WO2004107272A1 - System and method for providing a real-time three-dimensional interactive environment - Google Patents

System and method for providing a real-time three-dimensional interactive environment Download PDF

Info

Publication number
WO2004107272A1
WO2004107272A1 PCT/US2004/015094 US2004015094W WO2004107272A1 WO 2004107272 A1 WO2004107272 A1 WO 2004107272A1 US 2004015094 W US2004015094 W US 2004015094W WO 2004107272 A1 WO2004107272 A1 WO 2004107272A1
Authority
WO
WIPO (PCT)
Prior art keywords
depth
scene
physical
dimensional
values
Prior art date
Application number
PCT/US2004/015094
Other languages
French (fr)
Inventor
Richard Marks
Original Assignee
Sony Computer Entertainment Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Computer Entertainment Inc. filed Critical Sony Computer Entertainment Inc.
Priority to EP04752175.2A priority Critical patent/EP1636762B1/en
Priority to JP2006533057A priority patent/JP4271236B2/en
Publication of WO2004107272A1 publication Critical patent/WO2004107272A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/213Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/60Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor
    • A63F13/65Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor automatically by game devices or servers from real world data, e.g. measurement in live racing competition
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1087Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals comprising photodetecting means, e.g. a camera
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/60Methods for processing data by generating or executing the game program
    • A63F2300/69Involving elements of the real world in the game world, e.g. measurement in live races, real video

Definitions

  • This invention relates generally to video image processing, and more particularly to providing a real-time interactive computer environment using a three-dimensional camera.
  • new creative methods for interacting with computer systems have become available. For example, new on-line keyboards allow individuals to enter information without the need for a physical keyboard, and new game controllers with a plurality of joysticks and directional keys enhance the user's ability to interact with the computer system.
  • input devices employing video images are currently available that allow user control of objects on a graphical display such as a video monitor.
  • Such video input devices often are responsive to the movement or position of a user in the field of view of a video capture device. More recently, video image processing has been used to translate the movement of the user that has been captured as a sequence of video images into signals for game control.
  • Prior art input systems include a video capture device that scans a field of view in which a system user stands. The captured video image is applied to a video digitizer that provides digital output to a processor that analyzes and processes the digital information received from the digitizer.
  • the processor Based upon the position or movement of the participant in the field of view, the processor produces signals that are used by the graphics generating system to move objects on the display. Although the operation or output of the devices or graphical displays can thereby be affected by the position or movement of the participant, the computer processing time required is frequently very extensive and complex, tending to require substantial computer and/or time resources.
  • known devices and methods employing user video image data that are used to affect the movement of an object on a graphical display are typically characterized by significant encumbrances upon the participant within the video camera field of view.
  • Such systems may include additional equipment that the participant is required to wear, such as arm coverings or gloves with integral, more easily detectable portions or colors, and/or visible light sources such as light emitting diodes. Unfortunately, such systems do not allow for the ease- of-use, quick response, and simplicity needed to provide a user input device capable of meeting marketability requirements for consumer items such as might be required of video game controllers.
  • embodiments of the present invention fill these needs by providing a real-time three-dimensional interactive environment using a three-dimensional camera.
  • a method for providing a real-time three-dimensional interactive environment. The method includes obtaining two-dimensional data values for a plurality of pixels representing a physical scene, and obtaining a depth value for each pixel of the plurality of pixels using a depth sensing device. Each depth value indicates a distance from a physical object in the physical scene to the depth sensing device.
  • At least one computer-generated virtual object is inserted into the scene, and an interaction between a physical object in the scene and the virtual object is detected based on coordinates of the virtual object and the obtained depth values.
  • the two-dimensional values for the plurality of pixels can be color values, and each depth value can indicate a distance from a physical object in the physical scene represented by the corresponding pixel to the sensing device.
  • the interaction can be a collision between a physical object in the scene and the virtual object.
  • the collision is detected when the virtual object and a physical object occupy a same three-dimensional space based on three-dimensional coordinates of the virtual object and three-dimensional coordinates of the physical object.
  • an appearance of a physical object in the scene can be visually altered.
  • the physical object can be a user, and computer-generated clothing can be mapped to the user based on the depth values for pixels representing the user.
  • a maximum depth range can be defined that indicates the farthest distance for which depth values will be obtained.
  • depth values for the user may be detected only when the user is within a distance less than the maximum depth range to the sensing device.
  • the system includes a depth sensing device capable of obtaining two-dimensional data values for a plurality of pixels representing a physical scene.
  • the depth sensing device is further capable of obtaining a depth value for each pixel of the plurality of pixels.
  • each depth value indicates a distance from a physical object in the physical scene to the depth sensing device.
  • logic that inserts at least one computer- generated virtual object into the scene.
  • the system includes logic that detects an interaction between a physical object in the scene and the virtual object based on coordinates of the virtual object and the obtained depth values.
  • the two-dimensional values for the plurality of pixels can be color values, and each depth value can indicate a distance from a physical object in the physical scene represented by the corresponding pixel to the sensing device.
  • the system can include logic that defines a maximum depth range, the maximum depth range indicating the farthest distance for which depth values will be obtained.
  • logic can also be included that that detects depth values for a user only when the user is within a distance less than the maximum depth range to the sensing device.
  • a further method for providing a real-time three-dimensional interactive environment includes obtaining two-dimensional data values for a plurality of pixels representing a physical scene. Also as above, a depth value for each pixel of the plurality of pixels is obtained using a depth sensing device. Each depth value indicates a distance from a physical object in the physical scene to the depth sensing device. Based on the obtained two-dimensional data values and the obtained depth values, three-dimensional volume information is estimated for each physical object in the physical scene. In addition, computer-generated virtual objects having three-dimensional volume information for the virtual object can be inserted into the scene.
  • Figure 1 A is a block diagram of an exemplary system for providing a real-time three- dimensional interactive environment, in accordance with an embodiment of the present invention
  • Figure IB is an illustration showing a two-dimensional data captured using a typical depth camera
  • Figure 1C is an illustration showing depth data captured using a typical depth camera
  • Figure ID illustrates an exemplary system environment for providing a real-time three-dimensional interactive environment, in accordance with an embodiment of the present invention
  • Figure 2 is a flowchart showing a method for providing a real-time three-dimensional interactive environment, in accordance with an embodiment of the present invention
  • Figure 3 is an illustration showing a top view of a user interacting with a maximum range plane, in accordance with an embodiment of the present invention
  • Figure 4 is an illustration showing two-dimensional data for an exemplary scene, in accordance with an embodiment of the present invention.
  • Figure 5 illustrates z- values for the exemplary scene of Figure 4, in accordance with an embodiment of the present invention
  • Figure 6 is an illustration showing computer generated virtual objects inserted into a scene, in accordance with an embodiment of the present invention
  • Figure 7 is an illustration showing computer-generated changes to the physical objects within the room, in accordance with an embodiment of the present invention.
  • Figure 8 is a block diagram of a computer processing system for providing a three- dimensional interactive environment, in accordance with an embodiment of the present invention.
  • An invention for providing a real-time three-dimensional interactive environment using a three-dimensional camera.
  • embodiments of the present invention allow the user to interactive with, and affect, computer objects and environments that are combined visually with the user's actual physical environment.
  • three-dimensional images can be obtained in real-time. These three- dimensional images are utilized to place digital objects within the user's environment, track the user's movement, and accurately detect when the user interacts with the digital objects.
  • depth camera and "three-dimensional camera” will refer to any camera that is capable of obtaining distance or depth information as well as two-dimensional pixel information.
  • a depth camera can utilize controlled infrared lighting to obtain distance information.
  • Another exemplary depth camera can be a stereo camera pair, which triangulates distance information using two standard cameras.
  • depth sensing device will refer to any type of device that is capable of obtaining distance information as well as two-dimensional pixel information.
  • FIG. 1A is a block diagram of an exemplary system 100 for providing a real-time three-dimensional interactive environment, in accordance with an embodiment of the present invention.
  • the system 100 includes a depth camera 102, an input image processor 104, an output image processor 106, and a video display device 108.
  • the depth camera 102 provides the ability to capture and map the third-dimension in addition to normal two-dimensional video imagery.
  • Figures IB and IC illustrated the images generated by a typical depth camera 102.
  • Figure IB is an illustration showing two-dimensional data 120 captured using a typical depth camera. Similar to normal cameras, a depth camera captures two-dimensional data for a plurality of pixels that comprise the video image. These values are color values for the pixels, generally red, green, and blue (RGB) values for each pixel. In this manner, objects captured by the camera appear as two-dimension objects on a monitor.
  • the exemplary scene includes a cylinder object 122 and a sphere object 124 disposed on a table 126, which is situated among hills 128, illustrated in the background.
  • FIG IC is an illustration showing depth data 150 captured using a typical depth camera. As illustrated in Figure IB, the depth camera captures the x and y components of a scene using RGB values for each pixel in the scene. However, as shown in Figure IC, the depth camera also captures the z-components of the scene, which represent the depth values for the scene. Since the depth values correspond to the z-axis, the depth values are often referred to as z- values.
  • a z- value is captured for each pixel of the scene.
  • Each z- value represents a distance from the camera to a particular object in the scene corresponding to the related pixel.
  • z-values are illustrated for the cylinder object 152, the sphere object 154, and part of the table 156.
  • a maximum detection range is defined beyond which depth values will not be detected.
  • the maximum depth range 158 appears as vertical plane wherein all pixels are given the same depth value.
  • this maximum range plane can be utilized by the embodiments of the present invention to provide user defined object tracking.
  • each object can be tracked in three dimensions.
  • a computer system of the embodiments of the present invention can utilize the z-values, along with the two- dimensional pixel data, to create an enhanced three-dimensional interactive environment for the user.
  • the input image processor 104 translates the captured video images and depth data into signals that are delivered to an output image processor.
  • the output image processor 106 is programmed to effect movement and status of virtual objects on the video display device 108 in response to signals received from the input image processor 104.
  • These and additional aspects of the present invention may be implemented by one or more processors which execute software instructions. According to one embodiment of the present invention, a single processor executes both input image processing and output image processing.
  • Figure ID illustrates an exemplary system environment for providing a real-time three-dimensional interactive environment, in accordance with an embodiment of the present invention.
  • the system environment includes, depth camera 170, video display device 172, and console 174 having processor functionality, such as a video game machine.
  • processor functionality such as a video game machine.
  • a user and their environment such as a living room, are located within the field of view of the depth camera 170.
  • the processing system 174 can be implemented by an entertainment system, such as a Sony® PlaystationTM II or Sony® PlaystationTM I type of processing and computer entertainment system.
  • FIG. 2 is a flowchart showing a method 200 for providing a real-time three- dimensional interactive environment, in accordance with an embodiment of the present invention.
  • preprocess operations can include defining three-dimensional objects, adjusting a depth camera for optimum performance, and other preprocess operations that will be apparent to those skilled in the art after a careful reading of the present disclosure.
  • operation 204 a maximum depth range is defined.
  • FIG. 3 is an illustration showing a top view 300 of a user 302 interacting with a maximum depth range plane 158, in accordance with an embodiment of the present invention.
  • a maximum depth range plane 158 which defines tracking distance, is defined. Objects in front of the maximum depth range plane 158 are tracked, while objects behind the maximum depth range plane 158 are not tracked. In this manner, the user 302 can determine when to interact with the system by allowing part of the user's body, or an object, to cross the maximum depth range plane 158.
  • the system detects and tracks their hands 304.
  • the user 302 controls when to interact with the system, and the system can avoid any confusing information caused, for example, by unexpected body movement.
  • motion confusion caused by other people moving behind the user, or for example, a family pet can be avoided.
  • the user 302 is allowed to drag and drop objects on the screen by gesturing with their hands across the maximum depth range plane 158.
  • a user can extend their hand 304 or other object across the maximum depth range plane 158 to initiate interaction with objects on a screen.
  • the movement of the user's hand is then tracked using the depth data provided by the depth camera. Tracking is then terminated when the user retracts their hand behind the maximum depth range plane 158.
  • objects encountered by the user's hand movement can be moved and manipulated, as described in greater detail subsequently.
  • FIG. 4 is an illustration showing two-dimensional data 400 for an exemplary scene, in accordance with an embodiment of the present invention.
  • the exemplary scene on Figure 4 illustrates a user 302 in the living room of their home.
  • embodiments of the present invention can be utilized in any location, as desired by the user.
  • various physical objects are located in this environment. For example, in Figure 4 there is a vase 402 and sofa 404, as well as a picture on the back wall 406 of the room. As will be discussed in greater detail subsequently these exemplary objects will illustrate properties of the embodiments of the present invention.
  • the user 302 positions the depth camera in a suitable position in front of them.
  • various adjustments can be made to the camera angle, aperture setting, and other settings that will be apparent to those skilled in the art after a careful reading of the present disclosure.
  • the camera then captures video data for the scene, generally comprising color values for the pixels comprising the scene.
  • depth values are obtained for each pixel comprising the scene, in operation 208.
  • a depth camera also captures depth values for the scene. As discussed above, the depth camera captures the x and y components of a scene using RGB values for each pixel in the scene. However, the depth camera also captures the z-components of the scene, which represent the depth values for the scene.
  • a z- value is captured for each pixel of the scene.
  • Each z- value represents a distance from the camera to a particular object in the scene corresponding to the related pixel.
  • Figure 5 illustrates z-values for the exemplary scene of Figure 4, in accordance with an embodiment of the present invention.
  • the z-values are included for the user 302, however, in the example of Figure 5 the maximum depth range plane 158 has been defined just behind the user 302.
  • the maximum depth range plane 158 can be defined at any distance.
  • the maximum depth range plane 158 can be defined farther back in the exemplary scene to include the vase, sofa, and back wall. [0043] In this manner, the position and movement of the user 302 can be tracked. Moreover, using the depth information, the user 302 can be tracked in three dimensions, thus allowing for realistic placement of objects within the scene. Furthermore, using the three-dimensional data allows users to interact with a virtual environment in a realistic manner thus enhancing the user's 302 experience.
  • one embodiment of the present invention can construct complete 3D volume information for objects in the scene using the z-values.
  • a depth camera does not itself provide full volume information. That is, the depth camera provides z-values for pixels of object surfaces that are visible to the camera. Hence, the z-values for the surfaces, such as the user's 302 back are not provided by the depth camera.
  • one embodiment of the present invention estimates the complete volume information for objects in the scene to create complete 3D volumes, which can later be intersected with other 3D objects to determine collisions or for measuring distances between the objects.
  • one embodiment of the present invention estimates the "back" z-values of the user 302, which are not visible to the depth camera.
  • a pre-generated model is utilized to estimate the volume of a particular object.
  • the pre-generated model may not be absolutely accurate, and good estimation of volume can be achieved.
  • the depth of the person can be estimated to be equal to the width of the person.
  • embodiments of the present invention orient the model to match the orientation the actual object, and then utilize the model to estimate the volume of the object.
  • embodiments of the present invention orient a model couch to match the couch object, then determine the volume of the couch object based on the couch size and the model data.
  • embodiments of the present invention can process both real and virtual objects in a single consistent manner.
  • virtual objects are inserted into the scene.
  • embodiments of the present invention allow the placement of computer-generated objects in various positions within a video scene in real-time, including behind other objects in operation 210.
  • embodiments of the present invention provide real-time interactive gaming experiences for users. For example, users can interact with various computer- generated objects in real-time. Furthermore, video scenes can be altered in real-time to enhance the user's game experience.
  • computer generated costumes can be inserted over the user's clothing, and computer generated light sources can be utilized to project virtual shadows within a video scene.
  • computer generated light sources can be utilized to project virtual shadows within a video scene.
  • Figure 6 is an illustration showing computer-generated virtual objects inserted into a scene, in accordance with an embodiment of the present invention.
  • the scene includes a vase 402 and sofa 404, as well as a picture on the back wall 406 of the room.
  • the depth camera captures these physical objects using two-dimensional pixel data, as described previously.
  • the depth camera captures depth data, in this example for the user 302.
  • embodiments of the preset invention insert virtual objects into the scene.
  • two virtual objects 600 and 602 were added to the scene.
  • the virtual objects 600 and 602 can be inserted into the scene in a realistic manner because of the added depth information available.
  • the depth data obtained in operation 208 can be utilized to determine the exact position of the user 302 in three-dimensional space.
  • the virtual "pencil” object 600 can be positioned, altered, and animated to appear to be "behind” the user 302.
  • the virtual sphere 602 can be positioned, altered, and animated to appear, for example, in "front” of the user 302.
  • the inserted virtual objects can appear to interact with other objects in the user's room.
  • one embodiment of the present invention inserts a virtual light source in the scene to cast "shadows" 604 and 606 from the virtual objects, which further increase the realism of the virtual scene.
  • FIG. 7 is an illustration showing computer-generated changes to the physical objects within the room, in accordance with an embodiment of the present invention.
  • the scene includes a vase 402 and sofa 404, as well as a picture on the back wall 406 of the room.
  • the depth camera captures these physical objects using two-dimensional pixel data, as described previously.
  • the depth camera captures depth data, in this example for the user 302.
  • embodiments of the preset invention can visually alter physical objects in the scene.
  • a computer- generated costume 700 has been inserted into the scene over the user's clothing. Since the z- values obtained from the depth camera allow the system to track the user's movement, the computer-generated costume 700 can be animated to move with the user, creating the appearance that the user 302 is "wearing" the computer-generated costume.
  • the user's interactions with the virtual objects are detected based on the obtained two-dimensional data and the depth values.
  • the virtual three-dimensional space is configured to coincide with the physical space of the user.
  • the virtual three-dimensional space can be configured to coincide with the living room of the user 302.
  • embodiments of the present invention can detect when objects, both virtual and physical, occupy the same three-dimensional space.
  • embodiments of the present invention can, utilizing the z-values from the depth camera, allow the user 302 to interact with the virtual objects.
  • Post process operations are performed in operation 214. Post process operations can include saving locations of virtual objects on a computer storage medium, loading of saved virtual objects from the computer storage medium, and other post process operation that will be apparent to those skilled in the art after a careful reading of the present disclosure.
  • the three-dimensional interactive system and methods of the embodiments of the present invention are implemented using a computer processing system illustrated by the block diagram of Figure 8.
  • the processing system may represent a computer- based entertainment system embodiment that includes a central processing unit (“CPU”) 804 coupled to a main memory 802 and graphical processing unit (“GPU") 806.
  • the CPU 804 is also coupled to an Input/Output Processor ('TOP") Bus 808.
  • the GPU 806 includes an internal buffer for fast processing of pixel based graphical data.
  • the GPU can include an output processing portion or functionality to convert the image data processed into standard television signals, for example NTSC or PAL, for transmission to a television monitor 807 connected external to the entertainment system 800 or elements thereof.
  • data output signals can be provided to a display device other than a television monitor, such as a computer monitor, LCD (Liquid Crystal Display) device, or other type of display device.
  • the IOP bus 808 couples the CPU 804 to various input/output devices and other busses or device. IOP bus 808 is connected to input/output processor memory 810, a controller 812, a memory card 814, a Universal Serial Bus (USB) port 816, an IEEE1394 (also known as a Firewire interface) port, and bus 830. Bus 830 couples several other system components to CPU 804, including operating system (“OS”) ROM 820, flash memory 822, a sound processing unit (“SPU”) 824, an optical disc controlling unit 826, and a hard disk drive (“HDD”) 828.
  • OS operating system
  • SPU sound processing unit
  • HDD hard disk drive
  • the video capture device can be directly connected to the IOP bus 808 for transmission therethrough to the CPU 804; there, data from the video capture device can be used to change or update the values used to generate the graphics images in the GPU 806.
  • Programs or computer instructions embodying aspects of the present invention can be provided by several different methods.
  • the user input method for interaction with graphical images can be provided in the form of a program stored in HDD 828, flash memory 822, OS ROM 820, or on a memory card 812.
  • the program can be downloaded to the processing unit 800 through one or more input ports coupled to the CPU 804.
  • Embodiments of the present invention also contemplate distributed image processing configurations.
  • the invention is not limited to the captured image and display image processing taking place in one or even two locations, such as in the CPU or in the CPU and one other element.
  • the input image processing can just as readily take place in an associated CPU, processor or device that can perform processing; essentially all of image processing can be distributed throughout the interconnected system.
  • the present invention is not limited to any specific image processing hardware circuitry and/or ' software; it is also not limited to any specific combination of general hardware circuitry and/or software, nor to any particular source for the instructions executed by processing components.

Abstract

An invention is provided for affording a real-time three-dimensional interactive environment using a three-dimensional camera. The invention includes obtaining two-dimensional data values for a plurality of pixels representing a physical scene, and obtaining a depth value for each pixel of the plurality of pixels using a depth sensing device. Each depth value indicates a distance from a physical object in the physical scene to the depth sensing device. At least one computer-generated virtual object is inserted into the scene, and an interaction between a physical object in the scene and the virtual object is detected based on coordinates of the virtual object and the obtained depth values.

Description

SYSTEM AND METHOD FOR PROVIDING A REAL-TIME
THREE-DIMENSIONAL INTERACTIVE ENVIRONMENT
BACKGROUND OF THE INVENTION 1. Field of the Invention:
[0001] This invention relates generally to video image processing, and more particularly to providing a real-time interactive computer environment using a three-dimensional camera. 2. Description of the Related Art [0002] With the increased processing capabilities of today's computer technology, new creative methods for interacting with computer systems have become available. For example, new on-line keyboards allow individuals to enter information without the need for a physical keyboard, and new game controllers with a plurality of joysticks and directional keys enhance the user's ability to interact with the computer system. In addition to hand held input devices, input devices employing video images are currently available that allow user control of objects on a graphical display such as a video monitor.
[0003] Such video input devices often are responsive to the movement or position of a user in the field of view of a video capture device. More recently, video image processing has been used to translate the movement of the user that has been captured as a sequence of video images into signals for game control. Prior art input systems include a video capture device that scans a field of view in which a system user stands. The captured video image is applied to a video digitizer that provides digital output to a processor that analyzes and processes the digital information received from the digitizer.
[0004] Based upon the position or movement of the participant in the field of view, the processor produces signals that are used by the graphics generating system to move objects on the display. Although the operation or output of the devices or graphical displays can thereby be affected by the position or movement of the participant, the computer processing time required is frequently very extensive and complex, tending to require substantial computer and/or time resources. [0005] In addition, known devices and methods employing user video image data that are used to affect the movement of an object on a graphical display are typically characterized by significant encumbrances upon the participant within the video camera field of view. Such systems may include additional equipment that the participant is required to wear, such as arm coverings or gloves with integral, more easily detectable portions or colors, and/or visible light sources such as light emitting diodes. Unfortunately, such systems do not allow for the ease- of-use, quick response, and simplicity needed to provide a user input device capable of meeting marketability requirements for consumer items such as might be required of video game controllers.
[0006] In view of the foregoing, there is a need for enhanced systems and methods that allow interaction in a three-dimensional environment. The methods should allow user interaction without requiring additional equipment, such as arm coverings or gloves. In addition, the method should not require overly burdensome processing ability and should have the ability to function in real-time, thus providing the user with a natural computer interaction experience.
SUMMARY OF THE INVENTION
[0007] Broadly speaking, embodiments of the present invention fill these needs by providing a real-time three-dimensional interactive environment using a three-dimensional camera.
Generally, embodiments of the present invention allow the user to interactive with, and affect, computer-generated objects and environments that are combined visually with the user's actual physical environment. In one embodiment, a method is disclosed for providing a real-time three-dimensional interactive environment. The method includes obtaining two-dimensional data values for a plurality of pixels representing a physical scene, and obtaining a depth value for each pixel of the plurality of pixels using a depth sensing device. Each depth value indicates a distance from a physical object in the physical scene to the depth sensing device.
At least one computer-generated virtual object is inserted into the scene, and an interaction between a physical object in the scene and the virtual object is detected based on coordinates of the virtual object and the obtained depth values. For example, the two-dimensional values for the plurality of pixels can be color values, and each depth value can indicate a distance from a physical object in the physical scene represented by the corresponding pixel to the sensing device. In one aspect, the interaction can be a collision between a physical object in the scene and the virtual object. In this aspect, the collision is detected when the virtual object and a physical object occupy a same three-dimensional space based on three-dimensional coordinates of the virtual object and three-dimensional coordinates of the physical object. Optionally, an appearance of a physical object in the scene can be visually altered. For example, the physical object can be a user, and computer-generated clothing can be mapped to the user based on the depth values for pixels representing the user. In addition, a maximum depth range can be defined that indicates the farthest distance for which depth values will be obtained. In this aspect, depth values for the user may be detected only when the user is within a distance less than the maximum depth range to the sensing device.
[0008] The system includes a depth sensing device capable of obtaining two-dimensional data values for a plurality of pixels representing a physical scene. The depth sensing device is further capable of obtaining a depth value for each pixel of the plurality of pixels. As above, each depth value indicates a distance from a physical object in the physical scene to the depth sensing device. Also included in the system is logic that inserts at least one computer- generated virtual object into the scene. Further, the system includes logic that detects an interaction between a physical object in the scene and the virtual object based on coordinates of the virtual object and the obtained depth values. As above, the two-dimensional values for the plurality of pixels can be color values, and each depth value can indicate a distance from a physical object in the physical scene represented by the corresponding pixel to the sensing device. Optionally, the system can include logic that defines a maximum depth range, the maximum depth range indicating the farthest distance for which depth values will be obtained. In this aspect, logic can also be included that that detects depth values for a user only when the user is within a distance less than the maximum depth range to the sensing device.
[0009] A further method for providing a real-time three-dimensional interactive environment is disclosed in an additional embodiment of the present invention. As above, the method includes obtaining two-dimensional data values for a plurality of pixels representing a physical scene. Also as above, a depth value for each pixel of the plurality of pixels is obtained using a depth sensing device. Each depth value indicates a distance from a physical object in the physical scene to the depth sensing device. Based on the obtained two-dimensional data values and the obtained depth values, three-dimensional volume information is estimated for each physical object in the physical scene. In addition, computer-generated virtual objects having three-dimensional volume information for the virtual object can be inserted into the scene. In this manner, interactions between physical and virtual objects in the scene can be detected based on the coordinates of the three-dimensional volume information for the virtual object and the physical object. Other aspects and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS [0010] The invention, together with further advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying drawings in which:
[0011] Figure 1 A is a block diagram of an exemplary system for providing a real-time three- dimensional interactive environment, in accordance with an embodiment of the present invention;
[0012] Figure IB is an illustration showing a two-dimensional data captured using a typical depth camera; [0013] Figure 1C is an illustration showing depth data captured using a typical depth camera; [0014] Figure ID illustrates an exemplary system environment for providing a real-time three-dimensional interactive environment, in accordance with an embodiment of the present invention;
[0015] Figure 2 is a flowchart showing a method for providing a real-time three-dimensional interactive environment, in accordance with an embodiment of the present invention; [0016] Figure 3 is an illustration showing a top view of a user interacting with a maximum range plane, in accordance with an embodiment of the present invention;
[0017] Figure 4 is an illustration showing two-dimensional data for an exemplary scene, in accordance with an embodiment of the present invention;
[0018] Figure 5 illustrates z- values for the exemplary scene of Figure 4, in accordance with an embodiment of the present invention; [0019] Figure 6 is an illustration showing computer generated virtual objects inserted into a scene, in accordance with an embodiment of the present invention; [0020] Figure 7 is an illustration showing computer-generated changes to the physical objects within the room, in accordance with an embodiment of the present invention; and
[0021] Figure 8 is a block diagram of a computer processing system for providing a three- dimensional interactive environment, in accordance with an embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0022] An invention is disclosed for providing a real-time three-dimensional interactive environment using a three-dimensional camera. Generally, embodiments of the present invention allow the user to interactive with, and affect, computer objects and environments that are combined visually with the user's actual physical environment. Through the use of a three- dimensional camera, three-dimensional images can be obtained in real-time. These three- dimensional images are utilized to place digital objects within the user's environment, track the user's movement, and accurately detect when the user interacts with the digital objects. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps have not been described in detail in order not to unnecessarily obscure the present invention.
[0023] In the following description, the terms "depth camera" and "three-dimensional camera" will refer to any camera that is capable of obtaining distance or depth information as well as two-dimensional pixel information. For example, a depth camera can utilize controlled infrared lighting to obtain distance information. Another exemplary depth camera can be a stereo camera pair, which triangulates distance information using two standard cameras. Similarly, the term "depth sensing device" will refer to any type of device that is capable of obtaining distance information as well as two-dimensional pixel information.
[0024] Recent advances in three-dimensional imagery have opened the door for increased possibilities in real-time interactive computer animation. In particular, new "depth cameras" provide the ability to capture and map the third-dimension in addition to normal two- dimensional video imagery. With the new depth data, embodiments of the present invention allow the placement of computer-generated objects in various positions within a video scene in real-time, including behind other objects. [0025] Moreover, embodiments of the present invention provide real-time interactive gaming experiences for users. For example, users can interact with various computer-generated objects in real-time. Furthermore, video scenes can be altered in real-time to enhance the user's game experience. For example, computer generated costumes can be inserted over the user's clothing, and computer generated light sources can be utilized to project virtual shadows within a video scene. Hence, using the embodiments of the present invention and a depth camera, users can experience an interactive game environment within their own living room.
[0026] Figure 1A is a block diagram of an exemplary system 100 for providing a real-time three-dimensional interactive environment, in accordance with an embodiment of the present invention. As shown in Figure 1A, the system 100 includes a depth camera 102, an input image processor 104, an output image processor 106, and a video display device 108.
[0027] As mentioned above, the depth camera 102 provides the ability to capture and map the third-dimension in addition to normal two-dimensional video imagery. Figures IB and IC illustrated the images generated by a typical depth camera 102. In particular, Figure IB is an illustration showing two-dimensional data 120 captured using a typical depth camera. Similar to normal cameras, a depth camera captures two-dimensional data for a plurality of pixels that comprise the video image. These values are color values for the pixels, generally red, green, and blue (RGB) values for each pixel. In this manner, objects captured by the camera appear as two-dimension objects on a monitor. For example, in Figure IB, the exemplary scene includes a cylinder object 122 and a sphere object 124 disposed on a table 126, which is situated among hills 128, illustrated in the background.
[0028] However, unlike a conventional camera, a depth camera also captures depth values for the scene. Figure IC is an illustration showing depth data 150 captured using a typical depth camera. As illustrated in Figure IB, the depth camera captures the x and y components of a scene using RGB values for each pixel in the scene. However, as shown in Figure IC, the depth camera also captures the z-components of the scene, which represent the depth values for the scene. Since the depth values correspond to the z-axis, the depth values are often referred to as z- values.
[0029] In operation, a z- value is captured for each pixel of the scene. Each z- value represents a distance from the camera to a particular object in the scene corresponding to the related pixel. For example, in Figure IC, z-values are illustrated for the cylinder object 152, the sphere object 154, and part of the table 156. In addition, a maximum detection range is defined beyond which depth values will not be detected. For example, in Figure IC the maximum depth range 158 appears as vertical plane wherein all pixels are given the same depth value. As will be described in greater detail below, this maximum range plane can be utilized by the embodiments of the present invention to provide user defined object tracking. Thus, using a depth camera, each object can be tracked in three dimensions. As a result, a computer system of the embodiments of the present invention can utilize the z-values, along with the two- dimensional pixel data, to create an enhanced three-dimensional interactive environment for the user. [0030] Referring back to Figure 1A, the input image processor 104 translates the captured video images and depth data into signals that are delivered to an output image processor. The output image processor 106 is programmed to effect movement and status of virtual objects on the video display device 108 in response to signals received from the input image processor 104. [0031] These and additional aspects of the present invention may be implemented by one or more processors which execute software instructions. According to one embodiment of the present invention, a single processor executes both input image processing and output image processing. However, as shown in the figures and for ease of description, the processing operations are shown as being divided between an input image processor 104 and an output image processor 106. It should be noted that the invention is in no way to be interpreted as limited to any special processor configuration, such as more than one processor. The multiple processing blocks shown in Figure 1 A and the other Figures are shown only for convenience of description.
[0032] Figure ID illustrates an exemplary system environment for providing a real-time three-dimensional interactive environment, in accordance with an embodiment of the present invention. The system environment includes, depth camera 170, video display device 172, and console 174 having processor functionality, such as a video game machine. Generally, a user and their environment, such as a living room, are located within the field of view of the depth camera 170. The processing system 174 can be implemented by an entertainment system, such as a Sony® Playstation™ II or Sony® Playstation™ I type of processing and computer entertainment system. It should be noted, however, that processing system 174 can be implemented in other types of computer systems, such as personal computers, workstations, laptop computers, wireless computing devices, or any other type of computing device that is capable of receiving and processing graphical image data. [0033] Figure 2 is a flowchart showing a method 200 for providing a real-time three- dimensional interactive environment, in accordance with an embodiment of the present invention. In an initial operation 202, preprocess operations are performed. Preprocess operations can include defining three-dimensional objects, adjusting a depth camera for optimum performance, and other preprocess operations that will be apparent to those skilled in the art after a careful reading of the present disclosure. [0034] In operation 204, a maximum depth range is defined. As described above, a maximum depth range is defined beyond which depth values will not be detected. Typically, the maximum depth range appears as vertical plane wherein all pixels are given the same depth value. This maximum range plane can be utilized by the embodiments of the present invention to provide user defined object tracking, as illustrated in Figure 3. [0035] Figure 3 is an illustration showing a top view 300 of a user 302 interacting with a maximum depth range plane 158, in accordance with an embodiment of the present invention. As shown in Figure 3, a maximum depth range plane 158, which defines tracking distance, is defined. Objects in front of the maximum depth range plane 158 are tracked, while objects behind the maximum depth range plane 158 are not tracked. In this manner, the user 302 can determine when to interact with the system by allowing part of the user's body, or an object, to cross the maximum depth range plane 158.
[0036] For example, when the user 302 of Figure 3 places their hands 304 in front of the maximum depth range plane 158, the system detects and tracks their hands 304. In this manner, the user 302 controls when to interact with the system, and the system can avoid any confusing information caused, for example, by unexpected body movement. In addition, motion confusion caused by other people moving behind the user, or for example, a family pet, can be avoided.
[0037] For example, in one embodiment of the present invention, the user 302 is allowed to drag and drop objects on the screen by gesturing with their hands across the maximum depth range plane 158. In this embodiment, a user can extend their hand 304 or other object across the maximum depth range plane 158 to initiate interaction with objects on a screen. The movement of the user's hand is then tracked using the depth data provided by the depth camera. Tracking is then terminated when the user retracts their hand behind the maximum depth range plane 158. During tracking, objects encountered by the user's hand movement can be moved and manipulated, as described in greater detail subsequently. [0038] Referring back to Figure 2, two-dimensional data values are obtained for each pixel comprising the scene, in operation 206. As mentioned above, a depth camera can capture two- dimensional data for a plurality of pixels that comprise a video image. These values are color values for the pixels, and generally red, green, and blue (RGB) values for each pixel. In this manner, objects captured by the camera appear as two-dimension objects on a monitor. [0039] For example, Figure 4 is an illustration showing two-dimensional data 400 for an exemplary scene, in accordance with an embodiment of the present invention. The exemplary scene on Figure 4 illustrates a user 302 in the living room of their home. However, it should be noted that embodiments of the present invention can be utilized in any location, as desired by the user. As can be appreciated, various physical objects are located in this environment. For example, in Figure 4 there is a vase 402 and sofa 404, as well as a picture on the back wall 406 of the room. As will be discussed in greater detail subsequently these exemplary objects will illustrate properties of the embodiments of the present invention.
[0040] Generally, the user 302 positions the depth camera in a suitable position in front of them. In addition, various adjustments can be made to the camera angle, aperture setting, and other settings that will be apparent to those skilled in the art after a careful reading of the present disclosure. The camera then captures video data for the scene, generally comprising color values for the pixels comprising the scene.
[0041] Referring back to Figure 2, depth values are obtained for each pixel comprising the scene, in operation 208. In addition to two-dimensional data capture, a depth camera also captures depth values for the scene. As discussed above, the depth camera captures the x and y components of a scene using RGB values for each pixel in the scene. However, the depth camera also captures the z-components of the scene, which represent the depth values for the scene.
[0042] Thus, in operation 208, a z- value is captured for each pixel of the scene. Each z- value represents a distance from the camera to a particular object in the scene corresponding to the related pixel. For example, Figure 5 illustrates z-values for the exemplary scene of Figure 4, in accordance with an embodiment of the present invention. The z-values are included for the user 302, however, in the example of Figure 5 the maximum depth range plane 158 has been defined just behind the user 302. Thus, excluding depth values for the other objects in the scene, including the vase, sofa, and back wall. However, it should be noted that the maximum depth range plane 158 can be defined at any distance. Thus, the maximum depth range plane 158 can be defined farther back in the exemplary scene to include the vase, sofa, and back wall. [0043] In this manner, the position and movement of the user 302 can be tracked. Moreover, using the depth information, the user 302 can be tracked in three dimensions, thus allowing for realistic placement of objects within the scene. Furthermore, using the three-dimensional data allows users to interact with a virtual environment in a realistic manner thus enhancing the user's 302 experience.
[0044] In addition, one embodiment of the present invention can construct complete 3D volume information for objects in the scene using the z-values. In general, a depth camera does not itself provide full volume information. That is, the depth camera provides z-values for pixels of object surfaces that are visible to the camera. Hence, the z-values for the surfaces, such as the user's 302 back are not provided by the depth camera. Thus, one embodiment of the present invention estimates the complete volume information for objects in the scene to create complete 3D volumes, which can later be intersected with other 3D objects to determine collisions or for measuring distances between the objects. [0045] For example, in Figure 5, one embodiment of the present invention estimates the "back" z-values of the user 302, which are not visible to the depth camera. In one embodiment, a pre-generated model is utilized to estimate the volume of a particular object. Although the pre-generated model may not be absolutely accurate, and good estimation of volume can be achieved. For example, when estimating a volume of a particular person, the depth of the person can be estimated to be equal to the width of the person. When the model is accurate, embodiments of the present invention orient the model to match the orientation the actual object, and then utilize the model to estimate the volume of the object. For example, when the object is a couch, embodiments of the present invention orient a model couch to match the couch object, then determine the volume of the couch object based on the couch size and the model data. [0046] In this manner, a complete 3D volume of the user 302 can be constructed, which can later be utilized to interact with computer generated virtual objects. In this manner, embodiments of the present invention can process both real and virtual objects in a single consistent manner. [0047] Referring back to Figure 2, in operation 210, virtual objects are inserted into the scene. With the new depth data obtained in operation 208, embodiments of the present invention allow the placement of computer-generated objects in various positions within a video scene in real-time, including behind other objects in operation 210. [0048] In this manner, embodiments of the present invention provide real-time interactive gaming experiences for users. For example, users can interact with various computer- generated objects in real-time. Furthermore, video scenes can be altered in real-time to enhance the user's game experience. For example, computer generated costumes can be inserted over the user's clothing, and computer generated light sources can be utilized to project virtual shadows within a video scene. Hence, using the embodiments of the present invention and a depth camera, user's can experience an interactive game environment within their own living room.
[0049] For example, Figure 6 is an illustration showing computer-generated virtual objects inserted into a scene, in accordance with an embodiment of the present invention. As in Figure 4, the scene includes a vase 402 and sofa 404, as well as a picture on the back wall 406 of the room. The depth camera captures these physical objects using two-dimensional pixel data, as described previously. In addition, also described above, the depth camera captures depth data, in this example for the user 302. Using the depth data, embodiments of the preset invention insert virtual objects into the scene. For example, in Figure 6 two virtual objects 600 and 602 were added to the scene. As illustrated, the virtual objects 600 and 602 can be inserted into the scene in a realistic manner because of the added depth information available.
[0050] That is, the depth data obtained in operation 208 can be utilized to determine the exact position of the user 302 in three-dimensional space. As a result, the virtual "pencil" object 600 can be positioned, altered, and animated to appear to be "behind" the user 302. Similarly, the virtual sphere 602 can be positioned, altered, and animated to appear, for example, in "front" of the user 302. Moreover, by extending the maximum depth range to approximately the position of the back wall 406, the inserted virtual objects can appear to interact with other objects in the user's room. In addition, one embodiment of the present invention inserts a virtual light source in the scene to cast "shadows" 604 and 606 from the virtual objects, which further increase the realism of the virtual scene. Since, the exact three-dimensional position of the floor and sofa 404 can be determined from the depth data, the computer-generated shadow 606 of the virtual sphere 602 can appear to be cast on the floor and the computer-generated shadow 604 of the virtual pencil 602 can appear to be cast on the sofa 404 and on the floor. Virtual objects can also include computer-generated changes to the physical objects within the room, as illustrated in Figure 7. [0051] Figure 7 is an illustration showing computer-generated changes to the physical objects within the room, in accordance with an embodiment of the present invention. As in Figure 4, the scene includes a vase 402 and sofa 404, as well as a picture on the back wall 406 of the room. The depth camera captures these physical objects using two-dimensional pixel data, as described previously. In addition, also described above, the depth camera captures depth data, in this example for the user 302. Using the depth data, embodiments of the preset invention can visually alter physical objects in the scene. For example, in Figure 7, a computer- generated costume 700 has been inserted into the scene over the user's clothing. Since the z- values obtained from the depth camera allow the system to track the user's movement, the computer-generated costume 700 can be animated to move with the user, creating the appearance that the user 302 is "wearing" the computer-generated costume. [0052] Referring back to Figure 2, the user's interactions with the virtual objects are detected based on the obtained two-dimensional data and the depth values. As is well known in the art, computer-generated three-dimensional objects are located in a virtual three-dimensional space and processed, often using matrixes, to generate a two-dimensional projection of the three- dimensional scene, typically viewed using a monitor or television. In one embodiment of the present invention, the virtual three-dimensional space is configured to coincide with the physical space of the user. For example, referring to Figure 6, the virtual three-dimensional space can be configured to coincide with the living room of the user 302. In this manner, embodiments of the present invention can detect when objects, both virtual and physical, occupy the same three-dimensional space. [0053] Thus, embodiments of the present invention can, utilizing the z-values from the depth camera, allow the user 302 to interact with the virtual objects. For example, a user can swing at the virtual sphere 602 and the system can detect when the user's 302 hand, for example, occupies the same space as the virtual sphere 602, indicating a collision. Thereafter, an appropriate response to the collision can be generated, for example, the virtual sphere 602 can be made the " virtually fly" across the room. [0054] Post process operations are performed in operation 214. Post process operations can include saving locations of virtual objects on a computer storage medium, loading of saved virtual objects from the computer storage medium, and other post process operation that will be apparent to those skilled in the art after a careful reading of the present disclosure. [0055] In one embodiment, the three-dimensional interactive system and methods of the embodiments of the present invention are implemented using a computer processing system illustrated by the block diagram of Figure 8. The processing system may represent a computer- based entertainment system embodiment that includes a central processing unit ("CPU") 804 coupled to a main memory 802 and graphical processing unit ("GPU") 806. The CPU 804 is also coupled to an Input/Output Processor ('TOP") Bus 808. In one embodiment, the GPU 806 includes an internal buffer for fast processing of pixel based graphical data. Additionally, the GPU can include an output processing portion or functionality to convert the image data processed into standard television signals, for example NTSC or PAL, for transmission to a television monitor 807 connected external to the entertainment system 800 or elements thereof. Alternatively, data output signals can be provided to a display device other than a television monitor, such as a computer monitor, LCD (Liquid Crystal Display) device, or other type of display device.
[0056] The IOP bus 808 couples the CPU 804 to various input/output devices and other busses or device. IOP bus 808 is connected to input/output processor memory 810, a controller 812, a memory card 814, a Universal Serial Bus (USB) port 816, an IEEE1394 (also known as a Firewire interface) port, and bus 830. Bus 830 couples several other system components to CPU 804, including operating system ("OS") ROM 820, flash memory 822, a sound processing unit ("SPU") 824, an optical disc controlling unit 826, and a hard disk drive ("HDD") 828. In one aspect of this embodiment, the video capture device can be directly connected to the IOP bus 808 for transmission therethrough to the CPU 804; there, data from the video capture device can be used to change or update the values used to generate the graphics images in the GPU 806. [0057] Programs or computer instructions embodying aspects of the present invention can be provided by several different methods. For example, the user input method for interaction with graphical images can be provided in the form of a program stored in HDD 828, flash memory 822, OS ROM 820, or on a memory card 812. Alternatively, the program can be downloaded to the processing unit 800 through one or more input ports coupled to the CPU 804. The program modules defining the input method can be provided with the game or application program that is executed by the CPU 804 and displayed on display device 807 or they may be provided separately from the application program, such as for execution from local main memory 802. [0058] Embodiments of the present invention also contemplate distributed image processing configurations. For example, the invention is not limited to the captured image and display image processing taking place in one or even two locations, such as in the CPU or in the CPU and one other element. For example, the input image processing can just as readily take place in an associated CPU, processor or device that can perform processing; essentially all of image processing can be distributed throughout the interconnected system. Thus, the present invention is not limited to any specific image processing hardware circuitry and/or' software; it is also not limited to any specific combination of general hardware circuitry and/or software, nor to any particular source for the instructions executed by processing components.
[0059] Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims. What is claimed is:

Claims

1. A method for providing a real-time three-dimensional interactive environment, comprising the operations of: obtaining two-dimensional data values for a plurality of pixels representing a physical scene; obtaining a depth value for each pixel of the plurality of pixels using a depth sensing device, each depth value indicating a distance from a physical object in the physical scene to the depth sensing device; inserting at least one virtual object into the scene, the virtual object being computer- generated; and detecting an interaction between a physical object in the scene and the virtual object based on coordinates of the virtual object and the obtained depth values.
2. A method as recited in claim 1, wherein the two-dimensional values for the plurality of pixels are color values.
3. A method as recited in claim 1, wherein each depth value indicates a distance from a physical object in the physical scene represented by the corresponding pixel to the sensing device.
4. A method as recited in claim 1, wherein the interaction is a collision between a physical object in the scene and the virtual object.
5. A method as recited in claim 4, further comprising the operation of detecting when the virtual object and a physical object occupy a same three-dimensional space based on three-dimensional coordinates of the virtual object and three-dimensional coordinates of the physical object.
6. A method as recited in claim 1, further comprising the operation of visually altering an appearance of a physical object in the scene.
7. A method as recited in claim 6, wherein the physical object is a user.
8. A method as recited in claim 7, wherein computer-generated clothing is mapped to the user based on the depth values for pixels representing the user.
9. A method as recited in claim 1, further comprising the operation of defining a maximum depth range, the maximum depth range indicating the farthest distance for which depth values will be obtained.
10. A method as recited in claim 9, further comprising the operation detecting depth values for a user only when the user is within a distance less than the maximum depth range to the sensing device.
11. A method as recited in claim 1, wherein the depth sensing device is a depth camera.
12. A computer program embodied on a computer readable medium for providing a real-time three-dimensional interactive environment, comprising: program instructions that obtain two-dimensional data values for a plurality of pixels representing a physical scene; program instructions that obtain a depth value for each pixel of the plurality of pixels using a depth sensing device, each depth value indicating a distance from a physical object in the physical scene to the depth sensing device; program instructions that insert at least one virtual object into the scene, the virtual object being computer-generated; and program instructions that detect an interaction between a physical object in the scene and the virtual object based on coordinates of the virtual object and the obtained depth values.
13. A computer program as recited in claim 12, wherein the two-dimensional values for the plurality of pixels are color values.
14. A computer program as recited in claim 12, wherein each depth value indicates a distance from a physical object in the physical scene represented by the corresponding pixel to the sensing device.
15. A computer program as recited in claim 12, wherein the interaction is a collision between a physical object in the scene and the virtual object.
16. A computer program as recited in claim 12, further comprising program instructions that define a maximum depth range, the maximum depth range indicating the farthest distance for which depth values will be obtained.
17. A system for providing a real-time three-dimensional interactive environment, comprising: a depth sensing device capable of obtaining two-dimensional data values for a plurality of pixels representing a physical scene, wherein the depth sensing device is further capable of obtaining a depth value for each pixel of the plurality of pixels, each depth value indicating a distance from a physical object in the physical scene to the depth sensing device; logic that inserts at least one virtual object into the scene, the virtual object being computer-generated; and logic that detects an interaction between a physical object in the scene and the virtual object based on coordinates of the virtual object and the obtained depth values.
18. A system as recited in claim 17, wherein the two-dimensional values for the plurality of pixels are color values, and wherein each depth value indicates a distance from a physical object in the physical scene represented by the corresponding pixel to the sensing device.
19. A system as recited in claim 17, further comprising logic that defines a maximum depth range, the maximum depth range indicating the farthest distance for which depth values will be obtained.
20. A system as recited in claim 19, further comprising logic that detects depth values for a user only when the user is within a distance less than the maximum depth range to the sensing device.
21. A method for providing a real-time three-dimensional interactive environment, comprising the operations of: obtaining two-dimensional data values for a plurality of pixels representing a physical scene; obtaining a depth value for each pixel of the plurality of pixels using a depth sensing device, each depth value indicating a distance from a physical object in the physical scene to the depth sensing device; and estimating three-dimensional volume information for each physical object in the physical scene based on the obtained two-dimensional data values and the obtained depth values.
22. A method as recited in claim 21, further comprising the operation of inserting at least one virtual object into the scene, the virtual object being computer-generated, wherein the virtual object includes three-dimensional volume information for the virtual object.
23. A method as recited in claim 22, further comprising the operation of detecting an interaction between a physical object in the scene and the virtual object based on coordinates of the three-dimensional volume information for the virtual object and the three- dimensional volume information for the physical object.
24. A method as recited in claim 21, wherein the two-dimensional values for the plurality of pixels are color values.
25. A method as recited in claim 21, wherein each depth value indicates a distance from a physical object in the physical scene represented by the corresponding pixel to the sensing device.
26. A computer program embodied on a computer readable medium for providing a real-time three-dimensional interactive environment, comprising: program instructions that obtain two-dimensional data values for a plurality of pixels representing a physical scene; program instructions that obtain a depth value for each pixel of the plurality of pixels using a depth sensing device, each depth value indicating a distance from a physical object in the physical scene to the depth sensing device; and program instructions that estimate three-dimensional volume information for each physical object in the physical scene based on the obtained two-dimensional data values and the obtained depth values.
27. A computer program as recited in claim 26, further comprising program instructions that insert at least one virtual object into the scene, the virtual object being computer-generated, wherein the virtual object includes three-dimensional volume information for the virtual object.
28. A computer program as recited in claim 27, further comprising program instructions that detect an interaction between a physical object in the scene and the virtual object based on coordinates of the three-dimensional volume information for the virtual object and the three-dimensional volume information for the physical object.
29. A computer program as recited in claim 26, wherein the two-dimensional values for the plurality of pixels are color values.
30. A computer program as recited in claim 26, wherein each depth value indicates a distance from a physical object in the physical scene represented by the corresponding pixel to the sensing device.
PCT/US2004/015094 2003-05-29 2004-05-14 System and method for providing a real-time three-dimensional interactive environment WO2004107272A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04752175.2A EP1636762B1 (en) 2003-05-29 2004-05-14 System and method for providing a real-time three-dimensional interactive environment
JP2006533057A JP4271236B2 (en) 2003-05-29 2004-05-14 System and method for providing a real-time three-dimensional interactive environment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/448,614 2003-05-29
US10/448,614 US8072470B2 (en) 2003-05-29 2003-05-29 System and method for providing a real-time three-dimensional interactive environment

Publications (1)

Publication Number Publication Date
WO2004107272A1 true WO2004107272A1 (en) 2004-12-09

Family

ID=33451530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/015094 WO2004107272A1 (en) 2003-05-29 2004-05-14 System and method for providing a real-time three-dimensional interactive environment

Country Status (4)

Country Link
US (2) US8072470B2 (en)
EP (1) EP1636762B1 (en)
JP (1) JP4271236B2 (en)
WO (1) WO2004107272A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8166421B2 (en) 2008-01-14 2012-04-24 Primesense Ltd. Three-dimensional user interface
US8249334B2 (en) 2006-05-11 2012-08-21 Primesense Ltd. Modeling of humanoid forms from depth maps
US8369575B2 (en) 2009-05-14 2013-02-05 Samsung Electronics Co., Ltd. 3D image processing method and apparatus for improving accuracy of depth measurement of an object in a region of interest
US8565479B2 (en) 2009-08-13 2013-10-22 Primesense Ltd. Extraction of skeletons from 3D maps
US8582867B2 (en) 2010-09-16 2013-11-12 Primesense Ltd Learning-based pose estimation from depth maps
US8594425B2 (en) 2010-05-31 2013-11-26 Primesense Ltd. Analysis of three-dimensional scenes
US8787663B2 (en) 2010-03-01 2014-07-22 Primesense Ltd. Tracking body parts by combined color image and depth processing
US8872762B2 (en) 2010-12-08 2014-10-28 Primesense Ltd. Three dimensional user interface cursor control
US8881051B2 (en) 2011-07-05 2014-11-04 Primesense Ltd Zoom-based gesture user interface
US8933876B2 (en) 2010-12-13 2015-01-13 Apple Inc. Three dimensional user interface session control
US8959013B2 (en) 2010-09-27 2015-02-17 Apple Inc. Virtual keyboard for a non-tactile three dimensional user interface
US9002099B2 (en) 2011-09-11 2015-04-07 Apple Inc. Learning-based estimation of hand and finger pose
US9019267B2 (en) 2012-10-30 2015-04-28 Apple Inc. Depth mapping with enhanced resolution
US9030498B2 (en) 2011-08-15 2015-05-12 Apple Inc. Combining explicit select gestures and timeclick in a non-tactile three dimensional user interface
US9035876B2 (en) 2008-01-14 2015-05-19 Apple Inc. Three-dimensional user interface session control
US9047507B2 (en) 2012-05-02 2015-06-02 Apple Inc. Upper-body skeleton extraction from depth maps
US9122311B2 (en) 2011-08-24 2015-09-01 Apple Inc. Visual feedback for tactile and non-tactile user interfaces
US9158375B2 (en) 2010-07-20 2015-10-13 Apple Inc. Interactive reality augmentation for natural interaction
US9201501B2 (en) 2010-07-20 2015-12-01 Apple Inc. Adaptive projector
US9218063B2 (en) 2011-08-24 2015-12-22 Apple Inc. Sessionless pointing user interface
US9229534B2 (en) 2012-02-28 2016-01-05 Apple Inc. Asymmetric mapping for tactile and non-tactile user interfaces
US9285874B2 (en) 2011-02-09 2016-03-15 Apple Inc. Gaze detection in a 3D mapping environment
US9377865B2 (en) 2011-07-05 2016-06-28 Apple Inc. Zoom-based gesture user interface
US9377863B2 (en) 2012-03-26 2016-06-28 Apple Inc. Gaze-enhanced virtual touchscreen
US9459758B2 (en) 2011-07-05 2016-10-04 Apple Inc. Gesture-based interface with enhanced features
CN107801083A (en) * 2016-09-06 2018-03-13 星播网(深圳)信息有限公司 A kind of network real-time interactive live broadcasting method and device based on three dimensional virtual technique
US10043279B1 (en) 2015-12-07 2018-08-07 Apple Inc. Robust detection and classification of body parts in a depth map
US10366278B2 (en) 2016-09-20 2019-07-30 Apple Inc. Curvature-based face detector
CN112135158A (en) * 2020-09-17 2020-12-25 重庆虚拟实境科技有限公司 Live broadcasting method based on mixed reality and related equipment

Families Citing this family (401)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US7966078B2 (en) 1999-02-01 2011-06-21 Steven Hoffberg Network media appliance system and method
US6990639B2 (en) 2002-02-07 2006-01-24 Microsoft Corporation System and process for controlling electronic components in a ubiquitous computing environment using multimodal integration
US8947347B2 (en) 2003-08-27 2015-02-03 Sony Computer Entertainment Inc. Controlling actions in a video game unit
US7646372B2 (en) 2003-09-15 2010-01-12 Sony Computer Entertainment Inc. Methods and systems for enabling direction detection when interfacing with a computer program
US8797260B2 (en) 2002-07-27 2014-08-05 Sony Computer Entertainment Inc. Inertially trackable hand-held controller
US9393487B2 (en) 2002-07-27 2016-07-19 Sony Interactive Entertainment Inc. Method for mapping movements of a hand-held controller to game commands
US8570378B2 (en) 2002-07-27 2013-10-29 Sony Computer Entertainment Inc. Method and apparatus for tracking three-dimensional movements of an object using a depth sensing camera
US8233642B2 (en) 2003-08-27 2012-07-31 Sony Computer Entertainment Inc. Methods and apparatuses for capturing an audio signal based on a location of the signal
US7803050B2 (en) 2002-07-27 2010-09-28 Sony Computer Entertainment Inc. Tracking device with sound emitter for use in obtaining information for controlling game program execution
US7782297B2 (en) * 2002-07-27 2010-08-24 Sony Computer Entertainment America Inc. Method and apparatus for use in determining an activity level of a user in relation to a system
US7918733B2 (en) 2002-07-27 2011-04-05 Sony Computer Entertainment America Inc. Multi-input game control mixer
US7850526B2 (en) * 2002-07-27 2010-12-14 Sony Computer Entertainment America Inc. System for tracking user manipulations within an environment
US9174119B2 (en) 2002-07-27 2015-11-03 Sony Computer Entertainement America, LLC Controller for providing inputs to control execution of a program when inputs are combined
US8313380B2 (en) 2002-07-27 2012-11-20 Sony Computer Entertainment America Llc Scheme for translating movements of a hand-held controller into inputs for a system
US8139793B2 (en) 2003-08-27 2012-03-20 Sony Computer Entertainment Inc. Methods and apparatus for capturing audio signals based on a visual image
US8686939B2 (en) 2002-07-27 2014-04-01 Sony Computer Entertainment Inc. System, method, and apparatus for three-dimensional input control
US7760248B2 (en) * 2002-07-27 2010-07-20 Sony Computer Entertainment Inc. Selective sound source listening in conjunction with computer interactive processing
US8160269B2 (en) 2003-08-27 2012-04-17 Sony Computer Entertainment Inc. Methods and apparatuses for adjusting a listening area for capturing sounds
US7854655B2 (en) 2002-07-27 2010-12-21 Sony Computer Entertainment America Inc. Obtaining input for controlling execution of a game program
US8745541B2 (en) 2003-03-25 2014-06-03 Microsoft Corporation Architecture for controlling a computer using hand gestures
US7665041B2 (en) 2003-03-25 2010-02-16 Microsoft Corporation Architecture for controlling a computer using hand gestures
US7874917B2 (en) * 2003-09-15 2011-01-25 Sony Computer Entertainment Inc. Methods and systems for enabling depth and direction detection when interfacing with a computer program
US7428318B1 (en) * 2003-12-11 2008-09-23 Motion Reality, Inc. Method for capturing, measuring and analyzing motion
US7852317B2 (en) 2005-01-12 2010-12-14 Thinkoptics, Inc. Handheld device for handheld vision based absolute pointing system
US20060192852A1 (en) * 2005-02-09 2006-08-31 Sally Rosenthal System, method, software arrangement and computer-accessible medium for providing audio and/or visual information
US20060190812A1 (en) * 2005-02-22 2006-08-24 Geovector Corporation Imaging systems including hyperlink associations
DE102005009437A1 (en) * 2005-03-02 2006-09-07 Kuka Roboter Gmbh Method and device for fading AR objects
US7697827B2 (en) 2005-10-17 2010-04-13 Konicek Jeffrey C User-friendlier interfaces for a camera
US8094928B2 (en) * 2005-11-14 2012-01-10 Microsoft Corporation Stereo video for gaming
EP2460569A3 (en) * 2006-05-04 2012-08-29 Sony Computer Entertainment America LLC Scheme for Detecting and Tracking User Manipulation of a Game Controller Body and for Translating Movements Thereof into Inputs and Game Commands
US7573475B2 (en) * 2006-06-01 2009-08-11 Industrial Light & Magic 2D to 3D image conversion
US7573489B2 (en) * 2006-06-01 2009-08-11 Industrial Light & Magic Infilling for 2D to 3D image conversion
EP2041640B1 (en) * 2006-07-16 2012-01-25 I. Cherradi Free fingers typing technology
US8913003B2 (en) 2006-07-17 2014-12-16 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer using a projection marker system
USRE48417E1 (en) 2006-09-28 2021-02-02 Sony Interactive Entertainment Inc. Object direction using video input combined with tilt angle information
US8310656B2 (en) 2006-09-28 2012-11-13 Sony Computer Entertainment America Llc Mapping movements of a hand-held controller to the two-dimensional image plane of a display screen
US8781151B2 (en) 2006-09-28 2014-07-15 Sony Computer Entertainment Inc. Object detection using video input combined with tilt angle information
EP1944700A1 (en) * 2007-01-10 2008-07-16 Imagetech Co., Ltd. Method and system for real time interactive video
US8005238B2 (en) 2007-03-22 2011-08-23 Microsoft Corporation Robust adaptive beamforming with enhanced noise suppression
US9176598B2 (en) 2007-05-08 2015-11-03 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer with improved performance
US8005237B2 (en) 2007-05-17 2011-08-23 Microsoft Corp. Sensor array beamformer post-processor
US7733343B2 (en) * 2007-06-25 2010-06-08 Hewlett-Packard Development Company, L.P. Virtual shadow for physical object placed on surface
JP5430572B2 (en) * 2007-09-14 2014-03-05 インテレクチュアル ベンチャーズ ホールディング 67 エルエルシー Gesture-based user interaction processing
DE102007045834B4 (en) 2007-09-25 2012-01-26 Metaio Gmbh Method and device for displaying a virtual object in a real environment
DE102007045835B4 (en) 2007-09-25 2012-12-20 Metaio Gmbh Method and device for displaying a virtual object in a real environment
US8629976B2 (en) 2007-10-02 2014-01-14 Microsoft Corporation Methods and systems for hierarchical de-aliasing time-of-flight (TOF) systems
US8159682B2 (en) 2007-11-12 2012-04-17 Intellectual Ventures Holding 67 Llc Lens system
US20090221368A1 (en) * 2007-11-28 2009-09-03 Ailive Inc., Method and system for creating a shared game space for a networked game
US8231465B2 (en) * 2008-02-21 2012-07-31 Palo Alto Research Center Incorporated Location-aware mixed-reality gaming platform
US8259163B2 (en) 2008-03-07 2012-09-04 Intellectual Ventures Holding 67 Llc Display with built in 3D sensing
US8385557B2 (en) 2008-06-19 2013-02-26 Microsoft Corporation Multichannel acoustic echo reduction
US8325909B2 (en) 2008-06-25 2012-12-04 Microsoft Corporation Acoustic echo suppression
US8203699B2 (en) 2008-06-30 2012-06-19 Microsoft Corporation System architecture design for time-of-flight system having reduced differential pixel size, and time-of-flight systems so designed
KR101483659B1 (en) * 2008-07-11 2015-01-16 삼성디스플레이 주식회사 Method for displaying 3 dimensional image, and display device for performing the same
JP2010033367A (en) * 2008-07-29 2010-02-12 Canon Inc Information processor and information processing method
US9399167B2 (en) * 2008-10-14 2016-07-26 Microsoft Technology Licensing, Llc Virtual space mapping of a variable activity region
US20110279475A1 (en) * 2008-12-24 2011-11-17 Sony Computer Entertainment Inc. Image processing device and image processing method
US8681321B2 (en) 2009-01-04 2014-03-25 Microsoft International Holdings B.V. Gated 3D camera
US8682028B2 (en) 2009-01-30 2014-03-25 Microsoft Corporation Visual target tracking
US8295546B2 (en) 2009-01-30 2012-10-23 Microsoft Corporation Pose tracking pipeline
US8577084B2 (en) 2009-01-30 2013-11-05 Microsoft Corporation Visual target tracking
US8565477B2 (en) 2009-01-30 2013-10-22 Microsoft Corporation Visual target tracking
US8267781B2 (en) 2009-01-30 2012-09-18 Microsoft Corporation Visual target tracking
US8565476B2 (en) 2009-01-30 2013-10-22 Microsoft Corporation Visual target tracking
US20100199231A1 (en) 2009-01-30 2010-08-05 Microsoft Corporation Predictive determination
US7996793B2 (en) 2009-01-30 2011-08-09 Microsoft Corporation Gesture recognizer system architecture
US8588465B2 (en) 2009-01-30 2013-11-19 Microsoft Corporation Visual target tracking
US8294767B2 (en) 2009-01-30 2012-10-23 Microsoft Corporation Body scan
US8577085B2 (en) 2009-01-30 2013-11-05 Microsoft Corporation Visual target tracking
US20100195867A1 (en) * 2009-01-30 2010-08-05 Microsoft Corporation Visual target tracking using model fitting and exemplar
US8448094B2 (en) 2009-01-30 2013-05-21 Microsoft Corporation Mapping a natural input device to a legacy system
US8487938B2 (en) 2009-01-30 2013-07-16 Microsoft Corporation Standard Gestures
US8624962B2 (en) * 2009-02-02 2014-01-07 Ydreams—Informatica, S.A. Ydreams Systems and methods for simulating three-dimensional virtual interactions from two-dimensional camera images
US8773355B2 (en) 2009-03-16 2014-07-08 Microsoft Corporation Adaptive cursor sizing
US8988437B2 (en) 2009-03-20 2015-03-24 Microsoft Technology Licensing, Llc Chaining animations
US9256282B2 (en) 2009-03-20 2016-02-09 Microsoft Technology Licensing, Llc Virtual object manipulation
JP5558730B2 (en) * 2009-03-24 2014-07-23 株式会社バンダイナムコゲームス Program and game device
US9313376B1 (en) 2009-04-01 2016-04-12 Microsoft Technology Licensing, Llc Dynamic depth power equalization
US9498718B2 (en) 2009-05-01 2016-11-22 Microsoft Technology Licensing, Llc Altering a view perspective within a display environment
US8942428B2 (en) 2009-05-01 2015-01-27 Microsoft Corporation Isolate extraneous motions
US8638985B2 (en) * 2009-05-01 2014-01-28 Microsoft Corporation Human body pose estimation
US9377857B2 (en) 2009-05-01 2016-06-28 Microsoft Technology Licensing, Llc Show body position
US8253746B2 (en) 2009-05-01 2012-08-28 Microsoft Corporation Determine intended motions
US8649554B2 (en) 2009-05-01 2014-02-11 Microsoft Corporation Method to control perspective for a camera-controlled computer
US8503720B2 (en) 2009-05-01 2013-08-06 Microsoft Corporation Human body pose estimation
US9898675B2 (en) 2009-05-01 2018-02-20 Microsoft Technology Licensing, Llc User movement tracking feedback to improve tracking
US8340432B2 (en) 2009-05-01 2012-12-25 Microsoft Corporation Systems and methods for detecting a tilt angle from a depth image
US8660303B2 (en) 2009-05-01 2014-02-25 Microsoft Corporation Detection of body and props
US9015638B2 (en) 2009-05-01 2015-04-21 Microsoft Technology Licensing, Llc Binding users to a gesture based system and providing feedback to the users
US8181123B2 (en) 2009-05-01 2012-05-15 Microsoft Corporation Managing virtual port associations to users in a gesture-based computing environment
US8364561B2 (en) * 2009-05-26 2013-01-29 Embodee Corp. Garment digitization system and method
US8700477B2 (en) * 2009-05-26 2014-04-15 Embodee Corp. Garment fit portrayal system and method
US8744121B2 (en) 2009-05-29 2014-06-03 Microsoft Corporation Device for identifying and tracking multiple humans over time
US9400559B2 (en) 2009-05-29 2016-07-26 Microsoft Technology Licensing, Llc Gesture shortcuts
US9383823B2 (en) 2009-05-29 2016-07-05 Microsoft Technology Licensing, Llc Combining gestures beyond skeletal
US8625837B2 (en) 2009-05-29 2014-01-07 Microsoft Corporation Protocol and format for communicating an image from a camera to a computing environment
US8418085B2 (en) 2009-05-29 2013-04-09 Microsoft Corporation Gesture coach
US9182814B2 (en) 2009-05-29 2015-11-10 Microsoft Technology Licensing, Llc Systems and methods for estimating a non-visible or occluded body part
US8509479B2 (en) 2009-05-29 2013-08-13 Microsoft Corporation Virtual object
US8856691B2 (en) 2009-05-29 2014-10-07 Microsoft Corporation Gesture tool
US8542252B2 (en) 2009-05-29 2013-09-24 Microsoft Corporation Target digitization, extraction, and tracking
US8320619B2 (en) 2009-05-29 2012-11-27 Microsoft Corporation Systems and methods for tracking a model
US8379101B2 (en) 2009-05-29 2013-02-19 Microsoft Corporation Environment and/or target segmentation
US8693724B2 (en) 2009-05-29 2014-04-08 Microsoft Corporation Method and system implementing user-centric gesture control
US8487871B2 (en) 2009-06-01 2013-07-16 Microsoft Corporation Virtual desktop coordinate transformation
US20100311512A1 (en) * 2009-06-04 2010-12-09 Timothy James Lock Simulator with enhanced depth perception
KR20100138700A (en) * 2009-06-25 2010-12-31 삼성전자주식회사 Method and apparatus for processing virtual world
US8390680B2 (en) 2009-07-09 2013-03-05 Microsoft Corporation Visual representation expression based on player expression
US9159151B2 (en) 2009-07-13 2015-10-13 Microsoft Technology Licensing, Llc Bringing a visual representation to life via learned input from the user
US8264536B2 (en) 2009-08-25 2012-09-11 Microsoft Corporation Depth-sensitive imaging via polarization-state mapping
US9141193B2 (en) 2009-08-31 2015-09-22 Microsoft Technology Licensing, Llc Techniques for using human gestures to control gesture unaware programs
US8330134B2 (en) 2009-09-14 2012-12-11 Microsoft Corporation Optical fault monitoring
US8508919B2 (en) 2009-09-14 2013-08-13 Microsoft Corporation Separation of electrical and optical components
US8428340B2 (en) 2009-09-21 2013-04-23 Microsoft Corporation Screen space plane identification
US8976986B2 (en) 2009-09-21 2015-03-10 Microsoft Technology Licensing, Llc Volume adjustment based on listener position
US8760571B2 (en) 2009-09-21 2014-06-24 Microsoft Corporation Alignment of lens and image sensor
US9014546B2 (en) 2009-09-23 2015-04-21 Rovi Guides, Inc. Systems and methods for automatically detecting users within detection regions of media devices
US8452087B2 (en) 2009-09-30 2013-05-28 Microsoft Corporation Image selection techniques
US8723118B2 (en) 2009-10-01 2014-05-13 Microsoft Corporation Imager for constructing color and depth images
US8564534B2 (en) 2009-10-07 2013-10-22 Microsoft Corporation Human tracking system
US8963829B2 (en) 2009-10-07 2015-02-24 Microsoft Corporation Methods and systems for determining and tracking extremities of a target
US7961910B2 (en) 2009-10-07 2011-06-14 Microsoft Corporation Systems and methods for tracking a model
US8867820B2 (en) 2009-10-07 2014-10-21 Microsoft Corporation Systems and methods for removing a background of an image
US9400548B2 (en) 2009-10-19 2016-07-26 Microsoft Technology Licensing, Llc Gesture personalization and profile roaming
US8988432B2 (en) 2009-11-05 2015-03-24 Microsoft Technology Licensing, Llc Systems and methods for processing an image for target tracking
US8843857B2 (en) 2009-11-19 2014-09-23 Microsoft Corporation Distance scalable no touch computing
WO2011063197A1 (en) * 2009-11-20 2011-05-26 Wms Gaming, Inc. Integrating wagering games and environmental conditions
US9244533B2 (en) 2009-12-17 2016-01-26 Microsoft Technology Licensing, Llc Camera navigation for presentations
US20110150271A1 (en) 2009-12-18 2011-06-23 Microsoft Corporation Motion detection using depth images
US8320621B2 (en) 2009-12-21 2012-11-27 Microsoft Corporation Depth projector system with integrated VCSEL array
US20110162004A1 (en) * 2009-12-30 2011-06-30 Cevat Yerli Sensor device for a computer-controlled video entertainment system
US8631355B2 (en) 2010-01-08 2014-01-14 Microsoft Corporation Assigning gesture dictionaries
US9268404B2 (en) 2010-01-08 2016-02-23 Microsoft Technology Licensing, Llc Application gesture interpretation
US9019201B2 (en) 2010-01-08 2015-04-28 Microsoft Technology Licensing, Llc Evolving universal gesture sets
US20110169832A1 (en) * 2010-01-11 2011-07-14 Roy-G-Biv Corporation 3D Motion Interface Systems and Methods
US8334842B2 (en) 2010-01-15 2012-12-18 Microsoft Corporation Recognizing user intent in motion capture system
US8933884B2 (en) 2010-01-15 2015-01-13 Microsoft Corporation Tracking groups of users in motion capture system
US8676581B2 (en) 2010-01-22 2014-03-18 Microsoft Corporation Speech recognition analysis via identification information
US8265341B2 (en) 2010-01-25 2012-09-11 Microsoft Corporation Voice-body identity correlation
US8864581B2 (en) 2010-01-29 2014-10-21 Microsoft Corporation Visual based identitiy tracking
US8891067B2 (en) 2010-02-01 2014-11-18 Microsoft Corporation Multiple synchronized optical sources for time-of-flight range finding systems
US8619122B2 (en) 2010-02-02 2013-12-31 Microsoft Corporation Depth camera compatibility
US8687044B2 (en) 2010-02-02 2014-04-01 Microsoft Corporation Depth camera compatibility
US8717469B2 (en) 2010-02-03 2014-05-06 Microsoft Corporation Fast gating photosurface
US8659658B2 (en) 2010-02-09 2014-02-25 Microsoft Corporation Physical interaction zone for gesture-based user interfaces
US8499257B2 (en) 2010-02-09 2013-07-30 Microsoft Corporation Handles interactions for human—computer interface
US8633890B2 (en) 2010-02-16 2014-01-21 Microsoft Corporation Gesture detection based on joint skipping
US8928579B2 (en) 2010-02-22 2015-01-06 Andrew David Wilson Interacting with an omni-directionally projected display
US8655069B2 (en) 2010-03-05 2014-02-18 Microsoft Corporation Updating image segmentation following user input
US8411948B2 (en) 2010-03-05 2013-04-02 Microsoft Corporation Up-sampling binary images for segmentation
US8422769B2 (en) 2010-03-05 2013-04-16 Microsoft Corporation Image segmentation using reduced foreground training data
US20110223995A1 (en) 2010-03-12 2011-09-15 Kevin Geisner Interacting with a computer based application
US8279418B2 (en) 2010-03-17 2012-10-02 Microsoft Corporation Raster scanning for depth detection
US8213680B2 (en) 2010-03-19 2012-07-03 Microsoft Corporation Proxy training data for human body tracking
US8514269B2 (en) 2010-03-26 2013-08-20 Microsoft Corporation De-aliasing depth images
US8523667B2 (en) 2010-03-29 2013-09-03 Microsoft Corporation Parental control settings based on body dimensions
US8605763B2 (en) 2010-03-31 2013-12-10 Microsoft Corporation Temperature measurement and control for laser and light-emitting diodes
US9646340B2 (en) 2010-04-01 2017-05-09 Microsoft Technology Licensing, Llc Avatar-based virtual dressing room
US9098873B2 (en) * 2010-04-01 2015-08-04 Microsoft Technology Licensing, Llc Motion-based interactive shopping environment
US8405680B1 (en) * 2010-04-19 2013-03-26 YDreams S.A., A Public Limited Liability Company Various methods and apparatuses for achieving augmented reality
US8351651B2 (en) 2010-04-26 2013-01-08 Microsoft Corporation Hand-location post-process refinement in a tracking system
US8379919B2 (en) 2010-04-29 2013-02-19 Microsoft Corporation Multiple centroid condensation of probability distribution clouds
US8284847B2 (en) 2010-05-03 2012-10-09 Microsoft Corporation Detecting motion for a multifunction sensor device
US8498481B2 (en) 2010-05-07 2013-07-30 Microsoft Corporation Image segmentation using star-convexity constraints
US8885890B2 (en) 2010-05-07 2014-11-11 Microsoft Corporation Depth map confidence filtering
US8457353B2 (en) 2010-05-18 2013-06-04 Microsoft Corporation Gestures and gesture modifiers for manipulating a user-interface
US8803888B2 (en) 2010-06-02 2014-08-12 Microsoft Corporation Recognition system for sharing information
US9008355B2 (en) 2010-06-04 2015-04-14 Microsoft Technology Licensing, Llc Automatic depth camera aiming
US8751215B2 (en) 2010-06-04 2014-06-10 Microsoft Corporation Machine based sign language interpreter
US9557574B2 (en) 2010-06-08 2017-01-31 Microsoft Technology Licensing, Llc Depth illumination and detection optics
US8330822B2 (en) 2010-06-09 2012-12-11 Microsoft Corporation Thermally-tuned depth camera light source
US9384329B2 (en) 2010-06-11 2016-07-05 Microsoft Technology Licensing, Llc Caloric burn determination from body movement
US8675981B2 (en) 2010-06-11 2014-03-18 Microsoft Corporation Multi-modal gender recognition including depth data
US20110304774A1 (en) * 2010-06-11 2011-12-15 Microsoft Corporation Contextual tagging of recorded data
US8749557B2 (en) 2010-06-11 2014-06-10 Microsoft Corporation Interacting with user interface via avatar
US8982151B2 (en) 2010-06-14 2015-03-17 Microsoft Technology Licensing, Llc Independently processing planes of display data
US8558873B2 (en) 2010-06-16 2013-10-15 Microsoft Corporation Use of wavefront coding to create a depth image
US8670029B2 (en) 2010-06-16 2014-03-11 Microsoft Corporation Depth camera illuminator with superluminescent light-emitting diode
US8296151B2 (en) 2010-06-18 2012-10-23 Microsoft Corporation Compound gesture-speech commands
US8381108B2 (en) 2010-06-21 2013-02-19 Microsoft Corporation Natural user input for driving interactive stories
US8416187B2 (en) 2010-06-22 2013-04-09 Microsoft Corporation Item navigation using motion-capture data
US9075434B2 (en) 2010-08-20 2015-07-07 Microsoft Technology Licensing, Llc Translating user motion into multiple object responses
US8613666B2 (en) 2010-08-31 2013-12-24 Microsoft Corporation User selection and navigation based on looped motions
US20120058824A1 (en) 2010-09-07 2012-03-08 Microsoft Corporation Scalable real-time motion recognition
US8437506B2 (en) 2010-09-07 2013-05-07 Microsoft Corporation System for fast, probabilistic skeletal tracking
US8988508B2 (en) 2010-09-24 2015-03-24 Microsoft Technology Licensing, Llc. Wide angle field of view active illumination imaging system
US8681255B2 (en) 2010-09-28 2014-03-25 Microsoft Corporation Integrated low power depth camera and projection device
US8548270B2 (en) 2010-10-04 2013-10-01 Microsoft Corporation Time-of-flight depth imaging
US9484065B2 (en) 2010-10-15 2016-11-01 Microsoft Technology Licensing, Llc Intelligent determination of replays based on event identification
US8884984B2 (en) * 2010-10-15 2014-11-11 Microsoft Corporation Fusing virtual content into real content
US9122053B2 (en) 2010-10-15 2015-09-01 Microsoft Technology Licensing, Llc Realistic occlusion for a head mounted augmented reality display
US8592739B2 (en) 2010-11-02 2013-11-26 Microsoft Corporation Detection of configuration changes of an optical element in an illumination system
US8866889B2 (en) 2010-11-03 2014-10-21 Microsoft Corporation In-home depth camera calibration
KR20120046973A (en) * 2010-11-03 2012-05-11 삼성전자주식회사 Method and apparatus for generating motion information
US8667519B2 (en) 2010-11-12 2014-03-04 Microsoft Corporation Automatic passive and anonymous feedback system
US10726861B2 (en) 2010-11-15 2020-07-28 Microsoft Technology Licensing, Llc Semi-private communication in open environments
US9349040B2 (en) 2010-11-19 2016-05-24 Microsoft Technology Licensing, Llc Bi-modal depth-image analysis
EP2455841A3 (en) * 2010-11-22 2015-07-15 Samsung Electronics Co., Ltd. Apparatus and method for selecting item using movement of object
US10234545B2 (en) 2010-12-01 2019-03-19 Microsoft Technology Licensing, Llc Light source module
US20120139907A1 (en) * 2010-12-06 2012-06-07 Samsung Electronics Co., Ltd. 3 dimensional (3d) display system of responding to user motion and user interface for the 3d display system
US8553934B2 (en) 2010-12-08 2013-10-08 Microsoft Corporation Orienting the position of a sensor
US8618405B2 (en) 2010-12-09 2013-12-31 Microsoft Corp. Free-space gesture musical instrument digital interface (MIDI) controller
US8408706B2 (en) 2010-12-13 2013-04-02 Microsoft Corporation 3D gaze tracker
US9171264B2 (en) 2010-12-15 2015-10-27 Microsoft Technology Licensing, Llc Parallel processing machine learning decision tree training
US8884968B2 (en) 2010-12-15 2014-11-11 Microsoft Corporation Modeling an object from image data
US8920241B2 (en) 2010-12-15 2014-12-30 Microsoft Corporation Gesture controlled persistent handles for interface guides
US9213405B2 (en) 2010-12-16 2015-12-15 Microsoft Technology Licensing, Llc Comprehension and intent-based content for augmented reality displays
US8448056B2 (en) 2010-12-17 2013-05-21 Microsoft Corporation Validation analysis of human target
US8803952B2 (en) 2010-12-20 2014-08-12 Microsoft Corporation Plural detector time-of-flight depth mapping
US9848106B2 (en) 2010-12-21 2017-12-19 Microsoft Technology Licensing, Llc Intelligent gameplay photo capture
JP5050094B2 (en) * 2010-12-21 2012-10-17 株式会社東芝 Video processing apparatus and video processing method
US8994718B2 (en) 2010-12-21 2015-03-31 Microsoft Technology Licensing, Llc Skeletal control of three-dimensional virtual world
US9821224B2 (en) 2010-12-21 2017-11-21 Microsoft Technology Licensing, Llc Driving simulator control with virtual skeleton
US9823339B2 (en) 2010-12-21 2017-11-21 Microsoft Technology Licensing, Llc Plural anode time-of-flight sensor
US8385596B2 (en) 2010-12-21 2013-02-26 Microsoft Corporation First person shooter control with virtual skeleton
US9123316B2 (en) 2010-12-27 2015-09-01 Microsoft Technology Licensing, Llc Interactive content creation
US8488888B2 (en) 2010-12-28 2013-07-16 Microsoft Corporation Classification of posture states
US8570320B2 (en) * 2011-01-31 2013-10-29 Microsoft Corporation Using a three-dimensional environment model in gameplay
US8401225B2 (en) 2011-01-31 2013-03-19 Microsoft Corporation Moving object segmentation using depth images
US9247238B2 (en) 2011-01-31 2016-01-26 Microsoft Technology Licensing, Llc Reducing interference between multiple infra-red depth cameras
US8866898B2 (en) * 2011-01-31 2014-10-21 Microsoft Corporation Living room movie creation
US8401242B2 (en) 2011-01-31 2013-03-19 Microsoft Corporation Real-time camera tracking using depth maps
US8587583B2 (en) 2011-01-31 2013-11-19 Microsoft Corporation Three-dimensional environment reconstruction
US8724887B2 (en) * 2011-02-03 2014-05-13 Microsoft Corporation Environmental modifications to mitigate environmental factors
US8942917B2 (en) 2011-02-14 2015-01-27 Microsoft Corporation Change invariant scene recognition by an agent
US8497838B2 (en) * 2011-02-16 2013-07-30 Microsoft Corporation Push actuation of interface controls
US9551914B2 (en) 2011-03-07 2017-01-24 Microsoft Technology Licensing, Llc Illuminator with refractive optical element
US9067136B2 (en) * 2011-03-10 2015-06-30 Microsoft Technology Licensing, Llc Push personalization of interface controls
US8571263B2 (en) 2011-03-17 2013-10-29 Microsoft Corporation Predicting joint positions
US9470778B2 (en) 2011-03-29 2016-10-18 Microsoft Technology Licensing, Llc Learning from high quality depth measurements
US10642934B2 (en) 2011-03-31 2020-05-05 Microsoft Technology Licensing, Llc Augmented conversational understanding architecture
US9842168B2 (en) 2011-03-31 2017-12-12 Microsoft Technology Licensing, Llc Task driven user intents
US9298287B2 (en) 2011-03-31 2016-03-29 Microsoft Technology Licensing, Llc Combined activation for natural user interface systems
US9760566B2 (en) 2011-03-31 2017-09-12 Microsoft Technology Licensing, Llc Augmented conversational understanding agent to identify conversation context between two humans and taking an agent action thereof
US8503494B2 (en) 2011-04-05 2013-08-06 Microsoft Corporation Thermal management system
US8824749B2 (en) 2011-04-05 2014-09-02 Microsoft Corporation Biometric recognition
US8620113B2 (en) 2011-04-25 2013-12-31 Microsoft Corporation Laser diode modes
US9259643B2 (en) 2011-04-28 2016-02-16 Microsoft Technology Licensing, Llc Control of separate computer game elements
US8702507B2 (en) 2011-04-28 2014-04-22 Microsoft Corporation Manual and camera-based avatar control
US10671841B2 (en) 2011-05-02 2020-06-02 Microsoft Technology Licensing, Llc Attribute state classification
TWI443600B (en) * 2011-05-05 2014-07-01 Mstar Semiconductor Inc Method and associated apparatus of image processing
US8888331B2 (en) 2011-05-09 2014-11-18 Microsoft Corporation Low inductance light source module
US9137463B2 (en) 2011-05-12 2015-09-15 Microsoft Technology Licensing, Llc Adaptive high dynamic range camera
US9064006B2 (en) 2012-08-23 2015-06-23 Microsoft Technology Licensing, Llc Translating natural language utterances to keyword search queries
CN102780855B (en) * 2011-05-13 2016-03-16 晨星软件研发(深圳)有限公司 The method of image processing and relevant apparatus
US8788973B2 (en) 2011-05-23 2014-07-22 Microsoft Corporation Three-dimensional gesture controlled avatar configuration interface
JP5670255B2 (en) * 2011-05-27 2015-02-18 京セラ株式会社 Display device
US8845431B2 (en) * 2011-05-31 2014-09-30 Microsoft Corporation Shape trace gesturing
US8740702B2 (en) * 2011-05-31 2014-06-03 Microsoft Corporation Action trigger gesturing
US8657683B2 (en) * 2011-05-31 2014-02-25 Microsoft Corporation Action selection gesturing
US8760395B2 (en) 2011-05-31 2014-06-24 Microsoft Corporation Gesture recognition techniques
US9594430B2 (en) * 2011-06-01 2017-03-14 Microsoft Technology Licensing, Llc Three-dimensional foreground selection for vision system
US8526734B2 (en) 2011-06-01 2013-09-03 Microsoft Corporation Three-dimensional background removal for vision system
US9208571B2 (en) 2011-06-06 2015-12-08 Microsoft Technology Licensing, Llc Object digitization
US9098110B2 (en) 2011-06-06 2015-08-04 Microsoft Technology Licensing, Llc Head rotation tracking from depth-based center of mass
US8897491B2 (en) 2011-06-06 2014-11-25 Microsoft Corporation System for finger recognition and tracking
US9724600B2 (en) * 2011-06-06 2017-08-08 Microsoft Technology Licensing, Llc Controlling objects in a virtual environment
US9013489B2 (en) 2011-06-06 2015-04-21 Microsoft Technology Licensing, Llc Generation of avatar reflecting player appearance
US8597142B2 (en) 2011-06-06 2013-12-03 Microsoft Corporation Dynamic camera based practice mode
US10796494B2 (en) 2011-06-06 2020-10-06 Microsoft Technology Licensing, Llc Adding attributes to virtual representations of real-world objects
US8929612B2 (en) 2011-06-06 2015-01-06 Microsoft Corporation System for recognizing an open or closed hand
US9597587B2 (en) 2011-06-08 2017-03-21 Microsoft Technology Licensing, Llc Locational node device
JP5145444B2 (en) * 2011-06-27 2013-02-20 株式会社コナミデジタルエンタテインメント Image processing apparatus, image processing apparatus control method, and program
JP5864144B2 (en) 2011-06-28 2016-02-17 京セラ株式会社 Display device
KR101920473B1 (en) * 2011-07-27 2018-11-22 삼성전자주식회사 Method and apparatus for estimating 3D position and orientation by means of sensor fusion
US9153195B2 (en) 2011-08-17 2015-10-06 Microsoft Technology Licensing, Llc Providing contextual personal information by a mixed reality device
US8786730B2 (en) 2011-08-18 2014-07-22 Microsoft Corporation Image exposure using exclusion regions
WO2013028908A1 (en) 2011-08-24 2013-02-28 Microsoft Corporation Touch and social cues as inputs into a computer
US9323325B2 (en) 2011-08-30 2016-04-26 Microsoft Technology Licensing, Llc Enhancing an object of interest in a see-through, mixed reality display device
US9013553B2 (en) * 2011-08-31 2015-04-21 Rocks International Group Pte Ltd. Virtual advertising platform
US8990682B1 (en) 2011-10-05 2015-03-24 Google Inc. Methods and devices for rendering interactions between virtual and physical objects on a substantially transparent display
US9081177B2 (en) 2011-10-07 2015-07-14 Google Inc. Wearable computer with nearby object response
US9547406B1 (en) 2011-10-31 2017-01-17 Google Inc. Velocity-based triggering
US9557836B2 (en) 2011-11-01 2017-01-31 Microsoft Technology Licensing, Llc Depth image compression
US9117281B2 (en) 2011-11-02 2015-08-25 Microsoft Corporation Surface segmentation from RGB and depth images
US8854426B2 (en) 2011-11-07 2014-10-07 Microsoft Corporation Time-of-flight camera with guided light
US9576402B2 (en) * 2011-11-08 2017-02-21 Panasonic Intellectual Property Management Co., Ltd. Image processing device and image processing method
US9536251B2 (en) * 2011-11-15 2017-01-03 Excalibur Ip, Llc Providing advertisements in an augmented reality environment
US8724906B2 (en) 2011-11-18 2014-05-13 Microsoft Corporation Computing pose and/or shape of modifiable entities
US9557819B2 (en) 2011-11-23 2017-01-31 Intel Corporation Gesture input with multiple views, displays and physics
US8509545B2 (en) 2011-11-29 2013-08-13 Microsoft Corporation Foreground subject detection
US8803800B2 (en) 2011-12-02 2014-08-12 Microsoft Corporation User interface control based on head orientation
US8635637B2 (en) 2011-12-02 2014-01-21 Microsoft Corporation User interface presenting an animated avatar performing a media reaction
US9100685B2 (en) 2011-12-09 2015-08-04 Microsoft Technology Licensing, Llc Determining audience state or interest using passive sensor data
US8879831B2 (en) 2011-12-15 2014-11-04 Microsoft Corporation Using high-level attributes to guide image processing
US8971612B2 (en) 2011-12-15 2015-03-03 Microsoft Corporation Learning image processing tasks from scene reconstructions
US8630457B2 (en) 2011-12-15 2014-01-14 Microsoft Corporation Problem states for pose tracking pipeline
US8811938B2 (en) 2011-12-16 2014-08-19 Microsoft Corporation Providing a user interface experience based on inferred vehicle state
US9342139B2 (en) 2011-12-19 2016-05-17 Microsoft Technology Licensing, Llc Pairing a computing device to a user
US9501152B2 (en) 2013-01-15 2016-11-22 Leap Motion, Inc. Free-space user interface and control using virtual constructs
US10691219B2 (en) 2012-01-17 2020-06-23 Ultrahaptics IP Two Limited Systems and methods for machine control
US8638989B2 (en) 2012-01-17 2014-01-28 Leap Motion, Inc. Systems and methods for capturing motion in three-dimensional space
US9679215B2 (en) 2012-01-17 2017-06-13 Leap Motion, Inc. Systems and methods for machine control
US9070019B2 (en) 2012-01-17 2015-06-30 Leap Motion, Inc. Systems and methods for capturing motion in three-dimensional space
US11493998B2 (en) 2012-01-17 2022-11-08 Ultrahaptics IP Two Limited Systems and methods for machine control
US8693731B2 (en) 2012-01-17 2014-04-08 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging
US9720089B2 (en) 2012-01-23 2017-08-01 Microsoft Technology Licensing, Llc 3D zoom imager
US8898687B2 (en) 2012-04-04 2014-11-25 Microsoft Corporation Controlling a media program based on a media reaction
US9210401B2 (en) 2012-05-03 2015-12-08 Microsoft Technology Licensing, Llc Projected visual cues for guiding physical movement
CA2775700C (en) 2012-05-04 2013-07-23 Microsoft Corporation Determining a future portion of a currently presented media program
CA3088289A1 (en) 2012-05-18 2013-11-21 Rebellion Photonics, Inc. Divided-aperture infra-red spectral imaging system for chemical detection
US9599508B2 (en) 2012-05-18 2017-03-21 Rebellion Photonics, Inc. Divided-aperture infra-red spectral imaging system
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
CN104395929B (en) 2012-06-21 2017-10-03 微软技术许可有限责任公司 Constructed using the incarnation of depth camera
US9836590B2 (en) 2012-06-22 2017-12-05 Microsoft Technology Licensing, Llc Enhanced accuracy of user presence status determination
JP6069923B2 (en) * 2012-07-20 2017-02-01 セイコーエプソン株式会社 Robot system, robot, robot controller
WO2014016987A1 (en) 2012-07-27 2014-01-30 Necソフト株式会社 Three-dimensional user-interface device, and three-dimensional operation method
CN104520905A (en) * 2012-07-27 2015-04-15 日本电气方案创新株式会社 Three-dimensional environment sharing system, and three-dimensional environment sharing method
US9541997B2 (en) 2012-07-27 2017-01-10 Nec Solution Innovators, Ltd. Three-dimensional user interface apparatus and three-dimensional operation method
US9696427B2 (en) 2012-08-14 2017-07-04 Microsoft Technology Licensing, Llc Wide angle depth detection
US9429912B2 (en) * 2012-08-17 2016-08-30 Microsoft Technology Licensing, Llc Mixed reality holographic object development
US20150092980A1 (en) * 2012-08-23 2015-04-02 Eelke Folmer Tracking program and method
US9285893B2 (en) 2012-11-08 2016-03-15 Leap Motion, Inc. Object detection and tracking with variable-field illumination devices
US8882310B2 (en) 2012-12-10 2014-11-11 Microsoft Corporation Laser die light source module with low inductance
US8929600B2 (en) * 2012-12-19 2015-01-06 Microsoft Corporation Action recognition based on depth maps
US9857470B2 (en) 2012-12-28 2018-01-02 Microsoft Technology Licensing, Llc Using photometric stereo for 3D environment modeling
US10609285B2 (en) 2013-01-07 2020-03-31 Ultrahaptics IP Two Limited Power consumption in motion-capture systems
US9465461B2 (en) 2013-01-08 2016-10-11 Leap Motion, Inc. Object detection and tracking with audio and optical signals
US9588730B2 (en) * 2013-01-11 2017-03-07 Disney Enterprises, Inc. Mobile tele-immersive gameplay
US9459697B2 (en) 2013-01-15 2016-10-04 Leap Motion, Inc. Dynamic, free-space user interactions for machine control
US9632658B2 (en) 2013-01-15 2017-04-25 Leap Motion, Inc. Dynamic user interactions for display control and scaling responsiveness of display objects
US9251590B2 (en) * 2013-01-24 2016-02-02 Microsoft Technology Licensing, Llc Camera pose estimation for 3D reconstruction
US9052746B2 (en) 2013-02-15 2015-06-09 Microsoft Technology Licensing, Llc User center-of-mass and mass distribution extraction using depth images
US9940553B2 (en) 2013-02-22 2018-04-10 Microsoft Technology Licensing, Llc Camera/object pose from predicted coordinates
DE13875411T1 (en) * 2013-02-22 2016-08-25 Finnacgoal Ltd. Interactive entertainment device and interactive entertainment system and method for interacting with water to provide sound, visual, odor, taste or tactile effects
US9142019B2 (en) 2013-02-28 2015-09-22 Google Technology Holdings LLC System for 2D/3D spatial feature processing
US9135516B2 (en) 2013-03-08 2015-09-15 Microsoft Technology Licensing, Llc User body angle, curvature and average extremity positions extraction using depth images
US9092657B2 (en) 2013-03-13 2015-07-28 Microsoft Technology Licensing, Llc Depth image processing
US9274606B2 (en) 2013-03-14 2016-03-01 Microsoft Technology Licensing, Llc NUI video conference controls
US9702977B2 (en) 2013-03-15 2017-07-11 Leap Motion, Inc. Determining positional information of an object in space
US9846965B2 (en) * 2013-03-15 2017-12-19 Disney Enterprises, Inc. Augmented reality device with predefined object data
US9953213B2 (en) 2013-03-27 2018-04-24 Microsoft Technology Licensing, Llc Self discovery of autonomous NUI devices
JP2014191718A (en) 2013-03-28 2014-10-06 Sony Corp Display control device, display control method, and recording medium
US10620709B2 (en) 2013-04-05 2020-04-14 Ultrahaptics IP Two Limited Customized gesture interpretation
JP6108926B2 (en) * 2013-04-15 2017-04-05 オリンパス株式会社 Wearable device, program, and display control method for wearable device
CN104112028A (en) * 2013-04-17 2014-10-22 建德市供电局 Method and device for displaying cable underground pipe network
US9916009B2 (en) 2013-04-26 2018-03-13 Leap Motion, Inc. Non-tactile interface systems and methods
US9442186B2 (en) 2013-05-13 2016-09-13 Microsoft Technology Licensing, Llc Interference reduction for TOF systems
US9747696B2 (en) 2013-05-17 2017-08-29 Leap Motion, Inc. Systems and methods for providing normalized parameters of motions of objects in three-dimensional space
US10228242B2 (en) 2013-07-12 2019-03-12 Magic Leap, Inc. Method and system for determining user input based on gesture
WO2015006784A2 (en) 2013-07-12 2015-01-15 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
US10281987B1 (en) 2013-08-09 2019-05-07 Leap Motion, Inc. Systems and methods of free-space gestural interaction
US9721383B1 (en) 2013-08-29 2017-08-01 Leap Motion, Inc. Predictive information for free space gesture control and communication
US9646384B2 (en) 2013-09-11 2017-05-09 Google Technology Holdings LLC 3D feature descriptors with camera pose information
US9462253B2 (en) 2013-09-23 2016-10-04 Microsoft Technology Licensing, Llc Optical modules that reduce speckle contrast and diffraction artifacts
US9632572B2 (en) 2013-10-03 2017-04-25 Leap Motion, Inc. Enhanced field of view to augment three-dimensional (3D) sensory space for free-space gesture interpretation
US9443310B2 (en) 2013-10-09 2016-09-13 Microsoft Technology Licensing, Llc Illumination modules that emit structured light
US9996638B1 (en) 2013-10-31 2018-06-12 Leap Motion, Inc. Predictive information for free space gesture control and communication
US9674563B2 (en) 2013-11-04 2017-06-06 Rovi Guides, Inc. Systems and methods for recommending content
US9769459B2 (en) 2013-11-12 2017-09-19 Microsoft Technology Licensing, Llc Power efficient laser diode driver circuit and method
US9626737B2 (en) 2013-11-15 2017-04-18 Canon Information And Imaging Solutions, Inc. Devices, systems, and methods for examining the interactions of objects in an enhanced scene
US9508385B2 (en) 2013-11-21 2016-11-29 Microsoft Technology Licensing, Llc Audio-visual project generator
US9971491B2 (en) 2014-01-09 2018-05-15 Microsoft Technology Licensing, Llc Gesture library for natural user input
US9613262B2 (en) 2014-01-15 2017-04-04 Leap Motion, Inc. Object detection and tracking for providing a virtual device experience
US9799159B2 (en) * 2014-02-14 2017-10-24 Igt Canada Solutions Ulc Object detection and interaction for gaming systems
DE102014203323A1 (en) * 2014-02-25 2015-08-27 Bayerische Motoren Werke Aktiengesellschaft Method and apparatus for image synthesis
DE102014006732B4 (en) * 2014-05-08 2016-12-15 Audi Ag Image overlay of virtual objects in a camera image
US10579207B2 (en) * 2014-05-14 2020-03-03 Purdue Research Foundation Manipulating virtual environment using non-instrumented physical object
CN204480228U (en) 2014-08-08 2015-07-15 厉动公司 motion sensing and imaging device
US9350924B2 (en) 2014-08-25 2016-05-24 John G. Posa Portable electronic devices with integrated image/video compositing
US9412034B1 (en) * 2015-01-29 2016-08-09 Qualcomm Incorporated Occlusion handling for computer vision
US10168785B2 (en) 2015-03-03 2019-01-01 Nvidia Corporation Multi-sensor based user interface
US20160266648A1 (en) * 2015-03-09 2016-09-15 Fuji Xerox Co., Ltd. Systems and methods for interacting with large displays using shadows
TWI567476B (en) * 2015-03-13 2017-01-21 鈺立微電子股份有限公司 Image process apparatus and image process method
US9933264B2 (en) * 2015-04-06 2018-04-03 Hrl Laboratories, Llc System and method for achieving fast and reliable time-to-contact estimation using vision and range sensor data for autonomous navigation
CN107209556B (en) * 2015-04-29 2020-10-16 惠普发展公司有限责任合伙企业 System and method for processing depth images capturing interaction of an object relative to an interaction plane
CN105227837A (en) * 2015-09-24 2016-01-06 努比亚技术有限公司 A kind of image combining method and device
US10089681B2 (en) 2015-12-04 2018-10-02 Nimbus Visulization, Inc. Augmented reality commercial platform and method
US9710934B1 (en) * 2015-12-29 2017-07-18 Sony Corporation Apparatus and method for shadow generation of embedded objects
US10412280B2 (en) 2016-02-10 2019-09-10 Microsoft Technology Licensing, Llc Camera with light valve over sensor array
WO2017139516A1 (en) * 2016-02-10 2017-08-17 Hrl Laboratories, Llc System and method for achieving fast and reliable time-to-contact estimation using vision and range sensor data for autonomous navigation
US10257932B2 (en) 2016-02-16 2019-04-09 Microsoft Technology Licensing, Llc. Laser diode chip on printed circuit board
US10462452B2 (en) 2016-03-16 2019-10-29 Microsoft Technology Licensing, Llc Synchronizing active illumination cameras
US10373381B2 (en) 2016-03-30 2019-08-06 Microsoft Technology Licensing, Llc Virtual object manipulation within physical environment
US10235809B2 (en) * 2016-06-30 2019-03-19 Microsoft Technology Licensing, Llc Reality to virtual reality portal for dual presence of devices
KR20180041890A (en) * 2016-10-17 2018-04-25 삼성전자주식회사 Method and apparatus for displaying virtual objects
CN106897688B (en) * 2017-02-21 2020-12-08 杭州易现先进科技有限公司 Interactive projection apparatus, method of controlling interactive projection, and readable storage medium
US11054894B2 (en) 2017-05-05 2021-07-06 Microsoft Technology Licensing, Llc Integrated mixed-input system
WO2018213224A1 (en) * 2017-05-16 2018-11-22 Monsarrat, Inc. Location-based messaging system
US10417810B2 (en) 2017-05-31 2019-09-17 Verizon Patent And Licensing Inc. Methods and systems for rendering virtual reality content based on two-dimensional (“2D”) captured imagery of a three-dimensional (“3D”) scene
CN107610212B (en) * 2017-07-25 2020-05-12 深圳大学 Scene reconstruction method and device, computer equipment and computer storage medium
WO2019031259A1 (en) * 2017-08-08 2019-02-14 ソニー株式会社 Image processing device and method
CN107527381B (en) * 2017-09-11 2023-05-12 Oppo广东移动通信有限公司 Image processing method and device, electronic device and computer readable storage medium
JP6857795B2 (en) * 2017-12-28 2021-04-14 株式会社コナミデジタルエンタテインメント Information processing device, information processing device program, information processing system, and display method
JP6590324B2 (en) 2017-12-28 2019-10-16 株式会社コナミデジタルエンタテインメント Information processing apparatus, information processing apparatus program, information processing system, and display method
CN108257203B (en) * 2017-12-28 2021-07-16 土巴兔集团股份有限公司 Home decoration effect graph construction rendering method and platform
US10937240B2 (en) 2018-01-04 2021-03-02 Intel Corporation Augmented reality bindings of physical objects and virtual objects
US11618438B2 (en) * 2018-03-26 2023-04-04 International Business Machines Corporation Three-dimensional object localization for obstacle avoidance using one-shot convolutional neural network
US10380803B1 (en) * 2018-03-26 2019-08-13 Verizon Patent And Licensing Inc. Methods and systems for virtualizing a target object within a mixed reality presentation
US11327504B2 (en) * 2018-04-05 2022-05-10 Symbol Technologies, Llc Method, system and apparatus for mobile automation apparatus localization
US11875012B2 (en) 2018-05-25 2024-01-16 Ultrahaptics IP Two Limited Throwable interface for augmented reality and virtual reality environments
CN109568961B (en) * 2018-12-04 2022-06-21 网易(杭州)网络有限公司 Occlusion rate calculation method and device, storage medium and electronic device
DE102018222861A1 (en) * 2018-12-21 2020-06-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device with a multi-aperture imaging device for accumulating image information
WO2020251385A1 (en) * 2019-06-14 2020-12-17 Ringcentral, Inc., (A Delaware Corporation) System and method for capturing presentation gestures
US11948380B1 (en) * 2020-02-27 2024-04-02 Apple Inc. Camera parameter estimation using semantic labels
CN112734923A (en) * 2021-01-18 2021-04-30 国汽智控(北京)科技有限公司 Method, device and equipment for constructing automatic driving three-dimensional virtual scene and storage medium
US20220245291A1 (en) * 2021-02-02 2022-08-04 Baya Inc. Apparatus, system and method for three-dimensional (3d) modeling with a plurality of linked metadata feeds
CN113658325B (en) * 2021-08-05 2022-11-11 郑州轻工业大学 Intelligent identification and early warning method for uncertain objects of production line in digital twin environment
CN113941147A (en) * 2021-10-25 2022-01-18 腾讯科技(深圳)有限公司 Picture generation method, device, equipment and medium
WO2023141340A1 (en) * 2022-01-23 2023-07-27 Malay Kundu A user controlled three-dimensional scene

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026198A2 (en) * 1997-11-14 1999-05-27 National University Of Singapore System and method for merging objects into an image sequence without prior knowledge of the scene in the image sequence
US6392644B1 (en) * 1998-05-25 2002-05-21 Fujitsu Limited Three-dimensional graphics display system
US20020110273A1 (en) * 1997-07-29 2002-08-15 U.S. Philips Corporation Method of reconstruction of tridimensional scenes and corresponding reconstruction device and decoding system
GB2376397A (en) * 2001-06-04 2002-12-11 Hewlett Packard Co Virtual or augmented reality
US20030032484A1 (en) * 1999-06-11 2003-02-13 Toshikazu Ohshima Game apparatus for mixed reality space, image processing method thereof, and program storage medium

Family Cites Families (368)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943277A (en) 1969-02-20 1976-03-09 The United States Of America As Represented By The Secretary Of The Navy Digital memory area correlation tracker
US4313227A (en) 1979-01-29 1982-01-26 Texas Instruments Incorporated Light energy information transmission system
US4263504A (en) * 1979-08-01 1981-04-21 Ncr Corporation High density matrix code
JPS58102382A (en) 1981-12-14 1983-06-17 Nippon Telegr & Teleph Corp <Ntt> Reference bit control system
US6772057B2 (en) 1995-06-07 2004-08-03 Automotive Technologies International, Inc. Vehicular monitoring systems using image processing
US4565999A (en) 1983-04-01 1986-01-21 Prime Computer, Inc. Light pencil
US4558864A (en) 1984-06-13 1985-12-17 Medwedeff Marion C Handgrip exercising, computer game controller
US5195179A (en) * 1986-01-29 1993-03-16 Hitachi, Ltd. Coordinate input apparatus
US4843568A (en) * 1986-04-11 1989-06-27 Krueger Myron W Real time perception of and response to the actions of an unencumbered participant/user
US4787051A (en) 1986-05-16 1988-11-22 Tektronix, Inc. Inertial mouse system
JPS6347616A (en) * 1986-08-15 1988-02-29 Ricoh Co Ltd Measurement of moving quantity
EP0348430A4 (en) 1987-02-04 1992-08-19 Mayo Foundation For Medical Education And Research Joystick apparatus having six degrees freedom of motion
US4802227A (en) 1987-04-03 1989-01-31 American Telephone And Telegraph Company Noise reduction processing arrangement for microphone arrays
GB2206716A (en) 1987-07-06 1989-01-11 Gen Electric Plc Apparatus for monitoring the presence or movement of an object
US4963858A (en) 1987-09-08 1990-10-16 Chien Fong K Changeable input ratio mouse
IT1219405B (en) 1988-06-27 1990-05-11 Fiat Ricerche PROCEDURE AND DEVICE FOR INSTRUMENTAL VISION IN POOR CONDITIONS VISIBILITY IN PARTICULAR FOR DRIVING IN THE MIST
US5260556A (en) 1988-12-20 1993-11-09 Australian Meat & Live-Stock Research & Development Corp. Optically readable coded target
US5034986A (en) 1989-03-01 1991-07-23 Siemens Aktiengesellschaft Method for detecting and tracking moving objects in a digital image sequence having a stationary background
US5055840A (en) 1990-01-16 1991-10-08 Carroll Touch Incorporated Infrared touch input device and light emitted activation circuit
US5128671A (en) * 1990-04-12 1992-07-07 Ltv Aerospace And Defense Company Control device having multiple degrees of freedom
CA2081910C (en) 1990-05-01 2000-04-25 Donald E. Drumm Hands-free hardware keyboard
US5111401A (en) 1990-05-19 1992-05-05 The United States Of America As Represented By The Secretary Of The Navy Navigational control system for an autonomous vehicle
US5662111A (en) 1991-01-28 1997-09-02 Cosman; Eric R. Process of stereotactic optical navigation
US5485273A (en) * 1991-04-22 1996-01-16 Litton Systems, Inc. Ring laser gyroscope enhanced resolution system
US5534917A (en) 1991-05-09 1996-07-09 Very Vivid, Inc. Video image based control system
US5144594A (en) 1991-05-29 1992-09-01 Cyber Scientific Acoustic mouse system
US5455685A (en) 1991-09-04 1995-10-03 Fuji Photo Film Co., Ltd. Video camera exposure control apparatus for controlling iris diaphragm and automatic gain control operating speed
US5889670A (en) 1991-10-24 1999-03-30 Immersion Corporation Method and apparatus for tactilely responsive user interface
US5444462A (en) 1991-12-16 1995-08-22 Wambach; Mark L. Computer mouse glove with remote communication
US5453758A (en) 1992-07-31 1995-09-26 Sony Corporation Input apparatus
US5790834A (en) 1992-08-31 1998-08-04 Intel Corporation Apparatus and method using an ID instruction to identify a computer microprocessor
JP3244798B2 (en) 1992-09-08 2002-01-07 株式会社東芝 Moving image processing device
US7098891B1 (en) 1992-09-18 2006-08-29 Pryor Timothy R Method for providing human input to a computer
WO1994014279A1 (en) 1992-12-09 1994-06-23 Discovery Communications, Inc. Digital cable headend for cable television delivery system
US5394168A (en) * 1993-01-06 1995-02-28 Smith Engineering Dual-mode hand-held game controller
US5335011A (en) 1993-01-12 1994-08-02 Bell Communications Research, Inc. Sound localization system for teleconferencing using self-steering microphone arrays
EP0613294B1 (en) 1993-02-24 1998-10-28 Matsushita Electric Industrial Co., Ltd. Gradation correction device and image sensing device therewith
US5435554A (en) * 1993-03-08 1995-07-25 Atari Games Corporation Baseball simulation system
US5815411A (en) * 1993-09-10 1998-09-29 Criticom Corporation Electro-optic vision system which exploits position and attitude
JP3679426B2 (en) 1993-03-15 2005-08-03 マサチューセッツ・インスティチュート・オブ・テクノロジー A system that encodes image data into multiple layers, each representing a coherent region of motion, and motion parameters associated with the layers.
US5677710A (en) 1993-05-10 1997-10-14 Apple Computer, Inc. Recognition keypad
US5297061A (en) 1993-05-19 1994-03-22 University Of Maryland Three dimensional pointing device monitored by computer vision
US5959596A (en) 1993-06-24 1999-09-28 Nintendo Co., Ltd. Airline-based video game and communications system
US5581270A (en) * 1993-06-24 1996-12-03 Nintendo Of America, Inc. Hotel-based video game and communication system
US5473701A (en) 1993-11-05 1995-12-05 At&T Corp. Adaptive microphone array
JP2552427B2 (en) 1993-12-28 1996-11-13 コナミ株式会社 Tv play system
FR2714502A1 (en) 1993-12-29 1995-06-30 Philips Laboratoire Electroniq An image processing method and apparatus for constructing from a source image a target image with perspective change.
US5611000A (en) 1994-02-22 1997-03-11 Digital Equipment Corporation Spline-based image registration
JPH086708A (en) 1994-04-22 1996-01-12 Canon Inc Display device
US5543818A (en) 1994-05-13 1996-08-06 Sony Corporation Method and apparatus for entering text using an input device having a small number of keys
US5846086A (en) 1994-07-01 1998-12-08 Massachusetts Institute Of Technology System for human trajectory learning in virtual environments
US5528265A (en) * 1994-07-18 1996-06-18 Harrison; Simon J. Orientation-operated cursor control device
US5563988A (en) * 1994-08-01 1996-10-08 Massachusetts Institute Of Technology Method and system for facilitating wireless, full-body, real-time user interaction with a digitally represented visual environment
US5641319A (en) 1994-08-10 1997-06-24 Lodgenet Entertainment Corporation Entertainment system for providing interactive video game responses to the game interrogations to the video game engines without being processed by the host computer
SE504846C2 (en) 1994-09-28 1997-05-12 Jan G Faeger Control equipment with a movable control means
GB9424021D0 (en) 1994-11-29 1995-01-18 Lucas Ind Plc Fuel pumping apparatus
GB2301514B (en) 1994-12-01 1999-06-09 Namco Ltd Apparatus and method for image synthesization
JP3270643B2 (en) 1994-12-22 2002-04-02 キヤノン株式会社 Pointed position detection method and device
US5929444A (en) 1995-01-31 1999-07-27 Hewlett-Packard Company Aiming device using radiated energy
US5568928A (en) 1995-02-01 1996-10-29 Exertron, Inc. Video game controller for use with an exercise apparatus
US5638228A (en) * 1995-02-14 1997-06-10 Iomega Corporation Retroreflective marker for data storage cartridge
US5930741A (en) * 1995-02-28 1999-07-27 Virtual Technologies, Inc. Accurate, rapid, reliable position sensing using multiple sensing technologies
US5583478A (en) 1995-03-01 1996-12-10 Renzi; Ronald Virtual environment tactile system
US5900863A (en) * 1995-03-16 1999-05-04 Kabushiki Kaisha Toshiba Method and apparatus for controlling computer without touching input device
WO1996034332A1 (en) 1995-04-28 1996-10-31 Matsushita Electric Industrial Co., Ltd. Interface device
JP3777650B2 (en) 1995-04-28 2006-05-24 松下電器産業株式会社 Interface equipment
US5706364A (en) 1995-04-28 1998-01-06 Xerox Corporation Method of producing character templates using unsegmented samples
US5913727A (en) * 1995-06-02 1999-06-22 Ahdoot; Ned Interactive movement and contact simulation game
US5649021A (en) 1995-06-07 1997-07-15 David Sarnoff Research Center, Inc. Method and system for object detection for instrument control
CN100524015C (en) 1995-06-22 2009-08-05 3Dv系统有限公司 Method and apparatus for generating range subject distance image
IL114278A (en) 1995-06-22 2010-06-16 Microsoft Internat Holdings B Camera and method
EP0842463B1 (en) 1995-07-26 2000-03-29 Tegic Communications, Inc. Reduced keyboard disambiguating system
US6311214B1 (en) * 1995-07-27 2001-10-30 Digimarc Corporation Linking of computers based on optical sensing of digital data
US5611731A (en) * 1995-09-08 1997-03-18 Thrustmaster, Inc. Video pinball machine controller having an optical accelerometer for detecting slide and tilt
US5768415A (en) 1995-09-08 1998-06-16 Lucent Technologies Inc. Apparatus and methods for performing electronic scene analysis and enhancement
US5850222A (en) * 1995-09-13 1998-12-15 Pixel Dust, Inc. Method and system for displaying a graphic image of a person modeling a garment
JP3878690B2 (en) 1995-09-29 2007-02-07 森永乳業株式会社 Lactose-containing food composition for infants
US5818424A (en) 1995-10-19 1998-10-06 International Business Machines Corporation Rod shaped device and data acquisition apparatus for determining the position and orientation of an object in space
US5963250A (en) 1995-10-20 1999-10-05 Parkervision, Inc. System and method for controlling the field of view of a camera
US6281930B1 (en) 1995-10-20 2001-08-28 Parkervision, Inc. System and method for controlling the field of view of a camera
US5719561A (en) 1995-10-25 1998-02-17 Gilbert R. Gonzales Tactile communication device and method
JPH09128141A (en) 1995-11-07 1997-05-16 Sony Corp Controller and control method
US6282362B1 (en) 1995-11-07 2001-08-28 Trimble Navigation Limited Geographical position/image digital recording and display system
US5870100A (en) 1995-11-22 1999-02-09 Compaq Computer Corporation Filling of graphical regions
AU1328597A (en) 1995-11-30 1997-06-19 Virtual Technologies, Inc. Tactile feedback man-machine interface device
JP4079463B2 (en) 1996-01-26 2008-04-23 ソニー株式会社 Subject detection apparatus and subject detection method
US6049619A (en) 1996-02-12 2000-04-11 Sarnoff Corporation Method and apparatus for detecting moving objects in two- and three-dimensional scenes
JP2891159B2 (en) 1996-02-14 1999-05-17 日本電気株式会社 Object detection method from multi-view images
RU2069885C1 (en) 1996-03-01 1996-11-27 Йелстаун Корпорейшн Н.В. Method and device for observing objects at low illumination intensity
JPH09244793A (en) 1996-03-04 1997-09-19 Alps Electric Co Ltd Input device
CN1177634C (en) 1996-03-05 2004-12-01 世嘉企业股份有限公司 Controller and extension unit for controller
DE69631342T2 (en) * 1996-04-02 2004-11-11 Cognex Corp., Natick PICTURING DEVICE FOR VISUALIZING CHARACTERS ON A SUBSTANTIVE SUBSTRATE
US5818425A (en) 1996-04-03 1998-10-06 Xerox Corporation Mapping drawings generated on small mobile pen based electronic devices onto large displays
US5937081A (en) * 1996-04-10 1999-08-10 O'brill; Michael R. Image composition system and method of using same
US5923318A (en) 1996-04-12 1999-07-13 Zhai; Shumin Finger manipulatable 6 degree-of-freedom input device
US5917493A (en) 1996-04-17 1999-06-29 Hewlett-Packard Company Method and apparatus for randomly generating information for subsequent correlating
US6516466B1 (en) * 1996-05-02 2003-02-04 Vincent C. Jackson Method and apparatus for portable digital entertainment system
US6151009A (en) * 1996-08-21 2000-11-21 Carnegie Mellon University Method and apparatus for merging real and synthetic images
US6400374B2 (en) 1996-09-18 2002-06-04 Eyematic Interfaces, Inc. Video superposition system and method
US5930383A (en) * 1996-09-24 1999-07-27 Netzer; Yishay Depth sensing camera systems and methods
US5978772A (en) 1996-10-11 1999-11-02 Mold; Jeffrey W. Merchandise checkout system
US5832931A (en) 1996-10-30 1998-11-10 Photogen, Inc. Method for improved selectivity in photo-activation and detection of molecular diagnostic agents
NL1004648C2 (en) 1996-11-11 1998-05-14 Johan Michiel Schaaij Computer game system.
US5914723A (en) 1996-12-30 1999-06-22 Sun Microsystems, Inc. Method and system for converting images in computer systems
US6243491B1 (en) 1996-12-31 2001-06-05 Lucent Technologies Inc. Methods and apparatus for controlling a video system with visually recognized props
US5850473A (en) 1997-01-07 1998-12-15 Lucent Technologies Inc. Method and apparatus for compensating for color variation in a video system
US6021219A (en) 1997-01-07 2000-02-01 Lucent Technologies Inc. Methods and apparatus for distinguishing among several visual patterns
US5796354A (en) 1997-02-07 1998-08-18 Reality Quest Corp. Hand-attachable controller with direction sensing
US5993314A (en) 1997-02-10 1999-11-30 Stadium Games, Ltd. Method and apparatus for interactive audience participation by audio command
US6009210A (en) * 1997-03-05 1999-12-28 Digital Equipment Corporation Hands-free interface to a virtual reality environment using head tracking
WO1998039790A1 (en) 1997-03-07 1998-09-11 3Dv Systems Ltd. Optical shutter
US6061055A (en) 1997-03-21 2000-05-09 Autodesk, Inc. Method of tracking objects with an imaging device
US6144367A (en) 1997-03-26 2000-11-07 International Business Machines Corporation Method and system for simultaneous operation of multiple handheld control devices in a data processing system
US6587573B1 (en) 2000-03-20 2003-07-01 Gentex Corporation System for controlling exterior vehicle lights
US8120652B2 (en) * 1997-04-02 2012-02-21 Gentex Corporation System for controlling vehicle equipment
JP3009633B2 (en) 1997-04-03 2000-02-14 コナミ株式会社 Image apparatus, image display method, and recording medium
US6215898B1 (en) * 1997-04-15 2001-04-10 Interval Research Corporation Data processing system and method
WO1998048571A1 (en) 1997-04-23 1998-10-29 Thomson Consumer Electronics, Inc. Control of video level by region and content of information displayed
US6809776B1 (en) 1997-04-23 2004-10-26 Thomson Licensing S.A. Control of video level by region and content of information displayed
US6428411B1 (en) 1997-05-02 2002-08-06 Konami Co., Ltd. Volleyball video game system
NO304715B1 (en) * 1997-05-06 1999-02-01 Dimensions As Imaging Procedure
JP3183632B2 (en) 1997-06-13 2001-07-09 株式会社ナムコ Information storage medium and image generation device
US6075895A (en) 1997-06-20 2000-06-13 Holoplex Methods and apparatus for gesture recognition based on templates
US6094625A (en) * 1997-07-03 2000-07-25 Trimble Navigation Limited Augmented vision for survey work and machine control
JP3997566B2 (en) 1997-07-15 2007-10-24 ソニー株式会社 Drawing apparatus and drawing method
US6044181A (en) 1997-08-01 2000-03-28 Microsoft Corporation Focal length estimation method and apparatus for construction of panoramic mosaic images
US20020036617A1 (en) 1998-08-21 2002-03-28 Timothy R. Pryor Novel man machine interfaces and applications
US6720949B1 (en) 1997-08-22 2004-04-13 Timothy R. Pryor Man machine interfaces and applications
US6243074B1 (en) 1997-08-29 2001-06-05 Xerox Corporation Handedness detection for a physical manipulatory grammar
US6297838B1 (en) 1997-08-29 2001-10-02 Xerox Corporation Spinning as a morpheme for a physical manipulatory grammar
US6072494A (en) * 1997-10-15 2000-06-06 Electric Planet, Inc. Method and apparatus for real-time gesture recognition
US6101289A (en) 1997-10-15 2000-08-08 Electric Planet, Inc. Method and apparatus for unencumbered capture of an object
AU1099899A (en) 1997-10-15 1999-05-03 Electric Planet, Inc. Method and apparatus for performing a clean background subtraction
US6031934A (en) 1997-10-15 2000-02-29 Electric Planet, Inc. Computer vision system for subject characterization
JPH11154240A (en) 1997-11-20 1999-06-08 Nintendo Co Ltd Image producing device to produce image by using fetched image
US6166744A (en) 1997-11-26 2000-12-26 Pathfinder Systems, Inc. System for combining virtual images with real-world scenes
US6762794B1 (en) 1997-12-03 2004-07-13 Canon Kabushiki Kaisha Image pick-up apparatus for stereoscope
US6677987B1 (en) 1997-12-03 2004-01-13 8×8, Inc. Wireless user-interface arrangement and method
US6195104B1 (en) 1997-12-23 2001-02-27 Philips Electronics North America Corp. System and method for permitting three-dimensional navigation through a virtual reality environment using camera-based gesture inputs
WO1999035633A2 (en) 1998-01-06 1999-07-15 The Video Mouse Group Human motion following computer mouse and game controller
US6160540A (en) 1998-01-12 2000-12-12 Xerox Company Zoomorphic computer user interface
US6134346A (en) 1998-01-16 2000-10-17 Ultimatte Corp Method for removing from an image the background surrounding a selected object
US6331911B1 (en) 1998-02-08 2001-12-18 3Dv Systems Ltd. Large aperture optical image shutter
US6115052A (en) 1998-02-12 2000-09-05 Mitsubishi Electric Information Technology Center America, Inc. (Ita) System for reconstructing the 3-dimensional motions of a human figure from a monocularly-viewed image sequence
US6175343B1 (en) * 1998-02-24 2001-01-16 Anivision, Inc. Method and apparatus for operating the overlay of computer-generated effects onto a live image
US6037942A (en) 1998-03-10 2000-03-14 Magellan Dis, Inc. Navigation system character input device
JPH11265249A (en) * 1998-03-17 1999-09-28 Toshiba Corp Information input device, information input method and storage medium
US6411392B1 (en) 1998-04-15 2002-06-25 Massachusetts Institute Of Technology Method and apparatus for data hiding in printed images
US6393142B1 (en) 1998-04-22 2002-05-21 At&T Corp. Method and apparatus for adaptive stripe based patch matching for depth estimation
US6173059B1 (en) 1998-04-24 2001-01-09 Gentner Communications Corporation Teleconferencing system with visual feedback
US6593956B1 (en) 1998-05-15 2003-07-15 Polycom, Inc. Locating an audio source
US6473516B1 (en) 1998-05-22 2002-10-29 Asa Systems, Inc. Large capacity steganography
JP3841132B2 (en) 1998-06-01 2006-11-01 株式会社ソニー・コンピュータエンタテインメント Input position detection device and entertainment system
US6513160B2 (en) 1998-06-17 2003-01-28 Opentv, Inc. System and method for promoting viewer interaction in a television system
FR2780176B1 (en) 1998-06-17 2001-01-26 Gabriel Guary SHOOTING GUN FOR VIDEO GAME
US6504535B1 (en) * 1998-06-30 2003-01-07 Lucent Technologies Inc. Display techniques for three-dimensional virtual reality
JP2000020163A (en) 1998-06-30 2000-01-21 Sony Corp Information processor
IL125221A0 (en) 1998-07-06 1999-03-12 Toy Control Ltd Motion activation using passive sound source
US7121946B2 (en) 1998-08-10 2006-10-17 Cybernet Systems Corporation Real-time head tracking system for computer games and other applications
US6256398B1 (en) 1998-08-22 2001-07-03 Kenneth H. P. Chang Encoding and decoding a message within an image
US6970183B1 (en) 2000-06-14 2005-11-29 E-Watch, Inc. Multimedia surveillance and monitoring system including network configuration
US6621938B1 (en) 1998-09-18 2003-09-16 Fuji Photo Film Co., Ltd. Image capture apparatus and method
US6184863B1 (en) 1998-10-13 2001-02-06 The George Washington University Direct pointing apparatus and method therefor
DE19849515C1 (en) 1998-10-19 2000-12-28 Gerhard Wergen Method for transferring characters in particular to a computer and input device using this method
US6307568B1 (en) * 1998-10-28 2001-10-23 Imaginarix Ltd. Virtual dressing over the internet
US6409602B1 (en) * 1998-11-06 2002-06-25 New Millenium Gaming Limited Slim terminal gaming system
US6712703B2 (en) * 1998-11-19 2004-03-30 Nintendo Co., Ltd. Video game apparatus and information storage medium for video game
JP2000172431A (en) 1998-12-09 2000-06-23 Sony Corp Information input device and game device
US6533420B1 (en) * 1999-01-22 2003-03-18 Dimension Technologies, Inc. Apparatus and method for generating and projecting autostereoscopic images
AU2571900A (en) 1999-02-16 2000-09-04 Yugen Kaisha Gm&M Speech converting device and method
US7139767B1 (en) 1999-03-05 2006-11-21 Canon Kabushiki Kaisha Image processing apparatus and database
JP2000261752A (en) 1999-03-05 2000-09-22 Hewlett Packard Co <Hp> Device for recording and reproducing image having sound
JP2000259856A (en) 1999-03-09 2000-09-22 Nippon Telegr & Teleph Corp <Ntt> Method and device for displaying three-dimensional computer graphics
US6323942B1 (en) 1999-04-30 2001-11-27 Canesta, Inc. CMOS-compatible three-dimensional image sensor IC
US7164413B2 (en) 1999-05-19 2007-01-16 Digimarc Corporation Enhanced input peripheral
US6791531B1 (en) 1999-06-07 2004-09-14 Dot On, Inc. Device and method for cursor motion control calibration and object selection
JP2000350859A (en) 1999-06-11 2000-12-19 Mr System Kenkyusho:Kk Marker arranging method and composite reality really feeling device
US7084887B1 (en) 1999-06-11 2006-08-01 Canon Kabushiki Kaisha Marker layout method, mixed reality apparatus, and mixed reality space image generation method
JP2000356972A (en) 1999-06-15 2000-12-26 Pioneer Electronic Corp Device and method for driving light emitting panel
US6952198B2 (en) 1999-07-06 2005-10-04 Hansen Karl C System and method for communication with enhanced optical pointer
US6819318B1 (en) * 1999-07-23 2004-11-16 Z. Jason Geng Method and apparatus for modeling via a three-dimensional image mosaic system
US6545706B1 (en) 1999-07-30 2003-04-08 Electric Planet, Inc. System, method and article of manufacture for tracking a head of a camera-generated image of a person
US6417836B1 (en) * 1999-08-02 2002-07-09 Lucent Technologies Inc. Computer input device having six degrees of freedom for controlling movement of a three-dimensional object
JP2001056742A (en) 1999-08-19 2001-02-27 Alps Electric Co Ltd Input device
US6556704B1 (en) 1999-08-25 2003-04-29 Eastman Kodak Company Method for forming a depth image from digital image data
WO2001018563A1 (en) 1999-09-08 2001-03-15 3Dv Systems, Ltd. 3d imaging system
CN1284381C (en) 1999-09-17 2006-11-08 自然工艺株式会社 Image pickup system, image processor, and camera
US6441825B1 (en) 1999-10-04 2002-08-27 Intel Corporation Video token tracking system for animation
US6375572B1 (en) * 1999-10-04 2002-04-23 Nintendo Co., Ltd. Portable game apparatus with acceleration sensor and information storage medium storing a game progam
JP3847058B2 (en) * 1999-10-04 2006-11-15 任天堂株式会社 GAME SYSTEM AND GAME INFORMATION STORAGE MEDIUM USED FOR THE SAME
US6753849B1 (en) 1999-10-27 2004-06-22 Ken Curran & Associates Universal remote TV mouse
US6519359B1 (en) * 1999-10-28 2003-02-11 General Electric Company Range camera controller for acquiring 3D models
EP1968012A3 (en) * 1999-11-16 2008-12-03 FUJIFILM Corporation Image processing apparatus, image processing method and recording medium
US20050037844A1 (en) * 2002-10-30 2005-02-17 Nike, Inc. Sigils for use with apparel
JP4403474B2 (en) 1999-12-09 2010-01-27 ソニー株式会社 Tactile sense presentation mechanism and force-tactile sense presentation device using the same
US20020107947A1 (en) * 1999-12-09 2002-08-08 Zephyr Media, Inc. System and method for integration of a universally publicly accessible global network
US6785329B1 (en) 1999-12-21 2004-08-31 Microsoft Corporation Automatic video object extraction
KR100384406B1 (en) 2000-01-24 2003-05-22 (주) 베스트소프트 A program drive divice for computer
US6587835B1 (en) * 2000-02-09 2003-07-01 G. Victor Treyz Shopping assistance with handheld computing device
AU2001241500A1 (en) 2000-02-15 2001-08-27 Sorceron, Inc. Method and system for distributing captured motion data over a network
EP1263626A2 (en) 2000-03-02 2002-12-11 Donnelly Corporation Video mirror systems incorporating an accessory module
JP2001265275A (en) * 2000-03-16 2001-09-28 Olympus Optical Co Ltd Picture display device
US6676522B2 (en) * 2000-04-07 2004-01-13 Igt Gaming system including portable game devices
US6924787B2 (en) 2000-04-17 2005-08-02 Immersion Corporation Interface for controlling a graphical image
WO2001091016A1 (en) * 2000-05-25 2001-11-29 Realitybuy, Inc. A real time, three-dimensional, configurable, interactive product display system and method
US20020056114A1 (en) * 2000-06-16 2002-05-09 Fillebrown Lisa A. Transmitter for a personal wireless network
TW527518B (en) * 2000-07-14 2003-04-11 Massachusetts Inst Technology Method and system for high resolution, ultra fast, 3-D imaging
US6795068B1 (en) 2000-07-21 2004-09-21 Sony Computer Entertainment Inc. Prop input device and method for mapping an object from a two-dimensional camera image to a three-dimensional space for controlling action in a game program
AU2001287948A1 (en) 2000-07-24 2002-02-05 Herman Ehrenburg Computer-compatible, color-coded manual input system
AUPQ896000A0 (en) * 2000-07-24 2000-08-17 Seeing Machines Pty Ltd Facial image processing system
US7227526B2 (en) * 2000-07-24 2007-06-05 Gesturetek, Inc. Video-based image control system
US6873747B2 (en) * 2000-07-25 2005-03-29 Farid Askary Method for measurement of pitch in metrology and imaging systems
US20020094189A1 (en) * 2000-07-26 2002-07-18 Nassir Navab Method and system for E-commerce video editing
JP3561463B2 (en) * 2000-08-11 2004-09-02 コナミ株式会社 Virtual camera viewpoint movement control method and 3D video game apparatus in 3D video game
AUPQ952400A0 (en) * 2000-08-18 2000-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Improved method and system of effecting a financial transaction
JP4815661B2 (en) 2000-08-24 2011-11-16 ソニー株式会社 Signal processing apparatus and signal processing method
US7071914B1 (en) * 2000-09-01 2006-07-04 Sony Computer Entertainment Inc. User input device and method for interaction with graphic images
EP1316192A2 (en) * 2000-09-08 2003-06-04 Honeywell International, Inc. Pilot internet practice system and methods
US6884171B2 (en) * 2000-09-18 2005-04-26 Nintendo Co., Ltd. Video game distribution network
AU2001294452A1 (en) 2000-09-29 2002-04-08 Senseboard Technologies Ab Wearable data input interface
DE20017027U1 (en) 2000-10-04 2001-01-18 Roland Man Druckmasch Towing equipment
US7016532B2 (en) * 2000-11-06 2006-03-21 Evryx Technologies Image capture and identification system and process
US7061507B1 (en) 2000-11-12 2006-06-13 Bitboys, Inc. Antialiasing method and apparatus for video applications
JP2002157607A (en) * 2000-11-17 2002-05-31 Canon Inc System and method for image generation, and storage medium
JP3833099B2 (en) * 2000-11-17 2006-10-11 キヤノン株式会社 Control device and control method for game machine, and computer-readable control program
US20020083461A1 (en) * 2000-11-22 2002-06-27 Hutcheson Stewart Douglas Method and system for providing interactive services over a wireless communications network
KR100385563B1 (en) * 2000-12-01 2003-05-27 한국과학기술원 Spectrophotometer With Driving Means And Intensity Of Light Measurement Method
US6751338B1 (en) * 2000-12-15 2004-06-15 Cognex Corporation System and method of using range image data with machine vision tools
US20040054512A1 (en) 2000-12-20 2004-03-18 Byung-Su Kim Method for making simulator program and simulator system using the method
US20020085097A1 (en) * 2000-12-22 2002-07-04 Colmenarez Antonio J. Computer vision-based wireless pointing system
JP2004537082A (en) * 2001-01-26 2004-12-09 ザクセル システムズ インコーポレイテッド Real-time virtual viewpoint in virtual reality environment
DE10103922A1 (en) 2001-01-30 2002-08-01 Physoptics Opto Electronic Gmb Interactive data viewing and operating system
US6741741B2 (en) * 2001-02-01 2004-05-25 Xerox Corporation System and method for automatically detecting edges of scanned documents
US6789967B1 (en) 2001-02-02 2004-09-14 George Forester Distal chording keyboard
US20020134151A1 (en) * 2001-02-05 2002-09-26 Matsushita Electric Industrial Co., Ltd. Apparatus and method for measuring distances
US6746124B2 (en) * 2001-02-06 2004-06-08 Robert E. Fischer Flashlight producing uniform high brightness
US6749510B2 (en) * 2001-02-07 2004-06-15 Wms Gaming Inc. Centralized gaming system with modifiable remote display terminals
US7116330B2 (en) 2001-02-28 2006-10-03 Intel Corporation Approximating motion using a three-dimensional model
US6931596B2 (en) 2001-03-05 2005-08-16 Koninklijke Philips Electronics N.V. Automatic positioning of display depending upon the viewer's location
JP2002369969A (en) 2001-06-15 2002-12-24 Sun Corp Program for communication game, adapter and game terminal
JP2003018604A (en) 2001-07-04 2003-01-17 Matsushita Electric Ind Co Ltd Image signal encoding method, device thereof and recording medium
US6931125B2 (en) 2001-07-10 2005-08-16 Gregory N. Smallwood Telephone equipment compatible, twelve button alphanumeric keypad
US20030014212A1 (en) * 2001-07-12 2003-01-16 Ralston Stuart E. Augmented vision system using wireless communications
JP3611807B2 (en) * 2001-07-19 2005-01-19 コナミ株式会社 Video game apparatus, pseudo camera viewpoint movement control method and program in video game
US7039253B2 (en) 2001-07-24 2006-05-02 Casio Computer Co., Ltd. Image display device, image display method, program, and projection system
KR20030009919A (en) * 2001-07-24 2003-02-05 삼성전자주식회사 Inputting device for computer game having inertial sense
US7148922B2 (en) 2001-08-02 2006-12-12 Olympus Optical Co., Ltd. Electronic camera which detects flash influence on an image and controls white balance in accordance with the flash influence
JP3442754B2 (en) 2001-08-10 2003-09-02 株式会社コナミコンピュータエンタテインメント東京 Gun shooting game apparatus, computer control method and program
US7174312B2 (en) * 2001-08-16 2007-02-06 Trans World New York Llc User-personalized media sampling, recommendation and purchasing system using real-time inventory database
US6709108B2 (en) 2001-08-31 2004-03-23 Adaptive Optics Associates, Inc. Ophthalmic instrument with adaptive optic subsystem that measures aberrations (including higher order aberrations) of a human eye and that provides a view of compensation of such aberrations to the human eye
US7555157B2 (en) * 2001-09-07 2009-06-30 Geoff Davidson System and method for transforming graphical images
KR100846761B1 (en) 2001-09-11 2008-07-16 삼성전자주식회사 Pointer control method, pointing apparatus and host apparatus therefor
US6846238B2 (en) * 2001-09-28 2005-01-25 Igt Wireless game player
JP2003114640A (en) 2001-10-04 2003-04-18 Nec Corp Plasma display panel and its driving method
JP4028708B2 (en) * 2001-10-19 2007-12-26 株式会社コナミデジタルエンタテインメント GAME DEVICE AND GAME SYSTEM
US20030093591A1 (en) 2001-11-09 2003-05-15 David Hohl System and method for fast data transfer to display driver
FR2832892B1 (en) 2001-11-27 2004-04-02 Thomson Licensing Sa SPECIAL EFFECTS VIDEO CAMERA
US20030100363A1 (en) 2001-11-28 2003-05-29 Ali Guiseppe C. Method and apparatus for inputting appearance of computer operator into a computer program
US20040070565A1 (en) 2001-12-05 2004-04-15 Nayar Shree K Method and apparatus for displaying images
KR20030048570A (en) 2001-12-12 2003-06-25 한국전자통신연구원 A keypad assembly with the supplementary buttons and its operating method
US7106366B2 (en) 2001-12-19 2006-09-12 Eastman Kodak Company Image capture system incorporating metadata to facilitate transcoding
US7305114B2 (en) 2001-12-26 2007-12-04 Cognex Technology And Investment Corporation Human/machine interface for a machine vision sensor and method for installing and operating the same
US7436887B2 (en) 2002-02-06 2008-10-14 Playtex Products, Inc. Method and apparatus for video frame sequence-based object tracking
US6990639B2 (en) * 2002-02-07 2006-01-24 Microsoft Corporation System and process for controlling electronic components in a ubiquitous computing environment using multimodal integration
US20030160862A1 (en) 2002-02-27 2003-08-28 Charlier Michael L. Apparatus having cooperating wide-angle digital camera system and microphone array
US20030167211A1 (en) 2002-03-04 2003-09-04 Marco Scibora Method and apparatus for digitally marking media content
KR20030075399A (en) 2002-03-18 2003-09-26 주식회사 소프트로닉스 Motion Mouse System
US7301547B2 (en) * 2002-03-22 2007-11-27 Intel Corporation Augmented reality system
FR2837597A1 (en) * 2002-03-25 2003-09-26 Thomson Licensing Sa Three-dimensional scene modeling process, involves calculating point of reference image on basis of set of images, of defined minimum and maximum depth values of point depth corresponding to maximum distortion
GB2388418A (en) 2002-03-28 2003-11-12 Marcus James Eales Input or pointing device with a camera
US6847311B2 (en) 2002-03-28 2005-01-25 Motorola Inc. Method and apparatus for character entry in a wireless communication device
US7006009B2 (en) * 2002-04-01 2006-02-28 Key Energy Services, Inc. Servicing system for wells
US7023475B2 (en) * 2002-04-08 2006-04-04 Hewlett-Packard Development Company, L.P. System and method for identifying an object with captured images
US20030199324A1 (en) 2002-04-23 2003-10-23 Xiaoling Wang Apparatus and a method for more realistic shooting video games on computers or similar devices using visible or invisible light
JP2004021345A (en) 2002-06-12 2004-01-22 Toshiba Corp Image processing device and its method
US20030232649A1 (en) 2002-06-18 2003-12-18 Gizis Alexander C.M. Gaming system and method
US20040001082A1 (en) 2002-06-26 2004-01-01 Amir Said System and method of interaction with a computer controlled image display system using a projected light source
JP5109221B2 (en) 2002-06-27 2012-12-26 新世代株式会社 Information processing device equipped with an input system using a stroboscope
CA2390072C (en) 2002-06-28 2018-02-27 Adrian Gh Podoleanu Optical mapping apparatus with adjustable depth resolution and multiple functionality
US7227976B1 (en) * 2002-07-08 2007-06-05 Videomining Corporation Method and system for real-time facial image enhancement
CN1167996C (en) * 2002-07-11 2004-09-22 庄胜雄 Glove mouse capable of forming virtual tracing ball
US8073157B2 (en) 2003-08-27 2011-12-06 Sony Computer Entertainment Inc. Methods and apparatus for targeted sound detection and characterization
US7102615B2 (en) 2002-07-27 2006-09-05 Sony Computer Entertainment Inc. Man-machine interface using a deformable device
US7646372B2 (en) * 2003-09-15 2010-01-12 Sony Computer Entertainment Inc. Methods and systems for enabling direction detection when interfacing with a computer program
US7623115B2 (en) 2002-07-27 2009-11-24 Sony Computer Entertainment Inc. Method and apparatus for light input device
US7697700B2 (en) * 2006-05-04 2010-04-13 Sony Computer Entertainment Inc. Noise removal for electronic device with far field microphone on console
US7970147B2 (en) 2004-04-07 2011-06-28 Sony Computer Entertainment Inc. Video game controller with noise canceling logic
US7613310B2 (en) 2003-08-27 2009-11-03 Sony Computer Entertainment Inc. Audio input system
US7809145B2 (en) 2006-05-04 2010-10-05 Sony Computer Entertainment Inc. Ultra small microphone array
US7545926B2 (en) * 2006-05-04 2009-06-09 Sony Computer Entertainment Inc. Echo and noise cancellation
US8797260B2 (en) 2002-07-27 2014-08-05 Sony Computer Entertainment Inc. Inertially trackable hand-held controller
US7783061B2 (en) * 2003-08-27 2010-08-24 Sony Computer Entertainment Inc. Methods and apparatus for the targeted sound detection
US20040017355A1 (en) 2002-07-24 2004-01-29 Youngtack Shim Cursor control systems and methods
US20070261077A1 (en) 2006-05-08 2007-11-08 Gary Zalewski Using audio/visual environment to select ads on game platform
US7352359B2 (en) * 2002-07-27 2008-04-01 Sony Computer Entertainment America Inc. Method and system for applying gearing effects to inertial tracking
US7760248B2 (en) 2002-07-27 2010-07-20 Sony Computer Entertainment Inc. Selective sound source listening in conjunction with computer interactive processing
US8686939B2 (en) 2002-07-27 2014-04-01 Sony Computer Entertainment Inc. System, method, and apparatus for three-dimensional input control
US7803050B2 (en) 2002-07-27 2010-09-28 Sony Computer Entertainment Inc. Tracking device with sound emitter for use in obtaining information for controlling game program execution
US7391409B2 (en) * 2002-07-27 2008-06-24 Sony Computer Entertainment America Inc. Method and system for applying gearing effects to multi-channel mixed input
US20060256081A1 (en) 2002-07-27 2006-11-16 Sony Computer Entertainment America Inc. Scheme for detecting and tracking user manipulation of a game controller body
US8313380B2 (en) 2002-07-27 2012-11-20 Sony Computer Entertainment America Llc Scheme for translating movements of a hand-held controller into inputs for a system
US20060282873A1 (en) 2002-07-27 2006-12-14 Sony Computer Entertainment Inc. Hand-held controller having detectable elements for tracking purposes
US20070260517A1 (en) 2006-05-08 2007-11-08 Gary Zalewski Profile detection
US7850526B2 (en) 2002-07-27 2010-12-14 Sony Computer Entertainment America Inc. System for tracking user manipulations within an environment
US8160269B2 (en) 2003-08-27 2012-04-17 Sony Computer Entertainment Inc. Methods and apparatuses for adjusting a listening area for capturing sounds
US8233642B2 (en) 2003-08-27 2012-07-31 Sony Computer Entertainment Inc. Methods and apparatuses for capturing an audio signal based on a location of the signal
US9474968B2 (en) 2002-07-27 2016-10-25 Sony Interactive Entertainment America Llc Method and system for applying gearing effects to visual tracking
US7627139B2 (en) 2002-07-27 2009-12-01 Sony Computer Entertainment Inc. Computer image and audio processing of intensity and input devices for interfacing with a computer program
US8139793B2 (en) 2003-08-27 2012-03-20 Sony Computer Entertainment Inc. Methods and apparatus for capturing audio signals based on a visual image
US20070015559A1 (en) * 2002-07-27 2007-01-18 Sony Computer Entertainment America Inc. Method and apparatus for use in determining lack of user activity in relation to a system
US10086282B2 (en) 2002-07-27 2018-10-02 Sony Interactive Entertainment Inc. Tracking device for use in obtaining information for controlling game program execution
US7918733B2 (en) 2002-07-27 2011-04-05 Sony Computer Entertainment America Inc. Multi-input game control mixer
US20060264260A1 (en) 2002-07-27 2006-11-23 Sony Computer Entertainment Inc. Detectable and trackable hand-held controller
US7854655B2 (en) 2002-07-27 2010-12-21 Sony Computer Entertainment America Inc. Obtaining input for controlling execution of a game program
US9393487B2 (en) 2002-07-27 2016-07-19 Sony Interactive Entertainment Inc. Method for mapping movements of a hand-held controller to game commands
US20070061413A1 (en) 2005-09-15 2007-03-15 Larsen Eric J System and method for obtaining user information from voices
GB2392286B (en) * 2002-08-19 2004-07-07 Chunghwa Telecom Co Ltd Personal identification system based on the reading of multiple one-dimensional barcodes scanned from scanned from PDA/cell phone screen
US7039199B2 (en) 2002-08-26 2006-05-02 Microsoft Corporation System and process for locating a speaker using 360 degree sound source localization
US6917688B2 (en) 2002-09-11 2005-07-12 Nanyang Technological University Adaptive noise cancelling microphone system
US20040063480A1 (en) 2002-09-30 2004-04-01 Xiaoling Wang Apparatus and a method for more realistic interactive video games on computers or similar devices
EP1411461A1 (en) 2002-10-14 2004-04-21 STMicroelectronics S.r.l. User controlled device for sending control signals to an electric appliance, in particular user controlled pointing device such as mouse or joystick, with 3D-motion detection
US6995666B1 (en) 2002-10-16 2006-02-07 Luttrell Clyde K Cellemetry-operated railroad switch heater
JP2004145448A (en) 2002-10-22 2004-05-20 Toshiba Corp Terminal device, server device, and image processing method
US8206219B2 (en) 2002-10-30 2012-06-26 Nike, Inc. Interactive gaming apparel for interactive gaming
AU2003288938A1 (en) * 2002-10-30 2004-06-07 Nike International Ltd. Clothes with tracking marks for computer games
US20040095327A1 (en) 2002-11-14 2004-05-20 Lo Fook Loong Alphanumeric data input system and method
US8012025B2 (en) 2002-12-13 2011-09-06 Applied Minds, Llc Video game controller hub with control input reduction and combination schemes
US7212308B2 (en) 2002-12-18 2007-05-01 Morgan Carol L Interactive photo kiosk
US20040140955A1 (en) 2003-01-21 2004-07-22 Metz Kristofer Erik Input device for a computer and method of operation
JP2004261236A (en) * 2003-02-20 2004-09-24 Konami Co Ltd Game system
JP3849654B2 (en) 2003-02-21 2006-11-22 株式会社日立製作所 Projection display
GB2398691B (en) * 2003-02-21 2006-05-31 Sony Comp Entertainment Europe Control of data processing
GB2398690B (en) * 2003-02-21 2006-05-10 Sony Comp Entertainment Europe Control of data processing
US7161634B2 (en) 2003-03-06 2007-01-09 Huaya Microelectronics, Ltd. Encoding system for error diffusion dithering
US7665041B2 (en) * 2003-03-25 2010-02-16 Microsoft Corporation Architecture for controlling a computer using hand gestures
US20040212589A1 (en) 2003-04-24 2004-10-28 Hall Deirdre M. System and method for fusing and displaying multiple degree of freedom positional input data from multiple input sources
US7519186B2 (en) 2003-04-25 2009-04-14 Microsoft Corporation Noise reduction systems and methods for voice applications
US7379559B2 (en) * 2003-05-28 2008-05-27 Trw Automotive U.S. Llc Method and apparatus for determining an occupant's head location in an actuatable occupant restraining system
US6881147B2 (en) 2003-06-06 2005-04-19 Nyko Technologies, Inc. Video game controller with integrated microphone and speaker
TW571812U (en) 2003-06-11 2004-01-11 Vision Electronics Co Ltd Audio device for TV game machine
ATE339757T1 (en) * 2003-06-17 2006-10-15 Sony Ericsson Mobile Comm Ab METHOD AND DEVICE FOR VOICE ACTIVITY DETECTION
US7116342B2 (en) 2003-07-03 2006-10-03 Sportsmedia Technology Corporation System and method for inserting content into an image sequence
US7156311B2 (en) * 2003-07-16 2007-01-02 Scanbuy, Inc. System and method for decoding and analyzing barcodes using a mobile device
US7489299B2 (en) 2003-10-23 2009-02-10 Hillcrest Laboratories, Inc. User interface devices and methods employing accelerometers
AU2004287478A1 (en) 2003-10-28 2005-05-19 Welch Allyn, Inc. Digital documenting ophthalmoscope
US20050105777A1 (en) 2003-11-18 2005-05-19 Kozlowski William J.Jr. Personalized multimedia summary
US7734729B2 (en) 2003-12-31 2010-06-08 Amazon Technologies, Inc. System and method for obtaining information relating to an item of commerce using a portable imaging device
US20050162384A1 (en) 2004-01-28 2005-07-28 Fujinon Corporation Pointing device, method for displaying point image, and program therefor
JP2007535773A (en) 2004-04-30 2007-12-06 ヒルクレスト・ラボラトリーズ・インコーポレイテッド Free space pointing device and pointing method
DK2337016T3 (en) 2004-04-30 2018-04-23 Idhl Holdings Inc Free space pointing device with slope compensation and improved applicability
US7296007B1 (en) 2004-07-06 2007-11-13 Ailive, Inc. Real time context learning by software agents
US7263462B2 (en) * 2004-07-30 2007-08-28 Ailive, Inc. Non-disruptive embedding of specialized elements
KR100618863B1 (en) * 2004-09-18 2006-08-31 삼성전자주식회사 A Low Power Consumption Voltage Reference Circuit
US7613610B1 (en) 2005-03-14 2009-11-03 Escription, Inc. Transcription data extraction
US7918732B2 (en) 2005-05-06 2011-04-05 Milton Charles Van Noland Manifold compatibility electronic omni axis human interface
US7927216B2 (en) 2005-09-15 2011-04-19 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US7620316B2 (en) 2005-11-28 2009-11-17 Navisense Method and device for touchless control of a camera
US7834850B2 (en) 2005-11-29 2010-11-16 Navisense Method and system for object control
US7636645B1 (en) 2007-06-18 2009-12-22 Ailive Inc. Self-contained inertial navigation system for interactive control using movable controllers
JP4481280B2 (en) 2006-08-30 2010-06-16 富士フイルム株式会社 Image processing apparatus and image processing method
US8277316B2 (en) 2006-09-14 2012-10-02 Nintendo Co., Ltd. Method and apparatus for using a common pointing input to control 3D viewpoint and object targeting
GB0622451D0 (en) 2006-11-10 2006-12-20 Intelligent Earth Ltd Object position and orientation detection device
US7636697B1 (en) 2007-01-29 2009-12-22 Ailive Inc. Method and system for rapid evaluation of logical expressions
US7937243B2 (en) 2007-08-03 2011-05-03 Ailive, Inc. Method and apparatus for non-disruptive embedding of specialized elements
US20090221368A1 (en) 2007-11-28 2009-09-03 Ailive Inc., Method and system for creating a shared game space for a networked game
US8419545B2 (en) 2007-11-28 2013-04-16 Ailive, Inc. Method and system for controlling movements of objects in a videogame
US8655622B2 (en) * 2008-07-05 2014-02-18 Ailive, Inc. Method and apparatus for interpreting orientation invariant motion
JP6102980B2 (en) 2015-05-18 2017-03-29 株式会社島津製作所 Analysis system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020110273A1 (en) * 1997-07-29 2002-08-15 U.S. Philips Corporation Method of reconstruction of tridimensional scenes and corresponding reconstruction device and decoding system
WO1999026198A2 (en) * 1997-11-14 1999-05-27 National University Of Singapore System and method for merging objects into an image sequence without prior knowledge of the scene in the image sequence
US6392644B1 (en) * 1998-05-25 2002-05-21 Fujitsu Limited Three-dimensional graphics display system
US20030032484A1 (en) * 1999-06-11 2003-02-13 Toshikazu Ohshima Game apparatus for mixed reality space, image processing method thereof, and program storage medium
GB2376397A (en) * 2001-06-04 2002-12-11 Hewlett Packard Co Virtual or augmented reality

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KLINKER G ET AL: "Distributed user tracking concepts for augmented reality applications", AUGMENTED REALITY, 2000. (ISAR 2000). PROCEEDINGS. IEEE AND ACM INTERNATIONAL SYMPOSIUM ON MUNICH, GERMANY 5-6 OCT. 2000, PISCATAWAY, NJ, USA,IEEE, US, 5 October 2000 (2000-10-05), pages 37 - 44, XP010520308, ISBN: 0-7695-0846-4 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8249334B2 (en) 2006-05-11 2012-08-21 Primesense Ltd. Modeling of humanoid forms from depth maps
US9035876B2 (en) 2008-01-14 2015-05-19 Apple Inc. Three-dimensional user interface session control
US8166421B2 (en) 2008-01-14 2012-04-24 Primesense Ltd. Three-dimensional user interface
US8369575B2 (en) 2009-05-14 2013-02-05 Samsung Electronics Co., Ltd. 3D image processing method and apparatus for improving accuracy of depth measurement of an object in a region of interest
US8565479B2 (en) 2009-08-13 2013-10-22 Primesense Ltd. Extraction of skeletons from 3D maps
US8787663B2 (en) 2010-03-01 2014-07-22 Primesense Ltd. Tracking body parts by combined color image and depth processing
US8824737B2 (en) 2010-05-31 2014-09-02 Primesense Ltd. Identifying components of a humanoid form in three-dimensional scenes
US8594425B2 (en) 2010-05-31 2013-11-26 Primesense Ltd. Analysis of three-dimensional scenes
US8781217B2 (en) 2010-05-31 2014-07-15 Primesense Ltd. Analysis of three-dimensional scenes with a surface model
US9201501B2 (en) 2010-07-20 2015-12-01 Apple Inc. Adaptive projector
US9158375B2 (en) 2010-07-20 2015-10-13 Apple Inc. Interactive reality augmentation for natural interaction
US8582867B2 (en) 2010-09-16 2013-11-12 Primesense Ltd Learning-based pose estimation from depth maps
US8959013B2 (en) 2010-09-27 2015-02-17 Apple Inc. Virtual keyboard for a non-tactile three dimensional user interface
US8872762B2 (en) 2010-12-08 2014-10-28 Primesense Ltd. Three dimensional user interface cursor control
US8933876B2 (en) 2010-12-13 2015-01-13 Apple Inc. Three dimensional user interface session control
US9342146B2 (en) 2011-02-09 2016-05-17 Apple Inc. Pointing-based display interaction
US9285874B2 (en) 2011-02-09 2016-03-15 Apple Inc. Gaze detection in a 3D mapping environment
US9454225B2 (en) 2011-02-09 2016-09-27 Apple Inc. Gaze-based display control
US8881051B2 (en) 2011-07-05 2014-11-04 Primesense Ltd Zoom-based gesture user interface
US9377865B2 (en) 2011-07-05 2016-06-28 Apple Inc. Zoom-based gesture user interface
US9459758B2 (en) 2011-07-05 2016-10-04 Apple Inc. Gesture-based interface with enhanced features
US9030498B2 (en) 2011-08-15 2015-05-12 Apple Inc. Combining explicit select gestures and timeclick in a non-tactile three dimensional user interface
US9218063B2 (en) 2011-08-24 2015-12-22 Apple Inc. Sessionless pointing user interface
US9122311B2 (en) 2011-08-24 2015-09-01 Apple Inc. Visual feedback for tactile and non-tactile user interfaces
US9002099B2 (en) 2011-09-11 2015-04-07 Apple Inc. Learning-based estimation of hand and finger pose
US9229534B2 (en) 2012-02-28 2016-01-05 Apple Inc. Asymmetric mapping for tactile and non-tactile user interfaces
US9377863B2 (en) 2012-03-26 2016-06-28 Apple Inc. Gaze-enhanced virtual touchscreen
US11169611B2 (en) 2012-03-26 2021-11-09 Apple Inc. Enhanced virtual touchpad
US9047507B2 (en) 2012-05-02 2015-06-02 Apple Inc. Upper-body skeleton extraction from depth maps
US9019267B2 (en) 2012-10-30 2015-04-28 Apple Inc. Depth mapping with enhanced resolution
US10043279B1 (en) 2015-12-07 2018-08-07 Apple Inc. Robust detection and classification of body parts in a depth map
CN107801083A (en) * 2016-09-06 2018-03-13 星播网(深圳)信息有限公司 A kind of network real-time interactive live broadcasting method and device based on three dimensional virtual technique
WO2018045927A1 (en) * 2016-09-06 2018-03-15 星播网(深圳)信息有限公司 Three-dimensional virtual technology based internet real-time interactive live broadcasting method and device
US10366278B2 (en) 2016-09-20 2019-07-30 Apple Inc. Curvature-based face detector
CN112135158A (en) * 2020-09-17 2020-12-25 重庆虚拟实境科技有限公司 Live broadcasting method based on mixed reality and related equipment

Also Published As

Publication number Publication date
US8072470B2 (en) 2011-12-06
EP1636762B1 (en) 2019-10-30
US20120038637A1 (en) 2012-02-16
EP1636762A1 (en) 2006-03-22
US20040239670A1 (en) 2004-12-02
JP2006528395A (en) 2006-12-14
US11010971B2 (en) 2021-05-18
JP4271236B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
US8072470B2 (en) System and method for providing a real-time three-dimensional interactive environment
US8303411B2 (en) Methods and systems for enabling depth and direction detection when interfacing with a computer program
US7646372B2 (en) Methods and systems for enabling direction detection when interfacing with a computer program
US7071914B1 (en) User input device and method for interaction with graphic images
US7639233B2 (en) Man-machine interface using a deformable device
US9724609B2 (en) Apparatus and method for augmented reality
KR100965348B1 (en) Method and apparatus for real time motion capture
US7084887B1 (en) Marker layout method, mixed reality apparatus, and mixed reality space image generation method
EP2521097B1 (en) System and Method of Input Processing for Augmented Reality
JP7008730B2 (en) Shadow generation for image content inserted into an image
EP2029248A2 (en) Control of data processing
EP4128207A1 (en) Systems and methods for virtual and augmented reality
KR20110023227A (en) Robot game system relating virtual space to real space

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006533057

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004752175

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004752175

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)