WO2004057762A2 - Broadcast hand-over in a wireless network - Google Patents

Broadcast hand-over in a wireless network Download PDF

Info

Publication number
WO2004057762A2
WO2004057762A2 PCT/IB2003/005104 IB0305104W WO2004057762A2 WO 2004057762 A2 WO2004057762 A2 WO 2004057762A2 IB 0305104 W IB0305104 W IB 0305104W WO 2004057762 A2 WO2004057762 A2 WO 2004057762A2
Authority
WO
WIPO (PCT)
Prior art keywords
link
level access
cell
transmitter
receiving
Prior art date
Application number
PCT/IB2003/005104
Other languages
French (fr)
Other versions
WO2004057762A3 (en
Inventor
Toni Paila
Harri Pekonen
Original Assignee
Nokia Corporation
Nokia, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Corporation, Nokia, Inc. filed Critical Nokia Corporation
Priority to DE60326766T priority Critical patent/DE60326766D1/en
Priority to EP03769797A priority patent/EP1584202B1/en
Priority to KR1020057011730A priority patent/KR100753026B1/en
Priority to AU2003278498A priority patent/AU2003278498A1/en
Priority to CN2003801088804A priority patent/CN1739305B/en
Publication of WO2004057762A2 publication Critical patent/WO2004057762A2/en
Publication of WO2004057762A3 publication Critical patent/WO2004057762A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0007Control or signalling for completing the hand-off for multicast or broadcast services, e.g. MBMS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • This invention relates to the broadcast transmission of audio data, video data, control data, or other information and, in particular, to a system and method for providing broadcast handover in a wireless network.
  • Video streaming, data streaming, and broadband digital broadcast programming are increasing in popularity in wireless network applications.
  • wireless data packets may be sent to multiple receivers (e.g. network enabled mobile devices) at the same time, which is referred to as multicasting or data casting.
  • systems such as WLAN, digital video broadcast (DVB) systems and digital audio broadcast (DAB) systems can be used to transfer multicasted data.
  • UMTS or GPRS networks may also have the capability of supporting IP multicasting.
  • a network enabled mobile device When a network enabled mobile device receives multicasted data (e.g. IP datagrams) as part of a broadcast service, it must resolve the datagrams with associated logical parameters as well as link layer and/or physical layer parameters for the logical parameters. For example, it may need to associate datagrams for one or more IP addresses with a single logical identifier (e.g. a broadcast channel) and the logical identifier with link layer parameters. As part of handover of a mobile device receiving a particular multicast, the mobile device must generally resolve these parameters again. The time consumed for resolving these parameters during handover may increase latency, waste CPU time, and result in significant packet loss.
  • multicasted data e.g. IP datagrams
  • the present invention provides a system and method for providing broadcast handover in a mobile device within a mobile network that includes common link-level access parameters for datagrams associated with a logical identifier. As such, repeated resolution of datagrams to logical identifiers at a mobile device during handover is reduced. Further, repeated resolution of logical identifiers to some link layer parameters, such as time slice parameters, may be reduced.
  • first and second transmitters broadcast multicast datagrams associated with a logical identifier according to link- level access parameters common to the first and second transmitters, such as time slice parameters.
  • a mobile device receives the multicast broadcast channel for the logical identifier from the first transmitter by configuring the common link-level access parameters.
  • the mobile device continues receiving the multicast broadcast channel from the second transmitter by maintaining the common link-level access parameters.
  • the datagrams are IP packets transmitted in an MPEG2 transport stream.
  • the link-level access parameters may include time slice parameters associated with burst transmissions from the first and second transmitters.
  • computer-executable instructions for implementing the disclosed methods are stored on computer-readable media.
  • Fig. 1 shows a simplified diagram of a wireless communication network according to an embodiment of the invention including a wireless mobile device and transmitters in adjacent cells broadcasting multicast data
  • Fig. 2 is a graph representing burst signal broadcast streams from the transmitters in the wireless communications network of Fig. 1
  • Fig. 3 is a functional block diagram of the wireless mobile device of Fig. 1
  • Fig. 4 is a functional block diagram of a head end system for the cells of Fig. 1
  • Fig. 5 is a flow diagram illustrating operation of the mobile device of Fig. 1
  • [14J Fig. 6 is a flow diagram illustrating methods for configuring synchronous transmissions. DETAILED DESCRIPTION OF THE INVENTION
  • Fig. 1 shows a wireless commumcation network 10 according to an embodiment of the invention that for simplicity includes a pair of adjacent wireless broadcast cells 12, 14, and a wireless mobile device 16 (e.g. mobile telephone, PDA, mobile terminal, etc.) moving from first cell 12 into second cell 14.
  • the wireless network 10 may be for example, a second generation mobile multimedia network, such as a Global System for Mobile Communications (GSM) network.
  • GSM Global System for Mobile Communications
  • a higher bandwidth network is preferred, such as a network including a terrestrial Digital Video Broadcast system (DVB-T), a Digital Audio Broadcast system (DAB), a Global Packet Radio Service system (GPRS), a Universal Mobile Telecommunications System (UMTS), or a network that combines more than one of these broadcast systems.
  • DVD-T Digital Video Broadcast system
  • DAB Digital Audio Broadcast system
  • GPRS Global Packet Radio Service
  • UMTS Universal Mobile Telecommunications System
  • Each wireless cell 12, 14 generally includes a transmitter 18, 20 broadcasting multicast signals 22, 24 on a different frequency (or alternatively with a different code as appropriate) for each cell.
  • Each cell broadcasts signals corresponding to broadcast information originating at one or more content providers 26, 28.
  • Such broadcasts may conform to the Internet Group Management Protocol (IGMP) for IP multicasting.
  • IGMP Internet Group Management Protocol
  • each signal 22, 24 according to one embodiment includes burst transmissions, as is known in the relevant art, where each transmission burst or time slice corresponds to one or more transport streams.
  • one or more transmission bursts are synchronized between cells within network 10, as are the transport streams and content of the transmission bursts.
  • the transmissions may be modulated as CDMA or TDMA transmissions.
  • transport streams and content may be synchronized between cells of network 10 to have common time divisions, encoding and/or digital sequencing.
  • Each transport stream according to a burst transmission scenario contains one or more logical identifiers (e.g. broadcast channels) that are associated with one or more IP addresses.
  • Mobile device 16 may elect to receive one or more transport streams while in first cell 12 from signal 22, and therefore sets receiving parameters for tuning to corresponding burst transmissions of signal 22. Accordingly, mobile device 16 must perform IP address-to-logical identifier resolutions for each desired logical identifier, and logical identifier-to-link layer resolutions for those logical identifiers. When mobile device 16 moves from first cell 12 into second cell 14, a corresponding handover occurs. As such, mobile device 16 changes the receiving frequency to receive signal 24 from transmitter 20. If the transmission bursts of signals 22, 24 are not synchronous (e.g.
  • mobile device 16 must perform IP address-to-logical identifier resolutions for each desired logical identifier as well as logical identifier-to-link layer resolutions for second cell 14. Maintaining IP address-to-logical identifier uniformity and logical identifier to link layer uniformity (e.g. time slices) within a network (i.e. for each cell of the network) improves handover of mobile device 16, reduces latency and data losses, and decreases computing requirements of the mobile device 16.
  • IP address-to-logical identifier uniformity and logical identifier to link layer uniformity e.g. time slices
  • multicast signals 22, 24 include MPEG-2 (MPEG2) transport streams (TS) that transport IP datagrams.
  • MPEG-2 MPEG2
  • TS transport IP datagrams
  • MPEG2 transport streams
  • This framework is compatible for broadcasting Digital Video Broadcasts (DVB), Digital Audio Broadcasts (DAB), Advanced Television Systems Committee (ATSC) broadcasts, and other MPEG2 based transmission systems.
  • DVB Digital Video Broadcasts
  • DAB Digital Audio Broadcasts
  • ATSC Advanced Television Systems Committee
  • Other types of transmission systems may also be used with the present invention.
  • Such systems are generally applicable for a variety of physical media, such as terrestrial TV, satellite TV, and cable transmission.
  • MPEG2 based transmission systems may support IP only networks.
  • datagrams such as IP packets, Ethernet frames, or other sub-network data units (SNDUs)
  • SNDUs sub-network data units
  • an IP datagram or IP packet has a source and a destination address.
  • the source address is an address of the data originator, and the destination address is typically either a multicast or a unicast address. If the destination address is a multicast address, then that particular datagram is not sent to one individual receiver, but to plurality of receivers.
  • Multicast and broadcast services use the destination address as a multicast address.
  • a logical channel generally represents level 2 of the OSI reference model and may be associated with packets for one or more IP flows, which is a particular combination of the IP source and destination addresses. Packets for each IP flow are identified by a packet ID (PID), which is carried in the header of each MPEG2 TS packet.
  • PID packet ID
  • Fig. 2 shows the contents of MPEG2 TS packets transported in Time Slices 1 and 2 of signals 22, 24.
  • packets associated with multicast IP address A include video data for a local news broadcast
  • packets associated with multicast IP address B include audio data for the same local news broadcast.
  • Packets for both of these destination IP addresses are associated with a logical channel having a logical identifier, such as "News.”
  • PID identifies the logical channel/logical identifier
  • Each of the PIDs (e.g. associated with both destination address A and B) will need to be mapped to the same logical channel at the receiver (e.g. mobile device 16).
  • IP address-to-logical identifier and logical identifier-to-link layer e.g. time slice
  • each head end 36 may generally include a buffer 38, interval module 40, multiprotocol encapsulator 42, transmission module 44, time source 46, processor 48 and storage medium 50 containing computer-readable instructions 52.
  • each head end 36 may individually receive broadcast data without the use of central server 30.
  • Buffer 38 receives a signal 52 from one or both of content providers 26, 28 (e.g. via central server 30) and stores segments of the signal.
  • An interval module 40 may be used to determine a relative time period between the transmission bursts of content.
