉砕微粒子化処理を行い、 パウダー状にすることができる。  By using the apparatus of the present invention, it is possible to carry out the pulverization and fine-graining treatment at a low cost, without the need for such a freezing treatment, to obtain a powder.
また、 従来の湿式粉砕機を用いて粉砕微粒子化処理を行ってパウダー状の ものを得る従来の方式の場合、 混合 ·粉砕した被処理物を気体と処理物 (パ ウダ一状物) とに分離することが非常に難しかった。  In addition, in the case of the conventional method in which a powdery material is obtained by performing pulverization and fine particle treatment using a conventional wet pulverizer, the mixed and pulverized materials are converted into a gas and a processed material (a powder-like material). It was very difficult to separate.
しかるに、 本発明の混合 ·粉砕微粒子化装置による本発明の微粒子化方法 を実施して、 第 1 4図、 第 1 3図 (b ) 、 (c ) 図示のように処理を行えば、 粉砕微粒子化しつつ、 連続的に臨界処理、 超臨界処理を行い、 更に、 連続的 に、 なおかつ容易に、 気体と処理物 (パウダー状物) とを分離することがで きる。  However, if the micronization method of the present invention is performed by the mixing and pulverization micronization apparatus of the present invention and the treatment is performed as shown in FIGS. 14 and 13 (b) and (c), the pulverized fine particles can be obtained. While performing the critical treatment, the supercritical treatment is performed continuously, and the gas and the processed material (powder-like material) can be separated continuously and easily.
すなわち、 本発明の混合 ·粉砕微粒子化装置は、 いわば、 乾式粉粒物を連 続して湿式にて粉砕♦微粒子化し、 この湿式下で粉砕 ·微粒子化処理が行わ れた流体を大気圧下に噴霧するだけで、 乾燥した微粒子状の粉体を連続して 得ることができるものである。  That is, the mixing and pulverizing device of the present invention is, so to speak, continuously pulverizing dry powders and granules in a wet process, and converting the fluid subjected to the pulverization and pulverization process under the wet pressure to atmospheric pressure. By simply spraying the powder, it is possible to continuously obtain dry fine powder.
粉粒物を乾式にて微粒子化処理しょうとすれば、 熱によって処理対象物た る粉粒物が変質してしまうおそれがあるが、 本発明によれば、 前述したよう に超臨界条件下で液体状態にある二酸化炭素中に粉砕 ·微粒子化すべき対象 物を混合して微粒子化処理できるので、 処理対象物たる粉粒物を変質させる ことなく微粒子化処理を行うことができる。  If the powder is subjected to dry microparticulation treatment, the powder to be treated may be degraded by heat.However, according to the present invention, as described above, under the supercritical condition, Since the object to be pulverized and atomized can be mixed with carbon dioxide in a liquid state and the object to be atomized can be mixed, the atomization treatment can be performed without altering the granular material to be processed.

