WO2004077695A1 - Reliability determination and combining of power control commands during soft-handoff - Google Patents

Reliability determination and combining of power control commands during soft-handoff Download PDF

Info

Publication number
WO2004077695A1
WO2004077695A1 PCT/US2004/005544 US2004005544W WO2004077695A1 WO 2004077695 A1 WO2004077695 A1 WO 2004077695A1 US 2004005544 W US2004005544 W US 2004005544W WO 2004077695 A1 WO2004077695 A1 WO 2004077695A1
Authority
WO
WIPO (PCT)
Prior art keywords
tpc
received
commands
target value
detected
Prior art date
Application number
PCT/US2004/005544
Other languages
French (fr)
Inventor
Hyukjun Oh
Parvathanathan Subrahmanya
Nitin Kasturi
Messay Amerga
Chih-Ping Hsu
Christopher Riddle
Andrew Sendonaris
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to BRPI0407813-6A priority Critical patent/BRPI0407813A/en
Publication of WO2004077695A1 publication Critical patent/WO2004077695A1/en
Priority to IL170462A priority patent/IL170462A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • H04W52/56Detection of errors of TPC bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • H04W52/58Format of the TPC bits

Definitions

  • the present invention relates generally to communication, and more specifically to techniques for determining the reliability of transmit power control (TPC) commands received in a wireless communication system and for combining received TPC commands in soft handover.
  • TPC transmit power control
  • a terminal e.g., a cellular phone communicates with one or more base stations via transmissions on the downlink and uplink.
  • the downlink i.e., forward link
  • the uphnk i.e., reverse link
  • the downlink and uplink are typically allocated different frequency bands.
  • each base station may receive uplink transmissions from multiple terminals. Since these uplink transmissions occur over a shared frequency band, the transmission from each terminal acts as interference to the transmissions from other terminals. For each terminal, the interference due to other terminals degrades this terminal's received signal quality.
  • SIR signal-to-interference ratio
  • Each terminal needs to maintain a particular SIR in order to achieve the desired level of performance, which may be quantified by a particular frame error rate (FER), packet error rate (PER), block error rate (BLER), or bit error rate (BER).
  • FER frame error rate
  • PER packet error rate
  • BLER block error rate
  • BER bit error rate
  • an uplink power control mechanism is typically used to control the transmit power of each terminal.
  • this power control mechanism includes an "inner” loop and an “outer” loop.
  • the inner loop adjusts the transmit power of the terminal such that its received SIR, as measured at the base station, is maintained at a target SIR.
  • This target SIR is often referred to as the "setpoint”.
  • the outer loop adjusts the target SIR to maintain the desired level of performance, which may be, for example, 1% BLER.
  • the uplink power control mechanism thus attempts to reduce power consumption and interference while maintaining the desired link performance for the terminal.
  • Soft handover on the uplink refers to the reception of an uplink transmission from a terminal by multiple base stations. Soft handover provides diversity against deleterious path effects, such as fading and multipaths, since multiple base stations at different locations are used to receive the uplink transmission. Soft handover may provide improved reliability for the uplink transmission from the terminal.
  • an inner loop is typically maintained by each of these base stations to adjust the terminal's transmit power.
  • each base station determines the received SIR for the uplink transmission, generates TPC commands based on the received SIR and the target SIR, and transmits the TPC commands to the terminal.
  • Each TPC command is either (1) an UP command to direct the terminal to increase its transmit power or (2) a DOWN command to direct the terminal to decrease its transmit power.
  • Each base station independently generates TPC commands for the terminal based on the received SIR measured at that base station for the uplink transmission from the terminal.
  • the terminal receives TPC commands from multiple base stations and determines whether each received TPC command is an UP command or a DOWN command. The terminal then conventionally applies the "OR-of-the- DOWN" rule for the TPC commands received from multiple base stations.
  • this rule requires the terminal to decrease its transmit power if any one of the received TPC commands is determined to be a DOWN command.
  • the OR-of-the-DOWN rule works well if the terminal can reliably receive the TPC commands from all base stations. If the TPC commands from any base station are unreliably received, then the transmit power of the terminal will be biased downward or low. This is because UP commands sent by an unreliably received base station may be erroneously detected as DOWN commands by the terminal. This would then cause the terminal to decrease its transmit power regardless of the TPC commands received from more reliable base stations.
  • the downward bias in transmit power can result in degraded performance (e.g., a higher BLER) for the terminal. In extreme instances, the downward bias can lead to a loss of the terminal's signal at the base stations.
  • the reliability of the received TPC commands for each base station is determined based on a pilot received from that base station. Each base station transmits its pilot at a fixed power level. If the received pilot strength (i.e., received pilot power) for a base station exceeds a pilot threshold, then that base station is considered to be received reliably and its TPC commands are combined by the OR-of-the-DOWN rule.
  • the use of received pilot strength to determine the reliability of received TPC commands is sub-optimal for several reasons.
  • different transmit power levels may be used for the pilot and the TPC commands.
  • the pilot is transmitted at a fixed power level while the TPC commands are transmitted at a power level determined by a downlink power control mechanism. If the TPC commands are transmitted at a low power level relative to the power level of the pilot, then the TPC commands may be unreliably received even if the pilot is strongly received.
  • Second, if power balancing is not applied while in soft handover, then the ratio of TPC command power to pilot power may differ widely for different base stations. In this case, even if the received pilot strengths are the same for all base stations, the TPC commands will be received at different powers for different base stations.
  • the reliability of the received TPC commands cannot be accurately determined based on the received pilot strength.
  • a received TPC command is considered reliable if its absolute value exceeds a TPC target value.
  • the TPC target value may be derived based on a TPC threshold and possibly one or more scaling factors.
  • the TPC threshold may be a function of various quantities (e.g., SIR, E I 0 , E N t , and so on) for one or more transmissions (e.g.,
  • the TPC threshold may be selected to trade off between false alarm and missed detection for the received TPC command.
  • the TPC target value may also be derived based on a weight (e.g., a weighted N t 11 0 estimate) so that the received TPC command can be compared directly against TPC target value.
  • Each received TPC command is compared against the TPC target value to obtain a detected TPC command.
  • Each detected TPC command may be a DOWN command, an UP command, or a "rejected" command.
  • a detected TPC command is a rejected command if the received TPC command is considered to be unreliable, which may be the case if the absolute value of the received TPC command is less than the TPC target value. Rejected commands are not used for power control.
  • Multiple TPC target values may be derived with multiple scaling factors, as also described below. One TPC target value may be used to determine whether the received TPC commands are UP commands, and another TPC target value may be used to determine whether the received TPC commands are DOWN commands.
  • TPC commands received from multiple transmitters are also provided herein.
  • a receiver e.g., a terminal
  • TPC target value may be determined for each transmitter.
  • the received TPC commands for each transmitter are compared against the TPC target value for that transmitter to obtain detected TPC commands.
  • the detected TPC commands for received TPC commands deemed as unreliable are discarded and not used for power control.
  • the detected TPC commands for the multiple transmitters are combined to provide TPC decisions.
  • the OR-of-the- DOWN rule may be applied to the detected TPC commands to obtain a TPC decision for that power control period.
  • the TPC decision is (1) a DOWN command if any one of the detected TPC commands is a DOWN command, (2) a rejected command if all detected TPC commands are rejected commands, or (3) an UP command otherwise.
  • the techniques described herein may be used for any closed-loop power- controlled wireless communication system that sends TPC commands to control transmit power (e.g., CDMA systems). These techniques may be used for both the downlink and the uplink. Various aspects and embodiments of the invention are described in further detail below.
  • FIG. 1 shows a portion of a wireless communication system
  • FIGS. 2 A and 2B show the formats of a downlink dedicated physical channel (downlink DPCH) and a common pilot channel (CPICH) in W-CDMA;
  • downlink DPCH downlink dedicated physical channel
  • CPICH common pilot channel
  • FIG. 3 shows a block diagram of a base station and a terminal
  • FIG. 4 shows a block diagram of a rake receiver
  • FIG. 5 shows an uplink power control mechanism
  • FIG. 6 A shows a block diagram of a TPC processor
  • FIG. 6B shows the use of separate UP and DOWN TPC target values to detect received TPC commands
  • FIG. 7 A shows a process for determining the reliability of received TPC commands
  • FIG. 7B shows a process for detecting and combining received TPC commands.
  • FIG. 1 shows a portion of a wireless communication system 100.
  • a base station is a fixed station used for communicating with the terminals, and may also be referred to as a Node B, a base transceiver system (BTS), an access point, or some other terminology.
  • a terminal may be fixed or mobile, and may also be referred to as a user equipment (UE), a mobile station, a remote station, an access terminal, or some other terminology.
  • UE user equipment
  • a terminal may communicate with one or multiple base stations on the downlink and/or uplink at any given moment. This depends on whether or not the terminal is active, whether or not soft handover is supported, and whether or not the terminal is in soft handover.
  • terminal 120 is in soft handover on the uplink, and its uplink transmission is received by all three base stations 110a, 110b, and 110c.
  • Terminal 120 also receives TPC commands from all three base stations while in soft handover. These three base stations are included in an "active set" of the terminal.
  • RNC radio network controller
  • a radio network controller 130 couples to base stations 110a, 110b, and 110c and may further couple to other network entities.
  • RNC 130 provides coordination and control for the base stations coupled to it.
  • RNC 130 may also be referred to as a base station controller (BSC), a mobile switching center (MSC), or some other terminology.
  • System 100 may thus be a CDMA system, a Time Division Multiple Access (TDMA) system, a Frequency Division Multiple Access (FDMA) system, or some other type of system.
  • a CDMA system may implement one or more standards such as W-CDMA, IS-95, IS-2000, and IS-856.
  • a TDMA system may implement one or more standards such as Global System for Mobile Communications (GSM). These standards are well known in the art.
  • GSM Global System for Mobile Communications
  • the techniques described herein may also be used for downlink as well as uplink power control. For clarity, these techniques are specifically described for uplink power control in an exemplary system, which is a CDMA system that implements W-CDMA (i.e., a W-CDMA system).
  • W-CDMA defines a channel structure capable of supporting multiple users concurrently and efficiently transmitting various types of data, i W-CDMA, data to be transmitted on the downlink to a particular terminal is processed as one or more "transport" channels at a higher signaling layer.
  • the transport channels support concurrent transmission of different types of services (e.g., voice, video, packet data, and so on).
  • the transport channels are then mapped to one or more "physical" channels, which are assigned to the terminal for a communication session (e.g., a call).
  • a downlink dedicated physical channel (downlink DPCH) is typically assigned to each active terminal for the duration of a communication session.
  • the downlink DPCH carries transport channel data and control data in a time-division multiplexed (TDM) manner.
  • TDM time-division multiplexed
  • FIG. 2 A shows the format for the downlink DPCH in W-CDMA.
  • Data is transmitted on the downlink DPCH in radio frames. Each radio frame is transmitted over a 10 msec frame, which is divided into 15 slots. Each slot is further partitioned into multiple fields for different types of data.
  • each slot includes data fields 220a and 220b (Datal and Data2), a TPC field 222, a transport format combination indicator (TFCI) field 224, and a pilot field 226.
  • Data fields 220a and 220b carry user- specific data.
  • TPC field 222 carries a TPC command.
  • TFCI field 224 carries the transport format for the downlink DPCH.
  • Pilot field 226 carries a dedicated pilot for the terminal.
  • the duration of each field in the downlink DPCH is determined by the slot format used for the downlink DPCH.
  • TPC field 222 may have a duration of 2, 4, 8, or 16 bits, depending on the selected slot format.
  • the downlink DPCH is a multiplex of a downlink dedicated physical data channel (DPDCH) and a downlink dedicated physical control channel (DPCCH).
  • the transport channel data is mapped to the DPDCH, while the DPCCH carries signaling information from a physical layer.
  • FIG. 2B shows the format for a common pilot channel (CPICH) in W- CDMA.
  • the CPICH is a fixed rate (30 kbps) downlink physical channel that carries a predefined bit sequence.
  • the CPICH is transmitted at a fixed power level.
  • each physical channel is assigned a different orthogonal variable spreading factor (OVSF) code.
  • OVSF orthogonal variable spreading factor
  • the OVSF code is used to "channelize" the data carried by the physical channel.
  • the OVSF codes in W-CDMA are akin to the Walsh codes in IS-95 and IS-2000.
  • An OVSF code of all zeros is used for the CPICH, and a non-zero OVSF code is assigned for the downlink DPCH.
  • the downlink DPCH and CPICH are described in detail in a document 3GPP TS 25.211, which is publicly available.
  • FIG. 3 shows a block diagram of a base station 1 lOx (which may be one of the base stations in FIG. 1) and terminal 120.
