WO2004053957A1 - Surface position detection apparatus, exposure method, and device porducing method - Google Patents

Surface position detection apparatus, exposure method, and device porducing method Download PDF

Info

Publication number
WO2004053957A1
WO2004053957A1 PCT/JP2003/015736 JP0315736W WO2004053957A1 WO 2004053957 A1 WO2004053957 A1 WO 2004053957A1 JP 0315736 W JP0315736 W JP 0315736W WO 2004053957 A1 WO2004053957 A1 WO 2004053957A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
liquid
detection
detected
Prior art date
Application number
PCT/JP2003/015736
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Hidaka
Hideo Mizutani
Nobutaka Magome
Soichi Owa
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU2003289272A priority Critical patent/AU2003289272A1/en
Publication of WO2004053957A1 publication Critical patent/WO2004053957A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Definitions

  • the present invention relates to a surface position detection device for optically detecting surface position information of a surface to be inspected, an exposure method for exposing an image of a pattern of a mask on a substrate, and a device manufacturing method.
  • Semiconductor devices and liquid crystal display devices are manufactured by a so-called photolithography technique in which a pattern formed on a mask is transferred onto a photosensitive substrate.
  • An exposure apparatus used in the photolithography process has a mask stage for supporting a mask and a substrate stage for supporting a substrate. The mask stage and the pattern of the mask are sequentially moved through the substrate stage.
  • the c- exposure device which transfers the light to the substrate via the projection optical system, has an autofocus detection system that detects surface position information on the substrate surface in order to align the substrate surface with the image plane of the projection optical system.
  • AF detection system there is an oblique incidence system disclosed in, for example, JP-A-6-66543.
  • focus detection light is applied to the substrate surface from an oblique direction, and positional information on the substrate surface is detected by light reflected on the substrate surface.
  • the oblique incidence AF detection system as shown in the schematic diagram of Fig. 10 (a), when the surface of the substrate P, which is the surface to be inspected, moves in the vertical direction, for example, as indicated by the symbol P ', the illuminated AF Since the reflected light of the detection light L on the substrate surface is displaced in the direction perpendicular to the optical axis of the optical system that constitutes the AF detection system, by detecting the amount of deviation D a, Surface position information can be detected.
  • is the exposure wavelength
  • is the numerical aperture of the projection optical system
  • k 2 is the process coefficient
  • the space between the lower surface of the projection optical system and the substrate surface is filled with a liquid such as water or an organic solvent, and the wavelength of the exposure light in the liquid is 1 / ⁇ ( ⁇ is the refraction of the liquid in air).
  • the resolution is usually improved by using the ratio of about 1.2 to 1.6), and the depth of focus is increased by about ⁇ times.
  • the position of the detection light L (reflected light on the substrate surface) incident on the light receiving surface is shifted, and the AF detection system incorrectly judges that the position of the substrate has changed.
  • the surface position of the substrate surface cannot be measured with high accuracy.
  • the present invention has been made in view of such circumstances, and a surface position at which surface position information on a substrate surface can be accurately detected even when a refractive index on an optical path of detection light of an AF detection system changes.
  • the primary purpose is to provide a detection device.
  • Another object of the present invention is to provide an exposure method and a device manufacturing method capable of manufacturing a device by detecting substrate surface position information even if the refractive index on the optical path of the detection light of the AF detection system changes. I do.
  • an exposure method that can form a buttered image on the substrate with high precision is also used. Provision is the third purpose.
  • a fourth object of the present invention is to provide an exposure method capable of forming a pattern image on a substrate with high accuracy even when the temperature of the liquid changes.
  • the present invention employs the following configurations corresponding to FIGS.
  • the detection light is projected on the surface to be detected (S), and the light to be detected is obtained based on information obtained by receiving the reflected light from the surface to be detected (S).
  • a surface position detecting device for detecting a surface position of the surface (S) is provided.
  • a plurality of detection light on the substrate surface (S) L 1, L 2) having different angles of incidence with projects in (S 1 ⁇ 2), the reflected light from the substrate surface (S) (L 1 r, L 2 r) Detecting the refractive index information of the optical paths of the detection light (L1, L2) and the reflected light (L1r, L2r) by receiving light;
  • the amount of change in the refractive index on the optical path can be obtained based on (difference). Since the detected surface position information can be corrected based on the obtained refractive index change amount, which is the refractive index change amount, the surface position information of the test surface can be obtained with high accuracy.
  • a plurality of light sources and an optical system may be used.
  • a tunable laser or a light source having multiple wavelengths is used together with a wavelength selection filter, an etalon, a spectroscope, a prism, etc. to change the optical path for each wavelength of light so that the angle of incidence on the surface to be measured is different. You may.
  • the optical path may be split or deflected using a pupil splitter or a galvanomirror.
  • the detection light is projected on the surface (S) to be detected, and based on the information obtained by receiving the reflected light from the surface (S) to be detected,
  • a surface position detecting device for detecting a surface position of a surface (S) comprising:
  • a light receiving system (9) for receiving light reflected from the surface to be inspected S.
  • a light receiving system (9) for receiving light reflected from the surface to be inspected S.
  • a plurality of detection light beams having different wavelengths are projected by utilizing the fact that each of the refraction angles when light beams having different wavelengths are incident on an object shows different values.
  • the detection surface can be irradiated with detection light at different incident angles.
  • the detection light is projected on the surface to be detected via the light transmitting member.
  • the light transmitting member include an optical element constituting the projection optical system, and a light-transmissive parallel flat plate disposed between the projection optical system and the surface to be measured.
  • the image of the pattern is projected onto the substrate (P) by the projection optical system (PL) via the liquid (50), and the substrate (P) is subjected to immersion exposure.
  • Exposure method :
  • FIG. 1 is a schematic configuration diagram showing an embodiment of an exposure apparatus provided with a surface position detecting device of the present invention.
  • FIG. 2 is a schematic configuration diagram showing a first embodiment of the surface position detecting device of the present invention.
  • FIG. 3 is an enlarged view of a main part showing a substrate on which the detection light is projected.
  • FIG. 4 is a diagram showing the relationship between the angle of incidence of the detection light on the substrate and the amount of error.
  • FIG. 5 is a flowchart showing an example of the surface position detecting method of the present invention.
  • FIG. 6 is a schematic configuration diagram showing a second embodiment of the surface position detecting device of the present invention.
  • FIG. 7 is a schematic configuration diagram showing a third embodiment of the surface position detecting device of the present invention.
  • FIGS. 8A and 8B are schematic diagrams showing a pupil splitter.
  • FIG. 9 is a flowchart illustrating an example of a semiconductor device manufacturing process.
  • FIGS. 10 (a) and (b) are schematic diagrams for explaining a conventional problem.
  • BEST MODE FOR CARRYING OUT THE INVENTION a surface position detecting device and an exposure method according to the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
  • Figure 1 in c Figure 1 is a schematic structural diagram showing one embodiment of the old over Bok Fuokasu detecting device mounted exposure apparatus as a surface position detecting apparatus of the present invention, the exposure apparatus EX, supports a mask M A mask stage MS, a substrate stage PS for supporting the substrate P, an illumination optical system IL for illuminating the mask M supported by the mask stage MST with the exposure light EL, and a mask M illuminated with the exposure light EL
  • the projection optical system PL that projects and exposes the image of the pattern on the substrate P supported on the substrate stage PST, and the autofocus as a surface position detection device that detects surface position information on the surface S of the substrate P as the surface to be inspected Detector 100 and exposure unit EX It has a control device C 0 NT for overall control.
  • the exposure apparatus ⁇ ⁇ As the exposure apparatus ⁇ ⁇ , the mask ⁇ and the substrate ⁇ are synchronously moved in different directions (opposite directions) in the scanning direction, and the pattern formed on the mask ⁇ ⁇ is exposed on the substrate ⁇ .
  • a mold exposure apparatus a so-called scanning stepper
  • the direction that coincides with the optical axis AX of the projection optical system PL is the Z-axis direction
  • the synchronous movement direction (scanning direction) between the mask M and the substrate P in a plane perpendicular to the Z-axis direction is the X-axis direction.
  • the direction perpendicular to the Z-axis direction and the Y-axis direction is defined as the Y-axis direction.
  • the directions around the X, Y, and Z axes are 0 °, ⁇ , and, respectively.
  • the “substrate” includes a semiconductor wafer coated with a resist
  • the “mask” includes a reticle on which a device pattern to be reduced and projected onto the substrate is formed.
  • the illumination optical system IL illuminates the mask M supported by the mask stage MST with the exposure light EL.
  • the exposure light source and an optical illuminator that equalizes the illuminance of the light flux emitted from the exposure light source.
  • the exposure light EL emitted from the illumination optical system IL includes, for example, ultraviolet bright lines (g-line, h-line, i-line) and KrF excimer laser light (wavelength: 248 nm) emitted from a mercury lamp.
  • the mask stage MST supports the mask M and can move two-dimensionally in a plane perpendicular to the optical axis AX of the projection optical system PL, that is, in the XY plane. And 0.
  • the mask stage MST is driven by a mask stage driving device MSTD such as a linear motor, etc.
  • the mask stage driving device MSTD is a control device C 0 Controlled by NT.
  • the two-dimensional position and rotation angle of the mask ⁇ ⁇ on the mask stage MST are measured in real time by a laser interferometer, and the measurement results are output to the control device C ⁇ .
  • the control device C 0 ⁇ ⁇ ⁇ ⁇ drives the mask stage driving device MS TD based on the measurement result of the laser interferometer to position the mask M supported by the mask stage MS ⁇ .
  • the projection optical system PL projects and exposes the pattern of the mask M onto the substrate P at a predetermined projection magnification of 3, and is composed of a plurality of optical elements (lenses). These optical elements are mirrors as metal members. It is supported by cylinder PK.
  • the projection optical system PL is a reduction system in which the projection magnification 5 is, for example, 1/4 or 1/5. Note that the projection optical system PL may be either a unity magnification system or an enlargement system.
  • the projection optical system PL has optical characteristics
  • the imaging characteristic adjustment device PLC has, for example, a mechanism for adjusting the spacing of some of the lens groups constituting the projection optical system PL and a mechanism for adjusting the gas pressure in the lens chamber of some of the lens groups. By doing so, the optical characteristics such as the projection magnification and distortion of the projection optical system PL are corrected.
  • the imaging characteristic adjustment device PLC is controlled by the control device CONT.
  • the substrate stage PST supports the substrate P, and includes a Z stage 51 that holds the substrate P via a substrate holder, an XY stage 52 that supports the Z stage 51, and a base 53 that supports the XY stage 52.
  • the substrate stage PST is driven by a substrate stage driving device PSTD such as a linear motor.
  • the substrate stage drive PSTD is controlled by the controller CONT.
  • the Z stage 51 By driving the Z stage 51, the position of the substrate P held by the Z stage 51 in the Z-axis direction (final position), and the positions in the ⁇ and directions are controlled. Further, by driving the stage 52, the position of the substrate ⁇ in the ⁇ direction (the position in a direction substantially parallel to the image plane of the projection optical system PL) is controlled. That is, the Z stage 51 controls the force position and the inclination angle of the substrate P to adjust the surface of the substrate P to the image plane of the projection optical system PL by the autofocus method and the autoleveling method, and the XY stage A ridge 52 positions the substrate P in the X-axis direction and the Y-axis direction.
  • a movable mirror 54 that moves with respect to the projection optical system PL together with the substrate stage PST is provided on the substrate stage PST ( ⁇ stage 51).
  • a laser interferometer 55 is provided at a position facing the movable mirror 54. The two-dimensional position and rotation angle of the substrate P on the substrate stage PST are measured in real time by the laser interferometer 55, and the measurement results are output to the control device CONT.
  • the controller CONT drives the substrate stage driving device PSTD based on the measurement result of the laser interferometer 55 to position the substrate P supported by the substrate stage PST.
  • an immersion method is applied in order to substantially shorten the exposure wavelength to improve angular image resolution and to substantially increase the depth of focus. Therefore, at least while the image of the pattern of the mask M is being transferred (projected) onto the substrate P, the surface of the substrate P and the tip surface (lower surface) 7 of the optical element on the substrate P side of the projection optical system PL are In the meantime, the predetermined liquid 50 is filled.
  • pure water is used as the liquid 50. Pure water can be used not only for ArF excimer laser light but also for exposure light EL such as ultraviolet emission lines (g-line, h-line, i-line) emitted from a mercury lamp and KrF excimer laser light (wavelength).
  • the exposure apparatus EX includes a liquid supply device 1 that supplies a predetermined liquid 50 to a space 56 between the front end surface 7 of the projection optical system PL and the substrate P, and a liquid recovery device that collects the liquid 50 in the space 56.
  • Device 2 is provided.
  • the liquid supply device 1 includes a tank for accommodating the liquid 50, a pressurizing pump, a temperature adjusting device for adjusting the liquid 50 supplied to the space 56 to a predetermined temperature, and the like.
  • the liquid supply device 1 supplies the liquid 50 to the space 56 via the supply pipe 3 and the supply nozzle 4.
  • the temperature adjustment device provided in the liquid supply device 1 adjusts the temperature of the liquid 50 to be supplied to the space 56 by, for example, the exposure device EX. Is set to be substantially the same as the temperature in the chamber in which is stored.
  • the liquid recovery device 2 includes a suction pump, a tank for storing the recovered liquid 50, and the like.
  • One end of a recovery pipe 6 is connected to the liquid recovery device 2, and a recovery nozzle 5 is connected to the other end of the recovery pipe 6.
  • the liquid recovery device 2 recovers the liquid 50 in the space 56 through the recovery nozzle 5 and the recovery pipe 6.
  • the controller CONT drives the liquid supply device 1 and supplies a predetermined amount of the liquid 50 per unit time to the space 56 via the supply pipe 3 and the supply nozzle 4.
  • the liquid recovery device 2 is driven to recover a predetermined amount of liquid 50 per unit time from the space 56 via the recovery nozzle 5 and the recovery pipe 6.
  • a predetermined amount of liquid 50 is held in the space 56 between the front end surface 7 of the projection optical system PL and the substrate P.
  • the intelligent focus detection device (AF detection device) 100 is a light transmission system 8 that projects detection light L (L1, L2) for AF detection onto the surface (test surface) S of the substrate P, A light receiving system 9 for receiving the reflection of the detection light L reflected by the surface S of the substrate P; As shown in FIG. 1, the light transmission system 8 transmits the two detection lights, the first detection light L1 and the second detection light L2, to the surface of the substrate P from different directions at different angles of incidence.
  • each of the detection light 1 and L 2 from the light transmission system 8 transmits a part (a part of the optical element) of the projection optical system PL as a light transmitting member, and the liquid 50 filled in the space 56.
  • the detection light L1, L2 is projected onto the surface S of the substrate P via a part of the projection optical system PL for the following reason. That is, in order to stably arrange the liquid 50 in the space 56, the distance d needs to be set to a predetermined amount (for example, about 2 to 3 mm) so that the surface tension of the liquid 50 can be maintained. is there.
  • the detection light L Since the light is projected onto the surface S of the substrate P through a part of the projection optical system PL, the detection light L is maintained while maintaining a desired distance d for stably disposing the liquid 50 in the space 56. 1, L 2 can be projected on the surface S of the substrate P. As a result, the degree of freedom in setting the distance d (working distance) between the tip surface 7 of the projection optical system PL and the surface S of the substrate P can be increased. Further, the incident angles of the detection lights L1 and L2 with respect to the surface S of the substrate P can be freely changed without being restricted by the position of the projection optical system PL.
  • the AF detection device 100 is configured to detect an image plane (imaging plane) formed via the projection optical system PL and the liquid 50 based on a detection signal of the light receiving system 9 obtained from light reflected on the surface S of the substrate P. Find the height position (focus ⁇ standing) of the substrate P surface in the Z-axis direction with respect to). Further, the AF detection device 100 can also obtain the attitude of the substrate P in the tilt direction by obtaining each focus position at a plurality of points on the surface of the substrate. The detection result of the AF detection device 100 is output to the control device CONT. Based on the detection result of the AF detection device 100, the control device CONT determines the position between the imaging plane of the projection optical system PL and the surface of the substrate P.
  • FIG. 2 is a configuration diagram showing a first embodiment of the AF detection apparatus 100.
  • the light transmitting system 8 of the AF detection device 100 includes a first light transmitting system 8 for projecting the first detection light 1 at a first incident angle 0 to the surface S of the substrate P.
  • the light receiving system 9 of the AF detection device 100 is provided corresponding to the first light transmitting system 8 ⁇ and receives the reflected light of the first detection light L 1 reflected on the surface S of the substrate P.
  • a second light receiving system 9B provided corresponding to the first light receiving system 9A and the second light transmitting system 8B, and receiving the second reflected light 2 reflected by the surface S of the substrate P; It has.
  • the first light transmission system 8A emits a non-photosensitive light flux (wavelength of about 400 nm to 900 nm) to the photoresist on the substrate P, and an AF light source 10 and a light source 10 was done
  • the slit light shaped by the light transmission slit 11 is used as the first detection light L 1 as a cylindrical lens 12, a relay lens 13, an optical path bending mirror 14, an aberration correcting plane plate 15, and The light enters the projection optical system PL via the objective lens 16.
  • the lens barrel PK has an opening, and the slit light enters the projection optical system PL through this opening.
  • the first detection light L1 incident on the projection optical system PL is projected through the liquid 50 onto the surface S of the substrate P at a first incident angle 0.
  • the reflected light L1r of the first detection light L1 reflected on the surface S of the substrate P is received by the first light receiving system 9A via the liquid 50 and a part of the projection optical system PL.
  • the lens barrel PK has an opening, and the reflected light 1 r is received by the first light receiving system 9 A through this opening.
  • C The first light receiving system 9 A is a projection optical system PL.
  • Objective lens 17 to which the reflected light L 1 r is incident through the mirror, a plane plate 18 for aberration correction, a vibrating mirror 19 vibrating at a predetermined cycle, a relay lens 20, and an astigmatic lens It comprises a cylindrical lens 21 for photovoltaic use, a light receiving slit 22 having a slit-shaped opening, and a light receiving sensor 23 made of, for example, silicon photo die.
  • the reflected light L 1 of the first detection light L 1 on the surface S of the substrate P is the objective lens 17, the aberration correction plane plate 18, the vibrating mirror 19, the relay lens 20, the cylindrical lens 21, The light is received by the light receiving sensor 23 via the light receiving slit 22.
  • the vibrating mirror 19 vibrates in the direction indicated by an arrow y at a predetermined cycle.
  • the image of the slit pattern formed on the light receiving slit 22 (the slit-like reflected light 1 r, which is shaped by the light transmitting slit 11 and reflected by the surface S of the substrate P) also vibrates. With the vibration of the image of the pattern, the amount of light passing through the opening of the light receiving slit 22 changes, and the light passing through the opening of the light receiving slit 22 reaches the light receiving sensor 23.
  • the position of the opening of the light receiving slit 22 is determined by the position of the surface S of the substrate
  • the light receiving slit 22 is provided so that the center of the opening of the light receiving slit 22 coincides with the vibration center of the image of the slit pattern when the image forming plane of L is aligned. Slit flutter received by 3 If the image of the image is detected at a constant period, the image plane of the projection optical system PL coincides with the surface S of the substrate P. On the other hand, when the imaging plane of the projection optical system PL does not match the surface S of the substrate P, the reflected light L 1 r based on the first detection light 1 is the optical axis of the first light receiving system 9 A.
  • the detection result of the light receiving sensor 23 is output to the control device CONT, and the control device CONT obtains the focus position of the surface S of the substrate P based on the light receiving result of the light receiving sensor 23.
  • the second light transmitting system 8B is provided in addition to the first light transmitting system 8A based on a focus position adjusting method or a temperature measuring method (refractive index change measuring method) according to the present invention described later.
  • the configuration is the same as that of the first light transmission system 8 A, and the description is omitted.
  • the second light receiving system 9B for receiving the reflected light L2r of the second detection light L2 on the surface of the substrate P has the same configuration as the first light receiving system 9A, so that the description thereof will be omitted. Omitted.
  • each of the detection lights L1 and L2 projected by each of the first light transmission system 8A and the second light transmission system 8B has the same wavelength.
  • FIG. 3 is an enlarged view near the surface S of the substrate P on which the first and second detection lights L1 and L2 are projected.
  • the control device CONT simultaneously projects the first and second detection lights L1 and L2 from the first and second light transmission systems 8A and 8B onto the surface S of the substrate P.
  • First detection light L 1 is projected on the surface S of the substrate P at an incident angle 0 through the liquid 5
  • the second test Idemitsu L 2 is the surface of the substrate P at the incident angle theta 2 via the liquid 5 0 Projected on S.
  • the reflected light L 1 r and L 2 at the surface S of the substrate P based on the first and second detection light L 1 and L 2 respectively This is received by the first and second light receiving systems 9A and 9B.
  • the liquid 50 is set to a predetermined temperature T, and the refractive index of the liquid 50 at this time is ⁇ .
  • the first and second detection light beams 1 and L 2 are projected at the same position on the surface S of the substrate ⁇ .
  • the substrate ⁇ moves in the ⁇ -axis direction, the reflected light is reflected and the deviation amount and the reflected light in the direction perpendicular to the optical axis of the 1r light receiving system are reflected.
  • the shift amount of L 2 r in the direction perpendicular to the optical axis of the light receiving system is the same.
  • the substrate P does not move in the Z axis direction, it changes from the temperature of the liquid 50 within T 2, consider the case where the refractive index of the liquid 50 eta changes by delta eta.
  • the first and second detection light beams L 1 and L 2 from the first and second light transmitting systems 8 ⁇ and 8 ⁇ change the refraction angle at the interface from the projection optical system PL to the liquid 50.
  • Change. With the change in the refraction angle, the optical paths of the first and second detection lights L 1 and L 2 fluctuate as shown by signs 1 ′ and L 2 ′.
  • the incident angle of the second detection light L 2 with respect to the surface S of the substrate P changes from 0 to 2 .
  • the optical path of the reflected light L 1 r of the first detection light L 1 is shifted by a distance D 1 in a direction perpendicular to the optical axis of the light receiving system 9 A to become the reflected light L 1 r ′.
  • the optical path of the second detection light L 2 of the reflected light L 2 r in this case c as the distance D 2 deviation reflected light L 2 r 'in a direction perpendicular to the optical axis of the light receiving system 9 B, the liquid Consider a case where the thickness is d and the refractive index of the liquid 50 changes from n to ⁇ n with temperature. In this case, the angle of incidence of the detection light on the substrate surface changes, and the amount of change is
