WO2004111235A1 - 蛍光蛋白質及び色素蛋白質 - Google Patents

蛍光蛋白質及び色素蛋白質 Download PDF

Info

Publication number
WO2004111235A1
WO2004111235A1 PCT/JP2004/008786 JP2004008786W WO2004111235A1 WO 2004111235 A1 WO2004111235 A1 WO 2004111235A1 JP 2004008786 W JP2004008786 W JP 2004008786W WO 2004111235 A1 WO2004111235 A1 WO 2004111235A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
acid sequence
fluorescent protein
dna
Prior art date
Application number
PCT/JP2004/008786
Other languages
English (en)
French (fr)
Inventor
Atsushi Miyawaki
Hidekazu Tsutsui
Satoshi Karasawa
Original Assignee
Riken
Medical & Biological Laboratories Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken, Medical & Biological Laboratories Co., Ltd. filed Critical Riken
Priority to EP04746255A priority Critical patent/EP1642969B1/en
Priority to AU2004248054A priority patent/AU2004248054A1/en
Priority to US10/561,041 priority patent/US7956172B2/en
Priority to AT04746255T priority patent/ATE443135T1/de
Priority to DE602004023199T priority patent/DE602004023199D1/de
Priority to JP2005507025A priority patent/JP4852676B2/ja
Publication of WO2004111235A1 publication Critical patent/WO2004111235A1/ja
Priority to US13/095,603 priority patent/US8207322B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates

Definitions

  • the present invention relates to a novel fluorescent protein. More specifically, the present invention relates to a novel fluorescent protein derived from common coral (Montipora sp.), Acropora (Acropora sp.) And mushroom (JLobopnytwn crassum) and use thereof.
  • the present invention relates to a novel chromoprotein. More specifically, the present invention relates to a novel chromoprotein derived from sea urchin (Actinia equina) and its use.
  • sea urchin Actinia equina
  • Green fluorescent protein (GFP) from the jellyfish Aequorea victoria has many uses in biological systems. Recently, based on random mutagenesis and semi-rational mutagenesis, we have changed the color, improved the folding properties, increased the brightness, or adjusted the pH sensitivity. Various G-FP mutants have been produced, such as modified GFPs. Fusion of other proteins to fluorescent proteins such as GFP by genetic recombination technology and monitoring of their expression and transport have been performed.
  • YFP Yellow Fluorescent Protein
  • YFP shows the longest wavelength fluorescence among the jellyfish (Aequorea) GFP mutants.
  • ⁇ and ⁇ of most YFPs are respectively fe ⁇ 0.6-0.8 (Tsien, RY (1998). Ann. Rev. Biochem. 67, 509-544), and these values are based on common fluorophores (fluorescein-oprhodamine. ) Value. Therefore, the improvement of the absolute brightness of YFP is almost reaching its limit.
  • GFP mutant is cyan fluorescent protein (CPP), and ECFP (enhanced cyan fluorescent protein) is known. Also, seagull Red fluorescent protein (RFP) has also been isolated from yak (Mscoma sp.), And DasRed is known. As described above, four types of fluorescent proteins, green, yellow, cyan, and red, have been developed one after another, and the spectrum has been greatly expanded.
  • chromoprotein is one in which the quantum yield of a conventional fluorescent protein is close to zero.
  • the chromoprotein has various applications because it can introduce a molecule that converts light energy into other energy into cells.
  • absorption wavelength characteristics of chromoproteins Disclosure of the invention,
  • An object of the present invention is to provide a novel fluorescent protein derived from common coral (Montipora sp.), Acropora sp., And Mushroom ilobophy turn eras sum. .
  • the present invention has an object to solve the problem of providing a fluorescent protein having a sharper spectrum than the wide excitation spectrum shown by the conventional RFP (DsRed, Clontech).
  • an object of the present invention is to provide a novel chromoprotein derived from sea anemone (Actinia equina), which absorbs light of a specific wavelength.
  • the present inventors have studied diligently, designed suitable primers based on information on the amino acid sequence of known fluorescent proteins, and designed common primers (Montipora sp.), Green prawns (Acropora sp. )
  • Montipora sp. Green prawns
  • a gene encoding a novel fluorescent protein was successfully amplified and cloned from a cDNA library derived from Lobophytum crassum) using the above primers.
  • the present inventors have obtained the common coral (Montipora sp.), Acropora sp.
  • the fluorescent properties and PH sensitivity of the fluorescent protein derived from mushroom ilobophytim crassuni
  • the present inventors also designed a suitable primer based on the information on the amino acid sequence of a known fluorescent protein, and obtained a novel primer from the cDNA library of red-colored sea anemone (Actinia equina) using the primer.
  • the gene encoding the chromoprotein was successfully amplified and cloned.
  • the present inventors analyzed the light absorption characteristics and pH sensitivity of the obtained chromoprotein derived from sea urchin sea anemone (Actinia equina). The present invention has been completed based on these findings.
  • the excitation maximum wavelength is 507 nm
  • the excitation maximum wavelength is 505 nm
  • a fluorescent protein having the following characteristics derived from Acropora sp.
  • the excitation maximum wavelength is 472 nm
  • the excitation maximum wavelength is 557 nm
  • the absorption maximum wavelength is 592 nm
  • the excitation maximum wavelength is 482 nm
  • a fluorescent protein having any one of the following amino acid sequences:
  • a fluorescent protein having any one of the following amino acid sequences:
  • a fluorescent protein having any one of the following amino acid sequences: (a) the amino acid sequence of SEQ ID NO: 5 or 7; or
  • a chromoprotein having any one of the following amino acid sequences:
  • a DN that has an amino acid sequence having deletion, substitution and / or addition of one to several amino acids in the amino acid sequence of SEQ ID NO: 1 and encodes a fluorescent protein
  • a DN that has an amino acid sequence having one to several amino acid deletions, substitutions and / or additions in the amino acid sequence described in SEQ ID NO: 3, and encodes a fluorescent protein
  • a DN encoding a fluorescent protein having an amino acid sequence having deletion, substitution and / or addition of one to several amino acids in the amino acid sequence of SEQ ID NO: 13
  • a transformant comprising the DNA according to any one of (13) to (25) or the recombinant vector according to (26).
  • a fusion fluorescent protein comprising the fluorescent protein according to any one of (1) to (4), (6), (7) to (10) or (12) and another protein.
  • a fusion protein comprising the chromoprotein of (5) or (11) and another protein.
  • (32) A method for analyzing the localization or dynamics of a protein in a cell, which comprises expressing the fusion fluorescent protein according to any of (28) to (30) in the cell.
  • a method for analyzing a physiologically active substance which comprises performing a FRET (fluorescence resonance energy transfer) method using the chromoprotein according to (5) or (11) as an receptor protein.
  • FRET fluorescence resonance energy transfer
  • FIG. 1 shows the fluorescence spectrum and the excitation spectrum of the fluorescent protein (COG) derived from the common coral (Montipora sp.) Of the present invention (FIG. A), and the absorption spectrum of the fluorescent protein (COG).
  • Le Figure B
  • the horizontal axis indicates the pH value
  • the vertical axis indicates the absorbance.
  • FIG. 2 shows the fluorescence spectrum at pH 5 and the excitation spectrum (FIG. A) of the fluorescent protein (C0G) derived from the common coral (Montipora sp.) Of the present invention, and the absorption spectrum at pH 5 (FIG. A).
  • Figure B) is shown.
  • FIG. 3 shows the fluorescence spectrum and excitation spectrum of the fluorescent protein (MIG) derived from Acropora sp. Of the present invention (FIG. A), and the absorption spectrum of the fluorescent protein (MIG) (FIG. A).
  • Fig. B) shows the pH sensitivity of fluorescent protein (MIG) (Fig. C).
  • the horizontal axis indicates the pH value
  • the vertical axis indicates the absorbance.
  • Fig. 4 shows the fluorescence spectrum and excitation spectrum of the fluorescent protein (MICy) derived from Acropora sp. Of the present invention (Fig. A), and the absorption spectrum of the fluorescent protein (MICy).
  • Figure B shows a P H susceptibility ⁇ Pi fluorescent protein (MiCy) (Figure C).
  • the horizontal axis indicates the pH value
  • the vertical axis indicates the absorbance.
  • FIG. 5 shows the pH sensitivity (FIG. A) and the excitation and fluorescence spectrum CUB) of the fluorescent protein (MiCy2) of the present invention.
  • FIG. 6 shows the fluorescence spectrum and excitation spectrum of the fluorescent protein (C0R) derived from the common coral (Montipora sp.) Of the present invention (FIG. A), and the absorption spectrum of the fluorescent protein (C0R) (FIG. A).
  • Fig. B) shows the pH sensitivity of fluorescent protein (C0R) (Fig. C).
  • the horizontal axis indicates the pH value
  • the vertical axis indicates the absorbance.
  • FIG. 7 shows the results obtained by measuring the absorption spectrum ( ⁇ 7.9) of the chromoprotein (Ume) derived from the sea urchin (Actinia equina) of the present invention (FIG. ⁇ ), and the results of the measurement of the chromoprotein (Ume).
  • the pH sensitivity of the absorption maximum is shown ( Figure ⁇ ).
  • the horizontal axis represents the wavelength of the absorbed light
  • the vertical axis represents the absorbance.
  • the horizontal axis indicates the PH value
  • the vertical axis indicates the absorbance.
  • FIG. 8 shows the fluorescence spectrum and excitation spectrum (FIG. A) of the fluorescent protein (KnG) derived from the mushroom i obophytum crassuni of the present invention (FIG. A), and the PH dependence of the fluorescent protein (KnG) (FIG. B). ). '' Best mode for carrying out the invention
  • Fluorescent protein and chromoprotein of the present invention (1) Fluorescent protein and chromoprotein of the present invention
  • the first fluorescent protein of the present invention is derived from common coral (Montipora sp.). And has the following characteristics.
  • the excitation maximum wavelength is 507 nm
  • the common coral (Montipora sp.) Is a species of coral belonging to the Cnidaria Chrysomelidae, Six-Release Coral Subfamily Coralidae, and often forms clusters and cover-like colonies. .
  • the first fluorescent protein of the present invention has an excitation maximum wavelength of 507 nm and a fluorescence maximum wavelength of 517 nm.
  • the extinction coefficient at 507 nm is 104,050, and the quantum yield is 0.29.
  • the molar extinction coefficient indicates the amount of photons absorbed per mole of fluorescent molecule, and the quantum yield is a numerical value indicating how much of the absorbed photons can emit fluorescence.
  • first fluorescent protein of the present invention include a fluorescent protein having any one of the following amino acid sequences.
  • the second fluorescent protein of the present invention is derived from Acropora sp. And has the following characteristics.
  • the excitation maximum wavelength is 505 nm
  • p Ka about 6.4: Acropora sp. (Acropora sp.) Is a species of coral belonging to the Cnidaria Chrysophyta, Six-Release Coral, Coralidae, Acropora, and often forms a branch-table colony.
  • the second fluorescent protein of the present invention has an excitation maximum wavelength of 505 nm and a fluorescence maximum wavelength of 516 nm.
  • the extinction coefficient at 505 nm is 53600, and the quantum yield is 0.67.
  • the molar extinction coefficient indicates the amount of photons absorbed per mole of fluorescent molecule, and the quantum yield is a numerical value indicating how much of the absorbed photons can emit fluorescence.
  • the second fluorescent protein of the present invention include a fluorescent protein having any one of the following amino acid sequences.
  • the third fluorescent protein of the present invention is derived from Acropora sp. And has the following characteristics.
  • the excitation maximum wavelength is 472 nm
  • the third fluorescent protein of the present invention has an excitation maximum wavelength of 472 nm and a fluorescence maximum wavelength of 496 nm.
  • the extinction coefficient at 472 nm is 27250 and the quantum yield is 0.90.
  • the molar extinction coefficient indicates the amount of photons absorbed per mole of fluorescent molecule, and the quantum yield is a numerical value indicating how much of the absorbed photons can emit fluorescence.
  • third fluorescent protein of the present invention include any one of the following amino acid sequences: Fluorescent protein.
  • the fourth fluorescent protein of the present invention is derived from common coral (Hontipora sp.) And has the following characteristics.
  • the maximum excitation wavelength is 557 nm
  • the fourth fluorescent protein of the present invention has an excitation maximum wavelength of 557 nm and a fluorescence maximum wavelength of 574 nm.
  • the extinction coefficient at 557 nm is 41750 and the quantum yield is 0.41.
  • the molar extinction coefficient indicates the amount of photons absorbed per mole of fluorescent molecule, and the quantum yield is a numerical value indicating how much of the absorbed photons can emit as fluorescence.
  • the fourth fluorescent protein of the present invention include a fluorescent protein having any one of the following amino acid sequences.
  • the chromoprotein of the present invention is derived from sea urchin sea anemone (Actinia equina) and has the following features.
  • the absorption maximum wavelength is 592 nm
  • the sea urchin sea anemone (Actinia equina) is a species of Hexacorallia from the cnidarian subphylum (Anthozoa) of the Cnidaria (Cnidaria). (Actiniaria), a member of the sea anemone family (Actiniidae).
  • the sea anemone (Actinia equina) is commonly found on rocks north of Kyushu in Japan, and it appears that red flowers are blooming in water when its tentacles are spread out.
  • a chromoprotein having the above-mentioned properties was isolated using sea urchin (Actinia equina) as a starting material, but the chromoprotein of the present invention was isolated from sea urchins other than sea urchin (Actinia equina). May be obtained, and such a chromoprotein is also within the scope of the present invention.
  • the chromoprotein of the present invention has an absorption maximum wavelength of 592 nm and a molar extinction coefficient at 5922 nm of 870000.
  • the molar extinction coefficient indicates the amount of photons absorbed per mole of fluorescent molecule.
  • the quantum yield is a numerical value that indicates how much of the absorbed photons can be emitted as fluorescence. Since the quantum yield of the chromoprotein of the present invention is extremely low, it hardly emits fluorescence. Due to this property, the chromoprotein of the present invention can be used for (1) use as an FRET receptor molecule (energy receptor) or (2) for the development of a system that converts the energy of irradiated light into energy other than light. Or (3) modification to emit fluorescence by introducing a mutation into the amino acid sequence of the protein.
  • the chromoprotein of the present invention is characterized in that it has a stable light absorption property; That is, in the chromoprotein of the present invention, the fluctuation of the peak value of the absorption spectrum is small in the pH range of 5 to 10. Therefore, the chromoprotein of the present invention can be used under similar conditions in a wide range of pH environments, and there are few restrictions on its use in vivo.
  • chromoprotein of the present invention include a chromoprotein having any one of the following amino acid sequences. (a) the amino acid sequence of SEQ ID NO: 11; or
  • the fifth fluorescent protein of the present invention is derived from mushroom iobophytwn crasswi) and has the following characteristics.
  • the excitation maximum wavelength is 482 nm
  • Mushroom crassimi is a species of coral belonging to the Crustacea Phaeophyceae Echinodes Coral.
  • the fifth fluorescent protein of the present invention has an excitation maximum wavelength of 482 nm and a fluorescence maximum wavelength of 498 nm.
  • the extinction coefficient at 482 nm is 71,000 and the quantum yield is 0.41.
  • the molar extinction coefficient indicates the amount of photons absorbed per mole of fluorescent molecule, and the quantum yield is a numerical value indicating how much of the absorbed photons can emit fluorescence.
  • fluorescent protein of the present invention include fluorescent proteins having any one of the following amino acid sequences.
  • ⁇ 1 to several '' in the ⁇ amino acid sequence having 1 to several amino acid deletions, substitutions and / or additions '' referred to in the present specification is not particularly limited, for example, 1 to 20, Preferably 1 to 10, more preferably 1 to 7, and even more preferably It preferably means 1 to 5, particularly preferably about 1 to 3.
  • “having fluorescence” and “fluorescent protein” include all cases that can emit fluorescence, and various properties such as fluorescence intensity, excitation wavelength, fluorescence wavelength, and pH sensitivity are as follows. Compared to the protein having the amino acid sequence of SEQ ID NO: 1, the protein may be changed or may be the same.
  • the term “absorbing property” means a property capable of absorbing light of a certain wavelength, and for example, may have a maximum absorption wavelength of 592 nm as in the case of the chromoprotein described herein. Alternatively, the value of the absorption maximum wavelength may be shifted. In addition, it is preferable that the PH sensitivity of the light absorption property is stable at pH 5 to 10.
  • the chromoprotein having the amino acid sequence described in SEQ ID NO: 11 of the sequence listing of the present invention hardly emits fluorescence.
  • a protein that emits stronger fluorescence may be produced by introducing deletion, substitution and / or addition of one to several amino acids to the amino acid sequence described in SEQ ID NO: 11. Such proteins are well within the scope of the present invention.
  • the method for obtaining the fluorescent protein and the chromoprotein of the present invention is not particularly limited, and may be a protein synthesized by chemical synthesis or a recombinant protein produced by a genetic recombination technique. ...-When producing a recombinant protein, it is necessary to first obtain DNA encoding the protein.
  • the amino acid sequence described in SEQ ID NO: 1, 3, 5, 7, 9, 11, or 13 of the sequence listing herein and the amino acid sequence described in SEQ ID NO: 2, 4, 6, 8, 10, 10, 12, or 14 Designing appropriate primers by using the information on the base sequence obtained, common corals (Montipora sp.), Acropora sp., And Metinisoginchaku (Actinia equina; or c)
  • the DNA encoding the fluorescent protein or the chromoprotein of the present invention can be obtained by performing PCR using the cDNA library derived from mushroom (Lobophytum crassum) as type III.
  • the prepared DNA fragments are sequentially ligated by a gene recombination technique. By doing so, DNA encoding the desired fluorescent protein or chromoprotein can be obtained.
  • the fluorescent protein or chromoprotein of the present invention can be produced. The expression in the expression system will be described later in this specification.
  • DNA encoding the fluorescent protein of the present invention include any of the following DNAs.
  • DNA encoding the fluorescent protein of the present invention include any of the following DNAs. -
  • DNA encoding the chromoprotein of the present invention include any of the following D
  • DNA encoding the chromoprotein of the present invention include DNA having any one of the following nucleotide sequences.
  • the DNA of the present invention can be synthesized, for example, by the phosphoramidite method or the like, or can be produced by the polymerase chain reaction (PCR) using specific primers.
  • PCR polymerase chain reaction
  • the method for producing DNA or a fragment thereof of the present invention is as described above in this specification.
  • a method for introducing a desired mutation into a predetermined nucleic acid sequence is known to those skilled in the art.
  • a DNA having a mutation is constructed by appropriately using a known technique such as site-directed mutagenesis, PCR using a degenerate oligonucleotide, exposure of a cell containing nucleic acid to a mutagen or radiation. can do. .
  • a known technique such as site-directed mutagenesis, PCR using a degenerate oligonucleotide, exposure of a cell containing nucleic acid to a mutagen or radiation.
  • Such known techniques are described, For example, Molecular Cloning: A laboratory Mannual, 2 nd Ed, Cold Spring Harbor Laboratory, Cold Spring Harbor, ⁇ ⁇ , 1989 ⁇ - line - in Current Protocols in Molecular Biology, Supplement; ! 38, John Wiley & Sons (1987-1997).
  • the DNA of the present invention can be used by inserting it into an appropriate vector.
  • the type of vector used in the present invention is not particularly limited.
  • an autonomously replicating vector for example, an autonomously replicating vector
  • plasmid may be integrated into the genome of the host cell when introduced into the host cell and replicated along with the integrated chromosome.
  • the vector used in the present invention is an expression vector.
  • Expression vector In the DNA of the present invention, elements required for transcription (for example, a promoter and the like) are operably linked.
  • a promoter is a DNA sequence that exhibits transcription activity in a host cell, and can be appropriately selected depending on the type of host.
  • the promoters operable in bacterial cells include the Bacillus stearus thermophilus manoletosienic amylase gene (Bac i 1 lus stear othermophi lus maltogenic amylase gene) and the Bacillus licheniformis alpha- amylase gene (Bacillus licheniformis alpha—).
  • Bacillus amyloliquefaciens BAN amylase gene Bacillus subtilis s. squirrel, Bacillus subtilis alkaline protease gene or Bacillus pumilus xylosidase. gene (Bacillus pumilus xylosldase gene) promoter or phage. lambda P R or P L promoters,, lac of E.coli, such as trp or tac promoter and the like.
  • promoters operable in mammalian cells include the SV40 promoter, the MT11 (metamouth thionein gene) promoter, or the adenovirus 2 major late promoter.
  • promoters operable in insect cells include the polyhedrin promoter, the P10 promoter, the autographer and the force-reforming force, and the polyhedrosis basic protein promoter, the Pakiyu-mouth virus immediate-early early gene 1-mouth motor, Or Pakiurovirus 39K delayed early gene promoter.
  • promoters operable in yeast host cells include promoters derived from yeast glycolysis genes, anorecol dehydrogenase gene promoters, TPI1 promoters, ADH2-4c promoters, and the like.
  • promoters operable in filamentous fungal cells include the ADH3 promoter or the tpIA promoter.
  • the DNA of the present invention may be operably linked to a suitable terminator, such as, for example, a human growth hormone terminator or, for fungal hosts, a TPI1 terminator or an ADH3 terminator.
  • a suitable terminator such as, for example, a human growth hormone terminator or, for fungal hosts, a TPI1 terminator or an ADH3 terminator.
  • the recombination mechanism of the present invention may further include a polyadenylation signal (eg, from the SV40 or adenovirus 5E1b region), a transcription enhancer sequence (eg, the SV40 enhancer) and a translation enhancer sequence (eg, the adenovirus VA RNA). Code).
  • the recombinant vector of the present invention may further comprise a DNA sequence that allows the vector to replicate in a host cell, such as the SV40 origin of replication (where the host cell is a mammalian cell). At the time of).
  • a host cell such as the SV40 origin of replication (where the host cell is a mammalian cell). At the time of).
  • the recombinant vector of the present invention may further contain a selection marker.
  • Selectable markers include, for example, dihydrofolate reductase (DHFR) or a gene whose complement is lacking in the host cell, such as Schizosaccharomyces bomb TPI gene, or ampicillin, kanamycin, tetracycline, chloramphenicol. And drug resistance genes such as neomycin or hygromycin.
  • DHFR dihydrofolate reductase
  • a gene whose complement is lacking in the host cell such as Schizosaccharomyces bomb TPI gene, or ampicillin, kanamycin, tetracycline, chloramphenicol.
  • drug resistance genes such as neomycin or hygromycin.
  • Transformants can be prepared by introducing the DNA or recombinant vector of the present invention into an appropriate host.
  • the host cell into which the DNA or the recombinant vector of the present invention is introduced may be any cell as long as it can express the DNA construct of the present invention, and examples include bacteria, yeast, fungi and higher eukaryotic cells.
  • Examples of bacterial cells include Gram-positive bacteria such as Bacillus or Streptomyces or Gram-negative bacteria such as Escherichia coli. Transformation of these bacteria may be carried out by protoplast method or by using a competent cell by a known method.
  • Examples of mammalian cells include HEK293 cells, HeLa cells, COS cells, BHK cells, CHL cells or CHO cells. Methods for transforming mammalian cells and expressing the introduced DNA sequence in the cells are also known. For example, an electoral poration method, a calcium phosphate method, a lipofection method and the like can be used.
  • yeast cells include cells belonging to Saccharomyces or Schizosaccharomyces, such as Saccharomyces cerevislae or Saccharomyces kanoyveri.
  • Examples of the method for introducing the compound include an electoral port method, a spheroblast method, and a lithium acetate method.
  • filamentous fungi such as cells belonging to Aspergillus, Neurospora, Fusarium, or Trichoderma.
  • transformation can be performed by integrating the DNA construct into the host chromosome to obtain a recombinant host cell. Integration of the DNA construct into the host chromosome can be performed according to known methods, for example, by homologous recombination or heterologous recombination.
  • a recombinant gene transfer vector and a baculovirus are co-transfected into the insect cell to obtain the recombinant virus in the insect cell culture supernatant, and then the recombinant virus is transferred to the insect cell.
  • proteins for example, as described in Baculovirus Expression Vectors, A Laboratory Manual; and in Rent 'Protocols' in 'Molecular' Biology, Bio / Technology, 6, 47 (1988), etc.).
  • an autographa californica nuclear polyhedrosis virus which is a virus that infects an insect of the family Zygonia
  • Insect cells include Spodoptera frugiperda ovary cells, Sf9 and Sf21, "Paculowis.
  • Expression 'Vectors' and 'Laboratory' Manual, Dapley's 'Free' and 'Company' (WH Freeman and Company), New York (New York), (1992)], Trichoplusia ni ovarian cell Hi Five (manufactured by Invitrogen), etc. it can.
  • Examples of a method of co-introducing the recombinant gene transfer vector and the baculovirus into insect cells to prepare a recombinant virus include a calcium phosphate method and a Lipofexion method.
  • the above transformants are cultured in a suitable nutrient medium under conditions that allow expression of the introduced DNA construct.
  • a conventional protein isolation and purification method may be used.
  • the protein of the present invention when expressed in a dissolved state in cells, the cells are recovered by centrifugation after cell culture, suspended in an aqueous buffer, and then disrupted by an ultrasonic disrupter or the like. Obtain a cell-free extract.
  • a normal protein isolation and purification method that is, a solvent extraction method, a salting out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, Anion exchange chromatography using a resin such as cetyl aminoethyl (DEAE) sepharose, cation exchange chromatography using a resin such as S-Sepharose FF (manufactured by Pharmacia), butyl sepharose Electrophoresis, such as hydrophobic chromatographic micrographing method using resin such as fenino resepharose, gel filtration method using molecular sieve, affinity chromatography method, chromatofocusing method, isoelectric focusing A purified sample can be obtained by using techniques such as electrophoresis alone or in combination.
  • a resin such as cetyl aminoethyl (DEAE) sepharose
  • cation exchange chromatography using a resin such as S-Sepharose FF (manufactured by Pharma
  • a fused fluorescent protein can be constructed by fusing a fluorescent protein with another protein.
  • the method for obtaining the fusion fluorescent protein of the present invention is not particularly limited, and may be a protein synthesized by chemical synthesis or a recombinant protein produced by a genetic recombination technique.
  • a DNA encoding the protein can be constructed by designing appropriate primers by utilizing the information of the present invention and performing PCR by using a DNA fragment containing the gene of the fluorescent protein of the present invention as type III. DNA fragments required for the preparation can be prepared. Similarly, a DNA fragment encoding the protein to be fused is obtained.
  • DNAs encoding the desired fusion fluorescent protein can be obtained by sequentially linking these DNA fragments by a gene recombination technique. By introducing this DNA into an appropriate expression system, the fusion fluorescent protein of the present invention can be produced.
  • the fluorescent protein of the present invention is particularly useful as a label. That is, the fluorescent protein of the present invention is purified as a fusion protein with the test amino acid sequence, introduced into cells by a technique such as microinjection, and the distribution of the fusion protein is observed over time. It is possible to detect the intracellular targeting activity of the amino acid sequence. --The type of the other protein (test amino acid sequence) to which the fluorescent protein of the present invention is fused is not particularly limited. For example, a protein localized in a cell, Proteins, targeting signals (eg, nuclear transport signals, mitochondrial bleeding sequences) and the like are suitable.
  • the fluorescent protein of the present invention can be used by expressing it in a cell, instead of introducing it into the cell by a microinjection method or the like. In this case, a vector into which DNA encoding the fluorescent protein of the present invention has been inserted so that it can be expressed is introduced into host cells.
  • the fluorescent protein of the present invention can be used as a reporter protein for measuring promoter activity. That is, a vector having a DNA encoding the fluorescent protein of the present invention arranged downstream of a test promoter is constructed, and this is introduced into a host cell. Then, the activity of the test promoter can be measured by detecting the fluorescence of the fluorescent protein of the present invention emitted from the cells.
  • the test promoter is not particularly limited as long as it functions in the host cell.
  • the vector used for detecting the targeting activity of the test amino acid sequence and measuring the promoter activity is not particularly limited.
  • pNE0 p. Southern, and P. Berg ( 1982) J. M01. Appl. Genet. 1: 327
  • pCAGGS H. Mwa, K. Yamamura, and J. Miyazaki.
  • the types of cells that can be used are not particularly limited, and various animal cells, for example, L cells, BalbC 3T3 cells, NIH3T3 cells, CHO (Chinese hamster ovary) cells, HeLa cells, NRK (normal rat kidney) cells It is possible to use yeast cells such as Saccharomyces cerevisiaej or E. coli cells. Vectors can be introduced into host cells by a conventional method such as the calcium phosphate method or the electoporation method. Can be.
  • the protein in the cell is obtained. It becomes possible to analyze the localization and dynamics of X. That is, by observing the cells transformed or transfected with the DNA encoding the fusion fluorescent protein of the present invention with a fluorescence microscope, the localization and dynamics of protein X in the cells can be visualized and analyzed.
  • protein X a protein specific to intracellular organelles as protein X
  • nuclei mitochondria
  • endoplasmic reticulum Golgi apparatus
  • secretory vesicles peroxisomes, etc. Distribution and movement can be observed.
  • axons and dendrites of nerve cells show remarkably complicated changes in strike direction in developing individuals, so dynamic analysis becomes possible by fluorescently labeling such sites.
  • the fluorescence of the fluorescent protein of the present invention can be detected as it is in living cells. This detection can be performed using, for example, a fluorescence microscope (Axio Photo Filter Set 09 by Carl Zeiss) or an image analyzer (ATT0 digital image analyzer).
  • the type of microscope can be appropriately selected according to the purpose. If frequent observations are required, such as tracking changes over time, a normal epifluorescence microscope is preferred. When resolution is important, for example, when pursuing detailed localization in a cell, a confocal laser microscope is preferable.
  • a microscope system an inverted microscope is preferable from the viewpoint of maintaining the physiological state of cells and preventing contamination.
  • a water immersion lens can be used when using a high magnification lens.
  • An appropriate filter set can be selected according to the fluorescence wavelength of the fluorescent protein.
  • chromoprotein of the present invention when observing live cells over time using a fluorescence microscope, imaging should be performed in a short time, so use a high-sensitivity cooled CCD camera. Cooling CCD cameras can reduce thermal noise by cooling the CCD, and can capture weak fluorescent images clearly with short exposures. (6) Use of the chromoprotein of the present invention and a fusion protein containing the same
  • the fusion protein of the present invention can be constructed by fusing it with another protein.
  • the type of other proteins fused to the chromoprotein of the present invention is not particularly limited, but is preferably a protein that interacts with another molecule, such as a receptor protein or its ligand, or an antigen or antibody. Is mentioned.
  • the method for obtaining the fusion protein of the present invention is not particularly limited, and may be a protein synthesized by chemical synthesis or a recombinant protein produced by a genetic recombination technique.
  • DNA encoding the chromoprotein of the present invention and the DNA encoding the other protein to be fused thereto can be obtained by the method described above in the present specification or according to the method. Subsequently, DNAs encoding the desired fusion protein can be obtained by sequentially linking these DNA fragments by a gene recombination technique. By introducing this DNA into an appropriate expression system, the fusion protein of the present invention can be produced.
  • FRET fluorescence resonance energy transfer
  • the interaction between the first and second molecules can be visualized by causing (CFP) to act as a donor molecule and causing FRET (fluorescence resonance energy transfer) between the two.
  • FRET fluorescence resonance energy transfer
  • different dyes are introduced into two types of molecules, respectively, and the dye with the higher energy level (donor molecule) is selectively excited, the fluorescence of the dye is measured, and the other dye (acceptor molecule) is measured.
  • the long-wavelength fluorescence is also measured, and the interaction between the molecules is visualized by the amount of change in the fluorescence.
  • the chromoprotein of the present invention is particularly useful as an acceptor molecule in FRET (fluorescence resonance energy transfer). That is, a fusion (first fusion) of the chromoprotein of the present invention and a test substance is prepared. Next, a fusion (a second fusion) of another test substance interacting with the test substance and another fluorescent protein is prepared. Then, the interaction between the two types of test substances can be analyzed by causing the first fusion and the second fusion to interact with each other and analyzing the emitted fluorescence.
  • FRET fluorescence resonance energy transfer
  • the FRET (fluorescence resonance energy transfer) using the chromoprotein of the present invention may be performed in a test tube or in a cell.
  • an intracellular component comprising at least one selected from the fluorescent proteins, fusion fluorescent proteins, DNAs, recombinant vectors, or transformants described in the present specification. And / or a kit for analysis of the localization and / or analysis of a physiologically active substance.
  • the kit of the present invention can be prepared by commonly used materials and techniques known per se.
  • a light absorption reagent kit comprising at least one selected from the chromoproteins, fusion proteins, DNAs, recombinant vectors and transformants described in the present specification. You.
  • the kit of the present invention can be prepared using commonly used materials and techniques known per se.
  • Reagents such as a fluorescent protein, a chromoprotein or DNA can be prepared in a form suitable for storage by dissolving in an appropriate solvent.
  • an appropriate solvent water, ethanol, various buffers and the like can be used. The present invention will be specifically described with reference to the following examples, but the present invention is not limited to the examples.
  • Example 1 Isolation of a novel fluorescent protein gene (COG) from Coral reef coral and analysis of its fluorescent properties
  • the fluorescent protein gene was isolated from coral. Common coral (Montipora sp.) was used as a material. Frame the frozen common coral in a mortar and weigh 2 grams of "TRIzol"
  • RNA dissolved in DEPC water was diluted 100-fold, and the RNA concentrations were measured by measuring the values of 0. D. 260 and 0. D. 280. 22 ⁇ g of total RNA was obtained.
  • cDNA (33 ⁇ l) was synthesized using a First strand cDNA synthesis kit, Ready To Go ”(Amersham Pharmacia).
  • PCR was performed using 3 ⁇ l of the synthesized first strand cDNA (33 ⁇ l) as type III. Primers were designed by comparing the amino acid sequences of known fluorescent proteins, extracting similar parts, and converting them back to base sequences.
  • PCR was performed again under the same conditions. 350 bp was excised and purified by agarose gel electrophoresis.
  • the purified DNA fragment was ligated to pT7_blue vector (Novagen). Transformation into an E. coli strain (TG1) was performed and blue-white selection was performed. Plasmid DNA was purified from white colonies of E. coli, and the base sequence of the inserted DNA fragment was determined by a DNA sequencer. The obtained nucleotide sequence was compared with the nucleotide sequences of other fluorescent protein genes to determine whether the DNA nucleotide sequence was derived from the fluorescent protein. For those determined to be part of the fluorescent protein gene, the 5'-RACE method and And 3, the entire gene was cloned by the -RACE method.
  • the 5'-RACE method was used to determine the 5'-side nucleotide sequence of the DNA fragment obtained by Degenerated PCR using the 5, -RACE System for Rapid Amplification of cDNA Ends, Version 2.0 (GIBCO BRL). went. As type 5, 5 zg of the total RNA prepared in (1) was used.
  • the amplified 350 bp band was excised and purified by agarose gel electrophoresis.
  • the purified DNA fragment was ligated to pT7-blue vector (Novagen). Transformation into an E. coli strain (TG1) was performed, and blue-white selection was performed. Plasmid DNA was purified from E. coli white colonies, and the base sequence of the inserted DNA fragment was determined by a DNA sequencer.
  • the three-sided portion of the DM fragment obtained by the degenerated PCR was obtained by PCR of a primer prepared based on the information obtained by the nucleotide sequencing in (4) and an oligo dT primer.
  • a primer prepared based on the information obtained by the nucleotide sequencing in (4) and an oligo dT primer was used as the template.
  • 3 ⁇ l of the first strand cDNA prepared in (2) was used as the template. ⁇
  • the created primer is
  • the amplified band of about 1000 bp was excised by agarose gel electrophoresis and purified.
  • the purified DNA fragment was ligated to pT7-bluevector (Novagen).
  • the strain was transformed into an E. coli strain (TG1) and subjected to blue-white selection.
  • Plasmid DNA was purified from white colonies of Escherichia coli, and the nucleotide sequence of the inserted DNA fragment was determined using a DNA sequencer.
  • a primer was prepared at the portion corresponding to the N-terminus of the protein, and on the C-terminus side, using oligo dT primer, the first strand cDNA prepared in (2) was used as a Went.
  • Primer used 5'-GGGGGATCCGACCATGGCTCTTTCAAAGCGAGGTG-3 '(primer 8) (SEQ ID NO: 22) Composition of PCR reaction solution
  • the amplified approximately 1000 bp band was cut out by agarose gel electrophoresis, purified, subcloned into the BamHI and EcoRI sites of the pRSET vector (Invitrogen), and expressed in an E. coli strain (JM109-DE3). .
  • the expressed protein was constructed so that a His-tag was added to the N-terminus, so the expressed protein was purified on Ni-Agarose gel (QIAGEN). The purification method followed the attached protocol. Next, the properties of the purified protein were analyzed.
  • the absorption spectrum was measured using a solution of 20 M fluorescent protein (C0G) and 150 mM KC1, 50 rail HEPES pH 7.5 (Fig. 1B). The molar extinction coefficient was calculated from the value of the peak (507 nm) of this spectrum.
  • the fluorescent protein is diluted with the above buffer solution so that the absorbance at 450 nm becomes 0.002, and the fluorescence spectrum when excited at 450 nm and excitation at 550 nm are used.
  • the excitation spectrum was measured (Fig. 1A).
  • the fluorescent protein was diluted to the same concentration with each buffer, and the absorbance at 507 nm was measured to measure pH sensitivity (Fig. 1C).
  • the buffers for each pH are as follows:
  • Example 2 Isolation of a novel fluorescent protein gene (MIG) from coral
  • the fluorescent protein gene was isolated from the coral that emits fluorescence. Acropora sp. Was used as the material. The prawn was crushed with a hammer, and 5 ml of crushed coral was added with 15 ml of "TRIzol" (GIBC0 BRL), stirred, and centrifuged at 1500 X g for 10 minutes. The supernatant was added with 3 ml of a mouth-mouthed form, stirred for 15 seconds, and allowed to stand for 3 minutes. Centrifuged at 7500 X g for 15 minutes. 7.5 ml of isopropanol was added to the supernatant, and the mixture was stirred for 15 seconds and allowed to stand for 10 minutes.
  • Trizol GIBC0 BRL
  • RNA dissolved in DEPC water was diluted 100-fold, and the RNA concentrations were measured by measuring the values of 0. D. 260 and 0. D. 280. 220 ⁇ g of total RNA was obtained.
  • cDNA (33 / i1) was synthesized using a First strand cDNA synthesis kit, Ready To Go ”(Amersham Pharmacia).
  • PCR was performed using 3 ⁇ l of the synthesized first strand cDNA (331) as type III. Primers were designed by comparing the amino acid sequences of known fluorescent proteins, extracting similar parts, and converting them back to base sequences.
  • R A or G
  • Y C or T
  • V A, C or G
  • D A, G or T
  • PCR was performed again under the same conditions. A 350 bp band of the size expected by agarose gel electrophoresis was cut out and purified.
  • Purified ⁇ piece was Raigeshiyon the P T7- blue vector (Novagen). Transformation into an E. coli strain (TG1) was performed and blue-white selection was performed. Plasmid DNA was purified from white colonies of E. coli, and the base sequence of the inserted DNA fragment was determined by a DNA sequencer. The obtained nucleotide sequence was compared with the nucleotide sequences of other fluorescent protein genes to determine whether the DM nucleotide sequence was derived from the fluorescent protein. For the gene determined to be a part of the fluorescent protein gene, the entire gene was cloned by the 5'-RACE method and the 3'-RACE method.
  • the amplified 500 bp band was cut out and purified by agarose gel electrophoresis.
  • the purified DNA fragment was ligated to pT7-blue vector (Novagen). E. coli strain
  • TG1 TG1
  • blue-white selection was performed, plasmid DNA was purified from E. coli white colonies, and the base sequence of the inserted DNA fragment was determined by a DNA sequencer.
  • the 3'-side portion of the DNA fragment obtained by the Degenerated PCR was obtained by PCR of a primer prepared based on the information obtained in the base sequence determination in (4) and an oligo dT primer. ⁇
  • 3 ⁇ l of the first strand cDNA prepared in (2) was used.
  • the primers created were 5, -ATGGTGTCTTATTCAAAGCAAGGCATCGCACA-3 '(primer 7)
  • the amplified 900 bp band was excised and purified by agarose gel electrophoresis.
  • the purified DNA fragment was ligated to pT7-blue vector (Novagen). Transformation into an Escherichia coli strain (TG1) was performed, and white / white selection was performed. Plasmid DNA was purified from E. coli white colonies, and the base sequence of the inserted DNA fragment was determined using a DNA sequencer.
  • PCR was performed using the first strand cDNA prepared in (2) as type III, using a primer prepared at the portion corresponding to the N-terminal of the protein and an oligo dT primer.
  • the amplified 900 bp band was excised by agarose gel electrophoresis, purified, subcloned into the BamHI and EcoRI sites of the pRSET vector (Invitrogen), and expressed in an E. coli strain (JM109-DE3).
  • the expression protein was purified by Ni-Agarose gel (QIAGEN), since it was constructed so that His-tag was attached to the N-terminus.
  • the purification method was in accordance with the attached protocol. Next, the properties of the purified protein were analyzed.
  • the absorption spectrum was measured using a solution of 20 ⁇ fluorescent protein (MIG), 150 mM KC1, and 50 mM HEPES pH 7.4 (FIG. 3B). The molar extinction coefficient was calculated from the value of the peak (505 nm) of this spectrum.
  • the fluorescent protein was diluted with the buffer solution described above so that the absorbance at 440 nm was 0.001, and the fluorescence spectrum when excited at 440 nm and the excitation spectrum due to the fluorescence at 540 nm were measured ( Figure 3 A).
  • the fluorescent protein was diluted with each buffer, and the absorbance at 505 nm was measured to determine the pH sensitivity.
  • the buffers for each pH are as follows:
  • Example 3 Isolation of a novel fluorescent protein gene (MICy) from coral
  • the fluorescent protein gene was isolated from the coral that emits fluorescence. Acropora sp. Was used as the material. The green grass was ground with a hammer, and 15 ml of "TRIzol" (GIBCO BRL) was added to 5 grams of the framed coral, stirred, and centrifuged at 1500 X g for 10 minutes. The supernatant was added with 3 ml of lip-mouthed form, stirred for 15 seconds and allowed to stand for 3 minutes. Centrifuged at 7500 X g for 15 minutes. 7.5 ml of isopropanol was added to the supernatant, and the mixture was stirred for 15 seconds and allowed to stand for 10 minutes. Centrifuged at 17000 ⁇ g for 10 minutes.
  • RNA dissolved in DEPC water was diluted 100-fold, and the RNA concentrations were measured by measuring the values of 0. D. 260 and 0. D. 280. 220; zg of total RNA was obtained.
  • cDNA 33 ⁇ ⁇ was synthesized using the first strand cDNA synthesis kit “Ready To Go” (Amersham Pharmacia).
  • PCR was performed using 3 ⁇ l of the synthesized first strand cDNA (33 ⁇ l) as type III. Primers were designed by comparing the amino acid sequences of known fluorescent proteins, extracting similar parts, and converting them back to base sequences.
  • R A or G
  • Y C or T
  • V A, C or G
  • D A, G or T
  • the above three steps were performed for 30 cycles, and the annealing temperature was lowered by 0.3 ° C per cycle.
  • the temperature during 30 cycles is 43 ° C.
  • PCR was performed once again under the same conditions using the amplification product ⁇ obtained from the first PCR reaction as a template.
  • a 350 bp band of the expected size was excised by agarose gel electrophoresis and purified.
  • the purified DNA fragment was ligated to pT7-blue vector (Novagen).
  • the strain was transformed into an E. coli strain (TG1) and subjected to blue-white selection.
  • Plasmid DNA was purified from white colonies of E. coli, and the base sequence of the inserted DNA fragment was determined using a DNA sequencer.
  • the obtained nucleotide sequence was compared with the nucleotide sequences of other fluorescent protein genes to determine whether the DNA nucleotide sequence was derived from the fluorescent protein.
  • the entire gene was cloned by the 5'-RACE method and the 3, -RACE method.
  • the amplified 500 bp band was excised and purified by agarose gel electrophoresis.
  • the purified DNA fragment was ligated to pT7_blue vector (Novagen). E. coli strain
  • TG1 TG1
  • blue-white selection was performed, plasmid DNA was purified from E. coli white colonies, and the base sequence of the inserted DNA fragment was determined by a DNA sequencer.
  • the 3'-side portion of the DNA fragment obtained by the Degenerated PCR was obtained by PCR of a primer prepared based on the information obtained in the base sequence determination in (4) and an oligo dT primer. ⁇
  • 3 ⁇ l of the first strand cDNA prepared in (2) was used.
  • the primers created were 5, -ATGGTGTCTTATTCAAAGCAAGGCATCGCACA-3 '(primer 7)
  • the amplified 900 bp band was excised and purified by agarose gel electrophoresis.
  • the purified DNA fragment was ligated to pT7-blue vector (Novagen). It performed Blue White selection by transformation into E. coli strain (TG1), from E. coli white have colonies were purified pl asm id DNA, the nucleotide sequence of the inserted DNA fragment was determined by DNA Shikuensa scratch.
  • PCR was performed using the first strand cDNA prepared in (2) as type III, using a primer prepared at the portion corresponding to the N-terminal of the protein and an oligo dT primer.
  • the amplified 900 bp band was cut out by agarose gel electrophoresis, purified, subcloned into the BamHI and EcoRI sites of the pRSET vector (Invitrogen), and expressed in an E. coli strain (JM109-DE3).
  • the expression protein was purified by Ni-Agarose gel (QIAGEN) because the construct was constructed so that a His-tag was attached to the N-terminus.
  • the purification method was in accordance with the attached protocol. Next, the properties of the purified protein were analyzed.
  • the absorption spectrum was measured using a solution of 20 ⁇ fluorescent protein (MICy), 150 mM KC1, and 50 mM HEPES pH 7.4 (FIG. 4B). The molar extinction coefficient was calculated from the value of the peak (472 ⁇ ) of this spectrum.
  • the fluorescent protein was diluted with the above buffer solution so that the absorbance at 440 nm became 0.001, and the fluorescence spectrum when excited at 440 nm and the excitation spectrum due to 540 nm fluorescence were measured ( ( Figure 4A).
  • measure the fluorescence spectrum of EGFP (CL0NTECH) so that the absorbance at 440 nm is 0.001, and set the quantum yield of EGFP to 0.6.
  • the quantum yield of the fluorescent protein was determined. Table 3 shows the measurement results.
  • the fluorescent protein was diluted with each buffer, and the absorbance at 472 nm was measured to determine the pH sensitivity.
  • the buffers for each pH are as follows:
  • the fluorescent protein gene was isolated from coral. Common coral (Montipora.) was used as a material. The frozen common coral was crushed in a mortar, and 2 g of wet weight was mixed with 7.5 ml of "TRIzol” (GIBCO BRL), homogenized, and centrifuged at 1500 Xg for 10 minutes. Up In addition, 1.5 ml of black-mouthed form was added to the mixture, and the mixture was stirred for 15 seconds and allowed to stand for 3 minutes. Centrifuged at 7500 X g for 15 minutes. 3.75 ml of isopropanol was added to the supernatant, and the mixture was stirred for 15 seconds and then allowed to stand for 10 minutes. Centrifuged at 17000 ⁇ g for 10 minutes.
  • RNA dissolved in DEPC water was diluted 100-fold, and the RNA concentrations were measured by measuring the values of 0. D. 260 and 0. D. 280. 22 ⁇ g of total RNA was obtained.
  • a cDNA (331) was synthesized using a first strand cDNA synthesis kit “Ready To Go” (Amersham Pharmacia).
  • PCR was performed using 3 ⁇ 1 of the synthesized first strand cDNA (331) as type III. Primers were designed by comparing the amino acid sequences of known fluorescent proteins, extracting similar parts, and converting them back to base sequences.
  • PCR was performed again under the same conditions. 350 bp was excised and purified by agarose gel electrophoresis.
  • the purified DNA fragment was ligated to pT7-blue vector (Novagen).
  • the strain was transformed into an E. coli strain (TG1) and subjected to proof white selection.
  • Plasmid DNA was purified from E. coli white colonies, and the nucleotide sequence of the inserted DNA fragment was determined using a DNA sequencer.
  • the obtained nucleotide sequence was compared with the nucleotide sequences of other fluorescent protein genes to determine whether the DNA nucleotide sequence was derived from the fluorescent protein. Cloning of the entire gene was determined by 5'-RACE method and ⁇ 3, -RACE method for those determined to be part of the fluorescent protein gene.
  • the 5'-RACE method was used to determine the 5'-side nucleotide sequence of the DNA fragment obtained by Degenerated PCR using the 5'-RACE System for Rapid Amplification of cDNA Ends, Version 2.0 (GIBC0 BRL). went. 5 g of the total RNA prepared in (1) was used as type ⁇ .
  • the amplified 350 bp band was cut out and purified by agarose gel electrophoresis.
  • the purified DNA fragment was ligated to pT7-blue vector (Novagen). E. coli strain
  • TG1 blue-white selection was performed, plasmid DNA was purified from Escherichia coli white-collagey, and the base sequence of the inserted DNA fragment was determined by a DNA sequencer.
  • the 3'-side portion of the DNA fragment obtained by the Degenerated PCR was obtained by PCR of a primer prepared based on the information obtained in the base sequence determination in (4) and an oligo dT primer.
  • First strand cDNA prepared was 3 mu 1 using in a ⁇ type (2).
  • the created primer is
  • papermaking create the primer portion corresponding to the N-terminus of the protein, C-terminal, the side using an oligo dT primer, PCR as ⁇ the First strand cDNA prepared in (2) Went.
  • the amplified band of about 1000 bp was excised by agarose gel electrophoresis, purified, subcloned into the BaMI ⁇ EcoRI site of the pRSET vector (Invitrogen), and expressed in an E. coli strain (JM109-DE3).
  • the expressed protein was constructed so that a His-tag was added to the N-terminus, so the expressed protein was purified by Ni-Agarose gel (QIAGEN). The purification method followed the attached protocol. Next, the properties of the purified protein were analyzed.
  • the absorption spectrum was measured using a 20 ⁇ fluorescent protein (C0R), 150 mM KC1, 50 mM HEPES pH 7.5 solution (FIG. 6B). The molar extinction coefficient was calculated from the value of the peak (557 nm) of this spectrum.
  • the fluorescent protein was diluted with the above buffer solution so that the absorbance at 520 nm became 0.002, and the fluorescence spectrum when excited at 520 nm and the excitation spectrum due to 600 nm fluorescence were measured (Fig. 6 A).
  • the fluorescent protein was diluted to the same concentration with each buffer, and the absorbance at 557 nm was measured to determine the pH sensitivity.
  • the buffers for each pH are as follows:
  • Example 5 Isolation of a novel chromoprotein gene from sea anemone and analysis of light absorption properties
  • a chromoprotein gene was isolated from sea anemone.
  • the frozen sea anemone sea anemone was crushed in a mortar, homogenized by adding 7.5 ml of "TRIzol" (GIBC0BRL) to 1 g of wet weight, and centrifuged at 1500 Xg for 10 minutes.
  • 1.5 ml of black-mouthed form was added to the supernatant, stirred for 15 seconds, and then allowed to stand for 3 minutes. Centrifuged at 7500Xg for 15 minutes. 3.75 ml of isopropanol was added to the supernatant, and the mixture was stirred for 15 seconds and allowed to stand for 10 minutes.
  • RNA concentration was determined by diluting the total RNA dissolved in DEPC water 100-fold and measuring the values of 0. D.260 and 0. D.280. 1.2 mg of total RNA was obtained.
  • cDNA (33 ⁇ l) was synthesized by using First strand cDNA synthesis kit “Ready To Go” (Amersham Pharmacia) using ⁇ g of total RNA.
  • PCR was performed using 3 ⁇ l of the synthesized first strand cDNA (33 ⁇ l) as type III. Primers were designed by comparing the amino acid sequences of known fluorescent proteins, extracting similar parts, and converting them back to base sequences.
  • the purified DNA fragment was ligated to pT7-blue vector (Novagen). Transformation into an E. coli strain (TG1) was performed and blue white selection was performed. Plasmid DNA was purified from Escherichia coli having a white mouth, and the base sequence of the inserted DNA fragment was determined using a DNA sequencer. The obtained nucleotide sequence was compared with the nucleotide sequences of other fluorescent protein genes to determine whether the DNA nucleotide sequence was derived from the fluorescent protein. For the genes determined to be part of the fluorescent protein gene, the full-length gene was cloned using the 5, -RACE and 3, -RACE methods.
  • the 5'-RACE method was used to determine the 5'-side nucleotide sequence of the DNA fragment obtained by Degenerated PCR using the 5'-RACE System for Rapid Amplification of cDNA Ends, Version 2.0 (GIBCO BRL). went. As type II, 4 jug of the total R prepared in (1) was used.
  • the amplified 200 bp band was excised and purified by agarose gel electrophoresis.
  • the purified DNA fragment was ligated to pT7-blue vector (Novagen).
  • E. coli strain (TG1) was transformed and blue-white selection was performed. Plasmid DNA was purified from E. coli white colonies, and the base sequence of the inserted DNA fragment was determined using a DNA sequencer. (6) Complete nucleotide sequence determination and protein expression in E. coli
  • a primer was prepared at the portion corresponding to the N-terminus of the protein obtained in (5), and the C-terminal side was subjected to PCR using the oligo dT primer, using the first strand cDNA prepared in (2) as type III. Was.
  • the amplified band of about 900 bp was excised by agarose gel electrophoresis, purified, subcloned into the BaraHI and EcoRI sites of the pRSET vector (Invitrogen), and expressed in an E. coli strain (JM109-DE3). In addition, plasmid was recovered, and the total base sequence inserted was determined. The clone name was Ume. Complete nucleotide sequence and complete amino acid sequence Are shown in SEQ ID NO: 12 and SEQ ID NO: 11 in the sequence listing.
  • the expressed protein was constructed so that His-tag was added to the N-terminus, so the expressed protein was purified on Ni-Agarose gel (QIAGEN). The purification method was in accordance with the attached protocol. Next, we prayed about the properties of the purified protein.
  • the absorption spectrum of the protein was measured in the following 50 mM buffer solution (FIG. 7B).
  • the buffers for each pH are as follows:
  • the fluorescent protein gene was isolated from the coral that emits fluorescence.
  • mushroom Lobophytum crassum
  • Crush the coral with a hammer add 7.5 ml of "TRIzol” (GIBCO BRL) to 4 g of wet weight, stir, and centrifuge at 1500Xg for 10 minutes Was.
  • 1.5 ml of black-mouthed form was added to the supernatant, stirred for 15 seconds, and then allowed to stand for 3 minutes. Centrifuged at 7500 Xg for 15 minutes. 3.75 ml of isopropanol was added to the supernatant, and the mixture was stirred for 15 seconds and then allowed to stand for 10 minutes. Centrifuged at 17000Xg for 10 minutes.
  • RNA concentration was determined by diluting the total RNA dissolved in DEPC water 100-fold and measuring the values of 0. D.260 and OD280. 390 / zg of total RNA was obtained.
  • cDNA (33 ul) was synthesized using a First strand cDNA synthesis kit, Ready To Go ”(Amersham Pharmacia).
  • PCR was performed using 3 ⁇ l of the synthesized first strand cDNA (33 ⁇ l) as type III. Primers were designed by comparing the amino acid sequences of known fluorescent proteins, extracting similar parts, and converting them back to base sequences.
  • R A or G
  • Y C or T
  • V A, C or G
  • D A, G or T
  • PCR was performed again under the same temperature conditions.
  • the primer used is
  • the expected size of a 350 b band was cut out and purified by agarose gel electrophoresis.
  • the purified DNA fragment was ligated to pT7-blue vector (Novagen).
  • the strain was transformed into an E. coli strain (TG1) and subjected to blue-white selection.
  • Plasmid DNA was purified from E. coli in white colonies, and the nucleotide sequence of the inserted DNA fragment was determined using a DNA sequencer.
  • the obtained nucleotide sequence was compared with the nucleotide sequences of other fluorescent protein genes to determine whether the DNA nucleotide sequence was derived from the fluorescent protein.
  • the entire gene was cloned by 5'-RACE method and 3, -RACE method.
  • the 5, -RACE method was used using the -RACE System for Rapid Amplification of cDNA Ends, Version 2.0 (GIBC0 BRL). went. Use 3 ug of total RNA prepared in 1) as type /.
  • the amplified 600 bp band was excised and purified by agarose gel electrophoresis.
  • the purified DNA fragment was ligated to pT7-blue vector (Novagen). E. coli strain
  • TG1 blue-white selection was performed, plasmid DNA was purified from white colonies of Escherichia coli, and the base sequence of the inserted DNA fragment was determined using a DNA theta sensor.
  • a primer was prepared at the portion corresponding to the N-terminus of the protein obtained in (5), and the C-terminus side was subjected to PCR using an oligo dT primer, using the first strand cDNA prepared in 2) as ⁇ -type.
  • the amplified band of about 900 bp was cut out by agarose gel electrophoresis, purified, subcloned into the alI and EcoRI sites of the pRSET vector (Invitrogen), and expressed in an E. coli strain (JM109-DE3). Further, the plasmid was recovered, and the sequence of all the inserted bases was determined. The clone name was KnG. The obtained full-length nucleotide sequence is shown in SEQ ID NO: 14 in the sequence listing, and the full-length amino acid sequence is shown in SEQ ID NO: 13 in the sequence listing.
  • the expressed protein was constructed so that His-tag was added to the N-terminus. Therefore, the expressed protein was purified by Ni-Agarose gel (QIAGEN). The purification method was in accordance with the attached protocol. Next, the properties of the purified protein were analyzed. ,
  • the buffers for each pH are as follows:
  • a novel fluorescent protein derived from common coral (Montipora sp.), Acropora sp-, and mushroom ilobophytim crassum has been provided.
  • the fluorescent protein of the present invention is a novel protein having a different primary structure from conventional fluorescent proteins.
  • the fluorescent protein of the present invention has predetermined fluorescent characteristics and is useful in molecular biological analysis. That is, by using the fluorescent protein of the present invention, a fluorescent label can be produced without exhibiting toxicity in mammalian cells. Further, by introducing a mutation into the fluorescent protein of the present invention, newer fluorescent characteristics can be created.
  • the fluorescent protein (C0R) of the present invention is obtained by using the conventional RFP (DsRed, Clontech). It has a sharper spectrum than the broad excitation spectrum shown by. Further, by introducing a mutation into the fluorescent protein of the present invention, the fluorescence characteristics in the red region can be further diversified.
  • the present invention provides a novel chromoprotein derived from sea anemone (Actinia equina).
  • the chromoprotein of the present invention exhibits absorption in the red region and has low pH sensitivity, and thus is useful in molecular biological analysis.
  • the absorbance (molar extinction coefficient) of the chromoprotein of the present invention is extremely large, highly efficient conversion of light energy is possible.
  • the quantum yield of the chromoprotein of the present invention can be made close to 1 by a genetic modification technique. In this case, a novel fluorescent protein can be produced.

Abstract

 本発明の目的は、新規な蛍光蛋白質及び色素蛋白質を提供することである。本発明によれば、コモンサンゴ(Montipora sp.)、ミドリイシ(Acropora sp.)及びウミキノコ(Lobophytum crassum)由来の新規な蛍光蛋白質、並びにウメボシイソギンチャク(Actinia equina)由来の新規な色素蛋白質が提供される。

Description

明細書
蛍光蛋白質及び色素蛋白質 技術分野
本発明は、 新規な蛍光蛋白質に関する。 より詳細には、 本発明は、 コモンサン ゴ (Montipora sp. )、 ミ ドリイシ (Acropora sp. ) 及ぴゥミキノコ (JLobopnytwn crassum) 由来の新規な蛍光蛋白質及びその利用に関する。
さらに本発明は、 新規な色素蛋白質に関する。 より詳細には、 本発明は、 ウメ ポシイソギンチヤク (Actinia equina) 由来の新規な色素蛋白質及ぴその利用に 関する。 背景技術
クラゲのェクオレア ·ビクトリア (Aequorea victoria) に由来する緑色蛍光蛋 白質 (GF P) は、 生物系において多くの用途を有する。 最近、 ランダム突然変 異誘発法およぴ半合理的(semi- rat ional)突然変異誘発法に基づいて、色を変化さ せたり、 折りたたみ特性を改善したり、 輝度を高めたり、 あるいは pH感受性を 改変したといった様々な G-FP変異体が作製されている。 遺伝子組み換え技術に より他の蛋白質を GFP等の蛍光蛋白質に融合させて、 それらの発現および輸送 のモニタリングを行うことが行われている。
最もよく使用される GFP変異体の一つとして黄色蛍光蛋白質 (YFP) が挙 げられる。 YFPは、 クラゲ (Aequorea) G F P変異体の中でも最長波長の蛍光 を示す。 大部分の YF Pの εおよび Φは、 それぞれ
Figure imgf000002_0001
fe ぴ 0·6〜0·8であり (Tsien, R. Y. (1998). Ann. Rev. Biochem. 67, 509—544)、 これらの値は、 一般的な蛍光団 (フルォレセインおょぴローダミン.など) の値に 匹敵する。 従って YFPの絶対的輝度の改善は、 ほぼ限界に達しつつある。
また、 GFP変異体の他の例として、 シアン蛍光蛋白質 (CF P) があり、 E C F P (enhanced cyan fluorescent protein)が知られている。 また、 イソギン チヤク (Mscoma sp. )からは赤色蛍光蛋白質(R F P ) も単離されており、 DasRed が知られている。 このように蛍光蛋白質は、 緑色、 黄色、 シアン色、 赤色の 4種 が次々と開発されスぺク トルの範囲は大幅に広がっている。
また、 刺胞動物には、 蛍光を発するものが存在する。 刺胞動物由来の蛍光蛋白 質遺伝子のクローニングが試みられているが、 蛍光および生化学的な特性のレパ 一トリ一を増やすためには、 より多くの遺伝子のクローニングが必要である。 一方、 従来の蛍光蛋白質の量子収率を 0に近づけたものが色素蛋白質である。 色素蛋白質は、 光エネルギーを他のエネルギーに変換する分子を細胞内に導入す ることができる点で様々な応用が可能である。 し力 しながら、 色素蛋白質の吸収 波長特性について報告されている例は少なレ、。 発明の開示 、
本発明は、 コモンサンゴ (Montipora sp. )、 ミ ドリイシ (Acropora sp. )、 及ぴ 及ぴゥミキノコ ilobophy turn eras sum) に由来する、 新規な蛍光蛋白質を提供す ることを解決すべき課題とした。
さらに本発明は、従来の R F P (DsRed、 クロンテック社) の示す幅広い励起ス ぺクトルに比べ、 よりシャープなスペク トルを有する蛍光蛋白質を提供すること を解決すべき課題とした。
さらに本発明は、 ウメボシイソギンチヤク (Actinia equina) に由来する、 あ る特定の波長の光を吸収する新規な色素蛋白質を提供することを解決すべき課題 とした。
上記課題を解決するために本発明者らは鋭意検討し、 既知の蛍光蛋白質のアミ ノ酸配列の情報に基づいて好適なプライマーを設計し、コモンサンゴ(Montipora sp. )、 ミドリイシ (Acropora sp. ) 及ぴゥミキノコ Lobophytum crassum) 由来 の c D N Aライブラリ一から上記プライマーを用いて新規な蛍光蛋白質をコード する遺伝子を増幅してクローユングすることに成功した。 さらに本発明者らは、 得られたコモンサンゴ (Montipora sp. )、 ミドリイシ (Acropora sp. )、 及ぴゥミ キノコ ilobophytim crassuni) 由来の蛍光蛋白質の蛍光特性及ぴ P H感受性を解 析した。 また本発明者らは、 既知の蛍光蛋白質のアミノ酸配列の情報に基づいて 好適なプライマーを設計し、 赤色を呈するウメボシイソギンチヤク (Actinia equina) の c DNAライブラリーから上記プライマーを用いて新規な色素蛋白質 をコードする遺伝子を増幅してクローニングすることに成功した。 さらに本発明 者らは、 得られたウメボシイソギンチヤク (Actinia equina) 由来の色素蛋白質 の光吸収特性及ぴ pH感受性を解析した。 本発明は、 これらの知見に基づいて完 成したものである。
即ち、 本発明によれば、 以下の (1) 〜 (3 5) に記載の発明が提供される。 (1) コモンサンゴ(Montipora sp.)由来の下記の特性を有する蛍光蛋白質。
( 1 ) 励起極大波長が 50 7 nmである;
(2) 蛍光極大波長が 5 1 7 nmである;
(3) 507 nmにおけるモル吸光係数が 1 040 50である;
(4) 量子収率が 0. 29である;
( 5 ) 光吸収特性の p H感受性が p K a =約 5 · 5である :
(2) ミドリイシ (Acropora sp. ) 由来の下記の特性を有する蛍光蛋白質。
(1) 励起極大波長が 505 nmである;
(2) 蛍光極大波長が 5 1 6 nmである;
(3) 505 nmにおけるモル吸光係数が 5 3 6 00である;
(4) 量子収率が 0. 6 7である;
( 5 ) 光吸収特性の p H感受性が pKa =約 6. 4である:
(3) ミ ドリイシ (Acropora sp. ) 由来の下記の特性を有する蛍光蛋白質。
(1) 励起極大波長が 472 nmである;
(2) 蛍光極大波長が 49 6 nmである;
(3) 472 nmにおけるモル吸光係数が 2 7 2 5 0である;
(4) 量子収率が 0. 90である;
( 5 ) 光吸収特性の p H感受性が p K a =約 6. 6である: (4) コモンサンゴ (Montipora sp. )由来の下記の特性を有する蛍光蛋白質。
( 1 ) 励起極大波長が 5 5 7 n mである;
( 2 ) 蛍光極大波長が 5 74 n mである;
(3) 5 5 7 nmにおけるモル吸光係数が 4 1 750である;
(4) 量子収率が 0. 4 1である;
( 5 ) 光吸収特性の p H感受性が p K a <約 4. 0である:
(5) ウメポシイソギンチヤク (Actinia equina) 由来の下記の特性を有す る色素蛋白質。
( 1 ) 吸収極大波長が 5 9 2 nmである;
(2) 5 9 2 nmにおけるモル吸光係数が 8 7000である ;
( 3 ) 光吸収特性の p H感受性が p H 5〜 10で安定である:
(6) ゥミキノコ Lobophytum crassi i) 由来の下記の特性を有する蛍光蛋 白質。
( 1 ) 励起極大波長が 48 2 n mである;
(2) 蛍光極大波長が 49 8 nmである;
(3) 48 2 nmにおけるモル吸光係数が 7 1 000である ;
(4) 量子収率が 0. 4 1である;
( 5 ) 蛍光極大の p H感受性が p H = 4〜 1 0で安定である :
(7) 以下の何れかのアミノ酸配列を有する蛍光蛋白質。
( a ) 配列番号 1に記載のァミノ酸配列;又は、
(b) 配列番号 1に記載のアミノ酸配列において 1から数個のアミノ酸の欠失、 置換及び/又は付カ卩を有するアミノ酸配列を有し、 蛍光を有するアミノ酸配列:
(8) 以下の何れかのアミノ酸配列を有する蛍光蛋白質。
( a ) 配列番号 3に記載のァミノ酸配列;又は、
(b) 配列番号 3に記載のァミノ酸配列において 1から数個のァミノ酸の欠失、 置換及び/又は付加を有するアミノ酸配列を有し、 蛍光を有するアミノ酸配列:
(9) 以下の何れかのアミノ酸配列を有する蛍光蛋白質。 ( a ) 配列番号 5又は 7に記載のァミノ酸配列;又は、
(b) 配列番号 5又は 7に記載のアミノ酸配列において 1から数個のアミノ酸の 欠失、 置換及び /又は付加を有するアミノ酸配列を有し、 蛍光を有するアミノ酸 配列:
(10) 以下の何れかのアミノ酸配列を有する蛍光蛋白質。
( a ) 配列番号 9に記載のァミノ酸配列;又は、
( b ) 配列番号 9に記載のァミノ酸配列において 1から数個のァミノ酸の欠失、 置換及び Z又は付加を有するアミノ酸配列を有し、 蛍光を有するアミノ酸配列:
(1 1) 以下の何れかのアミノ酸配列を有する色素蛋白質。
( a ) 配列番号 11に記載のァミノ酸配列;又は、
( )配列番号11に記載のアミノ酸配列において 1から数個のアミノ酸の欠失、 置換及び/又は付カ卩を有するァミノ酸配列を有し、 吸光特性を有するァミノ酸配 列:
(12) 以下の何れかのアミノ酸配列を有する蛍光蛋白質。
( a ) 配列番号 13に記載のァミノ酸配列;又は、
(1))配列番号13に記載のァミノ酸配列において 1から数個のァミノ酸の欠失、 置換及び Z又は付加を有するァミノ酸配列を有し、 蛍光を有するァミノ酸配列:
(13) 請求項 1から 12の何れかに記載の蛋白質をコードする DNA。
(14) 以下の何れかの D N A。
( a ) 配列番号 1に記載のァミノ酸配列をコードする D N A;又は、
(b) 配列番号 1に記載のァミノ酸配列において 1から数個のァミノ酸の欠失、 置換及ぴ 又は付加を有するアミノ酸配列を有し、 蛍光蛋白質をコードする DN
A:
(15) 以下の何れかの塩基配列を有する DNA。
( a ) 配列番号 2に記載の塩基配列;又は、
(b) 配列番号 2に記載の塩基配列において 1から数個の塩基の欠失、 置換及び Z又は付加を有する塩基配列を有し、 蛍光蛋白質をコードする塩基配列: (16) 以下の何れかの DNA。
( a ) 配列番号 3に記載のァミノ酸配列をコードする D N A;又は、
( b ) 配列番号 3に記载のァミノ酸配列において 1から数個のァミノ酸の欠失、 置換及び /又は付加を有するアミノ酸配列を有し、 蛍光蛋白質をコードする DN
A:
(17) 以下の何れかの塩基配列を有する DNA。
( a ) 配列番号 4に記載の塩基配列;又は、
(b) 配列番号 4に記載の塩基配列において 1から数個の塩基の欠失、 置換及び /又は付加を有する塩基配列を有し、 蛍光蛋白質をコードする塩基配列:
(18) 以下の何れかの DNA。
(a) 配列番号 5又は 7に記載のアミノ酸配列をコードする DNA;又は、
(b) 配列番号 5又は 7に記載のアミノ酸配列において 1から数個のアミノ酸の 欠失、 置換及び Z又は付加を有するアミノ酸配列を有し、 蛍光蛋白質をコードす る DNA:
(19) 以下の何れかの塩基配列を有する DNA。
( a ) 配列番号 6又は 8に記載の塩基配列;又は、
( b ) 配列番号 6又は 8に記載の塩基配列において 1から数個の塩基の欠失、 置 換及ぴ Z又は付加を有する塩基配列を有し、 蛍光蛋白質をコードする塩基配列: (20) 以下の何れかの DNA。
( a ) 配列番号 9に記載のァミノ酸配列をコードする D N A;又は、
(b) 配列番号 9に記載のァミノ酸配列において 1から数個のァミノ酸の欠失、 置換及ぴ Z又は付加を有するァミノ酸配列を有し、 蛍光蛋白質をコードする DN A:
(21) 以下の何れかの塩基配列を有する DNA。
( a ) 配列番号 10に記載の塩基配列;又は、
( b ) 配列番号 10に記載の塩基配列において 1から数個の塩基の欠失、 置換及 び/又は付加を有する塩基配列を有し、 蛍光蛋白質をコードする塩基配列: (22) 以下の何れかの DNA。
( a ) 配列番号 11に記載のァミノ酸配列をコードする D N A;又は、
( b )配列番号 11に記載のァミノ酸配列において 1から数個のァミノ酸の欠失、 置換及び 又は付加を有するアミノ酸配列を有し、 吸光特性を有する蛋白質をコ 一ドする DNA:
(23) 以下の何れかの塩基配列を有する DNA。
(a) 配列番号 12に記載の塩基配列;又は、
(b) 配列番号 12に記載の塩基配列において 1から数個の塩基の欠失、 置換及 び/又は付カ卩を有する塩基配列を有し、 吸光特性を有する蛋白質をコードする塩 基配列:
(24) 以下の何れかの DNA。
(a) 配列番号 13に記載のアミノ酸配列をコードする DNA;又は、
(1?)配列番号13に記載のアミノ酸配列において 1から数個のアミノ酸の欠失、 置換及び/又は付加を有するアミノ酸配列を有し、 蛍光蛋白質をコードする DN
A:
(25) 以下の何れかの塩基配列を有する DNA。
(a) 配列番号 14に記載の塩基配列;又は、 .
(b) 配列番号 14に記載の塩基配列において 1から数個の塩基の欠失、 置換及 び/又は付加を有する塩基配列を有し、 蛍光蛋白質をコードする塩基配列:
(26) (13) から (25) の何れかに記載の DNAを有する組み換えべ クタ一。
(27) (13) から (25) の何れかに記載の DN A又は (26) に記載 の組み換えベクターを有する形質転換体。
(28) (1) から (4)、 (6)、 (7) から (10) 又は (12) の何れか に記載の蛍光蛋白質と他の蛋白質とから成る融合蛍光蛋白質。
(29) 他の蛋白質が細胞内に局在する蛋白質である、 (28) に記載の融合 蛍光蛋白質。 (30) 他の蛋白質が細胞内小器官に特異的な蛋白質である、 (28)又は(2 9) に記載の融合蛍光蛋白質。
(31) (5) 又は (1 1) に記載の色素蛋白質と他の蛋白質とから成る融 合蛋白質。
(32) (28) から (30) の何れかに記載の融合蛍光蛋白質を細胞内で 発現させることを特徴とする、 細胞内における蛋白質の局在または動態を分析す る方法。
(33) (5) 又は (1 1) に記載の色素蛋白質をァクセプター蛋白質とし て用いて FRET (蛍光共鳴エネルギー転移) 法を行うことを特徴とする、 生理活性 物質の分析方法。
(34) (1) から (4)、 (6)、 (7) から (10) 又は (12) の何れか に記載の蛍光蛋白質、 (14) から (21)、 (24) 又は (25) の何れかに記載 の DNA、 (26) に記載の組み換えベクター、 (27) に記載の形質転換体、 又 は (28) から (30) の何れかに記載の融合蛍光蛋白質を含む、 蛍光試薬キッ
(35) (5) 又は (1 1) に記載の色素蛋白質、 (22) 又は (23) に記 載の DNA、 (26) に記載の組み換えベクター、 (27) に記載の形質転換体、 又は (31) に記載の融合蛋白質を含む、 吸光試薬キット。 図面の簡単な説明
図 1は、 本発明のコモンサンゴ (Montipora sp. ) 由来の蛍光蛋白質 (COG) の 蛍光スぺク トル及ぴ励起スぺク トル (図 A)、 蛍光蛋白質 (COG) の吸収スぺク ト ル (図 B)、 及び蛍光蛋白質 (C0G) の PH感受性 (図 C) を示す。 図 Cにおいて横 軸は pH値を示し、 縦軸は吸光度を示す。
図 2は、 本発明のコモンサンゴ (Montipora sp. ) 由来の蛍光蛋白質 (C0G) の pH5での蛍光スぺク トル及び励起スぺク トル (図 A) 及び pH5での吸収スぺクト ル (図 B) を示す。 図 3は、 本発明のミドリイシ (Acropora sp. ) 由来の蛍光蛋白質 (MIG) の蛍光 スぺク トル及ぴ励起スぺク トル(図 A)、蛍光蛋白質(MIG) の吸収スぺク トル(図 B)、 及び蛍光蛋白質 (MIG) の pH感受性 (図 C) を示す。 図 Cにおいて、 横軸は pH値を示し、 縦軸は吸光度を示す。
図 4は、 本発明のミドリイシ (Acropora sp. ) 由来の蛍光蛋白質 (MICy) の蛍 光スぺク トル及ぴ励起スぺク トル(図 A)、 蛍光蛋白質(MICy) の吸収スぺク トル
(図 B)、 及ぴ蛍光蛋白質 (MICy) の PH感受性 (図 C) を示す。 図 Cにおいて、 横軸は pH値を示し、 縦軸は吸光度を示す。
図 5は、 本発明の蛍光蛋白質 (MiCy2) の pH感受性 (図 A) 及び励起 ·蛍光ス ぺクトル CUB) を示す。
図 6は、 本発明のコモンサンゴ (Montipora sp.) 由来の蛍光蛋白質 (C0R) の 蛍光スぺク トル及び励起スぺク トル (図 A)、 蛍光蛋白質 (C0R) の吸収スぺクト ル (図 B)、 及ぴ蛍光蛋白質 (C0R) の pH感受性 (図 C)を示す。 図 Cにおいて、 横軸は pH値を示し、 縦軸は吸光度を示す。
図 7は、 本発明のウメボシイソギンチヤク (Actinia equina) 由来の色素蛋白 質 (Ume) の吸収スぺク トル (ρΗ7· 9) を測定した結果 (図 Α)、 及び色素 蛋白質 (Ume) の吸収極大の pH感受性 (図 Β) を示す。 図 Αにおいて、 横軸 は吸収光の波長を示し、縦軸は吸光度を示す。図 Bにおいて、横軸は PH値を示し、 縦軸は吸光度を示す。
図 8は、 本発明のゥミキノコ i obophytum crassuni) 由来の蛍光蛋白質 (KnG) の蛍光スぺク トル及び励起スぺク トル (図 A) 及ぴ蛍光蛋白質 (KnG) の PH依存 性 (図 B)を示す。 ' 発明を実施するための最良の形態
以下、 本発明の実施の形態について詳細に説明する。
(1) 本発明の蛍光蛋白質及ぴ色素蛋白質
本発明の第一の蛍光蛋白質は、 コモンサンゴ (Montipora sp. ) 由来のものであ り、 下記の特性を有することを特徴とする。
(1) 励起極大波長が 5 0 7 nmである;
(2) 蛍光極大波長が 5 1 7 nmである;
(3) 5 0 7 nmにおけるモル吸光係数が 1 04 0 5 0である;
(4) 量子収率が 0. 2 9である;
( 5 ) 光吸収特性の p H感受性が p K a =約 5. 5である:
コモンサンゴ (Montipora sp. ) は、 刺胞動物門花虫綱六放サンゴ亜綱イシサン ゴ目ミ ドリイシ科に属するサンゴの 1種であり、 塊状や被覆状の群体を形成する ことが多い。 .
本発明の第一の蛍光蛋白質は、 以下の実施例で示す通り、 励起極大波長が 5 0 7 nmであり、 蛍光極大波長が 5 1 7 nmである。 また、 5 0 7 nmにおけるモ ル吸光係数は 1 04 0 5 0であり、 量子収率は 0. 2 9である。 モル吸光係数は 蛍光分子 1モルあたりの光子の吸収量を表し、 量子収率は吸収した光子のどれだ けを蛍光として発することができるかを表した数値である。
本発明の第一の蛍光蛋白質の具体例としては、 以下の何れかのアミノ酸配列を 有する蛍光蛋白質が挙げられる。
( a ) 配列番号 1に記載のァミノ酸配列;又は、
( b ) 配列番号 1に記載のァミノ酸配列において 1から数個のァミノ酸の欠失、 置換及び/又は付加を有するアミノ酸配列を有し、 かつ蛍光を有するアミノ酸配 列:
本発明の第二の蛍光蛋白質は、 ミ ドリイシ(Acropora sp. )由来のものであり、 下記の特性を有することを特徴とする。
( 1 ) 励起極大波長が 5 0 5 n mである;
( 2 ) 蛍光極大波長が 5 1 6 n mである;
(3) 5 0 5 nmにおけるモル吸光係数が 5 3 6 0 0である;
(4) 量子収率が 0. 6 7である ;
( 5 ) 光吸収特性の p H感受性が p K a =約 6. 4である: ミドリイシ (Acropora sp. ) は、 刺胞動物門花虫綱六放サンゴ亜綱イシサンゴ 目ミドリイシ科に属するサンゴの 1種であり、 枝状 ·テーブル状の群体を形成す ることが多い。
本発明の第二の蛍光蛋白質は、 以下の実施例で示す通り、 励起極大波長が 50 5nmであり、 蛍光極大波長が 516 nmである。 また、 505 nmにおけるモ ル吸光係数は 53600であり、 量子収率は 0. 67である。 モル吸光係数は蛍 光分子 1モルあたりの光子の吸収量を表し、 量子収率は吸収した光子のどれだけ を蛍光として発することができるかを表した数値である。
本発明の第二の蛍光蛋白質の具体例としては、 以下の何れかのアミノ酸配列を 有する蛍光蛋白質が挙げられる。
( a ) 配列番号 3に記載のァミノ酸配列;又は、
(b) 配列番号 3に記載のァミノ酸配列において 1から数個のァミノ酸の欠失、 置換及び Z又は付加を有するアミノ酸配列を有し、 かつ蛍光を有するアミノ酸配 列:
本発明の第三の蛍光蛋白質は、 ミドリイシ(Acropora sp. )由来のものであり、 下記の特性を有することを特徴とする。
(1) 励起極大波長が 472 nmである;
(2) 蛍光極大波長が 496 nmである;
(3) 472 nmにおけるモル吸光係数が 27250である ;
(4) 量子収率が 0. 90である;
( 5 ) 光吸収特性の p H感受性が pKa=約 6. 6である :
本発明の第三の蛍光蛋白質は、 以下の実施例で示す通り、 励起極大波長が 47 2nmであり、 蛍光極大波長が 496 nmである。 また、 472 nmにおけるモ ル吸光係数は 27250であり、 量子収率は 0. 90である。 モル吸光係数は蛍 光分子 1モルあたりの光子の吸収量を表し、 量子収率は吸収した光子のどれだけ を蛍光として発することができるかを表した数値である。
本発明の第三の蛍光蛋白質の具体例としては、 以下の何れかのアミノ酸配列を 有する蛍光蛋白質が挙げられる。
( a ) 配列番号 5又は 7に記載のァミノ酸配列;又は、
(b) 配列番号 5又は 7に記載のァミノ酸配列において 1から数個のァミノ酸の 欠失、 置換及び Z又は付カ卩を有するアミノ酸配列を有し、 かつ蛍光を有するアミ ノ酸配列:
本発明の第四の蛍光蛋白質は、 コモンサンゴ (Hontipora sp. 由来のものであ り、 下記の特性を有することを特徴とする。
(1) 励起極大波長が 557 nmである ;
( 2 ) 蛍光極大波長が 574 n mである ;
(3) 557 nmにおけるモル吸光係数が 41750である ;
(4) 量子収率が 0. 41である;
( 5 ) 光吸収特性の p H感受性が pKa<約 4. 0である:
本発明の第四の蛍光蛋白質は、 以下の実施例で示す通り、 励起極大波長が 55 7 nmであり、 蛍光極大波長が 574 nmである。 また、 557 nmにおけるモ ル吸光係数は 41750であり、 量子収率は 0. 41である。 モル吸光係数は蛍 光分子 1モルあたりの光子の吸収量を表し、 量子収率は吸収した光子のどれだけ を蛍光-として発することができるかを表した数値である。 一
本発明の第四の蛍光蛋白質の具体例としては、 以下の何れかのアミノ酸配列を 有する蛍光蛋白質が挙げられる。
( a ) 配列番号 9に記載のァミノ酸配列;又は、
( b ) 配列番号 9に記載のァミノ酸配列において 1から数個のァミノ酸の欠失、 置換及び/又は付加を有するアミノ酸配列を有し、 かつ蛍光を有するアミノ酸配 列:
本発明の色素蛋白質は、 ウメボシイソギンチヤク (Actinia equina) 由来のも のであり、 下記の特生を有することを特徴とする。
( 1 ) 吸収極大波長が 592 nmである;
(2) 592 nmにおけるモル吸光係数が 87000である; ( 3 ) 光吸収特性の p H感受性が p H 5〜 1 0で安定である:
ウメポシイソギンチヤク (Actinia equina) は、 刺胞動物門 (Cnidaria)の刺胞 動物亜門の花虫綱(サンゴ虫類) (Anthozoa)の六放珊瑚亜綱 (Hexacorallia)の 磯巾着目 (Actiniaria)のウメポシイソギンチヤク科 (Actiniidae)に属するイソ ギンチヤクの 1種である。 ウメボシイソギンチヤク (Actinia equina) は、 日本 では九州以北の磯に普通に見られ、 触手を広げると水中で赤い花が咲いているよ うに見える。
なお、 本書中以下の実施例では、 ウメボシイソギンチヤク (Actinia equina) を出発材料として上記特性を有する色素蛋白質を単離したが、 ウメボシイソギン チヤク (Actinia equina) 以外のイソギンチヤクから本発明の色素蛋白質を取得 することができる場合もあり、 そのような色素蛋白質も本発明の範囲内である。 本発明の色素蛋白質は、 以下の実施例で示す通り、 吸収極大波長が 5 9 2 n m であり、 また、 5 9 2 n mにおけるモル吸光係数は 8 7 0 0 0である。
モル吸光係数は蛍光分子 1モルあたりの光子の吸収量を表す。 量子収率は吸収 した光子のどれだけを蛍光として発することができるかを表した数値である。 本 発明の色素蛋白質の量子収率は極めて低いため、 蛍光は殆ど発しない。 この性質 から、本発明の色素蛋白質は、 (1 ) F R E Tのァクセプター分子(エネルギー受 容体) として用いたり、 (2 )照射した光のエネルギーを光以外のエネルギーに変 換させるシステムの開発に利用したり、 あるいは (3 ) 蛋白質のアミノ酸配列に 変異を導入して蛍光を発するように改変することなどに用いることができる。 また、 本発明の色素蛋白質は、 光吸収特性の; H感受性が p H 5〜 1 0で安定 であることを特徴とする。 即ち、 本発明の色素蛋白質では、 p H 5〜1 0の範囲 において吸収スぺクトルのピーク値の変動が少ない。 従って、 本発明の色素蛋白 質は、 広範囲の p H環境において同様の条件で使用することができ、.生体内での 使用に際しての制約は少ない。
本発明の色素蛋白質の具体例としては、 以下の何れかのァミノ酸配列を有する 色素蛋白質が挙げられる。 ( a ) 配列番号 1 1に記載のァミノ酸配列;又は、
(b )配列番号 1 1に記載のァミノ酸配列において 1から数個のァミノ酸の欠失、 置換及ぴノ又は付加を有するアミノ酸配列を有し、 吸光特性を有するアミノ酸配 列:
本発明の第五の蛍光蛋白質は、 ゥミキノコ i obophytwn crasswi) 由来のもの であり、 下記の特性を有することを特徴とする。
( 1 ) 励起極大波長が 48 2 n mである;
(2) 蛍光極大波長が 498 nmである;
(3) 482 におけるモル吸光係数が 7 1 000である;
(4) 量子収率が 0. 41である;
(5) 蛍光極大の pH感受性が pH=4〜l 0で安定である:
ゥミキノコ
Figure imgf000015_0001
crassimi) は、 刺胞動物門花虫綱八放サンゴ亜綱に属 するサンゴの 1種である。
本発明の第五の蛍光蛋白質は、 以下の実施例で示す通り、 励起極大波長が 48 2 nmであり、 蛍光極大波長が 49 8 nmである。 また、 48 2 nmにおけるモ ル吸光係数は 7 1 000であり、 量子収率は 0. 4 1である。 モル吸光係数は蛍 光分子 1モルあたりの光子の吸収量を表し、 量子収率は吸収した光子のどれだけ を蛍光として発することができるかを表した数値である。
本発明の第五の蛍光蛋白質の具体例としては、 以下の何れかのアミノ酸配列を 有する蛍光蛋白質が挙げられる。
( a ) 配列番号 1 3に記載のァミノ酸配列;又は、
0)配列番号1 3に記載のアミノ酸配列において 1から数個のアミノ酸の欠失、 置換及び/又は付加を有するアミノ酸配列を有し、 かつ蛍光を有するアミノ酸配 列:
本明細書で言う 「 1から数個のァミノ酸の欠失、 置換及び/又は付加を有する アミノ酸配列」における「1から数個」の範囲は特には限定されないが、例えば、 1から 20個、 好ましくは 1から 1 0個、 より好ましくは 1から 7個、 さらに好 ましくは 1から 5個、 特に好ましくは 1から 3個程度を意味する。
本明細書で言う 「蛍光を有する」 および 「蛍光蛋白質」 とは、 蛍光を発するこ とができる全ての場合を包含し、 蛍光強度、 励起波長、 蛍光波長、 p H感受性な どの諸特性は、 配列番号 1に記載のアミノ酸配列を有する蛋白質と比較して、 変 動していてもよいし、 同様のままでもよい。
本明細書で言う 「吸光特性」 とは、 ある波長の光を吸収できる特性を意味し、 例えば、 本明細書に示した色素蛋白質と同様に吸収極大波長が 5 9 2 n mであつ てもよいし、あるいは吸収極大波長の値がシフトしたものであってもよい。なお、 光吸収特性の P H感受性は、 p H 5〜 1 0で安定であることが好ましい。
上記した通り、 本発明の配列表の配列番号 1 1に記載したァミノ酸配列を有す る色素蛋白質は蛍光をほとんど発しないものである。 本発明においては、 配列番 号 1 1に記載したアミノ酸配列に対して 1から数個のアミノ酸の欠失、 置換及び /又は付加を導入することにより、 より強い蛍光を発する蛋白質を作製してもよ く、 このような蛋白質も本発明の範囲内に含まれる。
本発明の蛍光蛋白質及び色素蛋白質の取得方法については特に制限はなく、 化 学合成により合成した蛋白質でもよいし、 遺伝子組み換え技術による作製した組 み換え蛋白質でもよい。 … ― 組み換え蛋白質を作製する場合には、 先ず当該蛋白質をコードする D N Aを入 手することが必要である。 本明細書の配列表の配列番号 1、 3、 5、 7、 9、 1 1又は 1 3に記載したアミノ酸配列並びに配列番号 2、 4、 6、 8、 1 0、 1 2 又は 1 4に記載した塩基配列の情報を利用することにより適当なプライマーを設 計し、それらを用いてコモンサンゴ(Montipora sp. )、ミドリイシ(Acropora sp. )、 ゥメホンィソギンチャク (Actinia equina;、又はウ^キノコ Lobophytum crassum) 由来の c D N Aライプラリーを铸型にして P C Rを行うことにより、 本発明の蛍 光蛋白質又は色素蛋白質をコードする D N Aを取得することができる。 本発明の 蛍光蛋白質又は色素蛋白質をコードする D N Aの一部の断片を上記した P C に より得た場合には、 作製した D N A断片を順番に遺伝子組み換え技術により連結 することにより、 所望の蛍光蛋白質又は色素蛋白質をコードする DN Aを得るこ とができる。 この DNAを適当な発現系に導入することにより、 本発明の蛍光蛋 白質又は色素蛋白質を産生することができる。 発現系での発現については本明細 書中後記する。
(2) 本発明の DNA
本発明によれば、 本発明の蛍光蛋白質又は色素蛋白質をコードする遺伝子が提 供される。
本発明の蛍光蛋白質をコードする DNAの具体例としては、 以下の何れかの D NAが挙げられる。
(a) 配列番号 1、 3、 5, 7、 9又は 13に記載のアミノ酸配列をコードする DNA;又は、
(b) 配列番号 1、 3、 5、 7、 9又は 13に記載のアミノ酸配列において 1か ら数個のアミノ酸の欠失、置換及ぴ Z又は付加を有するアミノ酸配列をコードし、 かつ蛍光蛋白質をコードする DNA。
本発明の蛍光蛋白質をコードする DNAのさらなる具体例としては、 以下の何 れかの DNAが挙げられる。 -
(a)配列番号 2、 4、 6、 8、 10又は 14に記載の塩基配列を有する DNA; 又は、
(b) 配列番号 2、 4、 6、 8、 10又は 14に記載の塩基配列において 1から 数個の塩基の欠失、 置換及び/又は付加を有する塩基配列を有し、 かつ蛍光蛋白 質をコードする DNA:
本発明の色素蛋白質をコードする DNAの具体例としては、 以下の何れかの D
NAが挙げられる。
(a) 配列番号 11に記載のアミノ酸配列をコードする DNA;又は、
(b )配列番号 1 1に記载のァミノ酸配列において 1から数個のァミノ酸の欠失、 置換及び Z又は付加を有するアミノ酸配列を有し、 吸光特性を有する蛋白質をコ 一ドする D N A:
本発明の色素蛋白質をコードする D NAの更なる具体例としては、 以下の何れ かの塩基配列を有する D N Aが挙げられる。
( a ) 配列番号 1 2に記載の塩基配列;又は、
( b ) 配列番号 1 2に記載の塩基配列において 1から数個の塩基の欠失、 置換及 ぴ Z又は付加を有する塩基配列を有し、 吸光特性を有する蛋白質をコードする塩 基配列:
本発明の D NAは、 例えばホスホアミダイト法などにより合成することができ るし、 特異的プライマーを用いたポリメラーゼ連鎖反応 (P C R) によって製造 することもできる。 本発明の D N A又はその断片の作製方法については、 本明細 書中上述した通りである。
また、 所定の核酸配列に所望の変異を導入する方法は当業者に公知である。 例 えば、 部位特異的変異誘発法、 縮重オリゴヌクレオチドを用いる P C R、 核酸を 含む細胞の変異誘発剤又は放射線への露出等の公知の技術を適宜使用することに よって、変異を有する D N Aを構築することができる。このような公知の技術は、 例 ば、 Molecular Cloning: A laboratory Mannual, 2nd Ed. , Cold Spring Harbor Laboratory, Cold Spring Harbor, ΝΥ·, 1989ヽ -並び-に Current Protocols in Molecular Biology, Supplement ;!〜 38, John Wiley & Sons (1987- 1997)に記載 されている。
( 3 ) 本発明の組み換えベクター
本発明の D NAは適当なベクター中に挿入して使用することができる。 本発明 で用いるベクターの種類は特に限定されず、 例えば、 自立的に複製するベクター
(例えばプラスミド等) でもよいし、 あるいは、 宿主細胞に導入された際に宿主 細胞のゲノムに組み込まれ、 組み込まれた染色体と共に複製されるものであって あよい。
好ましくは、 本発明で用いるベクターは発現ベクターである。 発現ベクターに おいて本発明の D N Aは、 転写に必要な要素 (例えば、 プロモーター等) が機能 的に連結されている。 プロモータは宿主細胞において転写活性を示す D N A配列 であり、 宿主の種類に応じて適宜することができる。
細菌細胞で作動可能なプロモータとしては、 バチルス ·ステア口テルモフィル ス · マノレトシエニック · アミラーセ遺伝子 (Bac i 1 lus s t ear othermophi lus maltogenic amylase gene)、 バチノレス · リケニホスレミス α アミラーゼ遺伝子 (Bacillus licheniformis alpha— amylase gene)、 ノ テノレス 'ア^ロリケフアチェ ンス · BANア^フーセ遺伝子 (Bacillus amyloliquefaciens BAN amylase gene)、 バチルス .サブチ.リス ·アル力リプロテアーゼ遺伝子(Bacillus S ubtilis alkaline protease gene)もしくはバチルス · プミルス · キシロシダーゼ遺伝子 (Bacillus pumilus xylosldase gene)のプロモータ、 またはファージ . ラムダの PR若しくは PLプロモータ、 大腸菌の lac、 trp若しくは tacプロモータなどが 挙げられる。
哺乳動物細胞で作動可能なプロモータの例としては、 S V 4 0プロモータ、 M T一 1 (メタ口チォネイン遺伝子) プロモータ、 またはアデノウイルス 2主後期 プロモータなどがある。 昆虫細胞で作動可能なプロモータの例としては、 ポリへ ドリンプロモータ、 P 1 0プロモータ、 オートグラファ ·力リホル二力 'ポリへ ドロシス塩基性タンパクプロモータ、 パキユウ口ウィルス即時型初期遺伝子 1プ 口モータ、 またはパキユウロウィルス 3 9 K遅延型初期遺伝子プロモータ等があ る。 酵母宿主細胞で作動可能なプロモータの例としては、 酵母解糖系遺伝子由来 のプロモータ、 ァノレコールデヒドロゲナーゼ遺伝子プロモータ、 T P I 1プロモ ータ、 AD H2 - 4cプロモータなどが挙げられる。
糸状菌細胞で作動可能なプロモータの例としては、 AD H 3プロモータまたは t p i Aプロモータなどがある。
また、 本発明の D N Aは必要に応じて、 例えばヒト成長ホルモンターミネータ または真菌宿主については T P I 1ターミネータ若しくは AD H 3ターミネータ のような適切なターミネータに機能的に結合されてもよい。 本発明の組み換えべ クタ一は更に、ポリアデニレーシヨンシグナル (例えば S V 4 0またはアデノウイ ルス 5 E 1 b領域由来のもの)、転写ェンハンサ配列(例えば S V 4 0ェンハンサ) および翻訳ェンハンサ配列(例えばアデノウイルス VA R NA をコードするも の) のような要素を有していてもよい。
本発明の組み換えべクタ一は更に、 該ベクターが宿主細胞内で複製することを 可能にする D NA配列を具備してもよく、その一例としては S V 4 0複製起点(宿 主細胞が哺乳類細胞のとき) が挙げられる。
本発明の組み換えベクターはさらに選択マーカーを含有してもよレ、。 選択マー カーとしては、 例えば、 ジヒドロ葉酸レダクターゼ (D H F R) またはシゾサッ カロマイセス .ボンべ T P I遺伝子等のようなその補体が宿主細胞に欠けている 遺伝子、 または例えばアンピシリン、 カナマイシン、 テトラサイクリン、 クロラ ムフエ二コール、 ネオマイシン若しくはヒグロマイシンのような薬剤耐性遺伝子 を挙げることができる。
本発明の D NA、 プロモータ、 および所望によりターミネータおよぴ または 分泌シグナノレ配列をそれぞれ連結し、 これらを適切なベクターに挿入する方法は 当業者に周知である。
( 4 ) 本発明の形質転換体
本発明の D N A又は組み換えべクターを適当な宿主に導入することによって形 質転換体を作製することができる。
本発明の D N Aまたは組み換えベクターを導入される宿主細胞は、 本癸明の D NA構築物を発現できれば任意の細胞でよく、 細菌、 酵母、 真菌おょぴ高等真核 細胞等が挙げられる。
細菌細胞の例としては、 バチルスまたはストレブトマイセス等のグラム陽性菌 又は大腸菌等のグラム陰性菌が挙げられる。 これら細菌の形質転換は、 プロトプ ラスト法、 または公知の方法でコンビテント細胞を用いることにより行なえばよ レ、。 哺乳類細胞の例としては、 H E K 2 9 3細胞、 H e L a細胞、 C O S細胞、 B HK細胞、 C H L細胞または C HO細胞等が挙げられる。 哺乳類細胞を形質転換 し、 該細胞に導入された D NA配列を発現させる方法も公知であり、 例えば、 ェ レクト口ポレーシヨン法、 リン酸カルシウム法、 リポフエクシヨン法等を用いる ことができる。
酵母細胞の例としては、 サッカロマイセスまたはシゾサッカロマイセスに属す る細胞が挙げられ、 例えば、 サッカロマイセス ' セレビシェ(Saccharomyces cerevislae)またはサッカロマイセス · タノレイべリ ( S accharomyces kluyveri 等 が挙げられる。 酵母宿主への組み換えベクターの導入方法としては、 例えば、 ェ レクト口ポレーシヨン法、 スフエロブラスト法、 酢酸リチウム法等を挙げること ができる。
他の真菌細胞の例は、 糸状菌、 例えばァスペルギルス、 ニューロスポラ、 フザ リゥム、 またはトリコデルマに属する細胞である。 宿主細胞として糸状菌を用い る場合、 D NA構築物を宿主染色体に組み込んで組換え宿主細胞を得ることによ り形質転換を行うことができる。 D NA構築物の宿主染色体への組み込みは、 公 知の方法に従い、 例えば相同組換えまたは異種組換えにより行うことができる。 昆虫細胞を宿主として用いる場合には、 組換え遺伝子導入ベクターおよぴバキ ュロウィルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウィルスを得 た後、 さらに組換えウィルスを昆虫細胞に感染させ、 蛋白質を発現させることが できる (例 ば、 Baculovirus Expression Vectors, A Laboratory Manual;及び 力レント 'プロ トコールズ'イン'モレキュラー 'バイオロジー、 Bio/Technology, 6, 47 (1988)等に記載)。
バキュロウィルスとしては、 例えば、 ョトウガ科昆虫に感染するウィルスであ るアウトグラファ 'カリフォルニ力 ·ヌクレア一 'ポリへドロシス 'ウィルス (Autographa californica nuclear polyhedrosis virus)等を用レヽ oこと できる。 昆虫細胞としては、 Spodoptera frugiperda の卵巣細胞である S f 9、 S f 2 1 「パキュロウィ ス .エクスプレッション 'ベクターズ、 ァ 'ラボラトリー ' マニュアル、ダプリユー'ェイチ'フリーマン'アンド'カンパニー(W. H. Freeman and Company)、 ニューヨーク (New York)、 (1992)〕、 Trichoplusia niの卵巣細胞 である H i F i v e (インビトロジェン社製)等を用いることができる。
組換えウィルスを調製するための、 昆虫細胞への組換え遺伝子導入ベクターと 上記バキュロウィルスの共導入方法としては、 例えば、 リン酸カルシウム法又は リポフエクシヨン法等を挙げることができる。
上記の形質転換体は、 導入された D N A構築物の発現を可能にする条件下で適 切な栄養培地中で培養する。 形質転換体の培養物から、 本発明の蛍光融合蛋白質 を単離精製するには、 通常の蛋白質の単離、 精製法を用いればよい。
例えば、 本発明の蛋白質が、 細胞内に溶解状態で発現した場合には、 培養終了 後、 細胞を遠心分離により回収し水系緩衝液に懸濁後、 超音波破碎機等により細 胞を破碎し、 無細胞抽出液を得る。 該無細胞抽出液を遠心分離することにより得 られた上清から、 通常の蛋白質の単離精製法、 即ち、 溶媒抽出法、 硫安等による 塩析法、 脱塩法、 有機溶媒による沈殿法、 ジェチルアミノエチル (DEAE)セファロ ース等のレジンを用いた陰ィオン交換ク口マトグラフィ一法、 S- Sepharose FF (フ アルマシア社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチル セファロース、 フエニノレセファロース等のレジンを用いた疎水 '性グロマ小グラフ ィ一法、 分子篩を用いたゲルろ過法、 ァフィ二ティークロマトグラフィー法、 ク ロマトフオーカシング法、 等電点電気泳動等の電気泳動法等の手法を単独あるい は組み合わせて用い、 精製標品を得ることができる。
( 5 ) 本発明の蛍光蛋白質及ぴそれを含む融合蛍光蛋白質の利用
本発明は蛍光蛋白質を他の蛋白質と融合させることにより、 融合蛍光蛋白質を 構築することができる。
本発明の融合蛍光蛋白質の取得方法については特に制限はなく、 化学合成によ り合成した蛋白質でもよいし、 遺伝子組み換え技術による作製した組み換え蛋白 質でもよレ、。 組み換え蛋白質を作製する場合には、 先ず当該蛋白質をコードする D NAを入 手することが必要である。 本明細書の配列表の配列番号 1、 3、 5又は 7、 9又 は 1 3に記載したァミノ酸配列及ぴ配列番号 2、 4、 6又は 8、 1 0又は 1 4に 記載した塩基配列の情報を利用することにより適当なプライマーを設計し、 本発 明の蛍光蛋白質の遺伝子を含む D N A断片を錶型にして P C Rを行うことにより、 本発明の蛍光蛋白質をコードする D N Aを構築するのに必要な D N A断片を作製 することができる。 また同様に、 融合すべき蛋白質をコードする D NA断片も入 手する。
次いで、 これらの D N A断片を順番に遺伝子組み換え技術により連結すること により、 所望の融合蛍光蛋白質をコードする D NAを得ることができる。 この D NAを適当な発現系に導入することにより、 本発明の融合蛍光蛋白質を産生する ことができる。
本発明の蛍光蛋白質は、 特に、 標識としての利用価値が高い。 即ち、 本発明の 蛍光蛋白質を被検アミノ酸配列との融合蛋白質として精製し、 マイクロインジェ クション法などの手法により細胞内に導入し、 該融合蛋白質の分布を経時的に観 察すれば、 被検アミノ酸配列の細胞内におけるターゲッティング活性を検出する ことが可能である。 - - 本発明の蛍光蛋白質を融合させる他の蛋白質 (被検アミノ酸配列) の種類は特 に限定されるものではないが、 例えば、 細胞内に局在する蛋白質、 細胞内小器官 に特異的な蛋白質、 ターグティングシグナル (例えば、 核移行シグナル、 ミ トコ ンドリアブレ配列) 等が好適である。 なお、 本発明の蛍光蛋白質は、 マイクロイ ンジェクション法などにより細胞内に導入する以外に、 細胞内で発現させて用い ることも可能である。 この場合には、 本発明の蛍光蛋白質をコードする D NAが 発現可能に挿入されたベクターが宿主細胞に導入される。
また、 本発明の蛍光蛋白質は、 レポーター蛋白質としてプロモーター活性の測 定に用いることも可能である。 即ち、 被検プロモーターの下流に、 本発明の蛍光 蛋白質をコードする D NAが配置されたベクターを構築し、 これを宿主細胞に導 入し、 該細胞から発せられる本発明の蛍光蛋白質の蛍光を検出することにより、 被検プロモーターの活性を測定することが可能である。 被検プロモーターとして は、 宿主細胞内で機能するものであれば、 特に制限はない。
上記被検ァミノ酸配列のターゲティング活性の検出やプロモーター活性の測定 において用いられるベクターとしては、 特に制限はないが、 例えば、 動物細胞用 ベクターでは、 「pNE0」 (p. Southern, and P. Berg (1982) J. M01. Appl. Genet. 1 : 327 ) 、 「 pCAGGS 」 ( H. Mwa, K. Yamamura, and J. Miyazaki. Gene 108, 193-200 (1991) )、 「pRc/CMV」 (インビトロゲン社製)、 「pCDM8」 (インビトロ ゲン社製)などが、酵母用ベクターでは、 「pRS303」, rpRS304j,「pRS305」,「pRS306」, 「pRS313」 , 「pRS314」 , 「pRS315」, [pRS316] (R. S. Sikorski and P. Hieter (1989) Genetics 122 : 19—27 ) 、 「 pRS423」 , 「 pRS424」 , 「 pRS425」 , 「 pRS426」 (T. W. Christianson, R. S. Sikorski, M. Dante, J. H. Shero, and P. Hieter (1992) Gene 110: 119-122) などが好適に用いられる。
また、 使用可能な細胞の種類も特に限定されず、 各種の動物細胞、 例えば、 L 細胞、 BalbC 3T3細胞、 NIH3T3細胞、 CHO (Chinese hamster ovary)細胞、 HeLa細 胞、 NRK (normal rat kidney)細胞、 「Saccharomyces cerevisiaej などの酵母細胞 や大腸菌 (E. coli) 細胞などを使用することができる。 ベクターの宿主細胞への 導入は、 例えば、 リン酸カルシウム法やエレクト口ポレーシヨン法などの常法に より行うことができる。
上記のようにして得た、 本発明の蛍光蛋白質と他の蛋白質 (蛋白質 Xとする) とを融合させた融合蛍光蛋白質を細胞内で発現させ、 発する蛍光をモニターする ことにより、細胞内における蛋白質 Xの局在や動態を分析することが可能になる。 即ち、 本発明の融合蛍光蛋白質をコードする D NAで形質転換またはトランスフ ェタトした細胞を蛍光顕微鏡で観察することにより細胞内における蛋白質 Xの局 在や動態を可視化して分析することができる。
例えば、 蛋白質 Xとして細胞内オルガネラに特異的な蛋白質を利用することに より、 核、 ミ トコンドリア、 小胞体、 ゴルジ体、 分泌小胞、 ペルォキソームなど の分布や動きを観察できる。
また、 例えば、 神経細胞の軸索、 樹状突起などは発生途中の個体の中で著しく 複雑な走向の変化を示すので、 こういった部位を蛍光ラベルすることにより動的 解析が可能になる。
本発明の蛍光蛋白質の蛍光は、 生細胞のまま検出することが可能である。 この 検出は、 例えば、 蛍光顕微鏡 (カールツァイス社アキシォフォト フィルターセ ット 09) や画像解析装置 (ATT0デジタルイメージアナライザー) などを用いて 行うことが可能である。
顕微鏡の種類は目的に応じて適宜選択できる。 経時変化を追跡するなど頻回の 観察を必要とする場合には、 通常の落射型蛍光顕微鏡が好ましい。 細胞内の詳細 な局在を追及したい場合など、 解像度を重視する場合は、 共焦点レーザー顕微鏡 の方が好ましい。 顕微鏡システムとしては、 細胞の生理状態を保ち、 コンタミネ ーシヨンを防止する観点から、 倒立型顕微鏡が好ましい。 正立顕微鏡を使用する 場合、 高倍率レンズを用いる際には水浸レンズを用いることができる。
フィルターセットは蛍光蛋白質の蛍光波長に応じて適切なものを選択できる。 本発明の第一及ぴ第二の蛍光蛋白質の場合、 励起光 490〜51 Onm、 蛍光 5 10〜530 rtm程度のフィルターを使用することが好ましい。 本発明の第三の 蛍光蛋白質の場合、 励起光 460〜480 nm、 蛍光 480〜510 nm程度の フィルターを使用することが好ましい。 本発明の第四の蛍光蛋白質の場合、 励起 光 550〜565 nm、 蛍光 570〜580 n m程度のフィルターを使用するこ とが好ましい。 本発明の第五の蛍光蛋白質の場合、 励起光 470〜490 nm、 蛍光 490〜510 nm程度のフィルターを使用することが好ましい。
また、 蛍光顕微鏡を用いた生細胞での経時観察を行う場合には、 短時間で撮影 を行うべきなので、 高感度冷却 CCDカメラを使用する。 冷却 CCDカメラは、 C CDを冷却することにより熱雑音を下げ、 微弱な蛍光像を短時間露光で鮮明に 撮影することができる。 (6) 本発明の色素蛋白質及ぴそれを含む融合蛋白質の利用
本発明の色素蛋白質は、 他の蛋白質と融合させることにより、 融合蛋白質を構 築することができる。 本発明の色素蛋白質に融合させる他の蛋白質の種類は特に 限定されなレ、が、他の分子と相互作用する蛋白質であることが好ましく、例えば、 受容体蛋白質又はそのリガンド、 あるいは抗原又は抗体などが挙げられる。
本発明の融合蛋白質の取得方法については特に制限はなく、 化学合成により合 成した蛋白質でもよいし、 遺伝子組み換え技術による作製した組み換え蛋白質で あよい。
組み換え融合蛋白質を作製する場合には、 先ず当該蛋白質をコードする DNA を入手することが必要である。 本発明の色素蛋白質をコードする D N Aおよぴそ れに融合すべき他の蛋白質をコードする DNAは、 本明細書中上記した方法また はそれに準じてそれぞれ入手することができる。 次いで、 これらの DNA断片を 順番に遺伝子組み換え技術により連結することにより、 所望の融合蛋白質をコー ドする D N Aを得ることができる。 この D N Aを適当な発現系に導入することに より、 本発明の融合蛋白質を産生することができる。
分子間の相互作用を分析する手法の一つとして、 FRET (蛍光共鳴エネルギ 転移) が知られている。 FRETでは、 例えば、 第一の蛍光蛋白質としてのシ アン蛍光蛋白質 (CFP) で標識した第一の分子と、 第二の蛍光蛋白質としての 黄色蛍光蛋白質 (YFP) で標識した第二の分子とを共存させることにより、 黄 色蛍光蛋白質 (YFP) をァクセプター分子として作用させ、 シアン蛍光蛋白質
(CFP) をドナー分子として作用させ、 両者の間で FRET (蛍光共鳴エネル ギー転移) を生じさせることにより、 第一の分子と第二の分子との間の相互作用 を可視化することができる。 即ち、 FRETでは 2種類の分子にそれぞれ異なる 色素を導入し、 エネルギーレベルの高い方の色素 (ドナー分子) を選択的に励起 し、 その色素の蛍光を測定し、 もう一方の色素 (ァクセプター分子) からの長波 長蛍光も測定して、それらの蛍光変化量によって分子間の相互作用を可視化する。 両方の色素が、 2種類の分子の相互作用によって近接したときのみドナー分子の 蛍光の減少とァクセプター分子の蛍光の増加が 1波長励起 2波長測光法により観 測される。 し力 し、 ァクセプター分子に色素蛋白質を用いた場合は、 両方の色素 が、 2種類の分子の相互作用によって近接したときのみドナー分子の蛍光の減少 を生じ 1波長励起 1波長測光法により観測することができる。 即ち、 測定機器の 簡易化が可能となる。
本発明の色素蛋白質は、 特に、 F R E T (蛍光共鳴エネルギー転移) における ァクセプター分子としての利用価値が高い。 即ち、 本発明の色素蛋白質と被験物 質との融合体 (第一の融合体) を作製する。 次いで、 該被験物質と相互作用する 別の被験物質と別の蛍光蛋白質との融合体(第 2の融合体)を作製する。そして、 第一の融合体と第 2の融合体とを相互作用させ、 発する蛍光を分析することによ り、 上記 2種類の被験物質間の相互作用を分析することができる。 なお、 本発明 の色素蛋白質を用いた F R E T (蛍光共鳴エネルギー転移) は、 試験管内で行つ てもよいし、 細胞内で行ってもよい。
( 7 ) 本発明のキット
本発明によれば、 本明細書に記載した蛍光蛋白質、 融合蛍光蛋白質、 D NA、 組み換えべクタ^-又は形質転換体から選択される少なくとも 1種以上を含むこと を特徴とする、 細胞内成分の局在の分析及び/又は生理活性物質の分析のための キットが提供される。 本発明のキットは、 それ自体既知の通常用いられる材料及 ぴ手法で調製することができる。
さらに本発明によれば、本明細書に記載した色素蛋白質、融合蛋白質、 D NA、 組み換えベクター又は形質転換体から選択される少なくとも 1種以上を含むこと を特徴とする、 吸光試薬キットが提供される。 本発明のキットは、 それ自体既知 の通常用いられる材料及び手法で調製することができる。
蛍光蛋白質、 色素蛋白質又は D NAなどの試薬は、 適当な溶媒に溶解すること により保存に適した形態に調製することができる。 溶媒としては、 水、 エタノー ル、 各種緩衝液などを用いることができる。 以下の実施例により本発明を具体的に説明するが、 本発明は実施例によって限 定されるものではない。 実施例
実施例 1:イシサンゴからの新規蛍光蛋白遺伝子 (COG)の単離、並びに蛍光特性の 解析
( 1 ) total RNAの抽出
珊瑚より蛍光蛋白質遺伝子の単離を行った。材料にはコモンサンゴ(Montipora sp. )を用いた。凍結したコモンサンゴを乳鉢で枠き、湿重量 2グラムに" TRIzol"
(GIBCO BRL) を 7. 5 ml加えてホモジナイズし、 1500 X gで 10分間遠心した。 上 清にクロ口ホルム 1. 5 mlをくわえ、 15秒間攪拌した後 3分間静置した。 7500 X g で 15分間遠心した。 上清にィソプロパノール 3. 75 mlをくわえ、 15秒間攪拌し た後 10分間静置した。 17000 X gで 10分間遠心した。上清を捨て 70%エタノール を 6 ml加えて 17000 X gで 10分間遠心した。 上清を捨て沈殿を DEPC水 200 μ 1 で溶解した。 DEPC水で溶解した total RNAを 100倍に希釈して 0. D. 260と 0. D. 280 の値を測定して RNA濃度を測った。 22 μ gの total RNAを得た。
( 2 ) First strand cDNAの合成
total RNA 4 μ g を使用し、 First strand cDNA の合成キッ ト,, Ready To Go" (Amersham Pharmacia)により cDNA (33 μ 1)を合成した。
( 3 ) Degenerated PCR
合成した First strand cDNA (33 μ 1)のうち 3 μ 1を铸型として PCRを行った。 プライマーのデザインは既知の蛍光蛋白のアミノ酸配列を見比べて、 似ている 部分を抜き出し、 塩基配列に変換し直し作製した。
使用プライマー
5 ' -GAAGGRTGYGTCAAYGGRCAY-3 ' (primer 1) (配列番号 1 5 )
5, -ACVGGDCCATYDGVAAGAAARTT-3 ' (primer 2) (配列番号 1 6 )
1=イノシン、 R=A又は G、 Y=C又は T、 V=A, C又は G、 D=A, G又は T S=C又は G、 H=A又は T又は C
PCR反応液組成
テンプレート (first strand cDNA)
X10 taqバッファー 5 μ 1
2. 5 mM dNTPs 4 1
100 primer 1 1 μ ΐ
100 μ M primer2 1 μ 1
ミリ Q 35 / 1
taq polymerase (5 U/ μ 1) 1 μ 1
PCR反応条件
94°C 1 min (PAD)
94°C 30 sec (変性)
52°C 30 sec (铸型へのプライマーのアニーリング)
72°C 1 min (プライマー伸長)
上記 3ステップを 35サイクル行つた。
72°C 7 min (最後の伸長)
4°C 保持
一回目の PCR反応で得られた増幅産物 1 μ 1をテンプレートとして、もう一度同 じ条件で PCRを行った。 ァガロースゲル電気泳動で、 350 bpを切り出し、 精製し た。
( 4 ) サブクローユング及び塩基配列の決定
精製した DNA断片を pT7_blue vector (Novagen)にライゲーシヨンした。 大腸菌 株 (TG1) にトランスフォーメーションしてブルーホワイトセレクションを行い、 白いコロニーの大腸菌より plasmid DNAを精製して、 挿入された DNA断片の塩基 配列を DNAシークェンサ一により決定した。 得られた塩基配列を他の蛍光蛋白遺 伝子の塩基配列と比較してその DNA塩基配列が蛍光蛋白由来のものであるかを判 断した。 蛍光蛋白遺伝子の一部であると判断したものに関して、 5 ' -RACE法およ び 3, -RACE法による遺伝子全長のクローニングを行った。
( 5 ) 5, -RACE法
Degenerated PCR で得られた DNA断片の 5' 側の塩基配列を決定するために 5, -RACE System for Rapid Amplification of cDNA Ends, Version 2. 0 (GIBCO BRL) を用いて、 5' - RACE法を行った。 铸型として (1 ) で調製した total RNAを 5 z g 使用した。
dC - tailed cDNAの一回目の増幅には
5' -GGCCACGCGTCGACTAGTACGGGI IGGGI IGGGI IG-3 ' (primer 3) (配列番号 1 7 )
5' -CCATCTTCAAAGAGAAAAGACCTTT-3' (primer 4) (配列番号 1 8 )
のプライマーを用いた。
1=イノシン
二回目の増幅には
5, -GGCCACGCGTCGACTAGTAC-3 ' (primer 5) (配列番号 1 9 )
5' -CATGAGTTCTTGAAATAGTCAAC-3' (primer 6) (配列番号 2 0 )
のプライマーを用いた。 PCR反応条件等はキットのプロトコールに準じた。
ァガロースゲル電気泳動で、増幅された 350 bpのバンドを切り出し、精製した。 精製した DNA断片を pT7- blue vector (Novagen)にライゲーシヨンした。 大腸菌株 (TG1) にトランスフォーメーションしてブルーホワイトセレクションを行い、 白 いコロニーの大腸菌より plasmid DNAを精製して、 挿入された DNA断片の塩基配 列を DNAシークェンサ一により決定した。
( 6 ) 3, -RACE法
Degenerated PCRで得られた DM断片の 3, 側部分は、 (4 ) の塩基配列決定で 得られた情報を基に作製したプライマーとオリゴ dTプライマーの PCRで得た。铸 型として (2 ) で調製した first strand cDNAを 3 μ 1使用した。 ·
作成したプライマーは
5' -ATGGCTCTTTCAMGCGAGGTG-3 ' (primer 7) (配列番号 2 1 )
PCR反応液組成 テンプレート (first strand cDNA) 3/z 1
X10 taqバッファー 5^1
2.5 mM dNTPs 4^1
20 μΜ primer 7 Ιμΐ
10 μ M オリゴ dTprimer lju 1
ζ ]; Q 35 μΐ
taq polymerase (5 U/ μ 1) 1 μ 1
PCR反応条件
94°C 1 min(PAD) .
94°C 30 sec (変性)
52°C 30 sec (錶型へのプライマーのアニーリング)
72°C 1 min (プライマー伸長)
上記 3ステップを 30サイクル行つた。
72°C 7 min (最後の伸長)
4°C 保持
ァガロースゲル電気泳動で、 増幅された約 1000 bpのバンドを切り出し、 精製 した。 精製した DNA断片を pT7- bluevector(Novagen)にライゲーシヨンした。 大 腸菌株(TG1) にトランスフォーメーションしてブルーホワイトセレクションを行 い、 白いコロニーの大腸菌より plasmid DNAを精製して、 挿入された DNA断片の 塩基配列を DNAシークェンサ一により決定した。
得られた全長の塩基配列を配列表の配列番号 2に示し、 全長のァミノ酸配列を 配列表の配列番号 1に示す。 このクローンを C0Gと命名した。
(7) 大腸菌での蛋白発現
得られた全長の塩基配列より、 蛋白の N末端に相当する部分でプライマーを作 製し、 C末端側はオリゴ dTプライマーを使用して、(2)で調製した First strand cDNAを铸型として PCRを行つた。
使用プライマー 5 ' -GGGGGATCCGACCATGGCTCTTTCAAAGCGAGGTG-3 ' (primer 8) (配列番号 2 2) PCR反応液組成
テンプレート (first strand cDNA) 3μ1
X10 pyrobest / ッファー 5 μ丄
2.5 mM dNTPs 4μΙ
100 μ Μ primer 8 1 μ丄
100/ζΜオリゴ dTプライマー Ιμΐ
ミリ Q 35^1
pyrobest polymerase (a U/ μ 1) 丄 μ 1
PCR反応条件
94°C 1 min(PAD)
94°C 30 sec (変性)
52°C 30 sec (铸型へのプライマーのアニーリング)
72°C 1 min (プライマー伸長)
上記 3ステップを 30サイクル行った。
72°C 7 min (最後の伸長)
4°C 保持
ァガロースゲルの電気泳動で、 増幅された約 1000 bpのパンドを切り出し、 精 製して pRSET vector (Invitrogen)の BamHI、EcoR I部位にサブクローユングして、 大腸菌株(JM109- DE3) で発現させた。発現蛋白は N末端に His- tagが付くように コンストラク トしたので発現蛋白は Ni- Agarose gel (QIAGEN)で精製した。 精製の 方法は付属のプロトコールに準じた。 次に精製した蛋白の性質を解析した。
(8) 蛍光特性の解析
20 M蛍光蛋白 (C0G)、 150 mM KC1, 50 rail HEPES pH 7.5溶液を用いて、 吸収 スペク トルを測定した (図 1 B)。 このスペク トルのピーク (507 nm) の値よりモ ル吸光係数を計算した。 450 nmの吸収が 0.002となるように蛍光蛋白を上記の緩 衝液で希釈し、 450 nmで励起した時の蛍光スぺクトルと 550 nmの蛍光による励 起スぺク トルを測定した (図 1 A)。 EGFP (CL0NTECH)を同様に 450 nm の吸収が 0. 002となるようにして蛍光スぺクトルを測定し、 EGFPの量子収率を 0. 6として 今回クローニングされた蛍光蛋白の量子収率を求めた。 測定結果を表 1に示す。 表 1
Figure imgf000033_0001
( 9 ) pH感受性の測定
蛍光蛋白を各緩衝液で同濃度に希釈し、 507 nmの吸収の値をとり pH感受性を 測定した (図 1 C )。 各 pHの緩衝液は次の通り、
pH 4、 5 : 酢酸ノ ッファー
pH 6、 11 : リン酸バッファー
pH 7、 8 : HEPESバッファー
pH 9、 10 : グリシンバッファー
pH 5では p H 6〜: 10と較べて吸収のピークが 507 nmから 493 nmへ、 蛍光のピ ークが 517 nmから 508 nmへと共に短波長側にシフトするという特性を持つてレヽ た。 測定結果を図 2 A及ぴ Bに示す。 実施例 2 :珊瑚からの新規蛍光蛋白遺伝子 (MIG)の単離
( 1 ) total RNAの抽出
蛍光を放つ珊瑚より蛍光蛋白遺伝子の単離を行った。 材料にはミ ドリイシ (Acropora sp. ) を用いた。 ミドリイシをハンマーで碎き、 砕いたサンゴ 5グラ ムに" TRIzol" (GIBC0 BRL) を 15 ml加えて攪拌し、 1500 X gで 10分間遠心し た。 上清にク口口ホルム 3 mlをくわえ、 15秒間攪拌した後 3分間静置した。 7500 X gで 15分間遠心した。 上清にィソプロパノール 7. 5 mlをくわえ、 15秒間攪拌 した後 10分間静置した。 17000 X gで 10分間遠心した。上清を捨て 70%エタノ一 ルを 6 ml加えて 17000 X gで 10分間遠心した。 上清を捨て沈殿を DEPC水 200 μ 1で溶解した。 DEPC水で溶解した total RNAを 100倍に希釈して 0. D. 260と 0. D. 280 の値を測定して RNA濃度を測った。 220 μ gの total RNAを得た。
( 2 ) First strand cDNAの合成
total RNA 5 μ g を使用し、 First strand cDNA の合成キッ ト,, Ready To Go" (Amersham Pharmacia)により cDNA(33 /i 1)を合成した。
( 3 ) Degenerated PCR
合成した First strand cDNA(33 1)のうち 3 μ 1を铸型として PCRを行った。 プライマーのデザインは既知の蛍光蛋白のアミノ酸配列を見比べて、 似ている部 分を抜き出し、 塩基配列に変換し直し作製した。
使用プライマー
5, -GAAGGRTGYGTCAAYGGRCAY-3 ' (primer 1) (配列番号 1 5 )
5' -ACVGGDCCATYDGVAAGAAARTT-3' (primer 2) (配列番号 1 6 )
R=A又は G、 Y=C又は T、 V=A,C又は G、 D=A,G又は T
PCR反応液組成
テンプレート (first strand cDNA) 3 μ 1
X10 taqバッファー
2. 5 mM dNTPs
100 μ M primer 1
100 μ Μ primer2
ミリ Q
taq polymerase (5 U/ μ 1)
PCR反応条件
94°C 1 min (PAD)
94°C 30 sec (変性)
52°C 30 sec (鎵型へのプライマーのアニーリング)
72°C 1 min (プライマー伸長) 上記 3ステップを 30サイクル行い、ァニーリング温度を 1サイクルごとに 0. 3°C 下げた。 30サイクル時の温度は 43°C。
72°C 7 min (最後の伸長)
4°C 保持
一回目の PCR反応で得られた増幅産物 1 1をテンプレートとして、もう一度同 じ条件で PCR を行った。 ァガロースゲル電気泳動で予想された大きさの 350 bp のパンドを切り出し、 精製した。
( 4 ) サブクローニング及び塩基配列の決定
精製した賺断片を PT7- blue vector (Novagen)にライゲーシヨンした。 大腸菌 株 (TG1) にトランスフォーメーションしてブルーホワイトセレクションを行い、 白いコロニーの大腸菌より plasmid DNAを精製して、 挿入された DNA断片の塩基 配列を DNAシークェンサ一により決定した。 得られた塩基配列を他の蛍光蛋白遺 伝子の塩基配列と比較してその DM塩基配列が蛍光蛋白由来のものであるかを判 断した。 蛍光蛋白遺伝子の一部であると判断したものに関して、 5' - RACE法およ ぴ 3' -RACE法による遺伝子全長のクローニングを行った。
( 5 ) 5' - RACE法
Degenerated PCR で得られた DNA 断片の 5' 側の塩基配列を決定するために 5' -RACE System for Rapid Amplification of cDNA Ends, Version 2. 0 (GIBC0 BRL) を用いて、 5, -RACE法を行った。 铸型として (1 ) で調製した total RNAを 3 g 使用した。 DC- tailed cDNAの一回目の増幅には、
5, -GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG-3' (primer 3) (配列番号 1 7 )
5, - TAGAAATGACCTTTCATATGACATTC - 3, (primer 4) (配列番号 2 3 )
のプライマーを用いた。
1=イノシン
二回目の増幅には
5' -GGCCACGCGTCGACTAGTAC-3' (primer 5) (配列番号 1 9 )
5, - TCTGTTTCCATATTGAAAGGCTG -3, (primer 6) (配列番号 2 4 ) のプライマーを用いた。 PCR反応条件等はキットのプロトコールに準じた。
ァガロースゲル電気泳動で、増幅された 500 bpのパンドを切り出し、精製した。 精製した DNA断片を pT7- blue vector (Novagen)にライゲーシヨンした。 大腸菌株
(TG1) にトランスフォーメーションしてブルーホワイ トセレクションを行い、 白 いコロニーの大腸菌より plasmid DNAを精製して、 挿入された DNA断片の塩基配 列を DNAシークェンサ一により決定した。
(6) 3, - RACE法
Degenerated PCRで得られた DNA断片の 3' 側部分は、 (4) の塩基配列決定で 得られた情報を基に作製したプライマーとオリゴ dTプライマーの PCRで得た。铸 型として ( 2 ) で調製した first strand cDNAを 3 μ 1使用した。
作成したプライマーは 5, -ATGGTGTCTTATTCAAAGCAAGGCATCGCACA-3' (primer 7)
(配列番号 2 5)
PCR反応液組成
テンプレート (first strand cDNA) Ζμ Ι
X10 taqバッファー 5 μ 1
2.5 mM dNTPs 4μ1
20 μΜ primer 7 ■ 1 μ 1
10ju Μ oligo dT primer 1 /z 1
5 y Q 35μ 1
taq polymerase (5 U/μ 1) 1μ丄
PCR反応条件
94°C 1 min(PAD)
94°C 30 sec (変性)
55°C 30 sec (铸型へのプライマーのアニーリング)
72°C 1 min (プライマー伸長)
上記 3ステップを 30サイクル行つた。
72°C 7 min (最後の伸長) 4°C 保持
ァガロースゲル電気泳動で、増幅された 900 bpのパンドを切り出し、精製した。 精製した DNA断片を pT7- blue vector (Novagen)にライゲーシヨンした。 大腸菌株 (TG1)にトランスフォーメーションしてプ^/一ホワイトセレクションを行い、 白 いコロニーの大腸菌より plasmid DNAを精製して、 挿入された DNA断片の塩基配 列を DNAシークェンサ一により決定した。
得られた全長の塩基配列を配列表の配列番号 4に示し、 全長のァミノ酸配列を 配列表の配列番号 3に示す。 このクローンを MIGと命名した。
( 7 ) 大腸菌での蛋白発現
得られた全長の塩基配列より、 蛋白の N末端相当する部分で作製したプライマ 一とオリゴ dTプライマーを用い、 (2 ) で調製した First strand cDNAを铸型と して PCRを行った。
使用プライマー
5, -CGGGATCCGACCATGGTGTCTTATTCAAAGCAAGGCATCGCACA -3 ' (primer 8) (配列番号 2 6 )
PCR反応液組成
テンプレ^ "ト (first strand cDNA) 3 ^ 1
X10 pyrobest バッファー 5 /· (丄
2. 5 IDM dNTPs 4 μ 1
20 μ M primer8 1 1
20 μ Μ oligo dT primer Ι μ Ι
Q 35 ^ 1
pyrobest polymerase (5 U/ul) Ι μ ΐ
PCR反応条件
94°C 1 min (PAD)
94°C 30 sec (変性)
55°C 30 sec (铸型へのプライマーのアニーリング) 72°C 1 min (プライマー伸長)
上記 3ステップを 30サイクル行つた。
72°C 7 min (最後の伸長)
4°C 保持
ァガロースゲルの電気泳動で、増幅された 900 bpのバンドを切り出し、精製し て pRSET vector (Invi trogen)の BamH I、 EcoR I部位にサブクローニングして、大 腸菌株 (JM109- DE3) で発現させた。 N末端に His - tagが付くようにコンストラク トしたので発現蛋白は Ni - Agarose gel (QIAGEN)で精製した。 精製の方法は付属の プロトコールに準じた。 次に精製した蛋白の性質を解析した。
( 8 ) 蛍光特性の解析
20 μ Μ蛍光蛋白 (MIG)、 150 mM KC1、 50 mM HEPES pH 7. 4溶液を用いて、 吸収 スペク トルを測定した (図 3 B )。 このスペク トルのピーク (505 nm) の値よりモ ル吸光係数を計算した。 440 nmの吸収が 0. 001となるように蛍光蛋白を上記の緩 衝液で希釈し、 440 nmで励起した時の蛍光スぺクトルと 540 nmの蛍光による励 起スぺク トルを測定した (図 3 A)。 EGFP (CL0NTECH)を同様に 440 nm の吸収が 0. 001となるようにして蛍光スぺクトルを測定し、 EGFPの量子収率を 0. 6として 今回クローニングされた蛍光蛋白の量子収率を求めた。 測定結果は表 2に示す。 表 2
Figure imgf000038_0001
( 9 ) pH感受性の測定
蛍光蛋白を各緩衝液で希釈し、 505 nmの吸収の値をとり p H感受性を測定した。 各 pHの緩衝液は次の通り、
pH 4、 5 : 酢酸バッファー
pH 6、 11 : リン酸バッファー
pH 7、 8 : HEPESバッファー pH 9、 10 : グリシンパッファー
測定結果を図 3 Cに示す。 実施例 3 :珊瑚からの新規蛍光蛋白遺伝子 (MICy)の単離
( 1 ) total RNAの抽出
蛍光を放つ珊瑚より蛍光蛋白遺伝子の単離を行った。 材料にはミ ドリイシ (Acropora sp. ) を用いた。 ミ ドリイシをハンマーで碎き、 枠いたサンゴ 5グラ ムに" TRIzol" (GIBCO BRL) を 15 ml加えて攪拌し、 1500 X gで 10分間遠心し た。上清にク口口ホルム 3 mlをくわえ、 15秒間攪拌した後 3分間静置した。 7500 X gで 15分間遠心した。 上清にィソプロパノール 7. 5 mlをくわえ、 15秒間撩拌 した後 10分間静置した。 17000 X gで 10分間遠心した。上清を捨て 70%エタノ一 ルを 6 1!11加ぇて17000 で 10分間遠心した。 上清を捨て沈殿を DEPC水 200 μ 1で溶解した。 DEPC水で溶解した total RNAを 100倍に希釈して 0. D. 260と 0. D. 280 の値を測定して RNA濃度を測った。 220 ;z gの total RNAを得た。
( 2 ) First strand cDNAの合成
total RNA 5 μ g を使用し、 First strand cDNA の合成キッ ト" Ready To Go" (Amer sham Pharmacia)により cDNA (33 μ ΐ)を合成した。
( 3 ) Degenerated PCR
合成した First strand cDNA (33 μ 1)のうち 3 μ 1を铸型として PCRを行つた。 プライマーのデザインは既知の蛍光蛋白のアミノ酸配列を見比べて、 似ている部 分を抜き出し、 塩基配列に変換し直し作製した。
使用プライマー
5' -GAAGGRTGYGTCAAYGGRCAY-3 ' (primer 1) (配列番号 1 5 )
5' -ACVGGDCCATYDGVAAGAAARTT-3' (primer 2) (配列番号 1 6 )
R=A又は G、 Y=C又は T、 V=A,C又は G、 D=A, G又は T
PCR反応液組成
テンプレート (first strand cDNA) 3 μ 1 X10 taqバッファー 5 μ 1
2. 5 mM dNTPs 4 μ 1
100 μ M priraerl Ι μ ΐ
100 μ M primer 2 1 μ 1
^ 1; Q 35 μ ΐ
taq polymerase (5 U/ μ 1) 1 μ 1
PCR反応条件
94°C 1 min (PAD)
94°C 30 sec (変性)
52°C 30 sec (铸型へのプライマーのアニーリング)
72°C 1 min (プライマー伸長)
上記 3ステップを 30サイクル行い、ァニーリング温度を 1サイクルごとに 0. 3°C 下げた。 30サイクル時の温度は 43°C。
72°C 7 min (最後の伸長)
4°C 保持
一回目の PCR反応で得られた増幅産物 Ι μ ΐをテンプレートとして、 もう一度 同じ条件で PCRを行った。 ァガロースゲル電気泳動で予想された大きさの 350 bp のバンドを切り出し、 精製した。
( 4 ) サブクローニング及ぴ塩基配列の決定
精製した DNA断片を pT7- blue vector (Novagen)にライゲーシヨンした。 大腸菌 株 (TG1) にトランスフォーメーションしてブルーホワイトセレクションを行い、 白いコロニーの大腸菌より plasmid DNAを精製して、 挿入された DNA断片の塩基 配列を DNAシークェンサ一により決定した。 得られた塩基配列を他の蛍光蛋白遺 伝子の塩基配列と比較してその DNA塩基配列が蛍光蛋白由来のものであるかを判 断した。蛍光蛋白遺伝子の一部であると判断したものに関して、 5 ' -RACE法およ び 3, - RACE法による遺伝子全長のクローニングを行った。
( 5 ) 5, -RACE法 Degenerated PCR で得られた DNA断片の 5, 側の塩基配列を決定するために 5' -RACE System for Rapid Amplification of cDNA Ends, Version 2. 0 (GIBCO BRL) を用いて、 5, - RACE法を行った。 铸型として (1 ) で調製した total RNAを3 ju g 使用した。 DC- tailed cDNAの一回目の増幅には
5, -GGCCACGCGTCGACTAGTACGGGI IGGGIIGGGI IG-3 ' (primer 3) (配列番号 1 7 )
5, - TAGAAATGACCTTTCATATGACATTC - 3 ' (primer 4) (配列番号 2 7 )
のプライマーを用いた。
1=ィノシン
二回目の増幅には .
5 ' -GGCCACGCGTCGACTAGTAC-3 ' (primer 5) (配列番号 1 9 )
5, - TCTGTTTCCATATTGAAAGGCTG -3, (primer 6) (配列番号 2 8 )
のプライマーを用いた。 PCR反応条件等はキットのプロトコールに準じた。
ァガロースゲル電気泳動で、増幅された 500 bpのバンドを切り出し、精製した。 精製した DNA断片を pT7_blue vector (Novagen)にライゲーションした。 大腸菌株
(TG1) にトランスフォーメーションしてブルーホワイ トセレクションを行い、 白 いコロニーの大腸菌より plasmid DNAを精製して、 挿入された DNA断片の塩基配 列を DNAシークェンサ一により決定した。
( 6 ) 3, -RACE法
Degenerated PCRで得られた DNA断片の 3 ' 側部分は、 (4 ) の塩基配列決定で 得られた情報を基に作製したプライマーとオリゴ dTプライマーの PCRで得た。铸 型として ( 2 ) で調製した first strand cDNAを 3 μ 1使用した。
作成したプライマーは 5, -ATGGTGTCTTATTCAAAGCAAGGCATCGCACA-3' (primer 7)
(配列番号 2 9 )
PCR反応液組成
テンプレート (first strand cDNA) 3 μ 1
X10 taqバッファー 5 1
2. 5 mM dNTPs 4 μ Ι 20 μ M primer 7 1 μ 1
10 μ M oligo dT primer Ι μ Ι
Q 35 / l
taq polymerase (5 U/ μ 1) 1 μ 1
PCR反応条件
94°C 1 min (PAD)
94°C 30 sec (変性)
55°C 30 sec (铸型へのプライマーのアニーリング)
72°C 1 min (プライマー伸長)
上記 3ステップを 30サイクル行つた。
72°C 7 min (最後の伸長)
4°C 保持
ァガロースゲル電気泳動で、増幅された 900 bpのバンドを切り出し、精製した。 精製した DNA断片を pT7- blue vector (Novagen)にライゲーションした。 大腸菌株 (TG1)にトランスフォーメーションしてブルーホワイトセレクションを行い、 白 いコロニーの大腸菌より plasmid DNAを精製して、 挿入された DNA断片の塩基配 列を DNAシークェンサ一により決定した。
得られた全長の塩基配列を配列表の配列番号 6に示し、 全長のアミノ酸配列を 配列表の配列番号 5に示す。 このクローンを MICyと命名した。
( 7 ) 大腸菌での蛋白発現
得られた全長の塩基配列より、 蛋白の N末端相当する部分で作製したプライマ 一とオリゴ dTプライマーを用い、 (2 ) で調製した First strand cDNAを铸型と して PCRを行った。
使用プライマー
5' -CGGGATCCGACCATGGTGTCTTATTCAAAGCAAGGCATCGCACA -3 ' (primer 8) (配列番号 3 0 )
PCR反応液組成 テンプレート (first strand cDNA) 3^1
X10 pyrobest バッファー 5μ 1
2.5 mM dNTPs 4 μ 1
20 μ M primer8 1 μΐ
20 x M oligo dT primer 1μ丄
ミリ Q 35//1
pyrobest polymerase (5 U/ μ 1) 1^1
PCR反応条件
94°C 1 min(PAD) .
94°C 30 sec (変性)
55°C 30 sec (铸型へのプライマーのアニーリング)
72°C 1 min (プライマー伸長)
上記 3ステツプを 30サイクル行つた。
72°C 7 min (最後の伸長)
4°C 保持
ァガロースゲルの電気泳動で、増幅された 900 bpのバンドを切り出し、精製し て pRSET vector (Invitrogen)の BamH I、 EcoR I部位にサブクローニングして,、大 腸菌株 (JM109- DE3) で発現させた。 N末端に His- tagが付くようにコンストラタ トしたので発現蛋白は Ni- Agarose gel (QIAGEN)で精製した。 精製の方法は付属の プロトコールに準じた。 次に精製した蛋白の性質を解析した。
(8) 蛍光特性の解析
20μΜ蛍光蛋白 (MICy)、 150 mM KC1、 50 mM HEPES pH7.4溶液を用いて、 吸収 スペク トルを測定した (図 4 B)。 このスペク トルのピーク (472ηιη) の値よりモ ル吸光係数を計算した。 440 nmの吸収が 0· 001となるように蛍光蛋白を上記の緩 衝液で希釈し、 440 nmで励起した時の蛍光スぺクトルと 540 nmの蛍光による励 起スぺク トルを測定した (図 4A)。 EGFP (CL0NTECH)を同様に 440 nm の吸収が 0.001となるようにして蛍光スぺクトルを測定し、 EGFPの量子収率を 0.6として ングされた蛍光蛋白の量子収率を求めた。 測定結果を表 3に示す。
Figure imgf000044_0001
(9) pH感受性の測定
蛍光蛋白を各緩衝液で希釈し、 472 nmの吸収の値をとり pH感受性を測定した。 各 pHの緩衝液は次の通り、
pH 4、 5 : 酢酸パッファー
pH 6、 11 : リン酸バッファー
pH 7、 8 : HEPESバッファ一 ,
pH 9、 10 : グリシンバッファー
測定結果を図 4 Cに示す。
(10) MiCyの p H而性変異体 MiCy2の作製
MiCyの 166番目のグルタミン(Q)をヒスチジン(H)に置換することにより MiCy に比べて酸性側での蛍光強度が強い MiCy2となった (ァミノ酸配列を配列番号 7 に示し、塩基配列を配列番号 8に示す)。具体的には pKa=6.6から pKa=5.6に下 がり、蛍光のピークは 493nra、励起のピークは 462nmとなった(図 5の A及び B )。 実施例 4:イシサンゴからの新規蛍光蛋白遺伝子 (C0R)の単離、並びに蛍光特性の 解析
(1) total RNAの抽出
珊瑚より蛍光蛋白遺伝子の単離を行った。 材料にはコモンサンゴ (Montipora .)を用いた。凍結したコモンサンゴを乳鉢で碎き、湿重量 2グラムに" TRIzol" (GIBCO BRL) を 7.5 ml加えてホモジナイズし、 1500Xgで 10分間遠心した。 上 清にクロ口ホルム 1. 5 mlをくわえ、 15秒間攪拌した後 3分間静置した。 7500 X g で 15分間遠心した。 上清にィソプロパノール 3. 75 mlをくわえ、 15秒、間攪拌し た後 10分間静置した。 17000 X gで 10分間遠心した。上清を捨て 70%エタノール を 6 ml加えて 17000 X gで 10分間遠心した。 上清を捨て沈殿を DEPC水 200 μ 1 で溶解した。 DEPC水で溶解した total RNAを 100倍に希釈して 0. D. 260と 0. D. 280 の値を測定して RNA濃度を測った。 22 μ gの total RNAを得た。
( 2 ) First strand cDNAの合成
total RNA 4 μ g を使用し、 First strand cDNA の合成キッ ト" Ready To Go" (Amersham Pharmacia)により CDNA (33 1)を合成した。
( 3 ) Degenerated PCR
合成した First strand cDNA (33 1)のうち 3 ^ 1を铸型として PCRを行つた。 プライマーのデザインは既知の蛍光蛋白のアミノ酸配列を見比べて、 似ている 部分を抜き出し、 塩基配列に変換し直し作製した。
使用プライマー
5 ' -GAAGGRTGYGTCAAYGGRCAY-3 ' (primer 1) (配列番号 1 5 )
5, -ACVGGDCCATYDGVAAGAAARTT-3 ' (primer 2) (配列番号 1 6 )
1=ィノシン、 R=A又は G -、 Y=C又は T、 V=A, C又は G、 D=A, G又は T S=C又は G、 H=A又は T又は C
PCR反応液組成
テンプレート (first strand cDNA) 3 z 1
X10 taqバッファー 5 μ 1
2. 5 mM dNTPs 4 μ Ι
100 μ M primer 1 1 μ ΐ
100 μ M priraer2 l μ ΐ
^ !J Q 35 μ ΐ
taq polymerase (5 U/ μ 1) 1 μ 1
PCR反応条件 94°C 1 min(PAD)
94°C 30 sec (変性)
52°C 30 sec (铸型へのプライマーのアニーリング)
72°C 1 min (プライマー伸長)
上記 3ステップを 35サイクル行つた。
72°C 7 min (最後の伸長)
4°C 保持
一回目の PCR反応で得られた増幅産物 1 ulをテンプレートとして、 もう一度 同じ条件で PCRを行った。 ァガロースゲル電気泳動で、 350 bpを切り出し、 精製 した。
( 4 ) サブクローニング及ぴ塩基配列の決定
精製した DNA断片を pT7- blue vector (Novagen)にライゲーションした。 大腸菌 株(TG1) にトランスフォーメーションしてプルーホワイトセレクションを行い、 白いコロニーの大腸菌より plasmid DNAを精製して、 挿入された DNA断片の塩基 配列を DNAシークェンサ一により決定した。 得られた塩基配列を他の蛍光蛋白遺 伝子の塩基配列と比較してその DNA塩基配列が蛍光蛋白由来のものであるかを判 断した。 蛍光蛋白遺伝子の一部であると判断したものに関して、 5' - RACE法およ ぴ 3, - RACE法による遺伝子全長のクローユングを行った。
( 5 ) 5' - RACE法
Degenerated PCR で得られた DNA断片の 5' 側の塩基配列を決定するために 5' -RACE System for Rapid Amplification of cDNA Ends, Version 2. 0 (GIBC0 BRL)を用いて、 5' -RACE法を行った。 铸型として (1 ) で調製した total RNAを 5 g使用した。
dC - tailed cDNAの一回目の増幅には
5, -GGCCACGCGTCGACTAGTACGGGI IGGGI IGGGI IG-3 ' (primer 3) (配列番号 1 7 ) 5' -CCATCTTCAAAGAGAAAAGACCTTT-3' (primer 4) (配列番号 1 8 )
のプライマーを用いた。 1=ィノシン
二回目の増幅には
5, -GGCCACGCGTCGACTAGTAC-3 ' (primer 5) (配列番号 1 9)
5' -CATGAGTTCTTGAAATAGTCAAC-3' (primer 6) (配列番号 20)
のプライマーを用いた。 PCR反応条件等はキットのプロトコールに準じた。
ァガロースゲル電気泳動で、増幅された 350bpのパンドを切り出し、精製した。 精製した DNA断片を pT7- blue vector (Novagen)にライゲーシヨンした。 大腸菌株
(TG1) にトランスフォーメーションしてブルーホワイトセレクションを行い、 白 ぃコロエーの大腸菌より plasmid DNAを精製して、 挿入された DNA断片の塩基配 列を DNAシークェンサ一により決定した。
(6) 3' - RACE法
Degenerated PCRで得られた DNA断片の 3' 側部分は、 (4) の塩基配列決定で 得られた情報を基に作製したプライマーとオリゴ dTプライマーの PCRで得た。铸 型として (2) で調製した first strand cDNAを 3 μ 1使用した。
作成したプライマーは
5, -ATGGCTCTTTCAAAGCACGGTC-3 ' (primer 7) (配列番号 3 1)
PCR反応液組成
テンプレート (first strand cDNA) 3μ1
X10 taqノ ッファー 5^1
2.5 mM dNTPs 4μ1
20 /zM primer 7 1 μ丄
10 μΜ オリゴ dTprimer 1 μ 1
5: U Q 35/ l
taq polymerase (5 U/ μ 1) 1 μ 1
PCR反応条件
94°C 1 min(PAD)
94°C 30 sec (変性) 52°C 30 sec (铸型へのプライマーのアニーリング)
72°C 1 rain (プライマー伸長)
上記 3ステップを 30サイクル行つた。
72°C 7 min (最後の伸長)
4°C 保持
ァガロースゲル電気泳動で、 増幅された約 lOOObp のパンドを切り出し、 精製 した。 精製した DNA断片を pT7- bluevector(Novagen)にライゲーシヨンした。 大 腸菌株 (TG1) にトランスフォーメーションしてブルーホワイ トセレクションを 行い、 白いコロ二 の大腸菌より plasmid DNAを精製して、 挿入された DNA断片 の塩基配列を DNAシークェンサ一により決定した。
得られた全長の塩基配列を配列表の配列番号 1 0に示し、 全長のアミノ酸配列 を配列表の配列番号 9に示す。 このクローンを C0Rと命名した。
(7) 大腸菌での蛋白発現
得られた全長の塩基配列より、 蛋白の N末端に相当する部分でプライマーを作 製し、 C末端側はオリゴ dTプライマーを使用して、 ( 2 )で調製した First strand cDNAを铸型として PCRを行つた。
使甩プライマー
5' -GGGGGATCCGACCATGGCTCTTTCAAAGCACGGTC-3' (primer 8) (配列番号 3 2) PCR反応液組成
テンプレート (first strand cDNA) 3μ 1
X10 pyrobest バッファー ομ ΐ
2.5 niM dNTPs 4 1
100 μ Μ primer8 1 μ 1
100/iMオリゴ dTプライマー Ιμ ΐ
Sジ Q 35 μ ΐ
pyrobest polymerase (5 U/ μ 1) 1 μ丄
PCR反応条件 94°C 1 min (PAD)
94°C 30 sec (変性)
52°C 30 sec (鏡型へのプライマーのアニーリング)
72°C 1 min (プライマー伸長)
上記 3ステップを 30サイクル行った。
72°C 7 min (最後の伸長)
4°C 保持
ァガロースゲルの電気泳動で、 増幅された約 1000 bpのバンドを切り出し、 精 製して pRSET vector (Invitrogen)の Ba M I ^EcoR I部位にサブクローニングして、 大腸菌株(JM109 - DE3) で発現させた。発現蛋白は N末端に Hi s- tagが付くように コンストラク トしたので発現蛋白は Ni- Agarose gel (QIAGEN)で精製した。 精製の 方法は付属のプロトコールに準じた。 次に精製した蛋白の性質を解析した。
( 8 ) 蛍光特性の解析
20 μ Μ蛍光蛋白 (C0R)、 150 mM KC1, 50 mM HEPES pH 7. 5溶液を用いて、 吸収 スペク トルを測定した (図 6 B )。 このスペク トルのピーク (557 nm) の値よりモ ル吸光係数を計算した。 520 nmの吸収が 0. 002となるように蛍光蛋白を上記の緩 衝液で希釈し、 520 nmで励起した時の蛍光スぺクトルと 600 nmの蛍光による励 起スぺクトルを測定した (図 6 A)。 DsRed2 (CL0NTECH)を同様に 520 nmの吸収が 0. 002となるようにして蛍光スぺク トルを測定し、 DsRed2の量子収率を 0. 55とし て今回クローニングされた蛍光蛋白の量子収率を求めた。測定結果を表 4に示す。 表 4
モル吸光
励起極大 蛍光極大 係数 量子収率 pH感受性 . アミノ酸数
41750
COR 557nm 574nm (557nm) 0.41 pKa<4.0 232 (9) pH感受性の測定
蛍光蛋白を各緩衝液で同濃度に希釈し、 557 nmの吸収の値をとり pH感受性を 測定した。 各 pHの緩衝液は次の通り、
pH 4、 5 : 酢酸バッファー
pH 6、 11 : リン酸バッファー
pH 7、 8 : HEPESバッファー
pH 9、 10 : グリシンバッファー
測定結果を図 6 Cに示す。 実施例 5 :イソギンチヤクからの新規色素蛋白遺伝子の単離、 並びに光吸収特性 の解析
(1) total RNAの抽出
イソギンチヤクより色素蛋白遺伝子の単離を行った。 材料には赤色を呈する 1 個体のウメボシイソギンチヤク (Actinia equina) を用いた。 凍結したウメボシ イソギンチヤクを乳鉢で碎き、 湿重量 1グラムに" TRIzol" (GIBC0BRL) を 7· 5 m 1加えてホモジナイズし、 1500Xg で 10分間遠心した。 上清にクロ口ホルム 1.5mlをくわえ、 15秒間攪拌した後 3分間静置した。 7500Xgで 15分間遠心し た。 上清にイソプロパノール 3.75 m lをくわえ、 15秒間攪拌した後 10分間静置 した。 17000Xgで 10分間遠心した。 上清を捨て 70%エタノールを 6 ml加えて 17000 X gで 10分間遠心した。上清を捨て沈殿を DEPC水 200 μ 1で溶解した。 DEPC 水で溶解した total RNAを 100倍に希釈して 0. D.260と 0. D.280の値を測定して RNA濃度を測った。 1.2 mgの total RNAを得た。
( 2 ) First strand cDNAの合成
total RNA μ g を使用し、 First strand cDNA の合成キット" Ready To Go" (Amersham Pharmacia)により cDNA(33 μ 1)を合成した。
(3) Degenerated PCR
合成した First strand cDNA(33 μΐ)のうち 3μ1を錄型として PCRを行つた。 プライマーのデザインは既知の蛍光蛋白のアミノ酸配列を見比べて、 似ている 部分を抜き出し、 塩基配列に変換し直し作製した。
使用プライマー
5, - GGI WSB GTI AAY GGV CAY DAN TT -3, (primer 1) (配列番号 3 3 )
5, - GTC ITC TTY TGC ACI ACI GGI CCA TYD GVA GGA AA -3, (primer2) (配列 番号 3 4 )
1=イノシン、 R=A又は G、 Y=C又は T、 V=A, C又は G、 D=A, G又は T S=C又は G、 H=A又は T又は C
PCR反応液組成 - テンプレート (first strand cDNA) 3 μ 1
X10 taqバッファー 5 μ 1
2. 5mM dNTPs 4 μ 1
100 μ Μ primer 1 Ι μ ΐ
100 μ Μ primer2 1 μ 1
5: y Q 35 μ ΐ
taq polymerase (5U/ μ 1) 1 μ 1
PCR反応条件
94°C 1 min (PAD)
94°C 30 sec (denaturation)
58°C 30 sec (annealing of primers to temp丄 ate)
72°C 1 min (プライマー伸長)
上記 3ステップを 35サイクル行つた。
72°C 7 min (最後の伸長)
4°C 保持
一回目の PCR反応で得られた増幅産物 Ι μ ΐをテンプレートとして、もう一度同 じ条件で PCRを行った。 ァガロースゲル電気泳動で、 350 bpを切り出し、 精製し た。 ( 4 ) サブクローユング及ぴ塩基配列の決定
精製した DNA断片を pT7- blue vector (Novagen)にライゲーシヨンした。 大腸菌 株 (TG1) にトランスフォーメーションしてブルーホワイ トセレクションを行い、 白いコ口-一の大腸菌より plasmid DNAを精製して、 挿入された DNA断片の塩基 配列を DNAシークェンサ一により決定した。 得られた塩基配列を他の蛍光蛋白遺 伝子の塩基配列と比較してその DNA塩基配列が蛍光蛋白由来のものであるかを判 断した。 蛍光蛋白遺伝子の一部であると判断したものに関して、 5, -RACE法およ び 3, -RACE法による遺伝子全長のクローニングを行った。
( 5 ) 5, -RACE法.
Degenerated PCR で得られた DNA断片の 5' 側の塩基配列を決定するために 5' -RACE System for Rapid Amplification of cDNA Ends, Version 2. 0 (GIBCO BRL) を用いて、 5' -RACE法を行った。 铸型として (1 ) で調製した total R を 4 ju g 使用した。
赤色の個体由来の DC-tailed cDNAの一回目の増幅には
5, -GGCCACGCGTCGACTAGTACGGGI IGGGI IGGGI IG-3 ' (primer3) (配列番号 1 7 ) 5, - CCT TGA AAA TAA AGC TAT CT- 3, (primer4) (配列番号 3 5 )
のプライマーを用いた。
1=イノシン
二回目の増幅には
5, - GGCCACGCGTCGACTAGTAC- 3' (primer5) (配列番号 1 9 )
5, - CCC TGT ATG CTT GTG TCC TG- 3, (primer6) (配列番号 3 6 )
のプライマーを用いた。 PCR反応条件等はキットのプロトコールに準じた。
ァガロースゲル電気泳動で、増幅された 200 bpのパンドを切り出し、精製した。 精製した DNA断片を pT7- blue vector (Novagen)にライゲーシヨンした。 大腸菌株 (TG1) にトランスフォーメーションしてブルーホワイ トセレクションを行い、 白 いコロニーの大腸菌より plasmid DNAを精製して、 挿入された DNA断片の塩基配 列を DNAシークェンサ一により決定した。 ( 6 ) 全塩基配列の決定、 及び大腸菌での蛋白発現
( 5 ) により得られた蛋白の N末端に相当する部分でプライマーを作製し、 C 末端側はオリゴ d Tプライマーを使用して、 (2 ) で調製した First strand cDNA を铸型として PCRを行った。
使用プライマー
5, - CCC GGA TCC GAC CAT GGT GTC TTC ATT GGT TAA GAA -3, (primer- 7) (配 列番号 3 7 )
PCR反応液組成
テンプレート (first strand cDNA) 3 μ 1
X10 pyrobest ハツファー
2. 5 mM dNTPs
100 μ M primer8
100 μ Μオリゴ d Tプライマー
ミリ Q
pyrobest polymerase (5U/ μ 1)
PCR反応条件
94°C 1 min (PAD)
94°C 30 sec (変性)
52°C 30 sec (铸型へのプライマーのアニーリング)
72°C 1 min (プライマー伸長)
上記 3ステツプを 30サイクル行つた。
72°C 7 min (最後の伸長)
4°C 保持
ァガロースゲルの電気泳動で、増幅された約 900 bpのバンドを切り出し、精製 して pRSET vector (Invitrogen)の BaraH I、 EcoR I部位にサブクローニングして、 大腸菌株(JM109 - DE3) で発現させた。 またプラスミ ドを回収し、挿入された全塩 基配列を決定した。 クローン名は Umeとした。 全塩基配列およぴ全ァミノ酸配列 を配列表の配列番号 1 2及ぴ配列番号 1 1に示す。 発現蛋白は N末端に His-tag が付くようにコンストラクトしたので発現蛋白は Ni- Agarose gel (QIAGEN)で精製 した。 精製の方法は付属のプロトコールに準じた。 次に精製した蛋白の性質を解 祈した。
(7) 光吸収特性の解析
10 μΜ色素蛋白 (Ume;)、 50 mM HEPES pH7.9溶液を用いて吸収スペク トルを測 定した。 このスペクトルのピークの値よりモル吸光係数を計算した。 赤色の個体 由来色素蛋白 (Ume) では 592 nmに吸収のピークが認められた (図 7A)。 測定結 果は表 5に示す。 ·
表 5
Figure imgf000054_0001
(9) pH感受性の測定
50 mMの下記の緩衝液中で蛋白質の吸収スぺクトルを測定した (図 7B)。 各 pHの緩衝液は次の通り、
pH4、 5 : 酢酸バッファー
pH6 : リン酸パッファー
pH7、 8 : HEPESバッファー
pH9、 10 : グリシンバッファー
pH5〜; L0でピークの値は安定していた。 実施例 6 :珊瑚 (ゥミキノコ) からの新規蛍光蛋白遺伝子の単離
(1) total RNAの抽出
蛍光を放つ珊瑚より蛍光蛋白遺伝子の単離を行った。 材料にはゥミキノコ {Lobophytum crassum) を用いた。 珊瑚をハンマーで砕き、 湿重量 4グラム に" TRIzol" (GIBCO BRL) を 7.5 m l加えて攪拌し、 1500Xgで 10分間遠心し た。 上清にクロ口ホルム 1.5 m lをくわえ、 15秒間攪拌した後 3分間静置した。 7500 Xgで 15分間遠心した。 上清にィソプロパノール 3.75 m lをくわえ、 15 秒間攪拌した後 10分間静置した。 17000Xgで 10分間遠心した。上清を捨て 70% ェタノールを 6 ml加えて 17000 Xgで 10分間遠心した。 上清を捨て沈殿を DEPC 水 200 β 1で溶解した。 DEPC水で溶解した total RNAを 100倍に希釈して 0. D.260 と O.D.280の値を測定して RNA濃度を測った。 390/z gの total RNAを得た。
( 2 ) First strand cDNAの合成
total RNA 3 μ g を使用し、 First strand cDNA の合成キッ ト,, Ready To Go" (Amersham Pharmacia)により cDNA(33 ul)を合成した。
( 3 ) Degenerated PCR
合成した First strand cDNA(33 μ 1)のうち 3 μ 1を铸型として PCRを行つた。 プライマーのデザインは既知の蛍光蛋白のアミノ酸配列を見比べて、 似ている部 分を抜き出し、 塩基配列に変換し直し作製した。
使用プライマー
5, - GRR AGG IWS BGT HAA YGG VCA -3, (Primer 1) (配列番号 3 8)
5' - AACTGGAAGAATTCGCGGCCGCAGGAA -3' (Primer2) (配列番号 3 9)
R=A又は G、 Y=C又は T、 V=A,C又は G、 D=A,G又は T
PCR反応液組成
テンプレート (first strand cDNA) 3μ1
X10 taqバッファー 5 μ 1
2.5 mM dNTPs μ1
100 μ Μ primer 1 1 μ丄
100 μ Μ primer2 ΙμΙ
ミリ Q 35
taq polymerase (5U/ μ 1) Ιμΐ
PCR反応条件
94°C 1 min(PAD) 94°C 30 sec (変性)
52°C 30 sec (铸型へのプライマーのアニーリング)
72°C 1 min (プライマー伸長)
72°C 7 min (最後の伸長)
4°C 保持
一回目の PCR反応で得られた増幅産物 をテンプレートとして、もう—度同 じ温度条件で PCRを行った。 ただし、 使用プライマーは、
5, - GRR AGG IWS BGT HAA YGG VCA- 3' (Primer 1) (配列番号 3 8 )
5, - GTC ITC TTY TGC ACI ACI GGI CCA TYD GVA GGA AA -3, (Primer3) (配列 番号 4 0 )
ァガロースゲル電気泳動で、 予想された大きさの 350 b のパンドを切り出し、 精製した。
( 4 ) サブクローニング及ぴ塩基配列の決定
精製した DNA断片を pT7-blue vector (Novagen)にライゲーシヨンした。 大腸菌 株 (TG1) にトランスフォーメーションしてブルーホワイトセレクションを行い、 白いコロニーの大腸菌より plasmid DNAを精製して、 揷入された DNA断片の塩基 配列を DNAシークェンサ一により決定した。 得られた塩基配列を他の蛍光蛋白遺 伝子の塩基配列と比較してその DNA塩基配列が蛍光蛋白由来のものであるかを判 断した。 蛍光蛋白遺伝子の一部であると判断したものに関して、 5' - RACE法およ び 3, -RACE法による遺伝子全長のクローニングを行った。
( 5 ) 5, - RACE法
Degenerated PCRで得られた DNA断片の 5' 側の塩基配列を決定するために 5, -RACE System for Rapid Amplification of cDNA Ends, Version 2. 0 (GIBC0 BRL) を用いて、 5, -RACE法を行った。 铸型として 1 ) で調整した total RNAを 3ug使 用し /し。
DC-tailed cDNAの一回目の増幅には
5, -GGCCACGCGTCGACTAGTACGGGI IGGGI IGGGI IG-3 ' (Primer4) (配列番号 1 7 ) 5,— TCA AGA TAT cGA AAG CGA ACG GCA GAG -3, (Primer5) (配列番号 4 1)
のプライマーを用いた。
1=イノシン
二回目の増幅には
5' -GGCCACGCGTCGACTAGTAC-3' (Primer6) (配列番号 42)
5, - CTT CTC ACG TTG CM ATG GC- 3, (Primer7) (配列番号 43)
のプライマーを用いた。 PCR反応条件等はキットのプロトコールに準じた。
ァガロースゲル電気泳動で、増幅された 600 bpのバンドを切り出し、精製した。 精製した DNA断片を pT7 - blue vector (Novagen)にライゲーシヨンした。 大腸菌株
(TG1)にトランスフォーメーションしてブルーホワイトセレクションを行い、 白 いコロニーの大腸菌より plasmid DNAを精製して、 挿入された DNA断片の塩基配 列を DNAシータエンサ一により決定した。
(6) 全塩基配列の決定、 及び大腸菌での蛋白発現
(5) により得られた蛋白の N末端に相当する部分でプライマーを作製し、 C 末端側はオリゴ dT プライマーを使用して、 2 ) で調整した First strand cDNA を铸型として PCRを行った。
使用プライマー
5' - CCC GGA TCC GAT GAG TGT GAT TAC AWC AGA AAT GAA GAT GGA GC -3, (Primer8)
(配列番号 44)
PCR反応液組成
テンプレート (first strand cDNA) 3μ1
X10 pyrobest バッファー 5μ1
2.5 iuM dNTPs 4/il
100 μ M primer8 Ιμΐ
ΙΟΟμΜオリゴ dTプライマー ΙμΙ
^ y Q 35 μΐ 6 pyrobest polymerase (5U/ μ 1) Ι μ ΐ
PCR反応条件
94°C 1 min (PAD)
94°C 30 sec (変性)
52°C 30 sec (錶型へのプライマーのアニーリング)
72°C 1 min (プライマー伸長)
上記 3ステツプを 30サイクル行つた。
72°C 7 min (最後の伸長)
4°C 保持
ァガロースゲルの電気泳動で、 増幅された約 900bpのバンドを切り出し、 精製 して pRSET vector (Invitrogen)の a l I、 EcoR I部位にサブクローニングして、 大腸菌株(JM109- DE3) で発現させた。 またプラスミドを回収し、揷入された全塩 基配列を決定した。 クローン名を KnGとした。 得られた全長の塩基配列を配列表 の配列番号 1 4に示し、 全長のァミノ酸配列を配列表の配列番号 1 3に示す。 発現蛋白は N末端に His-tagが付くようにコンストラタトしたので発現蛋白は Ni- Agarose gel (QIAGEN)で精製した。精製の方法は付属のプロトコールに準じた。 次に精製した蛋白の性質を解析した。 ,
( 7 ) 蛍光特性の解析
10 μ Μ蛍光蛋白 (KnG)、 50 mM HEPES (pH7. 9) 溶液を用いて吸収スペク トルを測 定した(図 8 A)。 このスぺク トルのピークの値よりモル吸光係数を計算した。 482 nmに吸収のピークが認められ、 450 nmにおける吸収が 0. 005となるように蛍光蛋 白を上記の緩衝液で希釈して、 450 nmで励起した時の蛍光スぺクトルを測定した (図 8 A)。 EGFP (CLONTECH)を同様に 450 nmにおける吸収が 0. 005となるように して蛍光スぺクトルを測定し、 EGFPの量子収率を 0. 6として新規蛋白質の量子収 率を求めた。 結果を表 6に示す。 786 表 6
Figure imgf000059_0001
( 8 ) PH感受性の測定
下記の緩衝液で希釈して蛍光スペク トルを測定した。
各 pHの緩衝液は次の通り、
pH4、 5 酢酸ノ
pH6 MESバッファ一
pH7 MOPSバッファ一
pH8 HEPESバッファー
pH9、 10 ダリ
pHll リン酸ノ
結果を図 8 Bに示す。 産業上の利用可能性
本発明により、 コモンサンゴ (Montipora sp. )、 ミ ドリイシ (Acropora sp - )、 及ぴゥミキノコ ilobophytim crassum) 由来の新規な蛍光蛋白質が提供されるこ とになった。 本発明の蛍光蛋白質は、 従来の蛍光蛋白質とは一次構造が異なる新 規な蛋白質である。 本発明の蛍光蛋白質は、 所定の蛍光特性を有し、 分子生物学 的分析において有用である。 即ち、 本発明の蛍光蛋白質を用いることにより哺乳 類細胞で毒性を発揮することなく蛍光ラベルができるようになった。 また、 本発 明の蛍光蛋白質に変異を導入することにより、 より新しい蛍光特性を生み出すこ とができる。
また、 本発明の蛍光蛋白質 (C0R) は、 従来の R F P (DsRed、 クロンテック社) の示す幅広い励起スぺクトルに比べ、 よりシャープなスぺクトルを有している。 また、 本発明の蛍光蛋白質に変異を導入することにより、 赤色領域の蛍光特性を より多様化させることができる。
さらに本発明により、 ウメボシイソギンチヤク (Actinia equina) 由来の新規 な色素蛋白質が提供されることになった。 本発明の色素蛋白質は赤の領域に吸収 を示すものであり、 また p H感受性が低いことから、 分子生物学的分析において 有用である。 また、 本発明の色素蛋白質の吸収度 (モル吸光係数) は著しく大き いため、 光エネルギーの高効率な変換が可能である。 また、 遺伝子改変技術によ つて本発明の色素蛋白質の量子収率を 1に近づけることも可能であり、その場合、 新規な蛍光蛋白質を作製することができる。

Claims

請求の範囲
1. コモンサンゴ (Montipora sp. ) 由来の下記の特性を有する蛍光蛋白質。
(1) 励起極大波長が 50 7 nmである;
(2) 蛍光極大波長が 5 1 7 nmである;
(3) 50 7 nmにおけるモル吸光係数が 1 040 50である;
(4) 量子収率が 0. 2 9である;
( 5 ) 光吸収特性の p H感受性が p K a =約 5. 5である :
2. ミドリイシ (Acropora sp,) 由来の下記の特性を有する蛍光蛋白質。
(1) 励起極大波長が 50 5 nmである;
(2) 蛍光極大波長が 5 1 6 nmである;
(3) 505 nmにおけるモル吸光係数が 536 00である ;
(4) 量子収率が 0. 6 7である;
( 5 ) 光吸収特性の p H感受性が pKa =約 6. 4である :
3. ミドリイシ (Acropora sp. ) 由来の下記の特性を有する蛍光蛋白質。
(1) 励起極大波長が 4 72 nmである;
(2) 蛍光極大波長が 49 6 nmである;
(3) 4 72 nmにおけるモル吸光係数が 27250である;
(4) 量子収率が 0. 90である;
( 5 ) 光吸収特性の p H感受性が p K a =約 6. 6である :
4. コモンサンゴ Montipora sp.) 由来の下記の特性を有する蛍光蛋白質。
( 1 ) 励起極大波長が 5 5 7 n mである;
(2) 蛍光極大波長が 5 74 nmである;
(3) 5 57 nmにおけるモル吸光係数が 4 1 7 50である;
(4) 量子収率が 0. 4 1である;
( 5 ) 光吸収特性の p H感受性が p K a <約 4 · 0である :
5. ウメポシイソギンチヤク (Actinia equina) 由来の下記の特性を有する 色素蛋白質。
( 1 ) 吸収極大波長が 592 n mである;
(2) 592 nmにおけるモル吸光係数が 87000である ;
( 3 ) 光吸収特性の p H感受性が p H 5〜 10で安定である:
6. ゥミキノコ ( obophytum crassim 由来の下記の特性を有する蛍光蛋白 質。
(1) 励起極大波長が 482 nmである;
(2) 蛍光極大波長が 498 nmである;
(3) 482 nmにおけるモル吸光係数が 71000である ;
(4) 量子収率が 0. 41である;
(5) 蛍光極大の pH感受性が pH=4〜l 0で安定である :
7. 以下の何れかのアミノ酸配列を有する蛍光蛋白質。
( a ) 配列番号 1に記載のァミノ酸配列;又は、
(b) 配列番号 1に記載のアミノ酸配列において 1から数個のアミノ酸の欠失、 置換及び Z又は付加を有するアミノ酸配列を有し、 蛍光を有するアミノ酸配列:
8. 以下の何れかのアミノ酸配列を有する蛍光蛋白質。
( a ) 配列番号 3に記载のァミノ酸配列;又は、
(b) 配列番号 3に記載のアミノ酸配列において 1から数個のアミノ酸の欠失、 置換及び/又は付加を有するアミノ酸配列を有し、 蛍光を有するアミノ酸配列:
9. 以下の何れかのアミノ酸配列を有する蛍光蛋白質。
( a ) 配列番号 5又は 7に記載のァミノ酸配列;又は、
( b ) 配列番号 5又は 7に記載のァミノ酸配列において 1から数個のアミノ酸の 欠失、 置換及び/又は付カ卩を有するアミノ酸配列を有し、 蛍光を有するアミノ酸 配列:
10. 以下の何れかのアミノ酸配列を有する蛍光蛋白質。
( a ) 配列番号 9に記載のァミノ酸配列;又は、
(b) 配列番号 9に記載のァミノ酸配列において 1から数個のァミノ酸の欠失、 置換及び/又は付加を有するァミノ酸配列を有し、 蛍光を有するァミノ酸配列:
1 1. 以下の何れかのアミノ酸配列を有する色素蛋白質。
( a ) 配列番号 1 1に記載のァミノ酸配列;又は、
(13)配列番号1 1に記載のァミノ酸配列において 1から数個のァミノ酸の欠失、 置換及ぴ 又は付加を有するァミノ酸配列を有し、 吸光特性を有するアミノ酸配 列:
1 2. 以下の何れかのアミノ酸配列を有する蛍光蛋白質。
( a ) 配列番号 1 3に記載のァミノ酸配列;又は、
(b )配列番号 13に記載のァミノ酸配列において 1から数個のァミノ酸の欠失、 置換及ぴ Z又は付加を有するアミノ酸配列を有し、 蛍光を有するアミノ酸配列:
1 3. 請求項 1から 12の何れかに記載の蛋白質をコードする DNA。
14. 以下の何れかの DNA。
( a ) 配列番号 1に記載のァミノ酸配列をコードする D N A;又は、
(b) 配列番号 1に記載のアミノ酸配列において 1から数個のアミノ酸の欠失、 置換及び Z又は付加を有するアミノ酸配列を有し、' 蛍光蛋白質をコードする DN
A:
15. 以下の何れかの塩基配列を有する DNA。
( a ) 配列番号 2に記載の塩基配列;又は、
(b) 配列番号 2に記載の塩基配列において 1から数個の塩基の欠失、 置換及び Z又は付加を有する塩基配列を有し、 蛍光蛋白質をコードする塩基配列:
16. 以下の何れかの DNA。
(a) 配列番号 3に記載のアミノ酸配列をコードする DNA;又は、
(b) 配列番号 3に記載のアミノ酸配列において 1から数個のアミノ酸の欠失、 置換及ぴ 又は付加を有するアミノ酸配列を有し、 蛍光蛋白質をコードする DN A:
1 7. 以下の何れかの塩基配列を有する DNA。
( a ) 配列番号 4に記載の塩基配列;又は、 (b) 配列番号 4に記載の塩基配列において 1から数個の塩基の欠失、 置換及ぴ
Z又は付加を有する塩基配列を有し、 蛍光蛋白質をコードする塩基配列:
18. 以下の何れかの DNA。
(a) 配列番号 5又は 7に記載のアミノ酸配列をコードする DNA;又は、
( b ) 配列番号 5又は 7に記載のァミノ酸配列において 1から数個のァミノ酸の 欠失、 置換及び Z又は付加を有するアミノ酸配列を有し、 蛍光蛋白質をコードす る DNA:
19. 以下の何れかの塩基配列を有する DNA。
( a ) 配列番号 6又は 8に記載の塩基配列;又は、
(b) 配列番号 6又は 8に記載の塩基配列において 1から数個の塩基の欠失、 置 換及ぴ Z又は付加を有する塩基配列を有し、 蛍光蛋白質をコードする塩基配列:
20. 以下の何れかの D N A。
(a) 配列番号 9に記載のアミノ酸配列をコードする DNA;又は、
(b) 配列番号 9に記載のアミノ酸配列において 1から数個のアミノ酸の欠失、 置換及ぴ Z又は付加を有するアミノ酸配列を有し、 蛍光蛋白質をコードする DN A:
21. 以下の何れかの塩基配列を有する DNA。 ―
( a ) 配列番号 10に記載の塩基配列;又は、
(b) 配列番号 10に記載の塩基配列において 1から数個の塩基の欠失、 置換及 ぴ 又は付加を有する塩基配列を有し、 蛍光蛋白質をコードする塩基配列: 22. 以下の何れかの DNA。
(a) 配列番号 11に記載のアミノ酸配列をコードする DNA;又は、
( b )配列番号 11に記載のァミノ酸配列において 1から数個のァミノ酸の欠失、 置換及び 又は付カ卩を有するアミノ酸配列を有し、 吸光特性を有する蛋白質をコ 一ドする DNA:
23. 以下の何れかの塩基配列を有する DNA。
( a ) 配列番号 12に記載の塩基配列;又は、 (b) 配列番号 12に記載の塩基配列において 1から数個の塩基の欠失、 置換及 ぴ Z又は付加を有する塩基配列を有し、 吸光特性を有する蛋白質をコードする塩 基配列:
24. 以下の何れかの DNA。
(a) 配列番号 13に記載のアミノ酸配列をコードする DNA;又は、
( b )配列番号 13に記載のァミノ酸配列において 1から数個のァミノ酸の欠失、 置換及び/又は付加を有するアミノ酸配列を有し、 蛍光蛋白質をコードする DN A:
25. 以下の何れかの塩基配列を有する DNA。
( a ) 配列番号 14に記載の塩基配列;又は、
(b) 配列番号 14に記載の塩基配列において 1から数個の塩基の欠失、 置換及 び Z又は付加を有する塩基配列を有し、 蛍光蛋白質をコードする塩基配列: 26. 請求項 13から 25の何れかに記載の DNAを有する組み換えべクタ
27. 請求項 1 3から 25の何れかに記載の DN A又は請求項 26に記載の 組み換えベクターを有する形質転換体。
28. 請求項 1から 4、 6、 7から 10又は 12の何れかに記載の蛍光蛋白 質と他の蛋白質とから成る融合蛍光蛋白質。
29. 他の蛋白質が細胞内に局在する蛋白質である、 請求項 28に記載の融 合蛍光蛋白質。
30. 他の蛋白質が細胞内小器官に特異的な蛋白質である、 請求項 28又は 29に記載の融合蛍光蛋白質。
31. 請求項 5又は 1 1に記載の色素蛋白質と他の蛋白質とから成る融合蛋 白質。
32. 請求項 28から 30の何れかに記載の融合蛍光蛋白質を細胞内で発現 させることを特徴とする、 細胞内における蛋白質の局在または動態を分析する方 法。
33. 請求項 5又は 1 1に記載の色素蛋白質をァクセプター蛋白質として用 いて FRET (蛍光共鳴エネルギー転移) 法を行うことを特徴とする、 生理活性物質 の分析方法。
34. 1から 4、 6、 7から 10又は 12の何れかに記載の蛍光蛋白質、 請 求項 14から 21、 24又は 25の何れかに記載の DNA、 請求項 26に記載の 組み換えベクター、 請求項 27に記載の形質転換体、 又は請求項 28から 30の 何れかに記載の融合蛍光蛋白質を含む、 蛍光試薬キット。
35. 請求項 5又は 11に記載の色素蛋白質、 請求項 22又は 23に記載の DNA、請求項 26に記載の組み換えベクター、請求項 27に記載の形質転換体、 又は請求項 31に記載の融合蛋白質を含む、 吸光試薬キット。
PCT/JP2004/008786 2003-06-16 2004-06-16 蛍光蛋白質及び色素蛋白質 WO2004111235A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP04746255A EP1642969B1 (en) 2003-06-16 2004-06-16 Fluorescent protein and pigment protein
AU2004248054A AU2004248054A1 (en) 2003-06-16 2004-06-16 Fluorescent protein and chromoprotein
US10/561,041 US7956172B2 (en) 2003-06-16 2004-06-16 Fluorescent protein and chromoprotein
AT04746255T ATE443135T1 (de) 2003-06-16 2004-06-16 Fluoreszenzprotein und pigmentprotein
DE602004023199T DE602004023199D1 (de) 2003-06-16 2004-06-16 Fluoreszenzprotein und pigmentprotein
JP2005507025A JP4852676B2 (ja) 2003-06-16 2004-06-16 蛍光蛋白質及び色素蛋白質
US13/095,603 US8207322B2 (en) 2003-06-16 2011-04-27 Fluorescent protein and chromoprotein

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2003-170329 2003-06-16
JP2003170329 2003-06-16
JP2003-170328 2003-06-16
JP2003170326 2003-06-16
JP2003170327 2003-06-16
JP2003-170326 2003-06-16
JP2003-170327 2003-06-16
JP2003170325 2003-06-16
JP2003170328 2003-06-16
JP2003-170325 2003-06-16
JP2003170324 2003-06-16
JP2003-170324 2003-06-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/561,041 A-371-Of-International US7956172B2 (en) 2003-06-16 2004-06-16 Fluorescent protein and chromoprotein
US13/095,603 Division US8207322B2 (en) 2003-06-16 2011-04-27 Fluorescent protein and chromoprotein

Publications (1)

Publication Number Publication Date
WO2004111235A1 true WO2004111235A1 (ja) 2004-12-23

Family

ID=33556769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008786 WO2004111235A1 (ja) 2003-06-16 2004-06-16 蛍光蛋白質及び色素蛋白質

Country Status (7)

Country Link
US (2) US7956172B2 (ja)
EP (2) EP1642969B1 (ja)
JP (1) JP4852676B2 (ja)
AT (2) ATE527280T1 (ja)
AU (1) AU2004248054A1 (ja)
DE (1) DE602004023199D1 (ja)
WO (1) WO2004111235A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280232A (ja) * 2005-03-31 2006-10-19 Institute Of Physical & Chemical Research 蛍光蛋白質
US7247449B2 (en) 2001-10-11 2007-07-24 Riken Fluorescent protein
US7345157B2 (en) 2002-08-23 2008-03-18 Riken Fluorescent protein and chromoprotein
WO2011019082A1 (ja) * 2009-08-10 2011-02-17 独立行政法人科学技術振興機構 オートファジーの測定方法
US7960530B2 (en) 2003-06-16 2011-06-14 Riken Fluorescent protein
US8017746B2 (en) 2003-12-03 2011-09-13 Riken Fluorescent protein
US20120071631A1 (en) * 2009-03-20 2012-03-22 Board Of Regents, The University Of Texas System Isolation and Characterization of Novel Green Fluorescent Proteins from Copepods
WO2015025959A1 (ja) * 2013-08-23 2015-02-26 独立行政法人理化学研究所 蛍光特性を示すポリペプチド、およびその利用
KR102139288B1 (ko) * 2019-04-01 2020-07-29 고려대학교산학협력단 아크로포라 디기티페라 유래의 신규한 적색 형광 단백질

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1642969B1 (en) 2003-06-16 2009-09-16 Riken Fluorescent protein and pigment protein
US7897385B2 (en) * 2004-05-20 2011-03-01 Riken Fluorescent protein

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034321A1 (en) * 1998-12-11 2000-06-15 Clontech Laboratories, Inc. Fluorescent proteins from non-bioluminescent species of class anthozoa, genes encoding such proteins and uses thereof
WO2000034318A1 (en) * 1998-12-11 2000-06-15 Clontech Laboratories, Inc. Fluorescent proteins from non-bioluminescent species of class anthozoa, genes encoding such proteins and uses thereof
WO2000034319A1 (en) * 1998-12-11 2000-06-15 Clontech Laboratories, Inc. Fluorescent proteins from non-bioluminescent species of class anthozoa, genes encoding such proteins and uses thereof
WO2001027150A2 (en) * 1999-10-14 2001-04-19 Clontech Laboratories Inc. Anthozoa derived chromo/fluoroproteins and methods for using the same
WO2002068459A2 (en) * 2001-02-21 2002-09-06 Clontech Laboratories, Inc. Non aggregating fluorescent proteins and methods for using the same
WO2002090535A1 (en) * 2001-05-10 2002-11-14 Rigel Pharmaceuticals, Inc. Methods and compositions comprising renilla gfp
WO2002096924A1 (en) * 2001-05-25 2002-12-05 Clontech Laboratories, Inc. Kindling fluorescent proteins and methods for their use
WO2003033693A1 (fr) * 2001-10-11 2003-04-24 Riken Proteine fluorescente
WO2003042401A2 (en) * 2001-11-13 2003-05-22 Clontech Laboratories, Inc. Novel chromophores/fluorophores and methods for using the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998204A (en) * 1997-03-14 1999-12-07 The Regents Of The University Of California Fluorescent protein sensors for detection of analytes
US6197928B1 (en) * 1997-03-14 2001-03-06 The Regents Of The University Of California Fluorescent protein sensors for detection of analytes
US6140132A (en) * 1998-06-09 2000-10-31 The Regents Of The University Of California Fluorescent protein sensors for measuring the pH of a biological sample
AUPP846399A0 (en) * 1999-02-02 1999-02-25 University Of Sydney, The Pigment protein from coral tissue
JP2002253261A (ja) * 2001-03-05 2002-09-10 Inst Of Physical & Chemical Res 蛍光タンパク質
JP4258724B2 (ja) 2001-12-20 2009-04-30 独立行政法人理化学研究所 蛍光蛋白質
AU2003211664A1 (en) * 2002-02-25 2003-09-09 Medical & Biological Laboratories Co., Ltd. Fluorescent protein
US20060154296A1 (en) * 2002-06-10 2006-07-13 Riken Pigment protein
CA2489053A1 (en) * 2002-06-10 2003-12-18 Riken Chromoprotein
EP1548107B1 (en) * 2002-08-23 2011-01-12 Riken Chromoprotein and fluoroproteins
US7413874B2 (en) * 2002-12-09 2008-08-19 University Of Miami Nucleic acid encoding fluorescent proteins from aquatic species
AU2003298060A1 (en) 2002-12-13 2004-07-09 Stefan Neumeyer Abutment for a dental implant, dental implant comprising such an abutment, and method for the production of dentures by means of said dental implant
WO2005019252A2 (en) * 2003-05-22 2005-03-03 University Of Florida Research Foundation, Inc. Novel fluorescent and colored proteins, and polynucleotides that encode these proteins
ATE506434T1 (de) 2003-06-16 2011-05-15 Riken Fluoreszenzprotein
EP1642969B1 (en) 2003-06-16 2009-09-16 Riken Fluorescent protein and pigment protein
EP2163618A3 (en) * 2003-12-03 2010-06-02 Riken Fluorescent protein
JP5019771B2 (ja) * 2005-03-29 2012-09-05 独立行政法人理化学研究所 蛍光蛋白質を用いた蛋白質の相互作用の分析方法
US7690530B2 (en) * 2005-05-06 2010-04-06 Albion Engineering Company Dispenser for viscous material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034321A1 (en) * 1998-12-11 2000-06-15 Clontech Laboratories, Inc. Fluorescent proteins from non-bioluminescent species of class anthozoa, genes encoding such proteins and uses thereof
WO2000034318A1 (en) * 1998-12-11 2000-06-15 Clontech Laboratories, Inc. Fluorescent proteins from non-bioluminescent species of class anthozoa, genes encoding such proteins and uses thereof
WO2000034319A1 (en) * 1998-12-11 2000-06-15 Clontech Laboratories, Inc. Fluorescent proteins from non-bioluminescent species of class anthozoa, genes encoding such proteins and uses thereof
WO2000034320A1 (en) * 1998-12-11 2000-06-15 Clontech Laboratories, Inc. Fluorescent proteins from non-bioluminiscent species of class anthozoa, genes encoding such proteins and uses thereof
JP2002531146A (ja) * 1998-12-11 2002-09-24 クロンテック・ラボラトリーズ・インコーポレーテッド Anthozoa綱の非生物発光性種由来の蛍光タンパク質、そのようなタンパク質をコードする遺伝子、およびそれらの使用
WO2001027150A2 (en) * 1999-10-14 2001-04-19 Clontech Laboratories Inc. Anthozoa derived chromo/fluoroproteins and methods for using the same
WO2002068459A2 (en) * 2001-02-21 2002-09-06 Clontech Laboratories, Inc. Non aggregating fluorescent proteins and methods for using the same
WO2002090535A1 (en) * 2001-05-10 2002-11-14 Rigel Pharmaceuticals, Inc. Methods and compositions comprising renilla gfp
WO2002096924A1 (en) * 2001-05-25 2002-12-05 Clontech Laboratories, Inc. Kindling fluorescent proteins and methods for their use
WO2003033693A1 (fr) * 2001-10-11 2003-04-24 Riken Proteine fluorescente
WO2003042401A2 (en) * 2001-11-13 2003-05-22 Clontech Laboratories, Inc. Novel chromophores/fluorophores and methods for using the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247449B2 (en) 2001-10-11 2007-07-24 Riken Fluorescent protein
US7345157B2 (en) 2002-08-23 2008-03-18 Riken Fluorescent protein and chromoprotein
US7547528B2 (en) 2002-08-23 2009-06-16 Riken Fluorescent protein and chromoprotein
US7892791B2 (en) 2002-08-23 2011-02-22 Riken Fluorescent protein and chromoprotein
US7981637B2 (en) 2002-08-23 2011-07-19 Medical & Biological Laboratories Co., Ltd. Fluorescent protein and chromoprotein
US7960530B2 (en) 2003-06-16 2011-06-14 Riken Fluorescent protein
US8378077B2 (en) 2003-06-16 2013-02-19 Riken Fluorescent protein
US8017746B2 (en) 2003-12-03 2011-09-13 Riken Fluorescent protein
US8420781B2 (en) 2003-12-03 2013-04-16 Riken Fluorescent protein
JP2006280232A (ja) * 2005-03-31 2006-10-19 Institute Of Physical & Chemical Research 蛍光蛋白質
US8772454B2 (en) * 2009-03-20 2014-07-08 Board Of Regents, The University Of Texas System Isolation and characterization of novel green fluorescent proteins from copepods
US20120071631A1 (en) * 2009-03-20 2012-03-22 Board Of Regents, The University Of Texas System Isolation and Characterization of Novel Green Fluorescent Proteins from Copepods
WO2011019082A1 (ja) * 2009-08-10 2011-02-17 独立行政法人科学技術振興機構 オートファジーの測定方法
JP5339387B2 (ja) * 2009-08-10 2013-11-13 独立行政法人科学技術振興機構 オートファジーの測定方法
US9989518B2 (en) 2009-08-10 2018-06-05 Japan Science And Technology Agency Method for measuring autophagy
WO2015025959A1 (ja) * 2013-08-23 2015-02-26 独立行政法人理化学研究所 蛍光特性を示すポリペプチド、およびその利用
JPWO2015025959A1 (ja) * 2013-08-23 2017-03-02 国立研究開発法人理化学研究所 蛍光特性を示すポリペプチド、およびその利用
US10030055B2 (en) 2013-08-23 2018-07-24 Riken Polypeptide exhibiting fluorescent properties, and utilization of the same
KR102139288B1 (ko) * 2019-04-01 2020-07-29 고려대학교산학협력단 아크로포라 디기티페라 유래의 신규한 적색 형광 단백질

Also Published As

Publication number Publication date
JPWO2004111235A1 (ja) 2006-07-27
ATE443135T1 (de) 2009-10-15
US20110223636A1 (en) 2011-09-15
AU2004248054A1 (en) 2004-12-23
EP2098535A1 (en) 2009-09-09
EP1642969A4 (en) 2007-02-21
US8207322B2 (en) 2012-06-26
JP4852676B2 (ja) 2012-01-11
EP2098535B1 (en) 2011-10-05
EP1642969B1 (en) 2009-09-16
EP1642969A1 (en) 2006-04-05
US7956172B2 (en) 2011-06-07
US20090170073A1 (en) 2009-07-02
ATE527280T1 (de) 2011-10-15
DE602004023199D1 (de) 2009-10-29

Similar Documents

Publication Publication Date Title
JP5117465B2 (ja) 色素蛋白質及び蛍光蛋白質
US8207322B2 (en) Fluorescent protein and chromoprotein
US7541451B2 (en) Fluorescent proteins from Fungia
JP2011036262A (ja) 蛍光蛋白質
US8378077B2 (en) Fluorescent protein
JP4214209B2 (ja) 蛍光蛋白質
WO2003104460A1 (ja) 色素蛋白質
WO2003070952A1 (fr) Proteine fluorescente
AU2008200732A1 (en) Fluorescent protein and chromoprotein

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005507025

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004248054

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004746255

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004248054

Country of ref document: AU

Date of ref document: 20040616

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004746255

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10561041

Country of ref document: US