  • a transmit (TX) data processor 310 receives, formats, and codes various types of traffic data (e.g., user-specific data, overhead data, and so on) based on one or more coding schemes to provide data symbols.
  • a modulator (MOD) 312 then processes the data symbols and pilot symbols to provide a sequence of complex-valued chips.
  • the processing by modulator 312 includes (1) channelizing (or “spreading") each data symbol for each physical channel with an OVSF code for that channel, (2) channelizing each pilot symbol with the pilot OVSF code, (3) combining the channelized data and pilot symbols for all physical channels, and (4) spectrally spreading (or “scrambling”) the combined symbols with a scrambling sequence assigned to the base station to obtain the sequence of complex-valued chips.
  • These chips are then provided to a transmitter unit (TMTR) 314 and conditioned (e.g., converted to one or more analog signals, amplified, filtered, and frequency upconverted) to generate a downlink signal.
  • the downlink signal is then routed through a duplexer 316 and transmitted from an antenna 318 and over a wireless communication link to the terminals.
  • the downlink signal(s) from one or multiple base stations are received by an antenna 350, routed through a duplexer 352, and provided to a receiver unit (RCVR) 354.
  • Receiver unit 354 conditions (e.g., filters, amplifies, and frequency downconverts) the received signal and further digitizes the conditioned signal to provide a stream of data samples.
  • DEMOD demodulator
  • the processing by demodulator 356 includes (1) descrambling the data samples with a descrambling sequence for the base station being recovered, (2) channelizing the descrambled samples with OVSF codes to segregate the received data symbols and pilot symbols onto their respective physical channels, and (3) coherently demodulating the received data symbols with pilot estimates to obtain the recovered symbols, as described below.
  • a receive (RX) data processor 358 then decodes the recovered symbols to obtain the user-specific data and overhead data sent on the downlink.
  • the processing for an uplink transmission may be performed similarly to that described above for the downlink.
  • the downlink and uplink processing for W- CDMA is described in documents 3GPP TS 25.211, 25.212, 25.213, and 25.214, all of which are publicly available.
  • Controllers 320 and 360 direct various operations at base station HOx and terminal 120, respectively.
  • Memory units 322 and 362 store data and codes for controllers 320 and 360, respectively.
  • FIG. 4 shows a block diagram of a rake receiver 356a, which is one embodiment of demodulator 356 in FIG. 3.
  • Rake receiver 356a includes a sample buffer 408, a searcher 410, N finger processors 412a through 412n (where N > 1 ), and a symbol combiner 430.
  • Receiver unit 354 processes the received signal from antenna 350 and provides a stream of data samples, which is stored in buffer 408.
  • Buffer 408 thereafter provides the data samples to the appropriate processing units (e.g., searcher 410 and/or finger processors 412) at the appropriate time.
  • Searcher 410 searches for strong signal instances (i.e., multipaths) in the received signal and provides the strength and timing of each found multipath that meets a set of criteria. The search processing is known in the art and not described herein.
  • Each finger processor 412 may be assigned to process a different multipath of interest (e.g., a multipath of sufficient strength).
  • a resampler/rotator 420 performs resampling and phase rotation on the data samples to provide derotated samples at the proper chip rate and with the proper timing and phase.
  • a descrambler 422 then multiplies the derotated samples with the descrambling sequence for the base station being recovered and provides descrambled samples.
  • a pilot channelizer 424b To recover the pilot on the CPICH, a pilot channelizer 424b first multiplies the descrambled samples with the pilot OVSF code, W pilot , and further accumulates the resultant samples for each time interval T pilot to obtain a received pilot symbol. T piht is an integer multiple of the length of the pilot OVSF code. A pilot filter 426 then filters the received pilot symbols to provide pilot estimates for the CPICH. [1047] To recover the data on the downlink DPCH, a data channelizer 424a first multiplies the descrambled samples with the OVSF code W data for the downlink DPCH and further accumulates the resultant samples over the length of this OVSF code to provide received data symbols.
  • a data demodulator 428 then coherently demodulates the received data symbols with the pilot estimates to provide data symbol estimates.
  • the pilot estimates are used as phase reference for the coherent demodulation.
  • the coherent demodulation may be performed with a dot product or a cross product.
  • the dot product of the received data symbols and the pilot estimates may be expressed as:
  • D j (n) + jD g (n) is a complex- valued received data symbol from data channelizer 424a of finger processor i for symbol period n;
  • P (n) + jP g (n) is a complex-valued pilot estimate from pilot filter 426 of finger processor i for symbol period n;
  • Y'(n) is a real- alued data symbol estimate from finger processor i for symbol period n.
  • Symbol combiner 430 receives and combines the data symbol estimates from all finger processors assigned to process each base station and provides final data symbol estimates (i.e., recovered symbols) for that base station. If multiple base stations are being processed (e.g., in soft handover), then symbol combiner 430 provides a stream of recovered symbols for each base station. Coherent demodulation and symbol combining are also described in U.S Patent Nos. 5,764,687 and 5,490,165. [1050] On the uplink, the capacity of each base station is limited by the total power received by the base station. To maximize uplink capacity, the transmit power of each terminal is typically controlled to be as low as possible to reduce interference while maintaining the desired level of performance. This level of performance is denoted by a target BLER (e.g., of 1%) in the following description.
  • a target BLER e.g., of 1%) in the following description.
  • FIG. 5 shows an uplink power control mechanism 500, which includes an inner loop 510 and an outer loop 520.
  • an inner loop 510 For a terminal in soft handover and communicating with multiple base stations (i.e., node Bs, in W-CDMA terminology), one inner loop 510 is maintained by each base station for the terminal.
  • a single outer loop 520 is maintained for the terminal by a network entity, e.g., RNC 130.
  • FIG. 5 also shows various processing units in base station 11 Ox and terminal 120 that make up the inner and outer loops. (Not all processing units are shown in FIG. 5 for simplicity.)
  • inner loop 510 attempts to maintain the received SIR for the uplink transmission, as measured at that base station, as close as possible to a target SIR.
  • Inner loop 510 performs power adjustment by: (1) estimating the received SIR for the uplink transmission (in a demodulator 334 at base station 1 lOx, see FIG. 3), (2) comparing the received SIR against the target SIR (in a TPC generator 324 at base station 11 Ox), (3) generating TPC commands based on the results of the comparison (also in TPC generator 324), and (4) sending the TPC commands to the terminal via the downlink (cloud 540).
  • Each TPC command is either an UP command to direct an increase in transmit power or a DOWN command to direct a decrease in transmit power.
  • One TPC command is sent in each slot in W-CDMA.
  • the terminal processes the downlink transmissions received from the base stations in its active set. For each slot, the terminal processes the DPCCH for each base station to obtain a received TPC symbol, which is an estimate of the TPC command sent by that base station. Each received TPC symbol is a "soft-decision" symbol (i.e., a multi-bit value) that comprises (1) a hard-decision value ("0" or "1") for the TPC command sent by the base station plus (2) channel noise and other distortions. For each slot, the terminal combines the received TPC symbols for all base stations in the active set to obtain a single TPC decision for that slot (in a TPC processor 364 at terminal 120).
  • a TPC processor 364 at terminal 120.
  • the terminal then adjusts its uplink transmit power accordingly based on the TPC decision (in a transmitter unit 376 at terminal 120).
  • the TPC commands may be sent as often as 1500 times per second, thus providing a relatively fast response time for inner loop 510.
  • RNC 130 For each decoded data block, a determination is made whether the data block was decoded correctly (good) or in error (erased) or not transmitted at all (DTX). The status of each decoded data block (good, erased, or DTX) is then sent to RNC 130. RNC 130 selects certain ones of the decoded data blocks and adjusts the target SIR accordingly based on the status of the selected data blocks. Typically, if a data block is decoded correctly, then the received SIR at the base stations is likely to be higher than necessary, and the target SIR is reduced slightly. Conversely, if a data block is decoded in error, then the received SIR at the base stations is likely to be lower than necessary, and the target SIR is increased. The target SIR may be maintained fixed if RNC 130 detects that no data blocks were transmitted.
  • the performance of the uplink power control is dependent on the terminal's ability to accurately detect the TPC commands sent by the base stations.
  • the terminal determines whether or not each base station is reliably received based on the received pilot strength measured at the terminal for that base station. If a base station is deemed to be reliable, then the received TPC commands for the base station are used by the inner loop for power control. This method of determining the reliability of received TPC commands based on received pilot strength may be inaccurate for the reasons given above.
  • the reliability of the received TPC commands is determined by the received SIR for the TPC commands (i.e., the TPC SIR).
  • the TPC SIR for W-CDMA may be expressed as: 1 TPC F I T
  • N t I ' I 0 is the total-noise-and-interference-to-total-incoming-signal ratio
  • TPC EJ I 0 is the received signal strength for the TPC commands
  • SF is the spreading factor for the OVSF code (i.e., the OVSF code length) for the downlink DPCH; and N TPC is the number of TPC bits in a slot.
  • E c denotes the energy-per-chip for a data or pilot symbol.
  • N t denotes the total noise and interference power (i.e., without the desired signal).
  • I 0 denotes the total incoming signal power at the input of receiver unit 354. I 0 is typically a fixed value that is determined by the design of the receiver unit. Since I 0 is a fixed value, N t l I 0 is simply the squared magnitude of noise and interference, and TPC EJ I 0 is the squared magnitude of the received TPC commands.
  • the slot format indicates various configurable transmission parameters for the downlink DPCH, such as the number of bits transmitted for each TPC command (N ⁇ pc ) and the spreading factor for the downlink DPCH. These configurable parameters are used to obtain the proper scaling in the computation of the TPC SIR. The terms SF and N ⁇ pc may be accounted for by a scaling factor in equation (3).
  • CPICH EJI 0 is the received pilot strength for the CPICH
  • A is a weighted N t 11 0 estimate computed for each finger processor
  • / j and k 2 are two fixed- value constants determined by the receiver design.
  • the TPC SIR may be computed as shown in equation (6) for each received TPC command and used to determine the reliability of the received TPC command. If the TPC SIR for a given received TPC command is sufficiently high (i.e., exceeds a TPC SIR threshold), then the received TPC command is deemed as reliable and used for power control. Conversely, if the TPC SIR for the received TPC command is low (i.e., falls below the TPC SIR threshold), then the received TPC command is deemed as unreliable and discarded.
  • the TPC SIR threshold is typically a static value that is selected based on a tradeoff between probability of false alarm and probability of missed detection, as described below.
  • Equation (6) may be rewritten as:
  • TPC ⁇ is a TPC threshold (which is typically a static value).
  • the quantity B/vA may be computed for each received TPC command and compared against the TPC threshold. Again, to avoid a divide operation, the quantity B may be compared against a TPC target value, which may be defined as:
  • the TPC target value may be viewed as a weighted or dynamic TPC threshold, where /A is the weight.
  • the weight A is proportional to ⁇ CPICH EJI 0 • /jV t /J 0 , which is the weighted N I 0 estimate, as shown in equation (4).
  • the use of the TPC target value avoids the need to explicitly compute the TPC SIR.
  • the reliability of the received TPC commands may be determined by performing simple comparison between the received TPC commands and the TPC target value.
  • a received TPC command for a given base station is considered reliable if the absolute value of the received TPC command exceeds the TPC target value.
  • the reliability of each received TPC command is individually determined based on the TPC command itself and the TPC target value. For a terminal in soft handover, a different TPC target value may be derived for each base station based on the
  • the TPC threshold, TPC, ⁇ may also be defined in some other manners.
  • the TPC threshold is defined as:
  • K b is a scaling factor that is not a function of N ⁇ pc ⁇ SF .
  • the TPC threshold is defined as:
  • K c is a scaling factor
  • the TPC threshold is defined as:
  • K d is a scaling factor
  • the TPC threshold is defined as:
  • TPC ⁇ K. • CPICH EJI 0 - TPC E C I N t , Eq (12)
  • K e is a scaling factor
  • OTHER_DPCCH_FIELD EJN t is the EJN t of the TFCI, the dedicated pilot, or a combination of any DPCCH symbols, and K f is a scaling factor.
  • the TPC threshold may be a function of SIR, EJ N t , E c /I 0 ,
  • the transmission may be a common pilot (e.g., the CPICH), the received TPC commands, the data symbols received on a physical or code channel used for the TPC commands, a dedicated pilot (e.g., in the DPCCH, as show in FIG. 2A), or some other transmission.
  • the TPC threshold may be determined based on a tradeoff between the probability of false alarm and the probability of missed detection. A higher TPC threshold results in lower likelihood of false alarm and higher likelihood of missed detection. A false alarm occurs when an incorrectly received TPC command is deemed to be reliable and used for power control. False alarm is less likely to occur if the TPC threshold is high.
  • a missed detection occurs when a correctly received TPC command is deemed to be unreliable and discarded. Missed detection is more likely to occur if the TPC threshold is high.