  • the focus position detection error amount Ad based on the first detection light L 1 and the second detection light L 2 4 shows different values of the detection error ⁇ d 2 of the focus position based on the incident angle 0 of the detection light L with respect to the surface S of the substrate P and the surface P of the substrate P caused by the temperature change of the liquid.
  • Fig. 4 shows an example of the relationship between the detection error amount ⁇ d of the force position and Fig. 4.
  • the liquid 50 is pure water (water), and the water 50 corresponds to the working distance of the projection optical system PL.
  • the graph shows the relationship between the incident angle 0 of the detection light L and the focus detection error amount ⁇ d when the temperature changes by 0.01 ° C. when the thickness d is 1 mm.
  • Incident angle of 80 degrees of the detected light is 1, when the incident angle of 0 2 of the second detection light L 2 is set to 85 degrees, the temperature of the pure water is 0. 0 1 ° C change from the liquid 50 If it becomes T 2 and, from FIG. 4, the detection error amount delta d of the focus position based on the first detection light L 1 is about 20 nm, Four force scan position based on the second detection light L 2
  • the detection error ⁇ 2 is about 80 nm, that is, according to the example in Fig. 4, when the temperature of a liquid (water) 50 having a thickness of 1 mm changes by 0.01 ° C, two detection light beams are detected.
  • control device CONT determines the difference between the detection of the focus position obtained in advance by an experiment and a simulation.
  • the relationship between (Z, -Z 2 ) and the amount of change in the refractive index is stored, and the amount of change in the refractive index can be obtained based on the focus position Z or Z 2 detected using the AF detection device 100. it can. Since the change in the temperature of the liquid and the change in the refractive index are in a proportional relationship, the detection difference ( ⁇ , — ⁇ ⁇ ) of the focus position changes in proportion to the temperature change of the liquid.
  • the AF detection device 100 moves toward the surface of the substrate P based on the command of the control unit CONT.
  • the first detection light L 1 and the second detection light L 2 are projected, and the light L 1 r and L 2 r reflected from the surface of the substrate P corresponding to the detection light L 1 and L 2 are detected by the light receiving sensor 23. each received, detects a full Saiichi Kas position Z of the surface of the substrate P based on the first detection light L 1, the second based on the detection light L 2 and a focus position Z 2 of the surface of the substrate P respectively (Sutedzupu S
  • o control unit CONT determines the difference between the focus position Z and Z 2, which is detected (Z one Z 2), detecting the difference of the focus position stored in advance ( ⁇ - ⁇ ) and the refractive index of the liquid 50
  • the refractive index change amount ⁇ of the liquid 50 is determined based on the relationship information with the change amount ⁇ (step S2). Further, the controller CONT corrects the focus position ⁇ , based on the first detection light L1 obtained in step S1, based on the refractive index change amount ⁇ obtained in step S2.
  • the incident angle change which is caused by the refractive index change ⁇ obtained in step S2 is calculated, and based on that, Then, a detection error amount Ad of the focus position by the first detection light L1 is obtained. Then, based on the detection error amount ⁇ ⁇ , the focus position ⁇ of the substrate ⁇ surface detected using the first detection light L 1 is corrected, and the actual focus position (surface position information of the substrate ⁇ surface) is corrected. ) (Step S3). Then, the control unit CONT drives the substrate stage PST based on the corrected surface position information of the substrate P so that the surface of the substrate P obtained by the correction coincides with the image plane, and thereby drives the image plane.
  • the positional relationship between the substrate and the surface S of the substrate P is adjusted (step S4).
  • the thickness d of the liquid 50 is 1 mm has been described, but the above-described relationship corresponding to a plurality of thicknesses d is stored in the control device CONT in advance.
  • the liquid 50 is pure water, but the above-described relationship according to the liquid to be used is stored in advance.
  • the detection sensitivity and the detection resolution are higher when the incident angle is larger, it is better to use the second detection light L2 as the main detection light and use the first detection light L1 as the detection light for the camera. desirable.
  • the incident angle of 0 the difference between the incident angle 0 2 it is desirable as large as possible.
  • the incident angle with respect to the surface S of the substrate P decreases, the position detection accuracy of the substrate P in the Z-axis direction decreases. Therefore, it is preferable that the incident angles of the detection lights L1 and L2 with respect to the substrate P surface satisfy the condition of 30 ° ⁇ 0 ⁇ 90 °, respectively.
  • the incident angles of the detection lights L1 and L2 with respect to the surface of the substrate P are respectively 70 ° 0 ⁇ 90 °.
  • the condition is satisfied. That is, as shown in the graph of FIG. 4, if the incident angle is 70 ° or more, the error amount is large ⁇ changes with respect to the change in the incident angle, so that the temperature change of the liquid 50 (the refractive index change) ) Can be detected sensitively.
  • the detection light when the surface position of the surface of the substrate P is detected via the liquid (water), the detection light is emitted, and the refractive index of the liquid (water) with respect to L 1 and the surface of the substrate P are detected.
  • the difference from the refractive index of the photosensitive material (resist) becomes small, and the irradiated detection light may not be sufficiently reflected on the surface of the photosensitive material, and the light amount (light intensity) of the light received by the light receiving sensor may decrease.
  • the controller CONT illuminates the mask M with the exposure light EL, and transfers the pattern of the mask M to the substrate P via the projection optical system PL. .
  • the controller CONT does not generate an error in the image of the pattern transferred to the substrate P based on the refractive index change amount (or temperature change amount) of the liquid 50 obtained using the AF detection device 100.
  • the image of the pattern is adjusted using the imaging characteristic adjustment device PLC.
  • the image plane position of the projection optical system PL shifts in the Z-axis direction.
  • the pattern passing through the projection optical system PL and the liquid 50 is adjusted.
  • the mask M is similarly moved in the Z-axis direction or the tilt J direction.
  • the projection optical system PL drive some optical elements in the projection optical system PL, or adjust the wavelength of the exposure light EL to change the refractive index (temperature change) of the liquid 50. Is adjusted so that no error occurs in the image.
  • the refractive index on the optical path of the detection light changes, by projecting the two detection lights L 1 and L 2 onto the surface S of the substrate P at different incident angles 0 ⁇ 0 2 , Based on each detection light 1 and L 2, it is possible to determine the refractive index of the liquid existing on the optical path of the detection light using the measurement error of the surface position information. Therefore, the detected surface position information can be corrected based on the obtained refractive index information, so that the surface position information of the surface S of the substrate P can be detected with high accuracy.
  • the refractive index of the liquid 50 is set to simplify the description.
  • substrate ⁇ moves in the ⁇ -axis direction without any change (temperature change)
  • reflected light L 1 r is received.
  • the amount of displacement of the reflected light L 2 r in the direction perpendicular to the optical axis of the light receiving system is the same as the amount of displacement in the direction perpendicular to the optical axis of the system, but strictly speaking, the two detection light L 1 since the incident angle theta ,, theta 2 of L 2 are different, in the absence of refractive index change (temperature change) in the liquid 50, when the substrate ⁇ is moved in ⁇ axially receiving the reflected light was 1 r
  • the amount of deviation in the direction perpendicular to the optical axis of the system and the amount of reflected light are different from the amount of deviation of 2r in the direction perpendicular to the optical axis of the light-receiving system (however, the ratio of the deviations si ⁇ ⁇ / sin 0 2 is constant ).
  • the amount of deviation of the reflected light L 1 r in the direction perpendicular to the optical axis of the light receiving system due to the amount of deviation of the substrate P in the Z direction and the amount of deviation of the reflected light L 2 r perpendicular to the optical axis of the light receiving system The relationship with the amount of deviation in the appropriate direction (for example, si ⁇ ⁇ ⁇ / sin ⁇ 2 ) is determined in advance, and if the measurement result based on the actual reflected light is different from the relationship determined in advance, the liquid It is sufficient to judge that a temperature change (refractive index change) of 50 has occurred. As described above, pure water is used as the liquid 50 in the present embodiment.
  • Pure water has the advantage that it can be easily obtained in large quantities at a semiconductor manufacturing plant or the like, and that it has no adverse effect on the photoresist on the substrate P, optical elements (lenses), and the like.
  • pure water has no adverse effect on the environment and has an extremely low impurity content, so it is expected to have the effect of cleaning the surface of the substrate P and the surface of the optical element provided on the front end surface of the projection optical system PL. can c Then, the refractive index n is almost 1 in pure water (water) wavelength with respect to the exposure light EL of about 1 93 nm. 44 ⁇ 1.
  • the wavelength is shortened to 1 / n on the substrate P, that is, about 131-134 nm, and high resolution is obtained. Furthermore, since the depth of focus is expanded to about n times, that is, about 1.44-1.47 times as compared to that in the air, if it is sufficient to secure the same depth of focus as when using it in the air, However, the numerical aperture of the projection optical system PL can be further increased, and the resolution is improved in this respect as well.
  • a plane-parallel plate capable of transmitting the exposure light EL is provided on the distal end surface 7 of the projection optical system PL as described above.
  • This plane-parallel plate is detachably (exchangeably) attached to the front end face of the projection optical system PL.
  • the optical element in contact with the liquid 50 By using a plane-parallel plate that is cheaper than the lens, the transmittance of the projection optical system PL, the illuminance of the exposure light EL on the substrate P, and the uniformity of the illuminance distribution during transportation, assembly, and adjustment of the exposure apparatus EX Even if a substance to be reduced (for example, a silicon-based organic substance) adheres to the plane-parallel plate, it is sufficient to replace the plane-parallel plate just before supplying the liquid 50, and to replace the optical element that comes into contact with the liquid 50. There is an advantage that the replacement cost is lower than when a lens is used.
  • a substance to be reduced for example, a silicon-based organic substance
  • the surface of the optical element that comes into contact with the liquid 50 is contaminated due to scattered particles generated from the registry by exposure to the exposure light EL, or the adhesion of impurities in the liquid 50.
  • this optical element By replacing this optical element with an inexpensive plane-parallel plate, the cost of replacement parts and the time required for replacement can be reduced as compared with a lens, and maintenance costs can be reduced. (Running cost) and a decrease in throughput can be suppressed.
  • a lens may be used as the optical element attached to the front end surface of the projection optical system PL.
  • the optical element attached to the front end surface of the projection optical system PL may be an optical plate used for adjusting the optical characteristics of the projection optical system PL, for example, aberrations (spherical aberration, coma aberration, etc.).
  • the optical elements parallel plane plates and lenses
  • the optical elements are brought into contact with the liquid 50 and the lens barrel PK is not contacted, so that the metal lens barrel PK can be used. Corrosion and the like are prevented. If the pressure between the optical element at the tip of the projection optical system PL and the substrate P caused by the flow of the liquid 50 is large, the optical element is not replaced by the optical element, but the optical element is changed by the pressure. You may fix firmly so that it may not move.
  • two detection light is 1, L 2 at different incident angles 0 2, the number of detection light projected at different angles of incidence from each other Can project not only two light beams but also any three or more light beams.
  • the detection lights L1 and L2 When passing the detection lights L1 and L2 through a part of the projection optical system, only one of the plurality of optical elements constituting the projection optical system PL that is closest to the substrate P passes through. Alternatively, a plurality of optical elements may be passed.
  • the space between the front end surface 7 of the projection optical system PL and the surface S of the substrate P is filled with the liquid 50, for example, from the plane parallel to the surface S of the substrate P.
  • a configuration in which the liquid 50 is filled with a cover glass attached may be used.
  • the detection lights L 1 and L 2 from the light transmitting system 8 are transmitted to the surface S of the substrate P via a cover glass as a light transmitting member in addition to a part of the projection optical system PL and the liquid 50. It will be projected.
  • the case where the space 50 between the front end surface 7 of the projection optical system PL and the surface S of the substrate P is filled with the liquid 50 has been described as an example.
  • the present invention can of course be applied to a case where the liquid 50 is not present and the space 56 is filled with a gas such as air.
  • the refractive index information of the gas in the space 56 can be detected based on the detection light projected on the surface S of the substrate P at a plurality of different incident angles. Then, based on this detection light, it is possible to detect a temperature change of the gas in the space 56.
  • substances other than the liquid (water) 50 and air may exist on the optical path of the detection light including the space 56.
  • an optical element glass, lens
  • PFPE perfluorinated polyether
  • the present invention can be used for a method of measuring a change in temperature of a fluid such as a gas or a liquid having light transmittance and a solid. it can.
  • the method of the present invention is effective in a small area where temperature measurement is difficult with a normal temperature sensor, a high-temperature atmosphere, a high-pressure atmosphere, an atmosphere having high corrosiveness, and the like.
  • the detection light beams L1 and L2 pass through the projection optical system PL, but the refractive index of the projection optical system PL also slightly changes with a change in temperature.
  • the error amount based on each of the plurality of detected light beams having different incident angles is obtained, so that the projection optical system P Temperature change (refractive index change) can be obtained.
  • the same or equivalent components as those in the first embodiment described with reference to FIG. 2 are denoted by the same reference numerals, and the description thereof will be simplified or omitted.
  • the light transmission system 8 is provided with a wavelength selection filter 24.
  • the light transmission system 8 includes a light source 10, a wavelength selection filter 24 provided downstream of the light path of the light beam emitted from the light source 10, a light transmission slit 11, and a cylindrical lens for astigmatism correction. 12, a relay lens 13, an optical path bending mirror 14, an aberration correction plane plate 15, and an objective lens 16.
  • the light receiving system 9 includes an objective lens 17 to which the reflected light from the projection optical system PL enters, a plane plate 18 for correcting aberration, a vibration mirror 19 that vibrates at a predetermined cycle, and a relay lens. 20, a cylindrical lens 21 for astigmatism correction, a dichroic mirror 26, a light receiving slit 22a, 22b having a slit-shaped opening, for example, silicon.
  • a light receiving sensor 23a, 23b made of a die is provided.
  • the wavelength selection filter 24 can set the wavelength of the detection light projected on the liquid 50 and the substrate P. That is, the light transmission system 8 can project a plurality of detection lights having different wavelengths onto the surface S of the substrate P by the wavelength selection filter 24.
  • a first detection light L 1 having a first wavelength and a second detection light L 2 having a second wavelength different from the first wavelength enter the liquid 50 from the projection optical system PL.
  • Angle of refraction is different. Therefore, the angles of incidence of the first and second detection lights L1 and L2 having different wavelengths from each other when they pass through the respective liquids 50 and are projected onto the substrate P are different from each other.
  • the liquid 50 is water
  • a C line (wavelength 656.3 ⁇ m) is projected as the first detection light L 1
  • a d line (wavelength 587.6) is used as the second detection light L 2.
  • nm is projected.
  • the incident angle of the d-line to the surface S of the substrate P is 80 degrees, The difference between the d-line and the C-line with respect to the surface S of the substrate P is 0.14 degrees.
  • the light reflected on the surface of the substrate P is referred to as “1”, and “2r” is incident on the light receiving system 9 respectively.
  • the reflected light L 1 r transmitted through the dichroic mirror 26 in the light receiving system 9 is the light receiving sensor 2 3
  • the incident light is incident on a and reflected by the dichroic mirror 26.
  • the reflected light 2r is incident on the light receiving sensor 23.
  • the detection results of the light receiving sensors 23a and 23b are output to the control device CONT.
  • FIG. 1 illustrating a third embodiment of the AF detection device 1 0 0
  • one light-sending system 8 and one light-receiving system 9 are provided, respectively, and a feature of the present embodiment is that the light-sending system 8 is provided with a pupil splitting plate 25.
  • the light transmission system 8 includes a light source 10, a light transmission slit 11, a cylindrical lens 12 for astigmatism correction, a relay lens 13, an optical path bending mirror 14, and an aberration correction It comprises a plane plate 15, an objective lens 16, and a pupil splitting plate 25 provided near the downstream side of the optical path of the objective lens 16.
  • the light receiving system 9 is a light reflected via the projection optical system PL.
  • the pupil splitting plate 25 has a predetermined opening 25 A, and a part of the light beam applied to the pupil splitting plate 25 is formed by the opening 25 A. That is, as shown in FIGS. 8 (a) and 8 (b), the pupil splitting plate 25 is moved in the direction perpendicular to the optical axis of the light transmission system to split the luminous flux.
  • the refractive index information of the liquid 50 can be obtained as in the first embodiment. Also, by alternately repeating the states shown in FIGS. 8 (a) and 8 (b), (the refractive index information of the liquid 50 can be obtained in real time.
  • the split plate 25 similarly to the second embodiment, even with one light transmission system 8 and one light reception system 9, a plurality of detection lights can be projected onto the substrate P at different incident angles.
  • a pupil splitting plate may be provided between the substrate P of the light receiving system 9 and the objective lens 17 to prevent disturbance such as stray light.
  • the relationship between the optimal image plane of the pattern image and the surface S of the substrate P can be adjusted, Adjustment of the pattern image projected on the substrate P, but based on the detected temperature information
  • the temperature of the liquid supplied from the liquid supply device 1 may be controlled, whereby the temperature (refractive index) of the liquid 50 between the projection optical system PL and the substrate P can be optimized.
  • the detection light is projected on the surface of the substrate P as the surface to be detected, but is not limited to the surface of the substrate P, and may be formed on, for example, a substrate stage PST.
  • the detection light may be projected using the reference plane or the upper surface of the sensor as a surface to be detected,
  • the detection light is detected near the center of the projection area where the image of the pattern of the mask M is projected.
  • the detection light may be projected outside the projection area
  • the AF detection device 100 receives the two detection lights.
  • the substrate P in the above embodiment is not limited to a semiconductor wafer for manufacturing a semiconductor device, but may be a glass substrate for a display device, a ceramic wafer for a thin-film magnetic head, or a mask or reticle used in an exposure apparatus. Of the original (Eng synthetic stone, silicon wafer) etc. are applied.
  • the exposure apparatus EX in addition to the step-and-scan type scanning exposure apparatus (scanning stepper) that scans and exposes the pattern of the mask M by synchronously moving the mask M and the substrate P, the mask M and the substrate P It can also be applied to a step-and-repetition type projection exposure apparatus (stepper) in which the pattern of the mask M is exposed collectively while the substrate is stationary, and the substrate P is sequentially moved stepwise.
  • stepper step-and-repetition type projection exposure apparatus in which the pattern of the mask M is exposed collectively while the substrate is stationary, and the substrate P is sequentially moved stepwise.
  • the present invention can also be applied to a step-and-stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on a substrate P.
  • the present invention is also applicable to a twin-stage type exposure apparatus.
  • the stage holding the substrate to be exposed is moved in the liquid tank.
  • the present invention is also applicable to an immersion exposure apparatus for forming a liquid tank having a predetermined depth on a stage and holding a substrate therein.
  • a liquid tank having a predetermined depth is formed on a stage in Japanese Unexamined Patent Application Publication No. 6-124873.
  • a liquid immersion exposure apparatus that holds a substrate therein is disclosed in, for example, Japanese Patent Laid-Open No. W
  • the type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element to the substrate P, but may be an exposure apparatus for manufacturing a liquid crystal display element or a display, or a thin film. It can be widely applied to magnetic heads, imaging devices (CCD) or exposure equipment for manufacturing reticles or masks.
  • CCD imaging devices
  • any of an air levitation type using air bearing and a magnetic levitation type using Lorentz force or reactance force may be used.
  • each of the stages PST and MST may be of a type that moves along a guide or a guideless type that does not have a guide.
  • Examples of using linear motors for the stages are disclosed in U.S. Patent Nos. 5,623,853 and 5,528,118, each of which is permitted by the laws of the country designated or selected in this international application. At this point, the contents of these documents will be incorporated as part of the description in this document.
  • the drive mechanism for each of the stages PST and MST is as follows: a magnet unit having a two-dimensionally arranged magnet and an armature unit having a two-dimensionally arranged coil are opposed to each other, and each stage PST, MST is driven by electromagnetic force. May be used.
  • one of the magnet unit and the armature unit is connected to the stages PST and MST, and the other of the magnet unit and the armature unit is provided on the moving surface side of the stages PST and MS.
  • the reaction force generated by the movement of the substrate stage PS ⁇ may be mechanically released to the floor (ground) using a frame member so as not to be transmitted to the projection optical system PL.
  • the method of handling this reaction force is disclosed in detail in, for example, US Pat. No. 5,528,118 (Japanese Patent Application Laid-Open No. 8-166475), and the laws and regulations of the country designated or selected in this international application are described. Forgive To the extent permitted, the content of this document is incorporated herein by reference.
  • the reaction force generated by the movement of the mask stage MST may be mechanically released to the floor (ground) using a frame member so as not to be transmitted to the projection optical system PL.
  • the method of handling this reaction force is disclosed in detail in, for example, U.S. Pat. No. 5,874,820 (Japanese Patent Application Laid-Open No. H8-330224). To the extent permitted by the laws of the selected country, the disclosure of this document is incorporated by reference into this text.
  • the exposure apparatus EX of the embodiment of the present invention controls various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling.
  • the process of assembling the exposure apparatus from various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. It goes without saying that there is an individual assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustments are made to ensure various precisions of the entire exposure apparatus. It is desirable that the exposure apparatus be manufactured in a clean room in which the temperature, the degree of cleanliness, and the like are controlled. As shown in Fig.
  • a micro device such as a semiconductor device has a step 201 for designing the function and performance of the micro device, a step 202 for fabricating a mask (reticle) based on this design step, and a Step 203 for manufacturing a substrate as a base material, Step 204 for exposing a mask pattern to the substrate using the exposure apparatus EX of the above-described embodiment, Step for assembling a device (dicing step, bonding step, package It is manufactured through 205, inspection steps 206, etc.
  • the refractive index on the optical path of the detection light changes, multiple light beams are projected as detection light at different incident angles to the surface to be detected, and based on each of these detection lights, the ⁇ surface position Since each piece of information shows a different measurement error, the refractive index information on the optical path can be obtained based on the difference between these measurement errors. Therefore, since the detected surface position information can be corrected by the obtained refractive index information, the surface position information of the test surface can be obtained with high accuracy.