Claims

言青求の範固 Guo Qing's example
1 . 前面が開口している小室を一側面の上流側に位置する一端側から下流側 に位置する他端側に向けて複数個備えている第一の構造物と第二の構造物と 力 それぞれの前記小室の前面開口を互いに対向させて密着配置されること によって、 第一の構造物の小室から第二の構造物の小室、 第二の構造物の小 室から第一の構造物の小室へと、 上流側から下流側に向かって各小室の空間 部が順次連通されて流体物流路が形成されている混合 ·粉砕微粒子化装置で あって、 1. The first and second structures and the plurality of small chambers each having an open front surface are provided from one end located on the upstream side of one side to the other end located on the downstream side. The small-chambers of the first structure are connected to the small-chambers of the second structure, and the small-chambers of the second structure are connected to the first structure from the small-chambers of the first structure. A mixing / pulverization / micronization device in which the space of each small chamber is sequentially communicated from the upstream to the downstream from the small chamber to form a fluid material flow path,
前記複数個の小室は、 上流側から下流側に向かって、 1個、 1個、 2個の 順で配置される形式が一回又は複数回繰り返されるものであり、  The plurality of small chambers are arranged one or more times in the order of one, one, and two from the upstream side to the downstream side one or more times,
どちらか一方の構造物の上流側に位置する 1個の小室から、 対向する他方 の構造物の上流側に位置する 2個の小室、  From one small chamber located upstream of one of the structures to two small chambers located upstream of the other opposing structure,
当該対向する他方の構造物における当該 2個の小室から、 前記一方の構造 物における前記 1個の小室より下流側に位置する次位の 1個の小室、  From the two small chambers in the other opposing structure, one lower chamber located downstream from the one small chamber in the one structure,
当該一方の構造物における当該次位の 1個の小室から、 前記対向する他方 の構造物における前記 2個の小室より下流側に位置する次位の 1個の小室、 当該他方の構造物における当該次位の 1個の小室から、 前記一方の構造物 における前記次位の 1個の小室より下流側に位置する次位の 2個の小室、 当該一方の構造物における当該次位の 2個の小室から、 前記他方の構造物 における前記次位の 1個の小室より下流側に位置する次々位の 1個の小室、 当該他方の構造物における前記次々位の 1個の小室から、 前記一方の構造 物における前記次位の 2個の小室より下流側に位置する次々位の 1個の小室 へと流体物流路が連続する  The next lower chamber located downstream from the two lower chambers in the opposing other structure from the next lower chamber in the one structure, the lower chamber in the other structure The next two small chambers located downstream from the one next small chamber in the one structure from the one next small chamber, and the two next small chambers in the one structure From the small chamber, one successive small chamber located downstream from the next smaller chamber in the other structure, and from the one successive small chamber in the other structure, The fluid material flow path continues to one next small chamber located downstream from the next two small chambers in the structure
ことを特徴とする混合 ·粉砕微粒子化装置。  A mixing and pulverizing device.
2 . 前記第一の構造物、 第二の構造物において、 上流側から下流側に向かつ て、 それぞれ、 1個、 1個、 2個の順で配置される形式が一回又は複数回繰 り返される複数個の小室中、 前記 1個の小室は、 その中心を前記第一、 第二 の構造物の上流側から下流側へ通る当該小室の中心線に対して対称な形状、 構造を有し、 前記 2個の小室は当該小室の中心線に対して線対称に配置され ていると共に、 当該小室の中心線に対して対称な形状、 構造を有することを 特徴とする請求の範囲第 1項記載の混合 ·粉砕微粒子化装置。 2. In the first structure and the second structure, one, one, and two pieces are arranged in order from the upstream side to the downstream side, respectively, once or a plurality of times. Among the plurality of returned small chambers, the one small chamber has a shape and structure symmetrical with respect to the center line of the small chamber passing the center from the upstream side to the downstream side of the first and second structures. The two compartments are arranged symmetrically with respect to the center line of the compartment. 2. The mixing and pulverizing device according to claim 1, wherein the device has a shape and a structure symmetrical with respect to a center line of the small chamber.