  • the TPC threshold may be selected to trade off between the probability of false alarm and the probability of missed detection. If the TPC threshold is based on TPC SIR, and since the computation of TPC SIR is dependent on the slot format as shown in equation (7), the scaling factor K a in equation (7) may be a function of slot format. However, it can be shown that a fixed value for the scaling factor K a
  • the TPC target value is computed based on a weight
  • the specific weight to use for the TPC target value may be dependent on the manner in which the received TPC commands are obtained. For example, the weight is used in equation (8) because the received TPC commands are obtained based on coherent demodulation of the received data symbols with the pilot estimates. The weight allows the received TPC commands to be compared directly against the TPC target value, and avoids the need for a division by A as described above. For other receiver implementations, the weight may be a function of some other quantities, or may even be omitted altogether.
  • the specific weight to use for the TPC target value may also be dependent on the manner in which various types of data are transmitted.
  • the TPC target value may be computed based on the received signal strength for the CPICH.
  • the specific weight to use for the TPC target value may also be dependent on other factors.
  • FIG. 6A shows a block diagram of an embodiment of TPC processor 364 within terminal 120.
  • TPC processor 364 includes a TPC target computation unit 610, a TPC detection unit 640, and a TPC combiner 650.
  • the pilot estimates for the CPICH for all assigned finger processors are provided to a computation unit 612, which computes the CPICH EJI 0 - N t II 0 for each finger processor.
  • Unit 612 may further filter the (CPICH EJI 0 - N I 0 values for each finger processor. If a finger processor has just been assigned, then its filtered values may take some time to settle. In the interim period, a small value may be used instead of the filtered values. This small value ensures that the output from a newly assigned finger processor is not combined right away with the outputs from other finger processors. This is the desired result if the new finger processor is assigned to a weak multipath, and marginally affects performance if the new finger processor is assigned to a strong multipath.
  • a summing unit 614 then receives and sums the filtered or unfiltered (CPICH EJ I 0 - N t II 0 ) ⁇ values for all finger processors assigned to each base station to obtain a (CPICH EJI 0 - NJI 0 ) k value for that base station.
  • This summing may be expressed as:
  • S k denotes the set of all finger processors assigned to process base station k.
  • a filter 616 then filters the (CPICH EJI 0 - N I 0 ) k values for each base station to obtain filtered values for that base station.
  • Filter 616 may implement a finite impulse response (FIR) filter, an infinite impulse response (IIR) filter, or some other filter structure.
  • FIR finite impulse response
  • IIR infinite impulse response
  • TPC TPC,,, ⁇ k , and one or more scaling factors (e.g., K and K dn ) to obtain one or more TPC target values for the base station.
  • a single TPC target value is used for the detection of both UP and DOWN commands. This single TPC target value may be computed as:
  • TPC togea K upldn • TPC ⁇ , • (VCPICH E c // 0 • N T 0 ) k , ⁇ q (15)
  • TPC toget fc is the TPC target value for base station k
  • TPC (/ . is the TPC threshold for base station k.
  • K Up i dn i s a scaling factor used to compute the TPC target value.
  • TPC target values are used for the detection of UP and DOWN commands. These TPC target values may be computed as:
  • TPC ⁇ , , K up - TPC,, , , - (VCPICH EJI 0 - NJI 0 ) k , and ⁇ q (16)
  • TPC toget A/£ K ⁇ l ⁇ TPC r/ • (VCPICH E c // 0 • ⁇ 0 ) k ,
  • TPC avoid is the TPC threshold for base station k
  • TPC ta r get, ⁇ ,* is the UP ⁇ pc tar g et value for base station k
  • TPC ⁇ grt ⁇ is the DOWN TPC target value for base station k
  • K up is a scaling factor used to compute the UP TPC target value
  • K dn is a scaling factor used to compute the DOWN TPC target value.
  • the UP and DOWN TPC target values are used to detect for UP and DOWN commands, respectively, sent by the base stations.
  • FIG. 6A also shows an embodiment of symbol combiner 430.
  • a summing unit 632 receives and sums the data symbol estimates' from all finger processors assigned to each base station to obtain the final data symbol estimates for that base station. This summing maybe expressed as:
  • Y k ( ) is the final data symbol estimate for base station k for symbol period n.
  • a summing unit 634 then accumulates the final data symbol estimates obtained for each base station during the TPC field in each slot (see FIG. 2A) to provide a received TPC command for that base station for that slot. This accumulation may be expressed as:
  • TPC ra t is the received TPC command for base station k.
  • Summing units 632 and 634 may also be swapped in FIG. 6A.
  • the received TPC command for base station k may be obtained by (1) accumulating the data symbol estimates for each finger processor over the TPC field to obtain a received TPC command for that finger processor and (2) accumulating the received TPC commands for all finger processors assigned to each base station to obtain the received TPC command for that base station.
  • TPC detection unit 640 compares the received TPC commands for each base station against the TPC target value(s) for that base station. Unit 640 provides the detected TPC commands for each base station based on the result of the comparison.
  • FIG. 6B shows the use of separate UP and DOWN TPC target values to detect the received TPC commands.
  • the horizontal axis represents the possible values for the received TPC commands.
  • the UP TPC target value, TPC ⁇ , ⁇ , and the DOWN TPC target value, PC, ⁇ ⁇ are marked on the horizontal axis.
  • Each received TPC command is mapped onto the horizontal axis.
  • the detected value for each received TPC command is dependent on where the received TPC command falls in relation to the TPC target values. If inverted polarity is used for the TPC commands, then the detection for each received TPC command maybe expressed as:
  • TPC rfe , k is the detected TPC command for base station k.
  • the received TPC command is considered unreliable and rejected if it falls in the range between TPC ⁇ , ⁇ and TPC, ⁇ ⁇ (i.e., if
  • TPC target value may be used if no bias is desired in the detection of UP and DOWN commands, so that UP and DOWN commands are equally likely to be rejected. This may be the case, for example, if the terminal is not in soft handover.
  • Two TPC target values may be used, for example, if a bias is desired in the detection of UP and DOWN commands. This may be the case, for example, if the terminal is in soft handover and the DOWN commands have a larger influence in the OR-of-the-DOWN rule.
  • the UP TPC target value may be set to a small negative value or possibly even zero, so that UP commands are less likely to be rejected.
  • TPC combiner 650 receives and combines the detected TPC commands for all base stations to provide TPC decisions.
  • TPC combiner 650 implements the OR-of-the-DOWN rule to provide a TPC decision for each slot.
  • TPC combiner 650 discards detected TPC commands for received TPC commands deemed as unreliable.
  • TPC combiner 650 provides (1) a DOWN TPC decision if any one of the detected TPC commands is a DOWN command, (2) a rejected TPC decision if all detected TPC commands are rejected commands, or (3) an UP TPC decision otherwise.
  • the terminal increases its transmit power for an UP TPC decision, decreases its transmit power for a DOWN TPC decision, and maintains its transmit power otherwise.
  • the TPC detection and combining may also be performed in some other manners.
  • units 612, 614, and 616 may operate whenever pilot estimates are available from the finger processors.
  • the TPC target value(s) for each base station may be computed for each slot, each frame, or some other time interval. To compute the TPC target value(s), only the most recent
  • BS - variable is maintained for each base station; FP - variable is maintained for each finger processor; ABS - variable is maintained for all base stations.
  • // BSindex[i] provides the index of the base station being processed by // finger processor i.
  • filtered_BS_NtIo [k] Round (diff * IIR_gain) ;
  • the IIR filter has 1 pole, which is defined by ITR_gain.
  • sqrt_BS_NtIo[k] GetSqrt (Filtered_BS_NtIo [k] ) ;
  • the UP and DOWN TPC target values may be stored in a table that can be indexed by
  • TPC decision is set to "null" initially.
  • the OR-of-the-DOWN rule sets the // TPC decision to DOWN if the received TPC command for any base station is // detected to be a DOWN command.
  • the TPC decision can only be set to UP if // a received TPC command is detected to be an UP command and no DOWN // command has been detected.
  • FIG. 7A shows an embodiment of a process 700 for determining the reliability of TPC commands received from a transmitter (e.g., a base station) in a wireless commumcation system (e.g., a CDMA system).
  • a transmitter e.g., a base station
  • a wireless commumcation system e.g., a CDMA system
  • At least one TPC target value is determined based on a TPC threshold and possibly a weight, as described above (step 712). Multiple TPC target values may be computed and used to detect for UP commands and DOWN commands, as described above.
  • the received TPC commands are compared against the TPC target value(s) (step 714).
  • a detected TPC command is provided for each received TPC command based on the result of the comparison (step 716).
  • Each detected TPC command is a DOWN command, an UP command, or a rejected command, as shown in equation (19).
  • FIG. 7B shows an embodiment of a process 750 for combining TPC commands received from multiple transmitters in a wireless communication system.
  • At least one TPC target value is determined for each transmitter based on a TPC threshold and possibly a weight for the transmitter (step 752).
  • the TPC target value(s) for each transmitter may be determined as described above.
  • the received TPC commands for each transmitter are compared against the TPC target value(s) for that transmitter to obtain detected TPC commands for the transmitter (step 754).
  • the detected TPC commands for the multiple transmitters are then combined to provide TPC decisions (step 756). Detected TPC commands for unreliably received TPC commands are discarded.
  • the OR-of-the-DOWN rule may be applied to the detected TPC commands for each power control period to obtain a TPC decision for that power control period, as described above.
  • a power lock threshold is maintained for each assigned finger processor and used to accept or reject the received TPC commands for that finger processor.
  • the power lock threshold may be computed based on an average DPCCH EJN t , the EJN t of any DPCCH field including TPC EJN t ,
  • the power lock threshold for each finger processor may be set, for example, to the measurement for the finger processor with the strongest multipath minus an offset (e.g., a few dB). If this value is less than a minimum threshold value (e.g., -20 or -17.5 dB), then the power lock threshold may be set to the mn imum threshold value. The power lock threshold for the strongest finger processor may be set to the minimum threshold value.
  • a power lock threshold based on DPCCH EJN t or TPC EJN t may result in some finger processors assigned to a "good" base station being combined even though the CPICH E C II 0 for these finger processors may be weak. This scenario is more likely to occur if power balancing is not applied for soft handover, and the ratio between DPCCH power to CPICH power varies across multiple base stations in the active set.
  • a power lock threshold is maintained for each base station and used to accept or reject the received TPC commands for that base station.
  • the power lock threshold may be computed based on DPCCH EJN t , TPC EJ N t ,
  • the measurement for each base station may be determined by combining the measurements for all finger processors assigned to process that base station.
  • the power lock threshold for each base station may be determined by the measurement for the strongest received base station minus an offset (e.g., a few dB). If the measurement for a given base station is less than the power lock threshold for that base station, then the received TPC commands for that base station are discarded.
  • the received powers for the DPCCH and CPICH are estimated for each base station, and the ratio of DPCCH power to CPICH power is computed.
  • the DPCCH to CPICH power ratios for all base stations in the active set are then compared to detect for power imbalance.
  • Power imbalance may be declared, for example, if the largest power ratio is greater than X times the smallest power ratio, where X is a value greater than one. If power imbalance is not declared, then the received TPC commands may be accepted or rejected based on pilot signal strength (i.e., received power for the CPICH). Otherwise, if power imbalance is declared, then the techniques described above may be used to determine the reliability of individual received TPC commands and to combine these received TPC commands.
  • a fourth scheme only the received TPC commands for the strongest received base station are used for power control.
  • the received TPC commands for all other base stations are discarded.
  • no TPC combining is performed.
  • the received TPC commands for the strongest received base station may be accepted or rejected using the techniques described above.
  • the techniques described herein can more accurately determine the reliability of received TPC commands. These techniques may be advantageously used by/for terminals that are in soft handover as well as those that are not in soft handover.
  • the techniques described herein may be used for any closed-loop power- controlled wireless communication system that sends TPC commands to control transmit power.
  • these techniques may be used for CDMA systems such as W-CDMA, IS-95, IS-2000, and IS-856 systems.
  • Different systems may send TPC commands in different manners, using different channel structures, and so on.
  • the TPC commands for different systems may have different formats and/or different polarity than those described above for W-CDMA.
  • the number of TPC target values to use and the values for these TPC target values may then be dependent on the format and polarity used for the TPC commands.
  • TPC processor 364 may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units, designed to perform the functions described herein, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, micro-controllers, microprocessors, other electronic units, designed to perform the functions described herein, or a combination thereof.
  • the techniques described herein may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • the software codes may be stored in a memory unit (e.g., memory unit 322 or 362 in FIG. 3) and executed by a processor (e.g., controller 320 or 360).
  • the memory unit may be implemented within the processor or external to the processor, in which case it can be communicatively coupled to the processor via various means as is known in the art.