Abstract

A surface position detection apparatus (100) comprising a light transmitting system (8) for projecting a detection light onto a surface (S) to be detected, and a light receiving system (9) for receiving a reflection light from the surface (S)to be detected, the surface position information of the surface (S) to be detected being detected based on information obtained from the light receiving system (9). A plurality of lights L1, L2 as detection lights are projected on to the surface (S) to be detected at different incident angles θ1, θ2. Surface position information can be corrected based on reflection lights from the lights L1, L2 even when the refractive index of a medium on the surface (S) changes with a change in temperature. The surface position detection apparatus (100) is useful for an immersion exposure system.

Description

明細書 面位置検出装置、 露光方法、 及びデバイス製造方法 技術分野  Description Surface position detection device, exposure method, and device manufacturing method
本発明は、被検面の面位置情報を光学的に検出する面位置検出装置、 マスクのパ ターンの像を基板上に露光する露光方法、 及びデバイス製造方法に関するものであ  The present invention relates to a surface position detection device for optically detecting surface position information of a surface to be inspected, an exposure method for exposing an image of a pattern of a mask on a substrate, and a device manufacturing method.
背景技術 Background art
半導体デバイスや液晶表示デバイスは、 マスク上に形成されたパターンを感光性 の基板上に転写する、 いわゆるフォトリソグラフィの手法により製造される。 この フォ卜リソグラフイエ程で使用される露光装置は、 マスクを支持するマスクステー ジと基板を支持する基板ステージとを有し、 マスクステ一ジ及び基板ステ一ジを逐 次移動しながらマスクのパターンを投影光学系を介して基板に転写するものである c 露光装置には、 投影光学系の像面に対して基板表面を合わせ込むために、 基板表面 の面位置情報を検出するオートフォーカス検出系が設けられている。 才一卜フォー カス検出系 ( A F検出系) には、 例えば特開平 6— 6 6 5 4 3号公報に開示されて いるような斜入射方式がある。 これは、 基板表面に対して斜め方向からフォーカス 用検出光を照射し、 基板表面での反射光により基板表面の位置情報を検出するもの である。斜入射方式の A F検出系では、 図 1 0 ( a ) の模式図に示すように、 被検 面である基板 Pの表面が例えば符号 P ' のように上下方向に移動すると、 照射した A F用検出光 Lの基板表面での反射光が A F検出系を構成する光学系の光軸と垂直 方向にずれるので、 このずれ量 D aを検出することで基板表面の投影光学系の光軸 方向における面位置情報を検出することができる。 ところで、 デバイスパターンのより一層の高集積化に対応するために投影光学系 の更なる高解像度化が望まれている。 投影光学系の解像度は、 使用する露光波長が 短くなるほど、 また投影光学系の開口数が大きい (まど高くなる。 そのため、 露光装 置で使用される露光波長は年々短波長化しており、 投影光学系の開口数も増大して いる。 そして、 現在主流の露光波長は、 K r Fエキシマレーザの 248 nmである が、 更に短波長の A r Fエキシマレーザの 1 93 nmも実用化されつつある。 また、 露光を行う際には、 解像度と同様に焦点深度 (DOF) も重要となる。解像度 R、 及び焦点深度 5はそれぞれ以下の式で表される。 Semiconductor devices and liquid crystal display devices are manufactured by a so-called photolithography technique in which a pattern formed on a mask is transferred onto a photosensitive substrate. An exposure apparatus used in the photolithography process has a mask stage for supporting a mask and a substrate stage for supporting a substrate. The mask stage and the pattern of the mask are sequentially moved through the substrate stage. The c- exposure device, which transfers the light to the substrate via the projection optical system, has an autofocus detection system that detects surface position information on the substrate surface in order to align the substrate surface with the image plane of the projection optical system. Is provided. As a focus detection system (AF detection system), there is an oblique incidence system disclosed in, for example, JP-A-6-66543. In this method, focus detection light is applied to the substrate surface from an oblique direction, and positional information on the substrate surface is detected by light reflected on the substrate surface. In the oblique incidence AF detection system, as shown in the schematic diagram of Fig. 10 (a), when the surface of the substrate P, which is the surface to be inspected, moves in the vertical direction, for example, as indicated by the symbol P ', the illuminated AF Since the reflected light of the detection light L on the substrate surface is displaced in the direction perpendicular to the optical axis of the optical system that constitutes the AF detection system, by detecting the amount of deviation D a, Surface position information can be detected. By the way, in order to cope with higher integration of device patterns, further improvement in resolution of a projection optical system is desired. As for the resolution of the projection optical system, the shorter the exposure wavelength used, and the larger the numerical aperture of the projection optical system (the higher the resolution, the higher the exposure equipment). Exposure wavelengths used in projectors are becoming shorter each year, and the numerical aperture of projection optical systems is also increasing. The exposure wavelength that is currently mainstream is 248 nm of KrF excimer laser, but 193 nm of shorter wavelength ArF excimer laser is also being put to practical use. When performing exposure, the depth of focus (DOF) is as important as the resolution. The resolution R and the depth of focus 5 are respectively expressed by the following equations.
R = k, ■ 入/ N A … (1 )  R = k, ■ ON / N A… (1)
<5 = ±k2 - λ/Ν A2 … (2) <5 = ± k 2 -λ / Ν A 2 … (2)
ここで、 λは露光波長、 Ν Αは投影光学系の開口数、 い k2はプロセス係数 である。 (1 ) 式、 (2) 式より、 解像度 Rを高めるために、 露光波長 λを短く し て、 開口数 ΝΑを大きくすると、 焦点深度 5が狭くなることが分かる。 焦点深度 <5が狭くなり過ぎると、 投影光学系の像面に対して基板表面を合致させ ることが困難となり、 露光動作時のマージンが不足する恐れがある。 そこで、 実質 的に露光波長を短くして、 且つ焦点深度を広くする方法として、 例えば国際公開第 99/49504号公報に開示されている液浸法が提案されている。 この液浸法は、 投影光学系の下面と基板表面との間を水や有機溶媒等の液体で満たし、 液体中での 露光光の波長が、 空気中の 1/η ( ηは液体の屈折率で通常 1. 2〜1. 6程度) になることを利用して解像度を向上するとともに、 焦点深度を約 η倍に拡大すると いうものである。 ところで、 投影光学系の下面と基板表面との間に液体を満たした状態において上 述したような斜入射方式の A F検出系で基板表面の面位置情報を求めようとする場 合、 例えば温度変化等に起因して液体の屈折率が変化すると、 図 1 0 (b) の模式 図に示すように、 屈折率変化前では基板 Pの表面に対する検出光 Lの入射角が Θで あったものが、 屈折率変化後では 0' のように変化するという不都合が生じる。 入 射角が変化すると検出光 L及び基板 Pでの反射光の光路は屈折率変化前の光路に対 してずれるため、 基板表面の位置が変化していないにもかかわらず、 A F検出系の 受光面に入射する検出光 L (基板表面での反射光) の位置がずれてしまい、 AF検 出系は、 基板の位置が変動したと誤った判断をしてしまうことになる。 この結果、 基板表面の面位置を精度良く測定することができなくなるおそれがある。 発明の開示 本発明はこのような事情に鑑みてなされたものであって、 A F検出系の検出光の 光路上の屈折率が変化しても基板表面の面位置情報を精度良く検出できる面位置検 出装置を提供することを第 1の目的とする。 また、 A F検出系の検出光の光路上の 屈折率が変化しても精度良〈基板面位置情報を検出してデバイスを製造できる露光 方法及びデバイス製造方法を提供することを第 2の目的とする。 また、 投影光学系 と基板との間の液体を介してパターン像を基板上に投影する液浸露光法を用いても、 バタ一ン像を精度よく基板上に形成することのできる露光方法の提供を第 3の目的 とする。特にその液体の温度が変化した場合にも、 パターン像を精度よく基板上に 形成することのできる露光方法の提供を第 4の目的とする。 上記の課題を解決するため、 本発明は実施の形態に示す図 1〜図 9に対応付けし た以下の構成を採用している。但し、 各要素に付した括弧付き符号はその要素の例 示に過ぎず、 各要素を限定する意図は無い。 本発明の第 1の態様に従えば、 検出光を被検面 (S) に投射するとともに、 その 被検面 (S) からの反射光を受光することによって得られる情報に基づいて、 被検 面 (S) の面位置を検出する面位置検出装置であって、 Here, λ is the exposure wavelength, Ν is the numerical aperture of the projection optical system, and k 2 is the process coefficient. From Equations (1) and (2), it can be seen that when the exposure wavelength λ is shortened and the numerical aperture 大 き く is increased in order to increase the resolution R, the depth of focus 5 decreases. If the depth of focus <5 becomes too narrow, it becomes difficult to match the substrate surface with the image plane of the projection optical system, and the margin during the exposure operation may be insufficient. Therefore, as a method of substantially shortening the exposure wavelength and increasing the depth of focus, for example, a liquid immersion method disclosed in International Publication No. WO 99/49504 has been proposed. In this immersion method, the space between the lower surface of the projection optical system and the substrate surface is filled with a liquid such as water or an organic solvent, and the wavelength of the exposure light in the liquid is 1 / η (η is the refraction of the liquid in air). The resolution is usually improved by using the ratio of about 1.2 to 1.6), and the depth of focus is increased by about η times. By the way, in the case where the liquid is filled between the lower surface of the projection optical system and the substrate surface, when oblique incidence type AF detection system as described above is used to obtain the surface position information of the substrate surface, for example, temperature change When the refractive index of the liquid changes due to the above, the incident angle of the detection light L to the surface of the substrate P was Θ before the change in the refractive index, as shown in the schematic diagram of FIG. 10 (b). However, there is an inconvenience that the refractive index changes like 0 'after the refractive index changes. If the angle of incidence changes, the optical paths of the detection light L and the light reflected by the substrate P deviate from the optical paths before the change in the refractive index. The position of the detection light L (reflected light on the substrate surface) incident on the light receiving surface is shifted, and the AF detection system incorrectly judges that the position of the substrate has changed. As a result, There is a possibility that the surface position of the substrate surface cannot be measured with high accuracy. DISCLOSURE OF THE INVENTION The present invention has been made in view of such circumstances, and a surface position at which surface position information on a substrate surface can be accurately detected even when a refractive index on an optical path of detection light of an AF detection system changes. The primary purpose is to provide a detection device. Another object of the present invention is to provide an exposure method and a device manufacturing method capable of manufacturing a device by detecting substrate surface position information even if the refractive index on the optical path of the detection light of the AF detection system changes. I do. In addition, even when using an immersion exposure method in which a pattern image is projected onto a substrate through a liquid between a projection optical system and a substrate, an exposure method that can form a buttered image on the substrate with high precision is also used. Provision is the third purpose. In particular, a fourth object of the present invention is to provide an exposure method capable of forming a pattern image on a substrate with high accuracy even when the temperature of the liquid changes. In order to solve the above-described problems, the present invention employs the following configurations corresponding to FIGS. 1 to 9 shown in the embodiments. However, the parenthesized code attached to each element is merely an example of that element, and there is no intention to limit each element. According to the first aspect of the present invention, the detection light is projected on the surface to be detected (S), and the light to be detected is obtained based on information obtained by receiving the reflected light from the surface to be detected (S). A surface position detecting device for detecting a surface position of the surface (S),
検出光として、 複数の光 (L 1、 L 2) を異なる入射角 (0い θ2) で被検面 (S) に投射する送光系 (8) と; As detection light, a plurality of light (L 1, L 2) sending system for projecting the test surface (S) at different incident angles (0 There theta 2) and (8);
被検面 (S) からの反射光を受光する受光系 (9) と;を備える面位置検出装置 ( 1 00) が提供される。 また、 本発明の第 2の態様に従えば、 マスク (Μ) のパターンの像を投影光学系 . (P L) により基板 (Ρ) 上に投影して、 基板 (Ρ) を露光する露光方法であつ て: 基板表面 (S) に複数の検出光 (L 1、 L 2) を異なる入射角 (S1 θ2) で 投射するとともに、 基板表面 (S) からの反射光 (L 1 r、 L 2 r) を受光するこ とによって、 検出光 (L 1、 L 2)及び反射光 (L 1 r、 L 2 r ) の光路の屈折率 情報を検出することと; And a light receiving system (9) for receiving reflected light from the surface to be inspected (S). According to a second aspect of the present invention, there is provided an exposure method for projecting an image of a pattern of a mask (Μ) onto a substrate (Ρ) by a projection optical system (PL) and exposing the substrate (Ρ). At: A plurality of detection light on the substrate surface (S) (L 1, L 2) having different angles of incidence with projects in (S 1 θ 2), the reflected light from the substrate surface (S) (L 1 r, L 2 r) Detecting the refractive index information of the optical paths of the detection light (L1, L2) and the reflected light (L1r, L2r) by receiving light;
マスク (M) のパターンの像を投影光学系 (PL) により基板 (P) 上に投影す ることと;を含む露光方法が提供される。 本発明によれば、 検出光の光路上の屈折率が変化しても、 検出光として複数の光 を異なる入射角で被検面に投射することにより、 これら各検出光に基づく面位置情 報のそれぞれは互いに異なる測定誤差 (誤差量) を示すので、 これら誤差量の違い And (c) projecting an image of the pattern of the mask (M) onto the substrate (P) by the projection optical system (PL). According to the present invention, even if the refractive index of the detection light on the optical path changes, a plurality of lights are projected as detection lights onto the surface to be inspected at different incident angles, so that the surface position information based on each of these detection lights is obtained. Each show a different measurement error (error amount).
(差) に基づいて光路上の屈折率変化量を求めることができる。 そして、 求めた屈 折率情報である屈折率変化量に基づいて検出した面位置情報を補正することができ るので、 被検面の面位置情報を精度良く求めることができる。 なお、 複数の光を異 なる入射角で被検面に投射するには、 例えば、 複数の光源及び光学系を用いてもよ し、。 あるいは、 波長可変レーザや複数の波長を有する光源を、 波長選択フィルタ、 エタロン、 分光器、 プリズムなどとともに用いて、 被検面への入射角が異なるよう に光の波長の毎に光路を変更してもよい。 あるいは、 瞳分割板やガルバノミラ一を 用いて光路を分割または偏向してもよい。 本発明の第 3の態様に従えば、 検出光を被検面 (S) に投射するとともに、 その 被検面 (S) からの反射光を受光することによって得られる情報に基づいて、 被検 面 (S) の面位置を検出する面位置検出装置であって: The amount of change in the refractive index on the optical path can be obtained based on (difference). Since the detected surface position information can be corrected based on the obtained refractive index change amount, which is the refractive index change amount, the surface position information of the test surface can be obtained with high accuracy. In order to project a plurality of lights on the surface to be measured at different incident angles, for example, a plurality of light sources and an optical system may be used. Alternatively, a tunable laser or a light source having multiple wavelengths is used together with a wavelength selection filter, an etalon, a spectroscope, a prism, etc. to change the optical path for each wavelength of light so that the angle of incidence on the surface to be measured is different. You may. Alternatively, the optical path may be split or deflected using a pupil splitter or a galvanomirror. According to the third aspect of the present invention, the detection light is projected on the surface (S) to be detected, and based on the information obtained by receiving the reflected light from the surface (S) to be detected, A surface position detecting device for detecting a surface position of a surface (S), comprising:
検出光として、 波長の異なる複数の光を被検面 (S) に投射する送光系 (8) と;  A light transmission system (8) for projecting a plurality of lights having different wavelengths onto the surface to be detected (S) as detection light;
被検面 (S) からの反射光を受光する受光系 (9) と;を備える面位置検出装置 (1 00) が提供される。 また、 本発明の第 4の態様に従えば、 マスク (M) のパターンの像を投影光学系 (P L) により基板 (P) 上に投影して、 基板 (P) を露光する露光方法であつ て: And a light receiving system (9) for receiving light reflected from the surface to be inspected (S). According to a fourth aspect of the present invention, there is provided an exposure method for projecting an image of a pattern of a mask (M) onto a substrate (P) by a projection optical system (PL) and exposing the substrate (P). hand:
基板表面 (s ) に波長の異なる複数の検出光を投射するとともに、 基板表面 (S) からの反射光を受光することによって、 検出光及び反射光の光路の屈折率情 報を検出することと;  By projecting a plurality of detection lights having different wavelengths on the substrate surface (s) and receiving the reflected light from the substrate surface (S), it is possible to detect the refractive index information of the detection light and the optical path of the reflected light. ;
マスク (M) のパターンの像を投影光学系 (P L) を介して基板 (P) 上に投影 することと;を含む露光方法が提供される。 本発明によれば、 互いに異なる波長を有する光を物体に入射した際の屈折角のそ れぞれは異なる値を示すことを利用し、 波長の異なる複数の検出光を投射すること で、 被検面に対して互いに異なる入射角で検出光を照射できる。 この場合において、 検出光は、 光透過部材を介して被検面に投射されることを特 徴とする。 光透過部材としては、 投影光学系を構成する光学素子、 投影光学系と被 検面との間に配置される光透過性を有する平行平面板が挙げられる。特に、 液浸法 による露光処理を行う場合にも、 液体を介して高精度な基板表面の面位置検出を実 現できるので、 高解像度でバタ一ン転写を行うことができる。 また、 本発明の第 5の態様に従えば、 投影光学系 (PL) により液体 (50) を 介してパターンの像を基板 (P) 上に投影して、 基板 (P) を液浸露光する露光方 法であって:  Projecting an image of the pattern of the mask (M) onto the substrate (P) via the projection optical system (P L). According to the present invention, a plurality of detection light beams having different wavelengths are projected by utilizing the fact that each of the refraction angles when light beams having different wavelengths are incident on an object shows different values. The detection surface can be irradiated with detection light at different incident angles. In this case, it is characterized in that the detection light is projected on the surface to be detected via the light transmitting member. Examples of the light transmitting member include an optical element constituting the projection optical system, and a light-transmissive parallel flat plate disposed between the projection optical system and the surface to be measured. In particular, even in the case of performing exposure processing by the liquid immersion method, highly accurate surface position detection of the substrate surface can be realized through the liquid, so that high-resolution buttery transfer can be performed. According to the fifth aspect of the present invention, the image of the pattern is projected onto the substrate (P) by the projection optical system (PL) via the liquid (50), and the substrate (P) is subjected to immersion exposure. Exposure method:
投影光学系 (P L) と基板 ( P ) との間の少なくとも一部を液体 (50) で満た すことと;  Filling at least part of the space between the projection optical system (PL) and the substrate (P) with a liquid (50);
投影光学系 (P L) と基板 (P) との間の液体 (50) の温度情報を光学的に検 出することと;  Optically detecting temperature information of the liquid (50) between the projection optical system (PL) and the substrate (P);
投影光学系 (PL) により液体 (50) を介してパターンの像を基板 (P)上に 投影することと;を含む露光方法が提供される。 本発明によれば、 投影光学系と基板との間の液体の温度情報 (温度変化) を検出 することによって、 その液体を介して行われる基板表面の面位置の検出やその液体 を介して形成されるパターン像への影響を把握することができ、 例えばその検出さ れた温度情報に基づいて像調整を行うこともできる。 図面の簡単な説明 図 1は、 本発明の面位置検出装置を備えた露光装置の一実施形態を示す概略構成 図である。 Projecting an image of a pattern onto a substrate (P) via a liquid (50) by a projection optical system (PL). According to the present invention, by detecting temperature information (temperature change) of a liquid between a projection optical system and a substrate, detection of a surface position of a substrate surface performed through the liquid and detection of the liquid The influence on the pattern image formed via the image can be grasped. For example, the image adjustment can be performed based on the detected temperature information. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram showing an embodiment of an exposure apparatus provided with a surface position detecting device of the present invention.
図 2は、 本発明の面位置検出装置の第 1実施形態を示す概略構成図である。  FIG. 2 is a schematic configuration diagram showing a first embodiment of the surface position detecting device of the present invention.
図 3は、 検出光が投射される基板を示す要部拡大図である。  FIG. 3 is an enlarged view of a main part showing a substrate on which the detection light is projected.
図 4は、基板に対する検出光の入射角と誤差量との関係を示す図である。  FIG. 4 is a diagram showing the relationship between the angle of incidence of the detection light on the substrate and the amount of error.
図 5は、 本発明の面位置検出方法の一例を示すフローチヤ一卜図である。  FIG. 5 is a flowchart showing an example of the surface position detecting method of the present invention.
図 6は、 本発明の面位置検出装置の第 2実施形態を示す概略構成図である。  FIG. 6 is a schematic configuration diagram showing a second embodiment of the surface position detecting device of the present invention.
図 7は、 本発明の面位置検出装置の第 3実施形態を示す概略構成図である。  FIG. 7 is a schematic configuration diagram showing a third embodiment of the surface position detecting device of the present invention.
図 8 ( a ) 及び (b ) は、 瞳分割板を示す模式図である。  FIGS. 8A and 8B are schematic diagrams showing a pupil splitter.
図 9は、 半導体デバイスの製造工程の一例を示すフローチヤ一ト図である。  FIG. 9 is a flowchart illustrating an example of a semiconductor device manufacturing process.
図 1 0 ( a ) 及び (b ) は、 従来の課題を説明するための模式図である。 発明を実施するための最良の形態 以下、 本発明の面位置検出装置及び露光方法について図面を参照しながら説明す るが、 本発明はこれに限定されない。 図 1は本発明の面位置検出装置としての才ー 卜フオーカス検出装置が搭載された露光装置の一実施形態を示す概略構成図である c 図 1において、 露光装置 E Xは、 マスク Mを支持するマスクステージ M S丁と、 基板 Pを支持する基板ステージ P S丁と、 マスクステージ M S Tに支持されている マスク Mを露光光 E Lで照明する照明光学系 I Lと、 露光光 E Lで照明されたマス ク Mのパターンの像を基板ステージ P S Tに支持されている基板 Pに投影露光する 投影光学系 P Lと、 被検面としての基板 Pの表面 Sの面位置情報を検出する面位置 検出装置としてのオートフォーカス検出装置 1 0 0と、 露光装置 E X全体の動作を 統括制御する制御装置 C 0 N Tとを備えている。 ここで、 本実施形態では、 露光装置 ΕΧとしてマスク Μと基板 Ρとを走査方向に おける互いに異なる向き (逆方向) に同期移動しつつマスク Μに形成されたパター ンを基板 Ρに露光する走査型露光装置 (所謂スキャニングステヅパ) を使用する場 合を例にして説明する。 以下の説明において、 投影光学系 P Lの光軸 A Xと一致す る方向を Z軸方向、 Z軸方向に垂直な平面内でマスク Mと基板 Pとの同期移動方向 (走査方向) を X軸方向、 Z軸方向及び Y軸方向に垂直な方向 (非走査方向) を Y 軸方向とする。 また、 X軸、 Y軸、 及び Z軸まわり方向をそれぞれ、 0Χ、 ΘΊ、 及び 方向とする。 なお、 ここでいう 「基板」 は半導体ウェハ上にレジス卜を塗 布したものを含み、 「マスク」 は基板上に縮小投影されるデバイスパターンを形成 されたレチクルを含む。 照明光学系 I Lは、 マスクステージ MSTに支持されているマスク Mを露光光 E Lで照明するものであり、 露光用光源、 露光用光源から射出された光束の照度を均 —化するオプティカルィンテグレータ、 オプティカルィンテグレー夕からの露光光 E Lを集光するコンデンサレンズ、 リレーレンズ系、 露光光 E Lによるマスク M上 の照明領域をスリツ卜状に設定する可変視野絞り等を有している。 マスク M上の所 定の照明領域は照明光学系 I Lにより均一な照度分布の露光光 E Lで照明される。 照明光学系 I Lから射出される露光光 ELとしては、 例えば水銀ランプから射出さ れる紫外域の輝線 (g線、 h線、 i線) 及び K r Fエキシマレーザ光 (波長 248 nm)等の遠紫外光 (DUV光) や、 A「 Fエキシマレーザ光 (波長 1 93 nm) 及び F2レーザ光 (波長 1 57 nm)等の真空紫外光 (VUV光) などが用いられ る。 本実施形態においては、 A r Fエキシマレーザ光を用いる。 マスクステージ MS Tは、 マスク Mを支持するものであって、 投影光学系 PLの 光軸 A Xに垂直な平面内、 すなわち X Y平面内で 2次元移動可能及び 0 Z方向に微 小回転可能である。 マスクステージ M S Tはリニアモータ等のマスクステージ駆動 装置 M S T Dにより駆動される。 マスクステージ駆動装置 M S T Dは制御装置 C 0 N Tにより制御される。 マスクステージ MS T上のマスク Μの 2次元方向の位置、 及び回転角はレ一ザ干渉計によりリアルタイムで計測され、 計測結果は制御装置 C ΟΝΤに出力される。 制御装置 C 0 Ν Τはレ一ザ干渉計の計測結果に基づいてマス クステージ駆動装置 MS T Dを駆動することでマスクステージ MS Τに支持されて いるマスク Mの位置決めを行う。 投影光学系 P Lは、 マスク Mのパターンを所定の投影倍率 3で基板 Pに投影露光 するものであって、 複数の光学素子 (レンズ) で構成されており、 これら光学素子 は金属部材としての鏡筒 P Kで支持されている。本実施形態において、 投影光学系 P Lは、 投影倍率; 5が例えば 1/4あるいは 1/5の縮小系である。 なお、 投影光 学系 P Lは等倍系及び拡大系のいずれでもよい。 また、 投影光学系 P Lは光学特性FIGS. 10 (a) and (b) are schematic diagrams for explaining a conventional problem. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a surface position detecting device and an exposure method according to the present invention will be described with reference to the drawings, but the present invention is not limited thereto. Figure 1 in c Figure 1 is a schematic structural diagram showing one embodiment of the old over Bok Fuokasu detecting device mounted exposure apparatus as a surface position detecting apparatus of the present invention, the exposure apparatus EX, supports a mask M A mask stage MS, a substrate stage PS for supporting the substrate P, an illumination optical system IL for illuminating the mask M supported by the mask stage MST with the exposure light EL, and a mask M illuminated with the exposure light EL The projection optical system PL that projects and exposes the image of the pattern on the substrate P supported on the substrate stage PST, and the autofocus as a surface position detection device that detects surface position information on the surface S of the substrate P as the surface to be inspected Detector 100 and exposure unit EX It has a control device C 0 NT for overall control. Here, in the present embodiment, as the exposure apparatus 走 査, the mask Μ and the substrate 同期 are synchronously moved in different directions (opposite directions) in the scanning direction, and the pattern formed on the mask 露 光 is exposed on the substrate Ρ. An example in which a mold exposure apparatus (a so-called scanning stepper) is used will be described. In the following description, the direction that coincides with the optical axis AX of the projection optical system PL is the Z-axis direction, and the synchronous movement direction (scanning direction) between the mask M and the substrate P in a plane perpendicular to the Z-axis direction is the X-axis direction. The direction perpendicular to the Z-axis direction and the Y-axis direction (non-scanning direction) is defined as the Y-axis direction. The directions around the X, Y, and Z axes are 0 °, ΘΊ, and, respectively. Here, the “substrate” includes a semiconductor wafer coated with a resist, and the “mask” includes a reticle on which a device pattern to be reduced and projected onto the substrate is formed. The illumination optical system IL illuminates the mask M supported by the mask stage MST with the exposure light EL. The exposure light source and an optical illuminator that equalizes the illuminance of the light flux emitted from the exposure light source. It has a condenser lens that collects the exposure light EL from the optical lens, a relay lens system, and a variable field stop that sets the illumination area on the mask M by the exposure light EL in a slit shape. A predetermined illumination area on the mask M is illuminated by the illumination optical system IL with the exposure light EL having a uniform illuminance distribution. The exposure light EL emitted from the illumination optical system IL includes, for example, ultraviolet bright lines (g-line, h-line, i-line) and KrF excimer laser light (wavelength: 248 nm) emitted from a mercury lamp. or ultraviolet light (DUV light), such as a "F excimer laser beam (wavelength 1 93 nm) and F 2 laser beam (wavelength: 1 57 nm) vacuum ultraviolet light (VUV light) that is used. in the present embodiment The mask stage MST supports the mask M and can move two-dimensionally in a plane perpendicular to the optical axis AX of the projection optical system PL, that is, in the XY plane. And 0. The mask stage MST is driven by a mask stage driving device MSTD such as a linear motor, etc. The mask stage driving device MSTD is a control device C 0 Controlled by NT. The two-dimensional position and rotation angle of the mask 上 の on the mask stage MST are measured in real time by a laser interferometer, and the measurement results are output to the control device CΟΝΤ. The control device C 0 Ν 位置 決 め drives the mask stage driving device MS TD based on the measurement result of the laser interferometer to position the mask M supported by the mask stage MS Τ. The projection optical system PL projects and exposes the pattern of the mask M onto the substrate P at a predetermined projection magnification of 3, and is composed of a plurality of optical elements (lenses). These optical elements are mirrors as metal members. It is supported by cylinder PK. In the present embodiment, the projection optical system PL is a reduction system in which the projection magnification 5 is, for example, 1/4 or 1/5. Note that the projection optical system PL may be either a unity magnification system or an enlargement system. The projection optical system PL has optical characteristics