  • a multiprotocol encapsulator 42 may be used to merge IP transport packets received from signal 52 into an outbound transport stream transmission burst in accordance with Section 7 of the European Standard EN 301192 "Digital Video Broadcasting (DVB); DVB specification for data broadcasting. " Other data-embedding protocols could alternatively be used to create the outbound transport stream, such as data piping.
  • each transmission burst is provided by the multiprotocol encapsulator 42 to a digital broadcast transmission module (e.g. transmitter) 44, which periodically sends the series of transmission bursts to one or more mobile devices 16.
  • a time source 46 may be used by interval module 40 to calculate the relative time period between bursts of content.
  • a processor 48 may be programmed with computer-executable instructions 52 stored in storage medium 50 to receive the content from the multiprotocol encapsulator 42 and format the data into bursts having a bandwidth and interval determined by interval module 40 and according to an interval synchronized within network 10 for particular IP packets and logical channels.
  • instructions 52 may be manually configured 92 by a network administrator to instruct multiprotocol encapsulator 42 to format the transport stream such that particular IP packets are transmitted in the same time slice for the entire network.
  • each head end 36 of cells 12 and 14 may be configured to transmit IP datagrams for IP addresses A and B, which are supplied by provider 26 and associated with logical identifier "news," in time slices 1 and 2 throughout network 10.
  • central server 30 may periodically provide 94 or update instructions 52 via communications with head end 36.
  • central server 30 may send updates according to a pre-determined schedule and/or as changes to broadcast content occur.
  • head end 36 may request updates to instructions 52 as needed. For example, if mobile device requests reception of a particular multicast channel, head end 36 may query 96 central server 30 for updated broadcast instructions.
  • head end 36 may monitor 98 administrative announcements for adjacent cells to ensure synchronized transmissions.
  • head end 36 may initially be manually configured with instructions 52, but may update instructions 52 by monitoring administrative announcements for adjacent cells. Once configured, head end 36 may broadcast 99 datagrams according to the common link- level access parameters for the datagrams and associated logical identifier.
  • [28J Fig. 2 illustrates a series of bursts 56, 58, 60 of transmissions 22, 24 that may result from the processing performed by processor 48 and head end 36.
  • Bursts 56, 58, 60 are periodic and may consume substantially all of the available channel bandwidth.
  • a further advantage of this transmission scheme is that power may be removed from components of mobile device 16 between receptions of bursts. For example, between the end of burst 60 at time T3 and the beginning of burst 56 at time T7, no content is received at mobile device 16. Therefore, power may be removed from some of the components during such time periods where data is not transferred.
  • transmission module 44 of head end 36 transmits the content bursts to network 12 for ultimate delivery to mobile device 16.
  • more than one content source 26, 28 may broadcast information in network 10 in the same or different channels 56, 58, 60. Additional content bursts may also be time division multiplexed or code division multiplexed with the series of content bursts 56, 58, 60.
  • Mobile device 16 generally includes a processor 62, digital broadcast receiver/transceiver 64, tuning circuit 66, memory 68, stream filtering unit 72, receiver elastic buffer 74 and tuning timer 76.
  • Memory 68 may store channel and mapping information 70 such as logical identifier information, physical links, associated IP addresses, frequency, etc. This information 70 could be provided or updated at various times.
  • the mobile device 16 could receive multicast channels and mapping announcements including information 70 as it enters a cell, in response to a multicast connection request, or via periodic updates.
  • Processor 62 accesses information 70 in memory 68, and in accordance with operating instructions stored therein, directs operation of mobile device 16.
  • Transceiver 64 may be used by mobile device 16 to wirelessly communicate with cells to receive multicast channels and mapping announcements.
  • Tuning circuit 66 tunes transceiver 64 to a desired channel for a particular broadcast cell in order to receive a particular multicast based on channel and mapping information 70 stored in memory 68 via direction from processor 62. More specifically, tuning circuit 66 may direct transceiver 64 to tune to desired channels of the current cell.
  • Tuner timer 76 measures the period between desired transmission bursts in order to power down and power up necessary components to receive desired broadcasts and to save power.
  • the digital broadcast receiver 64 provides the incoming series of transmission bursts 56, 58, 60 comprising signals 22, 24 to stream filtering unit 72, which strips the encapsulation from the individual transmission bursts and filters desired datagrams, such as IP datagrams associated with desired logical identifiers.
  • the filtered output of the stream filtering unit 72 is then sent to a receiver elastic buffer 74.
  • Buffer 74 functions to temporarily store filtered, stripped transmission bursts before being sent downstream to processor 62 for conversion into a substantially continuous information data stream or series of data packets. It will be appreciated by those of skill in the art that two or more of the above components may be combined into a single component, and that any of the above components or combinations may be performed via hardware, software, or a combination of the two.
  • Fig. 5 is a flow diagram illustrating operation of mobile device 16 according to an embodiment of the invention as it moves from first cell 12 to second cell 14.
  • content providers 26, 28 together provide content for four broadcast channels represented by the following logical identifiers shown in Fig. 2: news, weather, rock music videos and market news.
  • the IP addresses shown in Fig. 2 are associated with the indicated logical identifier.
  • IP addresses A, C, D and E are broadcast in first time slice 56
  • IP addresses B, F, G, H and J are broadcast in second time slice 58
  • IP address K is broadcast in third time slice 60.
  • the administrative announcement(s) may identify other cells in the network that have link-level information for the same IP addresses.
  • a user is able to select desired multicast channel(s) and to indicate such desires via an input device (not shown) on mobile device 16.
  • mobile device 16 can determine 102 the IP addresses for the channels desired. Suppose as an example that the user selected the "news" channel and the "market news" channel. Mobile device 16 therefore determines that it needs to receive datagrams associated with IP addresses A, B and K.
  • mobile device 16 selects 104 the time slices that contain the desired IP addresses, such as first time slice 56, second time slice 58, and third time slice 60. Once selected, mobile device 16 can select 106 receiving parameters that allow reception of the time slices, such as the broadcast frequency for transmission 22 in cell 12. In some circumstances, not all time slices may be received. For example, suppose the user desired to receive broadcasts transmitted on different frequencies in the same cell (not shown) during the same time slice. If not all selected time slices can be received, mobile device selects 108 receiving parameters that allow reception of the maximum subset of time slices. Alternatively, mobile device 16 may be programmed to prompt the user to select between particular broadcasts in the event of a conflict.
  • the mobile device 16 proceeds to set 110 the receiving parameters, such as to tune receiver 64 and to monitor for the desired time slice bursts.
  • tuning timer 76 is started to power up and power down receiver 64 and other components between transmissions.
  • timer 76 activates 112 the receiver 64 for receiving the selected time slices 56, 58, 60.
  • timer 76 is reset and steps 110, 112 are repeated for continued reception. If timer 76 times out without receiving time slices 56, 58, 60, then the process begins again at step 104. Such a time out may occur if the signal is lost or if mobile device 16 hands over to a cell outside of the network or a cell not having synchronized broadcasts.
  • the received signal strength of signal 22 may drop to a value less than the received signal strength of signal 24. Accordingly, when such a signal attenuation occurs or another predefined service signal criterion is met, such as between points 80 and 82 in Fig. 1, mobile device 16 may change from receiving the frequency of the first transmitter 18 broadcasting signal 22 to receiving the frequency used by second transmitter 20 broadcasting signal 24. Because multicast data according to this embodiment is broadcast in discrete synchronized bursts, a number of advantages are gained. One advantage is that the handover between cells can occur smoothly during "down" time between transmission bursts. Other advantages include CPU savings and improved handover related to synchronism of data transmissions (e.g. same IP packet to time slice and to logical identifier parameters) within network 10.
  • mobile device 16 When IP datagrams associated with a logical identifier are broadcast in the same grouping and time slice for adjacent cells, then mobile device 16 does not need to repeat resolution of IP address-to-logical parameters as part of handover. As such, around the time of handover, mobile device 16 determines 114 if the handover is into a cell of the same network having synchronized multicast broadcasts. The mobile device 16 may make this determination based on administrative messages (not shown) received from either or both cells 12, 14 at the time of or prior to handover, as is known in the art. In one embodiment, such administrative messages (not shown) may include a flag indicating that the second cell 14 of network 10 has synchronized multicast broadcasts.
  • receiver 64 starts to receive some service from some time slice channel, such as logical identifiers "news" in time slices 1 & 2 and "market news" in time slice • 3 as shown in Fig. 2, mobile device 16 goes through step 106 of Fig. 5.
  • device 16 may check if link-level access parameters are common (in network) for the received service "market news.”
  • link-level access parameters are common (in network) for the received service "market news.”
  • mobile device 16 may simply proceed to step 106 of Fig.
  • mobile device 16 selects the receiving parameters for the same time slices 56, 60 to continue reception of the desired IP datagrams. Accordingly, mobile device 16 simply tunes to the frequency associated with signal 24 and powers up receiver 64 according to timer 76, which was reset when the last time slice transmission was received while in cell 12.
  • timer 76 which was reset when the last time slice transmission was received while in cell 12.
  • the time-slicing digital broadcasting network 10 may use modulation/demodulation methods such as Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA), or Wideband CDMA (W- CDMA) coding to assign different transmission channels to the different service providers.
  • modulation/demodulation methods such as Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA), or Wideband CDMA (W- CDMA) coding to assign different transmission channels to the different service providers.
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • CDMA Code Division Multiple Access
  • W- CDMA Wideband CDMA