Abstract

The reliability of transmit power control (TPC) commands received from a transmitter is determined based on a TPC target value. The TPC target value is derived based on a TPC threshold and possibly a weight, depending on the receiver implementation. A received TPC command is considered reliable if its absolute value exceeds the TPC target value. Received TPC commands deemed as unreliable are discarded and not used for power control. Multiple TPC target values, used for detecting UP and DOWN commands, may be derived with multiple scaling factors. For a receiver in soft handover and receiving TPC commands from multiple transmitters, a different TPC target value may be derived for each transmitter. The received TPC commands for each transmitter are compared against that transmitter's TPC target value. Received TPC commands deemed as unreliable are discarded and not combined.

Description

RELIABILITY DETERMINATION AND COMBINING OF POWER CONTROL COMMANDS DURING SOFT-HA NDOFF
Related Applications
[1001] This application claims the benefit of provisional U.S. Application Serial No. 60/450,603, entitled "TPC Combining in Soft Handover," filed February 26, 2003, assigned to the assignee of the present application, and incorporated herein by reference in its entirety for all purposes.
BACKGROUND
Field
[1002] The present invention relates generally to communication, and more specifically to techniques for determining the reliability of transmit power control (TPC) commands received in a wireless communication system and for combining received TPC commands in soft handover.
Background
[1003] In a wireless communication system, a terminal (e.g., a cellular phone) communicates with one or more base stations via transmissions on the downlink and uplink. The downlink (i.e., forward link) refers to the communication link from the base stations to the terminal, and the uphnk (i.e., reverse link) refers to the communication link from the terminal to the base stations. The downlink and uplink are typically allocated different frequency bands.
[1004] In a Code Division Multiple Access (CDMA) system, each base station may receive uplink transmissions from multiple terminals. Since these uplink transmissions occur over a shared frequency band, the transmission from each terminal acts as interference to the transmissions from other terminals. For each terminal, the interference due to other terminals degrades this terminal's received signal quality. (For simplicity, signal quality is quantified by a signal-to-interference ratio (SIR) in the following description.) Each terminal needs to maintain a particular SIR in order to achieve the desired level of performance, which may be quantified by a particular frame error rate (FER), packet error rate (PER), block error rate (BLER), or bit error rate (BER).
[1005] To maximize uplink capacity, an uplink power control mechanism is typically used to control the transmit power of each terminal. Conventionally, this power control mechanism includes an "inner" loop and an "outer" loop. The inner loop adjusts the transmit power of the terminal such that its received SIR, as measured at the base station, is maintained at a target SIR. This target SIR is often referred to as the "setpoint". The outer loop adjusts the target SIR to maintain the desired level of performance, which may be, for example, 1% BLER. The uplink power control mechanism thus attempts to reduce power consumption and interference while maintaining the desired link performance for the terminal.
[1006] Many CDMA systems support soft handover (i.e., soft handoff) on the uplink. Soft handover on the uplink refers to the reception of an uplink transmission from a terminal by multiple base stations. Soft handover provides diversity against deleterious path effects, such as fading and multipaths, since multiple base stations at different locations are used to receive the uplink transmission. Soft handover may provide improved reliability for the uplink transmission from the terminal. [1007] While a terminal is in soft handover on the uplink with multiple base stations, an inner loop is typically maintained by each of these base stations to adjust the terminal's transmit power. Conventionally, each base station determines the received SIR for the uplink transmission, generates TPC commands based on the received SIR and the target SIR, and transmits the TPC commands to the terminal. Each TPC command is either (1) an UP command to direct the terminal to increase its transmit power or (2) a DOWN command to direct the terminal to decrease its transmit power. Each base station independently generates TPC commands for the terminal based on the received SIR measured at that base station for the uplink transmission from the terminal. [1008] While in soft handover, the terminal receives TPC commands from multiple base stations and determines whether each received TPC command is an UP command or a DOWN command. The terminal then conventionally applies the "OR-of-the- DOWN" rule for the TPC commands received from multiple base stations. For each power control period, this rule requires the terminal to decrease its transmit power if any one of the received TPC commands is determined to be a DOWN command. [1009] The OR-of-the-DOWN rule works well if the terminal can reliably receive the TPC commands from all base stations. If the TPC commands from any base station are unreliably received, then the transmit power of the terminal will be biased downward or low. This is because UP commands sent by an unreliably received base station may be erroneously detected as DOWN commands by the terminal. This would then cause the terminal to decrease its transmit power regardless of the TPC commands received from more reliable base stations. The downward bias in transmit power can result in degraded performance (e.g., a higher BLER) for the terminal. In extreme instances, the downward bias can lead to a loss of the terminal's signal at the base stations.
[1010] Since the downward bias and higher BLER are undesirable, a requirement is often imposed such that only TPC commands received with sufficient reliability are combined by the OR-of-the-DOWN rule. Conventionally, the reliability of the received TPC commands for each base station is determined based on a pilot received from that base station. Each base station transmits its pilot at a fixed power level. If the received pilot strength (i.e., received pilot power) for a base station exceeds a pilot threshold, then that base station is considered to be received reliably and its TPC commands are combined by the OR-of-the-DOWN rule.
[1011] The use of received pilot strength to determine the reliability of received TPC commands is sub-optimal for several reasons. First, different transmit power levels may be used for the pilot and the TPC commands. The pilot is transmitted at a fixed power level while the TPC commands are transmitted at a power level determined by a downlink power control mechanism. If the TPC commands are transmitted at a low power level relative to the power level of the pilot, then the TPC commands may be unreliably received even if the pilot is strongly received. Second, if power balancing is not applied while in soft handover, then the ratio of TPC command power to pilot power may differ widely for different base stations. In this case, even if the received pilot strengths are the same for all base stations, the TPC commands will be received at different powers for different base stations. Thus, in certain circumstances, the reliability of the received TPC commands cannot be accurately determined based on the received pilot strength. [1012] There is therefore a need in the art for techniques to more accurately determine the reliability of received TPC commands and to combine these received TPC commands in soft handover.
SUMMARY [1013] Techniques for deteπnining the reliability of TPC commands received from a transmitter (e.g., a base station) in a wireless communication system are provided herein. A received TPC command is considered reliable if its absolute value exceeds a TPC target value. The TPC target value may be derived based on a TPC threshold and possibly one or more scaling factors. The TPC threshold may be a function of various quantities (e.g., SIR, E I0 , E Nt , and so on) for one or more transmissions (e.g.,
TPC, pilot, and so on) received from the transmitter. (E Nt is an energy-per-chip-to- total-noise-and-interference ratio, and EC II0 is an energy-per-chip-to-total-incoming- signal ratio.) The TPC threshold may be selected to trade off between false alarm and missed detection for the received TPC command. Depending on the implementation of the receiver, the TPC target value may also be derived based on a weight (e.g., a weighted Nt 110 estimate) so that the received TPC command can be compared directly against TPC target value. The TPC threshold and TPC target value and their derivation are described in detail below.
[1014] Each received TPC command is compared against the TPC target value to obtain a detected TPC command. Each detected TPC command may be a DOWN command, an UP command, or a "rejected" command. A detected TPC command is a rejected command if the received TPC command is considered to be unreliable, which may be the case if the absolute value of the received TPC command is less than the TPC target value. Rejected commands are not used for power control. Multiple TPC target values may be derived with multiple scaling factors, as also described below. One TPC target value may be used to determine whether the received TPC commands are UP commands, and another TPC target value may be used to determine whether the received TPC commands are DOWN commands.
[1015] Techniques for combining TPC commands received from multiple transmitters (e.g., base stations) in a wireless communication system are also provided herein. For a receiver (e.g., a terminal) in soft handover and receiving TPC commands from multiple transmitters, a different TPC target value may be determined for each transmitter. The received TPC commands for each transmitter are compared against the TPC target value for that transmitter to obtain detected TPC commands. The detected TPC commands for received TPC commands deemed as unreliable are discarded and not used for power control. The detected TPC commands for the multiple transmitters are combined to provide TPC decisions. For each power control period, the OR-of-the- DOWN rule may be applied to the detected TPC commands to obtain a TPC decision for that power control period. The TPC decision is (1) a DOWN command if any one of the detected TPC commands is a DOWN command, (2) a rejected command if all detected TPC commands are rejected commands, or (3) an UP command otherwise. [1016] The techniques described herein may be used for any closed-loop power- controlled wireless communication system that sends TPC commands to control transmit power (e.g., CDMA systems). These techniques may be used for both the downlink and the uplink. Various aspects and embodiments of the invention are described in further detail below.
BRIEF DESCRIPTION OF THE DRAWINGS
[1017] The features, nature, and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:
[1018] FIG. 1 shows a portion of a wireless communication system;
[1019] FIGS. 2 A and 2B show the formats of a downlink dedicated physical channel (downlink DPCH) and a common pilot channel (CPICH) in W-CDMA;
[1020] FIG. 3 shows a block diagram of a base station and a terminal;
[1021] FIG. 4 shows a block diagram of a rake receiver;
[1022] FIG. 5 shows an uplink power control mechanism;
[1023] FIG. 6 A shows a block diagram of a TPC processor;
[1024] FIG. 6B shows the use of separate UP and DOWN TPC target values to detect received TPC commands;
[1025] FIG. 7 A shows a process for determining the reliability of received TPC commands; and
[1026] FIG. 7B shows a process for detecting and combining received TPC commands. DETAILED DESCRIPTION
[1027] The word "exemplary" is used herein to mean "serving as an example, instance, or illustration." Any embodiment or design described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments or designs.
[1028] FIG. 1 shows a portion of a wireless communication system 100. For simplicity, only three base stations 110a, 110b, and 110c and one terminal 120 are shown in FIG. 1. A base station is a fixed station used for communicating with the terminals, and may also be referred to as a Node B, a base transceiver system (BTS), an access point, or some other terminology. A terminal may be fixed or mobile, and may also be referred to as a user equipment (UE), a mobile station, a remote station, an access terminal, or some other terminology.
[1029] A terminal may communicate with one or multiple base stations on the downlink and/or uplink at any given moment. This depends on whether or not the terminal is active, whether or not soft handover is supported, and whether or not the terminal is in soft handover. In FIG. 1, terminal 120 is in soft handover on the uplink, and its uplink transmission is received by all three base stations 110a, 110b, and 110c. Terminal 120 also receives TPC commands from all three base stations while in soft handover. These three base stations are included in an "active set" of the terminal. [1030] A radio network controller (RNC) 130 couples to base stations 110a, 110b, and 110c and may further couple to other network entities. RNC 130 provides coordination and control for the base stations coupled to it. RNC 130 may also be referred to as a base station controller (BSC), a mobile switching center (MSC), or some other terminology.
[1031] The techniques described herein for determining the reliability of received TPC commands and for combining received TPC commands in soft handover may be implemented in various wireless communication systems. System 100 may thus be a CDMA system, a Time Division Multiple Access (TDMA) system, a Frequency Division Multiple Access (FDMA) system, or some other type of system. A CDMA system may implement one or more standards such as W-CDMA, IS-95, IS-2000, and IS-856. A TDMA system may implement one or more standards such as Global System for Mobile Communications (GSM). These standards are well known in the art. The techniques described herein may also be used for downlink as well as uplink power control. For clarity, these techniques are specifically described for uplink power control in an exemplary system, which is a CDMA system that implements W-CDMA (i.e., a W-CDMA system).
[1032] W-CDMA defines a channel structure capable of supporting multiple users concurrently and efficiently transmitting various types of data, i W-CDMA, data to be transmitted on the downlink to a particular terminal is processed as one or more "transport" channels at a higher signaling layer. The transport channels support concurrent transmission of different types of services (e.g., voice, video, packet data, and so on). The transport channels are then mapped to one or more "physical" channels, which are assigned to the terminal for a communication session (e.g., a call). In W-CDMA, a downlink dedicated physical channel (downlink DPCH) is typically assigned to each active terminal for the duration of a communication session. The downlink DPCH carries transport channel data and control data in a time-division multiplexed (TDM) manner.
[1033] FIG. 2 A shows the format for the downlink DPCH in W-CDMA. Data is transmitted on the downlink DPCH in radio frames. Each radio frame is transmitted over a 10 msec frame, which is divided into 15 slots. Each slot is further partitioned into multiple fields for different types of data.
[1034] As shown in FIG. 2 A, for the downlink DPCH, each slot includes data fields 220a and 220b (Datal and Data2), a TPC field 222, a transport format combination indicator (TFCI) field 224, and a pilot field 226. Data fields 220a and 220b carry user- specific data. TPC field 222 carries a TPC command. TFCI field 224 carries the transport format for the downlink DPCH. Pilot field 226 carries a dedicated pilot for the terminal. The duration of each field in the downlink DPCH is determined by the slot format used for the downlink DPCH. One TPC command is sent in each slot in TPC field 222. TPC field 222 may have a duration of 2, 4, 8, or 16 bits, depending on the selected slot format.
[1035] As shown in FIG. 2A, the downlink DPCH is a multiplex of a downlink dedicated physical data channel (DPDCH) and a downlink dedicated physical control channel (DPCCH). The transport channel data is mapped to the DPDCH, while the DPCCH carries signaling information from a physical layer. [1036] FIG. 2B shows the format for a common pilot channel (CPICH) in W- CDMA. The CPICH is a fixed rate (30 kbps) downlink physical channel that carries a predefined bit sequence. The CPICH is transmitted at a fixed power level. [1037] In W-CDMA, each physical channel is assigned a different orthogonal variable spreading factor (OVSF) code. The OVSF code is used to "channelize" the data carried by the physical channel. The OVSF codes in W-CDMA are akin to the Walsh codes in IS-95 and IS-2000. An OVSF code of all zeros is used for the CPICH, and a non-zero OVSF code is assigned for the downlink DPCH. The downlink DPCH and CPICH are described in detail in a document 3GPP TS 25.211, which is publicly available.
[1038] FIG. 3 shows a block diagram of a base station 1 lOx (which may be one of the base stations in FIG. 1) and terminal 120.
[1039] At base station 11 Ox, for the downlink, a transmit (TX) data processor 310 receives, formats, and codes various types of traffic data (e.g., user-specific data, overhead data, and so on) based on one or more coding schemes to provide data symbols. A modulator (MOD) 312 then processes the data symbols and pilot symbols to provide a sequence of complex-valued chips. For W-CDMA, the processing by modulator 312 includes (1) channelizing (or "spreading") each data symbol for each physical channel with an OVSF code for that channel, (2) channelizing each pilot symbol with the pilot OVSF code, (3) combining the channelized data and pilot symbols for all physical channels, and (4) spectrally spreading (or "scrambling") the combined symbols with a scrambling sequence assigned to the base station to obtain the sequence of complex-valued chips. These chips are then provided to a transmitter unit (TMTR) 314 and conditioned (e.g., converted to one or more analog signals, amplified, filtered, and frequency upconverted) to generate a downlink signal. The downlink signal is then routed through a duplexer 316 and transmitted from an antenna 318 and over a wireless communication link to the terminals.