3 . 前面が開口している小室を一側面の上流側に位置する一端側から下流側 に位置する他端側に向けて複数個備えている第一の構造物と第二の構造物と 力 それぞれの前記小室の前面開口を互いに対向させて密着配置されること によって、 第一の構造物の小室から第二の構造物の小室、 第二の構造物の小 室から第一の構造物の小室へと、 上流側から下流側に向かって各小室の空間 部が順次連通されて流体物流路が形成されている混合 ·粉砕微粒子化装置で あって、  3. The first structure, the second structure, and the force provided with a plurality of small chambers having an open front surface from one end located on the upstream side of one side surface to the other end located on the downstream side. The small-chambers of the first structure are connected to the small-chambers of the second structure, and the small-chambers of the second structure are connected to the first structure from the small-chambers of the first structure. A mixing / pulverization / micronization device in which the space of each small chamber is sequentially communicated from the upstream to the downstream from the small chamber to form a fluid material flow path,
前記複数個の小室は、 上流側から下流側に向かって、 1個、 2個の順で配 置される形式が一回又は複数回繰り返されるものであり、 当該 1個の小室は、 その中心を前記第一、 第二の構造物の上流側から下流側へ通る当該小室の中 心線に対して対称な形状、 構造を有し、 前記 2個の小室は当該小室の中心線 に対して線対称に配置されていると共に、 当該小室の中心線に対して対称な 形状、 構造を有し、  The plurality of small chambers are arranged one or two times in order from the upstream side to the downstream side one or more times, and the one small chamber is located at the center thereof. Has a shape and structure symmetrical with respect to the center line of the small chamber passing from the upstream side to the downstream side of the first and second structures, and the two small chambers are arranged with respect to the center line of the small chamber. It is arranged symmetrically and has a shape and structure symmetrical with respect to the center line of the cell.
どちらか一方の構造物の上流側に位置する 1個の小室から、 対向する他方 の構造物の上流側に位置する 1個の小室、  From one small chamber located upstream of one of the structures to one small chamber located upstream of the other opposing structure,
当該対向する他方の構造物における当該 1個の小室から、 前記一方の構造 物における前記 1個の小室より下流側に位置する次位の 2個の小室、  From the one small chamber in the other opposing structure to the next two small chambers located downstream from the one small chamber in the one structure;
当該一方の構造物における当該次位の 2個の小室から、 前記対向する他方 の構造物における前記 1個の小室より下流側に位置する次位の 2個の小室、 当該他方の構造物における当該次位の 2個の小室から、 前記一方の構造物 における前記次位の 2個の小室より下流側に位置する次位の 1個の小室、 へと流体物流路が連続する  The next two small chambers located downstream from the one small chamber in the opposing other structure from the next two small chambers in the one structure, and the second small chamber in the other structure The fluid flow path is continuous from the next two small chambers to the next one small chamber located downstream of the next two small chambers in the one structure.
ことを特徴とする混合 ·粉砕微粒子化装置。  A mixing and pulverizing device.
4 . 対向する小室と小室との間に形成される流体物流路の横断面積は流体物 流路の総てにおいて同一であることを特徴とする請求の範囲第 3項記載の混 合 ·粉砕微粒子化装置。  4. The mixed and crushed fine particles according to claim 3, wherein the cross-sectional area of the fluid flow path formed between the opposed small chambers is the same in all of the fluid flow paths. Device.
5 . 混合 ·粉砕微粒子化装置の上流側に位置する入り口部に接続している流 体物流入管は、 上流側から当該入り口部までの間に気体注入部を備えており、 前記流体物流入管の流体物流動部に連続している気体注入部の流体物流動部 は、 前記流体物流入管における流体物流動部の内径より小さな内径を有して いると共に、 当該気体注入部の流体物流動部に当該気体注入部の流体物流動 部の内径より小さい内径を有する気体注入管が接続されていることを特徴と する請求の範囲第 1項乃至第 4項のいずれか一項記載の混合 ·粉砕微粒子化 装置。 5. The fluid inflow pipe connected to the inlet located on the upstream side of the mixing and pulverizing and atomizing device has a gas injection section between the upstream side and the inlet. The fluid flow part of the gas injection part that is continuous with the fluid flow part of the fluid flow pipe has an inner diameter smaller than the inner diameter of the fluid flow part of the fluid flow pipe, and The gas injection pipe having an inner diameter smaller than the inner diameter of the fluid flow part of the gas injection part is connected to the fluid flow part, The gas injection part according to any one of claims 1 to 4, wherein Mixing and crushing and micronization equipment.
PCT/JP2003/014254 2002-11-08 2003-11-10 Mixing and pulverizing device WO2004045752A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004553153A JP4203757B2 (en) 2002-11-08 2003-11-10 Mixing / pulverizing micronizer
AU2003277642A AU2003277642A1 (en) 2002-11-08 2003-11-10 Mixing and pulverizing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-325776 2002-11-08
JP2002325776 2002-11-08