Abstract

A system and method are disclosed for providing multicast channel handover in a mobile device(16) within a mobile network10. First and second transmitters(18,20) within first and second cells(12,14) broadcast datagrams associated with a logical identifier according to link-level access parameters common to the first and second transmitters(18,20). A mobile device(16) receives the broadcast datagrams for the logical identifier from the first transmitter(12) by configuring the common link-level access parameters. As part of handover from the first cell(12) to the second cell(14), the mobile device(16) continues receiving the broadcast datagrams from the second transmitter(20) by maintaining the common link-level access parameters. In one embodiment, the datagrams are IP packets transmitted in an MPEG2 transport stream. The link-level access parameters may include time slice parameters associated with burst transmissions from the first and second transmitters(18,20) according to an embodiment of the invention.

Description

BROADCAST HAND-OVER IN A WIRELESS NETWORK
FIELD OF THE INVENTION
[01] This invention relates to the broadcast transmission of audio data, video data, control data, or other information and, in particular, to a system and method for providing broadcast handover in a wireless network.
BACKGROUND OF THE INVENTION
[02] Video streaming, data streaming, and broadband digital broadcast programming are increasing in popularity in wireless network applications. As such, wireless data packets may be sent to multiple receivers (e.g. network enabled mobile devices) at the same time, which is referred to as multicasting or data casting. Currently, systems such as WLAN, digital video broadcast (DVB) systems and digital audio broadcast (DAB) systems can be used to transfer multicasted data. In the future, UMTS or GPRS networks may also have the capability of supporting IP multicasting.
[03] When a network enabled mobile device receives multicasted data (e.g. IP datagrams) as part of a broadcast service, it must resolve the datagrams with associated logical parameters as well as link layer and/or physical layer parameters for the logical parameters. For example, it may need to associate datagrams for one or more IP addresses with a single logical identifier (e.g. a broadcast channel) and the logical identifier with link layer parameters. As part of handover of a mobile device receiving a particular multicast, the mobile device must generally resolve these parameters again. The time consumed for resolving these parameters during handover may increase latency, waste CPU time, and result in significant packet loss.
[04] What is needed is a system and method for reducing the need to resolve datagrams to logical identifiers and logical identifiers to link and/or physical layer parameters during handoff of a network enabled mobile device receiving multicast data.
SUMMARY OF THE INVENTION
[05] The present invention provides a system and method for providing broadcast handover in a mobile device within a mobile network that includes common link-level access parameters for datagrams associated with a logical identifier. As such, repeated resolution of datagrams to logical identifiers at a mobile device during handover is reduced. Further, repeated resolution of logical identifiers to some link layer parameters, such as time slice parameters, may be reduced.
[06] In one embodiment, within first and second cells, first and second transmitters broadcast multicast datagrams associated with a logical identifier according to link- level access parameters common to the first and second transmitters, such as time slice parameters. A mobile device receives the multicast broadcast channel for the logical identifier from the first transmitter by configuring the common link-level access parameters. As part of handover from the first cell to the second cell, the mobile device continues receiving the multicast broadcast channel from the second transmitter by maintaining the common link-level access parameters. [07] In one embodiment, the datagrams are IP packets transmitted in an MPEG2 transport stream. The link-level access parameters may include time slice parameters associated with burst transmissions from the first and second transmitters. In other embodiments of the invention, computer-executable instructions for implementing the disclosed methods are stored on computer-readable media. Other features and advantages of the invention will become apparent with reference to the following detailed description and figures.
BRIEF DESCRIPTION OF THE DRAWINGS
[08] The invention will be described in detail in the following description of preferred embodiments with reference to the following figures wherein: [09] Fig. 1 shows a simplified diagram of a wireless communication network according to an embodiment of the invention including a wireless mobile device and transmitters in adjacent cells broadcasting multicast data; [10] Fig. 2 is a graph representing burst signal broadcast streams from the transmitters in the wireless communications network of Fig. 1 ; [11] Fig. 3 is a functional block diagram of the wireless mobile device of Fig. 1; [12] Fig. 4 is a functional block diagram of a head end system for the cells of Fig. 1; [13] Fig. 5 is a flow diagram illustrating operation of the mobile device of Fig. 1 ; and [14J Fig. 6 is a flow diagram illustrating methods for configuring synchronous transmissions. DETAILED DESCRIPTION OF THE INVENTION
[15] In the following description of the various embodiments, reference is made to the accompanying drawings that form a part thereof, and in which is shown by way of illustration various embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope of the present invention.
[16] Fig. 1 shows a wireless commumcation network 10 according to an embodiment of the invention that for simplicity includes a pair of adjacent wireless broadcast cells 12, 14, and a wireless mobile device 16 (e.g. mobile telephone, PDA, mobile terminal, etc.) moving from first cell 12 into second cell 14. The wireless network 10 may be for example, a second generation mobile multimedia network, such as a Global System for Mobile Communications (GSM) network. However, a higher bandwidth network is preferred, such as a network including a terrestrial Digital Video Broadcast system (DVB-T), a Digital Audio Broadcast system (DAB), a Global Packet Radio Service system (GPRS), a Universal Mobile Telecommunications System (UMTS), or a network that combines more than one of these broadcast systems. Each wireless cell 12, 14 generally includes a transmitter 18, 20 broadcasting multicast signals 22, 24 on a different frequency (or alternatively with a different code as appropriate) for each cell. Each cell broadcasts signals corresponding to broadcast information originating at one or more content providers 26, 28. Such broadcasts may conform to the Internet Group Management Protocol (IGMP) for IP multicasting. [17] As shown in Fig. 2, each signal 22, 24 according to one embodiment includes burst transmissions, as is known in the relevant art, where each transmission burst or time slice corresponds to one or more transport streams. According to one embodiment, one or more transmission bursts are synchronized between cells within network 10, as are the transport streams and content of the transmission bursts. In some embodiments, the transmissions may be modulated as CDMA or TDMA transmissions. In such embodiments, transport streams and content (e.g. IP packets) may be synchronized between cells of network 10 to have common time divisions, encoding and/or digital sequencing. Each transport stream according to a burst transmission scenario contains one or more logical identifiers (e.g. broadcast channels) that are associated with one or more IP addresses.
[18] Mobile device 16 may elect to receive one or more transport streams while in first cell 12 from signal 22, and therefore sets receiving parameters for tuning to corresponding burst transmissions of signal 22. Accordingly, mobile device 16 must perform IP address-to-logical identifier resolutions for each desired logical identifier, and logical identifier-to-link layer resolutions for those logical identifiers. When mobile device 16 moves from first cell 12 into second cell 14, a corresponding handover occurs. As such, mobile device 16 changes the receiving frequency to receive signal 24 from transmitter 20. If the transmission bursts of signals 22, 24 are not synchronous (e.g. the same transport streams are not contained in the same time slices and the same IP address transmissions are not correspondingly grouped), then mobile device 16 must perform IP address-to-logical identifier resolutions for each desired logical identifier as well as logical identifier-to-link layer resolutions for second cell 14. Maintaining IP address-to-logical identifier uniformity and logical identifier to link layer uniformity (e.g. time slices) within a network (i.e. for each cell of the network) improves handover of mobile device 16, reduces latency and data losses, and decreases computing requirements of the mobile device 16.