[1040] At terminal 120, the downlink signal(s) from one or multiple base stations are received by an antenna 350, routed through a duplexer 352, and provided to a receiver unit (RCVR) 354. Receiver unit 354 conditions (e.g., filters, amplifies, and frequency downconverts) the received signal and further digitizes the conditioned signal to provide a stream of data samples. A demodulator (DEMOD) 356, which may be implemented with a rake receiver, then processes the data samples to provide "recovered" symbols. For W-CDMA, the processing by demodulator 356 includes (1) descrambling the data samples with a descrambling sequence for the base station being recovered, (2) channelizing the descrambled samples with OVSF codes to segregate the received data symbols and pilot symbols onto their respective physical channels, and (3) coherently demodulating the received data symbols with pilot estimates to obtain the recovered symbols, as described below. A receive (RX) data processor 358 then decodes the recovered symbols to obtain the user-specific data and overhead data sent on the downlink.
[1041] The processing for an uplink transmission may be performed similarly to that described above for the downlink. The downlink and uplink processing for W- CDMA is described in documents 3GPP TS 25.211, 25.212, 25.213, and 25.214, all of which are publicly available.
[1042] Controllers 320 and 360 direct various operations at base station HOx and terminal 120, respectively. Memory units 322 and 362 store data and codes for controllers 320 and 360, respectively.
[1043] FIG. 4 shows a block diagram of a rake receiver 356a, which is one embodiment of demodulator 356 in FIG. 3. Rake receiver 356a includes a sample buffer 408, a searcher 410, N finger processors 412a through 412n (where N > 1 ), and a symbol combiner 430.
[1044] Receiver unit 354 processes the received signal from antenna 350 and provides a stream of data samples, which is stored in buffer 408. Buffer 408 thereafter provides the data samples to the appropriate processing units (e.g., searcher 410 and/or finger processors 412) at the appropriate time. Searcher 410 searches for strong signal instances (i.e., multipaths) in the received signal and provides the strength and timing of each found multipath that meets a set of criteria. The search processing is known in the art and not described herein.
[1045] Each finger processor 412 may be assigned to process a different multipath of interest (e.g., a multipath of sufficient strength). Within each finger processor 412, a resampler/rotator 420 performs resampling and phase rotation on the data samples to provide derotated samples at the proper chip rate and with the proper timing and phase. A descrambler 422 then multiplies the derotated samples with the descrambling sequence for the base station being recovered and provides descrambled samples. [1046] To recover the pilot on the CPICH, a pilot channelizer 424b first multiplies the descrambled samples with the pilot OVSF code, Wpilot , and further accumulates the resultant samples for each time interval Tpilot to obtain a received pilot symbol. Tpiht is an integer multiple of the length of the pilot OVSF code. A pilot filter 426 then filters the received pilot symbols to provide pilot estimates for the CPICH. [1047] To recover the data on the downlink DPCH, a data channelizer 424a first multiplies the descrambled samples with the OVSF code Wdata for the downlink DPCH and further accumulates the resultant samples over the length of this OVSF code to provide received data symbols. A data demodulator 428 then coherently demodulates the received data symbols with the pilot estimates to provide data symbol estimates. The pilot estimates are used as phase reference for the coherent demodulation. [1048] The coherent demodulation may be performed with a dot product or a cross product. The dot product of the received data symbols and the pilot estimates may be expressed as:
Yi(ή) = DI i( ) -PJ i(ή) + D^ή) .P^ri) , Eq (l)
where Dj (n) + jDg(n) is a complex- valued received data symbol from data channelizer 424a of finger processor i for symbol period n;
P (n) + jPg (n) is a complex-valued pilot estimate from pilot filter 426 of finger processor i for symbol period n; and
Y'(n) is a real- alued data symbol estimate from finger processor i for symbol period n.
The cross product of the received data symbols and the pilot estimates may be expressed as:
Yi( )
Figure imgf000012_0001
-PI i(n) . Eq (2)
[1049] Symbol combiner 430 receives and combines the data symbol estimates from all finger processors assigned to process each base station and provides final data symbol estimates (i.e., recovered symbols) for that base station. If multiple base stations are being processed (e.g., in soft handover), then symbol combiner 430 provides a stream of recovered symbols for each base station. Coherent demodulation and symbol combining are also described in U.S Patent Nos. 5,764,687 and 5,490,165. [1050] On the uplink, the capacity of each base station is limited by the total power received by the base station. To maximize uplink capacity, the transmit power of each terminal is typically controlled to be as low as possible to reduce interference while maintaining the desired level of performance. This level of performance is denoted by a target BLER (e.g., of 1%) in the following description.
[1051] FIG. 5 shows an uplink power control mechanism 500, which includes an inner loop 510 and an outer loop 520. For a terminal in soft handover and communicating with multiple base stations (i.e., node Bs, in W-CDMA terminology), one inner loop 510 is maintained by each base station for the terminal. A single outer loop 520 is maintained for the terminal by a network entity, e.g., RNC 130. FIG. 5 also shows various processing units in base station 11 Ox and terminal 120 that make up the inner and outer loops. (Not all processing units are shown in FIG. 5 for simplicity.) [1052] For each base station, inner loop 510 attempts to maintain the received SIR for the uplink transmission, as measured at that base station, as close as possible to a target SIR. Inner loop 510 performs power adjustment by: (1) estimating the received SIR for the uplink transmission (in a demodulator 334 at base station 1 lOx, see FIG. 3), (2) comparing the received SIR against the target SIR (in a TPC generator 324 at base station 11 Ox), (3) generating TPC commands based on the results of the comparison (also in TPC generator 324), and (4) sending the TPC commands to the terminal via the downlink (cloud 540). Each TPC command is either an UP command to direct an increase in transmit power or a DOWN command to direct a decrease in transmit power. One TPC command is sent in each slot in W-CDMA.
[1053] The terminal processes the downlink transmissions received from the base stations in its active set. For each slot, the terminal processes the DPCCH for each base station to obtain a received TPC symbol, which is an estimate of the TPC command sent by that base station. Each received TPC symbol is a "soft-decision" symbol (i.e., a multi-bit value) that comprises (1) a hard-decision value ("0" or "1") for the TPC command sent by the base station plus (2) channel noise and other distortions. For each slot, the terminal combines the received TPC symbols for all base stations in the active set to obtain a single TPC decision for that slot (in a TPC processor 364 at terminal 120). The terminal then adjusts its uplink transmit power accordingly based on the TPC decision (in a transmitter unit 376 at terminal 120). For W-CDMA, the TPC commands may be sent as often as 1500 times per second, thus providing a relatively fast response time for inner loop 510.
[1054] Due to path loss and fading on the uplink (cloud 530), which typically varies over time and especially for a mobile terminal, the received SIR at each base station continually fluctuates. For each base station, inner loop 510 attempts to maintain the received SIR at or near the target SIR in the presence of changes in the uplink. [1055] Outer loop 520 continually adjusts the target SIR such that the target BLER is achieved for the uplink transmission. A single outer loop 520 may be maintained for the terminal by RNC 130. The uplink transmission from the terminal is received and decoded by each base station to recover the transmitted data blocks, and the status of each decoded data block is determined (by an RX data processor 336 in base station 11 Ox). For each decoded data block, a determination is made whether the data block was decoded correctly (good) or in error (erased) or not transmitted at all (DTX). The status of each decoded data block (good, erased, or DTX) is then sent to RNC 130. RNC 130 selects certain ones of the decoded data blocks and adjusts the target SIR accordingly based on the status of the selected data blocks. Typically, if a data block is decoded correctly, then the received SIR at the base stations is likely to be higher than necessary, and the target SIR is reduced slightly. Conversely, if a data block is decoded in error, then the received SIR at the base stations is likely to be lower than necessary, and the target SIR is increased. The target SIR may be maintained fixed if RNC 130 detects that no data blocks were transmitted.
[1056] The performance of the uplink power control is dependent on the terminal's ability to accurately detect the TPC commands sent by the base stations. Conventionally, the terminal determines whether or not each base station is reliably received based on the received pilot strength measured at the terminal for that base station. If a base station is deemed to be reliable, then the received TPC commands for the base station are used by the inner loop for power control. This method of determining the reliability of received TPC commands based on received pilot strength may be inaccurate for the reasons given above.
[1057] The reliability of the received TPC commands is determined by the received SIR for the TPC commands (i.e., the TPC SIR). The TPC SIR for W-CDMA may be expressed as: 1 TPC F I T
TPC STR = --NrPC -SF- ^ c'c ' , Eq (3)
2 TPC Nt /I0
where Nt I ' I0 is the total-noise-and-interference-to-total-incoming-signal ratio;
TPC EJ I0 is the received signal strength for the TPC commands;
SF is the spreading factor for the OVSF code (i.e., the OVSF code length) for the downlink DPCH; and NTPC is the number of TPC bits in a slot.
The term Ec denotes the energy-per-chip for a data or pilot symbol. The term Nt denotes the total noise and interference power (i.e., without the desired signal). The term I0 denotes the total incoming signal power at the input of receiver unit 354. I0 is typically a fixed value that is determined by the design of the receiver unit. Since I0 is a fixed value, Nt l I0 is simply the squared magnitude of noise and interference, and TPC EJ I0 is the squared magnitude of the received TPC commands.
[1058] The slot format indicates various configurable transmission parameters for the downlink DPCH, such as the number of bits transmitted for each TPC command (Nτpc) and the spreading factor for the downlink DPCH. These configurable parameters are used to obtain the proper scaling in the computation of the TPC SIR. The terms SF and Nτpc may be accounted for by a scaling factor in equation (3).
[1059] In one specific receiver implementation, the following quantities are computed by the terminal:
A = ^ - CPICH EJI0 -Nt II0 , and Eq (4)
B = k2 • VCPICH EJI0 - NTPC • SF • ^TPC EJI0 , Eq (5)
where CPICH EJI0 is the received pilot strength for the CPICH;
A is a weighted Nt 110 estimate computed for each finger processor;
B is the value of the received TPC command from the symbol combiner; and
/j and k2 are two fixed- value constants determined by the receiver design.
The TPC SIR may be computed using the quantities A and B, as follows: k B2 TPC SIR = 3- , Eq (6)
NJ C -SF - A 4
where k3 = Q.5kx lk . In equations (3) through (6), the multiplication and division by Nτpc • SF can be performed with simple shift operations because this quantity has a power-of-two value (i.e., TV^ SF = 2Z , where z is a positive integer).
[1060] The TPC SIR may be computed as shown in equation (6) for each received TPC command and used to determine the reliability of the received TPC command. If the TPC SIR for a given received TPC command is sufficiently high (i.e., exceeds a TPC SIR threshold), then the received TPC command is deemed as reliable and used for power control. Conversely, if the TPC SIR for the received TPC command is low (i.e., falls below the TPC SIR threshold), then the received TPC command is deemed as unreliable and discarded. The TPC SIR threshold is typically a static value that is selected based on a tradeoff between probability of false alarm and probability of missed detection, as described below.
[1061] It may not be convenient to compute the TPC SIR explicitly as shown in equation (6). Some simplifications may be made. For example, the quantity B2 may be compared against a TPC target value, which is equal to the product Nτpc • SF • A • k^1 times the TPC SIR threshold. This implementation avoids the need for a divide operation. Other simplifications may also be made, as described below. [1062] Equation (6) may be rewritten as:
B
= /c4 -7Nr,c -SF -VTPC SIR
VA
= £a -VTPC SIR , Eq (7)
= TPCΛ
where k4 = \l z^ , ka = k4 ^Nτpc SF , and TPCώ is a TPC threshold (which is typically a static value). The quantity B/vA may be computed for each received TPC command and compared against the TPC threshold. Again, to avoid a divide operation, the quantity B may be compared against a TPC target value, which may be defined as:
Figure imgf000016_0001
The TPC target value may be viewed as a weighted or dynamic TPC threshold, where /A is the weight. The weight A is proportional to ^CPICH EJI0 • /jVt /J0 , which is the weighted N I0 estimate, as shown in equation (4). The use of the TPC target value avoids the need to explicitly compute the TPC SIR. The reliability of the received TPC commands may be determined by performing simple comparison between the received TPC commands and the TPC target value.
[1063] A received TPC command for a given base station is considered reliable if the absolute value of the received TPC command exceeds the TPC target value. The reliability of each received TPC command is individually determined based on the TPC command itself and the TPC target value. For a terminal in soft handover, a different TPC target value may be derived for each base station based on the
^ CPICH EJI0 ■ -JN I0 measured at the terminal for that base station.
[1064] The TPC threshold, TPC,Λ , may also be defined in some other manners. In a first alternative embodiment, the TPC threshold is defined as:
TPC = i^ -VTPC SΪR , Eq (9)
where Kb is a scaling factor that is not a function of Nτpc SF .
[1065] In a second alternative embodiment, the TPC threshold is defined as:
TPC,Λ = KC -^CPICH EJI0 -VTPC SIR , Eq (10)
where Kc is a scaling factor.
[1066] In a third alternative embodiment, the TPC threshold is defined as:
TPC,„ = Kd • CPICH EJI0 - TPC SIR , Eq (11)
where Kd is a scaling factor.
[1067] In a fourth alternative embodiment, the TPC threshold is defined as:
TPCώ = K. • CPICH EJI0 - TPC EC I Nt , Eq (12)
where Ke is a scaling factor.
[1068] In a fifth alternative embodiment, the TPC threshold is defined as: TPC,„ = Kf • /θTHER_DPCCH_FIELD EC I Nt , Eq (13)
where OTHER_DPCCH_FIELD EJNt is the EJNt of the TFCI, the dedicated pilot, or a combination of any DPCCH symbols, and Kf is a scaling factor.
[1069] In general, the TPC threshold may be a function of SIR, EJ Nt , Ec /I0 ,
N I0, or some other quantity for one or more transmissions. The transmission may be a common pilot (e.g., the CPICH), the received TPC commands, the data symbols received on a physical or code channel used for the TPC commands, a dedicated pilot (e.g., in the DPCCH, as show in FIG. 2A), or some other transmission. [1070] The TPC threshold may be determined based on a tradeoff between the probability of false alarm and the probability of missed detection. A higher TPC threshold results in lower likelihood of false alarm and higher likelihood of missed detection. A false alarm occurs when an incorrectly received TPC command is deemed to be reliable and used for power control. False alarm is less likely to occur if the TPC threshold is high. A missed detection occurs when a correctly received TPC command is deemed to be unreliable and discarded. Missed detection is more likely to occur if the TPC threshold is high. The TPC threshold may be selected to trade off between the probability of false alarm and the probability of missed detection. If the TPC threshold is based on TPC SIR, and since the computation of TPC SIR is dependent on the slot format as shown in equation (7), the scaling factor Ka in equation (7) may be a function of slot format. However, it can be shown that a fixed value for the scaling factor Ka
(i.e., not a function of slot format, as shown in equation (9)) can provide good performance and simple implementation.
[1071] In equation (8), the TPC target value is computed based on a weight
^CPICH EJI0TJN I0 , which is proportional to vA . The specific weight to use for the TPC target value may be dependent on the manner in which the received TPC commands are obtained. For example, the weight
Figure imgf000018_0001
is used in equation (8) because the received TPC commands are obtained based on coherent demodulation of the received data symbols with the pilot estimates. The weight allows the received TPC commands to be compared directly against the TPC target value, and avoids the need for a division by A as described above. For other receiver implementations, the weight may be a function of some other quantities, or may even be omitted altogether. The specific weight to use for the TPC target value may also be dependent on the manner in which various types of data are transmitted. For example, if the TPC commands are transmitted at a known power offset from the CPICH, then the TPC target value may be computed based on the received signal strength for the CPICH. The specific weight to use for the TPC target value may also be dependent on other factors.