Publications (1)

Publication Number Publication Date
WO2004045752A1 true WO2004045752A1 (en) 2004-06-03

Family

ID=32321621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014254 WO2004045752A1 (en) 2002-11-08 2003-11-10 Mixing and pulverizing device

Country Status (3)

Country Link
JP (1) JP4203757B2 (en)
AU (1) AU2003277642A1 (en)
WO (1) WO2004045752A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066490A (en) * 2007-09-11 2009-04-02 Watanabe Seisakusho:Kk Production method of substance obtained in atmosphere of approximately critical temperature and approximately critical pressure, containing supercritical substance and its production apparatus
WO2010050025A1 (en) * 2008-10-30 2010-05-06 関根達馬 Method of producing processed soybean food
WO2012029663A1 (en) * 2010-08-30 2012-03-08 株式会社Mgグローアップ Nitrogen-treated-water generating device, nitrogen-treated-water generating method, nitrogen-treated water, and processing method for maintaining freshness of fresh fishery products processed by means of nitrogen-treated water
JP2012045534A (en) * 2010-08-30 2012-03-08 Mg Grow Up:Kk Static fluid mixing apparatus
JP2012147800A (en) * 2005-03-17 2012-08-09 Kumamoto Univ Processing method of food

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614440A (en) * 1985-03-21 1986-09-30 Komax Systems, Inc. Stacked motionless mixer
JP2002119836A (en) * 2000-10-16 2002-04-23 Epcon:Kk Static type mixing device
WO2002089989A1 (en) * 2001-05-07 2002-11-14 Epcon Co., Ltd. Mixing, crushing, and pulverizing device, and method of pulverizing substances using the device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614440A (en) * 1985-03-21 1986-09-30 Komax Systems, Inc. Stacked motionless mixer
JP2002119836A (en) * 2000-10-16 2002-04-23 Epcon:Kk Static type mixing device
WO2002089989A1 (en) * 2001-05-07 2002-11-14 Epcon Co., Ltd. Mixing, crushing, and pulverizing device, and method of pulverizing substances using the device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147800A (en) * 2005-03-17 2012-08-09 Kumamoto Univ Processing method of food
US8507024B2 (en) 2005-03-17 2013-08-13 National University Corporation Kumamoto University Method of treating food and food obtained by this method
JP2009066490A (en) * 2007-09-11 2009-04-02 Watanabe Seisakusho:Kk Production method of substance obtained in atmosphere of approximately critical temperature and approximately critical pressure, containing supercritical substance and its production apparatus
WO2010050025A1 (en) * 2008-10-30 2010-05-06 関根達馬 Method of producing processed soybean food
WO2012029663A1 (en) * 2010-08-30 2012-03-08 株式会社Mgグローアップ Nitrogen-treated-water generating device, nitrogen-treated-water generating method, nitrogen-treated water, and processing method for maintaining freshness of fresh fishery products processed by means of nitrogen-treated water
JP2012045534A (en) * 2010-08-30 2012-03-08 Mg Grow Up:Kk Static fluid mixing apparatus
JP5180405B2 (en) * 2010-08-30 2013-04-10 株式会社Mgグローアップ Nitrogen-treated water production apparatus, nitrogen-treated water production method, and freshness preservation method for fresh fish and shellfish treated with nitrogen-treated water
CN103079688A (en) * 2010-08-30 2013-05-01 株式会社盛长 Nitrogen-treated-water generating device, nitrogen-treated-water generating method, nitrogen-treated water, and processing method for maintaining freshness of fresh fishery products processed by means of nitrogen-treated water

Also Published As

Publication number Publication date
JPWO2004045752A1 (en) 2006-03-16
AU2003277642A1 (en) 2004-06-15
JP4203757B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
JP3451285B2 (en) Mixing / crushing fine-graining apparatus and method for finely-granulating a substance using the same
CN103977870B (en) Air-flow crushing stripping technology is adopted to prepare the method for Graphene presoma two-dimensional nano graphite powder
US11344853B2 (en) Multifunctional hydrodynamic vortex reactor and method for intensifying cavitation
WO2004045752A1 (en) Mixing and pulverizing device
CN102910711A (en) Cavitation percussion flow micro-electrolysis reactor for treating waste water and treatment method
KR20170133000A (en) Dispersionizer for nano particle by using ultrasonic streaming and shockwave
RU2200658C2 (en) Method for treating slimes (versions)
JP2011206638A (en) Apparatus for manufacturing biomass ground material, and method for manufacturing biomass ground material using the same
US4316580A (en) Apparatus for fragmenting fluid fuel to enhance exothermic reactions
US20010054649A1 (en) Atomizing apparatus and method
EP1347246B1 (en) Negative ion generator
US7959095B2 (en) Center-feed nozzle in a contained cylindrical feed-inlet tube for improved fluid-energy mill grinding efficiency
CN107930422B (en) Bubble manufacturing system
JP2001269557A (en) Jet joining device
US10864495B1 (en) Cavitation apparatus, configured to perform multiple simultaneous cavitations
KR101208211B1 (en) A dispersing and milling device for solid particle
KR20210044085A (en) A nano bubble generator
CN106396311B (en) A kind of muddy material dynamic wave scrubbing device and its washing methods
KR200260596Y1 (en) Jet flow coiiision type air flow jet mill with double jet mill range using flow energy
CA3171923C (en) Plastic-powered power generator
JP3301538B2 (en) Equipment for atomizing and purifying substances
US20230077044A1 (en) Jet-milling apparatus and method for jet-milling
JP2009090255A (en) Powder treating facility
KR101485833B1 (en) Nano-micro particles manufacturing method and device
KR20200095286A (en) A nano bubble generator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004553153

Country of ref document: JP

122 Ep: pct application non-entry in european phase