[19] In one embodiment of the invention, multicast signals 22, 24 include MPEG-2 (MPEG2) transport streams (TS) that transport IP datagrams. This framework is compatible for broadcasting Digital Video Broadcasts (DVB), Digital Audio Broadcasts (DAB), Advanced Television Systems Committee (ATSC) broadcasts, and other MPEG2 based transmission systems. Other types of transmission systems may also be used with the present invention. Such systems are generally applicable for a variety of physical media, such as terrestrial TV, satellite TV, and cable transmission. Further, MPEG2 based transmission systems may support IP only networks.
[20] In an MPEG2 based transmission system, datagrams, such as IP packets, Ethernet frames, or other sub-network data units (SNDUs), may be transported over MPEG2 in a number of parallel TS logical channels. Generally, an IP datagram or IP packet has a source and a destination address. The source address is an address of the data originator, and the destination address is typically either a multicast or a unicast address. If the destination address is a multicast address, then that particular datagram is not sent to one individual receiver, but to plurality of receivers. Multicast and broadcast services use the destination address as a multicast address. A logical channel generally represents level 2 of the OSI reference model and may be associated with packets for one or more IP flows, which is a particular combination of the IP source and destination addresses. Packets for each IP flow are identified by a packet ID (PID), which is carried in the header of each MPEG2 TS packet.
[21] As an example, Fig. 2 (which will be described more fully later) shows the contents of MPEG2 TS packets transported in Time Slices 1 and 2 of signals 22, 24. Suppose that packets associated with multicast IP address A (e.g. 1.2.3.4) include video data for a local news broadcast and packets associated with multicast IP address B (e.g. 5.6.7.9) include audio data for the same local news broadcast. Packets for both of these destination IP addresses are associated with a logical channel having a logical identifier, such as "News." When these packets are part of a MPEG2 TS, they will be transmitted in an MPEG TS packet having a PID that identifies the logical channel/logical identifier (e.g. "News"). Each of the PIDs (e.g. associated with both destination address A and B) will need to be mapped to the same logical channel at the receiver (e.g. mobile device 16).
[22] Because other data may be broadcast in the same TS for logical identifier "news," the IP addresses associated with "news" will need to be identified and filtered. As such, IP address-to-logical identifier and logical identifier-to-link layer (e.g. time slice) resolution must occur to properly receive and process data for the channel "news." Prior to transmission in multicast signals 22, 24, data from content providers 26, 28 must be placed in a MPEG2 TS.
[23] As shown in Fig. 1, according to one embodiment, content providers 26, 28 may send such broadcast data to a central server 30 for network 10, which then transmits the data to a head end 36 for each cell 12, 14. As shown in Fig. 4, each head end 36 may generally include a buffer 38, interval module 40, multiprotocol encapsulator 42, transmission module 44, time source 46, processor 48 and storage medium 50 containing computer-readable instructions 52. In other embodiments, each head end 36 may individually receive broadcast data without the use of central server 30.
[24] Although shown as one logical entity, these head end components may include one or more devices that may or may not be co-located. Buffer 38 receives a signal 52 from one or both of content providers 26, 28 (e.g. via central server 30) and stores segments of the signal. An interval module 40 may be used to determine a relative time period between the transmission bursts of content. A multiprotocol encapsulator 42 may be used to merge IP transport packets received from signal 52 into an outbound transport stream transmission burst in accordance with Section 7 of the European Standard EN 301192 "Digital Video Broadcasting (DVB); DVB specification for data broadcasting. " Other data-embedding protocols could alternatively be used to create the outbound transport stream, such as data piping.
[25] After encapsulation, each transmission burst is provided by the multiprotocol encapsulator 42 to a digital broadcast transmission module (e.g. transmitter) 44, which periodically sends the series of transmission bursts to one or more mobile devices 16. A time source 46 may be used by interval module 40 to calculate the relative time period between bursts of content. A processor 48 may be programmed with computer-executable instructions 52 stored in storage medium 50 to receive the content from the multiprotocol encapsulator 42 and format the data into bursts having a bandwidth and interval determined by interval module 40 and according to an interval synchronized within network 10 for particular IP packets and logical channels.
[26] As shown in Fig. 6, methods for configuring 90 a head end to have common link-level access parameters for particular multicast datagrams are shown. According to one embodiment instructions 52 may be manually configured 92 by a network administrator to instruct multiprotocol encapsulator 42 to format the transport stream such that particular IP packets are transmitted in the same time slice for the entire network. For example, as shown in Figs. 1 and 2, each head end 36 of cells 12 and 14 may be configured to transmit IP datagrams for IP addresses A and B, which are supplied by provider 26 and associated with logical identifier "news," in time slices 1 and 2 throughout network 10. In another embodiment, central server 30 may periodically provide 94 or update instructions 52 via communications with head end 36. For example, central server 30 may send updates according to a pre-determined schedule and/or as changes to broadcast content occur. In a further embodiment, head end 36 may request updates to instructions 52 as needed. For example, if mobile device requests reception of a particular multicast channel, head end 36 may query 96 central server 30 for updated broadcast instructions.
[27| Communications between central server 30 and head end 36 may occur via back end communications or wireless message updates, as are known in the relevant art. In yet another embodiment, head end 36 for cell 12 may monitor 98 administrative announcements for adjacent cells to ensure synchronized transmissions. One or more of these embodiments may additionally be combined. For example, head end 36 may initially be manually configured with instructions 52, but may update instructions 52 by monitoring administrative announcements for adjacent cells. Once configured, head end 36 may broadcast 99 datagrams according to the common link- level access parameters for the datagrams and associated logical identifier.
[28J Fig. 2 illustrates a series of bursts 56, 58, 60 of transmissions 22, 24 that may result from the processing performed by processor 48 and head end 36. Bursts 56, 58, 60 are periodic and may consume substantially all of the available channel bandwidth. In addition to the advantages of the present invention, a further advantage of this transmission scheme is that power may be removed from components of mobile device 16 between receptions of bursts. For example, between the end of burst 60 at time T3 and the beginning of burst 56 at time T7, no content is received at mobile device 16. Therefore, power may be removed from some of the components during such time periods where data is not transferred.
[29] As discussed previously with regard to Fig. 4, transmission module 44 of head end 36 transmits the content bursts to network 12 for ultimate delivery to mobile device 16. As shown in Fig. 2, more than one content source 26, 28 may broadcast information in network 10 in the same or different channels 56, 58, 60. Additional content bursts may also be time division multiplexed or code division multiplexed with the series of content bursts 56, 58, 60.
[30] Referring now to Fig. 3, a functional block diagram of an example mobile device 16 is shown. Mobile device 16 according to one embodiment generally includes a processor 62, digital broadcast receiver/transceiver 64, tuning circuit 66, memory 68, stream filtering unit 72, receiver elastic buffer 74 and tuning timer 76. Memory 68 may store channel and mapping information 70 such as logical identifier information, physical links, associated IP addresses, frequency, etc. This information 70 could be provided or updated at various times. For example, the mobile device 16 could receive multicast channels and mapping announcements including information 70 as it enters a cell, in response to a multicast connection request, or via periodic updates. Processor 62 accesses information 70 in memory 68, and in accordance with operating instructions stored therein, directs operation of mobile device 16. Transceiver 64 may be used by mobile device 16 to wirelessly communicate with cells to receive multicast channels and mapping announcements. Tuning circuit 66 tunes transceiver 64 to a desired channel for a particular broadcast cell in order to receive a particular multicast based on channel and mapping information 70 stored in memory 68 via direction from processor 62. More specifically, tuning circuit 66 may direct transceiver 64 to tune to desired channels of the current cell. Tuner timer 76 measures the period between desired transmission bursts in order to power down and power up necessary components to receive desired broadcasts and to save power.