(結像特性) の補正を行う結像特性調整装置 PLCを有している。 この結像特性調 整装置 P L Cは、 例えば投影光学系 P Lを構成する一部のレンズ群の間隔調整機構 や一部のレンズ群のレンズ室内の気体圧力調整機構を有しており、 これら調整を行 うことにより、 投影光学系 P Lの投影倍率、 歪曲収差等の光学特性の補正を行う。 結像特性調整装置 P L Cは制御装置 C ONTにより制御される。 基板ステージ P STは、 基板 Pを支持するものであって、 基板 Pを基板ホルダを 介して保持する Zステージ 51 と、 Zステージ 51を支持する XYステージ 52と、 XYステージ 52を支持するベース 53とを備えている。 基板ステージ P S Tはリ ニァモータ等の基板ステージ駆動装置 P S T Dにより駆動される。基板ステージ駆 動装置 P S T Dは制御装置 CONTにより制御される。 Zステージ 51を駆動する ことにより、 Zステージ 51に保持されている基板 Pの Z軸方向における位置 (フ 才一カス位置) 、 及び ΘΧ、 方向における位置が制御される。 また、 ΧΥステ —ジ 52を駆動することにより、 基板 Ρの ΧΥ方向における位置 (投影光学系 P L の像面と実質的に平行な方向の位置) が制御される。 すなわち、 Zステージ 51は、 基板 Pのフォー力ス位置及び傾斜角を制御して基板 Pの表面をオートフォーカス方 式、 及びオートレべリング方式で投影光学系 P Lの像面に合わせ込み、 XYステ一 ジ 52は基板 Pの X軸方向及び Y軸方向における位置決めを行う。 なお、 Zステ一 ジと X Yステージとを一体的に設けてよいことは言うまでもない。 基板ステージ P S T ( Ζステージ 5 1 ) 上には、 基板ステ一ジ P S Tとともに投 影光学系 P Lに対して移動する移動鏡 5 4が設けられている。 また、 移動鏡 5 4に 対向する位置にはレーザ干渉計 5 5が設けられている。基板ステージ P S T上の基 板 Pの 2次元方向の位置、 及び回転角はレーザ干渉計 5 5によりリアルタイムで計 測され、 計測結果は制御装置 C O N Tに出力される。制御装置 C O N Tはレーザ干 渉計 5 5の計測結果に基づいて基板ステージ駆動装置 P S T Dを駆動することで基 板ステージ P S Tに支持されている基板 Pの位置決めを行う。 本実施形態では、 露光波長を実質的に短く して角军像度を向上するとともに、 焦点 深度を実質的に広くするために、 液浸法を適用する。 そのため、 少なくともマスク Mのパターンの像を基板 P上に転写 (投影) している間は、 基板 Pの表面と投影光 学系 P Lの基板 P側の光学素子の先端面 (下面) 7との間に所定の液体 5 0が満た される。本実施形態において、 液体 5 0には純水が用いられる。純水は、 A r Fェ キシマレ一ザ光のみならず、 露光光 E Lを例えば水銀ランプから射出される紫外域 の輝線 (g線、 h線、 i線) 及び K r Fエキシマレーザ光 (波長 2 4 8 n m ) 等の 遠紫外光 (D U V光) とした場合、 この露光光 E Lを透過可能である。 また、 投影 光学系 P Lの先端面 7には露光光 E Lを透過可能な平行平面板が設けられている。 この平行平面板は投影光学系 P Lの一部を構成する。 露光装置 E Xは、 投影光学系 P Lの先端面 7と基板 Pとの間の空間 5 6に所定の 液体 5 0を供給する液体供給装置 1と、 空間 5 6の液体 5 0を回収する液体回収装 置 2とを備えている。 液体供給装置 1は、 液体 5 0を収容するタンク、 加圧ポンプ、 及び空間 5 6に対して供給する液体 5 0を所定の温度に調整する温度調整装置など を備えている。 液体供給装置 1には供給管 3の一端部が接続され、 供給管 3の他端 部には供給ノズル 4が接続されている。液体供給装置 1は供給管 3及び供給ノズル 4を介して空間 5 6に液体 5 0を供給する。 ここで、 液体供給装置 1に設けられて いる温度調整装置は、 空間 5 6に供給する液体 5 0の温度を、 例えば露光装置 E X が収容されているチャンバ内の温度と同程度に設定する。 液体回収装置 2は、 吸引ポンプ、 回収した液体 5 0を収容するタンクなどを備え ている。 液体回収装置 2には回収管 6の一端部が接続され、 回収管 6の他端部には 回収ノズル 5が接続されている。 液体回収装置 2は回収ノズル 5及び回収管 6を介 して空間 5 6の液体 5 0を回収する。 空間 5 6に液体 5 0を満たす際、 制御装置 C O N Tは液体供給装置 1を駆動し、供給管 3及び供給ノズル 4を介して空間 5 6に 対して単位時間当たり所定量の液体 5 0を供給するとともに、 液体回収装置 2を駆 動し、 回収ノズル 5及び回収管 6を介して単位時間当たり所定量の液体 5 0を空間 5 6より回収する。 これにより、 投影光学系 P Lの先端面 7と基板 Pとの間の空間 5 6に所定量の液体 5 0が保持される。 次に、 基板 Pの表面 sの Z軸方向における位置 (フォーカス位置) を検出する面 位置検出装置としての才一卜フォーカス検出装置 1 0 0について説明する。 才一卜フォーカス検出装置 (A F検出装置) 1 0 0は、 A F検出用の検出光 L ( L 1、 L 2 ) を基板 Pの表面 (被検面) Sに投射する送光系 8と、 基板 Pの表面 Sで反射した検出光 Lの反射^;を受光する受光系 9とを備えている。 図 1に示すよ うに、 送光系 8は、 基板 Pの表面に対して第 1の検出光 L 1及び第 2の検出光 L 2 の 2つの検出光を異なる入射角で斜め方向から基板 Pの表面 Sに投射する。送光系 8からの検出光し 1、 L 2のそれぞれは、 光透過部材としての投影光学系 P Lの一 部 (一部の光学素子) 、 及び空間 5 6に満たされている液体 5 0を介して基板 Pの 表面 Sに投射される。 ここで、 検出光 L 1、 L 2を投影光学系 P Lの一部を介して 基板 Pの表面 Sに投射するのは、 以下のような理由による。 すなわち、 空間 5 6に 液体 5 0を安定して配置するためには、 液体 5 0の表面張力を維持できるように距 離 dは所定量 (例えば 2〜3 m m程度) に設定される必要がある。 しかし、 このよ うな距離 dでは送光系 8からの検出光し 1、 L 2を基板 Pの表面 Sに斜入射方式で 直接投射することは困難であり、 一方、 直接投射しょうとして距離 dを大きくする と空間 5 6に液体 5 0が安定して配置されない。本発明では、 検出光 L 1、 L 2を W (Imaging characteristics) is provided. The imaging characteristic adjustment device PLC has, for example, a mechanism for adjusting the spacing of some of the lens groups constituting the projection optical system PL and a mechanism for adjusting the gas pressure in the lens chamber of some of the lens groups. By doing so, the optical characteristics such as the projection magnification and distortion of the projection optical system PL are corrected. The imaging characteristic adjustment device PLC is controlled by the control device CONT. The substrate stage PST supports the substrate P, and includes a Z stage 51 that holds the substrate P via a substrate holder, an XY stage 52 that supports the Z stage 51, and a base 53 that supports the XY stage 52. And The substrate stage PST is driven by a substrate stage driving device PSTD such as a linear motor. The substrate stage drive PSTD is controlled by the controller CONT. By driving the Z stage 51, the position of the substrate P held by the Z stage 51 in the Z-axis direction (final position), and the positions in the ΘΧ and directions are controlled. Further, by driving the stage 52, the position of the substrate Ρ in the ΧΥ direction (the position in a direction substantially parallel to the image plane of the projection optical system PL) is controlled. That is, the Z stage 51 controls the force position and the inclination angle of the substrate P to adjust the surface of the substrate P to the image plane of the projection optical system PL by the autofocus method and the autoleveling method, and the XY stage A ridge 52 positions the substrate P in the X-axis direction and the Y-axis direction. In addition, Z station It goes without saying that the laser and the XY stage may be provided integrally. A movable mirror 54 that moves with respect to the projection optical system PL together with the substrate stage PST is provided on the substrate stage PST (Ζstage 51). A laser interferometer 55 is provided at a position facing the movable mirror 54. The two-dimensional position and rotation angle of the substrate P on the substrate stage PST are measured in real time by the laser interferometer 55, and the measurement results are output to the control device CONT. The controller CONT drives the substrate stage driving device PSTD based on the measurement result of the laser interferometer 55 to position the substrate P supported by the substrate stage PST. In the present embodiment, an immersion method is applied in order to substantially shorten the exposure wavelength to improve angular image resolution and to substantially increase the depth of focus. Therefore, at least while the image of the pattern of the mask M is being transferred (projected) onto the substrate P, the surface of the substrate P and the tip surface (lower surface) 7 of the optical element on the substrate P side of the projection optical system PL are In the meantime, the predetermined liquid 50 is filled. In this embodiment, pure water is used as the liquid 50. Pure water can be used not only for ArF excimer laser light but also for exposure light EL such as ultraviolet emission lines (g-line, h-line, i-line) emitted from a mercury lamp and KrF excimer laser light (wavelength). In the case of far ultraviolet light (DUV light) such as 248 nm), this exposure light EL can be transmitted. Further, a parallel plane plate that can transmit the exposure light EL is provided on the front end surface 7 of the projection optical system PL. This parallel plane plate constitutes a part of the projection optical system PL. The exposure apparatus EX includes a liquid supply device 1 that supplies a predetermined liquid 50 to a space 56 between the front end surface 7 of the projection optical system PL and the substrate P, and a liquid recovery device that collects the liquid 50 in the space 56. Device 2 is provided. The liquid supply device 1 includes a tank for accommodating the liquid 50, a pressurizing pump, a temperature adjusting device for adjusting the liquid 50 supplied to the space 56 to a predetermined temperature, and the like. One end of a supply pipe 3 is connected to the liquid supply device 1, and a supply nozzle 4 is connected to the other end of the supply pipe 3. The liquid supply device 1 supplies the liquid 50 to the space 56 via the supply pipe 3 and the supply nozzle 4. Here, the temperature adjustment device provided in the liquid supply device 1 adjusts the temperature of the liquid 50 to be supplied to the space 56 by, for example, the exposure device EX. Is set to be substantially the same as the temperature in the chamber in which is stored. The liquid recovery device 2 includes a suction pump, a tank for storing the recovered liquid 50, and the like. One end of a recovery pipe 6 is connected to the liquid recovery device 2, and a recovery nozzle 5 is connected to the other end of the recovery pipe 6. The liquid recovery device 2 recovers the liquid 50 in the space 56 through the recovery nozzle 5 and the recovery pipe 6. When the space 56 is filled with the liquid 50, the controller CONT drives the liquid supply device 1 and supplies a predetermined amount of the liquid 50 per unit time to the space 56 via the supply pipe 3 and the supply nozzle 4. At the same time, the liquid recovery device 2 is driven to recover a predetermined amount of liquid 50 per unit time from the space 56 via the recovery nozzle 5 and the recovery pipe 6. As a result, a predetermined amount of liquid 50 is held in the space 56 between the front end surface 7 of the projection optical system PL and the substrate P. Next, a smart focus detection device 100 as a surface position detection device for detecting the position (focus position) of the surface s of the substrate P in the Z-axis direction will be described. The intelligent focus detection device (AF detection device) 100 is a light transmission system 8 that projects detection light L (L1, L2) for AF detection onto the surface (test surface) S of the substrate P, A light receiving system 9 for receiving the reflection of the detection light L reflected by the surface S of the substrate P; As shown in FIG. 1, the light transmission system 8 transmits the two detection lights, the first detection light L1 and the second detection light L2, to the surface of the substrate P from different directions at different angles of incidence. Project on the surface S of Each of the detection light 1 and L 2 from the light transmission system 8 transmits a part (a part of the optical element) of the projection optical system PL as a light transmitting member, and the liquid 50 filled in the space 56. Through the surface S of the substrate P. Here, the detection light L1, L2 is projected onto the surface S of the substrate P via a part of the projection optical system PL for the following reason. That is, in order to stably arrange the liquid 50 in the space 56, the distance d needs to be set to a predetermined amount (for example, about 2 to 3 mm) so that the surface tension of the liquid 50 can be maintained. is there. However, at such a distance d, it is difficult to directly project the detection light 1 and L2 from the light transmitting system 8 onto the surface S of the substrate P in an oblique incidence manner. If it is increased, the liquid 50 is not stably arranged in the space 56. In the present invention, the detection light L1, L2 W
投影光学系 P Lの一部を介して基板 Pの表面 Sに投射するようにしたので、 空間 5 6に液体 5 0を安定して配置するための所望の距離 dを維持しつつ、 検出光 L 1、 L 2を基板 Pの表面 Sに投射することができる。 この結果、 投影光学系 P Lの先端 面 7と基板 Pの表面 Sとの距離 d (ワーキングディスタンス) の設定の自由度を増 すことができる。 更に、 基板 Pの表面 Sに対する検出光 L 1、 L 2の入射角を、 投 影光学系 P Lの位置に拘束されることなく、 自由に変更することも可能となる。 Since the light is projected onto the surface S of the substrate P through a part of the projection optical system PL, the detection light L is maintained while maintaining a desired distance d for stably disposing the liquid 50 in the space 56. 1, L 2 can be projected on the surface S of the substrate P. As a result, the degree of freedom in setting the distance d (working distance) between the tip surface 7 of the projection optical system PL and the surface S of the substrate P can be increased. Further, the incident angles of the detection lights L1 and L2 with respect to the surface S of the substrate P can be freely changed without being restricted by the position of the projection optical system PL.
A F検出装置 1 0 0は、 基板 Pの表面 Sでの反射光から得られる受光系 9の検出 信号に基づいて、 投影光学系 P L及び液体 5 0を介して形成される像面 (結像面) に対する基板 P表面の Z軸方向における高さ位置 (フォーカス ί立置) を求める。 ま た、 基板 Ρ表面における複数の各点での各フォーカス位置を求めることにより、 A F検出装置 1 0 0は基板 Pの傾斜方向の姿勢を求めることもできる。 A F検出装置 1 0 0の検出結果は制御装置 C O N Tに出力され、 制御装置 C O N Tは A F検出装 置 1 0 0の検出結果に基づいて、 投影光学系 P Lの結像面と基板 P表面との位置関 係を調整し、 基板 P表面を投影光学系 P Lの焦点深度内に合わせ込む焦点合わせ動 作を行う。 図 2は A F検出装置 1 0 0の第 1実施形態を示す構成図である。 なお、 図 2では A F検出装置 1 0 0以外の構成要素についての図示を一部省略している。 図 2にお いて、 A F検出装置 1 0 0の送光系 8は、 基板 Pの表面 Sに対して第 1の入射角 0 で第 1の検出光し 1を投射する第 1送光系 8 Aと、 基板 Pの表面に対して第 1の 入射角 θ Λとは異なる第 2の入射角 0 2で第 2の検出光 L 2を投射する第 2送光系 8 Βとを備えている。 また、 A F検出装置 1 0 0の受光系 9は、 第 1送光系 8 Αに 対応して設けられ、 基板 Pの表面 Sで反射した第 1の検出光 L 1の反射光を受光す る第 1受光系 9 Aと、 第 2送光系 8 Bに対応して設けられ、 基板 Pの表面 Sで反射 した第 2の検出光し 2の反射光を受光する第 2受光系 9 Bとを備えている。 第 1送光系 8 Aは、 基板 Pのフォトレジストに対して非感光性の光束 (波長 4 0 0 n m〜9 0 0 n m程度) を射出する A F用光源 1 0と、 光源 1 0から射出された 光束をスリット光に整形するスリッ卜状の開口部を有する送光スリット 1 1 と、 非 点収差補正用シリンドリカルレンズ 1 2と、 リレ一レンズ 1 3と、 光路折り曲げミ ラー 1 4と、 収差補正用平面板 1 5と、 対物レンズ 1 6とを備えている。送光スリ ヅ 卜 1 1で整形されたスリヅト光は第 1の検出光 L 1 として、 シリンドリカルレン ズ 1 2、 リレーレンズ 1 3、 光路折り曲げミラー 1 4、 収差補正用平面板 1 5、 及 び対物レンズ 1 6を介して投影光学系 P Lに入射する。 なお、 鏡筒 P Kは開口部を 有しており、 スリッ卜光はこの開口部を介して投影光学系 P Lに入射する。投影光 学系 P Lに入射した第 1の検出光 L 1は液体 5 0を介して基板 Pの表面 Sに第 1の 入射角 0 で投射される。 基板 Pの表面 Sで反射した第 1の検出光 L 1の反射光 L 1 rは液体 5 0及び投影 光学系 P Lの一部を介して第 1受光系 9 Aに受光される。 ここで、 鏡筒 P Kは開口 部を有しており、 反射光し 1 rはこの開口部を介して第 1受光系 9 Aに受光される c 第 1受光系 9 Aは、 投影光学系 P Lを介した反射光 L 1 rが入射される対物レンズ 1 7と、 収差補正用平面板 1 8と、 所定の周期で振動する振動ミラー 1 9と、 リレ 一レンズ 2 0と、 非点収差ネ甫正用シリンドリカルレンズ 2 1 と、 スリット状の開口 部を有する受光スリツ卜 2 2と、 例えばシリコン■フォト .ダイ才ードからなる受 光センサ 2 3とを備えている。第 1の検出光 L 1の基板 Pの表面 Sでの反射光 L 1 「は、 対物レンズ 1 7、 収差補正量平面板 1 8、 振動ミラー 1 9、 リレーレンズ 2 0、 シリンドリカルレンズ 2 1、 及び受光スリツ卜 2 2を介して受光センサ 2 3に 受光される。振動ミラー 1 9は所定の周期で矢印 yで示すように 方向に振動す る。 この振動ミラー 1 9の振動に伴って、 受光スリ ヅ卜 2 2に形成されるスリツ卜 パターンの像 (送光スリツ 卜 1 1で整形され基板 Pの表面 Sで反射したスリツ 卜状 の反射光し 1 r ) も振動する。 このスリツ卜パターンの像の振動に伴って、 受光ス リッ ト 2 2の開口部を通過する光の光量が変化する。 受光スリット 2 2の開口部を 通過した光は受光センサ 2 3に達する。 ここで、 受光スリット 2 2の開口部の位置 は、 被検面である基板 Pの表面 Sと投影光学系 P Lの結像面とがー致しているとき に、 受光スリ ヅ 卜 2 2の開口部の中心がスリッ 卜パターンの像の振動中心に一致す るように設けられている。 したがって、 受光センサ 2 3で受光されるスリットバタ ーンの像が一定周期で検出されれば投影光学系 P Lの結像面と基板 Pの表面 Sとが 合致していることになる。 一方、 投影光学系 P Lの結像面と基板 Pの表面 Sとが合 致していない場合には、 第 1の検出光し 1に基づく反射光 L 1 rは第 1受光系 9 A の光軸と垂直方向にずれ、 受光スリヅ 卜 2 2の開口部の中心に対してスリッ卜パ夕 ーンの像の振動中心がずれることになるので、 受光センサ 2 3で受光されるスリヅ 卜パターンの像は一定周期で検出されない。 受光センサ 2 3の検出結果は制御装置 C O N Tに出力され、 制御装置 C O N Tは、 受光センサ 2 3の受光結果に基づいて 基板 Pの表面 Sのフォーカス位置を求める。 第 2送光系 8 Bは、 後述する本発明に従うフォーカス位置の調整方法または温度 測定法 (屈折率変化測定法) に基づいて第 1送光系 8 Aに追加して設けられている が、 第 2の検出光 L 2の基板 Pの表面に対する入射角を 0 2に設定している点以外 は、 第 1送光系 8 Aと同等の構成を有しているため、 その説明を省略する。 同様に、 第 2の検出光 L 2の基板 P表面での反射光 L 2 rを受光する第 2受光系 9 Bも第 1 受光系 9 Aと同等の構成を有しているためその説明を省略する。 ここで、 第 1送光 系 8 A及び第 2送光系 8 Bのそれぞれで投射される検出光 L 1、 L 2のそれぞれは 同じ波長を有する。 なお、 投影光学系 P Lの先端面 7と基板 Pの表面 Sとの距離が 確保できる場合には、 A F検出装置 1 0 0の検出光を、 投影光学系 P Lの一部を介 さずに、 基板 P表面に投射するようにしてもよい。 次に、 上述した A F検出装置 1 0 0を用いて基板 Pの表面 Sの面位置情報を検出 する方法について説明する。 図 3は、 第 1、 第 2の検出光 L 1、 L 2が投射されている基板 Pの表面 S近傍の 拡大図である。 制御装置 C O N Tは、 第 1、 第 2送光系 8 A、 8 Bのそれぞれから 第 1、 第 2の検出光 L 1、 L 2を基板 Pの表面 Sに対して同時に投射する。 第 1の 検出光 L 1は液体 5 0を介して入射角 0 で基板 Pの表面 Sに投射され、 第 2の検 出光 L 2は液体 5 0を介して入射角 θ 2で基板 Pの表面 Sに投射される。 第 1 、 第 2の検出光 L 1、 L 2に基づく基板 Pの表面 Sでの反射光 L 1 r、 L 2「のそれぞ れは、 第 1、 第 2受光系 9 A、 9 Bに受光される。 このとき、 液体 50は所定の温 度 T に設定されており、 このときの液体 50の屈折率は ηである。 また、 このと きの第 1、 第 2の検出光し 1、 L 2のそれぞれは基板 Ρの表面 S上において同じ位 置に投射される。 したがって、 液体 50に屈折率変化 (温度変化) がない状態では、 基板 Ρが Ζ軸方向に移動した場合、 反射光し 1 rの受光系の光軸と垂直な方向のず れ量と反射光 L 2 rの受光系の光軸と垂直な方向のずれ量とは同じである。 基板 Pが Z軸方向に移動せずに、 液体 50の温度が から T2に変化し、 液体 50の屈折率 ηが Δ ηだけ変化した場合について考える。 温度変化により、 第 1、 第 2送光系 8 Α、 8 Βからの第 1、 第 2の検出光 L 1、 L 2は、 投影光学系 P Lか ら液体 50への界面での屈折角を変化させる。 この屈折角の変化に伴って、 第 1、 第 2の検出光 L 1、 し 2の光路が符号し 1 ' 、 L 2' に示すように変動し、 これに より第 1の検出光し 1の基板 Pの表面 Sに対する入射角が から ' に変化し、 第 2の検出光 L 2の基板 Pの表面 Sに対する入射角が 02から に変化する。 すると、 第 1の検出光 L 1の反射光 L 1 rの光路は受光系 9 Aの光軸と垂直な方向 に距離 D 1ずれて反射光 L 1 r ' となる。 同様に、 第 2の検出光 L 2の反射光 L 2 rの光路は受光系 9 Bの光軸と垂直な方向に距離 D 2ずれて反射光 L 2 r ' となる c ここで、 液体の厚さが dであり、 温度変化に伴って液体 50の屈折率が nから△ nだけ変化した場合を考える。 この場合、 検出光の基板表面への入射角が変化し、 その変化量 は、 The AF detection device 100 is configured to detect an image plane (imaging plane) formed via the projection optical system PL and the liquid 50 based on a detection signal of the light receiving system 9 obtained from light reflected on the surface S of the substrate P. Find the height position (focus ί standing) of the substrate P surface in the Z-axis direction with respect to). Further, the AF detection device 100 can also obtain the attitude of the substrate P in the tilt direction by obtaining each focus position at a plurality of points on the surface of the substrate. The detection result of the AF detection device 100 is output to the control device CONT. Based on the detection result of the AF detection device 100, the control device CONT determines the position between the imaging plane of the projection optical system PL and the surface of the substrate P. Adjust the relationship and perform the focusing operation to adjust the surface of the substrate P to within the depth of focus of the projection optical system PL. FIG. 2 is a configuration diagram showing a first embodiment of the AF detection apparatus 100. In FIG. 2, some components other than the AF detection device 100 are not shown. In FIG. 2, the light transmitting system 8 of the AF detection device 100 includes a first light transmitting system 8 for projecting the first detection light 1 at a first incident angle 0 to the surface S of the substrate P. A and a second light transmission system 8 す る that projects the second detection light L 2 at a second incident angle 0 2 different from the first incident angle θ Λ with respect to the surface of the substrate P. . The light receiving system 9 of the AF detection device 100 is provided corresponding to the first light transmitting system 8 、 and receives the reflected light of the first detection light L 1 reflected on the surface S of the substrate P. A second light receiving system 9B provided corresponding to the first light receiving system 9A and the second light transmitting system 8B, and receiving the second reflected light 2 reflected by the surface S of the substrate P; It has. The first light transmission system 8A emits a non-photosensitive light flux (wavelength of about 400 nm to 900 nm) to the photoresist on the substrate P, and an AF light source 10 and a light source 10 Was done Light-transmitting slit 11 with slit-shaped opening to shape light beam into slit light, cylindrical lens 12 for astigmatism correction, relay lens 13, optical path bending mirror 14, aberration correction And an objective lens 16. The slit light shaped by the light transmission slit 11 is used as the first detection light L 1 as a cylindrical lens 12, a relay lens 13, an optical path bending mirror 14, an aberration correcting plane plate 15, and The light enters the projection optical system PL via the objective lens 16. The lens barrel PK has an opening, and the slit light enters the projection optical system PL through this opening. The first detection light L1 incident on the projection optical system PL is projected through the liquid 50 onto the surface S of the substrate P at a first incident angle 0. The reflected light L1r of the first detection light L1 reflected on the surface S of the substrate P is received by the first light receiving system 9A via the liquid 50 and a part of the projection optical system PL. Here, the lens barrel PK has an opening, and the reflected light 1 r is received by the first light receiving system 9 A through this opening. C The first light receiving system 9 A is a projection optical system PL. Objective lens 17 to which the reflected light L 1 r is incident through the mirror, a plane plate 18 for aberration correction, a vibrating mirror 19 vibrating at a predetermined cycle, a relay lens 20, and an astigmatic lens It comprises a cylindrical lens 21 for photovoltaic use, a light receiving slit 22 having a slit-shaped opening, and a light receiving sensor 23 made of, for example, silicon photo die. The reflected light L 1 of the first detection light L 1 on the surface S of the substrate P is the objective lens 17, the aberration correction plane plate 18, the vibrating mirror 19, the relay lens 20, the cylindrical lens 21, The light is received by the light receiving sensor 23 via the light receiving slit 22. The vibrating mirror 19 vibrates in the direction indicated by an arrow y at a predetermined cycle. The image of the slit pattern formed on the light receiving slit 22 (the slit-like reflected light 1 r, which is shaped by the light transmitting slit 11 and reflected by the surface S of the substrate P) also vibrates. With the vibration of the image of the pattern, the amount of light passing through the opening of the light receiving slit 22 changes, and the light passing through the opening of the light receiving slit 22 reaches the light receiving sensor 23. The position of the opening of the light receiving slit 22 is determined by the position of the surface S of the substrate The light receiving slit 22 is provided so that the center of the opening of the light receiving slit 22 coincides with the vibration center of the image of the slit pattern when the image forming plane of L is aligned. Slit flutter received by 3 If the image of the image is detected at a constant period, the image plane of the projection optical system PL coincides with the surface S of the substrate P. On the other hand, when the imaging plane of the projection optical system PL does not match the surface S of the substrate P, the reflected light L 1 r based on the first detection light 1 is the optical axis of the first light receiving system 9 A. And the center of vibration of the image of the slit pattern is shifted with respect to the center of the opening of the light receiving slit 22, so that the image of the slit pattern received by the light receiving sensor 23 is shifted. Are not detected in a fixed cycle. The detection result of the light receiving sensor 23 is output to the control device CONT, and the control device CONT obtains the focus position of the surface S of the substrate P based on the light receiving result of the light receiving sensor 23. The second light transmitting system 8B is provided in addition to the first light transmitting system 8A based on a focus position adjusting method or a temperature measuring method (refractive index change measuring method) according to the present invention described later. Except that the angle of incidence of the second detection light L 2 with respect to the surface of the substrate P is set to 0 2 , the configuration is the same as that of the first light transmission system 8 A, and the description is omitted. . Similarly, the second light receiving system 9B for receiving the reflected light L2r of the second detection light L2 on the surface of the substrate P has the same configuration as the first light receiving system 9A, so that the description thereof will be omitted. Omitted. Here, each of the detection lights L1 and L2 projected by each of the first light transmission system 8A and the second light transmission system 8B has the same wavelength. Note that if the distance between the front end surface 7 of the projection optical system PL and the surface S of the substrate P can be ensured, the detection light of the AF detector 100 can be transmitted without passing through a part of the projection optical system PL. The light may be projected on the surface of the substrate P. Next, a method of detecting the surface position information of the surface S of the substrate P using the above-described AF detection device 100 will be described. FIG. 3 is an enlarged view near the surface S of the substrate P on which the first and second detection lights L1 and L2 are projected. The control device CONT simultaneously projects the first and second detection lights L1 and L2 from the first and second light transmission systems 8A and 8B onto the surface S of the substrate P. First detection light L 1 is projected on the surface S of the substrate P at an incident angle 0 through the liquid 5 0, the second test Idemitsu L 2 is the surface of the substrate P at the incident angle theta 2 via the liquid 5 0 Projected on S. The reflected light L 1 r and L 2 at the surface S of the substrate P based on the first and second detection light L 1 and L 2 respectively This is received by the first and second light receiving systems 9A and 9B. At this time, the liquid 50 is set to a predetermined temperature T, and the refractive index of the liquid 50 at this time is η. At this time, the first and second detection light beams 1 and L 2 are projected at the same position on the surface S of the substrate Ρ. Therefore, in the state where the liquid 50 has no refractive index change (temperature change), when the substrate Ρ moves in the Ζ-axis direction, the reflected light is reflected and the deviation amount and the reflected light in the direction perpendicular to the optical axis of the 1r light receiving system are reflected. The shift amount of L 2 r in the direction perpendicular to the optical axis of the light receiving system is the same. The substrate P does not move in the Z axis direction, it changes from the temperature of the liquid 50 within T 2, consider the case where the refractive index of the liquid 50 eta changes by delta eta. Due to the temperature change, the first and second detection light beams L 1 and L 2 from the first and second light transmitting systems 8Α and 8Β change the refraction angle at the interface from the projection optical system PL to the liquid 50. Change. With the change in the refraction angle, the optical paths of the first and second detection lights L 1 and L 2 fluctuate as shown by signs 1 ′ and L 2 ′. The incident angle of the second detection light L 2 with respect to the surface S of the substrate P changes from 0 to 2 . Then, the optical path of the reflected light L 1 r of the first detection light L 1 is shifted by a distance D 1 in a direction perpendicular to the optical axis of the light receiving system 9 A to become the reflected light L 1 r ′. Similarly, the optical path of the second detection light L 2 of the reflected light L 2 r in this case c as the distance D 2 deviation reflected light L 2 r 'in a direction perpendicular to the optical axis of the light receiving system 9 B, the liquid Consider a case where the thickness is d and the refractive index of the liquid 50 changes from n to △ n with temperature. In this case, the angle of incidence of the detection light on the substrate surface changes, and the amount of change is
△ 6 = a r c s i η 〔η/ (η + Δη) 〕 ■ s i ηθ … (3) である。基板 Pの表面 Sの Z軸方向への移動がないとすると、 基板 Pの表面のフ才 一カス位置の検出誤差量 A dは、  Δ 6 = arcs i η [η / (η + Δη)] ■ s i ηθ (3) Assuming that the surface S of the substrate P does not move in the Z-axis direction, the detection error amount Ad of the singular position on the surface of the substrate P is
