WO2004079170A1 - EXHAUST SYSTEM FOR LEAN BURN IC ENGINE INCLUDING PARTICULATE FILTER AND NOx ABSORBENT - Google Patents

EXHAUST SYSTEM FOR LEAN BURN IC ENGINE INCLUDING PARTICULATE FILTER AND NOx ABSORBENT Download PDF

Info

Publication number
WO2004079170A1
WO2004079170A1 PCT/GB2004/000994 GB2004000994W WO2004079170A1 WO 2004079170 A1 WO2004079170 A1 WO 2004079170A1 GB 2004000994 W GB2004000994 W GB 2004000994W WO 2004079170 A1 WO2004079170 A1 WO 2004079170A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent
filter
exhaust gas
reductant
lean
Prior art date
Application number
PCT/GB2004/000994
Other languages
French (fr)
Inventor
Paul Richard Phillips
Claus Friedrich Goersmann
Philip Gerald Blakeman
Guy Richard Chandler
Original Assignee
Johnson Matthey Public Limited Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey Public Limited Company filed Critical Johnson Matthey Public Limited Company
Priority to US10/547,916 priority Critical patent/US7930881B2/en
Priority to EP04718332A priority patent/EP1606498B1/en
Priority to DE602004003354T priority patent/DE602004003354T2/en
Priority to JP2006505932A priority patent/JP4503593B2/en
Publication of WO2004079170A1 publication Critical patent/WO2004079170A1/en
Priority to KR1020057016747A priority patent/KR101110648B1/en
Priority to US13/093,497 priority patent/US8752367B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • B01J35/27
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J35/19
    • B01J35/56
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air

Definitions

  • the present invention relates to an exhaust system for a lean bum internal combustion engine, and in particular it relates to an exhaust system comprising a particulate filter and a NO x absorbent.
  • the level of acceptable emissions from vehicular internal combustion engines is regulated by legislation. Such levels are being tightened in the years to come, and so the challenge for vehicle manufacturers (original equipment manufacturers or OEMs) is how to meet them.
  • the legislated exhaust gas components are particulate matter (PM), nitrogen oxides (NO x ), carbon monoxide (CO) and hydrocarbons (HC).
  • PM particulate matter
  • NO x nitrogen oxides
  • CO carbon monoxide
  • HC hydrocarbons
  • a widely adopted measure to meet legislated levels on PM is the particulate or soot filter. Broadly, such filters increase the residence time of PM in an exhaust system to enable it to be destroyed and can include ceramic wall-flow filters or wire mesh filters.
  • a wall-flow filter is in the form of a honeycomb.
  • the honeycomb has an inlet end and an outlet end, and a plurality of cells extending from the inlet end to the outlet end, the cells having porous walls wherein part of the total number of cells at the inlet end are plugged, e.g. to a depth of about 5 to 20 mm, along a portion of their lengths, and the remaining part of the cells that are open at the inlet end are plugged at the outlet end along a portion of their lengths, so that a flowing exhaust gas stream passing through the cells of the honeycomb from the inlet end flows into the open cells, through the cell walls, and out of the filter through the open cells at the outlet end.
  • a composition for plugging the cells is described in US patent no. 4,329,162 (incorporated herein by reference). A typical arrangement is to have every other cell on a given face plugged, as in a chequered pattern.
  • a problem associated with the use of particulate filters is how to destroy the PM collected from an exhaust gas throughout a lean burn engine cycle.
  • diesel PM combusts in oxygen (O 2 ) at above about 550°C.
  • diesel exhaust gas temperatures particularly in light-duty diesel engines, can be as low as 150°C during certain phases of a drive cycle due, for example, to the increasingly heavy use of exhaust gas recirculation (EGR) to lower NO x emissions.
  • EGR exhaust gas recirculation
  • the back-pressure can increase thereby increasing the load on the engine.
  • Increased engine load can lead to increased fuel consumption and, in a worst case, engine wear or destruction of the filter caused by uncontrolled combustion of large amounts of PM.
  • increasing the engine load e.g. through increased back-pressure due to PM build-up, can also increase the exhaust gas temperature sufficiently to combust the PM, such temperature increase can be insufficient reliably to keep the filter clear.
  • Light-duty diesel engines are defined in European legislation by European Directive 70/220/EEC, as amended by 93/59/EC and 98/69/EC. In the USA passenger vehicles, light light-duty trucks (LLDT), below 6000 lbs gross vehicle weight rating (GVWR) and heavy light-duty trucks (HLDT), above 6000 lbs are included in the light- duty diesel category.
  • the exhaust gas temperatures emitted from light-duty diesel engines are generally lower than those of heavy-duty diesel engines (as defined by the relevant legislation).
  • catalyse particulate filters in order to lower the soot combustion temperature to facilitate regeneration of the filter passively by oxidation of PM under exhaust temperatures experienced during regular operation of the engine/vehicle, typically in the 300-400°C range.
  • PM can be oxidized at appreciable rates at temperatures in excess of 500°C, which are rarely seen in diesel engines during real-life operation.
  • Such catalysed filters are often called catalysed soot filters (or CSFs).
  • a common problem with passive filter regeneration is that driving conditions can prevent exhaust gas temperatures achieving even the lower temperatures facilitated by catalysing the filter frequently enough to reliably prevent PM from building up on the filter.
  • driving conditions include extended periods of engine idling or slow urban driving and the problem is particularly acute for exhaust gas from light-duty diesel engines.
  • One solution to this problem which has been adopted by OEMs is to use active techniques to regenerate the filter either at regular intervals or when a predetermined filter backpressure is detected in addition to passive regeneration.
  • a typical arrangement in a light-duty diesel vehicle is to position a diesel oxidation catalyst (DOC) on a separate monolith upstream of the CSF and to regulate in-cylinder fuel combustion by various engine management techniques in order to introduce increased amounts of unburned fuel into the exhaust gas. The additional fuel is combusted on the DOC, increasing the temperature in the downstream CSF sufficiently to promote combustion of PM thereon.
  • DOC diesel oxidation catalyst
  • absorbent used herein embraces both “adsorbent”, i.e. a solid that takes up onto its surface another solid, a vapour or a gaseous species in contact therewith, and “absorbent”, i.e. a material that can take up and incorporate a solid, a vapour or a gaseous species in contact therewith.
  • enriched used herein means a lower O 2 concentration relative to normal lean running conditions and embraces both lambda >1 and 1 >lambda values.
  • Devices comprising a NO x absorbent including catalysts, such as platinum, to promote oxidation of NO to N0 2 in lean exhaust gas conditions and e.g. rhodium to catalyse the reduction of NO x released from the NO x absorbent to N 2 during periodic rich conditions are known as lean NO x traps or simply N0 5 traps.
  • the invention provides an exhaust system for a lean burn internal combustion engine, which system comprising a particulate filter, a first NO x absorbent disposed upstream of the filter and a second NO x absorbent disposed downstream of the filter.
  • articulate filter we mean any device that increases the residence time of PM in the device relative to a flow through monolith constructed of like material, wall thickness, open frontal area and cell density comprising an array of straight, parallel channels disposed parallel to the direction of flow of an exhaust gas.
  • wall flow filters constructed of cordierite or silicon carbide, metal filters e.g. of wire mesh and devices including channels which present a twisting path to exhaust gases flowing therethrough, e.g. EP 1057519 (incorporated herein by reference).
  • the first NO x absorbent is adapted to release stored NO x during lambda > 1 conditions at about 300°C and above.
  • the first NO x absorbent can comprise a material capable of absorbing NO x at up to about 300°C in lean exhaust gas conditions.
  • Such materials can include at least one of cerium, lanthanum, alumina (Al 2 O 3 ), iron, zinc, calcium, sodium and magnesium and mixtures of any two or more thereof. It is believed that, in lean conditions, the aforesaid elements will be in the form of their oxide compounds, although they may also be present as carbonates and/or hydroxides. These compounds are understood to form nitrates when in contact with the NO x .
  • these nitrates are believed to be thermodynamically unstable above about 300°C, even in lean exhaust gas, and may decompose to release NO x as NO or NO 2 .
  • a reducing catalyst such as rhodium
  • the released NO and N0 2 can be reduced to N .
  • An aspect of the invention is that NO x in an exhaust gas can be absorbed by the first NO x absorbent when the exhaust gas temperature is low, for example following cold- start or during periods of a drive cycle where the exhaust gas temperature drops, and can be released as NO 2 during lean running conditions for combustion of PM held on the filter downstream when temperatures are more thermodynamically favourable for combustion of the PM, according to the process described in EP 0341832, mentioned above.
  • NO x stored on the first NO x absorbent may be desorbed at lower temperatures in a rich exhaust gas composition.
  • the NO x can be reduced to N 2 if the first NO x absorbent comprises a NO x reduction catalyst such as rhodium.
  • Rhodium is unlikely, however, to result in the net reduction of NO x released during lean running conditions.
  • the second NO x absorbent disposed downstream of the filter is capable of storing NO x at from about 300°C to about 550°C during lambda > 1 conditions.
  • Suitable materials for the second NO x absorbent comprise at least one alkali metal, such as potassium or caesium, at least one alkaline earth metal e.g. strontium or barium, or at least one rare earth metal or a mixture of any two or more thereof.
  • the at least one rare earth metal can be yttrium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium or a mixture of any two or more thereof.
  • At least one of the first and second NO x absorbent includes at least one platinum group metal (PGM).
  • PGM platinum group metal
  • Such at least one PGM can be platinum, palladium or rhodium, for example.
  • the first and second NO x absorbents can include platinum and rhodium, or palladium
  • the first NO x absorbent includes platinum as the sole PGM. This is for at least two reasons. Firstly, in the embodiment where the first NO x absorbent is designed to release stored NO x at temperatures of about 300°C and above in lean exhaust gas, the presence of rhodium for the purpose of reducing released NO x to N 2 in enriched exhaust gas is unnecessary.
  • the filter in the exhaust system is catalysed.
  • the catalyst can comprise at least one PGM, which PGM can be supported directly by the material forming the filter or supported on a high surface area particulate refractory oxide and coated on the filter substrate.
  • Methods of making the directly supported substrate are known and include soaking the filter material, e.g. cordierite, in an aqueous solution of the PGM, then drying and firing the resulting piece.
  • the PGM is supported on a particulate refractory oxide, it can be fixed to the refractory oxide by calcination before coating on the substrate or a washcoat of the refractory oxide can be coated on the substrate and subsequently impregnated with an aqueous PGM solution using l ⁇ iown techniques.
  • the size of the particulate support is chosen so that the refractory oxide does not block the pores of the filter substrate so that the back-pressure of the filter is significantly increased, relative to an uncoated filter, or the filtration efficiency may be impaired.
  • pores of up to 25 ⁇ m, e.g. 15-25 ⁇ m are useful for filtering diesel PM, and so we prefer that the particulate refractory oxide should be smaller than this size. This means that washcoat particles can sit within the pores without totally blocking them.
  • the catalyst can comprise a soot combustion catalyst comprising a molten salt selected from the group consisting of an alkali metal salt of vanadium, tungsten or molybdenum, an alkaline earth metal salt of vanadium, tungsten or molybdenum or a lanthanum salt of vanadium, tungsten or molybdenum, vanadium pentoxide, silver vanadate and copper vanadate.
  • a soot combustion catalyst comprising a molten salt selected from the group consisting of an alkali metal salt of vanadium, tungsten or molybdenum, an alkaline earth metal salt of vanadium, tungsten or molybdenum or a lanthanum salt of vanadium, tungsten or molybdenum, vanadium pentoxide, silver vanadate and copper vanadate.
  • Suitable alkali metals include one or both of potassium or caesium.
  • Alkaline-earth metals can be selected from magnesium, calcium
  • a further aspect of the invention is to use the components of the exhaust system of the present invention to manage heat in the system more efficiently, and thereby to improve conversion of target exhaust gas components.
  • a problem for treating exhaust gases from lean burn internal combustion engines, particularly light-duty diesel engines is that the exhaust gas temperature can be undesirably low during certain phases of a drive cycle. This can make it difficult catalytically to treat exhaust gases in order to meet legislated limits. By more effectively managing the retention, or generation of heat within the system, such problems can be reduced or avoided.
  • the invention is capable of increasing the extent of PM combustion by NO 2 at moderate temperatures
  • the PM may contain fractions readily combustible with O 2 .
  • Operation of the invention may include combustion of PM on the filter in O 2 at higher temperatures (relative to combustion in NO 2 ) in lean conditions, whereas the NO trap regeneration typically requires higher temperatures and/or enriched conditions to remove NO x and even higher temperatures and preferably rich conditions to remove sulfur oxides (SO x ).
  • a catalyst in the first NO x absorbent can be used to combust HC in the exhaust gas, either post-injected HC or engine-derived HC from modulation of the engine air-to-fuel ratio, thereby to increase the temperature of the filter.
  • O 2 to combust HC and/or CO to generate the exotherm can be provided by injection of secondary air or lean exhaust gas (e.g. from a parallel exhaust line) between the first NO x absorbent and the filter.
  • an oxygen storage component OSC
  • OSC oxygen storage component
  • ceria or a ceria-zirconia mixed oxide can be disposed downstream of the first NO x -absorbent, optionally downstream of any HC injector, or between the first NO x absorbent and the particulate filter.
  • the first NO x absorbent may also be regenerated in part or in full by action of the HC for generating the exotherm.
  • An additional exotherm can be generated on the filter catalyst, where present. The generation of an exotherm, and increased temperatures, in the filter can result in an increase in the temperature of the second NO x absorbent, yet typically the exhaust gas contacting the second NO x absorbent will be lean.
  • means can be provided for introducing HC between the filter and the second NO x absorbent for changing the exhaust gas composition to enrich the exhaust gas to release NO x and/or SO x , as desired.
  • the system can be arranged so that sufficient HC is allowed to slip the filter to regenerate the second NO x absorbent so that the provision of an injector for HC between the filter and the second NO x absorbent can be avoided, or the amount of HC required to be injected can be reduced.
  • Additional O to combust HC to generate an exotherm over the second NO x absorbent can also be provided (whilst maintaining a rich exhaust gas composition) if desired by injection of secondary air or lean exhaust gas between the filter and the second NO x absorbent or by providing an OSC downstream of the point of HC injection.
  • Control of the enrichment of the exhaust gas with a reductant e.g. a hydrocarbon, such as the fuel that powers the engine, and introduction of secondary air or a lean exhaust gas can be controlled, in use, by an engine control unit (ECU) including, for example, a suitably programmed processor or computer 'chip'.
  • ECU engine control unit
  • the system includes an oxidation catalyst for oxidising NO in an exhaust gas to NO 2 , which catalyst can be disposed between the first NO x absorbent and the filter.
  • This embodiment adopts an arrangement described in EP 341832, mentioned above.
  • An advantage of this arrangement, and/or the embodiment where the filter is catalysed, is that HC slip is minimised during NO x absorbent regeneration of the first NO x absorbent.
  • the oxidation catalyst can be disposed between the exhaust manifold and the first NO x absorbent, preferably upstream of any HC injector.
  • the oxidation catalyst and the OSC are combined.
  • the catalyst comprises ceria, e.g. a ceria-zirconia mixed oxide, optionally comprising at least one PGM supported thereon.
  • the or each NO x absorbent and any filter catalyst or NO oxidation catalyst for use in the invention can comprise a support comprising alumina, silica, silica-alumina, zirconia, titania, ceria, ceria-zirconia or a mixture of any two or more thereof or a mixed oxide or composite oxide of any two or more thereof.
  • composite oxide herein, we mean a largely amorphous oxide material comprising oxides of at least two elements which are not true mixed oxides consisting of at least two metals.
  • the support can be stabilised with at least one rare earth metal, as is l ⁇ iown in the art.
  • the at least one rare earth metal can be lanthanum, yttrium, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium or mixtures of any two or more thereof.
  • the invention provides a lean burn internal combustion engine including an exhaust system according to the invention.
  • the engine is a diesel engine, preferably a light-duty diesel engine.
  • the invention provides a method of controlling NO x in the exhaust system of a lean burn internal combustion engine, which method comprising collecting PM from an exhaust gas downstream of a first NO x absorbent, absorbing NO x in the first NO x absorbent when the first NO x absorbent is at up to 300°C in temperature, desorbing absorbed NO x when the first NO x absorbent is at above 300°C to add to preexisting NO x in the exhaust gas, combusting the collected soot in NO 2 in the exhaust gas and absorbing NO x derived from the combustion of soot in the NO 2 .
  • Figure 1 is a schematic diagram of the exhaust system according to the invention
  • Figure 2 is a schematic diagram explaining the operation of the exhaust system when cold, e.g. following cold start or during periods of a drive cycle generating cooler exhaust gases;
  • Figure 3 is a schematic diagram explaining the operation of the exhaust system at temperatures of 300°C and above;
  • Figure 4 is a schematic diagram explaining the operation of the exhaust system in regenerating the first NO x absorbent
  • Figure 5 is a schematic diagram explaining the operation of the exhaust system in regenerating the catalysed soot filter and the second NO x absorbent;
  • Figure 6 is a trace of gas concentration against time showing speciation of NO x downstream of NO x trap (1);
  • Figure 7 is a trace of exhaust gas temperature against time showing reductant combustion with residual oxygen during a rich pulse causes an exotherm over NO x trap
  • Figure 8 is a trace of exhaust gas lambda value taken upstream and downstream of NO x trap (1) with air-injection downstream of NO x trap (1);
  • Figure 9 is a trace of exhaust gas temperature taken upstream and downstream of a catalysed soot filter following air-injection between NO x trap (1) and the filter;
  • Figure 10 is a trace of exhaust gas temperature against time showing lean exotherm generation over NO x trap (1).
  • Figure 11 is a trace of NO x concentration against time showing how NO x trap (2) stores NO x that slips from NO x trap (1) in both normal lean mode and during a rich pulse where air iS injected in between the CSF and NO x trap (1).
  • NO x (1) in the Figures is the first NO x absorbent
  • NO x (2) is the second NO x absorbent
  • CSF is an acronym for catalysed soot filter.
  • a light-duty Diesel engine with a rich in-cylinder calibration was fitted with an exhaust system comprising the arrangement shown in Figure 1, except in that engine management was used to provide engine-derived hydrocarbon enrichment of the exhaust gas, i.e. no fuel was injected downstream of the exhaust manifold, and an air injector was disposed between the NO x trap (1) and a catalysed soot filter.
  • the catalysed soot filter was a cordierite wall-flow filter catalysed with a washcoat comprising platinum supported on both an alumina-based particulate refractory oxide and by the filter material itelf.
  • the filter was prepared by coating the uncoated filter with a washcoat comprising the refractory oxide, drying and calcining the resulting piece and then impregnating the washcoated filter using an aqueous solution of a platinum salt to a loading of 100 gff .
  • NO x trap (1) was a low temperature trap comprising a ceramic flow-through monolith substrate coated with a washcoat comprising an alumina-based particulate refractory oxide and an OSC supporting platinum, barium, cerium and rhodium.
  • the high temperature NO x trap (2) had a similar construction except in that the formulation included caesium.
  • Figure 6 shows speciation of NO x slip after NO x trap (1).
  • NO 2 concentration upstream of the NO x trap is 14 ppm (6% of total
  • NO x a high proportion of the NO x is NO 2 (up to 30% of total NO x slip), which is available therefore to react with soot in the downstream CSF according to the process disclosed in EP 0341832.
  • the system was configured to cycle between lean and rich running conditions at an engine-out exhaust temperature of 450°C. Lean periods were adjusted to 300s long, each rich period was 8 s long. It can be seen from Figure 7 that introducing a rich pulse over NO x trap (1) by reducing the oxygen concentration in the exhaust gas upstream of NO x trap (1) results in a temperature increase of the exhaust gas as reductant is combusted in the remaining oxygen. This extra heat can be used to regenerate NO x trap (1) for NO x or SO x under the rich condition.
  • NO x trap (2) can store NO x that slips from NO x trap (1) and the CSF (see Figure 11) in both the lean and (when air injection is present in between NO x trap (1) and the

Abstract

An exhaust system for a lean burn internal combustion engine comprises a particulate filter (CSF), a first NOx absorbent (NOx(1)) disposed upstream of the filter and a second NOx absorbent (NOx(2)) disposed downstream of the filter.

Description

EXHAUST SYSTEM FOR LEAN BURN IC ENGINE INCLUDING PARTICULATE FILTER AND NO. ABSORBENT
The present invention relates to an exhaust system for a lean bum internal combustion engine, and in particular it relates to an exhaust system comprising a particulate filter and a NOx absorbent.
Generally, the level of acceptable emissions from vehicular internal combustion engines is regulated by legislation. Such levels are being tightened in the years to come, and so the challenge for vehicle manufacturers (original equipment manufacturers or OEMs) is how to meet them. Amongst the legislated exhaust gas components are particulate matter (PM), nitrogen oxides (NOx), carbon monoxide (CO) and hydrocarbons (HC). A widely adopted measure to meet legislated levels on PM is the particulate or soot filter. Broadly, such filters increase the residence time of PM in an exhaust system to enable it to be destroyed and can include ceramic wall-flow filters or wire mesh filters.
Typically, a wall-flow filter is in the form of a honeycomb. The honeycomb has an inlet end and an outlet end, and a plurality of cells extending from the inlet end to the outlet end, the cells having porous walls wherein part of the total number of cells at the inlet end are plugged, e.g. to a depth of about 5 to 20 mm, along a portion of their lengths, and the remaining part of the cells that are open at the inlet end are plugged at the outlet end along a portion of their lengths, so that a flowing exhaust gas stream passing through the cells of the honeycomb from the inlet end flows into the open cells, through the cell walls, and out of the filter through the open cells at the outlet end. A composition for plugging the cells is described in US patent no. 4,329,162 (incorporated herein by reference). A typical arrangement is to have every other cell on a given face plugged, as in a chequered pattern.
A problem associated with the use of particulate filters is how to destroy the PM collected from an exhaust gas throughout a lean burn engine cycle. Generally, diesel PM combusts in oxygen (O2) at above about 550°C. However, diesel exhaust gas temperatures, particularly in light-duty diesel engines, can be as low as 150°C during certain phases of a drive cycle due, for example, to the increasingly heavy use of exhaust gas recirculation (EGR) to lower NOx emissions. If PM is allowed to build up, the back-pressure can increase thereby increasing the load on the engine. Increased engine load can lead to increased fuel consumption and, in a worst case, engine wear or destruction of the filter caused by uncontrolled combustion of large amounts of PM. Whilst increasing the engine load, e.g. through increased back-pressure due to PM build-up, can also increase the exhaust gas temperature sufficiently to combust the PM, such temperature increase can be insufficient reliably to keep the filter clear.
Light-duty diesel engines are defined in European legislation by European Directive 70/220/EEC, as amended by 93/59/EC and 98/69/EC. In the USA passenger vehicles, light light-duty trucks (LLDT), below 6000 lbs gross vehicle weight rating (GVWR) and heavy light-duty trucks (HLDT), above 6000 lbs are included in the light- duty diesel category. The exhaust gas temperatures emitted from light-duty diesel engines are generally lower than those of heavy-duty diesel engines (as defined by the relevant legislation).
It is known to catalyse particulate filters in order to lower the soot combustion temperature to facilitate regeneration of the filter passively by oxidation of PM under exhaust temperatures experienced during regular operation of the engine/vehicle, typically in the 300-400°C range. In the absence of the catalyst, PM can be oxidized at appreciable rates at temperatures in excess of 500°C, which are rarely seen in diesel engines during real-life operation. Such catalysed filters are often called catalysed soot filters (or CSFs).
A common problem with passive filter regeneration is that driving conditions can prevent exhaust gas temperatures achieving even the lower temperatures facilitated by catalysing the filter frequently enough to reliably prevent PM from building up on the filter. Such driving conditions include extended periods of engine idling or slow urban driving and the problem is particularly acute for exhaust gas from light-duty diesel engines. One solution to this problem which has been adopted by OEMs is to use active techniques to regenerate the filter either at regular intervals or when a predetermined filter backpressure is detected in addition to passive regeneration. A typical arrangement in a light-duty diesel vehicle is to position a diesel oxidation catalyst (DOC) on a separate monolith upstream of the CSF and to regulate in-cylinder fuel combustion by various engine management techniques in order to introduce increased amounts of unburned fuel into the exhaust gas. The additional fuel is combusted on the DOC, increasing the temperature in the downstream CSF sufficiently to promote combustion of PM thereon.
A significant advance in treating PM was made with our discovery that diesel PM can be combusted in nitrogen dioxide (NO2) at up to 400°C (see our EP-B-0341832 (incorporated herein by reference)). NO2 can be obtained by oxidising nitrogen monoxide (NO) in the exhaust gas over a suitable oxidation catalyst and reacted with PM on a downstream filter. This advance enables the PM to be destroyed within a normal exhaust gas temperature window for many diesel engines. We market devices incorporating this process as CRT®. However, whilst the process has been adopted successfully in heavy- duty diesel applications, there still remain difficulties with its use in certain lean burn internal combustion engines, particularly light-duty diesel engines. The recurring problem is low exhaust gas temperature, e.g. thermodynamic limitation on PM combustion in NO2 and the NO to NO2 equilibrium.
The process of absorbing NOx from a lean exhaust gas on a NOx absorbent such as barium to "store" it as the nitrate and release the stored NOx and reduce it to dinitrogen (N2) in exhaust gas containing less oxygen is known, e.g. from EP 0560991 (incorporated herein by reference). Typically, when this technology is used in practice, techniques are employed to assess the remaining capacity of the NOx absorbent and for controlling the engine to switch transiently and intermittently to running conditions producing exhaust gas having a lower O concentration relative to normal lean running conditions (i.e. enriched exhaust gas) in order to remove the stored NOx as dinitrogen (N2), thereby to regenerate the NOx absorbent.
The term "absorbent" used herein embraces both "adsorbent", i.e. a solid that takes up onto its surface another solid, a vapour or a gaseous species in contact therewith, and "absorbent", i.e. a material that can take up and incorporate a solid, a vapour or a gaseous species in contact therewith.
The term "enriched" used herein means a lower O2 concentration relative to normal lean running conditions and embraces both lambda >1 and 1 >lambda values. Devices comprising a NOx absorbent including catalysts, such as platinum, to promote oxidation of NO to N02 in lean exhaust gas conditions and e.g. rhodium to catalyse the reduction of NOx released from the NOx absorbent to N2 during periodic rich conditions are known as lean NOx traps or simply N05 traps.
We have now discovered a way of using a NOx absorbent to improve the emissions of PM and NOx over a drive cycle of a lean burn internal combustion engine, such as a light-duty diesel engine.
According to one aspect, the invention provides an exhaust system for a lean burn internal combustion engine, which system comprising a particulate filter, a first NOx absorbent disposed upstream of the filter and a second NOx absorbent disposed downstream of the filter.
By the term "particulate filter", we mean any device that increases the residence time of PM in the device relative to a flow through monolith constructed of like material, wall thickness, open frontal area and cell density comprising an array of straight, parallel channels disposed parallel to the direction of flow of an exhaust gas. Examples of such devices are wall flow filters constructed of cordierite or silicon carbide, metal filters e.g. of wire mesh and devices including channels which present a twisting path to exhaust gases flowing therethrough, e.g. EP 1057519 (incorporated herein by reference).
The use of NOx absorbents in association with the process of combusting PM in NO2 is described in EP 0758713 (incorporated herein by reference). However, in that arrangement the single NOx absorbent is disposed downstream of the filter.
In one embodiment, the first NOx absorbent is adapted to release stored NOx during lambda > 1 conditions at about 300°C and above. In this embodiment, the first NOx absorbent can comprise a material capable of absorbing NOx at up to about 300°C in lean exhaust gas conditions. Such materials can include at least one of cerium, lanthanum, alumina (Al2O3), iron, zinc, calcium, sodium and magnesium and mixtures of any two or more thereof. It is believed that, in lean conditions, the aforesaid elements will be in the form of their oxide compounds, although they may also be present as carbonates and/or hydroxides. These compounds are understood to form nitrates when in contact with the NOx. However, these nitrates are believed to be thermodynamically unstable above about 300°C, even in lean exhaust gas, and may decompose to release NOx as NO or NO2. At lower oxygen concentrations in the presence of a reducing catalyst such as rhodium, the released NO and N02 can be reduced to N .
An aspect of the invention is that NOx in an exhaust gas can be absorbed by the first NOx absorbent when the exhaust gas temperature is low, for example following cold- start or during periods of a drive cycle where the exhaust gas temperature drops, and can be released as NO2 during lean running conditions for combustion of PM held on the filter downstream when temperatures are more thermodynamically favourable for combustion of the PM, according to the process described in EP 0341832, mentioned above.
Generally, NOx stored on the first NOx absorbent may be desorbed at lower temperatures in a rich exhaust gas composition. In this instance, the NOx can be reduced to N2 if the first NOx absorbent comprises a NOx reduction catalyst such as rhodium.
Rhodium is unlikely, however, to result in the net reduction of NOx released during lean running conditions.
According to a further embodiment, the second NOx absorbent disposed downstream of the filter is capable of storing NOx at from about 300°C to about 550°C during lambda > 1 conditions. Suitable materials for the second NOx absorbent comprise at least one alkali metal, such as potassium or caesium, at least one alkaline earth metal e.g. strontium or barium, or at least one rare earth metal or a mixture of any two or more thereof.
The at least one rare earth metal can be yttrium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium or a mixture of any two or more thereof.
An advantage of using the above-mentioned materials in the first NOx absorbent is that NOx can be treated in the system during periods of low exhaust gas temperature e.g. following cold-start or extended periods of idling or slow driving. NOx released from this first NOx absorbent can be treated using the second NOx absorbent, positioned e.g. underfloor, when it has reached a desired operational temperature. According to a further embodiment, at least one of the first and second NOx absorbent includes at least one platinum group metal (PGM). Such at least one PGM can be platinum, palladium or rhodium, for example. Whilst both the first and second NOx absorbents can include platinum and rhodium, or palladium, in one embodiment, the first NOx absorbent includes platinum as the sole PGM. This is for at least two reasons. Firstly, in the embodiment where the first NOx absorbent is designed to release stored NOx at temperatures of about 300°C and above in lean exhaust gas, the presence of rhodium for the purpose of reducing released NOx to N2 in enriched exhaust gas is unnecessary.
Secondly, if enriched engine-derived exhaust gas is intended to regenerate the second NOx absorbent, the presence of rhodium on the first NOx absorbent could undesirably remove some HC upstream of the second NOx absorbent.
In a further embodiment, the filter in the exhaust system is catalysed. The catalyst can comprise at least one PGM, which PGM can be supported directly by the material forming the filter or supported on a high surface area particulate refractory oxide and coated on the filter substrate. Methods of making the directly supported substrate are known and include soaking the filter material, e.g. cordierite, in an aqueous solution of the PGM, then drying and firing the resulting piece.
If the PGM is supported on a particulate refractory oxide, it can be fixed to the refractory oxide by calcination before coating on the substrate or a washcoat of the refractory oxide can be coated on the substrate and subsequently impregnated with an aqueous PGM solution using lαiown techniques. However, it is important that the size of the particulate support is chosen so that the refractory oxide does not block the pores of the filter substrate so that the back-pressure of the filter is significantly increased, relative to an uncoated filter, or the filtration efficiency may be impaired. We have found that, in general, pores of up to 25 μm, e.g. 15-25 μm, are useful for filtering diesel PM, and so we prefer that the particulate refractory oxide should be smaller than this size. This means that washcoat particles can sit within the pores without totally blocking them.
Alternatively, or in addition, the catalyst can comprise a soot combustion catalyst comprising a molten salt selected from the group consisting of an alkali metal salt of vanadium, tungsten or molybdenum, an alkaline earth metal salt of vanadium, tungsten or molybdenum or a lanthanum salt of vanadium, tungsten or molybdenum, vanadium pentoxide, silver vanadate and copper vanadate. Suitable alkali metals include one or both of potassium or caesium. Alkaline-earth metals can be selected from magnesium, calcium, strontium, barium and any two or more thereof.
A further aspect of the invention is to use the components of the exhaust system of the present invention to manage heat in the system more efficiently, and thereby to improve conversion of target exhaust gas components. As mentioned above, a problem for treating exhaust gases from lean burn internal combustion engines, particularly light-duty diesel engines, is that the exhaust gas temperature can be undesirably low during certain phases of a drive cycle. This can make it difficult catalytically to treat exhaust gases in order to meet legislated limits. By more effectively managing the retention, or generation of heat within the system, such problems can be reduced or avoided.
Whereas the invention is capable of increasing the extent of PM combustion by NO2 at moderate temperatures, it is envisaged that the PM may contain fractions readily combustible with O2. Operation of the invention may include combustion of PM on the filter in O2 at higher temperatures (relative to combustion in NO2) in lean conditions, whereas the NO trap regeneration typically requires higher temperatures and/or enriched conditions to remove NOx and even higher temperatures and preferably rich conditions to remove sulfur oxides (SOx).
In order to promote lean combustion of PM at higher temperatures on the filter, a catalyst in the first NOx absorbent can be used to combust HC in the exhaust gas, either post-injected HC or engine-derived HC from modulation of the engine air-to-fuel ratio, thereby to increase the temperature of the filter. O2 to combust HC and/or CO to generate the exotherm can be provided by injection of secondary air or lean exhaust gas (e.g. from a parallel exhaust line) between the first NOx absorbent and the filter. Alternatively, or in addition, an oxygen storage component (OSC), e.g. ceria or a ceria-zirconia mixed oxide, can be disposed downstream of the first NOx-absorbent, optionally downstream of any HC injector, or between the first NOx absorbent and the particulate filter. The first NOx absorbent may also be regenerated in part or in full by action of the HC for generating the exotherm. An additional exotherm can be generated on the filter catalyst, where present. The generation of an exotherm, and increased temperatures, in the filter can result in an increase in the temperature of the second NOx absorbent, yet typically the exhaust gas contacting the second NOx absorbent will be lean. Accordingly, means can be provided for introducing HC between the filter and the second NOx absorbent for changing the exhaust gas composition to enrich the exhaust gas to release NOx and/or SOx, as desired. Of course, in certain embodiments, e.g. where the filter is uncatalysed, the system can be arranged so that sufficient HC is allowed to slip the filter to regenerate the second NOx absorbent so that the provision of an injector for HC between the filter and the second NOx absorbent can be avoided, or the amount of HC required to be injected can be reduced. Additional O to combust HC to generate an exotherm over the second NOx absorbent can also be provided (whilst maintaining a rich exhaust gas composition) if desired by injection of secondary air or lean exhaust gas between the filter and the second NOx absorbent or by providing an OSC downstream of the point of HC injection.
Control of the enrichment of the exhaust gas with a reductant, e.g. a hydrocarbon, such as the fuel that powers the engine, and introduction of secondary air or a lean exhaust gas can be controlled, in use, by an engine control unit (ECU) including, for example, a suitably programmed processor or computer 'chip'.
In a further embodiment, the system includes an oxidation catalyst for oxidising NO in an exhaust gas to NO2, which catalyst can be disposed between the first NOx absorbent and the filter. This embodiment adopts an arrangement described in EP 341832, mentioned above. An advantage of this arrangement, and/or the embodiment where the filter is catalysed, is that HC slip is minimised during NOx absorbent regeneration of the first NOx absorbent. According to another embodiment, the oxidation catalyst can be disposed between the exhaust manifold and the first NOx absorbent, preferably upstream of any HC injector.
In a particular embodiment, the oxidation catalyst and the OSC are combined. In one such arrangement, the catalyst comprises ceria, e.g. a ceria-zirconia mixed oxide, optionally comprising at least one PGM supported thereon. The or each NOx absorbent and any filter catalyst or NO oxidation catalyst for use in the invention can comprise a support comprising alumina, silica, silica-alumina, zirconia, titania, ceria, ceria-zirconia or a mixture of any two or more thereof or a mixed oxide or composite oxide of any two or more thereof.
By "composite oxide" herein, we mean a largely amorphous oxide material comprising oxides of at least two elements which are not true mixed oxides consisting of at least two metals.
The support can be stabilised with at least one rare earth metal, as is lαiown in the art. The at least one rare earth metal can be lanthanum, yttrium, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium or mixtures of any two or more thereof.
According to a further aspect, the invention provides a lean burn internal combustion engine including an exhaust system according to the invention. In one embodiment, the engine is a diesel engine, preferably a light-duty diesel engine.
According to a further aspect, the invention provides a method of controlling NOx in the exhaust system of a lean burn internal combustion engine, which method comprising collecting PM from an exhaust gas downstream of a first NOx absorbent, absorbing NOx in the first NOx absorbent when the first NOx absorbent is at up to 300°C in temperature, desorbing absorbed NOx when the first NOx absorbent is at above 300°C to add to preexisting NOx in the exhaust gas, combusting the collected soot in NO2 in the exhaust gas and absorbing NOx derived from the combustion of soot in the NO2.
In order that the invention may be more fully understood, an illustrative embodiment and an Example are provided by way of illustration only and with reference to the accompanying drawings, in which:
Figure 1 is a schematic diagram of the exhaust system according to the invention; Figure 2 is a schematic diagram explaining the operation of the exhaust system when cold, e.g. following cold start or during periods of a drive cycle generating cooler exhaust gases;
Figure 3 is a schematic diagram explaining the operation of the exhaust system at temperatures of 300°C and above;
Figure 4 is a schematic diagram explaining the operation of the exhaust system in regenerating the first NOx absorbent;
Figure 5 is a schematic diagram explaining the operation of the exhaust system in regenerating the catalysed soot filter and the second NOx absorbent;
Figure 6 is a trace of gas concentration against time showing speciation of NOx downstream of NOx trap (1);
Figure 7 is a trace of exhaust gas temperature against time showing reductant combustion with residual oxygen during a rich pulse causes an exotherm over NOx trap
(i);
Figure 8 is a trace of exhaust gas lambda value taken upstream and downstream of NOxtrap (1) with air-injection downstream of NOx trap (1);
Figure 9 is a trace of exhaust gas temperature taken upstream and downstream of a catalysed soot filter following air-injection between NOx trap (1) and the filter;
Figure 10 is a trace of exhaust gas temperature against time showing lean exotherm generation over NOx trap (1); and
Figure 11 is a trace of NOx concentration against time showing how NOx trap (2) stores NOx that slips from NOx trap (1) in both normal lean mode and during a rich pulse where air iS injected in between the CSF and NOx trap (1). We believe that the annotations to Figures 1-5 inclusive are self-explanatory. "NOx (1)" in the Figures is the first NOx absorbent; "NOx (2)" is the second NOx absorbent; and "CSF" is an acronym for catalysed soot filter.
EXAMPLE
A light-duty Diesel engine with a rich in-cylinder calibration was fitted with an exhaust system comprising the arrangement shown in Figure 1, except in that engine management was used to provide engine-derived hydrocarbon enrichment of the exhaust gas, i.e. no fuel was injected downstream of the exhaust manifold, and an air injector was disposed between the NOx trap (1) and a catalysed soot filter. The catalysed soot filter was a cordierite wall-flow filter catalysed with a washcoat comprising platinum supported on both an alumina-based particulate refractory oxide and by the filter material itelf. The filter was prepared by coating the uncoated filter with a washcoat comprising the refractory oxide, drying and calcining the resulting piece and then impregnating the washcoated filter using an aqueous solution of a platinum salt to a loading of 100 gff .
NOx trap (1) was a low temperature trap comprising a ceramic flow-through monolith substrate coated with a washcoat comprising an alumina-based particulate refractory oxide and an OSC supporting platinum, barium, cerium and rhodium. The high temperature NOx trap (2) had a similar construction except in that the formulation included caesium.
Running at an exhaust temperature of 350°C, Figure 6 shows speciation of NOx slip after NOx trap (1). NO2 concentration upstream of the NOx trap is 14 ppm (6% of total
NOx). It can be seen that a high proportion of the NOx is NO2 (up to 30% of total NOx slip), which is available therefore to react with soot in the downstream CSF according to the process disclosed in EP 0341832.
The system was configured to cycle between lean and rich running conditions at an engine-out exhaust temperature of 450°C. Lean periods were adjusted to 300s long, each rich period was 8 s long. It can be seen from Figure 7 that introducing a rich pulse over NOx trap (1) by reducing the oxygen concentration in the exhaust gas upstream of NOx trap (1) results in a temperature increase of the exhaust gas as reductant is combusted in the remaining oxygen. This extra heat can be used to regenerate NOx trap (1) for NOx or SOx under the rich condition.
Introducing air after NOx trap (1) during a rich pulse results in constant lean conditions in the downstream CSF as can be seen in Figure 8. The results of Figures 7 and 8 show that the exhaust lambda is rich before NOx trap (1), allowing NOx trap regeneration (see Figure 7) and air injection post NOx trap (1) can provide constant lean conditions in the CSF downstream of NOx trap (1). The elevated temperatures from reductant combustion over NOx trap (1) (Figure 7) can be high enough to allow soot regeneration of the CSF to occur in the lean conditions. Alternatively, excess reductant can slip through NOx trap (1) and be combusted over the CSF under the lean conditions resulting from air/lean exhaust injection, again resulting in high CSF temperatures which can allow soot regeneration to occur, see Figure 9 which shows an increase in CSF temperature due to rich pulse reductant combustion in lean conditions caused by air injection after NOx trap (1) but before CSF.
Extra fuel was introduced into the exhaust gas upstream of NOx trap (1), but only enough to maintain a lean composition overall. This creates an exotherm that can be used to regenerate the soot in the CSF (see Figure 10). NOx can also be thermally released from NOx trap (1) in the same way, resulting in an increased in N02 concentration upstream of the CSF, which is available for reaction with soot on the CSF according to the process described in EP 0341832.
NOx trap (2) can store NOx that slips from NOx trap (1) and the CSF (see Figure 11) in both the lean and (when air injection is present in between NOx trap (1) and the
CSF) during the rich pulse. Regeneration of NOx trap (2) could be readily accomplished with fuel injection in between the CSF and NOx trap (2) as per normal NOx trap operation
(see EP 0758713).

Claims

CLAIMS:
1. An exhaust system for a lean burn internal combustion engine, which system comprising a particulate filter, a first NOx absorbent disposed upstream of the filter and a second NOx absorbent disposed downstream of the filter.
2. A system according to claim 1, wherein the first NOx absorbent is adapted to release stored NOx during lambda > 1 conditions at about 300°C and above.
3. A system according to claim 2, wherein the first NOx absorbent comprises at least one of cerium, lanthanum, alumina (Al2O3), iron, zinc, calcium, sodium, magnesium and mixtures of any two or more thereof.
4. A system according to claim 1, 2 or 3, wherein the second NOx absorbent is capable of storing NOx at from about 300°C to about 550°C during lambda > 1 conditions.
5. A system according to claim 4, wherein the second NOx absorbent comprises at least one alkali metal, at least one alkaline earth metal or at least one rare earth metal or a mixture of any two or more thereof.
6. A system according to claim 5, wherein the at least one alkali metal is potassium or caesium or a mixture thereof.
7. A system according to claim 5 or 6, wherein the at least one alkaline eai'th metal is strontium or barium or a mixture thereof.
8. A system according to claim 5, 6 or 7, wherein the at least one rare earth metal is yttrium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium or a mixture of any two or more thereof.
9. A system according to any preceding claim, wherein the first and/or the second NOx absorbent comprises at least one platinum group metal (PGM).
10. A system according to claim 9, wherein the at least one PGM of the first NOx absorbent consists of platinum.
11. A system according to claim 9, wherein the at least one PGM comprises platinum and rhodium.
12. A system according to any preceding claim, wherein the filter is catalysed.
13. A system according to claim 12, wherein the filter catalyst comprises at least one PGM.
14. A system according to claim 13, wherein the at least one PGM is supported by the material forming the filter.
15. An engine according to claim 12, 13 or 14, wherein the at least one additional catalyst comprises a soot combustion catalyst comprising a molten salt selected from the group consisting of an alkali metal salt of vanadium, tungsten or molybdenum, an alkaline earth metal salt of vanadium, tungsten or molybdenum or a lanthanum salt of vanadium, tungsten or molybdenum, vanadium pentoxide, silver vanadate and copper vanadate.
16. A system according to any preceding claim, comprising an oxidation catalyst for oxidising NO in an exhaust gas to NO2, which catalyst is disposed between the first NOx absorbent and the filter and/or between the exhaust manifold and the first NOx absorbent.
17. A system according to claim 16, wherein the NO oxidation catalyst comprises at least one PGM.
18. A system according to any preceding claim, comprising an oxygen storage component (OSC) disposed between the first NOx absorbent and the filter and/or between the filter and the second NOx absorbent.
19. A system according to claim 18, wherein the OSC comprises ceria, optionally a ceria-zirconia mixed oxide.
20. A system according to any preceding claim, wherein each NOx absorbent and, where present, the filter catalyst and/or the NO oxidation catalyst comprises a support of alumina, silica, silica-alumina, zirconia, titania, ceria, ceria-zirconia or a mixture of any two or more thereof or a mixed oxide or composite oxide of any two or more thereof.
21. A system according to claim 20, wherein the oxidation catalyst comprises platinum supported on alumina.
22. A system according to claim 20 or 21, wherein the support is stabilised with at least one rare earth metal.
23. A system according to claim 22, wherein the at least one rare earth metal is lanthanum, yttrium, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium or a mixture of any two or more thereof.
24. A system according to any preceding claim, comprising first means for enriching an exhaust gas with a reductant upstream of the first NOx absorbent.
25. A system according to claim 24, wherein the first enriching means comprises a first port for injecting the reductant which first port is disposed between the exhaust manifold and the first NOx absorbent.
26. A system according to claim 24 or 25, comprising second means for enriching an exhaust gas with a reductant between the first NOx absorbent and the filter, which second enriching means comprising a second port for injecting the reductant which second port is disposed between the first NOx absorbent and the filter.
27. A system according to claim 24, 25 or 26, comprising first means for introducing secondary air or a lean exhaust gas into exhaust gas between the first NOx absorbent and the filter.
28. A system according to any of claims 24 to 27, comprising third means for enriching an exhaust gas with a reductant between the filter and the second NOx absorbent, which third enriching means comprising a third port for injecting the reductant which third port is disposed between the filter and the second NOx absorbent.
29. A system according to any of claims 24 to 28, comprising second means for introducing secondary air or a lean exhaust gas into exhaust gas between the filter and the second NOx absorbent.
30. A system according to any of claims 24 to 29, comprising means, in use, for controlling the enrichment of an exhaust gas with a reductant between the exhaust manifold and the first NOx absorbent.
31. A system according to any of claims 26 to 30, comprising means, in use, for controlling the enrichment of an exhaust gas with a reductant between the first NOx absorbent and the filter.
32. A system according to any of claims 28 to 31, comprising means, in use, for controlling the enrichment of an exhaust gas with a reductant between the filter and the second NOx absorbent.
33. A system according to claim 27 and any of claims 28 to 32 when appendant to claim 26, comprising means, in use, for controlling the introduction of secondary air or a lean exhaust gas into an exhaust gas between the first NOx absorbent and the filter.
34. A system according to claim 29 and any of claims 30 to 33 when appendant to claim 29, comprising means, in use, for controlling the introduction of secondary air or a lean exhaust gas into an exhaust gas between the first NOx absorbent and the filter.
35. A system according to any of claims 30 to 34, wherein the control means comprises an engine control unit (ECU).
36. A system according to any of claims 24 to 35, wherein the reductant is a hydrocarbon, optionally the hydrocarbon that fuels the engine.
37. A lean burn internal combustion engine including an exhaust system according to any preceding claim.
38. An engine according to claim 37, wherein it is a diesel engine, preferably a light-duty diesel engine.
39. A method of controlling nitrogen oxides (NOx) and particulate matter (PM) in the exhaust system of a lean burn internal combustion engine, which method comprising collecting PM from an exhaust gas downstream of a first NOx absorbent, absorbing
NOx in the first NOx absorbent when the first NOx absorbent is at up to 300°C in temperature, desorbing absorbed NOx when the first NOx absorbent is at above 300°C to add to pre-existing NOx in the exhaust gas, combusting the collected soot in NO2 in the exhaust gas and absorbing NOx derived from the combustion of soot in the NO2.
PCT/GB2004/000994 2003-03-08 2004-03-08 EXHAUST SYSTEM FOR LEAN BURN IC ENGINE INCLUDING PARTICULATE FILTER AND NOx ABSORBENT WO2004079170A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/547,916 US7930881B2 (en) 2003-03-08 2004-03-08 Exhaust system for lean burn IC engine including particulate filter and NOx absorbent
EP04718332A EP1606498B1 (en) 2003-03-08 2004-03-08 Exhaust system for lean burn ic engine including particulate filter and no sb x /sb absorbent
DE602004003354T DE602004003354T2 (en) 2003-03-08 2004-03-08 A PARTICLE FILTER AND NOX-ABSORBER EXHAUST SYSTEM FOR INTERNAL COMBUSTION ENGINE WITH LUBRICANTS
JP2006505932A JP4503593B2 (en) 2003-03-08 2004-03-08 Exhaust mechanism for lean burn engine including particulate matter filter and NOx absorbent
KR1020057016747A KR101110648B1 (en) 2003-03-08 2005-09-08 Exhaust system for lean burn ic engine including particulate filter and nox absorbent
US13/093,497 US8752367B2 (en) 2003-03-08 2011-04-25 Exhaust system for lean burn IC engine including particulate filter and NOx absorbent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0305415.2 2003-03-08
GBGB0305415.2A GB0305415D0 (en) 2003-03-08 2003-03-08 Exhaust system for lean burn IC engine including particulate filter and NOx absorbent

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10547916 A-371-Of-International 2004-03-08
US13/093,497 Continuation US8752367B2 (en) 2003-03-08 2011-04-25 Exhaust system for lean burn IC engine including particulate filter and NOx absorbent

Publications (1)

Publication Number Publication Date
WO2004079170A1 true WO2004079170A1 (en) 2004-09-16

Family

ID=9954456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2004/000994 WO2004079170A1 (en) 2003-03-08 2004-03-08 EXHAUST SYSTEM FOR LEAN BURN IC ENGINE INCLUDING PARTICULATE FILTER AND NOx ABSORBENT

Country Status (8)

Country Link
US (2) US7930881B2 (en)
EP (1) EP1606498B1 (en)
JP (1) JP4503593B2 (en)
KR (1) KR101110648B1 (en)
CN (1) CN100497894C (en)
DE (1) DE602004003354T2 (en)
GB (1) GB0305415D0 (en)
WO (1) WO2004079170A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2866061A1 (en) * 2003-12-31 2005-08-12 Volkswagen Ag EXHAUST GAS PURIFYING DEVICE OF AN INTERNAL COMBUSTION ENGINE AND METHOD OF REGENERATING SUCH A DEVICE
FR2884872A1 (en) * 2005-04-25 2006-10-27 Renault Sas Internal combustion engine e.g. diesel engine, controlling method for vehicle, involves regulating temperature at input of particle filter by controlling fuel injection in cylinder and injection downstream of oxidation catalyst of engine
WO2007052817A1 (en) * 2005-11-07 2007-05-10 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus
GB2409656B (en) * 2003-12-31 2007-05-23 Volkswagen Ag NOx storage catalytic converter
JP2007144285A (en) * 2005-11-25 2007-06-14 Mitsubishi Heavy Ind Ltd Exhaust gas-purifying catalyst and its manufacturing method, and exhaust gas purifier
DE102005058858A1 (en) * 2005-12-09 2007-06-14 Volkswagen Ag Method for exhaust gas aftertreatment in internal combustion engines, and apparatus for carrying out this method
WO2007113677A1 (en) 2006-03-30 2007-10-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
EP1970547A1 (en) 2007-03-13 2008-09-17 Yamaha Hatsudoki Kabushiki Kaisha Exhaust gas purifying system for an internal-combustion engine
DE102007027677A1 (en) 2007-06-15 2008-12-18 Süd-Chemie AG Emission control system for diesel engines, has particle filter, nitrogen oxide absorber unit and catalyst for catalytic reduction of nitrogen oxide
US7560079B2 (en) 2003-08-27 2009-07-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas-purifying apparatus
EP2093396A1 (en) * 2008-02-22 2009-08-26 Ford Global Technologies, LLC An exhaust system and a method for such a system
DE102008016177A1 (en) 2008-03-28 2009-10-08 Süd-Chemie AG Harnstoffhydrolysekatalysator
FR2941264A1 (en) * 2009-01-22 2010-07-23 Renault Sas Exhaust gas post-treatment device for motor vehicle, has two nitrogen oxide traps for effectively trapping nitrogen oxides at two temperatures, respectively, where one of temperatures is less than or equal to other temperature
US8105559B2 (en) 2006-10-20 2012-01-31 Johnson Matthey Public Limited Company Thermally regenerable nitric oxide adsorbent
EP2738363A4 (en) * 2011-07-28 2015-05-06 Toyota Motor Co Ltd Exhaust purification device of internal combustion engine
EP2832963B1 (en) 2013-07-29 2016-04-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifying device of internal combustion engine
GB2545297A (en) * 2015-10-06 2017-06-14 Johnson Matthey Plc Exhaust system comprising a passive NOx adsorber
CN107847912A (en) * 2015-07-09 2018-03-27 庄信万丰股份有限公司 Nitrogen oxides (NOx) storage catalyst

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046200A (en) * 2004-08-05 2006-02-16 Hitachi Ltd Exhaust emission control filter for diesel internal combustion engine, method for manufacturing the same, and exhaust emission control device
US7673445B2 (en) * 2004-11-09 2010-03-09 Ford Global Technologies, Llc Mechanical apparatus having a catalytic NOx storage and conversion device
JP4523911B2 (en) * 2005-12-14 2010-08-11 本田技研工業株式会社 Exhaust gas purification device
GB0603898D0 (en) * 2006-02-28 2006-04-05 Johnson Matthey Plc Exhaust system comprising catalysed soot filter
US8148290B2 (en) * 2006-06-27 2012-04-03 Basf Corporation Diesel exhaust treatment system catalyst monitoring
KR20150038645A (en) * 2007-01-31 2015-04-08 바스프 카탈리스트 엘엘씨 Gas catalysts comprising porous wall honeycombs
JP5119690B2 (en) 2007-03-12 2013-01-16 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4420048B2 (en) 2007-03-20 2010-02-24 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US9863297B2 (en) * 2007-12-12 2018-01-09 Basf Corporation Emission treatment system
US9993771B2 (en) * 2007-12-12 2018-06-12 Basf Corporation Emission treatment catalysts, systems and methods
CN102006931A (en) * 2008-04-14 2011-04-06 三井金属矿业株式会社 Particulate combustion catalyst, particulate filter and exhaust gas purifying apparatus
CN102209587B (en) 2008-11-06 2016-07-20 株式会社科特拉 Use for diesel engine exhaust gas purifying catalyst and use for diesel engine waste gas cleaning system
US8555617B2 (en) * 2009-03-26 2013-10-15 GM Global Technology Operations LLC Exhaust gas treatment system including a four-way catalyst and urea SCR catalyst and method of using the same
US8505279B2 (en) * 2009-03-26 2013-08-13 GM Global Technology Operations LLC Exhaust gas treatment system including a four-way catalyst and urea SCR catalyst and method of using the same
DE102010033688A1 (en) 2009-08-28 2011-03-03 Umicore Ag & Co. Kg Exhaust gas aftertreatment system for internal combustion engine has flow-through monolith with storage capacity designed such that breakthrough signal downstream of flow-through monolith has highest gradient of concentration curve
DE102010033689A1 (en) 2009-08-28 2011-03-03 Umicore Ag & Co. Kg Exhaust gas aftertreatment system for internal combustion engine has flow-through monolith with storage capacity designed such that breakthrough signal downstream of flow-through monolith has highest gradient of concentration curve
CN102482971B (en) 2009-08-28 2014-10-29 尤米科尔股份公司及两合公司 Exhaust-gas aftertreatment system with catalytically active wall-flow filter with storage function upstream of catalytic converter with identical storage function
KR101724453B1 (en) * 2011-07-13 2017-04-10 현대자동차 주식회사 System for purifying exhaust gas and method for controlling the same
KR101684496B1 (en) 2011-09-09 2016-12-09 현대자동차 주식회사 System for purifying exhaust gas and method for controlling the same
KR102088152B1 (en) 2012-11-12 2020-03-12 우미코레 아게 운트 코 카게 CATALYST SYSTEM FOR TREATING NOx- AND PARTICLE-CONTAINING DIESEL EXHAUST GAS
DE102014206455A1 (en) * 2014-04-03 2015-10-08 Umicore Ag & Co. Kg Regeneration process for exhaust aftertreatment systems
EP3271051A1 (en) * 2015-03-20 2018-01-24 Haldor Topsøe A/S Catalyzed ceramic candle filter and method of cleaning process off- or exhaust gases
DE102015219113A1 (en) * 2015-10-02 2017-04-06 Volkswagen Ag Method and device for exhaust aftertreatment of an internal combustion engine
BR112018013775B1 (en) * 2016-01-06 2022-05-17 Basf Corporation Composition of diesel oxidation catalyst, diesel oxidation catalyst article, method for treating an exhaust stream of a diesel engine, catalyzed soot filter article, method of manufacturing a catalyst article, and emission treatment system
DE102016208289A1 (en) * 2016-02-29 2017-08-31 Volkswagen Aktiengesellschaft Internal combustion engine with a spark-ignited internal combustion engine and method for operating such an internal combustion engine
US10323594B2 (en) 2016-06-17 2019-06-18 Ford Global Technologies, Llc Methods and systems for treating vehicle emissions
GB2554859A (en) * 2016-10-04 2018-04-18 Johnson Matthey Plc NOx adsorber catalyst
DE102017201401B4 (en) * 2017-01-30 2018-08-23 Ford Global Technologies, Llc exhaust aftertreatment
US10953366B2 (en) 2018-04-20 2021-03-23 GM Global Technology Operations LLC Nitrogen oxides and hydrocarbon storage catalyst and methods of using the same
US10399037B1 (en) * 2018-04-20 2019-09-03 GM Global Technology Operations LLC Nitrogen oxides storage catalyst and methods of using the same
DE102018206355B3 (en) 2018-04-25 2019-08-14 Ford Global Technologies, Llc Motor vehicle and operating method
DE102019101982A1 (en) * 2019-01-28 2020-07-30 Volkswagen Aktiengesellschaft Method and device for regulating the exhaust gas temperature of an internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000021647A1 (en) * 1998-10-12 2000-04-20 Johnson Matthey Public Limited Company Process and apparatus for treating combustion exhaust gas
DE19921974A1 (en) * 1999-05-12 2000-11-16 Volkswagen Ag Device for reducing pollutant components in IC engine exhaust gas comprises an exhaust gas line containing an oxidation catalyst, a particle filter and a nitrogen oxides storage catalyst
EP1217196A2 (en) * 2000-12-19 2002-06-26 Isuzu Motors Limited Device for purifying exhaust gas of diesel engines
US20020081238A1 (en) * 2000-08-15 2002-06-27 Frank Duvinage Exhaust-gas cleaning unit with particle filter and nitrogen oxygen store, and operating method therefor
EP1304455A1 (en) * 2001-10-18 2003-04-23 Adam Opel Ag Particulate filter for purifying exhaust gases of internal combustion engines
EP1321643A1 (en) * 2001-12-19 2003-06-25 Robert Bosch Gmbh Device and method for after-treatment of exhaust gases

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329162A (en) * 1980-07-03 1982-05-11 Corning Glass Works Diesel particulate trap
US4902487A (en) 1988-05-13 1990-02-20 Johnson Matthey, Inc. Treatment of diesel exhaust gases
ES2104943T5 (en) 1991-10-03 2005-04-16 Toyota Jidosha Kabushiki Kaisha PURIFICATION DEVICE OF EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE.
JP3899534B2 (en) 1995-08-14 2007-03-28 トヨタ自動車株式会社 Exhaust gas purification method for diesel engine
JP3228232B2 (en) * 1998-07-28 2001-11-12 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE19842625C2 (en) * 1998-09-17 2003-03-27 Daimler Chrysler Ag Method for operating an internal combustion engine system with sulfur enriching emission control component and thus operable internal combustion engine system
WO2000034632A1 (en) * 1998-12-05 2000-06-15 Johnson Matthey Public Limited Company Improvements in particulate control
JP3551805B2 (en) * 1999-01-12 2004-08-11 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
FI107828B (en) 1999-05-18 2001-10-15 Kemira Metalkat Oy Systems for cleaning exhaust gases from diesel engines and method for cleaning exhaust gases from diesel engines
US6314722B1 (en) * 1999-10-06 2001-11-13 Matros Technologies, Inc. Method and apparatus for emission control
JP3733834B2 (en) * 2000-05-02 2006-01-11 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
DE10023439A1 (en) * 2000-05-12 2001-11-22 Dmc2 Degussa Metals Catalysts Process for removing nitrogen oxides and soot particles from the lean exhaust gas of an internal combustion engine and exhaust gas purification system therefor
JP3558055B2 (en) * 2000-06-29 2004-08-25 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US6729125B2 (en) * 2000-09-19 2004-05-04 Nissan Motor Co., Ltd. Exhaust gas purifying system
US6758036B1 (en) * 2000-10-27 2004-07-06 Delphi Technologies, Inc. Method for sulfur protection of NOx adsorber
JP4604374B2 (en) * 2001-03-15 2011-01-05 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2003013732A (en) * 2001-07-02 2003-01-15 Toyota Motor Corp Exhaust emission purifier for internal combustion engine
US6938412B2 (en) * 2003-08-07 2005-09-06 General Motors Corporation Removing nitrogen oxides during a lean-burn engine cold start

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000021647A1 (en) * 1998-10-12 2000-04-20 Johnson Matthey Public Limited Company Process and apparatus for treating combustion exhaust gas
DE19921974A1 (en) * 1999-05-12 2000-11-16 Volkswagen Ag Device for reducing pollutant components in IC engine exhaust gas comprises an exhaust gas line containing an oxidation catalyst, a particle filter and a nitrogen oxides storage catalyst
US20020081238A1 (en) * 2000-08-15 2002-06-27 Frank Duvinage Exhaust-gas cleaning unit with particle filter and nitrogen oxygen store, and operating method therefor
EP1217196A2 (en) * 2000-12-19 2002-06-26 Isuzu Motors Limited Device for purifying exhaust gas of diesel engines
EP1304455A1 (en) * 2001-10-18 2003-04-23 Adam Opel Ag Particulate filter for purifying exhaust gases of internal combustion engines
EP1321643A1 (en) * 2001-12-19 2003-06-25 Robert Bosch Gmbh Device and method for after-treatment of exhaust gases

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560079B2 (en) 2003-08-27 2009-07-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas-purifying apparatus
FR2866061A1 (en) * 2003-12-31 2005-08-12 Volkswagen Ag EXHAUST GAS PURIFYING DEVICE OF AN INTERNAL COMBUSTION ENGINE AND METHOD OF REGENERATING SUCH A DEVICE
GB2409656B (en) * 2003-12-31 2007-05-23 Volkswagen Ag NOx storage catalytic converter
WO2006114548A1 (en) * 2005-04-25 2006-11-02 Renault S.A.S Method of controlling a vehicle engine in order to regulate the temperature of a particle filter
FR2884872A1 (en) * 2005-04-25 2006-10-27 Renault Sas Internal combustion engine e.g. diesel engine, controlling method for vehicle, involves regulating temperature at input of particle filter by controlling fuel injection in cylinder and injection downstream of oxidation catalyst of engine
WO2007052817A1 (en) * 2005-11-07 2007-05-10 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus
JP2007144285A (en) * 2005-11-25 2007-06-14 Mitsubishi Heavy Ind Ltd Exhaust gas-purifying catalyst and its manufacturing method, and exhaust gas purifier
DE102005058858A1 (en) * 2005-12-09 2007-06-14 Volkswagen Ag Method for exhaust gas aftertreatment in internal combustion engines, and apparatus for carrying out this method
CN101410602B (en) * 2006-03-30 2012-09-19 丰田自动车株式会社 Exhaust gas purification system for internal combustion engine
WO2007113677A1 (en) 2006-03-30 2007-10-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
US8225601B2 (en) 2006-03-30 2012-07-24 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
US8105559B2 (en) 2006-10-20 2012-01-31 Johnson Matthey Public Limited Company Thermally regenerable nitric oxide adsorbent
EP1970547A1 (en) 2007-03-13 2008-09-17 Yamaha Hatsudoki Kabushiki Kaisha Exhaust gas purifying system for an internal-combustion engine
DE102007027677A1 (en) 2007-06-15 2008-12-18 Süd-Chemie AG Emission control system for diesel engines, has particle filter, nitrogen oxide absorber unit and catalyst for catalytic reduction of nitrogen oxide
DE102007027677B4 (en) * 2007-06-15 2010-12-09 Süd-Chemie AG emission Control system
EP2093396A1 (en) * 2008-02-22 2009-08-26 Ford Global Technologies, LLC An exhaust system and a method for such a system
DE102008016177A1 (en) 2008-03-28 2009-10-08 Süd-Chemie AG Harnstoffhydrolysekatalysator
FR2941264A1 (en) * 2009-01-22 2010-07-23 Renault Sas Exhaust gas post-treatment device for motor vehicle, has two nitrogen oxide traps for effectively trapping nitrogen oxides at two temperatures, respectively, where one of temperatures is less than or equal to other temperature
EP2738363A4 (en) * 2011-07-28 2015-05-06 Toyota Motor Co Ltd Exhaust purification device of internal combustion engine
US9212585B2 (en) 2011-07-28 2015-12-15 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine
EP2832963B1 (en) 2013-07-29 2016-04-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifying device of internal combustion engine
EP2832963B2 (en) 2013-07-29 2019-08-07 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifying device of internal combustion engine
CN107847912A (en) * 2015-07-09 2018-03-27 庄信万丰股份有限公司 Nitrogen oxides (NOx) storage catalyst
GB2545297A (en) * 2015-10-06 2017-06-14 Johnson Matthey Plc Exhaust system comprising a passive NOx adsorber
GB2545297B (en) * 2015-10-06 2019-10-23 Johnson Matthey Plc Exhaust system comprising a passive NOx adsorber

Also Published As

Publication number Publication date
US20060248874A1 (en) 2006-11-09
DE602004003354D1 (en) 2007-01-04
EP1606498A1 (en) 2005-12-21
DE602004003354T2 (en) 2007-10-04
US20110258993A1 (en) 2011-10-27
JP4503593B2 (en) 2010-07-14
KR101110648B1 (en) 2012-03-02
US7930881B2 (en) 2011-04-26
EP1606498B1 (en) 2006-11-22
KR20050115274A (en) 2005-12-07
JP2006522272A (en) 2006-09-28
GB0305415D0 (en) 2003-04-16
US8752367B2 (en) 2014-06-17
CN100497894C (en) 2009-06-10
CN1784540A (en) 2006-06-07

Similar Documents

Publication Publication Date Title
US8752367B2 (en) Exhaust system for lean burn IC engine including particulate filter and NOx absorbent
KR101060125B1 (en) Exhaust system for lean burn IC engines
US9527031B2 (en) Exhaust system for a lean burn IC engine
US8006485B2 (en) Compression ignition engine and exhaust system therefor
RU2597090C2 (en) Dual function catalytic filter
EP1198284B1 (en) Treatment of exhaust gas
JP2004036609A (en) Particle filter having catalytically active coating for accelerating incineration of deposited soot particle in stage of regeneration
JP2002285831A (en) Regeneration method for catalyst activity of catalyst in exhaust gas line of diesel engine
JP2003536011A (en) Diesel exhaust system including NOx trap
EP1370343B1 (en) GAS TREATMENT USING NOx-SPECIFIC REACTANT
WO2000035564A1 (en) Exhaust emission control system for internal combustion engines, exhaust emission control method and exhaust emission control catalyst
KR100902272B1 (en) Exhaust line for an internal combustion engine
US20080261801A1 (en) Methods of Regenerating a Nox Absorbent
JP2003013732A (en) Exhaust emission purifier for internal combustion engine
JP2010249142A (en) Process and apparatus for treating combustion exhaust gas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004718332

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057016747

Country of ref document: KR

Ref document number: 2006505932

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048121227

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057016747

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004718332

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006248874

Country of ref document: US

Ref document number: 10547916

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10547916

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004718332

Country of ref document: EP