[1072] FIG. 6A shows a block diagram of an embodiment of TPC processor 364 within terminal 120. TPC processor 364 includes a TPC target computation unit 610, a TPC detection unit 640, and a TPC combiner 650.
[1073] Within computation unit 610, the pilot estimates for the CPICH for all assigned finger processors are provided to a computation unit 612, which computes the CPICH EJI0 - Nt II0 for each finger processor. The quantity (CPICH EJI0)i for finger processor i may be obtained as the power of the pilot estimates, which is (CPICH Ec // ,. = P (ra)2 -rPρ'(«)2. The quantity NJI0 may be obtained by (1) computing a pilot difference as AP'(n) = P1(n)-Pl(n -ϊ) , where
Pl(n) = PI'(n) + jPg (n) , (2) computing the pilot difference power as || ΔP!(ra) || 2 , and
(3) filtering the pilot difference power to obtain N IB . Unit 612 then multiplies
(CPICH Ec /I0)ι for each finger processor with N I0 to obtain
(CPICH EJI0 - N, II0 for that finger processor.
[1074] Unit 612 may further filter the (CPICH EJI0 - N I0 values for each finger processor. If a finger processor has just been assigned, then its filtered values may take some time to settle. In the interim period, a small value may be used instead of the filtered values. This small value ensures that the output from a newly assigned finger processor is not combined right away with the outputs from other finger processors. This is the desired result if the new finger processor is assigned to a weak multipath, and marginally affects performance if the new finger processor is assigned to a strong multipath.
[1075] A summing unit 614 then receives and sums the filtered or unfiltered (CPICH EJ I0 - Nt II0)ι values for all finger processors assigned to each base station to obtain a (CPICH EJI0 - NJI0)k value for that base station. This summing may be expressed as:
(CPICH EJ I0 ■ Nt / N I , , Eq (14)
Figure imgf000020_0001
where Sk denotes the set of all finger processors assigned to process base station k.
[1076] A filter 616 then filters the (CPICH EJI0 - N I0) k values for each base station to obtain filtered values for that base station. Filter 616 may implement a finite impulse response (FIR) filter, an infinite impulse response (IIR) filter, or some other filter structure. A unit 618 then takes the square root of the filtered
(CPICH EJI0 - NJI0) k values to obtain the quantity (^CPICH EJ I0 -^N I0 ) k , which is . A unit 620 then multiplies the output of unit 618 with a TPC threshold,
TPC,,, <k , and one or more scaling factors (e.g., K and Kdn ) to obtain one or more TPC target values for the base station. In one embodiment, a single TPC target value is used for the detection of both UP and DOWN commands. This single TPC target value may be computed as:
TPCtogea = Kupldn • TPCώι, • (VCPICH Ec //0 • N T0 ) k , Εq (15)
\ where TPCtoget fc is the TPC target value for base station k;
TPC(/ . is the TPC threshold for base station k; and
KUpidn is a scaling factor used to compute the TPC target value.
[1077] In another embodiment, separate TPC target values are used for the detection of UP and DOWN commands. These TPC target values may be computed as:
TPC^,, = Kup - TPC,,,, - (VCPICH EJI0 - NJI0 ) k , and Εq (16)
TPCtoget A/£ = Kώl ■ TPCr/ • (VCPICH Ec //0 • ι0 ) k ,
where TPC„ is the TPC threshold for base station k;
TPC target,^,* is the UP τpc target value for base station k; TPC^grt^^ is the DOWN TPC target value for base station k; Kup is a scaling factor used to compute the UP TPC target value; and Kdn is a scaling factor used to compute the DOWN TPC target value.
The UP and DOWN TPC target values are used to detect for UP and DOWN commands, respectively, sent by the base stations.
[1078] FIG. 6A also shows an embodiment of symbol combiner 430. A summing unit 632 receives and sums the data symbol estimates' from all finger processors assigned to each base station to obtain the final data symbol estimates for that base station. This summing maybe expressed as:
Figure imgf000021_0001
where Yk ( ) is the final data symbol estimate for base station k for symbol period n.
[1079] A summing unit 634 then accumulates the final data symbol estimates obtained for each base station during the TPC field in each slot (see FIG. 2A) to provide a received TPC command for that base station for that slot. This accumulation may be expressed as:
TPCre>t = ∑7» , Eq (18) neNTPC
where TPCra t is the received TPC command for base station k.
[1080] Summing units 632 and 634 may also be swapped in FIG. 6A. In this case, the received TPC command for base station k may be obtained by (1) accumulating the data symbol estimates for each finger processor over the TPC field to obtain a received TPC command for that finger processor and (2) accumulating the received TPC commands for all finger processors assigned to each base station to obtain the received TPC command for that base station.
[1081] TPC detection unit 640 then compares the received TPC commands for each base station against the TPC target value(s) for that base station. Unit 640 provides the detected TPC commands for each base station based on the result of the comparison. [1032] FIG. 6B shows the use of separate UP and DOWN TPC target values to detect the received TPC commands. The horizontal axis represents the possible values for the received TPC commands. The UP TPC target value, TPC^ ,^ , and the DOWN TPC target value, PC,^ ^ , are marked on the horizontal axis. Each received TPC command is mapped onto the horizontal axis. The detected value for each received TPC command is dependent on where the received TPC command falls in relation to the TPC target values. If inverted polarity is used for the TPC commands, then the detection for each received TPC command maybe expressed as:
DOWN command, if TPC„ > TPC^^, ,
TPC detjc UP command, if TPC^ < TPCterget>I, , Eq (19) rejected command, otherwise ,
where TPCrfe, k is the detected TPC command for base station k.
As shown in equation (19), the received TPC command is considered unreliable and rejected if it falls in the range between TPC^,^ and TPC,^ ^ (i.e., if
■'■ targetjdn)ft ≥ lrC.t >
Figure imgf000022_0001
[1083] If a single TPC target value is used, then the UP and DOWN TPC target values may be set as: TPC^,^ = -TPCtarget>, and TPC^^. = TPCterge . A single
)
TPC target value may be used if no bias is desired in the detection of UP and DOWN commands, so that UP and DOWN commands are equally likely to be rejected. This may be the case, for example, if the terminal is not in soft handover. Two TPC target values may be used, for example, if a bias is desired in the detection of UP and DOWN commands. This may be the case, for example, if the terminal is in soft handover and the DOWN commands have a larger influence in the OR-of-the-DOWN rule. The UP TPC target value may be set to a small negative value or possibly even zero, so that UP commands are less likely to be rejected.
[1084] Referring back to FIG. 6A, TPC combiner 650 receives and combines the detected TPC commands for all base stations to provide TPC decisions. TPC combiner 650 implements the OR-of-the-DOWN rule to provide a TPC decision for each slot. TPC combiner 650 discards detected TPC commands for received TPC commands deemed as unreliable. For each slot, TPC combiner 650 provides (1) a DOWN TPC decision if any one of the detected TPC commands is a DOWN command, (2) a rejected TPC decision if all detected TPC commands are rejected commands, or (3) an UP TPC decision otherwise. For each slot, the terminal increases its transmit power for an UP TPC decision, decreases its transmit power for a DOWN TPC decision, and maintains its transmit power otherwise. The TPC detection and combining may also be performed in some other manners.
[1085] For the embodiment shown in FIG. 6A, units 612, 614, and 616 may operate whenever pilot estimates are available from the finger processors. The TPC target value(s) for each base station may be computed for each slot, each frame, or some other time interval. To compute the TPC target value(s), only the most recent
(^ CPICH Ec /Iσ • ^N I0) k value for each base station is needed from filter 616.
[1086] For clarity, pseudo-code for a specific implementation of the detection and combining of received TPC commands is described below. Table 1 lists the variables used for this implementation and their short description.
Table 1
Figure imgf000023_0001
BS - variable is maintained for each base station; FP - variable is maintained for each finger processor; ABS - variable is maintained for all base stations. Sum Nt/Io over fingers for each base station (Block 614)
10 For (i=0, i<NumFinger, i++) {
20 BS_NtIo[BSindex[i] ] += NtIo[i],-
30 }
// BSindex[i] provides the index of the base station being processed by // finger processor i.
Filter Kft/Io for each base station with 1-pole IIR filter (Block 616)
10 For ( =0 , k<NumBS, k++) {
20 Saturate (BS_NtIo [k] to 2Λ15-1) ;
30 diff = BS_NtIo [k] - f iltered_BS_NtIo [k] ;
40 filtered_BS_NtIo [k] = Round (diff * IIR_gain) ;
50 }
// The IIR filter has 1 pole, which is defined by ITR_gain.
Compute TPC target values for each base station (Blocks 618 and 620)
10 For (k=0, k<NumBS, k++) {
20 Saturate (filtered_BS_NtIo[k] to 2Λ15-1) ;
30 sqrt_BS_NtIo[k] = GetSqrt (Filtered_BS_NtIo [k] ) ;
40 up_TPC_target[k] = Kup[k] * sqrt_BS_NtIo[k] ;
50 dn_TPC_target[k] = Kdn[k] * sqrt_BS_NtIo [k] ;
60 }
// Saturate (x to y) is a function that limits or clips x to a maximum value of y.
// GetSqrt (x) is a function that provides the square root of x.
// The UP and DOWN TPC target values may be stored in a table that can be indexed by
// slot format. For a simple implementation, constant values may be used for these TPC
// target values (i.e., not a function of slot format).
Deriving TPC decision for all base station (Blocks 640 and 650)
10 TPC_decision = "null";
20 For (k=0, k<NumBS, k++) {
30 If (BS_rxdTPC[k] > dn_TPC_target [k] ) {
40 TPC_decision = "DOWN"; }
50 Else If (BS_rxdTPC[k] < up_TPC_target [k] ) {
60 If (TPC_decision = "null") TPC_decision = "UP"; }
70 } // TPC decision is set to "null" initially. The OR-of-the-DOWN rule sets the // TPC decision to DOWN if the received TPC command for any base station is // detected to be a DOWN command. The TPC decision can only be set to UP if // a received TPC command is detected to be an UP command and no DOWN // command has been detected.
Square root implementation (Block 618)
10 # define SqrtTableSize 256
20 int SqrtTable [SqrtTableSize] ;
// Create a table where the i-th entry contains a value for 2048 times the square root of i.
30 void CreateSqrtTable ( ) {
40 For ( i=0 , i< SqrtTableSize , i++) {
50 SqrtTable [ i] = ( int) floor ( sqrt ( i ) &2048+0 . 5 ) ,- }
60 }
70 int GetSqrt (int x) {
80 int y = x;
90 int base = 1;
100 If (y < 0) cout « "negative y:" « y « endl;
110 While (y & OxffffffOO) { // keep shifting right until
120 y = y » 2; // y < 256
130 base = base * 2;
140 }
150 If (y >= SqrtTableSize) {
160 cout « "table size exceeded y:" « y « endl; }
170 Return (base * SqrtTable [y] ) ;
180 }
// GetSqrt (x) returns a value for 2048 times the square root of x, where x is a positive // 16-bit number. Steps 110 to 140 shifts y to the right until y < 256. At the end of the // shifting: base = 1 if x = 1..255; base = 2 if x = 256..1023; base = 4 if x=l 024..4095; // ...; and base = 16 if =2Λ14..2Λ15-l.
[1087] FIG. 7A shows an embodiment of a process 700 for determining the reliability of TPC commands received from a transmitter (e.g., a base station) in a wireless commumcation system (e.g., a CDMA system). At least one TPC target value is determined based on a TPC threshold and possibly a weight, as described above (step 712). Multiple TPC target values may be computed and used to detect for UP commands and DOWN commands, as described above. The received TPC commands are compared against the TPC target value(s) (step 714). A detected TPC command is provided for each received TPC command based on the result of the comparison (step 716). Each detected TPC command is a DOWN command, an UP command, or a rejected command, as shown in equation (19).
[1088] FIG. 7B shows an embodiment of a process 750 for combining TPC commands received from multiple transmitters in a wireless communication system. At least one TPC target value is determined for each transmitter based on a TPC threshold and possibly a weight for the transmitter (step 752). The TPC target value(s) for each transmitter may be determined as described above. The received TPC commands for each transmitter are compared against the TPC target value(s) for that transmitter to obtain detected TPC commands for the transmitter (step 754). The detected TPC commands for the multiple transmitters are then combined to provide TPC decisions (step 756). Detected TPC commands for unreliably received TPC commands are discarded. The OR-of-the-DOWN rule may be applied to the detected TPC commands for each power control period to obtain a TPC decision for that power control period, as described above.
[1089] Various schemes may also be implemented in combination with the techniques described above. Some of these schemes are described below. [1090] In a first scheme, a power lock threshold is maintained for each assigned finger processor and used to accept or reject the received TPC commands for that finger processor. The power lock threshold may be computed based on an average DPCCH EJNt , the EJNt of any DPCCH field including TPC EJNt ,
CPICH EJI0 , or some other EJNt or EJI0 measurement. For W-CDMA, the TPC, TFCI, and dedicated pilot (see FIG. 2A) may be transmitted at different power levels. Thus, the average DPCCH EJNt may be different from the TPC EJNt . The power lock threshold for each finger processor may be set, for example, to the measurement for the finger processor with the strongest multipath minus an offset (e.g., a few dB). If this value is less than a minimum threshold value (e.g., -20 or -17.5 dB), then the power lock threshold may be set to the mn imum threshold value. The power lock threshold for the strongest finger processor may be set to the minimum threshold value. [1091] If the measurement for a given finger processor is less than the power lock threshold for that finger processor, then the received TPC commands for that finger processor are discarded and not used for power control. The use of a power lock threshold based on DPCCH EJNt or TPC EJNt may result in some finger processors assigned to a "good" base station being combined even though the CPICH EC II0 for these finger processors may be weak. This scenario is more likely to occur if power balancing is not applied for soft handover, and the ratio between DPCCH power to CPICH power varies across multiple base stations in the active set. [1092] In a second scheme, a power lock threshold is maintained for each base station and used to accept or reject the received TPC commands for that base station. The power lock threshold may be computed based on DPCCH EJNt, TPC EJ Nt ,
CPICH EJL , or some other E N, or EJ In measurement. The measurement for each base station may be determined by combining the measurements for all finger processors assigned to process that base station. The power lock threshold for each base station may be determined by the measurement for the strongest received base station minus an offset (e.g., a few dB). If the measurement for a given base station is less than the power lock threshold for that base station, then the received TPC commands for that base station are discarded.
[1093] In a third scheme, the received powers for the DPCCH and CPICH are estimated for each base station, and the ratio of DPCCH power to CPICH power is computed. The DPCCH to CPICH power ratios for all base stations in the active set are then compared to detect for power imbalance. Power imbalance may be declared, for example, if the largest power ratio is greater than X times the smallest power ratio, where X is a value greater than one. If power imbalance is not declared, then the received TPC commands may be accepted or rejected based on pilot signal strength (i.e., received power for the CPICH). Otherwise, if power imbalance is declared, then the techniques described above may be used to determine the reliability of individual received TPC commands and to combine these received TPC commands. [1094] In a fourth scheme, only the received TPC commands for the strongest received base station are used for power control. The received TPC commands for all other base stations are discarded. For this scheme, no TPC combining is performed. The received TPC commands for the strongest received base station may be accepted or rejected using the techniques described above. [1095] The techniques described herein can more accurately determine the reliability of received TPC commands. These techniques may be advantageously used by/for terminals that are in soft handover as well as those that are not in soft handover. [1096] The techniques described herein may be used for any closed-loop power- controlled wireless communication system that sends TPC commands to control transmit power. For example, these techniques may be used for CDMA systems such as W-CDMA, IS-95, IS-2000, and IS-856 systems. Different systems may send TPC commands in different manners, using different channel structures, and so on. Moreover, the TPC commands for different systems may have different formats and/or different polarity than those described above for W-CDMA. The number of TPC target values to use and the values for these TPC target values may then be dependent on the format and polarity used for the TPC commands.
[1097] The techniques described herein may be implemented by various means. For example, these techniques may be implemented in hardware, software, or a combination thereof. For a hardware implementation, the processing units for these techniques (e.g., TPC processor 364) may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units, designed to perform the functions described herein, or a combination thereof. [1098] For a software implementation, the techniques described herein may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The software codes may be stored in a memory unit (e.g., memory unit 322 or 362 in FIG. 3) and executed by a processor (e.g., controller 320 or 360). The memory unit may be implemented within the processor or external to the processor, in which case it can be communicatively coupled to the processor via various means as is known in the art.
[1099] The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
[1100] YyHΛT IS CLAIMED IS:

Claims

1. A device in a wireless communication system, comprising: a computation unit operative to provide a transmit power control (TPC) target value used for determining reliability of received TPC commands; and a detection unit operative to compare the received TPC commands against the TPC target value and provide detected TPC commands based on results of the comparison.
2. The device of claim 1, wherein the detection unit is operative to provide a detected TPC command for each of the received TPC commands, and wherein the detected TPC command indicates that the received TPC command is unreliable when an absolute value of the received TPC command is less than the TPC target value.
3. The device of claim 1, wherein the TPC target value is determined based on a TPC threshold.
4. The device of claim 3, wherein the TPC threshold is a function of signal- to-interference ratio (SIR) for the received TPC commands.
5. The device of claim 3, wherein the TPC threshold is a function of energy-per-chip-to-total-incoming-signal ratio (EJI0) for a pilot and signal-to- interference ratio (SIR) for the received TPC commands.
6. The device of claim 3, wherein the TPC threshold is a function of energy-per-chip-to-total-noise-and-interference ratio (EJNt) for a transmission received along with the received TPC commands.
7. The device of claim 3, wherein the TPC threshold is selected based on a tradeoff between probability of false alarm and probability of missed detection.
8. The device of claim 3, wherein the TPC target value is further determined based on a weight.
9. The device of claim 8, wherein the weight is a weighted total-noise-and- interference-to-total-incoming-signal ratio (N I0) estimate for a transmitter of the received TPC commands.
10. The device of claim 9, wherein the computation unit is operative to determine a weighted NJ I0 estimate for each of a plurality of signal instances for the transmitter and to sum a plurality of weighted Nt 110 estimates for the plurality of signal instances to obtain the weight.
11. The device of claim 1, wherein the computation unit is operative to provide first and second TPC target values, wherein the first TPC target value is used to determine whether the received TPC commands are UP commands, and wherein the second TPC target value is used to determine whether the received TPC commands are DOWN commands.
12. The device of claim 11, wherein the first and second TPC target values are determined based on first and second scaling factors, respectively.
13. The device of claim 1, wherein the wireless communication system is a Code Division Multiple Access (CDMA) system.
14. An integrated circuit, comprising: a computation unit operative to provide a transmit power control (TPC) target value used for determining reliability of received TPC commands; and a detection unit operative to compare the received TPC commands against the TPC target value and provide detected TPC commands based on results of the comparison.
15. An apparatus in a wireless commumcation system, comprising: means for determining a transmit power control (TPC) target value used for determining reliability of received TPC commands; means for comparing the received TPC commands against the TPC target value; and means for providing a detected TPC command for each of the received TPC commands based on a result of the comparison, wherein the detected TPC command indicates that the received TPC command is unreliable when an absolute value of the received TPC command is less than the TPC target value.
16. A method of determining reliability of transmit power control (TPC) commands received from a transmitter in a wireless communication system, comprising: determining a TPC target value used for determining reliability of received TPC commands; comparing the received TPC commands against the TPC target value; and providing a detected TPC command for each of the received TPC commands based on a result of the comparison, wherein the detected TPC command indicates that the received TPC command is unreliable when an absolute value of the received TPC command is less than the TPC target value.
17. The method of claim 16, wherein the determining includes obtaining a weighted total-noise-and-interference-to-total-incoming-signal ratio (NJI0) estimate for the transmitter, and obtaining the TPC target value based on the weighted NJ I0 estimate and a TPC threshold.
18. The method of claim 17, wherein the weighted NJI0 estimate is computed for each of a plurality of signal instances for the transmitter, and wherein a plurality of weighted NJ I0 estimates for the plurality of signal instances are summed and used to obtain the TPC target value.
19. A processor readable media including instructions operable in a wireless communication device to: determine a transmit power control (TPC) target value used for determining reliability of received TPC commands; compare the received TPC commands against the TPC target value; and provide a detected TPC command for each of the received TPC commands based on a result of the comparison, the detected TPC command indicating that the received TPC command is unreliable when an absolute value of the received TPC command is less than the TPC target value.
20. A device in a wireless communication system, comprising: a computation unit operative to provide a transmit power control (TPC) target value for each of a plurality of transmitters; a detection unit operative to compare the received TPC commands for each of the plurality of transmitters against the TPC target value for the transmitter to provide detected TPC commands for the transmitter; and a TPC combiner operative to combine detected TPC commands for the plurality of transmitters to provide TPC decisions.
21. The device of claim 20, wherein the detection unit is operative to provide a detected TPC command for each received TPC command, and wherein the detected TPC command indicates that the received TPC command is unreliable when an absolute value of the received TPC command is less than the TPC target value used for the received TPC command.
22. The device of claim 21, wherein the TPC combiner is operative to discard detected TPC commands for received TPC commands deemed as unreliable.
23. The device of claim 20, wherein the detection unit provides a plurality of detected TPC commands for the plurality of transmitters for each power control period, and wherein the TPC combiner is operative to provide a TPC decision to decrease transmit power if any one of the plurality of detected TPC commands for the power control period indicates a decrease in transmit power.
24. The device of claim 20, wherein the TPC target value for each of the plurality of transmitters is determined based on a TPC threshold and a weight for the transmitter.
25. The device of claim 24, wherein the weight for each of the plurality of transmitter is a weighted total-noise-and-interference-to-total-incoming signal ratio (NJ I0) estimate for the transmitter.
26. The device of claim 20, further comprising: a symbol combiner operative to combine data symbol estimates for at least one signal instance for each transmitter to provide the received TPC commands for the transmitter.
27. The device of claim 20, wherein the TPC combiner is operative to discard detected TPC commands for any one of the plurality of transmitters when a second signal quality estimate for the transmitter is below a predetermined threshold:
28. The device of claim 27, wherein the second signal quality estimate is an energy-per-chip-to-total-noise-and-interference ratio (EJNt ) estimate for a physical channel used to send the received TPC commands.
29. The device of claim 27, wherein the second signal quality estimate is an energy-per-chip-to-total-noise-and-interference ratio (EJNt ) estimate for the received TPC commands.
30. The device of claim 20, wherein the wireless communication system is a Code Division Multiple Access (CDMA) system.
31. An integrated circuit in a wireless communication system, comprising: a computation unit operative to provide a transmit power control (TPC) target value for each of a plurality of transmitters; a detection unit operative to compare received TPC commands for each of the plurality of fransmitters against the TPC target value for the transmitter to provide detected TPC commands for the fransmitter; and a TPC combiner operative to combine detected TPC commands for the plurality of transmitters to provide TPC decisions.
32. An apparatus in a wireless commumcation system, comprising: means for determining a transmit power control (TPC) target value for each of a plurality of transmitters; means for comparing received TPC commands for each of the plurality of transmitters against the TPC target value for the transmitter to provide detected TPC commands for the transmitter; and means for combining detected TPC commands for the plurality of transmitters to provide TPC decisions.
33. A method of combining transmit power control (TPC) commands received in a wireless communication system, comprising: determining a TPC target value for each of a plurality of transmitters; comparing received TPC commands for each of the plurality of transmitters against the TPC target value for the transmitter to provide detected TPC commands for the fransmitter; and combining detected TPC commands for the plurality of transmitters to provide TPC decisions.
PCT/US2004/005544 2003-02-26 2004-02-24 Reliability determination and combining of power control commands during soft-handoff WO2004077695A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BRPI0407813-6A BRPI0407813A (en) 2003-02-26 2004-02-24 reliability determination and power control command combination during soft handoff
IL170462A IL170462A (en) 2003-02-26 2005-08-23 Reliability determination and combining of power control commands during soft-handoff

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US45060303P 2003-02-26 2003-02-26
US60/450,603 2003-02-26
US10/457,846 2003-06-10
US10/457,846 US7340268B2 (en) 2003-02-26 2003-06-10 Reliability determination and combining of power control commands received in a wireless communication system

Publications (1)

Publication Number Publication Date
WO2004077695A1 true WO2004077695A1 (en) 2004-09-10

Family

ID=32872254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/005544 WO2004077695A1 (en) 2003-02-26 2004-02-24 Reliability determination and combining of power control commands during soft-handoff

Country Status (5)

Country Link
US (1) US7340268B2 (en)
KR (1) KR101068056B1 (en)
BR (1) BRPI0407813A (en)
IL (1) IL170462A (en)
WO (1) WO2004077695A1 (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6963752B1 (en) * 2000-09-18 2005-11-08 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for setting transmit power control command energy
US7809393B2 (en) * 2003-05-09 2010-10-05 Nxp B.V. Method and arrangement for setting the transmission of a mobile communication device
US6944142B2 (en) * 2003-05-13 2005-09-13 Interdigital Technology Corporation Method for soft and softer handover in time division duplex code division multiple access (TDD-CDMA) networks
US6907025B2 (en) * 2003-06-06 2005-06-14 Interdigital Technology Corporation Adjusting the amplitude and phase characteristics of transmitter generated wireless communication signals in response to base station transmit power control signals and known transmitter amplifier characteristics
MXPA06001174A (en) * 2003-07-30 2006-04-11 Interdigital Tech Corp Downlink power control with limit to dynamic range using detection of downlink transmit power.
JP2005123658A (en) * 2003-08-18 2005-05-12 Nec Corp Method of determining transmission power control information
GB0326365D0 (en) * 2003-11-12 2003-12-17 Koninkl Philips Electronics Nv A radio communication system,a method of operating a communication system,and a mobile station
DE60336144D1 (en) * 2003-12-03 2011-04-07 Alcatel Lucent Transmitter / receiver unit with carrier reactivation with an improvement of the signal-to-noise ratio
WO2005064873A1 (en) * 2003-12-22 2005-07-14 Koninklijke Philips Electronics N.V. Universal derotator for umts modes
US7437175B2 (en) * 2004-05-06 2008-10-14 Telefonaktiebolaget L M Ericsson (Publ) Synchronization detection methods and apparatus
KR101079084B1 (en) * 2004-06-18 2011-11-02 엘지전자 주식회사 Method for Transmitting Scheduling Command for Uplink E-DCH in Softer Handover Region
WO2006046893A1 (en) * 2004-10-29 2006-05-04 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for mutual information based power control
WO2006081875A1 (en) * 2005-02-01 2006-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Outer loop power control for f-dpch
EP2448199B1 (en) * 2005-02-07 2016-09-28 Telefonaktiebolaget LM Ericsson (publ) Methods and arrangements for handling unreliable scheduling grants in a telecommunication network
JP4346661B2 (en) * 2005-02-09 2009-10-21 富士通株式会社 Wireless communication system
JP4538366B2 (en) * 2005-03-29 2010-09-08 株式会社エヌ・ティ・ティ・ドコモ Transmission rate control method, mobile station and radio base station
US20060223447A1 (en) * 2005-03-31 2006-10-05 Ali Masoomzadeh-Fard Adaptive down bias to power changes for controlling random walk
US7546136B2 (en) * 2005-04-29 2009-06-09 Telefonaktiebolaget L M Ericsson (Publ) Variable transmit power control strategies for high-speed downlink packet access systems
US8965440B2 (en) * 2005-05-31 2015-02-24 Alcatel Lucent Method of estimating a current channel condition in a wireless communications network
GB2427790B (en) * 2005-06-29 2008-02-06 Motorola Inc Apparatus and method for determining call quality in a communication system
US8948805B2 (en) * 2005-08-26 2015-02-03 Qualcomm Incorporated Method and apparatus for reliable transmit power and timing control in wireless communication
US7603136B2 (en) * 2005-11-08 2009-10-13 Honeywell International, Inc. System and method to perform stable distributed power control in a wireless network
US7907961B2 (en) 2006-06-07 2011-03-15 Broadcom Corporation Method and apparatus for improving noise power estimate in a WCDMA network
US7706827B2 (en) * 2006-02-15 2010-04-27 Broadcom Corporation Method and apparatus for processing transmit power control (TPC) commands in a wideband CDMA (WCDMA) network based on a sign metric
US8731593B2 (en) * 2006-02-15 2014-05-20 Broadcom Corporation Method and apparatus for processing transmit power control (TPC) commands in a wideband CDMA (WCDMA) network
US7809395B2 (en) * 2006-02-15 2010-10-05 Broadcom Corporation Method and system for controlling transmit circuitry in a wide band CDMA network
US20070191045A1 (en) * 2006-02-15 2007-08-16 Mark Kent Method and system for synchronization procedures in a wide band CDMA network based on a sign metric
US7853281B2 (en) * 2006-04-14 2010-12-14 Qualcomm Incorporated Methods and apparatus for tracking wireless terminal power information
US7634235B2 (en) * 2006-05-30 2009-12-15 Broadcom Corporation Method and apparatus to improve closed loop transmit diversity modes performance via interference suppression in a WCDMA network equipped with a rake receiver
JP2008011285A (en) * 2006-06-30 2008-01-17 Fujitsu Ltd Transmission power controller and transmission power control method
EP2095661B1 (en) * 2006-12-19 2018-03-28 Telefonaktiebolaget LM Ericsson (publ) Handling of idle gap commands in a telecommunication sysytem
US20080240013A1 (en) * 2007-03-30 2008-10-02 Sony Ericsson Mobile Communications Ab Power Control for Compressed Mode in WCDMA System
US7881742B2 (en) * 2007-01-31 2011-02-01 Qualcomm, Incorporated Method and apparatus for power control during DTX operation
US20090303888A1 (en) * 2007-05-03 2009-12-10 Honeywell International Inc. Method and system for optimizing wireless networks through feedback and adaptation
KR101534354B1 (en) * 2007-05-08 2015-07-06 삼성전자주식회사 A METHOD AND SYSTEM FOR TRANSMIT POWER CONTROL MANAGEMENT IN High Speed Packet Access
US7804886B2 (en) * 2007-07-10 2010-09-28 Thetaware, Inc. Wearable system for data transmission and reception and method of using the same
US7953140B2 (en) * 2007-08-01 2011-05-31 Broadcom Corporation Method and apparatus to process dedicated pilot bits from multiple fingers
US7941118B2 (en) * 2007-08-01 2011-05-10 Broadcom Corporation Method and apparatus to process dedicated physical control channel (DPCCH) in a transmit antenna diversity (TXDIV) rake finger
US8200270B2 (en) * 2007-08-20 2012-06-12 Honeywell International Inc. Method for adusting power at a node
JP4992977B2 (en) * 2007-10-02 2012-08-08 富士通株式会社 HANDOVER CONTROL DEVICE, MOBILE STATION, BASE STATION, HANDOVER CONTROL SERVER, AND HANDOVER CONTROL METHOD
US7899483B2 (en) * 2007-10-08 2011-03-01 Honeywell International Inc. Method and system for performing distributed outer loop power control in wireless communication networks
WO2009096830A1 (en) * 2008-01-29 2009-08-06 Telefonaktiebolaget Lm Ericsson (Publ) A method of transmitting tpc commands
WO2009113934A1 (en) * 2008-03-13 2009-09-17 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for uplink multicarrier power control in a wireless communications system
US8107387B2 (en) * 2008-03-25 2012-01-31 Honeywell International Inc. Method to operate a wireless network having a predictable and stable performance
US8666441B2 (en) * 2009-07-14 2014-03-04 Futurewei Technologies, Inc. System and method for uplink power control in a wireless communications system
WO2012050507A1 (en) * 2010-10-12 2012-04-19 Telefonaktiebolaget L M Ericsson (Publ) Uplink power control
CN102571176B (en) * 2011-12-30 2014-07-09 华为技术有限公司 Method, system and terminal device for adjusting weight-vectors of transmit diversity
US9167537B2 (en) 2012-06-05 2015-10-20 Qualcomm Incorporated Methods and apparatus for DLTPC rejection in downlink windup mode
US9055537B2 (en) 2012-06-05 2015-06-09 Qualcomm Incorporated Methods and apparatus for sire-based DLTPC rejection
EP2868147A1 (en) 2012-06-29 2015-05-06 Telefonaktiebolaget L M Ericsson (publ) Uplink transmit power control
US9179418B2 (en) * 2013-01-31 2015-11-03 Qualcomm Incorporated Apparatus and method of improving the overall decision quality of the F-DPCH channel
US9055536B2 (en) * 2013-03-01 2015-06-09 Qualcomm Incorporated Apparatus and method of ULTPC rejection threshold optimization in WCDMA for power control algorithm 2
EP2966906B1 (en) * 2013-04-03 2019-08-07 Huawei Technologies Co., Ltd. Method and device for processing downlink information
JP2014220975A (en) * 2013-05-10 2014-11-20 パナソニック株式会社 Storage battery management device
US9986517B2 (en) * 2014-11-19 2018-05-29 Telefonaktiebolaget Lm Ericsson (Publ) Method for optimization of transmit power control
US10149255B2 (en) * 2015-05-01 2018-12-04 Qualcomm Incorporated Low latency uplink power control
DE102015215177B3 (en) * 2015-08-07 2016-11-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for controlling the transmission power

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041485A1 (en) * 1999-11-27 2001-06-07 Koninklijke Philips Electronics N.V. Method for conformance testing of radio communication equipment
US6269239B1 (en) * 1998-12-11 2001-07-31 Nortel Networks Corporation System and method to combine power control commands during soft handoff in DS/CDMA cellular systems
US20020082037A1 (en) * 1999-04-14 2002-06-27 Oscar Salonaho Method for controlling transmission power

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6760598B1 (en) * 2002-05-01 2004-07-06 Nokia Corporation Method, device and system for power control step size selection based on received signal quality
US7046963B2 (en) * 2002-12-06 2006-05-16 Texas Instruments Incorporated Method and apparatus of signal estimation over generalized fading channel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269239B1 (en) * 1998-12-11 2001-07-31 Nortel Networks Corporation System and method to combine power control commands during soft handoff in DS/CDMA cellular systems
US20020082037A1 (en) * 1999-04-14 2002-06-27 Oscar Salonaho Method for controlling transmission power
WO2001041485A1 (en) * 1999-11-27 2001-06-07 Koninklijke Philips Electronics N.V. Method for conformance testing of radio communication equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GRANDELL J ET AL: "Closed-loop power control algorithms in soft handover for WCDMA systems", ICC 2001. 2001 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS. CONFERENCE RECORD. HELSINKY, FINLAND, JUNE 11 - 14, 2001, IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, NEW YORK, NY : IEEE, US, vol. VOL. 1 OF 10, 11 June 2001 (2001-06-11), pages 791 - 795, XP010553110, ISBN: 0-7803-7097-1 *

Also Published As

Publication number Publication date
US7340268B2 (en) 2008-03-04
KR101068056B1 (en) 2011-09-28
KR20050114631A (en) 2005-12-06
IL170462A (en) 2010-12-30
BRPI0407813A (en) 2006-09-12
US20040166884A1 (en) 2004-08-26

Similar Documents

Publication Publication Date Title
US7340268B2 (en) Reliability determination and combining of power control commands received in a wireless communication system
KR100319995B1 (en) Variable bit rate code division multiple access transmission power control system and mobile phone system
EP1249951B1 (en) Communication apparatus
EP1492263B1 (en) Radio communication apparatus and communication mode control method of a mobile communication system
CA2800031C (en) Method and apparatus for communications of data in a communication system
US8116351B2 (en) Downlink power control with limit to dynamic range using detection of downlink transmit power
US20090036155A1 (en) E-HICH/E-RGCH adaptive threshold setting
JP4875153B2 (en) Method and apparatus for reducing path imbalance in a network using high speed data packet access (HSDPA)
JP2003510950A (en) Power control method and power control device
EP1216595A1 (en) Closed loop resource allocation in a high speed wireless communications network
JP2008539620A (en) Variable transmit power control method for high speed downlink packet connection (HSDPA) system
KR101097707B1 (en) A method for improving capacity of a reverse link channel in a wireless network
JP4684124B2 (en) Mobile station apparatus and transmission power control method in the same
EP1415412B1 (en) Method and apparatus for controlling gain level of a communication channel in a cdma communication system
EP1830480B1 (en) Downlink power control with limit to dynamic range using detection of downlink transmit power
WO2012171550A1 (en) Method and device for error compensation in a communications network

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 170462

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2038/CHENP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020057016070

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057016070

Country of ref document: KR

122 Ep: pct application non-entry in european phase
ENP Entry into the national phase

Ref document number: PI0407813

Country of ref document: BR