厶 d二 d - Ctan (Θ + ΔΘ) - t a n 0) / (2 t a n 0) - (4) となる。 すなわち、 検出誤差量 A dは、 液体の屈折率変化前における検出光 Lに基 づき検出した基板 P表面のフォーカス位置と、 液体の屈折率変化後における検出光 L' に基づき検出した基板 P表面のフォーカス位置との誤差である。 ここで、 式 (3) から分るように、 は 0の値に依存する。 θ , θ2であるの で、 第 1の検出光 L 1の入射角の変化量△0 ( = θ,' -θ,) と、 第 2の検出光 L 2の入射角の変化量 ΔΘ2 ( = θ2' 一 θ 2、 とは異なる値になることが分る。 そ れゆえ、 第 1の検出光 L 1に基づくフォーカス位置の検出誤差量 Ad と、 第 2の 検出光 L 2に基づくフォ一カス位置の検出誤差量△ d 2は異なる値を示す。 図 4は、 基板 Pの表面 Sに対する検出光 Lの入射角 0と、 液体の温度変化に伴つ て生じる基板 P表面のフォー力ス位置の検出誤差量 Δ dとの関係の一例を示すもの である。 図 4には、 液体 50が純水 (水) であり、 投影光学系 PLのワーキングデ ィスタンスに相当する水の厚さ dが 1 mmである場合において、 温度が 0. 01 °C 変化した場合の検出光 Lの入射角 0とフ才ーカス検出誤差量 Δ dとの関係を示して いる。 例えば、 第 1の検出光し 1の入射角 が 80度、 第 2の検出光 L 2の入射角 0 2が 85度に設定されている場合、 液体 50としての純水の温度が から 0. 0 1°C変化して T2になった場合、 図 4より、 第 1の検出光 L 1に基づくフォーカス 位置の検出誤差量 Δ d は約 20 n mであり、 第 2の検出光 L 2に基づくフォー力 ス位置の検出誤差量 ΔοΙ2は約 80 nmである。 すなわち、 図 4の例によれば、 厚 さ 1 mmの液体 (水) 50の温度が 0. 01 °C変化した場合、 2つの検出光し 1、 L 2に基づ〈フォーカス位置の検出誤差量 Ad,、 Ad2には 60 nmの差が生じ ている。 上述の式 (3) 、 (4) から明らかなように、 検出光に基づくフォーカス位置の 検出誤差量 Adは、 液体の温度変化による屈折率の変化にほぼ比例する。 したがつ て、 第 1の検出光 L 1に基づくフォーカス位置の検出誤差量 Ad,と、 第 2の検出 光 L 2に基づくフォーカス位置の検出誤差量 Ad 2との差 (ΔοΙ,— Δο^) も液体 の温度変化による屈折率変化にほぼ比例する。例えば、 図 4の関係において、 液体 温度の 0. 01°Cの変化によって液体の屈折率が Δη変化したとすると、 ある温度 変化における検出誤差量の差 (Δο^— ΔεΙ2) が 30 nm (=60 nm/2) の ±昜合には、 その温度変化により起こる液体の屈折率の変化は Δ n/2となる。 M d2 d-Ctan (Θ + ΔΘ)-tan 0) / (2 tan 0)-(4). That is, the detection error amount Ad is calculated based on the focus position of the substrate P surface detected based on the detection light L before the liquid refractive index change and the substrate P surface detected based on the detection light L 'after the liquid refractive index change. Error with the focus position. Where depends on the value of 0, as can be seen from equation (3). Since θ and θ 2 , the change amount of the incident angle of the first detection light L 1 △ 0 (= θ, ′ − θ,) and the change amount of the incident angle of the second detection light L 2 ΔΘ 2 (= θ 2 '1 θ 2) . Therefore, the focus position detection error amount Ad based on the first detection light L 1 and the second detection light L 2 4 shows different values of the detection error △ d 2 of the focus position based on the incident angle 0 of the detection light L with respect to the surface S of the substrate P and the surface P of the substrate P caused by the temperature change of the liquid. Fig. 4 shows an example of the relationship between the detection error amount Δd of the force position and Fig. 4. In Fig. 4, the liquid 50 is pure water (water), and the water 50 corresponds to the working distance of the projection optical system PL. The graph shows the relationship between the incident angle 0 of the detection light L and the focus detection error amount Δd when the temperature changes by 0.01 ° C. when the thickness d is 1 mm. Incident angle of 80 degrees of the detected light is 1, when the incident angle of 0 2 of the second detection light L 2 is set to 85 degrees, the temperature of the pure water is 0. 0 1 ° C change from the liquid 50 If it becomes T 2 and, from FIG. 4, the detection error amount delta d of the focus position based on the first detection light L 1 is about 20 nm, Four force scan position based on the second detection light L 2 The detection error ΔοΙ 2 is about 80 nm, that is, according to the example in Fig. 4, when the temperature of a liquid (water) 50 having a thickness of 1 mm changes by 0.01 ° C, two detection light beams are detected. 1, the difference between 60 nm for the detection error amount Ad ,, Ad 2 of L 2 to based <focus position occurs. the above equation (3), as is clear from (4), based on the detected light The detection error amount Ad of the focus position is almost proportional to a change in the refractive index due to a change in the temperature of the liquid, and therefore, the detection error amounts Ad and F of the focus position based on the first detection light L1. , The difference between the detected error amount Ad 2 focus position based on the second detection light L 2 (ΔοΙ, - Δο ^ ). Also approximately proportional to the refractive index change due to temperature change of the liquid for example, in the context of FIG. 4, If the refractive index of the liquid changes by Δη due to the 0.01 ° C change in the liquid temperature, the difference in detection error (Δο ^ —ΔεΙ 2 ) at a certain temperature change is 30 nm (= 60 nm / 2). ± ± easily, the change in the refractive index of the liquid caused by the temperature change is Δn / 2.
, すなわち、 第 1の検出光 L 1により検出される基板 P表面のフォーカス位置 Z, と、 第 2の検出光 L 2により検出される基板 P表面のフォーカス位置 Z2との差, I.e., the difference between the focus position Z of the surface of the substrate P, and a focus position Z 2 of the surface of the substrate P detected by the second detecting light L 2 to be detected by the first detection light L 1
(Z,-Z2) は、 基板 P表面のぼぼ同じ位置を検出しているので、 液体の温度変 化 (屈折率変化) がなければ変化しないが、 液体の温度変化により屈折率が変化す ると、 そのフォーカス位置の検出差 — Z2) が屈折率変化に比例して変化す る。 逆に言えば、 そのフォーカス位置の検出差 (Z,— Z2) から液体の屈折率変 化量を検出することができるのである。本実施形態において、 制御装置 CO NTは、 予め実験ゃシミュレーションによって求められた、 そのフォーカス位置の検出差Since (Z, -Z 2 ) detects the same position on the surface of the substrate P, it does not change unless there is a temperature change (refractive index change) of the liquid, but the refractive index changes due to the temperature change of the liquid. Then, the detection difference of the focus position — Z 2 ) changes in proportion to the change in the refractive index. Conversely, detection difference of the focus position (Z, - Z 2) it is possible to detect the refractive index change of the liquid from the. In the present embodiment, the control device CONT determines the difference between the detection of the focus position obtained in advance by an experiment and a simulation.
(Z,-Z2) と屈折率変化量との関係を記憶しており、 AF検出装置 1 00を使 つて検出されたフォーカス位置 Zい Z2に基づいて屈折率の変化量を求めること ができる。 なお、 液体の温度変化と屈折率変化とは比例関係にあるので、 そのフォーカス位 置の検出差 (Ζ,— Ζ^ が液体の温度変化に比例して変化する。 したがって、 そ のフォーカス位置の検出差 (Ζ,— Ζ2) と屈折率変化量との関係、 あるいは液体 の温度変化量と液体の屈折率変化量との関係も合わせて制御装置 C ΟΝΤに記憶し ておくと、 A F検出装置 1 00を使って検出されたフォーカス位置 Ζ1 Ζ2に基 づいて液体温度の変化量も求めることができる。 次に、 図 5のフローチャート図を参照しながら基板 Ρ表面の検出手順について説 明する。 なお、 AF検出装置 1 00は、 初期状態において、 検出光 L 1に基づいて 検出されるフォーカス位置 Ζ,と、 検出光し 2に基づいて検出されるフォーカス位 置 Ζ2とは同一になるように調整されている。 また、 フォーカス位置 Ζい Ζ2はそ れぞれ像面に対するずれとして検出される。 また、 説明を簡単にするために、 図 5 の説明では、 基板 Ρ表面の Ζ軸方向の位置が変化しない場合について説明する。 The relationship between (Z, -Z 2 ) and the amount of change in the refractive index is stored, and the amount of change in the refractive index can be obtained based on the focus position Z or Z 2 detected using the AF detection device 100. it can. Since the change in the temperature of the liquid and the change in the refractive index are in a proportional relationship, the detection difference (Ζ, —Ζ ^) of the focus position changes in proportion to the temperature change of the liquid. detection difference (Ζ, - Ζ 2) and the relationship between the refractive index variation, or the relation between the temperature variation and refractive index variation of the liquid in the liquid also combined and stored in the control unit C ΟΝΤ, AF detection variation of the liquid temperature based device 1 00 to the focus position Zeta 1 Zeta 2 detected using also can be obtained. Next, the theory for the detection procedure of the substrate Ρ surface with reference to a flowchart of FIG. 5 Akira is. Note that the same is AF detecting device 1 00, in the initial state, the focus position detected based on the detection light L 1 Zeta, and a focus position location Zeta 2 detected based on the detected light and 2 It is adjusted so that And is detected as displacement with respect to the focus position Zeta There Zeta 2 Waso respectively image plane. In order to simplify the explanation, in the description of FIG. 5, Zeta axial position of the substrate Ρ surface does not change The case will be described.
A F検出装置 1 00は、 制御装置 CO NTの指令に基づき、 基板 P表面に向けて 第 1の検出光 L 1 と第 2の検出光 L 2とを投射するとともに、 検出光 L 1、 L 2に 対応する基板 P表面からの反射光 L 1 r、 L 2 rを受光センサ 23でそれぞれ受光 し、 第 1の検出光 L 1に基づき基板 P表面のフ才一カス位置 Z と、 第 2の検出光 L 2に基づき基板 P表面のフォーカス位置 Z2とをそれぞれ検出する (ステヅプ SThe AF detection device 100 moves toward the surface of the substrate P based on the command of the control unit CONT. The first detection light L 1 and the second detection light L 2 are projected, and the light L 1 r and L 2 r reflected from the surface of the substrate P corresponding to the detection light L 1 and L 2 are detected by the light receiving sensor 23. each received, detects a full Saiichi Kas position Z of the surface of the substrate P based on the first detection light L 1, the second based on the detection light L 2 and a focus position Z 2 of the surface of the substrate P respectively (Sutedzupu S
1 ) o 制御装置 CONTは、 検出されたフォーカス位置 Z と Z2との差 (Z 一 Z2) を求め、 予め記憶されているフォーカス位置の検出差 (Ζ — Ζζ) と液体 50の 屈折率変化量 Δηとの関係情報に基づいて、 液体 50の屈折率変化量 Δηを求める (ステップ S 2)。 さらに制御装置 CONTは、 ステップ S 2で求めた屈折率変化量 Δηに基づいて、 ステップ S 1で求めた第 1の検出光 L 1によるフォーカス位置 Ζ,をネ甫正する。 具 体的には、 予め記憶している上記式 (3)、 (4) を使って、 ステップ S 2で求め た屈折率変化量 Δ ηによって生じる入射角変化量 ,を求め、 その に基づ いて第 1の検出光 L 1によるフォーカス位置の検出誤差量 Ad,を求める。 そして、 その検出誤差量 Δο^に基づいて、 第 1の検出光 L 1を用いて検出された基板 Ρ表 面のフォーカス位置 Ζ を補正し、 基板 Ρ表面の実際のフォーカス位置 (面位置情 報) を求める (ステップ S 3)。 そして、 制御装置 CO NTは、 補正した基板 P表面の面位置情報に基づいて、 こ の補正により求めた基板 Pの表面と像面とが合致するように、 基板ステージ P S T を駆動して像面と基板 Pの表面 Sとの位置関係を調整する (ステップ S 4)。 なお、 ここでは、 液体 50の厚さ dが 1 mmである場合について説明したが、 制 御装置 CONTには、 複数の厚さ dに対応した前記関係が予め記憶されている。 ま た、 ここでは液体 50は純水であるが、 用いる液体に応じた前記関係が予め記憶さ れている。 また、 第 1の検出光 L 1を使って検出されたフォーカス位置 Z ではな く、 第 2の検出光 L 2を使って検出されたフォーカス位置 Z2を補正して使っても よい。 ただし、 入射角度が大きい方が検出感度や検出分解能が高いので、 第 2の検 出光 L 2をメインの検出光とし、 第 1の検出光 L 1をネ甫正用の検出光として用いる のが望ましい。 ところで、 精度良く屈折率情報を求めるために、 入射角 0,と入射角 0 2との差 は可能な限り大きいことが望ましい。 一方、 基板 Pの表面 Sに対する入射角が小さ くなると、 基板 Pの Z軸方向における位置検出精度が低下する。 したがって、 検出 光 L 1、 L 2の基板 P表面に対する入射角はそれぞれ 3 0 ° ≤0 < 9 0 ° の条件 を満たしていることが好ましい。 そして、 基板 Pの表面 Sで十分な光量を有する反 射光を得られるように、 更に好ましくは、 検出光 L 1、 L 2の基板 P表面に対する 入射角はそれぞれ 7 0 ° 0 < 9 0 ° の条件を満たしていることが好ましい。 つ まり、 図 4のグラフに示されるように、 入射角が 7 0 ° 以上であれば、 入射角の 変動に対して誤差量が大き〈変化するため、 液体 5 0の温度変化 (屈折率変化) を 敏感に検出することができる。 さらに、 本実施形態のように、 液体 (水) を介して、 基板 P表面の面位置を検出 する場合には、 検出光し 1、 L 2に対する液体 (水) の屈折率と基板 P表面の感光 材 (レジスト) の屈折率との差が小さくなり、 照射された検出光が感光材の表面で 十分に反射せず、 受光センサで受光される光の光量 (光強度) が低下する虞がある ばかりでなく、 照射された検出光の一部が感光材を通過して感光材の下地面まで到 達し、 その下地面からの反射光がノィズ成分として受光センサで受光されてしまう 可能性がある。 したがって、 検出光 L 1、 L 2に対する液体 (水) の屈折率と基板 P表面の感光材 (レジスト) の屈折率との差、 感光材表面での反射率、 感光材の下 地面からのノイズ光の影響などを考慮すると、 検出光し 1、 L 2の入射角はそれぞ れ 8 4 ° < 0 < 9 0 ° が望ましい。 こうして、 像面と基板 Pの表面 Sとを合致させたら、 制御装置 C O N Tはマスク Mを露光光 E Lで照明し、 マスク Mのパ夕ーンを投影光学系 P Lを介して基板 Pに 転写する。 露光処理を行うに際し、 温度変化により液体 5 0の屈折率が変動すると、 マスク Mのパターンを投影光学系 P L及び液体 5 0を介して基板 Pに転写する際、 基板 P に転写されるパターンの像に誤差が生じることが考えられる。例えば、 液体 5 0の 屈折率変化に伴し、、屈折率変化前に比べて基板 Pに転写されるノ タ一ン像のスケ一 リングなどの各種収差が変動したり、 あるいは像面位置が変動する場合が考えられ る。 制御装置 C O N Tは、 前記 A F検出装置 1 0 0を使って求めた液体 5 0の屈折 率変化量 (または温度変化量) に基づいて、 基板 Pに転写されるパターンの像に誤 差が生じないように、 結像特性調整装置 P L Cを用いてバタ―ン像の像調整を行う c 例えば、 液体 5 0の屈折率変化に伴って、 投影光学系 P Lの像面位置が Z軸方向に シフ卜した場合には、 投影光学系 P L内の一部の光学素子を駆動したり、 マスクを 動かしたり、 露光光 E Lの波長を調整することで、 投影光学系 P L及び液体 5 0を 介したパターンの像面と、 基板 Pの表面 Sとを合致させる。 あるいは、 液体 5 0の 屈折率変化 (温度変化) に伴って、 パターンの像のスケーリングやディストーショ ンなどの各種収差が変動した場合にも、 同様に、 マスク Mを Z軸方向あるいは傾 J斗 方向へ移動したり、 投影光学系 P L内の一部の光学素子を駆動したり、 あるいは露 光光 E Lの波長を調整することによって、 液体 5 0の屈折率変化 (温度変化) によ つてパターンの像に誤差が生じないように像調整を行う。 以上説明したように、 検出光の光路上の屈折率が変化しても、 2つの検出光 L 1、 L 2を異なる入射角 0ぃ 0 2で基板 Pの表面 Sに投射することで、 これら各検出 光し 1、 L 2に基づ〈面位置情報の測定誤差を用いて検出光の光路上に存在する液 体の屈折率'隋報を求めることができる。 したがって、 求めた屈折率情報により検出 した面位置情報を補正することできるので、 基板 Pの表面 Sの面位置情報を精度良 く検出することができる。 なお、 上述の実施形態においては、 2つの検出光 L 1、 L 2の入射角 0 ,、 θ 2 が 8 0 ° を超えているため、 説明を簡単にするために、 液体 5 0に屈折率変化 (温度変化) がない状態で基板 Ρが Ζ軸方向に移動した場合、 反射光 L 1 rの受光 系の光軸と垂直な方向のずれ量と反射光 L 2 rの受光系の光軸と垂直な方向のずれ 量とは同じであるとして説明したが、 厳密には、 2つの検出光 L 1、 L 2の入射角 θ,, θ2が異なっているので、 液体 50に屈折率変化 (温度変化) がない状態で、 基板 Ρが Ζ軸方向に移動した場合、 反射光し 1 rの受光系の光軸と垂直な方向のず れ量と反射光し 2 rの受光系の光軸と垂直な方向のずれ量とが異なる (但し、 ずれ 量の比 s i η Θ /s i n 02は一定) 。 そのような場合には、 基板 Pの Z方向へ のずれ量に伴う反射光 L 1 rの受光系の光軸と垂直な方向のずれ量と反射光 L 2 r の受光系の光軸と垂直な方向のずれ量との関係 (例えば、 s i η Θ ^/s i n Θ 2) を予め求めておき、 実際の両反射光に基づく測定結果が予め求めておいた関係 と異なっていた場合に、 液体 50の温度変化 (屈折率変化) が起きたと判断すれば よい。 上述したように、 本実施形態における液体 50は純水を用いた。純水は、 半導体 製造工場等で容易に大量に入手できるとともに、 基板 P上のフォトレジストや光学 素子 (レンズ) 等に対する悪影響がない利点がある。 また、 純水は環境に対する悪 影響がないとともに、 不純物の含有量が極めて低いため、 基板 Pの表面、 及び投影 光学系 P Lの先端面に設けられている光学素子の表面を洗浄する作用も期待できる c そして、 波長が 1 93 nm程度の露光光 E Lに対する純水 (水) の屈折率 nはほ ぼ 1 . 44〜1 . 47程度と言われており、 露光光 E Lの光源として A r Fエキシ マレ一ザ光 (波長 1 93 nm) を用いた場合、 基板 P上では 1 /n、 すなわち約 1 3 1〜1 34 nm程度に短波長化されて高い解像度が得られる。 更に、 焦点深度は 空気中に比べて約 n倍、 すなわち約 1 . 44〜1 . 47倍程度に拡大されるため、 空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、 投影光学 系 P Lの開口数をより増加させることができ、 この点でも解像度が向上する。 本実施形態では、 投影光学系 P Lの先端面 7には、 上述したように、 露光光 E L を透過可能な平行平面板が設けられている。 この平行平面板は投影光学系 P Lの先 端面に着脱 (交換) 自在に取り付けられている。 液体 50と接触する光学素子を、 レンズより安価な平行平面板とすることにより、 露光装置 E Xの運搬、 組立、 調整 時等において投影光学系 P Lの透過率、 基板 P上での露光光 E Lの照度、 及び照度 分布の均一性を低下させる物質 (例えばシリコン系有機物等) がその平行平面板に 付着しても、 液体 5 0を供給する直前にその平行平面板を交換するだけでよく、 液 体 5 0と接触する光学素子をレンズとする場合に比べてその交換コス卜が低くなる という利点がある。 すなわち、 露光光 E Lの照射によりレジス卜から発生する飛散 粒子、 または液体 5 0中の不純物の付着などに起因して液体 5 0に接触する光学素 子の表面が汚れるため、 その光学素子を定期的に交換する必要があるが、 この光学 素子を安価な平行平面板とすることにより、 レンズに比べて交換部品のコス卜が低 く、 且つ交換に要する時間を短くすることができ、 メンテナンスコスト (ランニン 'グコスト) の上昇やスループヅ卜の低下を抑えることができる。 もちろん、 投影光 学系 P Lの先端面に取り付ける光学素子がレンズであってもよい。 また、 投影光学 系 P Lの先端面に取り付ける光学素子としては、 投影光学系 P Lの光学特性、 例え ば収差 (球面収差、 コマ収差等) の調整に用いる光学プレー卜であってもよい。 ま た、 投影光学系 P Lの先端部において、 光学素子 (平行平面板やレンズ) のみを液 体 5 0に接触させ、 鏡筒 P Kを接触させない構成とすることにより、 金属からなる 鏡筒 P Kの腐蝕等が防止される。 また、 液体 5 0の流れによって生じる投影光学系 P Lの先端の光学素子と基板 P との間の圧力が大きい場合には、 その光学素子を交換可能とするのではなく、 その 圧力によって光学素子が動かないように堅固に固定してもよい。 なお、 本実施形態では、 2つの検出光し 1、 L 2を異なる入射角 0 2で基 板 Pの表面 Sに投射する例について説明したが、 互いに異なる入射角で投射される 検出光の数は 2つに限らず 3つ以上の任意の複数の光束を投射することができる。 また、 投影光学系の一部に検出光 L 1、 L 2を通過させる際には、 投影光学系 P L を構成する複数の光学素子のうち最も基板 Pに近い 1つの光学素子のみを通過させ てもよいし、 複数の光学素子を通過させるようにしてもよい。 なお、 本実施形態では、 投影光学系 P Lの先端面 7と基板 Pの表面 Sとの間は液 体 5 0で満たされている構成であるが、 例えば基板 Pの表面 Sに平行平面板からな るカバーガラスを取り付けた状態で液体 5 0を満たす構成であってもよい。 この場 合、 送光系 8からの検出光 L 1、 L 2は、 投影光学系 P Lの一部及び液体 5 0の他 に、 光透過部材としてのカバーガラスを介して基板 Pの表面 Sに投射されることに なる。 なお、 本実施形態では、 投影光学系 P Lの先端面 7と基板 Pの表面 Sとの間の空 間 5 6に液体 5 0が満たされている場合を例にして説明したが、 空間 5 6に液体 5 0がなく、 例えば空間 5 6は空気等の気体で満たされている場合についても、 本発 明を適用することはもちろん可能である。 この場合、 複数の異なる入射角で基板 P の表面 Sに投射された検出光に基づき、 空間 5 6の気体の屈折率情報を検出するこ とができる。 そして、 この検出光に基づき、 空間 5 6の気体の温度変化を検出する ことが可能である。 また、 空間 5 6を含む検出光の光路上には、 液体 (水) 5 0や 空気以外の物質が存在していてもよい。例えば、 光を透過可能な光学素子 (ガラス、 レンズ) や水以外の例えばフッ素系 (フッ素系の液体) や過フッ化ポリエーテル ( P F P E ) オイル等の液体が存在していてもよい。特に、 露光光として F 2レー ザ光等の真空紫外光を用いる場合には、 液体として前記真空紫外光を透過可能なフ ッ素系オイルを用いることが好適である。 そして、 この場合においても、 基板 の 表面 Sに投射した検出光に基づき、 光路上に存在する例えば光学素子やフッ素系才 ィルの温度変化を含む屈折率†f報を検出することができる。本発明の原理を用いる と、 物質の温度変化を屈折率変化を通じて求めることができるので、 本発明は、 光 透過性のある気体、 液体などの流体及び固体の温度変化測定方法に使用することが できる。特に、 通常の温度センサで温度測定が困難な微小なエリア、 高温雰囲気、 高圧雰囲気、 腐食性の高い雰囲気などで本発明の方法は有効となる。 また、 本実施形態では、 検出光 L 1、 L 2は投影光学系 P Lを通過が、 この投影 光学系 P Lの屈折率も温度変化に伴ってわずかに変化する。 この場合も、 複数の異 なる入射角の検出光のそれぞれに基づく誤差量を求めることで、 投影光学系 Pしの 温度変化 (屈折率変化) を求めることができる。 次に、 図 6を参照しながら、 A F検出装置 1 0 0の第 2実施形態について説明す る。 ここで、 以下の説明において、 図 2を用いて説明した第 1実施形態と同一又は 同等の構成部分については同一の符号を付し、 その説明を簡略もしくは省略する。 図 6に示す A F検出装置 1 0 0において、 送光系 8及び受光系 9はそれぞれ 1つ ずつ設けられている。 そして、 本実施形態の特徴部分は、 送光系 8に波長選択フィ ルタ 2 4が設けられている点である。送光系 8は、 光源 1 0と、 光源 1 0から射出 される光束の光路下流側に設けられた波長選択フィルタ 2 4と、 送光スリ ヅ ト 1 1 と、 非点収差補正用シリンドリカルレンズ 1 2と、 リレーレンズ 1 3と、 光路折り 曲げミラ一 1 4と、 収差補正用平面板 1 5と、 対物レンズ 1 6とを備えている。 受 光系 9は、 投影光学系 P Lを介した反射光が入射される対物レンズ 1 7と、 収差補 正用平面板 1 8と、 所定の周期で振動する振動ミラ一 1 9と、 リレーレンズ 2 0と、 非点収差補正用シリンドリカルレンズ 2 1 と、 ダイクロイツクミラ一 2 6と、 スリ ヅ 卜状の開口部を有する受光スリット 2 2 a、 2 2 bと、 例えばシリコン . フ才 卜 - ダイ才一ドからなる受光センサ 2 3 a、 2 3 bとを備えている。 波長選択フィルタ 2 4は、 液体 5 0及び基板 Pに投射する検出光の波長を設定す ることができる。すなわち、送光系 8は、 波長選択フィルタ 2 4により、 波長の異 なる複数の検出光を基板 Pの表面 Sに対して投射することができる。例えば、 第 1 の波長を有する第 1の検出光 L 1 と、 第 1の波長とは異なる第 2の波長を有する第 2の検出光 L 2とでは、 投影光学系 P Lから液体 5 0に入射する際の屈折角が異な る。 したがって、 互いに異なる波長を有する第 1、 第 2の検出光 L 1、 L 2のそれ それの液体 5 0を通過して基板 Pに投射される際の入射角は互いに異なる。 例えば、 液体 5 0を水とし、 第 1の検出光 L 1 として C線 (波長 6 5 6 . 3 η m ) が投射され、 第 2の検出光 L 2として d線 (波長 5 8 7 . 6 n m ) が投射され る場合について考える。 d線の基板 Pの表面 Sに対する入射角が 8 0度である場合、 d線と C線との基板 Pの表面 Sに対する入射角の差は 0 . 1 4度となる。 基板 P表面で反射した反射光し 1 「とし 2 rとはそれぞれ受光系 9に入射する。 そして、 受光系 9内のダイクロイツクミラー 2 6を透過した反射光 L 1 rは受光セ ンサ 2 3 aに入射し、 ダイクロイツクミラ一 2 6で反射した反射光し 2 rは受光セ ンサ 2 3 bに入射する。 受光センサ 2 3 a , 2 3 bの検出結果はそれぞれ制御装置 C O N Tに出力され、 第 1実施形態同様に、 液体 5 0の屈折率情報を求めることが できる。 なお、 受光系 9内にダイクロイツクミラー 2 6がなく、 受光センサ 2 3が 1つしか配置されていない場合には、 波長選択フィルタ 2 4により第 1の波長の検 出光 L 1 と第 2の波長の検出光 L 2とをそれぞれ交互に基板 P表面に入射させるよ うにすればよい。 次に、 図 7を参照しながら A F検出装置 1 0 0の第 3実施形態について説明する c 図 7に示す A F検出装置 1 0 0において、 送光系 8及び受光系 9はそれぞれ 1つず つ設けられている。 そして、 本実施形態の特徴部分は、 送光系 8に瞳分割板 2 5が 設けられている点である。 送光系 8は、 光源 1 0と、 送光スリット 1 1 と、 非点収 差補正用シリンドリカルレンズ 1 2と、 リレーレンズ 1 3と、 光路折り曲げミラー 1 4と、 収差補正用平面板 1 5と、 対物レンズ 1 6と、 対物レンズ 1 6の光路下流 側近傍に設けられた瞳分割板 2 5とを備えている。 受光系 9は、 投影光学系 P Lを 介した反射光が入射される対物レンズ 1 7と、 収差補正用平面板 1 8と、 所定の周 期で振動する振動ミラ一 1 9と、 リレーレンズ 2 0と、 非点収差補正用シリンドリ カルレンズ 2 1 と、 スリヅ 卜状の開口部を有する受光スリッ 卜 2 2と、例えばシリ コン■ フォト ' ダイォードからなる受光センサ 2 3とを備えている。 瞳分割板 2 5は所定の開口部 2 5 Aを有するものであって、 瞳分割板 2 5に照射 される光束の一部を開口部 2 5 Aを介して通過させる。 すなわち、 図 8 ( a ) 、 ( b ) に簡易的に示すように、 瞳分割板 2 5を送光系の光軸と垂直方向に移動して 光束を瞳分割することで、 基板 Pの表面 Sに対する検出光の入射角を互いに異なる 入射角 0ぃ 0 2に設定し、 それぞれに対応する反射光 L 1 rと L 2 rとを受光セ ンサ 2 3で検出することによって、 第 1実施形態同様に、 液体 5 0の屈折率情報を 求めることができる。 また、 図 8 ( a ) と図 8 ( b ) との状態を交互に繰り返すこ とによって、 (まぼリアルタイムに液体 5 0の屈折率情報を求めることができる。 第 3実施形態においても、 瞳分割板 2 5を配置することで、 第 2実施形態同様に、 1 つの送光系 8及び受光系 9であっても、 複数の検出光を異なる入射角で基板 Pに投 射することができる。 なお、 瞳分割板を受光系 9の基板 Pと対物レンズ 1 7との間 に設けて、 迷光などの外乱を防止するようにしてもよい。 なお、 上述の実施形態においては、 A F検出装置 1 0 0を用いて光学的に検出さ れた液体 5 0の温度情報 (屈折率情報) に基づいて、 パターンの像の最適像面と基 板 Pの表面 Sとの関係を調整したり、 基板 P上に投影されるパターン像の調整を行 つたりしているが、 その検出された温度情報に基づいて、 液体供給装置 1から供給 される液体の温度を制御するようにしてもよい。 これにより投影光学系 P Lと基板 Pとの間の液体 5 0の温度 (屈折率) 最適化することが可能となる。 また、 上述の実施形態においては、 被検面として基板 Pの表面に検出光を投射す るようにしているが、 基板 Pの表面に限らず、 例えば基板ステージ P S T上に形成 されている基準平面やセンサの上面を被検面として検出光を投射するようにしても よい。 また、 上述の実施形態においては、 マスク Mのパターンの像が投影される投影領 域の中央付近に検出光を投射するようにしているが、 投影領域の外側に検出光を投 射するようにしてもよい。 また、 上述の実施形態においては、 A F検出装置 1 0 0は、 2つの検出光を被検 面上に投射しているが、 2つに限らず、 3つ以上でよいことは言うまでもない。 こ の場合は、 複数の屈折率変化情報 (温度変化情報) を得ることができるので、 これ らの平均値などを算出することで、 より正確な屈折率変化情報 (温度変化情報) を 得ることが可能となる。 なお、 上述の実施形態の基板 Pとしては、 半導体デバイス製造用の半導体ウェハ のみならず、 ディスプレイデバイス用のガラス基板や、 薄膜磁気へッド用のセラミ ヅクウェハ、 あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石 英、 シリコンウェハ) 等が適用される。 露光装置 EXとして、 マスク Mと基板 Pとを同期移動してマスク Mのパターンを 走査露光するステップ'アンド 'スキャン方式の走査型露光装置 (スキャニングス テツパ) の他に、 マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括 露光し、 基板 Pを順次ステップ移動させるステップ.アンド . リビー卜方式の投影 露光装置 (ステツパ) にも適用することができる。 また、 本発明は基板 P上で少な <とも 2つのパターンを部分的に重ねて転写するステップ .アンド ·スティツチ方 式の露光装置にも適用できる。 また、 本発明は、 ツインステージ型の露光装置にも適用できる。 ツインステージ 型の露光装置の構造及び露光動作は、 例えば特開平 1 0— 1 63099号及び特開 平 1 0— 214783号 (対応米国特許 6 , 341 , 007、 6, 400, 441、 6, 549, 269及び 6, 590 , 634 ) 、 特表 2000— 505958号 (対応米国特許 5, 969, 441 ) あるいは米国特許 6, 208, 407に開示 されており、 本国際出願で指定または選択された国の法令で許容される限りにお いて、 それらの開示を援用して本文の記載の一部とする。 また、 上述の実施形態では、 投影光学系 P Lと基板 Pとの間に局所的に液体を満 たす露光装置を採用している力 露光対象の基板を保持したステージを液槽の中で 移動させる液浸露光装置や、 ステージ上に所定深さの液体槽を形成しその中に基板 を保持する液浸露光装置にも本発明を適用可能である。露光対象の基板を保持した ステージを液槽の中で移動させる液浸露光装置の構造及び露光動作については、 例えば特開平 6— 1 24873号公報に、 ステージ上に所定深さの液体槽を形成し てその中に基板を保持する液浸露光装置については、 例えば特開平 1 0— 3031 W 1) o control unit CONT determines the difference between the focus position Z and Z 2, which is detected (Z one Z 2), detecting the difference of the focus position stored in advance (Ζ - Ζζ) and the refractive index of the liquid 50 The refractive index change amount Δη of the liquid 50 is determined based on the relationship information with the change amount Δη (step S2). Further, the controller CONT corrects the focus position Ζ, based on the first detection light L1 obtained in step S1, based on the refractive index change amount Δη obtained in step S2. Specifically, using the previously stored equations (3) and (4), the incident angle change, which is caused by the refractive index change Δη obtained in step S2, is calculated, and based on that, Then, a detection error amount Ad of the focus position by the first detection light L1 is obtained. Then, based on the detection error amount Δο ^, the focus position の of the substrate Ρ surface detected using the first detection light L 1 is corrected, and the actual focus position (surface position information of the substrate Ρ surface) is corrected. ) (Step S3). Then, the control unit CONT drives the substrate stage PST based on the corrected surface position information of the substrate P so that the surface of the substrate P obtained by the correction coincides with the image plane, and thereby drives the image plane. The positional relationship between the substrate and the surface S of the substrate P is adjusted (step S4). Here, the case where the thickness d of the liquid 50 is 1 mm has been described, but the above-described relationship corresponding to a plurality of thicknesses d is stored in the control device CONT in advance. In addition, here, the liquid 50 is pure water, but the above-described relationship according to the liquid to be used is stored in advance. The first detection light L 1 to use with the detected focus position rather name in Z, even with correct the focus position Z 2 which is detected using a second detection light L 2 Good. However, since the detection sensitivity and the detection resolution are higher when the incident angle is larger, it is better to use the second detection light L2 as the main detection light and use the first detection light L1 as the detection light for the camera. desirable. Meanwhile, in order to determine accurately the refractive index information, the incident angle of 0, the difference between the incident angle 0 2 it is desirable as large as possible. On the other hand, when the incident angle with respect to the surface S of the substrate P decreases, the position detection accuracy of the substrate P in the Z-axis direction decreases. Therefore, it is preferable that the incident angles of the detection lights L1 and L2 with respect to the substrate P surface satisfy the condition of 30 ° ≤0 <90 °, respectively. In order to obtain a sufficient amount of reflected light on the surface S of the substrate P, more preferably, the incident angles of the detection lights L1 and L2 with respect to the surface of the substrate P are respectively 70 ° 0 <90 °. Preferably, the condition is satisfied. That is, as shown in the graph of FIG. 4, if the incident angle is 70 ° or more, the error amount is large <changes with respect to the change in the incident angle, so that the temperature change of the liquid 50 (the refractive index change) ) Can be detected sensitively. Furthermore, as in the present embodiment, when the surface position of the surface of the substrate P is detected via the liquid (water), the detection light is emitted, and the refractive index of the liquid (water) with respect to L 1 and the surface of the substrate P are detected. The difference from the refractive index of the photosensitive material (resist) becomes small, and the irradiated detection light may not be sufficiently reflected on the surface of the photosensitive material, and the light amount (light intensity) of the light received by the light receiving sensor may decrease. In addition to this, there is a possibility that a part of the irradiated detection light passes through the photosensitive material and reaches the ground below the photosensitive material, and the reflected light from the ground surface is received by the light receiving sensor as a noise component. is there. Therefore, the difference between the refractive index of the liquid (water) for the detection light L1 and L2 and the refractive index of the photosensitive material (resist) on the substrate P surface, the reflectance on the photosensitive material surface, and the noise from the ground under the photosensitive material Considering the influence of light and the like, it is desirable that the incident angles of the detection light 1 and L 2 are respectively 84 ° <0 <90 °. When the image plane matches the surface S of the substrate P in this way, the controller CONT illuminates the mask M with the exposure light EL, and transfers the pattern of the mask M to the substrate P via the projection optical system PL. . During the exposure process, if the refractive index of the liquid 50 fluctuates due to a temperature change, when the pattern of the mask M is transferred to the substrate P via the projection optical system PL and the liquid 50, the pattern transferred to the substrate P An error may occur in the image. For example, with the change in the refractive index of the liquid 50, various aberrations such as the scaling of the notched image transferred to the substrate P fluctuate compared to before the change in the refractive index, or the image plane position is changed. It may be fluctuating. The controller CONT does not generate an error in the image of the pattern transferred to the substrate P based on the refractive index change amount (or temperature change amount) of the liquid 50 obtained using the AF detection device 100. In this way, the image of the pattern is adjusted using the imaging characteristic adjustment device PLC. C For example, as the refractive index of the liquid 50 changes, the image plane position of the projection optical system PL shifts in the Z-axis direction. In this case, by driving some optical elements in the projection optical system PL, moving the mask, or adjusting the wavelength of the exposure light EL, the pattern passing through the projection optical system PL and the liquid 50 is adjusted. Match the image plane with the surface S of the substrate P. Similarly, when various aberrations such as pattern image scaling and distortion fluctuate due to a change in the refractive index (temperature change) of the liquid 50, the mask M is similarly moved in the Z-axis direction or the tilt J direction. Direction, drive some optical elements in the projection optical system PL, or adjust the wavelength of the exposure light EL to change the refractive index (temperature change) of the liquid 50. Is adjusted so that no error occurs in the image. As described above, even if the refractive index on the optical path of the detection light changes, by projecting the two detection lights L 1 and L 2 onto the surface S of the substrate P at different incident angles 0 ぃ 0 2 , Based on each detection light 1 and L 2, it is possible to determine the refractive index of the liquid existing on the optical path of the detection light using the measurement error of the surface position information. Therefore, the detected surface position information can be corrected based on the obtained refractive index information, so that the surface position information of the surface S of the substrate P can be detected with high accuracy. In the above-described embodiment, since the incident angles 0, θ2 of the two detection lights L1, L2 exceed 80 °, the refractive index of the liquid 50 is set to simplify the description. When substrate Ρ moves in the Ζ-axis direction without any change (temperature change), reflected light L 1 r is received. Although