[31] The digital broadcast receiver 64 provides the incoming series of transmission bursts 56, 58, 60 comprising signals 22, 24 to stream filtering unit 72, which strips the encapsulation from the individual transmission bursts and filters desired datagrams, such as IP datagrams associated with desired logical identifiers. The filtered output of the stream filtering unit 72 is then sent to a receiver elastic buffer 74. Buffer 74 functions to temporarily store filtered, stripped transmission bursts before being sent downstream to processor 62 for conversion into a substantially continuous information data stream or series of data packets. It will be appreciated by those of skill in the art that two or more of the above components may be combined into a single component, and that any of the above components or combinations may be performed via hardware, software, or a combination of the two.
[32] Referring now to Fig 5 along with Figs. 1-4, Fig. 5 is a flow diagram illustrating operation of mobile device 16 according to an embodiment of the invention as it moves from first cell 12 to second cell 14. As an example for illustration purposes, suppose content providers 26, 28 together provide content for four broadcast channels represented by the following logical identifiers shown in Fig. 2: news, weather, rock music videos and market news. Suppose further that the IP addresses shown in Fig. 2 are associated with the indicated logical identifier. Suppose also that IP addresses A, C, D and E are broadcast in first time slice 56, IP addresses B, F, G, H and J are broadcast in second time slice 58, and IP address K is broadcast in third time slice 60. Suppose that as mobile device 16 enters cell 12 it receives an administrative announcement(s) (not shown) providing channel, mapping, topology, and link-level information (e.g. frequency, MAC address, time slices, etc.) for the IP addresses and logical identifiers shown in Fig. 2 that are supported in cell 12 and network 10. Optionally, the administrative announcement(s) may identify other cells in the network that have link-level information for the same IP addresses.
[33] According to the information provided in the administrative announcement(s), a user is able to select desired multicast channel(s) and to indicate such desires via an input device (not shown) on mobile device 16. However, according to the method 100 of Fig. 5, mobile device 16 can determine 102 the IP addresses for the channels desired. Suppose as an example that the user selected the "news" channel and the "market news" channel. Mobile device 16 therefore determines that it needs to receive datagrams associated with IP addresses A, B and K.
[34] Consequently, mobile device 16 selects 104 the time slices that contain the desired IP addresses, such as first time slice 56, second time slice 58, and third time slice 60. Once selected, mobile device 16 can select 106 receiving parameters that allow reception of the time slices, such as the broadcast frequency for transmission 22 in cell 12. In some circumstances, not all time slices may be received. For example, suppose the user desired to receive broadcasts transmitted on different frequencies in the same cell (not shown) during the same time slice. If not all selected time slices can be received, mobile device selects 108 receiving parameters that allow reception of the maximum subset of time slices. Alternatively, mobile device 16 may be programmed to prompt the user to select between particular broadcasts in the event of a conflict.
[35] If all time slices can be received, or if the maximum number available are selected, the mobile device 16 proceeds to set 110 the receiving parameters, such as to tune receiver 64 and to monitor for the desired time slice bursts. Once one or more desired time slices are received, tuning timer 76 is started to power up and power down receiver 64 and other components between transmissions. In preparation for receiving each desired time slice, timer 76 activates 112 the receiver 64 for receiving the selected time slices 56, 58, 60. After time slices 56, 58, 60 are received, timer 76 is reset and steps 110, 112 are repeated for continued reception. If timer 76 times out without receiving time slices 56, 58, 60, then the process begins again at step 104. Such a time out may occur if the signal is lost or if mobile device 16 hands over to a cell outside of the network or a cell not having synchronized broadcasts.
[36] As the mobile device 16 moves from first wireless cell 12 into second wireless cell 14, the received signal strength of signal 22 may drop to a value less than the received signal strength of signal 24. Accordingly, when such a signal attenuation occurs or another predefined service signal criterion is met, such as between points 80 and 82 in Fig. 1, mobile device 16 may change from receiving the frequency of the first transmitter 18 broadcasting signal 22 to receiving the frequency used by second transmitter 20 broadcasting signal 24. Because multicast data according to this embodiment is broadcast in discrete synchronized bursts, a number of advantages are gained. One advantage is that the handover between cells can occur smoothly during "down" time between transmission bursts. Other advantages include CPU savings and improved handover related to synchronism of data transmissions (e.g. same IP packet to time slice and to logical identifier parameters) within network 10.
[37] When IP datagrams associated with a logical identifier are broadcast in the same grouping and time slice for adjacent cells, then mobile device 16 does not need to repeat resolution of IP address-to-logical parameters as part of handover. As such, around the time of handover, mobile device 16 determines 114 if the handover is into a cell of the same network having synchronized multicast broadcasts. The mobile device 16 may make this determination based on administrative messages (not shown) received from either or both cells 12, 14 at the time of or prior to handover, as is known in the art. In one embodiment, such administrative messages (not shown) may include a flag indicating that the second cell 14 of network 10 has synchronized multicast broadcasts.
[38] For example, receiver 64 starts to receive some service from some time slice channel, such as logical identifiers "news" in time slices 1 & 2 and "market news" in time slice 3 as shown in Fig. 2, mobile device 16 goes through step 106 of Fig. 5. As part of step 106, device 16 may check if link-level access parameters are common (in network) for the received service "market news." Now, when mobile device 16 enters step 114, it already has information whether link-level parameters remain the same or not for a new handover cell, and can therefore decide to perform either step 104 or step 106 for the new cell. For instance, as mobile device 16 moves from cell 12 to cell 14, mobile device 16 may simply proceed to step 106 of Fig. 5 based on an administrative message (not shown) from transmitter 20 indicating synchronized network broadcasts. As such, mobile device 16 selects the receiving parameters for the same time slices 56, 60 to continue reception of the desired IP datagrams. Accordingly, mobile device 16 simply tunes to the frequency associated with signal 24 and powers up receiver 64 according to timer 76, which was reset when the last time slice transmission was received while in cell 12. Thus, not only is the handover seamless, but broadcast reception is seamless because mobile device 16 does not need to again resolve the IP packet-to-logical identifier parameters (e.g. determine time slices) for receiving broadcast channels "news" and "market news" in cell 14. Accordingly, CPU savings are gained and the handover occurs seamlessly without latency or significant packet loss.
[39] As can be appreciated by one skilled in the relevant art, the time-slicing digital broadcasting network 10 may use modulation/demodulation methods such as Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA), or Wideband CDMA (W- CDMA) coding to assign different transmission channels to the different service providers. Such channels enable the mobile device 16 to distinguish between information and data provided by the various service providers and to enable the mobile device 16 to select one or more of such services for reception.
[40] While the invention has been described with reference to particular embodiments, it will be understood that the present invention is by no means limited to the particular constructions and methods herein disclosed and/or shown in the drawings, but also comprises any modifications or equivalents within the scope of the claims.

Claims

We claim:
1. A method for maintaining reception of a broadcast channel at a mobile device during handover from a first cell to a second cell, the method comprising the steps of: setting a link-level access parameter on the mobile device for receiving datagrams associated with a logical identifier while the mobile device is in communication with a first transmitter for the first cell; in response to setting the link-level access parameter, receiving from the first transmitter a first datagram associated with the logical identifier; maintaining the link-level access parameter on the mobile device during handover from the first cell to the second cell; and in response to maintaining the link-level access parameter, receiving from a second transmitter for the second cell a second datagram associated with the logical identifier.
2. The method of claim 1, wherein the step of setting a link-level access parameter comprises monitoring a time slice in which datagrams associated with the logical identifier are broadcast in both the first and second cells.
3. The method of claim 1, wherein the steps of receiving from the first transmitter a first datagram, and receiving from the second transmitter a second datagram, each comprises receiving an IP datagram associated with the logical identifier.
4. The method of claim 1, wherein the steps of receiving from the first transmitter a first datagram, and receiving from the second transmitter a second datagram, each comprises receiving a packet encapsulated in a transport stream packet having a packet identifier associated with the logical identifier.
5. The method of claim 4, wherein the encapsulation conforms to standard EN 301192.
6. The method of claim 4, wherein the transport stream comprises a MPEG-2 transport stream.
7. The method of claim 1, wherein the step of maintaining the link-level access parameter comprises the steps of: determining whether the second cell is one of a group of adjacent cells having common link-level access parameters for multicast broadcasts; and on condition the second cell is one of the group of adjacent cells having common link- level access parameters, continuing the link-level access parameter for continued reception of the broadcast channel.
8. The method of claim 7, wherein the step of determining comprises receiving from the second transmitter in the second cell an administrative message identifying the second cell as one of the group of cells having common link-level access parameters for multicast broadcasts.
9. The method of claim 7, wherein the step of determining comprises receiving from the first transmitter in the first cell an administrative message identifying the second cell as one of the group of cells having common link-level access parameters for multicast broadcasts.
10. The method of claim 1, wherein the steps of receiving from the first transmitter a first datagram, and receiving from the second transmitter a second datagram, each comprises receiving a packet that is part of a digital video broadcast terrestrial (DVB-T) multicast broadcast.
11. The method of claim 1, wherein the steps of receiving from the first transmitter a first datagram, and receiving from the second transmitter a second datagram, each comprises receiving a packet that is part of a UMTS multicast.
12. A method for providing broadcast channel handovers between broadcast cells in a mobile communications network, the method comprising: configuring a head end of each one of a plurality of cells in the network to have a common link-level access parameter for multicast datagrams associated with a logical identifier; and broadcasting the datagrams in the plurality of cells according to the common link- level access parameter.
13. The method of claim 12, wherein the step of configuring comprises manually configuring each one of the head ends.
14. The method of claim 12, wherein the step of configuring comprises receiving link-level access parameter information for the multicast datagrams from a server in the network.
15. The method of claim 14, further comprising the step of requesting link-level access parameter information for the multicast datagrams from the server.
16. The method of claim 12, wherein the step of configuring comprises monitoring administrative messages from adjacent cells comprising link-level access parameter information for the multicast datagrams.
17. A mobile device comprising: a processor; and memory for storing computer readable instructions that, when executed by the processor, cause the mobile device to perform steps related to maintaining reception of a broadcast channel during handover from a first cell to a second cell, the steps comprising: setting a link-level access parameter on the mobile device for receiving datagrams associated with a logical identifier while the mobile device is in communication with a first transmitter for the first cell; in response to setting the link-level access parameter, receiving from the first transmitter a first datagram associated with the logical identifier; maintaining the link-level access parameter on the mobile device during handover from the first cell to the second cell; and in response to maintaining the link-level access parameter, receiving from a second transmitter for the second cell a second datagram associated with the logical identifier.
18. The mobile device of claim 17, wherein the step of setting a link-level access parameter comprises monitoring a time slice in which datagrams associated with the logical identifier are broadcast in both the first and second cells.
19. The mobile device of claim 17, wherein the steps of receiving from the first transmitter a first datagram, and receiving from the second transmitter a second datagram, each comprises receiving an IP datagram associated with the logical identifier.
20. The mobile device of claim 17, wherein the steps of receiving from the first transmitter a first datagram, and receiving from the second transmitter a second datagram, each comprises receiving a packet encapsulated in a transport stream packet having a packet identifier associated with the logical identifier.
21. The mobile device of claim 17, wherein the step of maintaining the link-level access parameter comprises the steps of: determining whether the second cell is one of a group of adjacent cells having common link-level access parameters for multicast broadcasts; and on condition the second cell is one of the group of adjacent cells having common link- level access parameters, continuing the link-level access parameter for continued reception of the broadcast channel.
22. The mobile device of claim 21, wherein the step of determining comprises receiving from the second transmitter in the second cell an administrative message identifying the second cell as one of the group of cells having common link-level access parameters for multicast broadcasts.
23. The mobile device of claim 21, wherein the step of determining comprises receiving from the first transmitter in the first cell an administrative message identifying the second cell as one of the group of cells having common link-level access parameters for multicast broadcasts.
24. A computer readable medium having computer readable instructions for performing steps comprising: accessing link-level access parameter information that is common for a plurality of cells on a wireless communications network for broadcasting multicast datagrams associated with a logical identifier; and broadcasting the datagrams in one of the plurality of cells according to the common link-level access parameter information.
25. The computer readable medium of claim 22, wherein the step of accessing comprises retrieving the information from a memory.
26. The computer readable medium of claim 22, wherein the step of accessing comprises receiving a message from a server in the communications network comprising the link-level access parameter information.
27. The computer readable medium of claim 22, further comprising the step of requesting the link-level access parameter information for a server in the communications network.
28. The computer readable medium of claim 22, wherein the step of accessing comprises monitoring administrative messages from adjacent cells comprising the link-level access parameter information.
29. The computer readable medium of claim 22, wherein the link-level access parameter information comprises time slice information and the step of broadcasting comprises the step of transmitting the datagrams in a time slice burst according to the time slice information.
30. A digital broadcasting system comprising: a first transmitter broadcasting datagrams associated with a logical identifier at a first frequency in a series of transmission bursts synchronized with at least one other transmitter; and a second transmitter substantially simultaneously broadcasting the datagrams associated with the logical identifier at a second frequency in the synchronized series of transmission bursts.
31. The digital broadcasting system of claim 28, wherein the datagrams comprise packets delivered in a transport stream.
32. The digital broadcasting system of claim 29, wherein the transport stream comprises a MPEG-2 transport stream.
33. The digital broadcasting system of claim 28, wherein the logical identifier comprises a multicast broadcast channel.
PCT/IB2003/005104 2002-12-23 2003-11-10 Broadcast hand-over in a wireless network WO2004057762A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE60326766T DE60326766D1 (en) 2002-12-23 2003-11-10 TRANSMISSION IN A WIRELESS NETWORK
EP03769797A EP1584202B1 (en) 2002-12-23 2003-11-10 Broadcast hand-over in a wireless network
KR1020057011730A KR100753026B1 (en) 2002-12-23 2003-11-10 Broadcast hand-over in a wireless network
AU2003278498A AU2003278498A1 (en) 2002-12-23 2003-11-10 Broadcast hand-over in a wireless network
CN2003801088804A CN1739305B (en) 2002-12-23 2003-11-10 Broadcast hand-over in a wireless network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/326,106 2002-12-23
US10/326,106 US6977914B2 (en) 2002-12-23 2002-12-23 Broadcast hand-over in a wireless network

Publications (2)

Publication Number Publication Date
WO2004057762A2 true WO2004057762A2 (en) 2004-07-08
WO2004057762A3 WO2004057762A3 (en) 2004-12-16

Family

ID=32593945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2003/005104 WO2004057762A2 (en) 2002-12-23 2003-11-10 Broadcast hand-over in a wireless network

Country Status (8)

Country Link
US (1) US6977914B2 (en)
EP (1) EP1584202B1 (en)
KR (1) KR100753026B1 (en)
CN (1) CN1739305B (en)
AT (1) ATE426307T1 (en)
AU (1) AU2003278498A1 (en)
DE (1) DE60326766D1 (en)
WO (1) WO2004057762A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043767A1 (en) * 2005-10-07 2007-04-19 Samsung Electronics Co., Ltd. Method and apparatus for communications of user equipment using internet protocol address in a mobile communication system
WO2007055465A1 (en) * 2005-08-31 2007-05-18 Samsung Electronics Co., Ltd. Handover method and apparatus in digital multimedia broadcasting system
EP1859642A1 (en) * 2005-03-15 2007-11-28 Nokia Corporation Method and arrangement for selecting a signal in a wireless system

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482286B1 (en) * 2002-09-27 2005-04-13 한국전자통신연구원 Digital broadcasting service receiver for improving reception ability by switched beamforming
EP1467586B1 (en) * 2003-04-09 2010-05-19 Samsung Electronics Co., Ltd. Method for cell reselection in an MBMS mobile communication system
GB2403630A (en) * 2003-06-30 2005-01-05 Nokia Corp Adjusting data burst transmission rates in broadcast services
US20050009523A1 (en) * 2003-07-07 2005-01-13 Nokia Corporation Protocol using forward error correction to improve handover
US20050073990A1 (en) * 2003-09-09 2005-04-07 Yong Chang System and method of providing BCMCS service at a handoff in a mobile communication system
GB2406462A (en) * 2003-09-25 2005-03-30 Nokia Corp Multicasting apparatus
GB2406754A (en) * 2003-10-03 2005-04-06 Nokia Corp Same or similar service handover
CN101442712B (en) * 2003-11-07 2013-07-17 株式会社日立制作所 Radio communicating system, base station, radio terminal and radio communication method
US7568111B2 (en) 2003-11-11 2009-07-28 Nokia Corporation System and method for using DRM to control conditional access to DVB content
WO2006105010A1 (en) 2005-03-25 2006-10-05 Neocific, Inc. Methods and apparatus for cellular broadcasting and communication system
US9826046B2 (en) * 2004-05-05 2017-11-21 Black Hills Media, Llc Device discovery for digital entertainment network
US8028038B2 (en) 2004-05-05 2011-09-27 Dryden Enterprises, Llc Obtaining a playlist based on user profile matching
CN100415038C (en) * 2004-09-24 2008-08-27 华为技术有限公司 Method of controlling user terminal selection cell in radio communication system
CN1323568C (en) * 2004-09-24 2007-06-27 华为技术有限公司 Method of controlling user to terminal selection cell in radio communication system
US20060120397A1 (en) * 2004-12-06 2006-06-08 Barrett Kreiner Wireless network based radio communication system
KR100636216B1 (en) * 2005-01-07 2006-10-19 삼성전자주식회사 Method of providing same broadcast service, and broadcast receiving apparatus therefor
WO2006128151A2 (en) * 2005-05-27 2006-11-30 Symbolic Intelligence Enhanced Systems, Inc. Cellular television broadcast system
JP5158399B2 (en) 2005-05-31 2013-03-06 京セラ株式会社 Wireless communication terminal, base station, handoff control method, and base station control method
IL169503A (en) * 2005-07-03 2010-12-30 Alvarion Ltd Method and apparatus for allowing transfer of communication sessions between base stations in wireless networks
KR100713478B1 (en) 2005-08-09 2007-04-30 삼성전자주식회사 Apparatus and method for searching digital broadcast channel using location information
FR2890274A1 (en) * 2005-08-30 2007-03-02 France Telecom Digital data broadcasting service address transforming method for telecommunication network, involves recovering data of broadcasting service address, and inserting part of identifying data in Internet protocol address of datagrams
US7804860B2 (en) 2005-10-05 2010-09-28 Lg Electronics Inc. Method of processing traffic information and digital broadcast system
CA2562427C (en) 2005-10-05 2012-07-10 Lg Electronics Inc. A digital broadcast system and method of processing traffic information
KR100785785B1 (en) * 2005-12-08 2007-12-13 한국전자통신연구원 A method and system data sending out or receiving in wireless ethernet LAN of apparatus supporting mobility
KR100856274B1 (en) * 2006-01-12 2008-09-03 삼성전자주식회사 Method and Apparatus for Supporting Handover Using Interactive channel in DVB-H CBMS system
WO2007081175A1 (en) * 2006-01-12 2007-07-19 Samsung Electronics Co., Ltd. Method and apparatus for supporting a handover using an interactive channel in a dvb-h cbms system
KR20070108324A (en) * 2006-02-09 2007-11-09 삼성전자주식회사 Method and apparatus for supporting handover when network change happened in dvb-h cbms system
WO2007091779A1 (en) 2006-02-10 2007-08-16 Lg Electronics Inc. Digital broadcasting receiver and method of processing data
US8701143B2 (en) 2006-02-27 2014-04-15 Samsung Electronics Co., Ltd Method and apparatus for supporting mobility in DVB-H CBMS system
KR101340720B1 (en) * 2006-03-24 2013-12-12 삼성전자주식회사 Method and Apparatus for Transmitting/Receiving of Broadcasting Service in DVB-H CBMS System
DE602006004005D1 (en) * 2006-04-25 2009-01-15 Dibcom Device and method for power management
WO2007126196A1 (en) 2006-04-29 2007-11-08 Lg Electronics Inc. Digital broadcasting system and method of processing data
KR20070109800A (en) * 2006-05-09 2007-11-15 삼성전자주식회사 Method and apparatus for roaming/handover with service continuity in cbms
US7702337B2 (en) * 2006-05-16 2010-04-20 Nokia Corporation Method and system for providing quick service access
US20080039078A1 (en) * 2006-05-18 2008-02-14 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving electronic service guide for roaming user in a digital broadcasting system
WO2007136166A1 (en) 2006-05-23 2007-11-29 Lg Electronics Inc. Digital broadcasting system and method of processing data
KR100800737B1 (en) * 2006-06-23 2008-02-01 삼성전자주식회사 Method and system for providing similarity broadcasting service in dvb-h system
KR100842621B1 (en) * 2006-08-07 2008-06-30 삼성전자주식회사 Apparatus and method for hand-over in digital broadcasting reception terminal
US20080089287A1 (en) * 2006-10-12 2008-04-17 Telefonaktiebolaget Lm Ericsson (Publ) Broadcast-based communication in a radio or wireless access network to support mobility
US7873104B2 (en) 2006-10-12 2011-01-18 Lg Electronics Inc. Digital television transmitting system and receiving system and method of processing broadcasting data
KR100762282B1 (en) * 2006-10-27 2007-10-01 한국전자통신연구원 Method and apparatus for providing multicast service
WO2008056909A1 (en) * 2006-11-07 2008-05-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving service variation information in digital broadcasting system
JP2008160182A (en) * 2006-12-20 2008-07-10 Toshiba Corp Radio communication equipment system, and its radio communication sequence
KR100957390B1 (en) * 2007-01-19 2010-05-11 삼성전자주식회사 Method and apparatus for transmitting and receiving mobility information supporting handover and/or roaming in digital broadcasting system
KR101276842B1 (en) 2007-02-09 2013-06-18 엘지전자 주식회사 apparatus and method for transmitting/receiving a broadcast signal
KR101306715B1 (en) * 2007-02-09 2013-09-11 엘지전자 주식회사 apparatus for receiving a broadcast signal and method for transmitting/receiving a broadcast signal
KR101259118B1 (en) 2007-02-23 2013-04-26 엘지전자 주식회사 Apparatus and method for transmitting broadcasting signals
EP2123036A1 (en) * 2007-02-23 2009-11-25 Maxlinear, Inc. Channel change latency reduction
KR101351022B1 (en) 2007-03-05 2014-01-13 엘지전자 주식회사 method for transmitting/receiving a broadcast signal and apparatus for receiving a broadcast signal
KR101253185B1 (en) 2007-03-26 2013-04-10 엘지전자 주식회사 Digital broadcasting system and data processing method
KR101285887B1 (en) 2007-03-26 2013-07-11 엘지전자 주식회사 Digital broadcasting system and method of processing data in digital broadcasting system
KR101285888B1 (en) 2007-03-30 2013-07-11 엘지전자 주식회사 Digital broadcasting system and method of processing data in digital broadcasting system
KR20080090784A (en) * 2007-04-06 2008-10-09 엘지전자 주식회사 A controlling method and a receiving apparatus for electronic program information
KR101351026B1 (en) * 2007-04-13 2014-01-13 엘지전자 주식회사 apparatus for transmitting and receiving a broadcast signal and method of transmitting and receiving a broadcast signal
KR20080093391A (en) * 2007-04-16 2008-10-21 삼성전자주식회사 Method and apparatus for transmitting/receiving broadcast service data in digital broadcasting system
KR101456002B1 (en) 2007-06-26 2014-11-03 엘지전자 주식회사 Digital broadcasting system and method of processing data in digital broadcasting system
KR101405966B1 (en) 2007-06-26 2014-06-20 엘지전자 주식회사 Digital broadcasting system and method of processing data in digital broadcasting system
WO2009005326A2 (en) 2007-07-04 2009-01-08 Lg Electronics Inc. Digital broadcasting system and method of processing data
US8433973B2 (en) 2007-07-04 2013-04-30 Lg Electronics Inc. Digital broadcasting system and method of processing data
KR20090012180A (en) 2007-07-28 2009-02-02 엘지전자 주식회사 Digital broadcasting system and method of processing data in digital broadcasting system
CN101785301B (en) 2007-08-24 2012-06-20 Lg电子株式会社 Digital broadcasting system and method of processing data in digital broadcasting system
CA2697468C (en) 2007-08-24 2012-08-21 Lg Electronics Inc. Digital broadcasting system and method of processing data in digital broadcasting system
CA2695548C (en) 2007-08-24 2013-10-15 Lg Electronics Inc. Digital broadcasting system and method of processing data in digital broadcasting system
US7646828B2 (en) * 2007-08-24 2010-01-12 Lg Electronics, Inc. Digital broadcasting system and method of processing data in digital broadcasting system
US7936786B2 (en) * 2007-09-20 2011-05-03 Lg Electronics, Inc. Digital broadcasting system and method of processing data in digital broadcasting system
US7937741B2 (en) * 2007-09-29 2011-05-03 Intel Corporation Platform noise estimation and mitigation
US7920494B2 (en) * 2008-01-04 2011-04-05 Motorola Mobility, Inc. Method and apparatus for performing mobility measurements in a communication network
CN101227745B (en) * 2008-02-02 2011-02-09 华为软件技术有限公司 System, apparatus and method for switching network of mobile multimedia business
WO2010105137A2 (en) * 2009-03-13 2010-09-16 Cellular Terrestrial Broadcasting, Llc Cellular television broadcast system
US20100287273A1 (en) * 2009-05-05 2010-11-11 Motorola, Inc. System and method for directing communications within a heterogeneous network environment
US9967632B2 (en) 2010-03-08 2018-05-08 Rovi Technologies Corporation Emulated television tuner via execution of software by a computing device
WO2012050838A1 (en) 2010-09-28 2012-04-19 Neocific, Inc. Methods and apparatus for flexible use of frequency bands
US9699701B2 (en) * 2012-08-10 2017-07-04 Qualcomm Incorporated Mobility operation in LTE
CN103313125B (en) * 2013-05-03 2016-07-06 上海东方明珠广播电视研究发展有限公司 Two-way digital television signal seamless handover method and system based on transmission stream
KR101456009B1 (en) * 2013-06-18 2014-11-03 엘지전자 주식회사 apparatus for receiving a broadcast signal and method for transmitting/receiving a broadcast signal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020167921A1 (en) 2001-03-22 2002-11-14 Faramak Vakil Method and apparatus for providing soft hand-off in IP-centric wireless CDMA networks

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60131120T2 (en) * 2000-02-02 2008-08-07 Ntt Docomo Inc. Radio base station, radio base station selection method, multicast signal transmission method and radio terminal
FI20002129A (en) * 2000-09-28 2002-03-29 Nokia Corp A method and arrangement for wirelessly sharing a local broadband data stream
US6611510B2 (en) * 2001-06-18 2003-08-26 Telcordia Technologies Inc. Method and system for soft handoff of mobile terminals in IP wireless networks.
US8068832B2 (en) * 2001-11-19 2011-11-29 Nokia Corporation Multicast session handover

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020167921A1 (en) 2001-03-22 2002-11-14 Faramak Vakil Method and apparatus for providing soft hand-off in IP-centric wireless CDMA networks

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1859642A1 (en) * 2005-03-15 2007-11-28 Nokia Corporation Method and arrangement for selecting a signal in a wireless system
EP1859642A4 (en) * 2005-03-15 2012-03-07 Nokia Corp Method and arrangement for selecting a signal in a wireless system
WO2007055465A1 (en) * 2005-08-31 2007-05-18 Samsung Electronics Co., Ltd. Handover method and apparatus in digital multimedia broadcasting system
US7835744B2 (en) 2005-08-31 2010-11-16 Samsung Electronics Co., Ltd. Handover method and apparatus in digital multimedia broadcasting system
WO2007043767A1 (en) * 2005-10-07 2007-04-19 Samsung Electronics Co., Ltd. Method and apparatus for communications of user equipment using internet protocol address in a mobile communication system

Also Published As

Publication number Publication date
ATE426307T1 (en) 2009-04-15
US6977914B2 (en) 2005-12-20
EP1584202B1 (en) 2009-03-18
US20040120285A1 (en) 2004-06-24
CN1739305B (en) 2010-05-12
WO2004057762A3 (en) 2004-12-16
KR100753026B1 (en) 2007-08-30
CN1739305A (en) 2006-02-22
DE60326766D1 (en) 2009-04-30
AU2003278498A8 (en) 2004-07-14
AU2003278498A1 (en) 2004-07-14
KR20050091016A (en) 2005-09-14
EP1584202A2 (en) 2005-10-12
EP1584202A4 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
EP1584202B1 (en) Broadcast hand-over in a wireless network
US20210360297A1 (en) Method and apparatus for transmitting and receiving signaling information associated with multimedia content
US8122145B2 (en) System, method and computer program product for grouping clients and transferring content in accordance with the same
EP1446964B1 (en) Multicast session handover
US7486640B2 (en) Signaling mechanism for handover in digital broadcasting
JP2010527175A (en) Best effort service of digital broadcasting network
EP1639726B1 (en) Adjusting data burst transmission rates
US20060253560A1 (en) Method of gathering information relating to consumption of broadcast content by receiving stations
EP1623573A1 (en) Method for signalling time-slicing parameters in the service information
JP4511548B2 (en) System and method for content storage control
GB2455065A (en) Handover of broadcast services between networks
US7924876B2 (en) Time slicing and statistical multiplexing in a digital wireless network
US7668261B2 (en) Method and apparatus for selective data reception
EP1811783A1 (en) Preview service management for digital video broadcast in wireless communication devices
KR20090120260A (en) Apparatus and method for dynamic multicast transmission in broadband wireless communication system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057011730

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003769797

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A88804

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057011730

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003769797

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP