WO2005013078A2 - Wireless activation system and method - Google Patents

Wireless activation system and method Download PDF

Info

Publication number
WO2005013078A2
WO2005013078A2 PCT/US2004/024419 US2004024419W WO2005013078A2 WO 2005013078 A2 WO2005013078 A2 WO 2005013078A2 US 2004024419 W US2004024419 W US 2004024419W WO 2005013078 A2 WO2005013078 A2 WO 2005013078A2
Authority
WO
WIPO (PCT)
Prior art keywords
activation
optical media
target
signal
optical
Prior art date
Application number
PCT/US2004/024419
Other languages
French (fr)
Other versions
WO2005013078A3 (en
Inventor
Paul Atkinson
Original Assignee
Kestrel Wireless, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kestrel Wireless, Inc. filed Critical Kestrel Wireless, Inc.
Priority to CA002534410A priority Critical patent/CA2534410A1/en
Priority to JP2006522043A priority patent/JP2007502486A/en
Priority to AU2004262368A priority patent/AU2004262368A1/en
Priority to EP04779466A priority patent/EP1652010A2/en
Publication of WO2005013078A2 publication Critical patent/WO2005013078A2/en
Publication of WO2005013078A3 publication Critical patent/WO2005013078A3/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/28Indicating or preventing prior or unauthorised use, e.g. cassettes with sealing or locking means, write-protect devices for discs
    • G11B23/281Indicating or preventing prior or unauthorised use, e.g. cassettes with sealing or locking means, write-protect devices for discs by changing the physical properties of the record carrier
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/20Individual registration on entry or exit involving the use of a pass
    • G07C9/27Individual registration on entry or exit involving the use of a pass with central registration
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/30Individual registration on entry or exit not involving the use of a pass
    • G07C9/38Individual registration on entry or exit not involving the use of a pass with central registration
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/28Indicating or preventing prior or unauthorised use, e.g. cassettes with sealing or locking means, write-protect devices for discs
    • G11B23/283Security features, e.g. digital codes
    • G11B23/284Security features, e.g. digital codes on the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/00086Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
    • G11B20/00572Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving measures which change the format of the recording medium
    • G11B20/00586Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving measures which change the format of the recording medium said format change concerning the physical format of the recording medium
    • G11B20/00608Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving measures which change the format of the recording medium said format change concerning the physical format of the recording medium wherein the material that the record carrier is made of is altered, e.g. adding reactive dyes that alter the optical properties of a disc after prolonged exposure to light or air
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/00086Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
    • G11B20/00876Circuits for prevention of unauthorised reproduction or copying, e.g. piracy wherein physical copy protection means are attached to the medium, e.g. holograms, sensors, or additional semiconductor circuitry

Definitions

  • the present invention relates to a system and method for wireless activation of an item at a user's point-of-presence (POP).
  • POP point-of-presence
  • Activation of, or regulation of access to, articles or media at a consumer's immediate point-of-presence is an emerging media distribution model. Examples include enabling pay-per-view movies at home or on the road, and remote activation of driver's licenses, credit cards, tickets, software, electronic games and products. Flexibility in the distribution model, such as the ability to provide pay-for- play, repeatable play and on-demand play, is highly desirable. Applications such as these require a method of activating an article or media at the consumer's POP in a controlled manner that facilitates different business objectives. The ability to provide repeatable (i.e. multi-use) and dynamic activation and regulation of access to optical media such as CDs and DVDs, in a manner that reduces shipping costs and environmental impact, is of particular interest.
  • the present invention provides a novel system and method for wireless activation of an item or target.
  • the invention also provides a novel form of optical media for use in conjunction with the system that facilitates activation via use of a material attached to or embedded in the optical media and having an optical property that may be altered by application of an electrical signal.
  • one embodiment of the invention is a method for wireless activation of a target.
  • a third party determines whether a user is authorized to activate a target and provides an activation signal to the user's communication device.
  • the communication device wirelessly transmits the activation signal to an activation device proximate the target.
  • the activation device activates the target by applying a signal to the target that changes at least one physical property of the target.
  • Another embodiment of the invention is an optical media that is altered by application of an electrical signal to affect the perceptibility of the optical media.
  • Another embodiment of the invention is a method for regulating access to content within an optical media comprising emitting an acoustic signal from a communication device proximate the optical media to alter at least one optical property of the optical media.
  • Another embodiment of the invention is a wireless activation system.
  • the system includes a target to be activated, and an activation device that applies an electrical signal to the target to effect a change in at least one physical property of the target and thereby activate the target.
  • the system also includes a communication device that provides an activation signal to the activation device to permit activation of the target, and a third party entity that participates in the activation of the target in response to information provided by the communication device.
  • Another embodiment of the invention is an optical media comprising a material having at least one optical property that changes in response to application of an electrical signal and affects the accessibility of the optical media.
  • the change in the optical property is reversible and repeatable.
  • Another embodiment of the invention is a method for activating an optical media.
  • An ID is obtained from a user to determine whether the user is authorized to activate the optical media.
  • An activation signal is wirelessly transmitted to an activation device proximate the optical media to authorize activation of the optical media, and an electrical signal is sent from the activation device to the optical media to alter at least one optical property of and activate the optical media.
  • Another embodiment of the invention is an optical media that incorporates thin films or gels organized as a battery, the battery being rendered operable or inoperable by application of an external electrical signal to the thin films or gels.
  • Another embodiment of the invention is an article configured for activation.
  • the article comprises an optical media and a material in contact with the optical media.
  • the material has at least one optical property that is altered by application of an electrical signal to affect the readability or writeability of the optical media.
  • a removable activation device is positioned proximate the material for applying the electrical signal to the material.
  • FIG. 1 is a block diagram of a wireless activation system according to the present invention.
  • FIG. 2 is a block diagram of an optical media device according to the present invention.
  • FIGS. 3A-C are block diagrams of activation devices according to the present invention.
  • FIG. 4 is a diagram of one implementation of a target and activation device according to the present invention.
  • FIG. 5 is a diagram of another implementation of a target and activation device according to the present invention.
  • FIG. 6 is a flow diagram of a method for wireless activation according to the present invention.
  • FIG. 1 A wireless activation system 10 according to the present invention is illustrated in FIG. 1.
  • System 10 comprises a communication device 12, a target (item to be activated) 14 and an activation device 16 at a user's point-of-presence (POP) 18, and a network operations center (NOC) 20.
  • Communication device 12 is used to wirelessly activate target 14 at the user's POP 18, with the assistance or participation of a remote NOC 20.
  • Communication device 12 should be construed broadly and includes any communication device capable of local acoustic output (typically via speakers) and wide area communication including, but not limited to, plain old telephones (POTs), portable or cellular phones, smart phones (such as J2ME, BREW and/or WAP enabled phones), personal digital assistants (PDAs), portable computers and so on.
  • POTs plain old telephones
  • portable or cellular phones such as J2ME, BREW and/or WAP enabled phones
  • PDAs personal digital assistants
  • a user will interface with communication device 12 via voice command or via a user interface such as a keypad/keyboard or a touch screen.
  • Target 14 is some article, item or media at a user's point of presence that is to be activated.
  • FIG. 2 generally depicts an optical media 30 according to the present invention comprising content 32, electro-optical material 34 and input interface 36. It must be understood that FIG. 2 is presented for ease of reference purposes only and does not limit the size, configuration or orientation of the components of optical media device 30 relative to each other.
  • optical media 30 contains an electro-optic material 34 whose properties can be changed in response to electrical signals to impact the tiansmissibility of light or to change the visual perception of optical media 30 (i.e., change its color, reveal or conceal information, etc.) or content 32 stored therein. Changes in material 34, in turn, affect the ability of a user or machine to read from, write to, address, perceive or otherwise gain optical access to optical media 30 and any content 32, data or other information stored therein. It may allow or prevent a CD or DVD to be read from or written to, for example, or conceal or make visible a hologram or other indicia on a credit card or driver's license.
  • Material 34 is interspersed or layered in or on optical media 30.
  • Material 34 may be layered on optical media 30, dispersed through optical media 30 or limited to specific locations, such as radial sectors, tracks, rings, patterns, layers and/or cylinders. It may be located on the surface of optical media 30, on top of the media's reflective layer or below the surface of optical media 30 (e.g. below a protective coating or varnish).
  • One or more types and/or inclusions of electro-optic material may be provided.
  • Material 34 possesses one or more optical properties (transparency, reflectivity, color, pattern, etc.) that change in response to application of an electrical signal, and thereby affect in some manner optical access to optical media 30 and the content 32 stored therein.
  • optical properties include, without limitation, the ability of the material to block light, allow light to pass through or refract light, the path or reflection of the light, or the color and/or hue of the film.
  • electro-optic materials suitable for use with the present invention include, without limitation, electrochromic films and gels and liquid crystal materials. The choice of the specific material should take into account the desired decay rate, if any. Some electro-optic materials change state very rapidly when power is applied or removed, while others change state more slowly and asymmetrically. A material might open (clear) quickly when power is applied, for example, but decay to a closed (opaque) state more slowly. Some materials change state when power is applied, and maintain that state when power is removed.
  • Input interface 36 receives an electrical signal 38 from an external source (typically an activation device) and conducts it to material 34.
  • Input interface 36 may be coupled to both material 34 and content 32 and, as shown, is also capable of generating output signals 39 that may include, for example, information about the state or content of optical media 30.
  • Electrical signal 38 may include power and/or data (information) components, and interface 36 may have separate connections for receiving these components.
  • Material 34 is typically "activated” (meaning that some optical property of material 34 is altered) by application of power. To provide security and control, however, additional data or information may be needed to regulate delivery of power to material 34.
  • electrical signal 38 may contain both power and data/information (or power and data signals may be separately received).
  • the power used to activate material 34 may be supplied by a source internal to optical media 30 (e.g. a thin film or layered materials battery), by an external power source (e.g. an activation device) or by a combination of the two. If power is supplied by an internal source, logic internal to optical media 30 may be activated in response to data contained in signal 38 and used to regulate delivery of power to material 34. The logic may be as simple as a gate or a filter. An activation device may send an appropriate code to optical media 30, for example, and logic within optical media 30 may use the code to switch an internal battery off or on. If power is supplied by an external source (activation device), signal 38 may contain both data (e.g. a code) and power. Logic in optical media 30 regulates delivery of the electrical signal power to material 34 according to the electrical signal code.
  • a source internal to optical media 30 e.g. a thin film or layered materials battery
  • an external power source e.g. an activation device
  • Logic internal to optical media 30 may be activated in
  • Input interface 36 and material 34 may be thought of together as an "optical shutter” whose properties are regulated by power and data signals applied thereto.
  • the period of time the shutter is open and the speed with which the window opens or closes can be regulated by regulating the electro-optical material decay rate.
  • the shutter may automatically close some period of time after it has been opened (or vice versa).
  • another property may be changed in conjunction with the shutter (i.e., the shutter may open and the color of the separate inclusion of material may change).
  • Optical media 30 may include logic, gates and/or filters (not shown) to regulate or control access to material 34 and/or content 32.
  • logic may be used to regulate application of power to material 34.
  • a band-pass filter may be implemented to cause material 34 to pass only signals (light) in a specific band to content 32, or to regulate power to material 34.
  • Gates and/or filters may be used to protect optical media 30 and material 34 from unintended or damaging signals (a cessation in function/gating, for example, after repeated unauthorized attempts to activate optical media 32).
  • Optical media 30 may also include logic to identify itself to external sources, and to monitor, regulate and control access to and usage of content 32.
  • optical media 30 may also include an embedded ID or identification sequence that is provided to an activation device on receipt of an appropriate initiation signal.
  • the ID may be encoded and printed on, stored or embedded in material 34 or another portion of optical media 30.
  • Material 34 may also be used to construct a battery within optical media 30.
  • electrochromic materials within optical media 30 may be organized in such a way that they produce electricity.
  • the battery may be incorporated into optical media 30 in such a way that it provides or ceases to provide power to optical media 30 upon the occurrence of some particular event, such as activation of material 34, a change of state in material 34, or removal/addition of an attached activation device.
  • some particular event such as activation of material 34, a change of state in material 34, or removal/addition of an attached activation device.
  • the change in the optical properties of material 34 may be reversible and repeatable.
  • the film's optical properties may be repeatedly changed to make the CD readable or non-readable. This is an important distinction relative to processes that employ single use, non-reversible chemical processes to activate or deactivate a medium.
  • the electrical signal applied by activation device 16 may also alter data or information stored on optical media 30.
  • activation device 16 may alter the unique code or ID associated with optical media 30 in order to improve security.
  • activation device 16 is configured to apply an electrical signal to target 14 and is also in communication with communication device 12.
  • the electrical signal may include power and/or information components.
  • the information components may take alternative forms and/or utilize alternative modes of communication between the activation device and the target such as RF, optical, infrared and reflective light.
  • Activation device 16 may be embedded in target 14 and reusable, or separate and/or removable from target 14. If separate or removable from target 14, activation device 16 may be disposable. If target 14 is a DVD or credit card, for example, activation device 16 may take the form of a removable sticker or tag.
  • Activation device 16 may involve a combination of both a disposable element (a sticker)
  • activation device 40 comprises a transducer 42, amplifier 44, logic 46, an output 48 to the target and a battery or power source 50.
  • Transducer 42 may comprise, but is not limited to, an acoustic receiver, thin film, piezeolectric microphone, piezoelectric biomorph actuator, electret microphone, silicon micromachined microphone or a strain gauge. Transducer 42 receives an acoustic activation signal or sequence 52 from communication device 54 and outputs an electrical signal to amplifier 44.
  • communication device 54 is a telephone
  • the user may simply place telephone 54 close enough to activation device 40 to allow a microphone in transducer 42 to receive an activation signal emitted from a speaker in device 54.
  • Amplifier 44 amplifies the output from transducer 42 and provides the amplified signal to logic 46.
  • Logic 46 defines or characterizes an electrical signal destined for the target based on the activation signal or sequence received from transducer 42.
  • Output 48 is an electrical interface to the target and may comprise, for example, a surface contact, bridge or micro wires. It outputs an electrical signal 56 to the target as defined by logic 63. Alternatively, the output signal may be in the form of light (LED), RF or other appropriate proximity communication techniques.
  • power source 50 may be a battery contained within activation device 40. Alternatively, as depicted in FIG. 3B, power source 50 may be external to activation device 40.
  • Power source 50 may, for example, be contained within the target or even be a part of the acoustic signal 52 received from communication device 54.
  • Activation device 40 may also include a transmitter 58 for transmitting a signal 60 to communication device 54 (FIG. 3C).
  • Signal 60 may be, for example, an acoustic signal containing or consisting of an ID transmitted to telephone 54 in response to an initiation sequence from telephone 54 or NOC 20 (see description below).
  • activation device 40 may receive an input 62 from the target.
  • the input may be a signal containing an ID (if stored at the target), information about the state of the target and/or any other type of useful information regarding the target.
  • an electrical signal is continuously supplied via a battery in the activation device to the target.
  • the electrical signal is interrupted, triggering a mechanism within the target which activates or deactivates the material.
  • the optical media could be shipped with an "open" optical shutter, but unreadable due to the presence of the sticker. The open state is maintained as long as power is present. When the sticker is removed, power is no longer present and the shutter will begin to close, leaving the content accessible for a predetermined period of time.
  • the activation device sends an appropriate signal or code to the target (i.e., via signal 56 in FIG. 3C).
  • logic within the target In response, logic within the target generates a signal that is transmitted to the activation device (signal 62). Logic in the activation device uses the signal from the target to regulate the supply of power to the target.
  • the code/signals transmitted to and from the activation device will typically be dependent on or related to decision rules, algorithms or other information generated by or stored in NOC 20.
  • Activation device 40 may also comprise a memory and clock (not shown).
  • the memory may store information such as the ID of the activation device, and other variables or information related to activation, such as any ID received from the target (as part of signal 62), numbers of allowed and attempted activations and activation attempts and logic variables received from the NOC and user.
  • the clock may be used to limit usage to a period of time or to limit the opportunity to activate to a period of time.
  • FIG. 4 depicts one example implementation of a target 70 and activation device 75 according to the present invention.
  • Target 70 is an optical media in the form of a DVD.
  • DVD 70 comprises an electrochromic film 72 layered just below the protective layer and above the reflective layer of DVD 70.
  • DVD 70 also comprises an input interface 74 near its center in the form of a micro-wire ring that is just under the protective finish or varnish of DVD 70 and connected to film 72.
  • An activation device 75 in the form of a removable sticker or tag is coupled to DVD 70 directly over ring 74 with conductive adhesive. Hence, the output of activation device 75 is directly over input interface 74.
  • Activation device 75 issues an electrical signal that causes the some property to change in electrochromic film 72.
  • film 72 changes from opaque to clear so that a laser light from the DVD player is allowed to pass through the reflective layer beneath, and DVD 70 is thereby operable and readable by the player.
  • film 72 may change color to provide a visual indicator of the state of DVD 70 (e.g. readable or non-readable) or to reveal additional information.
  • activation device 75 takes the form of a removable sticker or tag, once DVD 70 has been activated, sticker 75 may be peeled off DVD 70 and discarded.
  • FIG. 5 depicts another example implementation of a target 80 and activation device 88 according to the present invention.
  • Target 80 comprises an optical media, in the form of a hologram 82 embedded in a polymer media, in the form of a credit card 84.
  • An electrochromic film 86 is layered on top of hologram 82.
  • hologram 82 is incorporated into the bottom layer of film 86.
  • Removable activation device 88 in the form of a sticker with instructions, is placed on the card proximate or in contact with film 86.
  • An electrical signal from activation device 88 causes film 86 to change from opaque to clear thus revealing the underlying hologram (or different portions of the hologram depending on the activation code) and allowing use of credit card 84.
  • any visual article or element that is used for security, identification, validation, etc. may be used.
  • application is not limited to a credit card, or even to a polymer media. Other applications include, without limitation, driver's licenses, identification cards, security passes, tickets, coupons, products and so on.
  • FIG. 6 depicts a method 100 for wireless activation of a target according to the present invention.
  • Method 100 is described in conjunction with system 10 of FIG. 1.
  • a user desiring to activate a target 14 calls network operation center (NOC) 20 with communication device 12.
  • NOC network operation center
  • activation device 16 is a sticker
  • the telephone number of NOC 20 may be printed on the sticker (see, e.g., FIGS. 4 and 5). It could also be printed directly on target 14.
  • NOC 20 is typically a third party entity that participates in and/or regulates the activation process. The level and nature of participation by NOC 20 may vary.
  • NOC 20 confirms that a user attempting to activate a device or target 14 is authorized to activate that device.
  • NOC 20 may also perform other functions such as collecting payment and accounting.
  • the ability to regulate activation by a remote party is key to many economic models, and is to be distinguished from systems that activate by simple exposure to air or light without remote regulation.
  • NOC 20 will be remote from the user's POP 18.
  • the NOC or third party authorizing entity may be represented at POP 18 via proxy on or in conjunction with the communication device, or on a stored-value system such as a prepaid card, digital wallet, etc.
  • step 104 the user enters a PIN to demonstrate that he is an authorized user.
  • communication device 12 acquires an identification sequence or ID(s) to transmit to NOC 20.
  • Target 14 and activation device 16 may each have unique IDs, and the NOC 20 may require one, both or none of them depending on the level of security desired.
  • the ID may be formatted in any appropriate fashion, including alpha numeric, binary or a characteristic signal (e.g. designed for processing by band-pass filters or digital signal processors). This may be done via manual entry by the user (flow path "A") or by transmission from the activation device (flow path "B"). In flow path "A", an ID is entered manually by the user in step 106.
  • a target ID for example, may be printed on the target, or an activation ID may be printed on activation device 16.
  • the ID is not entered manually by the user hut, rather, .is stored at the activation device, target or a separate source at the user's point-of- presence.
  • the ID may be stored in memory at activation device 16, printed on target 14, acquired from target 14 or, alternatively, accessed from a separate source at the user's point-of-presence 18.
  • process 100 could be initiated directly by NOC 20 without a user phone call.
  • NOC 20 transmits an initiation signal to communication device 12 (step 108), and communication device 12 then transmits an initiation signal to activation device 16 (step 110).
  • the initiation signals may be alpha numeric, binary, characteristic signals or any other appropriate format. This may be done, by example, via an acoustic signal generated by NOC 20, or by a J2ME application resident on communication device 12 that transmits an acoustic initiation signal to activation device 16 upon receipt of instructions from NOC 20.
  • activation device 16 Upon receiving the initiation signal, activation device 16 "wakes up” and transmits an ID to communication device 12 (step 112).
  • the transmission of an ID from activation device 16 to communication device 12 is acoustic.
  • activation device 16 may need to acquire an ID from the target itself. This may be accomplished by supplying power or an electrical signal from activation device 16 to target 14. Logic in target 14 "wakes up” and outputs the ID to activation device L6, which retransmits the ID to communication device 12.
  • communication device 12 transmits the ID to NOC 20.
  • the ID is relayed to NOC 20 as an acoustic voice or audio signal. This transmission may occur either automatically or with user intervention (i.e., the user presses an "authorize" key/button or the like on the telephone keypad).
  • NOC 20 accesses information and records related to the user to determine whether that user is authorized to activate target 14.
  • the information and records accessed by NOC 20 may include some or all of (a) information related to the user based on the user's ID and phone number associated with communication device 12 he is calling from and/or the phone number associated with his account; (b) the phone number called by the user; (c) activation device 16; (d) target 14; and (e) point- of-presence 18.
  • NOC 20 may also access decision rules. Based on the accessed information/records and decision rules, NOC 20 generates and transmits an activation signal to communication device 12 (step 116).
  • the activation signal may be alpha numeric, binary, a characteristic signal or any other appropriate signal format.
  • communication device 12 After receiving the activation signal , communication device 12 retransmits an activation signal to activation device 16 (step 118).
  • activation device 16 is positioned to provide an electrical or other signal to target 14.
  • the activation signal may be transmitted automatically or with some form of user intervention. The user, for example, may indicate his final acceptance or confirmation/authorization of charge.
  • activation device 16 After receiving the activation signal, activation device 16 outputs an electrical signal to target 14 (step 120).
  • the electrical signal transmitted by activation device 16 alters some property of the optical media. It may, for example, change the state of a material contained in the optical media (e.g. clear to opaque) to change the readability or writeability of the optical media.
  • the various signals that are exchanged in method 100 may be encoded/encrypted and various steps in the encoding/encrypting; decoding/decrypting process may occur at NOC 20, activation device 16 and target 14 (separately or in combination).
  • An authorization sequence for example, may depend upon a combination of codes and/or IDs located at activation device 16 and target 14.

Abstract

A system and method for wireless activation of a target. A communication device transmits an ID associated with the target to a network operations center. The network operations center provides an activation signal to the communication device. The communication device wirelessly transmits an acoustic activation signal to a nearby activation device. The activation device is positioned proximate the target and causes a change in at least one physical property of the target. The target may be an optical media containing an electrochromic material with optical properties that change on application of an electric signal.

Description

WIRELESS ACTIVATION SYSTEM AND METHOD
FIELD OF THE INVENTION
[01] The present invention relates to a system and method for wireless activation of an item at a user's point-of-presence (POP).
BACKGROUND OF THE INVENTION
[02] Activation of, or regulation of access to, articles or media at a consumer's immediate point-of-presence (POP) is an emerging media distribution model. Examples include enabling pay-per-view movies at home or on the road, and remote activation of driver's licenses, credit cards, tickets, software, electronic games and products. Flexibility in the distribution model, such as the ability to provide pay-for- play, repeatable play and on-demand play, is highly desirable. Applications such as these require a method of activating an article or media at the consumer's POP in a controlled manner that facilitates different business objectives. The ability to provide repeatable (i.e. multi-use) and dynamic activation and regulation of access to optical media such as CDs and DVDs, in a manner that reduces shipping costs and environmental impact, is of particular interest.
SUMMARY OF THE INVENTION
[03] The present invention provides a novel system and method for wireless activation of an item or target. The invention also provides a novel form of optical media for use in conjunction with the system that facilitates activation via use of a material attached to or embedded in the optical media and having an optical property that may be altered by application of an electrical signal.
[04] Accordingly, one embodiment of the invention is a method for wireless activation of a target. A third party determines whether a user is authorized to activate a target and provides an activation signal to the user's communication device.
The communication device wirelessly transmits the activation signal to an activation device proximate the target. The activation device activates the target by applying a signal to the target that changes at least one physical property of the target.
[05] Another embodiment of the invention is an optical media that is altered by application of an electrical signal to affect the perceptibility of the optical media.
[06] Another embodiment of the invention is a method for regulating access to content within an optical media comprising emitting an acoustic signal from a communication device proximate the optical media to alter at least one optical property of the optical media.
[07] Another embodiment of the invention is a wireless activation system. The system includes a target to be activated, and an activation device that applies an electrical signal to the target to effect a change in at least one physical property of the target and thereby activate the target. The system also includes a communication device that provides an activation signal to the activation device to permit activation of the target, and a third party entity that participates in the activation of the target in response to information provided by the communication device.
[08] Another embodiment of the invention is an optical media comprising a material having at least one optical property that changes in response to application of an electrical signal and affects the accessibility of the optical media. The change in the optical property is reversible and repeatable.
[09] Another embodiment of the invention is a method for activating an optical media. An ID is obtained from a user to determine whether the user is authorized to activate the optical media. An activation signal is wirelessly transmitted to an activation device proximate the optical media to authorize activation of the optical media, and an electrical signal is sent from the activation device to the optical media to alter at least one optical property of and activate the optical media. [10] Another embodiment of the invention is an optical media that incorporates thin films or gels organized as a battery, the battery being rendered operable or inoperable by application of an external electrical signal to the thin films or gels. [11] Another embodiment of the invention is an article configured for activation. The article comprises an optical media and a material in contact with the optical media. The material has at least one optical property that is altered by application of an electrical signal to affect the readability or writeability of the optical media. A removable activation device is positioned proximate the material for applying the electrical signal to the material.
[12] Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.
BRIEF DESCRIPTION OF THE DRAWINGS [13] The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. In the figures, like reference numerals designate corresponding parts throughout the different views.
[14] FIG. 1 is a block diagram of a wireless activation system according to the present invention.
[15] FIG. 2 is a block diagram of an optical media device according to the present invention.
[16] FIGS. 3A-C are block diagrams of activation devices according to the present invention.
[17] FIG. 4 is a diagram of one implementation of a target and activation device according to the present invention.
[18] FIG. 5 is a diagram of another implementation of a target and activation device according to the present invention.
[19] FIG. 6 is a flow diagram of a method for wireless activation according to the present invention.
DETAILED DESCRIPTION
[20] A wireless activation system 10 according to the present invention is illustrated in FIG. 1. System 10 comprises a communication device 12, a target (item to be activated) 14 and an activation device 16 at a user's point-of-presence (POP) 18, and a network operations center (NOC) 20. Communication device 12 is used to wirelessly activate target 14 at the user's POP 18, with the assistance or participation of a remote NOC 20. [21] Communication device 12 should be construed broadly and includes any communication device capable of local acoustic output (typically via speakers) and wide area communication including, but not limited to, plain old telephones (POTs), portable or cellular phones, smart phones (such as J2ME, BREW and/or WAP enabled phones), personal digital assistants (PDAs), portable computers and so on. Typically, a user will interface with communication device 12 via voice command or via a user interface such as a keypad/keyboard or a touch screen. [22] Target 14 is some article, item or media at a user's point of presence that is to be activated. One type of item or target for which activation may commonly be desired is an optical media such as, for example, a compact disk (CD), video disk, digital versatile disk (DVD), laser disk or a hologram that stores content such as audio, video, images, codes, the layout or inner workings of the target, and other types of data and information. FIG. 2 generally depicts an optical media 30 according to the present invention comprising content 32, electro-optical material 34 and input interface 36. It must be understood that FIG. 2 is presented for ease of reference purposes only and does not limit the size, configuration or orientation of the components of optical media device 30 relative to each other.
[23] The optical properties of optical media 30 are regulated by application of an electrical signal to optical media 30. In particular, optical media 30 contains an electro-optic material 34 whose properties can be changed in response to electrical signals to impact the tiansmissibility of light or to change the visual perception of optical media 30 (i.e., change its color, reveal or conceal information, etc.) or content 32 stored therein. Changes in material 34, in turn, affect the ability of a user or machine to read from, write to, address, perceive or otherwise gain optical access to optical media 30 and any content 32, data or other information stored therein. It may allow or prevent a CD or DVD to be read from or written to, for example, or conceal or make visible a hologram or other indicia on a credit card or driver's license. It may conceal, make visible or otherwise alter the appearance of any visual article or element used for identification, validation, security or other purposes on other types of items such as identification cards, security passes, tickets, coupons, products and so on. These are but a few examples of the many applications of the present invention which, in its most basic form, comprises an optical media that is altered by application of an electrical signal to affect the perceptibility of the optical media and/or content stored or embodied therein.
[24] Material 34 is interspersed or layered in or on optical media 30. Material 34 may be layered on optical media 30, dispersed through optical media 30 or limited to specific locations, such as radial sectors, tracks, rings, patterns, layers and/or cylinders. It may be located on the surface of optical media 30, on top of the media's reflective layer or below the surface of optical media 30 (e.g. below a protective coating or varnish). One or more types and/or inclusions of electro-optic material may be provided.
[25] Material 34 possesses one or more optical properties (transparency, reflectivity, color, pattern, etc.) that change in response to application of an electrical signal, and thereby affect in some manner optical access to optical media 30 and the content 32 stored therein. Examples of such optical properties include, without limitation, the ability of the material to block light, allow light to pass through or refract light, the path or reflection of the light, or the color and/or hue of the film. Examples of electro-optic materials suitable for use with the present invention include, without limitation, electrochromic films and gels and liquid crystal materials. The choice of the specific material should take into account the desired decay rate, if any. Some electro-optic materials change state very rapidly when power is applied or removed, while others change state more slowly and asymmetrically. A material might open (clear) quickly when power is applied, for example, but decay to a closed (opaque) state more slowly. Some materials change state when power is applied, and maintain that state when power is removed.
[26] Input interface 36 receives an electrical signal 38 from an external source (typically an activation device) and conducts it to material 34. Input interface 36 may be coupled to both material 34 and content 32 and, as shown, is also capable of generating output signals 39 that may include, for example, information about the state or content of optical media 30. Electrical signal 38 may include power and/or data (information) components, and interface 36 may have separate connections for receiving these components. Material 34 is typically "activated" (meaning that some optical property of material 34 is altered) by application of power. To provide security and control, however, additional data or information may be needed to regulate delivery of power to material 34. Hence, electrical signal 38 may contain both power and data/information (or power and data signals may be separately received).
[27] The power used to activate material 34 may be supplied by a source internal to optical media 30 (e.g. a thin film or layered materials battery), by an external power source (e.g. an activation device) or by a combination of the two. If power is supplied by an internal source, logic internal to optical media 30 may be activated in response to data contained in signal 38 and used to regulate delivery of power to material 34. The logic may be as simple as a gate or a filter. An activation device may send an appropriate code to optical media 30, for example, and logic within optical media 30 may use the code to switch an internal battery off or on. If power is supplied by an external source (activation device), signal 38 may contain both data (e.g. a code) and power. Logic in optical media 30 regulates delivery of the electrical signal power to material 34 according to the electrical signal code.
[28] Input interface 36 and material 34 may be thought of together as an "optical shutter" whose properties are regulated by power and data signals applied thereto. The period of time the shutter is open and the speed with which the window opens or closes can be regulated by regulating the electro-optical material decay rate. The shutter may automatically close some period of time after it has been opened (or vice versa). Where separately addressable inclusions of electro-optical material are used, another property may be changed in conjunction with the shutter (i.e., the shutter may open and the color of the separate inclusion of material may change). [29] Optical media 30 may include logic, gates and/or filters (not shown) to regulate or control access to material 34 and/or content 32. These additional elements may be a part of input interface 36, or may be contained within a separate component. In one example, as noted above, logic may be used to regulate application of power to material 34. In another example, a band-pass filter may be implemented to cause material 34 to pass only signals (light) in a specific band to content 32, or to regulate power to material 34. Gates and/or filters may be used to protect optical media 30 and material 34 from unintended or damaging signals (a cessation in function/gating, for example, after repeated unauthorized attempts to activate optical media 32). Optical media 30 may also include logic to identify itself to external sources, and to monitor, regulate and control access to and usage of content 32. Usage may be limited to a certain number or period of times, for example, or access may be granted only to particular types of access devices. Access can be monitored in detail including what accessing device was used, when the access occurred, the frequency of the access and whether the access was authorized or unauthorized. [30] As will be described in more detail herein, optical media 30 may also include an embedded ID or identification sequence that is provided to an activation device on receipt of an appropriate initiation signal. The ID may be encoded and printed on, stored or embedded in material 34 or another portion of optical media 30. [31] Material 34 may also be used to construct a battery within optical media 30. In addition to being deployed to affect the optical properties of optical media 30, for example, electrochromic materials within optical media 30 may be organized in such a way that they produce electricity. The battery may be incorporated into optical media 30 in such a way that it provides or ceases to provide power to optical media 30 upon the occurrence of some particular event, such as activation of material 34, a change of state in material 34, or removal/addition of an attached activation device. [32] The change in the optical properties of material 34 may be reversible and repeatable. Hence, where the optical medium is a CD, for example, the film's optical properties may be repeatedly changed to make the CD readable or non-readable. This is an important distinction relative to processes that employ single use, non-reversible chemical processes to activate or deactivate a medium.
[33] In addition to changing one or more optical properties of optical media 30 (or properties of a target 14 in general), the electrical signal applied by activation device 16 may also alter data or information stored on optical media 30. For example, with each use, activation device 16 may alter the unique code or ID associated with optical media 30 in order to improve security.
[34] Referring again to FIG. 1, activation device 16 is configured to apply an electrical signal to target 14 and is also in communication with communication device 12. As described above, the electrical signal may include power and/or information components. The information components may take alternative forms and/or utilize alternative modes of communication between the activation device and the target such as RF, optical, infrared and reflective light. Activation device 16 may be embedded in target 14 and reusable, or separate and/or removable from target 14. If separate or removable from target 14, activation device 16 may be disposable. If target 14 is a DVD or credit card, for example, activation device 16 may take the form of a removable sticker or tag. Activation device 16 may involve a combination of both a disposable element (a sticker)
[35] Exemplary implementations of an activation device 40 according to the present invention are illustrated in FIGS. 3A-C. In its most basic configuration, depicted in FIG. 3A, activation device 40 comprises a transducer 42, amplifier 44, logic 46, an output 48 to the target and a battery or power source 50. [36] Transducer 42 may comprise, but is not limited to, an acoustic receiver, thin film, piezeolectric microphone, piezoelectric biomorph actuator, electret microphone, silicon micromachined microphone or a strain gauge. Transducer 42 receives an acoustic activation signal or sequence 52 from communication device 54 and outputs an electrical signal to amplifier 44. Hence, where communication device 54 is a telephone, the user may simply place telephone 54 close enough to activation device 40 to allow a microphone in transducer 42 to receive an activation signal emitted from a speaker in device 54.
[37] Amplifier 44 amplifies the output from transducer 42 and provides the amplified signal to logic 46. Logic 46 defines or characterizes an electrical signal destined for the target based on the activation signal or sequence received from transducer 42. Output 48 is an electrical interface to the target and may comprise, for example, a surface contact, bridge or micro wires. It outputs an electrical signal 56 to the target as defined by logic 63. Alternatively, the output signal may be in the form of light (LED), RF or other appropriate proximity communication techniques. [38] As depicted in FIG. 3 A, power source 50 may be a battery contained within activation device 40. Alternatively, as depicted in FIG. 3B, power source 50 may be external to activation device 40. Power source 50 may, for example, be contained within the target or even be a part of the acoustic signal 52 received from communication device 54. Activation device 40 may also include a transmitter 58 for transmitting a signal 60 to communication device 54 (FIG. 3C). Signal 60 may be, for example, an acoustic signal containing or consisting of an ID transmitted to telephone 54 in response to an initiation sequence from telephone 54 or NOC 20 (see description below). As also depicted in FIG. 3C, activation device 40 may receive an input 62 from the target. The input may be a signal containing an ID (if stored at the target), information about the state of the target and/or any other type of useful information regarding the target.
[39] In one implementation, where the activation device is configured as a disposable item such as a peel-off sticker, an electrical signal is continuously supplied via a battery in the activation device to the target. When the activation device is removed from the target, the electrical signal is interrupted, triggering a mechanism within the target which activates or deactivates the material. For example, the optical media could be shipped with an "open" optical shutter, but unreadable due to the presence of the sticker. The open state is maintained as long as power is present. When the sticker is removed, power is no longer present and the shutter will begin to close, leaving the content accessible for a predetermined period of time. [40] In another implementation, the activation device sends an appropriate signal or code to the target (i.e., via signal 56 in FIG. 3C). In response, logic within the target generates a signal that is transmitted to the activation device (signal 62). Logic in the activation device uses the signal from the target to regulate the supply of power to the target. The code/signals transmitted to and from the activation device will typically be dependent on or related to decision rules, algorithms or other information generated by or stored in NOC 20.
[41] Activation device 40 may also comprise a memory and clock (not shown). The memory may store information such as the ID of the activation device, and other variables or information related to activation, such as any ID received from the target (as part of signal 62), numbers of allowed and attempted activations and activation attempts and logic variables received from the NOC and user. The clock may be used to limit usage to a period of time or to limit the opportunity to activate to a period of time.
[42] FIG. 4 depicts one example implementation of a target 70 and activation device 75 according to the present invention. Target 70 is an optical media in the form of a DVD. DVD 70 comprises an electrochromic film 72 layered just below the protective layer and above the reflective layer of DVD 70. DVD 70 also comprises an input interface 74 near its center in the form of a micro-wire ring that is just under the protective finish or varnish of DVD 70 and connected to film 72. An activation device 75 in the form of a removable sticker or tag is coupled to DVD 70 directly over ring 74 with conductive adhesive. Hence, the output of activation device 75 is directly over input interface 74.
[43] Activation device 75 issues an electrical signal that causes the some property to change in electrochromic film 72. In one implementation, film 72 changes from opaque to clear so that a laser light from the DVD player is allowed to pass through the reflective layer beneath, and DVD 70 is thereby operable and readable by the player. Alternatively (or additionally), film 72 may change color to provide a visual indicator of the state of DVD 70 (e.g. readable or non-readable) or to reveal additional information. Where activation device 75 takes the form of a removable sticker or tag, once DVD 70 has been activated, sticker 75 may be peeled off DVD 70 and discarded.
[44] FIG. 5 depicts another example implementation of a target 80 and activation device 88 according to the present invention. Target 80 comprises an optical media, in the form of a hologram 82 embedded in a polymer media, in the form of a credit card 84. An electrochromic film 86 is layered on top of hologram 82. Alternatively, hologram 82 is incorporated into the bottom layer of film 86. Removable activation device 88, in the form of a sticker with instructions, is placed on the card proximate or in contact with film 86. An electrical signal from activation device 88 causes film 86 to change from opaque to clear thus revealing the underlying hologram (or different portions of the hologram depending on the activation code) and allowing use of credit card 84. [45] As an alternative to hologram 82, any visual article or element that is used for security, identification, validation, etc. may be used. Moreover, application is not limited to a credit card, or even to a polymer media. Other applications include, without limitation, driver's licenses, identification cards, security passes, tickets, coupons, products and so on.
[46] FIG. 6 depicts a method 100 for wireless activation of a target according to the present invention. Method 100 is described in conjunction with system 10 of FIG. 1. In step 102, a user desiring to activate a target 14 calls network operation center (NOC) 20 with communication device 12. Where activation device 16 is a sticker, for example, the telephone number of NOC 20 may be printed on the sticker (see, e.g., FIGS. 4 and 5). It could also be printed directly on target 14. NOC 20 is typically a third party entity that participates in and/or regulates the activation process. The level and nature of participation by NOC 20 may vary. In one implementation, NOC 20 confirms that a user attempting to activate a device or target 14 is authorized to activate that device. NOC 20 may also perform other functions such as collecting payment and accounting. The ability to regulate activation by a remote party is key to many economic models, and is to be distinguished from systems that activate by simple exposure to air or light without remote regulation. Typically, NOC 20 will be remote from the user's POP 18. In some embodiments, however, the NOC or third party authorizing entity may be represented at POP 18 via proxy on or in conjunction with the communication device, or on a stored-value system such as a prepaid card, digital wallet, etc.
[47] In an optional step 104, the user enters a PIN to demonstrate that he is an authorized user. Next, communication device 12 acquires an identification sequence or ID(s) to transmit to NOC 20. Target 14 and activation device 16 may each have unique IDs, and the NOC 20 may require one, both or none of them depending on the level of security desired. The ID may be formatted in any appropriate fashion, including alpha numeric, binary or a characteristic signal (e.g. designed for processing by band-pass filters or digital signal processors). This may be done via manual entry by the user (flow path "A") or by transmission from the activation device (flow path "B"). In flow path "A", an ID is entered manually by the user in step 106. A target ID, for example, may be printed on the target, or an activation ID may be printed on activation device 16.
[48] In flow path "B", the ID is not entered manually by the user hut, rather, .is stored at the activation device, target or a separate source at the user's point-of- presence. The ID may be stored in memory at activation device 16, printed on target 14, acquired from target 14 or, alternatively, accessed from a separate source at the user's point-of-presence 18. In flow path "B", where the ID is not entered by the user but acquired from another source, process 100 could be initiated directly by NOC 20 without a user phone call.
[49] In some cases, it may not be necessary to obtain an ID at all. In certain promotional applications, for example, the particular phone number called by the consumer will by default determine the ID of the target. Where NOC 20 initiates the call, it may already know the target ID.
[50] After either user or NOC initiation, NOC 20 transmits an initiation signal to communication device 12 (step 108), and communication device 12 then transmits an initiation signal to activation device 16 (step 110). The initiation signals may be alpha numeric, binary, characteristic signals or any other appropriate format. This may be done, by example, via an acoustic signal generated by NOC 20, or by a J2ME application resident on communication device 12 that transmits an acoustic initiation signal to activation device 16 upon receipt of instructions from NOC 20. Upon receiving the initiation signal, activation device 16 "wakes up" and transmits an ID to communication device 12 (step 112). Preferably, the transmission of an ID from activation device 16 to communication device 12 is acoustic. Alternatively, or addtionally, upon receipt of the initiation signal, activation device 16 may need to acquire an ID from the target itself. This may be accomplished by supplying power or an electrical signal from activation device 16 to target 14. Logic in target 14 "wakes up" and outputs the ID to activation device L6, which retransmits the ID to communication device 12.
[51] After either manual or automatic acquisition of an ID from target 14 and/or activation device 16, communication device 12 transmits the ID to NOC 20. Preferably, the ID is relayed to NOC 20 as an acoustic voice or audio signal. This transmission may occur either automatically or with user intervention (i.e., the user presses an "authorize" key/button or the like on the telephone keypad). Upon receiving the ID, NOC 20 accesses information and records related to the user to determine whether that user is authorized to activate target 14. The information and records accessed by NOC 20 may include some or all of (a) information related to the user based on the user's ID and phone number associated with communication device 12 he is calling from and/or the phone number associated with his account; (b) the phone number called by the user; (c) activation device 16; (d) target 14; and (e) point- of-presence 18. NOC 20 may also access decision rules. Based on the accessed information/records and decision rules, NOC 20 generates and transmits an activation signal to communication device 12 (step 116). The activation signal may be alpha numeric, binary, a characteristic signal or any other appropriate signal format. [52] After receiving the activation signal , communication device 12 retransmits an activation signal to activation device 16 (step 118). As previously described, activation device 16 is positioned to provide an electrical or other signal to target 14. The activation signal may be transmitted automatically or with some form of user intervention. The user, for example, may indicate his final acceptance or confirmation/authorization of charge. After receiving the activation signal, activation device 16 outputs an electrical signal to target 14 (step 120). The electrical signal transmitted by activation device 16 alters some property of the optical media. It may, for example, change the state of a material contained in the optical media (e.g. clear to opaque) to change the readability or writeability of the optical media. [53] Finally, the various signals that are exchanged in method 100 may be encoded/encrypted and various steps in the encoding/encrypting; decoding/decrypting process may occur at NOC 20, activation device 16 and target 14 (separately or in combination). An authorization sequence, for example, may depend upon a combination of codes and/or IDs located at activation device 16 and target 14. [54] While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of this invention.

Claims

WHAT is CLAIMED is:
1. A method for wireless activation of a target comprising: determining whether a user is authorized to activate the target; generating an activation signal based on this determination and transmitting the activation signal from a third party to the user's communication device; wirelessly transmitting the activation signal from the user's communication device to an activation device proximate the target; and activating the target by applying a signal from the activation device to the target that alters at least one physical property of the target.
2. A method as claimed in claim 1, wherein the determination is made with reference to an ID manually entered by the user into the communication device.
3. A method as claimed in claim 1, wherein the determination is made with reference to an ID automatically obtained by the third party from the activation device, the target or another source at the user's point of presence.
4. A method as claimed in claim 1, wherein the activation signal transmitted by the communication device to the activation device is an acoustic signal.
5. A method as claimed in claim 4, wherein the communication device is a phone, and the activation signal is transmitted from a speaker of the phone to a microphone of the activation device.
6. An optical media that is altered by application of an electrical signal to affect the perceptibility of the optical media.
7. An optical media as claimed in claim 6, wherein the optical media comprises an electro-optic material having an optical property that changes in response to application of an electrical signal.
8. An optical media as claimed in claim 7, wherein the optical media further comprises an embedded ID for provision to an authorizing entity, the embedded ID changing in response to application of the electrical signal.
9. A method for regulating access to content within an optical media comprising: emitting an acoustic signal from a communication device proximate the optical media to alter at least one optical property of the optical media.
10. A method as claimed in claim 9, wherein an activation device receives the acoustic signal from the communication device and applies an electrical signal to an electro-optic material contained in the optical disk.
11. A wireless activation system comprising: a target to be activated; an activation device that applies an electrical signal to the target to effect a change in at least one physical property of the target and thereby activate the target; a communication device for providing an activation signal to the activation device to permit activation of the target; and a third party entity that participates in the activation of the target in response to infoπnation provided by the communication device.
12. A wireless activation system as claimed in claim 11, wherein the target comprises an optical media having at least one optical property that is changed upon application of the electrical signal.
13. A wireless activation system as claimed in claim 12, wherein the optical media comprises an electrochromatic or liquid crystal material.
14. A wireless activation system as claimed in claim 12, wherein the activation device is a sticker disposed proximate the optical media and in communication with the communication device.
15. An article comprising: an optical media comprising a material having at least one optical property that changes in response to application of an electrical signal, the change in the optical property of the material affecting the accessibility of the optical media, and the change in the optical property being reversible and repeatable.
16. An article as claimed in claim 15, and further comprising an input interface element in contact with the material to apply the electrical signal to the film.
17. An article as claimed in claim 16, wherein the input interface element applies a power component of the signal to the material and uses a data component of the signal to regulate application of power.
18. An article as claimed in claim 16, wherein the optical media is an optical disk or a hologram embedded in a credit card.
19. A method for wireless activation of an optical media comprising: obtaining an ID from a user to determine whether the user is authorized to activate the optical media; wirelessly transmitting an activation signal to an activation device proximate the optical media to authorize activation of the optical media; sending an electrical signal from the activation device to the optical media to alter at least one property of and activate the optical media.
20. An optical media that incorporates thin films or gels organized as a battery, the battery being rendered operable or inoperable by application of an external electrical signal to the thin films or gels.
21. An article configured for activation comprising: an optical media; a material in contact with the optical media and having at least one optical property that is altered by application of an electrical signal to affect the readability or writeability of the optical medium; and a removable activation device proximate the material for applying the electrical signal to the material.
PCT/US2004/024419 2003-07-31 2004-07-29 Wireless activation system and method WO2005013078A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002534410A CA2534410A1 (en) 2003-07-31 2004-07-29 Wireless activation system and method
JP2006522043A JP2007502486A (en) 2003-07-31 2004-07-29 Wireless activation system and method
AU2004262368A AU2004262368A1 (en) 2003-07-31 2004-07-29 Wireless activation system and method
EP04779466A EP1652010A2 (en) 2003-07-31 2004-07-29 Wireless activation system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/632,047 2003-07-31
US10/632,047 US7227445B2 (en) 2002-07-31 2003-07-31 Wireless activation system and method

Publications (2)

Publication Number Publication Date
WO2005013078A2 true WO2005013078A2 (en) 2005-02-10
WO2005013078A3 WO2005013078A3 (en) 2005-08-04

Family

ID=34115780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/024419 WO2005013078A2 (en) 2003-07-31 2004-07-29 Wireless activation system and method

Country Status (7)

Country Link
US (3) US7227445B2 (en)
EP (1) EP1652010A2 (en)
JP (1) JP2007502486A (en)
CN (1) CN1871561A (en)
AU (1) AU2004262368A1 (en)
CA (1) CA2534410A1 (en)
WO (1) WO2005013078A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022139906A1 (en) * 2020-12-22 2022-06-30 Intel Corporation Transmission limited beacon for transportation device selection

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227445B2 (en) * 2002-07-31 2007-06-05 Kestrel Wireless, Inc. Wireless activation system and method
US20050240498A1 (en) * 2004-04-22 2005-10-27 Arnold Thaler Product verification and activation system, method and apparatus
US7643818B2 (en) 2004-11-22 2010-01-05 Seven Networks, Inc. E-mail messaging to/from a mobile terminal
US7892618B2 (en) * 2005-03-21 2011-02-22 Sony Corporation Deterring theft of optical media
US20070143774A1 (en) * 2005-07-29 2007-06-21 Anoop Agrawal Structures and processes for controlling access to optical media
WO2007047841A2 (en) * 2005-10-18 2007-04-26 Kestrel Wireless Inc. Activation confirmation feedback circuits and methods
US20070115762A1 (en) * 2005-11-21 2007-05-24 Wisnudel Marc B Optical article having anti-theft feature and a system and method for inhibiting theft of same
US7760614B2 (en) * 2005-11-21 2010-07-20 General Electric Company Optical article having an electrically responsive layer as an anti-theft feature and a system and method for inhibiting theft
US7955681B2 (en) * 2005-11-21 2011-06-07 Nbcuniversal Media, Llc Optical article having a material capable of undergoing a morphological transformation as an anti-theft feature and a system and method for inhibiting theft of same
US20080018886A1 (en) * 2005-11-21 2008-01-24 General Electric Company Optical article having a thermally responsive material as an anti-theft feature and a system and method for inhibiting theft of same
US7653919B2 (en) * 2005-11-21 2010-01-26 General Electric Company Optical article having anti-theft feature and a system and method for inhibiting theft of same
US8202598B2 (en) * 2005-11-21 2012-06-19 Nbcuniversal Media, Llc Optical article having an electrically responsive layer as an anti-theft feature and a system and method for inhibiting theft
US7802274B2 (en) * 2005-11-21 2010-09-21 General Electric Company Optical data storage article having a physical surface modification as an anti-theft feature and a system and method for inhibiting theft of same
US20070114366A1 (en) * 2005-11-21 2007-05-24 General Electric Company Optical article having a multi-component structure as an anti-theft feature and a system and method for inhibiting theft of same
EP1994533A4 (en) * 2005-11-23 2010-07-21 Verification Technologies Inc Anti-theft system for optical products
US20070122735A1 (en) * 2005-11-30 2007-05-31 Wisnudel Marc B Optical storage device having limited-use content and method for making same
US7896252B2 (en) * 2006-02-13 2011-03-01 The Western Union Company Presentation instrument with user-created pin and methods for activating
US8430298B2 (en) * 2006-02-13 2013-04-30 The Western Union Company Presentation instrument package arrangement
US20070231743A1 (en) * 2006-03-31 2007-10-04 Richard Selinfreund Optical media device with minipulatable read capability
WO2008036546A2 (en) * 2006-09-15 2008-03-27 Kestrel Wireless Inc. System and method for packaging and distributing media
WO2008048754A2 (en) * 2006-09-15 2008-04-24 Kestrel Wireless Inc. Optical disc and method of distributing and protecting content
TWI357068B (en) * 2007-03-19 2012-01-21 Cyberlink Corp Method for activating audio/video data in an optic
US7804744B2 (en) 2007-05-03 2010-09-28 Gary Stephen Shuster Optically-readable disk with copy protection device
US8031580B1 (en) 2007-05-25 2011-10-04 Cinram International Inc. Recording media with features to render media unreadable and method and apparatus for replication of said media
US8593714B2 (en) * 2008-05-19 2013-11-26 Ajjer, Llc Composite electrode and electrolytes comprising nanoparticles and resulting devices
US8361587B2 (en) * 2007-07-31 2013-01-29 Nbcuniversal Media, Llc Enhanced security of optical article
US20090036304A1 (en) * 2007-07-31 2009-02-05 General Electric Company Thermochromic ink and coating compositions and methods for thermal activation
US8392037B2 (en) * 2007-08-17 2013-03-05 Sikorsky Aircraft Corporation Stabilized approach to a point in degraded visual environment
US8646106B2 (en) * 2007-09-28 2014-02-04 Nbcuniversal Media, Llc Limited play optical article
US8229276B2 (en) * 2007-09-28 2012-07-24 Nbcuniversal Media, Llc Limited play optical article
US20090086291A1 (en) * 2007-09-28 2009-04-02 General Electric Company Method of printing marks on an optical article
US8118229B2 (en) * 2007-09-28 2012-02-21 Nbcuniversal Media, Llc Method of printing marks on an optical article
US8051441B2 (en) * 2008-03-31 2011-11-01 Nbcuniversal Media, Llc Player-readable code on optical media
US20090249381A1 (en) * 2008-03-31 2009-10-01 General Electric Company Player-readable code on optical media
US8387876B2 (en) * 2008-05-13 2013-03-05 Nbcuniversal Media, Llc Activation system and method for activating an optical article
US9514782B2 (en) * 2008-05-13 2016-12-06 Nbcuniversal Media, Llc Method and system for activation of an optical article
US8473974B2 (en) * 2008-05-13 2013-06-25 Nbcuniversal Media, Llc Activation system and method for activating an optical article
US8488428B2 (en) * 2008-05-14 2013-07-16 Nbcuniversal Media, Llc Enhanced security of optical article
US8097324B2 (en) * 2008-05-14 2012-01-17 Nbcuniversal Media, Llc Enhanced security of optical article
US8130438B2 (en) * 2008-07-03 2012-03-06 Ajjer Llc Metal coatings, conductive nanoparticles and applications of the same
US8284057B2 (en) * 2008-09-23 2012-10-09 Nbcuniversal Media, Llc Security tag for optical media and processes for fabrication and attachment
US7977413B2 (en) * 2009-03-13 2011-07-12 Nbcuniversal Media Llc Thermally responsive ink and coating compositions
US8002851B2 (en) * 2009-03-13 2011-08-23 Nbcuniversal Media Llc Thermochromic ink and coating compositions
US8374507B2 (en) * 2009-09-18 2013-02-12 Fluke Corporation Digital multimeter having remote display with automatic communication binding
CN103714595B (en) * 2012-09-29 2015-04-15 深圳光启创新技术有限公司 Photon receiving end and decoding method
US20150135271A1 (en) * 2013-11-11 2015-05-14 GM Global Technology Operations LLC Device and method to enforce security tagging of embedded network communications
US11847650B2 (en) * 2018-08-03 2023-12-19 International Business Machines Corporation Methods and systems for managing personal device security
CA3055573A1 (en) * 2018-09-13 2020-03-13 Newtonoid Technologies, L.L.C. Static programmable electro-chromic fishing lure
JP6524326B1 (en) * 2018-11-09 2019-06-05 株式会社Nesi Intelligent card holder and program for controlling the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6233160B1 (en) * 1999-11-12 2001-05-15 James P. Shockley Water/vapor proof marine fuse box
US6300873B1 (en) * 1999-09-16 2001-10-09 Atlantes Services, Inc. Locking mechanism for use with one-time access code

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961585A (en) * 1972-10-12 1974-06-14
US3883736A (en) * 1974-01-14 1975-05-13 William S Liddell Remote control unit
JPS6239296A (en) * 1985-08-16 1987-02-20 日立マクセル株式会社 Optical recording card
US5485520A (en) * 1993-10-07 1996-01-16 Amtech Corporation Automatic real-time highway toll collection from moving vehicles
US5608778A (en) * 1994-09-22 1997-03-04 Lucent Technologies Inc. Cellular telephone as an authenticated transaction controller
US5715314A (en) * 1994-10-24 1998-02-03 Open Market, Inc. Network sales system
US5822737A (en) * 1996-02-05 1998-10-13 Ogram; Mark E. Financial transaction system
JPH09303019A (en) * 1996-05-20 1997-11-25 Sony Corp Identification signal registering method and identification signal registering device
US6011772A (en) * 1996-09-16 2000-01-04 Spectradisc Corporation Machine-readable optical disc with reading-inhibit agent
US6259506B1 (en) * 1997-02-18 2001-07-10 Spectra Science Corporation Field activated security articles including polymer dispersed liquid crystals, and including micro-encapsulated field affected materials
AU758710B2 (en) * 1997-12-19 2003-03-27 Visa International Service Association Card activation at point of distribution
US6338933B1 (en) * 1998-06-25 2002-01-15 Spectradisc Corporation Methods and apparatus for rendering an optically encoded medium unreadable
US8538801B2 (en) * 1999-02-19 2013-09-17 Exxonmobile Research & Engineering Company System and method for processing financial transactions
US6511728B1 (en) * 1999-03-23 2003-01-28 Flexplay Technologies, Inc. Pseudo-transmissive read inhibitor for optical storage media
US6537635B1 (en) * 1999-03-23 2003-03-25 Flexplay Technologies, Inc. Pseudo-reflective read inhibitor for optical storage media
US6441380B1 (en) * 1999-10-13 2002-08-27 Spectra Systems Corporation Coding and authentication by phase measurement modulation response and spectral emission
KR100407922B1 (en) * 2000-01-18 2003-12-01 마이크로 인스펙션 주식회사 Certified method on the internet using cellular phone
ITPI20000011A1 (en) * 2000-03-03 2001-09-03 Emanuele Gagliano METHOD AND PAYMENT SYSTEM FOR E-COMMERCE AND MOBILE COMMERCE BASED ON THE COMBINED USE OF INTERNET AND MOBILE TELEPHONE NETWORKS
US20010037254A1 (en) * 2000-03-09 2001-11-01 Adi Glikman System and method for assisting a customer in purchasing a commodity using a mobile device
EP1265521A2 (en) * 2000-03-24 2002-12-18 International Paper Rfid tag for authentication and identification
US6489892B2 (en) * 2000-05-18 2002-12-03 Spectra Systems Corporation Use of evaporatively activated color change for verifying the integrity of an object, such as a data storage medium or a gaming token
US6496406B1 (en) * 2000-06-30 2002-12-17 Mitsumi Electric Co., Ltd. Systems for managing optical disk drive parameters
GB0017479D0 (en) * 2000-07-18 2000-08-30 Bit Arts Ltd Transaction verification
US6806842B2 (en) * 2000-07-18 2004-10-19 Marconi Intellectual Property (Us) Inc. Wireless communication device and method for discs
US20020009296A1 (en) * 2000-07-21 2002-01-24 Quantum Instruments, Inc. Transceiver units and a transceiver system for the remote control of electronic equipment
US7660415B2 (en) * 2000-08-03 2010-02-09 Selinfreund Richard H Method and apparatus for controlling access to storage media
US20020184112A1 (en) * 2000-08-31 2002-12-05 Tatsuji Nagaoka Goods sales method and goods sales apparatus
JP2002251393A (en) * 2001-02-22 2002-09-06 Ricoh Co Ltd Recording device, recording method, program, recording medium and recording/reproducing system
US20020143634A1 (en) * 2001-03-30 2002-10-03 Kumar K. Anand Wireless payment system
US20020147913A1 (en) * 2001-04-09 2002-10-10 Lun Yip William Wai Tamper-proof mobile commerce system
US20020165789A1 (en) * 2001-05-04 2002-11-07 Dudek Kenneth Paul Product and service presentment and payment system for mobile e-commerce
US7393623B2 (en) * 2001-06-06 2008-07-01 Spectra Systems Corporation Incorporation of markings in optical media
US20030028787A1 (en) * 2001-08-06 2003-02-06 Microsoft Corporation Method and system for discouraging unauthorized copying of a computer program
US7127066B2 (en) * 2001-10-03 2006-10-24 Now Showing Entertainment, Inc. Limited use DVD-video disc
US20030078895A1 (en) * 2001-10-19 2003-04-24 Mackay George Use of cellular phones for payment of vending machines
JP2003187524A (en) * 2001-12-19 2003-07-04 Hirano Design Sekkei:Kk Rental system using rfid chip mounted recording medium
US7227445B2 (en) * 2002-07-31 2007-06-05 Kestrel Wireless, Inc. Wireless activation system and method
US7275040B2 (en) * 2002-09-12 2007-09-25 Mineral Lassen Llc RFID security device for optical disc
US20040200061A1 (en) * 2003-04-11 2004-10-14 Coleman James P. Conductive pattern and method of making
GB0309498D0 (en) 2003-04-25 2003-06-04 Avery Dennison Corp Extended range RFID system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300873B1 (en) * 1999-09-16 2001-10-09 Atlantes Services, Inc. Locking mechanism for use with one-time access code
US6233160B1 (en) * 1999-11-12 2001-05-15 James P. Shockley Water/vapor proof marine fuse box

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022139906A1 (en) * 2020-12-22 2022-06-30 Intel Corporation Transmission limited beacon for transportation device selection

Also Published As

Publication number Publication date
US20070279185A1 (en) 2007-12-06
US7227445B2 (en) 2007-06-05
CA2534410A1 (en) 2005-02-10
US20040022542A1 (en) 2004-02-05
EP1652010A2 (en) 2006-05-03
CN1871561A (en) 2006-11-29
US20060028924A1 (en) 2006-02-09
JP2007502486A (en) 2007-02-08
AU2004262368A1 (en) 2005-02-10
WO2005013078A3 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
US7227445B2 (en) Wireless activation system and method
US7275040B2 (en) RFID security device for optical disc
US9495852B1 (en) Electronically switchable RFID tags
US7837121B2 (en) Secure credit card adapter
US7598875B2 (en) RFID tag-reading notification apparatus, control method therefor, and program for implementing the control method
US20060267737A1 (en) RF Powered Remote Control
US20080214111A1 (en) Lost phone alarm system and method
EP2549418A1 (en) Product anti-counterfeit system
US20150294295A1 (en) Integrated RFID Capable Communication Device
KR101422122B1 (en) Pairing digital system and providing method thereof
CN106339870A (en) Resource transfer method and device
CN106296171A (en) The method and device of swiping the card of mobile terminal
US20110296530A1 (en) Electronic reading apparatus and the data security method thereof
JP2005011364A (en) Commercial transaction system
US20090278660A1 (en) Credit card protection system
CN107045598A (en) The theft preventing method and device of a kind of mobile device
US20150254951A1 (en) RFID Security System
JP3427717B2 (en) Card with shock detection function
KR101437050B1 (en) Pairing digital system and providing method thereof
JP2002540498A (en) Portable digital data medium with security protection and security protection method using the data medium
JPH09102024A (en) Information recording medium, data reader therefor and data reading method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480028694.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2534410

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006522043

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 407/CHENP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004779466

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004262368

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004262368

Country of ref document: AU

Date of ref document: 20040729

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004262368

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004779466

Country of ref document: EP