it has been described that the amount of displacement of the reflected light L 2 r in the direction perpendicular to the optical axis of the light receiving system is the same as the amount of displacement in the direction perpendicular to the optical axis of the system, but strictly speaking, the two detection light L 1 since the incident angle theta ,, theta 2 of L 2 are different, in the absence of refractive index change (temperature change) in the liquid 50, when the substrate Ρ is moved in Ζ axially receiving the reflected light was 1 r The amount of deviation in the direction perpendicular to the optical axis of the system and the amount of reflected light are different from the amount of deviation of 2r in the direction perpendicular to the optical axis of the light-receiving system (however, the ratio of the deviations si η Θ / sin 0 2 is constant ). In such a case, the amount of deviation of the reflected light L 1 r in the direction perpendicular to the optical axis of the light receiving system due to the amount of deviation of the substrate P in the Z direction and the amount of deviation of the reflected light L 2 r perpendicular to the optical axis of the light receiving system The relationship with the amount of deviation in the appropriate direction (for example, si η Θ ^ / sin Θ 2 ) is determined in advance, and if the measurement result based on the actual reflected light is different from the relationship determined in advance, the liquid It is sufficient to judge that a temperature change (refractive index change) of 50 has occurred. As described above, pure water is used as the liquid 50 in the present embodiment. Pure water has the advantage that it can be easily obtained in large quantities at a semiconductor manufacturing plant or the like, and that it has no adverse effect on the photoresist on the substrate P, optical elements (lenses), and the like. In addition, pure water has no adverse effect on the environment and has an extremely low impurity content, so it is expected to have the effect of cleaning the surface of the substrate P and the surface of the optical element provided on the front end surface of the projection optical system PL. can c Then, the refractive index n is almost 1 in pure water (water) wavelength with respect to the exposure light EL of about 1 93 nm. 44~1. it is said that about 47, a r F as the light source of the exposure light EL When excimer laser light (wavelength 193 nm) is used, the wavelength is shortened to 1 / n on the substrate P, that is, about 131-134 nm, and high resolution is obtained. Furthermore, since the depth of focus is expanded to about n times, that is, about 1.44-1.47 times as compared to that in the air, if it is sufficient to secure the same depth of focus as when using it in the air, However, the numerical aperture of the projection optical system PL can be further increased, and the resolution is improved in this respect as well. In the present embodiment, a plane-parallel plate capable of transmitting the exposure light EL is provided on the distal end surface 7 of the projection optical system PL as described above. This plane-parallel plate is detachably (exchangeably) attached to the front end face of the projection optical system PL. The optical element in contact with the liquid 50 By using a plane-parallel plate that is cheaper than the lens, the transmittance of the projection optical system PL, the illuminance of the exposure light EL on the substrate P, and the uniformity of the illuminance distribution during transportation, assembly, and adjustment of the exposure apparatus EX Even if a substance to be reduced (for example, a silicon-based organic substance) adheres to the plane-parallel plate, it is sufficient to replace the plane-parallel plate just before supplying the liquid 50, and to replace the optical element that comes into contact with the liquid 50. There is an advantage that the replacement cost is lower than when a lens is used. That is, the surface of the optical element that comes into contact with the liquid 50 is contaminated due to scattered particles generated from the registry by exposure to the exposure light EL, or the adhesion of impurities in the liquid 50. By replacing this optical element with an inexpensive plane-parallel plate, the cost of replacement parts and the time required for replacement can be reduced as compared with a lens, and maintenance costs can be reduced. (Running cost) and a decrease in throughput can be suppressed. Of course, a lens may be used as the optical element attached to the front end surface of the projection optical system PL. Further, the optical element attached to the front end surface of the projection optical system PL may be an optical plate used for adjusting the optical characteristics of the projection optical system PL, for example, aberrations (spherical aberration, coma aberration, etc.). At the tip of the projection optical system PL, only the optical elements (parallel plane plates and lenses) are brought into contact with the liquid 50 and the lens barrel PK is not contacted, so that the metal lens barrel PK can be used. Corrosion and the like are prevented. If the pressure between the optical element at the tip of the projection optical system PL and the substrate P caused by the flow of the liquid 50 is large, the optical element is not replaced by the optical element, but the optical element is changed by the pressure. You may fix firmly so that it may not move. In the present embodiment, an example has been described for projecting on the surface S of the base plate P 2 two detection light is 1, L 2 at different incident angles 0 2, the number of detection light projected at different angles of incidence from each other Can project not only two light beams but also any three or more light beams. When passing the detection lights L1 and L2 through a part of the projection optical system, only one of the plurality of optical elements constituting the projection optical system PL that is closest to the substrate P passes through. Alternatively, a plurality of optical elements may be passed. In the present embodiment, the space between the front end surface 7 of the projection optical system PL and the surface S of the substrate P is filled with the liquid 50, for example, from the plane parallel to the surface S of the substrate P. A configuration in which the liquid 50 is filled with a cover glass attached may be used. In this case, the detection lights L 1 and L 2 from the light transmitting system 8 are transmitted to the surface S of the substrate P via a cover glass as a light transmitting member in addition to a part of the projection optical system PL and the liquid 50. It will be projected. In the present embodiment, the case where the space 50 between the front end surface 7 of the projection optical system PL and the surface S of the substrate P is filled with the liquid 50 has been described as an example. The present invention can of course be applied to a case where the liquid 50 is not present and the space 56 is filled with a gas such as air. In this case, the refractive index information of the gas in the space 56 can be detected based on the detection light projected on the surface S of the substrate P at a plurality of different incident angles. Then, based on this detection light, it is possible to detect a temperature change of the gas in the space 56. Further, substances other than the liquid (water) 50 and air may exist on the optical path of the detection light including the space 56. For example, an optical element (glass, lens) capable of transmitting light or a liquid other than water, such as a fluorine-based (fluorine-based liquid) or perfluorinated polyether (PFPE) oil, may be present. In particular, when vacuum ultraviolet light such as F 2 laser light is used as the exposure light, it is preferable to use a fluorine-based oil that can transmit the vacuum ultraviolet light as the liquid. Also in this case, based on the detection light projected on the surface S of the substrate, it is possible to detect a refractive index Δf report including a temperature change of, for example, an optical element or a fluorine-based element existing on the optical path. According to the principle of the present invention, a change in temperature of a substance can be obtained through a change in refractive index. Therefore, the present invention can be used for a method of measuring a change in temperature of a fluid such as a gas or a liquid having light transmittance and a solid. it can. In particular, the method of the present invention is effective in a small area where temperature measurement is difficult with a normal temperature sensor, a high-temperature atmosphere, a high-pressure atmosphere, an atmosphere having high corrosiveness, and the like. In the present embodiment, the detection light beams L1 and L2 pass through the projection optical system PL, but the refractive index of the projection optical system PL also slightly changes with a change in temperature. In this case as well, the error amount based on each of the plurality of detected light beams having different incident angles is obtained, so that the projection optical system P Temperature change (refractive index change) can be obtained. Next, a second embodiment of the AF detection apparatus 100 will be described with reference to FIG. In the following description, the same or equivalent components as those in the first embodiment described with reference to FIG. 2 are denoted by the same reference numerals, and the description thereof will be simplified or omitted. In the AF detection apparatus 100 shown in FIG. 6, one light transmitting system 8 and one light receiving system 9 are provided. The feature of the present embodiment is that the light transmission system 8 is provided with a wavelength selection filter 24. The light transmission system 8 includes a light source 10, a wavelength selection filter 24 provided downstream of the light path of the light beam emitted from the light source 10, a light transmission slit 11, and a cylindrical lens for astigmatism correction. 12, a relay lens 13, an optical path bending mirror 14, an aberration correction plane plate 15, and an objective lens 16. The light receiving system 9 includes an objective lens 17 to which the reflected light from the projection optical system PL enters, a plane plate 18 for correcting aberration, a vibration mirror 19 that vibrates at a predetermined cycle, and a relay lens. 20, a cylindrical lens 21 for astigmatism correction, a dichroic mirror 26, a light receiving slit 22a, 22b having a slit-shaped opening, for example, silicon. A light receiving sensor 23a, 23b made of a die is provided. The wavelength selection filter 24 can set the wavelength of the detection light projected on the liquid 50 and the substrate P. That is, the light transmission system 8 can project a plurality of detection lights having different wavelengths onto the surface S of the substrate P by the wavelength selection filter 24. For example, a first detection light L 1 having a first wavelength and a second detection light L 2 having a second wavelength different from the first wavelength enter the liquid 50 from the projection optical system PL. Angle of refraction is different. Therefore, the angles of incidence of the first and second detection lights L1 and L2 having different wavelengths from each other when they pass through the respective liquids 50 and are projected onto the substrate P are different from each other. For example, when the liquid 50 is water, a C line (wavelength 656.3 ηm) is projected as the first detection light L 1, and a d line (wavelength 587.6) is used as the second detection light L 2. nm) is projected. When the incident angle of the d-line to the surface S of the substrate P is 80 degrees, The difference between the d-line and the C-line with respect to the surface S of the substrate P is 0.14 degrees. The light reflected on the surface of the substrate P is referred to as “1”, and “2r” is incident on the light receiving system 9 respectively. Then, the reflected light L 1 r transmitted through the dichroic mirror 26 in the light receiving system 9 is the light receiving sensor 2 3 The incident light is incident on a and reflected by the dichroic mirror 26. The reflected light 2r is incident on the light receiving sensor 23. The detection results of the light receiving sensors 23a and 23b are output to the control device CONT. As in the first embodiment, it is possible to obtain the refractive index information of the liquid 50. In the case where there is no dichroic mirror 26 in the light receiving system 9 and only one light receiving sensor 23 is arranged. In this case, the detection light L 1 of the first wavelength and the detection light L 2 of the second wavelength may be alternately incident on the surface of the substrate P by the wavelength selection filter 24. Next, FIG. Referring while AF detection shown in c Figure 7 illustrating a third embodiment of the AF detection device 1 0 0 In the apparatus 100, one light-sending system 8 and one light-receiving system 9 are provided, respectively, and a feature of the present embodiment is that the light-sending system 8 is provided with a pupil splitting plate 25. The light transmission system 8 includes a light source 10, a light transmission slit 11, a cylindrical lens 12 for astigmatism correction, a relay lens 13, an optical path bending mirror 14, and an aberration correction It comprises a plane plate 15, an objective lens 16, and a pupil splitting plate 25 provided near the downstream side of the optical path of the objective lens 16. The light receiving system 9 is a light reflected via the projection optical system PL. An objective lens 17 into which light is incident, a plane plate 18 for aberration correction, a vibration mirror 19 vibrating at a predetermined period, a relay lens 20, a cylindrical lens 21 for astigmatism correction, A light receiving slit 22 having a slit-like opening and, for example, a silicon photo diode The pupil splitting plate 25 has a predetermined opening 25 A, and a part of the light beam applied to the pupil splitting plate 25 is formed by the opening 25 A. That is, as shown in FIGS. 8 (a) and 8 (b), the pupil splitting plate 25 is moved in the direction perpendicular to the optical axis of the light transmission system to split the luminous flux. and I have the incident angle of detection light on the different incident angles 0 I 0 2 together with respect to the surface S of the substrate P, receiving a reflected light L 1 r and L 2 r corresponding to each cell By detecting with the sensor 23, the refractive index information of the liquid 50 can be obtained as in the first embodiment. Also, by alternately repeating the states shown in FIGS. 8 (a) and 8 (b), (the refractive index information of the liquid 50 can be obtained in real time. By arranging the split plate 25, similarly to the second embodiment, even with one light transmission system 8 and one light reception system 9, a plurality of detection lights can be projected onto the substrate P at different incident angles. It should be noted that a pupil splitting plate may be provided between the substrate P of the light receiving system 9 and the objective lens 17 to prevent disturbance such as stray light. Based on the temperature information (refractive index information) of the liquid 50 optically detected using 100, the relationship between the optimal image plane of the pattern image and the surface S of the substrate P can be adjusted, Adjustment of the pattern image projected on the substrate P, but based on the detected temperature information Thus, the temperature of the liquid supplied from the liquid supply device 1 may be controlled, whereby the temperature (refractive index) of the liquid 50 between the projection optical system PL and the substrate P can be optimized. In the above-described embodiment, the detection light is projected on the surface of the substrate P as the surface to be detected, but is not limited to the surface of the substrate P, and may be formed on, for example, a substrate stage PST. Alternatively, the detection light may be projected using the reference plane or the upper surface of the sensor as a surface to be detected, In the above-described embodiment, the detection light is detected near the center of the projection area where the image of the pattern of the mask M is projected. Although the light is projected, the detection light may be projected outside the projection area In the above-described embodiment, the AF detection device 100 receives the two detection lights. Projected on the surface, but not limited to two, three In this case, since a plurality of pieces of refractive index change information (temperature change information) can be obtained, a more accurate refractive index change can be obtained by calculating an average value of the information. Information (temperature change information) can be obtained. The substrate P in the above embodiment is not limited to a semiconductor wafer for manufacturing a semiconductor device, but may be a glass substrate for a display device, a ceramic wafer for a thin-film magnetic head, or a mask or reticle used in an exposure apparatus. Of the original (Eng synthetic stone, silicon wafer) etc. are applied. As the exposure apparatus EX, in addition to the step-and-scan type scanning exposure apparatus (scanning stepper) that scans and exposes the pattern of the mask M by synchronously moving the mask M and the substrate P, the mask M and the substrate P It can also be applied to a step-and-repetition type projection exposure apparatus (stepper) in which the pattern of the mask M is exposed collectively while the substrate is stationary, and the substrate P is sequentially moved stepwise. The present invention can also be applied to a step-and-stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on a substrate P. The present invention is also applicable to a twin-stage type exposure apparatus. The structure and exposure operation of a twin-stage type exposure apparatus are described, for example, in Japanese Patent Application Laid-Open Nos. 10-163099 and 10-214783 (corresponding US Pat. Nos. 6,341,007, 6,400,441,6,549). , 269 and 6,590,634), International Patent Publication No. 2000-505958 (corresponding U.S. Pat. No. 5,969,441) or U.S. Pat. No. 6,208,407, which are designated or selected in this international application. To the extent permitted by applicable law, those disclosures are incorporated by reference into the text. In the above-described embodiment, the exposure device that locally fills the liquid between the projection optical system PL and the substrate P is used. The stage holding the substrate to be exposed is moved in the liquid tank. The present invention is also applicable to an immersion exposure apparatus for forming a liquid tank having a predetermined depth on a stage and holding a substrate therein. Regarding the structure and exposure operation of an immersion exposure apparatus that moves a stage holding a substrate to be exposed in a liquid tank, for example, a liquid tank having a predetermined depth is formed on a stage in Japanese Unexamined Patent Application Publication No. 6-124873. A liquid immersion exposure apparatus that holds a substrate therein is disclosed in, for example, Japanese Patent Laid-Open No. W
1 4号公報や米国特許第 5 , 825, 043にそれぞれ開示されており、 本国際 出願で指定または選択された国の法令で許容される限りにおいて、 これらの文献 の開示を援用して本文の記載の一部とする。 露光装置 E Xの種類としては、 基板 Pに半導体素子ノ \°夕一ンを露光する半導体素 子製造用の露光装置に限られず、 液晶表示素子製造用又はデイスプレイ製造用の露 光装置や、 薄膜磁気へヅド、 撮像素子 (CCD) あるいはレチクル又はマスクなど を製造するための露光装置などにも広く適用できる。 基板ステージ P STやマスクステージ MS Tにリニアモータを用いる場合は、 ェ アベァリングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用い た磁気浮上型のどちらを用いてもよい。 また、 各ステージ PST、 MSTは、 ガイ ドに沿って移動するタイプでもよく、 ガイ ドを設けないガイ ドレスタイプであって もよい。 ステージにリニアモー夕を用いた例は、 米国特許 5, 623, 853及び 5, 528, 1 1 8に開示されており、 それぞれ本国際出願で指定または選択さ れた国の法令で許容される限りにおいて、 これらの文献の記載内容を援用して本 文の記載の一部とする。 各ステージ P ST、 MS Tの駆動機構としては、 二次元に磁石を配置した磁石ュ ニッ 卜と、 二次元にコイルを配置した電機子ュニッ卜とを対向させ電磁力により各 ステージ P S T、 MS Tを駆動する平面モー夕を用いてもよい。 この場合、 磁石ュ ニヅ卜と電機子ュニヅ卜とのいずれか一方をステージ P S T、 MSTに接続し、 磁 石ユニットと電機子ュニヅ 卜との他方をステージ P S T、 M S Τの移動面側に設け ればよい。 基板ステージ P S Τの移動により発生する反力は、 投影光学系 P Lに伝わらない ように、 フレーム部材を用いて機械的に床 (大地) に逃がしてもよい。 この反力の 処理方法は、 例えば、 米国特許 5 , 528, 1 1 8 (特開平 8— 1 66475号公 報) に詳細に開示されており、 本国際出願で指定または選択された国の法令で許 容される限りにおいて、 この文献の記載内容を援用して本文の記載の一部とする。 マスクステージ M S Tの移動により発生する反力は、 投影光学系 P Lに伝わらな いように、 フレーム部材を用いて機械的に床 (大地) に逃がしてもよい。 この反力 の処理方法は、 例えば、 米国特許第 5 , 8 7 4 , 8 2 0 (特開平 8— 3 3 0 2 2 4号 公報) に詳細に開示されており、 本国際出願で指定または選択された国の法令で 許容される限りにおいて、 この文献の開示を援用して本文の記載の一部とする。 以上のように、 本願実施形態の露光装置 E Xは、 本願特許請求の範囲に挙げられ た各構成要素を含む各種サブシステムを、 所定の機械的精度、 電気的精度、 光学的 精度を保つように、 組み立てることで製造される。 これら各種精度を確保するため に、 この組み立ての前後には、 各種光学系については光学的精度を達成するための 調整、 各種機械系については機械的精度を達成するための調整、 各種電気系につい ては電気的精度を達成するための調整が行われる。各種サブシステムから露光装置 への組み立て工程は、 各種サブシステム相互の、 機械的接続、 電気回路の配線接続、 気圧回路の配管接続等が含まれる。 この各種サブシステムから露光装置への組み立 て工程の前に、 各サブシステム個々の組み立て工程があることは言うまでもない。 各種サブシステムの露光装置への組み立て工程が終了したら、 総合調整が行われ、 露光装置全体としての各種精度が確保される。 なお、 露光装置の製造は温度及びク リーン度等が管理されたクリーンルームで行うことが望ましい。 半導体デバイス等のマイクロデバイスは、 図 9に示すように、 マイクロデバイス の機能 ·性能設計を行うステップ 2 0 1、 この設計ステップに基づいたマスク (レ チクル) を製作するステップ 2 0 2、 デバイスの基材である基板を製造するステヅ プ 2 0 3、 前述した実施形態の露光装置 E Xによりマスクのパターンを基板に露光 する露光処理ステップ 2 0 4、 デバイス組み立てステップ (ダイシング工程、 ボン ディング工程、 パッケージ工程を含む) 2 0 5、 検査ステップ 2 0 6等を経て製造 される。 産業上の利用可能性 検出光の光路上の屈折率が変化しても、 検出光として複数の光を異なる入射角で 被検面に投射することにより、 これら各検出光に基づ〈面位置情報のそれぞれは互 いに異なる測定誤差を示すので、 これら測定誤差の差に基づいて光路上の屈折率情 報を求めることができる。 したがって、 求めた屈折率情報で検出した面位置情報を 補正することができるので、 被検面の面位置情報を精度良く求めることができる。 No. 14 and U.S. Pat.No. 5,825,043, respectively, and to the extent possible under the laws of the country designated or selected in this international application, the disclosures of these documents are incorporated by reference. Part of the description. The type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element to the substrate P, but may be an exposure apparatus for manufacturing a liquid crystal display element or a display, or a thin film. It can be widely applied to magnetic heads, imaging devices (CCD) or exposure equipment for manufacturing reticles or masks. When a linear motor is used for the substrate stage PST or the mask stage MST, any of an air levitation type using air bearing and a magnetic levitation type using Lorentz force or reactance force may be used. In addition, each of the stages PST and MST may be of a type that moves along a guide or a guideless type that does not have a guide. Examples of using linear motors for the stages are disclosed in U.S. Patent Nos. 5,623,853 and 5,528,118, each of which is permitted by the laws of the country designated or selected in this international application. At this point, the contents of these documents will be incorporated as part of the description in this document. The drive mechanism for each of the stages PST and MST is as follows: a magnet unit having a two-dimensionally arranged magnet and an armature unit having a two-dimensionally arranged coil are opposed to each other, and each stage PST, MST is driven by electromagnetic force. May be used. In this case, one of the magnet unit and the armature unit is connected to the stages PST and MST, and the other of the magnet unit and the armature unit is provided on the moving surface side of the stages PST and MS. Just do it. The reaction force generated by the movement of the substrate stage PSΤ may be mechanically released to the floor (ground) using a frame member so as not to be transmitted to the projection optical system PL. The method of handling this reaction force is disclosed in detail in, for example, US Pat. No. 5,528,118 (Japanese Patent Application Laid-Open No. 8-166475), and the laws and regulations of the country designated or selected in this international application are described. Forgive To the extent permitted, the content of this document is incorporated herein by reference. The reaction force generated by the movement of the mask stage MST may be mechanically released to the floor (ground) using a frame member so as not to be transmitted to the projection optical system PL. The method of handling this reaction force is disclosed in detail in, for example, U.S. Pat. No. 5,874,820 (Japanese Patent Application Laid-Open No. H8-330224). To the extent permitted by the laws of the selected country, the disclosure of this document is incorporated by reference into this text. As described above, the exposure apparatus EX of the embodiment of the present invention controls various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical systems were performed before and after this assembly. Adjustments are made to achieve electrical accuracy. The process of assembling the exposure apparatus from various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. It goes without saying that there is an individual assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustments are made to ensure various precisions of the entire exposure apparatus. It is desirable that the exposure apparatus be manufactured in a clean room in which the temperature, the degree of cleanliness, and the like are controlled. As shown in Fig. 9, a micro device such as a semiconductor device has a step 201 for designing the function and performance of the micro device, a step 202 for fabricating a mask (reticle) based on this design step, and a Step 203 for manufacturing a substrate as a base material, Step 204 for exposing a mask pattern to the substrate using the exposure apparatus EX of the above-described embodiment, Step for assembling a device (dicing step, bonding step, package It is manufactured through 205, inspection steps 206, etc. Industrial applicability Even if the refractive index on the optical path of the detection light changes, multiple light beams are projected as detection light at different incident angles to the surface to be detected, and based on each of these detection lights, the <surface position Since each piece of information shows a different measurement error, the refractive index information on the optical path can be obtained based on the difference between these measurement errors. Therefore, since the detected surface position information can be corrected by the obtained refractive index information, the surface position information of the test surface can be obtained with high accuracy.

Claims

請求の範囲 The scope of the claims
1 . 検出光を被検面に投射するとともに、 その被検面からの反射光を受光するこ とによって得られる情報に基づいて、 被検面の面位置を検出する面位置検出装置で あって、 1. A surface position detection device that projects detection light onto a surface to be detected and detects the surface position of the surface to be detected based on information obtained by receiving reflected light from the surface to be detected. ,
検出光として、 複数の光を異なる入射角で被検面に投射する送光系と; 被検面からの反射光を受光する受光系と;を備える面位置検出装置。  A surface position detection device comprising: a light transmission system that projects a plurality of light beams at different angles of incidence onto a test surface as detection light; and a light reception system that receives light reflected from the test surface.
2 . 検出光を被検面に投射するとともに、 その被検面からの反射光を受光するこ とによって得られる情報に基づいて、 被検面の面位置を検出する面位置検出装置で あって: 2. A surface position detection device that projects detection light onto a surface to be detected and detects the surface position of the surface to be detected based on information obtained by receiving reflected light from the surface to be detected. :
検出光として、 波長の異なる複数の光を被検面に投射する送光系と ; 被検面からの反射光を受光する受光系と;を備える面位置検出装置。  A surface position detection device comprising: a light transmission system that projects a plurality of lights having different wavelengths onto a surface to be detected as detection light; and a light reception system that receives light reflected from the surface to be measured.
3 . 前記検出光は、 光透過部材を介して前記被検面に投射される請求項 1 または 2に記載の面位置検出装置。 3. The surface position detecting device according to claim 1, wherein the detection light is projected onto the surface to be detected via a light transmitting member.
4 . 前記検出光は、 液体を介して前記被検面に投射される請求項 3に記載の面位 置検出装置。 4. The surface position detection device according to claim 3, wherein the detection light is projected onto the surface to be detected via a liquid.
5 . 前記検出光は、 液体を介して前記被検面に投射される請求項 1 または 2に記 載の面位置検出装置。 5. The surface position detecting device according to claim 1, wherein the detection light is projected onto the surface to be detected via a liquid.
6 . マスクのパターンを投影光学系を介して基板上に投影して前記基板を露光す る露光装置に搭載され、 前記投影光学系の像面と前記基板表面との位置関係を制御 するために前記被検面としての前記基板表面に前記検出光を投射して前記基板表面 の面位置情報を検出する請求項 1 または 2に記載の面位置検出装置。 6. Mounted on an exposure apparatus that exposes the substrate by projecting the pattern of the mask onto the substrate via a projection optical system, and controlling a positional relationship between an image plane of the projection optical system and the substrate surface. 3. The surface position detecting device according to claim 1, wherein the detection light is projected onto the surface of the substrate as the surface to be detected to detect surface position information of the substrate surface.
7 . マスクのパターンの像を投影光学系により基板上に投影して、.基板を露光す る露光方法であって: 7. Project the image of the mask pattern onto the substrate using the projection optical system, and expose the substrate. Exposure method:
基板表面に複数の検出光を異なる入射角で投射するとともに、 基板表面からの反 射光を受光することによって、 検出光及び反射光の光路の屈折率情報を検出するこ とと;  Projecting a plurality of detection lights on the substrate surface at different incident angles and receiving reflected light from the substrate surface to detect refractive index information of optical paths of the detection light and the reflected light;
マスクのパターンの像を投影光学系により基板上に投影することと;を含む露光 方法。  Projecting an image of a pattern of a mask onto a substrate by a projection optical system.
8. 前記複数の検出光の入射角 0はそれぞれ 30° ≤0<90° の条件を満た す請求項 7に記載の露光方法。 8. The exposure method according to claim 7, wherein the incident angles 0 of the plurality of detection lights each satisfy a condition of 30 ° ≤0 <90 °.
9. 前記複数の検出光の入射角 0はそれぞれ 70° 0<90° の条件を満た す請求項 8に記載の露光方法。 9. The exposure method according to claim 8, wherein the incident angles 0 of the plurality of detection lights each satisfy a condition of 70 ° 0 <90 °.
1 0. マスクのパターンの像を投影光学系により基板上に投影して、 基板を露光 する露光方法であって: 10. An exposure method for projecting an image of a mask pattern onto a substrate by a projection optical system and exposing the substrate, comprising:
基板表面に波長の異なる複数の検出光を投射するとともに、 基板表面からの反射 光を受光することによって、 検出光及び反射光の光路の屈折率情報を検出すること と;  Projecting a plurality of detection lights having different wavelengths on the substrate surface and receiving reflected light from the substrate surface to detect refractive index information of the detection light and the optical path of the reflected light;
マスクのパターンの像を投影光学系を介して基板上に投影することと;を含む露 先 ¾法。  Projecting an image of a pattern of a mask onto a substrate via a projection optical system.
1 1. 前記基板からの反射光を波長毎に検出する請求項 1 0に記載の露光方法。 11. The exposure method according to claim 10, wherein the reflected light from the substrate is detected for each wavelength.
1 2. 前記屈折率情報は前記光路の温度変化を含む請求項 7または 1 0に記載の 12. The method according to claim 7, wherein the refractive index information includes a temperature change of the optical path.
1 3. 前記検出光は、 前記投影光学系に含まれる光学素子の一部を介して前記基 板表面に投射される請求項 7または 1 0に記載の露光方法。 13. The exposure method according to claim 7, wherein the detection light is projected onto the substrate surface via a part of an optical element included in the projection optical system.
1 4 . 前記屈折率情報に基づいて、 前記投影光学系の像面と前記基板表面との位 置関係を調整する請求項 7または 1 0に記載の露光方法。 14. The exposure method according to claim 7, wherein a positional relationship between an image plane of the projection optical system and the substrate surface is adjusted based on the refractive index information.
1 5 . 前記複数の検出光のうちの少な〈とも 1つで前記基板表面の面位置を検出 し、 前記複数の検出光を使つて得られる屈折率情報に基づいて前記検出された面位 置を補正する請求項 1 4に記載の露光方法。 15. A surface position of the substrate surface is detected with at least one of the plurality of detection lights, and the detected surface position is determined based on refractive index information obtained using the plurality of detection lights. 15. The exposure method according to claim 14, wherein the correction is performed.
1 6 . 前記投影光学系と前記基板表面との間には液体が存在し、 前記屈折率情報 は前記液体の屈折率情報を含む請求項 7または 1 0に記載の露光方法。 16. The exposure method according to claim 7, wherein a liquid exists between the projection optical system and the substrate surface, and the refractive index information includes refractive index information of the liquid.
1 7 . 前記液体は水である請求項 1 6に記載の露光方法。 17. The exposure method according to claim 16, wherein the liquid is water.
1 8 . 前記反射光を受光することによって前記液体の屈折率変化を検出し、 該液 体の屈折率変化によって前記パターンの像に誤差が生じないように像調整を行う請 求項 1 6に記載の露光方法。 18. The request according to claim 16, wherein a change in the refractive index of the liquid is detected by receiving the reflected light, and image adjustment is performed so that an error does not occur in the image of the pattern due to the change in the refractive index of the liquid. Exposure method as described above.
1 9 . 投影光学系により液体を介してパターンの像を基板上に投影して、 基板を 液浸露光する露光方法であって: 1 9. An exposure method in which an image of a pattern is projected onto a substrate through a liquid by a projection optical system, and the substrate is subjected to immersion exposure.
投影光学系と基板との間の少なくとも一部を液体で満たすことと;  Filling at least a portion between the projection optics and the substrate with a liquid;
投影光学系と基板との間の液体の温度情報を光学的に検出することと; 投影光学系により液体を介してパターンの像を基板上に投影することと;を含む 露光方法。  An exposure method comprising: optically detecting temperature information of a liquid between a projection optical system and a substrate; and projecting an image of a pattern on the substrate via the liquid by the projection optical system.
2 0 . 前記液体を介して前記基板表面に検出光を投射するとともに、 前記基板表 面からの反射光を前記液体を介して受光することによって、 前記液体の温度情報を 検出する請求項 1 9に記載の露光方法。 20. The temperature information of the liquid is detected by projecting detection light onto the surface of the substrate via the liquid and receiving reflected light from the surface of the substrate via the liquid. Exposure method according to 1.
2 1 . 前記反射光を受光することによって前記基板表面の面位置情報を検出する 請求項 1 9に記載の露光方法。 21. The exposure method according to claim 19, wherein surface position information of the substrate surface is detected by receiving the reflected light.
2 2 . 前記温度情報に基づいて、 前記基板上に投影されるパターンの像の結像状 態を調整する請求項 1 9に記載の露光方法。 22. The exposure method according to claim 19, wherein an imaging state of an image of a pattern projected on the substrate is adjusted based on the temperature information.
2 3 · 前記温度情報に基づいて、 前記投影光学系と前記基板との間に供給される 液体の温度を制御する請求項 1 9に記載の露光方法。 23. The exposure method according to claim 19, wherein a temperature of a liquid supplied between the projection optical system and the substrate is controlled based on the temperature information.
2 4 . 前記受光した反射光から液体の屈折率の変化を求め、 屈折率の変化に基づ いて液体の温度変化を求める請求項 2 0に記載の露光方法。 24. The exposure method according to claim 20, wherein a change in the refractive index of the liquid is obtained from the received reflected light, and a change in the temperature of the liquid is obtained based on the change in the refractive index.
2 5 . 請求項 7、 1 0または 1 9に記載の露光方法を用いるデバイス製造方法。 25. A device manufacturing method using the exposure method according to claim 7, 10 or 19.
PCT/JP2003/015736 2002-12-10 2003-12-09 Surface position detection apparatus, exposure method, and device porducing method WO2004053957A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003289272A AU2003289272A1 (en) 2002-12-10 2003-12-09 Surface position detection apparatus, exposure method, and device porducing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-357955 2002-12-10
JP2002357955 2002-12-10
JP2003-072485 2003-03-17
JP2003072485 2003-03-17

Publications (1)

Publication Number Publication Date
WO2004053957A1 true WO2004053957A1 (en) 2004-06-24

Family

ID=32510634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015736 WO2004053957A1 (en) 2002-12-10 2003-12-09 Surface position detection apparatus, exposure method, and device porducing method

Country Status (3)

Country Link
JP (1) JP2009105414A (en)
AU (1) AU2003289272A1 (en)
WO (1) WO2004053957A1 (en)

Cited By (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1486827A2 (en) * 2003-06-11 2004-12-15 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US6952253B2 (en) 2002-11-12 2005-10-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7009682B2 (en) 2002-11-18 2006-03-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7012673B2 (en) 2003-06-27 2006-03-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2006041086A1 (en) * 2004-10-13 2006-04-20 Nikon Corporation Exposure device, exposure method, and device manufacturing method
US7034917B2 (en) 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US7038760B2 (en) 2003-06-30 2006-05-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7075616B2 (en) 2002-11-12 2006-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006190971A (en) * 2004-10-13 2006-07-20 Nikon Corp Exposure apparatus, exposure method, and device manufacturing method
US7081943B2 (en) 2002-11-12 2006-07-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7110087B2 (en) 2003-06-30 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119876B2 (en) 2004-10-18 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119874B2 (en) 2003-06-27 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7133114B2 (en) 2004-09-20 2006-11-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7145630B2 (en) 2004-11-23 2006-12-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7158211B2 (en) 2003-09-29 2007-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7161663B2 (en) 2004-07-22 2007-01-09 Asml Netherlands B.V. Lithographic apparatus
US7161654B2 (en) 2004-12-02 2007-01-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7175968B2 (en) 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
US7184122B2 (en) 2003-07-24 2007-02-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7193681B2 (en) 2003-09-29 2007-03-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7193232B2 (en) 2002-11-12 2007-03-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method with substrate measurement not through liquid
US7196770B2 (en) 2004-12-07 2007-03-27 Asml Netherlands B.V. Prewetting of substrate before immersion exposure
US7199858B2 (en) 2002-11-12 2007-04-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7209213B2 (en) 2004-10-07 2007-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7224431B2 (en) 2005-02-22 2007-05-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7227619B2 (en) 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7248334B2 (en) 2004-12-07 2007-07-24 Asml Netherlands B.V. Sensor shield
US7251013B2 (en) 2004-11-12 2007-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7291850B2 (en) 2005-04-08 2007-11-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7295283B2 (en) 2004-04-02 2007-11-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7304715B2 (en) 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7317507B2 (en) 2005-05-03 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7324185B2 (en) 2005-03-04 2008-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7330238B2 (en) 2005-03-28 2008-02-12 Asml Netherlands, B.V. Lithographic apparatus, immersion projection apparatus and device manufacturing method
US7352435B2 (en) 2003-10-15 2008-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7355674B2 (en) 2004-09-28 2008-04-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US7359030B2 (en) 2002-11-29 2008-04-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7365827B2 (en) 2004-12-08 2008-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7379159B2 (en) 2004-05-03 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7378025B2 (en) 2005-02-22 2008-05-27 Asml Netherlands B.V. Fluid filtration method, fluid filtered thereby, lithographic apparatus and device manufacturing method
US7403261B2 (en) 2004-12-15 2008-07-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7405805B2 (en) 2004-12-28 2008-07-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411657B2 (en) 2004-11-17 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411658B2 (en) 2005-10-06 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411654B2 (en) 2005-04-05 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7414699B2 (en) 2004-11-12 2008-08-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7420194B2 (en) 2005-12-27 2008-09-02 Asml Netherlands B.V. Lithographic apparatus and substrate edge seal
US7423720B2 (en) 2004-11-12 2008-09-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7428038B2 (en) 2005-02-28 2008-09-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid
US7433015B2 (en) 2003-10-15 2008-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7433016B2 (en) 2005-05-03 2008-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7446850B2 (en) 2004-12-03 2008-11-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7468779B2 (en) 2005-06-28 2008-12-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7474379B2 (en) 2005-06-28 2009-01-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7491661B2 (en) 2004-12-28 2009-02-17 Asml Netherlands B.V. Device manufacturing method, top coat material and substrate
US7522261B2 (en) 2004-09-24 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7528931B2 (en) 2004-12-20 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7535644B2 (en) 2005-08-12 2009-05-19 Asml Netherlands B.V. Lens element, lithographic apparatus, device manufacturing method, and device manufactured thereby
US7545481B2 (en) 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7583357B2 (en) 2004-11-12 2009-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
US7633073B2 (en) 2005-11-23 2009-12-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7649611B2 (en) 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7652746B2 (en) 2005-06-21 2010-01-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7656501B2 (en) 2005-11-16 2010-02-02 Asml Netherlands B.V. Lithographic apparatus
US7670730B2 (en) 2004-12-30 2010-03-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7671963B2 (en) 2004-05-21 2010-03-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7684010B2 (en) 2005-03-09 2010-03-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, seal structure, method of removing an object and a method of sealing
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7705962B2 (en) 2005-01-14 2010-04-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7710541B2 (en) 2003-12-23 2010-05-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7733459B2 (en) 2003-08-29 2010-06-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7738074B2 (en) 2003-07-16 2010-06-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7751027B2 (en) 2005-06-21 2010-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7773195B2 (en) 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7791709B2 (en) 2006-12-08 2010-09-07 Asml Netherlands B.V. Substrate support and lithographic process
US7804574B2 (en) 2003-05-30 2010-09-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using acidic liquid
US7804577B2 (en) 2005-11-16 2010-09-28 Asml Netherlands B.V. Lithographic apparatus
US7817245B2 (en) 2003-09-29 2010-10-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7817244B2 (en) 2002-12-10 2010-10-19 Nikon Corporation Exposure apparatus and method for producing device
US7834974B2 (en) 2005-06-28 2010-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7839483B2 (en) 2005-12-28 2010-11-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a control system
US7841352B2 (en) 2007-05-04 2010-11-30 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7855777B2 (en) 2003-07-09 2010-12-21 Nikon Corporation Exposure apparatus and method for manufacturing device
US7864292B2 (en) 2005-11-16 2011-01-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7868998B2 (en) 2003-10-28 2011-01-11 Asml Netherlands B.V. Lithographic apparatus
US7866330B2 (en) 2007-05-04 2011-01-11 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7880860B2 (en) 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7894040B2 (en) 2004-10-05 2011-02-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7898643B2 (en) 2003-06-27 2011-03-01 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
US7898642B2 (en) 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7907255B2 (en) 2003-08-29 2011-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7907253B2 (en) 2003-02-26 2011-03-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7924403B2 (en) 2005-01-14 2011-04-12 Asml Netherlands B.V. Lithographic apparatus and device and device manufacturing method
US7936444B2 (en) 2003-05-13 2011-05-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US7993008B2 (en) 2003-08-26 2011-08-09 Nikon Corporation Optical element and exposure apparatus
US8004652B2 (en) 2004-10-18 2011-08-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8004649B2 (en) 2003-06-19 2011-08-23 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US8018573B2 (en) 2005-02-22 2011-09-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8045137B2 (en) 2004-12-07 2011-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8045135B2 (en) 2006-11-22 2011-10-25 Asml Netherlands B.V. Lithographic apparatus with a fluid combining unit and related device manufacturing method
US8045134B2 (en) 2006-03-13 2011-10-25 Asml Netherlands B.V. Lithographic apparatus, control system and device manufacturing method
US8054445B2 (en) 2005-08-16 2011-11-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8077291B2 (en) 2004-12-10 2011-12-13 Asml Netherlands B.V. Substrate placement in immersion lithography
US8102502B2 (en) 2003-10-28 2012-01-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8149381B2 (en) 2003-08-26 2012-04-03 Nikon Corporation Optical element and exposure apparatus
US8164734B2 (en) 2004-06-16 2012-04-24 Asml Netherlands B.V. Vacuum system for immersion photolithography
US8203693B2 (en) 2005-04-19 2012-06-19 Asml Netherlands B.V. Liquid immersion lithography system comprising a tilted showerhead relative to a substrate
US8208124B2 (en) 2003-08-29 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8208123B2 (en) 2003-08-29 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8218125B2 (en) 2003-07-28 2012-07-10 Asml Netherlands B.V. Immersion lithographic apparatus with a projection system having an isolated or movable part
US8248577B2 (en) 2005-05-03 2012-08-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8319939B2 (en) 2004-07-07 2012-11-27 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method detecting residual liquid
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8547519B2 (en) 2003-11-14 2013-10-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8634053B2 (en) 2006-12-07 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8638415B2 (en) 2004-05-18 2014-01-28 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US8692973B2 (en) 2005-01-31 2014-04-08 Nikon Corporation Exposure apparatus and method for producing device
US8705009B2 (en) 2009-09-28 2014-04-22 Asml Netherlands B.V. Heat pipe, lithographic apparatus and device manufacturing method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8859188B2 (en) 2005-02-10 2014-10-14 Asml Netherlands B.V. Immersion liquid, exposure apparatus, and exposure process
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US9256136B2 (en) 2010-04-22 2016-02-09 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method involving gas supply
US9477158B2 (en) 2006-04-14 2016-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9632425B2 (en) 2006-12-07 2017-04-25 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
US9746781B2 (en) 2005-01-31 2017-08-29 Nikon Corporation Exposure apparatus and method for producing device
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168456A1 (en) * 2012-05-07 2013-11-14 株式会社ニコン Surface position measurement device, exposure device, and device production method
CN108369390B (en) 2015-12-15 2021-05-18 Asml荷兰有限公司 Lithographic apparatus and device manufacturing method
JP2018060001A (en) * 2016-10-04 2018-04-12 東京エレクトロン株式会社 Auxiliary exposure apparatus and method for acquiring exposure light quantity distribution

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280929A (en) * 1992-04-01 1993-10-29 Canon Inc Detecting device of face position and exposure device having this device
JPH05304072A (en) * 1992-04-08 1993-11-16 Nec Corp Manufacture of semiconductor device
JPH06168866A (en) * 1992-11-27 1994-06-14 Canon Inc Projection aligner immersed in liquid
JPH06331314A (en) * 1993-05-25 1994-12-02 Sumitomo Metal Mining Co Ltd Method and apparatus for measuring displacement
JPH07220990A (en) * 1994-01-28 1995-08-18 Hitachi Ltd Pattern forming method and exposure apparatus therefor
JPH0882511A (en) * 1994-09-12 1996-03-26 Fujitsu Ltd Film thickness/surface shape measuring method and apparatus
JPH09124873A (en) * 1995-10-05 1997-05-13 Solvay & Cie Crosslinkable vinylidene fluoride polymer composition, method for crosslinking the composition and shaped article
EP0834773A2 (en) * 1996-10-07 1998-04-08 Nikon Corporation Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JPH10255319A (en) * 1997-03-12 1998-09-25 Hitachi Maxell Ltd Master disk exposure device and method therefor
JPH10303114A (en) * 1997-04-23 1998-11-13 Nikon Corp Immersion aligner
JPH10340846A (en) * 1997-06-10 1998-12-22 Nikon Corp Aligner, its manufacture, exposing method and device manufacturing method
JPH11176727A (en) * 1997-12-11 1999-07-02 Nikon Corp Projection aligner
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
JP2000058436A (en) * 1998-08-11 2000-02-25 Nikon Corp Projection aligner and exposure method
EP1037117A2 (en) * 1999-03-08 2000-09-20 Asm Lithography B.V. Off-axis levelling in lithographic projection apparatus
US6124601A (en) * 1995-12-15 2000-09-26 Canon Kabushiki Kaisha Position sensor having a reflective projecting system and device fabrication method using the sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111636A (en) * 1984-06-27 1986-01-20 Nec Corp Liquid discriminating sensor
JPH06124873A (en) * 1992-10-09 1994-05-06 Canon Inc Liquid-soaking type projection exposure apparatus
JPH08233535A (en) * 1995-02-24 1996-09-13 Nippon Telegr & Teleph Corp <Ntt> Distance measuring apparatus
JP3599908B2 (en) * 1996-07-16 2004-12-08 京都電子工業株式会社 Refractive index measurement method and apparatus
JP2000081320A (en) * 1998-09-03 2000-03-21 Canon Inc Face position detector and fabrication of device employing it
JP2002196222A (en) * 2000-12-25 2002-07-12 Nikon Corp Plane position detector and aligner
JP2002246302A (en) * 2001-02-21 2002-08-30 Nikon Corp Position detector and exposure system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280929A (en) * 1992-04-01 1993-10-29 Canon Inc Detecting device of face position and exposure device having this device
JPH05304072A (en) * 1992-04-08 1993-11-16 Nec Corp Manufacture of semiconductor device
JPH06168866A (en) * 1992-11-27 1994-06-14 Canon Inc Projection aligner immersed in liquid
JPH06331314A (en) * 1993-05-25 1994-12-02 Sumitomo Metal Mining Co Ltd Method and apparatus for measuring displacement
JPH07220990A (en) * 1994-01-28 1995-08-18 Hitachi Ltd Pattern forming method and exposure apparatus therefor
JPH0882511A (en) * 1994-09-12 1996-03-26 Fujitsu Ltd Film thickness/surface shape measuring method and apparatus
JPH09124873A (en) * 1995-10-05 1997-05-13 Solvay & Cie Crosslinkable vinylidene fluoride polymer composition, method for crosslinking the composition and shaped article
US6124601A (en) * 1995-12-15 2000-09-26 Canon Kabushiki Kaisha Position sensor having a reflective projecting system and device fabrication method using the sensor
EP0834773A2 (en) * 1996-10-07 1998-04-08 Nikon Corporation Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JPH10255319A (en) * 1997-03-12 1998-09-25 Hitachi Maxell Ltd Master disk exposure device and method therefor
JPH10303114A (en) * 1997-04-23 1998-11-13 Nikon Corp Immersion aligner
JPH10340846A (en) * 1997-06-10 1998-12-22 Nikon Corp Aligner, its manufacture, exposing method and device manufacturing method
JPH11176727A (en) * 1997-12-11 1999-07-02 Nikon Corp Projection aligner
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
JP2000058436A (en) * 1998-08-11 2000-02-25 Nikon Corp Projection aligner and exposure method
EP1037117A2 (en) * 1999-03-08 2000-09-20 Asm Lithography B.V. Off-axis levelling in lithographic projection apparatus

Cited By (475)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9195153B2 (en) 2002-11-12 2015-11-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6952253B2 (en) 2002-11-12 2005-10-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10261428B2 (en) 2002-11-12 2019-04-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9057967B2 (en) 2002-11-12 2015-06-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9097987B2 (en) 2002-11-12 2015-08-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8472002B2 (en) 2002-11-12 2013-06-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9366972B2 (en) 2002-11-12 2016-06-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8558989B2 (en) 2002-11-12 2013-10-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7075616B2 (en) 2002-11-12 2006-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10962891B2 (en) 2002-11-12 2021-03-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7081943B2 (en) 2002-11-12 2006-07-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9588442B2 (en) 2002-11-12 2017-03-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10788755B2 (en) 2002-11-12 2020-09-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10222706B2 (en) 2002-11-12 2019-03-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9360765B2 (en) 2002-11-12 2016-06-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8446568B2 (en) 2002-11-12 2013-05-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9091940B2 (en) 2002-11-12 2015-07-28 Asml Netherlands B.V. Lithographic apparatus and method involving a fluid inlet and a fluid outlet
US7795603B2 (en) 2002-11-12 2010-09-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10620545B2 (en) 2002-11-12 2020-04-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7482611B2 (en) 2002-11-12 2009-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9885965B2 (en) 2002-11-12 2018-02-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8344341B2 (en) 2002-11-12 2013-01-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7193232B2 (en) 2002-11-12 2007-03-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method with substrate measurement not through liquid
US7932999B2 (en) 2002-11-12 2011-04-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7199858B2 (en) 2002-11-12 2007-04-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7982850B2 (en) 2002-11-12 2011-07-19 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method with gas supply
US10191389B2 (en) 2002-11-12 2019-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7224436B2 (en) 2002-11-12 2007-05-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8797503B2 (en) 2002-11-12 2014-08-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method with a liquid inlet above an aperture of a liquid confinement structure
US8208120B2 (en) 2002-11-12 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9740107B2 (en) 2002-11-12 2017-08-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119881B2 (en) 2002-11-18 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7009682B2 (en) 2002-11-18 2006-03-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7359030B2 (en) 2002-11-29 2008-04-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7834976B2 (en) 2002-12-10 2010-11-16 Nikon Corporation Exposure apparatus and method for producing device
US7817244B2 (en) 2002-12-10 2010-10-19 Nikon Corporation Exposure apparatus and method for producing device
US7907254B2 (en) 2003-02-26 2011-03-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10180632B2 (en) 2003-02-26 2019-01-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9348239B2 (en) 2003-02-26 2016-05-24 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8102504B2 (en) 2003-02-26 2012-01-24 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7907253B2 (en) 2003-02-26 2011-03-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9766555B2 (en) 2003-02-26 2017-09-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7911583B2 (en) 2003-02-26 2011-03-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9182684B2 (en) 2003-02-26 2015-11-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7932991B2 (en) 2003-02-26 2011-04-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8736809B2 (en) 2003-02-26 2014-05-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9798246B2 (en) 2003-05-13 2017-10-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8964164B2 (en) 2003-05-13 2015-02-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7936444B2 (en) 2003-05-13 2011-05-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9477160B2 (en) 2003-05-13 2016-10-25 Asml Netherland B.V. Lithographic apparatus and device manufacturing method
US8724084B2 (en) 2003-05-13 2014-05-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10466595B2 (en) 2003-05-13 2019-11-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8724083B2 (en) 2003-05-13 2014-05-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8416385B2 (en) 2003-05-30 2013-04-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7808611B2 (en) 2003-05-30 2010-10-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using acidic liquid
US7804574B2 (en) 2003-05-30 2010-09-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using acidic liquid
US9152058B2 (en) 2003-06-09 2015-10-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a member and a fluid opening
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10678139B2 (en) 2003-06-09 2020-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8482845B2 (en) 2003-06-09 2013-07-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9541843B2 (en) 2003-06-09 2017-01-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a sensor detecting a radiation beam through liquid
US8154708B2 (en) 2003-06-09 2012-04-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9081299B2 (en) 2003-06-09 2015-07-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving removal of liquid entering a gap
US10180629B2 (en) 2003-06-09 2019-01-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1486827A2 (en) * 2003-06-11 2004-12-15 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1486827A3 (en) * 2003-06-11 2005-03-09 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US8363208B2 (en) 2003-06-11 2013-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9110389B2 (en) 2003-06-11 2015-08-18 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9964858B2 (en) 2003-06-11 2018-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7684008B2 (en) 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2261741A3 (en) * 2003-06-11 2011-05-25 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US8004649B2 (en) 2003-06-19 2011-08-23 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US9715178B2 (en) 2003-06-19 2017-07-25 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US9709899B2 (en) 2003-06-19 2017-07-18 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US7119874B2 (en) 2003-06-27 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
USRE42741E1 (en) 2003-06-27 2011-09-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7898643B2 (en) 2003-06-27 2011-03-01 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
US7012673B2 (en) 2003-06-27 2006-03-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7110087B2 (en) 2003-06-30 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7038760B2 (en) 2003-06-30 2006-05-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8879043B2 (en) 2003-07-09 2014-11-04 Nikon Corporation Exposure apparatus and method for manufacturing device
US7855777B2 (en) 2003-07-09 2010-12-21 Nikon Corporation Exposure apparatus and method for manufacturing device
US10151989B2 (en) 2003-07-16 2018-12-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9383655B2 (en) 2003-07-16 2016-07-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10656538B2 (en) 2003-07-16 2020-05-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8823920B2 (en) 2003-07-16 2014-09-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8711323B2 (en) 2003-07-16 2014-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8913223B2 (en) 2003-07-16 2014-12-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7738074B2 (en) 2003-07-16 2010-06-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9733575B2 (en) 2003-07-16 2017-08-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8711333B2 (en) 2003-07-24 2014-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7184122B2 (en) 2003-07-24 2007-02-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10444644B2 (en) 2003-07-24 2019-10-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10146143B2 (en) 2003-07-24 2018-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9804509B2 (en) 2003-07-24 2017-10-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7557901B2 (en) 2003-07-24 2009-07-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9594308B2 (en) 2003-07-24 2017-03-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9213247B2 (en) 2003-07-24 2015-12-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7746445B2 (en) 2003-07-28 2010-06-29 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
US10303066B2 (en) 2003-07-28 2019-05-28 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US8218125B2 (en) 2003-07-28 2012-07-10 Asml Netherlands B.V. Immersion lithographic apparatus with a projection system having an isolated or movable part
US7175968B2 (en) 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
US8964163B2 (en) 2003-07-28 2015-02-24 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method with a projection system having a part movable relative to another part
US9639006B2 (en) 2003-07-28 2017-05-02 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US8142852B2 (en) 2003-07-31 2012-03-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9285686B2 (en) 2003-07-31 2016-03-15 Asml Netherlands B.V. Lithographic apparatus involving an immersion liquid supply system with an aperture
US8937704B2 (en) 2003-07-31 2015-01-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a resistivity sensor
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7993008B2 (en) 2003-08-26 2011-08-09 Nikon Corporation Optical element and exposure apparatus
US10175584B2 (en) 2003-08-26 2019-01-08 Nikon Corporation Optical element and exposure apparatus
US9046796B2 (en) 2003-08-26 2015-06-02 Nikon Corporation Optical element and exposure apparatus
US8149381B2 (en) 2003-08-26 2012-04-03 Nikon Corporation Optical element and exposure apparatus
US8189170B2 (en) 2003-08-26 2012-05-29 Nikon Corporation Optical element and exposure apparatus
US9606448B2 (en) 2003-08-29 2017-03-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8953144B2 (en) 2003-08-29 2015-02-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7907255B2 (en) 2003-08-29 2011-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9442388B2 (en) 2003-08-29 2016-09-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11003096B2 (en) 2003-08-29 2021-05-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8208123B2 (en) 2003-08-29 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7733459B2 (en) 2003-08-29 2010-06-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8947637B2 (en) 2003-08-29 2015-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9568841B2 (en) 2003-08-29 2017-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9025127B2 (en) 2003-08-29 2015-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8629971B2 (en) 2003-08-29 2014-01-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8804097B2 (en) 2003-08-29 2014-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10025204B2 (en) 2003-08-29 2018-07-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8035798B2 (en) 2003-08-29 2011-10-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9316919B2 (en) 2003-08-29 2016-04-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8208124B2 (en) 2003-08-29 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10146142B2 (en) 2003-08-29 2018-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10514618B2 (en) 2003-08-29 2019-12-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9581914B2 (en) 2003-08-29 2017-02-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8400615B2 (en) 2003-09-29 2013-03-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7193681B2 (en) 2003-09-29 2007-03-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7158211B2 (en) 2003-09-29 2007-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7817245B2 (en) 2003-09-29 2010-10-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9285685B2 (en) 2003-10-15 2016-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8174674B2 (en) 2003-10-15 2012-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8711330B2 (en) 2003-10-15 2014-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8570486B2 (en) 2003-10-15 2013-10-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7961293B2 (en) 2003-10-15 2011-06-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7433015B2 (en) 2003-10-15 2008-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7352435B2 (en) 2003-10-15 2008-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8102502B2 (en) 2003-10-28 2012-01-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10248034B2 (en) 2003-10-28 2019-04-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8542344B2 (en) 2003-10-28 2013-09-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7868998B2 (en) 2003-10-28 2011-01-11 Asml Netherlands B.V. Lithographic apparatus
US8810771B2 (en) 2003-10-28 2014-08-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US8638418B2 (en) 2003-10-28 2014-01-28 Asml Netherlands B.V. Lithographic apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9482962B2 (en) 2003-10-28 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10527955B2 (en) 2003-10-28 2020-01-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9182679B2 (en) 2003-10-28 2015-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8860923B2 (en) 2003-10-28 2014-10-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US8542343B2 (en) 2003-10-28 2013-09-24 Asml Netherlands B.V. Lithographic apparatus
US8860922B2 (en) 2003-10-28 2014-10-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9134623B2 (en) 2003-11-14 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9952515B2 (en) 2003-11-14 2018-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10345712B2 (en) 2003-11-14 2019-07-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8547519B2 (en) 2003-11-14 2013-10-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8634056B2 (en) 2003-11-14 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9134622B2 (en) 2003-11-14 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US8472006B2 (en) 2003-11-24 2013-06-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7545481B2 (en) 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9817321B2 (en) 2003-12-23 2017-11-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9684250B2 (en) 2003-12-23 2017-06-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9465301B2 (en) 2003-12-23 2016-10-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10613447B2 (en) 2003-12-23 2020-04-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10768538B2 (en) 2003-12-23 2020-09-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8767171B2 (en) 2003-12-23 2014-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7710541B2 (en) 2003-12-23 2010-05-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
USRE42849E1 (en) 2004-02-09 2011-10-18 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7227619B2 (en) 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7834977B2 (en) 2004-04-01 2010-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7034917B2 (en) 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US7295283B2 (en) 2004-04-02 2007-11-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7898642B2 (en) 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9989861B2 (en) 2004-04-14 2018-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8704998B2 (en) 2004-04-14 2014-04-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a barrier to collect liquid
US8755033B2 (en) 2004-04-14 2014-06-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a barrier to collect liquid
US9568840B2 (en) 2004-04-14 2017-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9829799B2 (en) 2004-04-14 2017-11-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10234768B2 (en) 2004-04-14 2019-03-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9207543B2 (en) 2004-04-14 2015-12-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a groove to collect liquid
US7379159B2 (en) 2004-05-03 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7652751B2 (en) 2004-05-03 2010-01-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10761438B2 (en) 2004-05-18 2020-09-01 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US9623436B2 (en) 2004-05-18 2017-04-18 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US8638415B2 (en) 2004-05-18 2014-01-28 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US8553201B2 (en) 2004-05-21 2013-10-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7671963B2 (en) 2004-05-21 2010-03-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8749754B2 (en) 2004-05-21 2014-06-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8164734B2 (en) 2004-06-16 2012-04-24 Asml Netherlands B.V. Vacuum system for immersion photolithography
US8830440B2 (en) 2004-06-16 2014-09-09 Asml Netherlands B.V. Vacuum system for immersion photolithography
US10168624B2 (en) 2004-06-16 2019-01-01 Asml Netherlands B.V. Vacuum system for immersion photolithography
US9507270B2 (en) 2004-06-16 2016-11-29 Asml Netherlands B.V. Vacuum system for immersion photolithography
US9857699B2 (en) 2004-06-16 2018-01-02 Asml Netherlands B.V. Vacuum system for immersion photolithography
US10338478B2 (en) 2004-07-07 2019-07-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8319939B2 (en) 2004-07-07 2012-11-27 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method detecting residual liquid
US10739684B2 (en) 2004-07-07 2020-08-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9104117B2 (en) 2004-07-07 2015-08-11 Bob Streefkerk Lithographic apparatus having a liquid detection system
US7161663B2 (en) 2004-07-22 2007-01-09 Asml Netherlands B.V. Lithographic apparatus
US10838310B2 (en) 2004-08-13 2020-11-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
US9268242B2 (en) 2004-08-13 2016-02-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater and a temperature sensor
US11378893B2 (en) 2004-08-13 2022-07-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
US7304715B2 (en) 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7804575B2 (en) 2004-08-13 2010-09-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method having liquid evaporation control
US10254663B2 (en) 2004-08-13 2019-04-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
US9188880B2 (en) 2004-08-13 2015-11-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
US9507278B2 (en) 2004-08-19 2016-11-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9488923B2 (en) 2004-08-19 2016-11-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9746788B2 (en) 2004-08-19 2017-08-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10599054B2 (en) 2004-08-19 2020-03-24 Asml Holding N.V. Lithographic apparatus and device manufacturing method
US8446563B2 (en) 2004-08-19 2013-05-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9904185B2 (en) 2004-08-19 2018-02-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10705439B2 (en) 2004-08-19 2020-07-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8031325B2 (en) 2004-08-19 2011-10-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10331047B2 (en) 2004-08-19 2019-06-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8755028B2 (en) 2004-08-19 2014-06-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9097992B2 (en) 2004-08-19 2015-08-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7133114B2 (en) 2004-09-20 2006-11-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7522261B2 (en) 2004-09-24 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8427629B2 (en) 2004-09-24 2013-04-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7808614B2 (en) 2004-09-24 2010-10-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7355674B2 (en) 2004-09-28 2008-04-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US8068210B2 (en) 2004-09-28 2011-11-29 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US7894040B2 (en) 2004-10-05 2011-02-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8027026B2 (en) 2004-10-05 2011-09-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8755027B2 (en) 2004-10-05 2014-06-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving fluid mixing and control of the physical property of a fluid
US7209213B2 (en) 2004-10-07 2007-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006190971A (en) * 2004-10-13 2006-07-20 Nikon Corp Exposure apparatus, exposure method, and device manufacturing method
WO2006041086A1 (en) * 2004-10-13 2006-04-20 Nikon Corporation Exposure device, exposure method, and device manufacturing method
US8004652B2 (en) 2004-10-18 2011-08-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9436097B2 (en) 2004-10-18 2016-09-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10248033B2 (en) 2004-10-18 2019-04-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9753380B2 (en) 2004-10-18 2017-09-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8934082B2 (en) 2004-10-18 2015-01-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119876B2 (en) 2004-10-18 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7251013B2 (en) 2004-11-12 2007-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9964861B2 (en) 2004-11-12 2018-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US10274832B2 (en) 2004-11-12 2019-04-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US7583357B2 (en) 2004-11-12 2009-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9261797B2 (en) 2004-11-12 2016-02-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US9798247B2 (en) 2004-11-12 2017-10-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US8817231B2 (en) 2004-11-12 2014-08-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US7710537B2 (en) 2004-11-12 2010-05-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9645507B2 (en) 2004-11-12 2017-05-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7852457B2 (en) 2004-11-12 2010-12-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7414699B2 (en) 2004-11-12 2008-08-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10620546B2 (en) 2004-11-12 2020-04-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US7423720B2 (en) 2004-11-12 2008-09-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411657B2 (en) 2004-11-17 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9581916B2 (en) 2004-11-17 2017-02-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7978306B2 (en) 2004-11-17 2011-07-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9188882B2 (en) 2004-11-17 2015-11-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7145630B2 (en) 2004-11-23 2006-12-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7161654B2 (en) 2004-12-02 2007-01-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7812924B2 (en) 2004-12-02 2010-10-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7446850B2 (en) 2004-12-03 2008-11-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7764356B2 (en) 2004-12-03 2010-07-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7248334B2 (en) 2004-12-07 2007-07-24 Asml Netherlands B.V. Sensor shield
US8045137B2 (en) 2004-12-07 2011-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7196770B2 (en) 2004-12-07 2007-03-27 Asml Netherlands B.V. Prewetting of substrate before immersion exposure
US7643127B2 (en) 2004-12-07 2010-01-05 Asml Netherlands B.V. Prewetting of substrate before immersion exposure
US7365827B2 (en) 2004-12-08 2008-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8860926B2 (en) 2004-12-08 2014-10-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8115905B2 (en) 2004-12-08 2012-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8077291B2 (en) 2004-12-10 2011-12-13 Asml Netherlands B.V. Substrate placement in immersion lithography
US8441617B2 (en) 2004-12-10 2013-05-14 Asml Netherlands B.V. Substrate placement in immersion lithography
US9740106B2 (en) 2004-12-10 2017-08-22 Asml Netherlands B.V. Substrate placement in immersion lithography
US9182222B2 (en) 2004-12-10 2015-11-10 Asml Netherlands B.V. Substrate placement in immersion lithography
US10345711B2 (en) 2004-12-10 2019-07-09 Asml Netherlands B.V. Substrate placement in immersion lithography
US8233135B2 (en) 2004-12-15 2012-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7403261B2 (en) 2004-12-15 2008-07-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7751032B2 (en) 2004-12-15 2010-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9703210B2 (en) 2004-12-20 2017-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9835960B2 (en) 2004-12-20 2017-12-05 Asml Netherlands B.V. Lithographic apparatus
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7528931B2 (en) 2004-12-20 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7880860B2 (en) 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10509326B2 (en) 2004-12-20 2019-12-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8115899B2 (en) 2004-12-20 2012-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8638419B2 (en) 2004-12-20 2014-01-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9116443B2 (en) 2004-12-20 2015-08-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9417535B2 (en) 2004-12-20 2016-08-16 Asml Netherlands B.V. Lithographic apparatus
US8233137B2 (en) 2004-12-20 2012-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10248035B2 (en) 2004-12-20 2019-04-02 Asml Netherlands B.V. Lithographic apparatus
US9329494B2 (en) 2004-12-20 2016-05-03 Asml Netherlands B.V. Lithographic apparatus
US8913225B2 (en) 2004-12-28 2014-12-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7405805B2 (en) 2004-12-28 2008-07-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7491661B2 (en) 2004-12-28 2009-02-17 Asml Netherlands B.V. Device manufacturing method, top coat material and substrate
US7763355B2 (en) 2004-12-28 2010-07-27 Asml Netherlands B.V. Device manufacturing method, top coat material and substrate
US8013978B2 (en) 2004-12-28 2011-09-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7670730B2 (en) 2004-12-30 2010-03-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8354209B2 (en) 2004-12-30 2013-01-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8102507B2 (en) 2004-12-30 2012-01-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7705962B2 (en) 2005-01-14 2010-04-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7924403B2 (en) 2005-01-14 2011-04-12 Asml Netherlands B.V. Lithographic apparatus and device and device manufacturing method
US8675173B2 (en) 2005-01-14 2014-03-18 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9746781B2 (en) 2005-01-31 2017-08-29 Nikon Corporation Exposure apparatus and method for producing device
US8692973B2 (en) 2005-01-31 2014-04-08 Nikon Corporation Exposure apparatus and method for producing device
US8859188B2 (en) 2005-02-10 2014-10-14 Asml Netherlands B.V. Immersion liquid, exposure apparatus, and exposure process
US9454088B2 (en) 2005-02-10 2016-09-27 Asml Netherlands B.V. Immersion liquid, exposure apparatus, and exposure process
US10712675B2 (en) 2005-02-10 2020-07-14 Asml Netherlands B.V. Immersion liquid, exposure apparatus, and exposure process
US9164391B2 (en) 2005-02-10 2015-10-20 Asml Netherlands B.V. Immersion liquid, exposure apparatus, and exposure process
US9772565B2 (en) 2005-02-10 2017-09-26 Asml Netherlands B.V. Immersion liquid, exposure apparatus, and exposure process
US8246838B2 (en) 2005-02-22 2012-08-21 Asml Netherlands B.V. Fluid filtration method, fluid filtered thereby, lithographic apparatus and device manufacturing method
US7224431B2 (en) 2005-02-22 2007-05-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7914687B2 (en) 2005-02-22 2011-03-29 Asml Netherlands B.V. Fluid filtration method, fluid filtered thereby, lithographic apparatus and device manufacturing method
US7378025B2 (en) 2005-02-22 2008-05-27 Asml Netherlands B.V. Fluid filtration method, fluid filtered thereby, lithographic apparatus and device manufacturing method
US8902404B2 (en) 2005-02-22 2014-12-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8018573B2 (en) 2005-02-22 2011-09-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8107053B2 (en) 2005-02-28 2012-01-31 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid
US7428038B2 (en) 2005-02-28 2008-09-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid
US8958051B2 (en) 2005-02-28 2015-02-17 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8514369B2 (en) 2005-03-04 2013-08-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495981B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7324185B2 (en) 2005-03-04 2008-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7843551B2 (en) 2005-03-04 2010-11-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8390778B2 (en) 2005-03-09 2013-03-05 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, seal structure, method of removing an object and a method of sealing
US7684010B2 (en) 2005-03-09 2010-03-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, seal structure, method of removing an object and a method of sealing
US7330238B2 (en) 2005-03-28 2008-02-12 Asml Netherlands, B.V. Lithographic apparatus, immersion projection apparatus and device manufacturing method
US7859644B2 (en) 2005-03-28 2010-12-28 Asml Netherlands B.V. Lithographic apparatus, immersion projection apparatus and device manufacturing method
US9857695B2 (en) 2005-04-05 2018-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9429853B2 (en) 2005-04-05 2016-08-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8988651B2 (en) 2005-04-05 2015-03-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411654B2 (en) 2005-04-05 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8976334B2 (en) 2005-04-05 2015-03-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10209629B2 (en) 2005-04-05 2019-02-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8259287B2 (en) 2005-04-05 2012-09-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495984B2 (en) 2005-04-05 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7582881B2 (en) 2005-04-08 2009-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7291850B2 (en) 2005-04-08 2007-11-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8203693B2 (en) 2005-04-19 2012-06-19 Asml Netherlands B.V. Liquid immersion lithography system comprising a tilted showerhead relative to a substrate
US9477153B2 (en) 2005-05-03 2016-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8115903B2 (en) 2005-05-03 2012-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10025196B2 (en) 2005-05-03 2018-07-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7433016B2 (en) 2005-05-03 2008-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11016394B2 (en) 2005-05-03 2021-05-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8860924B2 (en) 2005-05-03 2014-10-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10684554B2 (en) 2005-05-03 2020-06-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9081300B2 (en) 2005-05-03 2015-07-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9146478B2 (en) 2005-05-03 2015-09-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8248577B2 (en) 2005-05-03 2012-08-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9606449B2 (en) 2005-05-03 2017-03-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7317507B2 (en) 2005-05-03 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9229335B2 (en) 2005-05-03 2016-01-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10353296B2 (en) 2005-05-03 2019-07-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10488759B2 (en) 2005-05-03 2019-11-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7652746B2 (en) 2005-06-21 2010-01-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7751027B2 (en) 2005-06-21 2010-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9268236B2 (en) 2005-06-21 2016-02-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method having heat pipe with fluid to cool substrate and/or substrate holder
US8848165B2 (en) 2005-06-28 2014-09-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9952514B2 (en) 2005-06-28 2018-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8687168B2 (en) 2005-06-28 2014-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11327404B2 (en) 2005-06-28 2022-05-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7834974B2 (en) 2005-06-28 2010-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7474379B2 (en) 2005-06-28 2009-01-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7468779B2 (en) 2005-06-28 2008-12-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7929112B2 (en) 2005-06-28 2011-04-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8120749B2 (en) 2005-06-28 2012-02-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9766556B2 (en) 2005-06-28 2017-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9099501B2 (en) 2005-06-28 2015-08-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9448494B2 (en) 2005-06-28 2016-09-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10386725B2 (en) 2005-06-28 2019-08-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7535644B2 (en) 2005-08-12 2009-05-19 Asml Netherlands B.V. Lens element, lithographic apparatus, device manufacturing method, and device manufactured thereby
US8054445B2 (en) 2005-08-16 2011-11-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8004654B2 (en) 2005-10-06 2011-08-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411658B2 (en) 2005-10-06 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8958054B2 (en) 2005-10-06 2015-02-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9140996B2 (en) 2005-11-16 2015-09-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10768536B2 (en) 2005-11-16 2020-09-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10126664B2 (en) 2005-11-16 2018-11-13 Asml Netherlands, B.V. Lithographic apparatus and device manufacturing method
US11789369B2 (en) 2005-11-16 2023-10-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7656501B2 (en) 2005-11-16 2010-02-02 Asml Netherlands B.V. Lithographic apparatus
US11209738B2 (en) 2005-11-16 2021-12-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7864292B2 (en) 2005-11-16 2011-01-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8786823B2 (en) 2005-11-16 2014-07-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8421996B2 (en) 2005-11-16 2013-04-16 Asml Netherlands B.V. Lithographic apparatus
US7804577B2 (en) 2005-11-16 2010-09-28 Asml Netherlands B.V. Lithographic apparatus
US9618853B2 (en) 2005-11-16 2017-04-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8138486B2 (en) 2005-11-23 2012-03-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8481978B2 (en) 2005-11-23 2013-07-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7928407B2 (en) 2005-11-23 2011-04-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7633073B2 (en) 2005-11-23 2009-12-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7773195B2 (en) 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US8456611B2 (en) 2005-11-29 2013-06-04 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US8003968B2 (en) 2005-12-27 2011-08-23 Asml Netherlands B.V. Lithographic apparatus and substrate edge seal
US8232540B2 (en) 2005-12-27 2012-07-31 Asml Netherlands B.V. Lithographic apparatus and substrate edge seal
US7420194B2 (en) 2005-12-27 2008-09-02 Asml Netherlands B.V. Lithographic apparatus and substrate edge seal
US7839483B2 (en) 2005-12-28 2010-11-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a control system
US8564760B2 (en) 2005-12-28 2013-10-22 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a control system
US8947631B2 (en) 2005-12-30 2015-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7649611B2 (en) 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9436096B2 (en) 2005-12-30 2016-09-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9851644B2 (en) 2005-12-30 2017-12-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11275316B2 (en) 2005-12-30 2022-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8743339B2 (en) 2005-12-30 2014-06-03 Asml Netherlands Lithographic apparatus and device manufacturing method
US11669021B2 (en) 2005-12-30 2023-06-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10222711B2 (en) 2005-12-30 2019-03-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10761433B2 (en) 2005-12-30 2020-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8941810B2 (en) 2005-12-30 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9482967B2 (en) 2006-03-13 2016-11-01 Asml Netherlands B.V. Lithographic apparatus, control system and device manufacturing method
US8045134B2 (en) 2006-03-13 2011-10-25 Asml Netherlands B.V. Lithographic apparatus, control system and device manufacturing method
US10802410B2 (en) 2006-04-14 2020-10-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a barrier structure to handle liquid
US9477158B2 (en) 2006-04-14 2016-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US8045135B2 (en) 2006-11-22 2011-10-25 Asml Netherlands B.V. Lithographic apparatus with a fluid combining unit and related device manufacturing method
US9330912B2 (en) 2006-11-22 2016-05-03 Asml Netherlands B.V. Lithographic apparatus, fluid combining unit and device manufacturing method
US10185231B2 (en) 2006-12-07 2019-01-22 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
US8634053B2 (en) 2006-12-07 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10268127B2 (en) 2006-12-07 2019-04-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9645506B2 (en) 2006-12-07 2017-05-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10649349B2 (en) 2006-12-07 2020-05-12 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
US9632425B2 (en) 2006-12-07 2017-04-25 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
US7791709B2 (en) 2006-12-08 2010-09-07 Asml Netherlands B.V. Substrate support and lithographic process
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7866330B2 (en) 2007-05-04 2011-01-11 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7841352B2 (en) 2007-05-04 2010-11-30 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8705009B2 (en) 2009-09-28 2014-04-22 Asml Netherlands B.V. Heat pipe, lithographic apparatus and device manufacturing method
US10209624B2 (en) 2010-04-22 2019-02-19 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US10620544B2 (en) 2010-04-22 2020-04-14 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US9256136B2 (en) 2010-04-22 2016-02-09 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method involving gas supply
US9846372B2 (en) 2010-04-22 2017-12-19 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method

Also Published As

Publication number Publication date
AU2003289272A1 (en) 2004-06-30
JP2009105414A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
WO2004053957A1 (en) Surface position detection apparatus, exposure method, and device porducing method
JP5218517B2 (en) Exposure apparatus, control method, and device manufacturing method
JP2004301825A (en) Surface position detection device, exposure method and method for manufacturing device
JP5790803B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP5152218B2 (en) Exposure apparatus and liquid detection method
JP5143331B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP4888388B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP5273163B2 (en) Exposure apparatus, exposure method, and device manufacturing method
WO2004053958A1 (en) Exposure apparatus and method for manufacturing device
WO2005119742A1 (en) Exposure apparatus, exposure method, and device producing method
WO2005031799A2 (en) Exposure apparatus, exposure method, and device manufacturing method
WO2007000984A1 (en) Exposure method, exposure device, and device manufacturing method
WO2005076324A1 (en) Exposure apparatus, exposure method, and device producing method
WO2005076325A1 (en) Exposure equipment and method, position control method and device manufacturing method
JP4515209B2 (en) Exposure apparatus, exposure method, and device manufacturing method
WO2006006565A1 (en) Exposure equipment and device manufacturing method
WO2006137440A1 (en) Measuring apparatus, exposure apparatus, and device manufacturing method
JP4701606B2 (en) Exposure method, exposure apparatus, and device manufacturing method
WO2006080427A1 (en) Exposure method, exposure apparatus and method for manufacturing device
WO2005106930A1 (en) Exposure method, exposure system, and method for fabricating device
US20090091715A1 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2010087532A (en) Exposure system, exposure method, and method for manufacturing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase