WO2005018787A1 - Mixing in microfluidic devices - Google Patents

Mixing in microfluidic devices Download PDF

Info

Publication number
WO2005018787A1
WO2005018787A1 PCT/US2004/025354 US2004025354W WO2005018787A1 WO 2005018787 A1 WO2005018787 A1 WO 2005018787A1 US 2004025354 W US2004025354 W US 2004025354W WO 2005018787 A1 WO2005018787 A1 WO 2005018787A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
liquid
liquids
capillary
mixing
Prior art date
Application number
PCT/US2004/025354
Other languages
French (fr)
Inventor
Michael J. Pugia
Lloyd S. Schulman
Hai-Hang Kuo
Gert Blankenstein
Original Assignee
Bayer Healthcare Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Healthcare Llc filed Critical Bayer Healthcare Llc
Priority to JP2006523888A priority Critical patent/JP4707035B2/en
Priority to PL04780223T priority patent/PL1658130T3/en
Priority to CA2533107A priority patent/CA2533107C/en
Priority to DE602004013339T priority patent/DE602004013339T2/en
Priority to DK04780223T priority patent/DK1658130T3/en
Priority to EP04780223A priority patent/EP1658130B1/en
Publication of WO2005018787A1 publication Critical patent/WO2005018787A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4323Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa using elements provided with a plurality of channels or using a plurality of tubes which can either be placed between common spaces or collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4335Mixers with a converging-diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4338Mixers with a succession of converging-diverging cross-sections, i.e. undulating cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71725Feed mechanisms characterised by the means for feeding the components to the mixer using centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0431Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00837Materials of construction comprising coatings other than catalytically active coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0688Valves, specific forms thereof surface tension valves, capillary stop, capillary break
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S366/00Agitating
    • Y10S366/03Micromixers: variable geometry from the pathway influences mixing/agitation of non-laminar fluid flow

Definitions

  • This invention relates generally to microfluidic devices, particularly to devices used for analysis of biological samples, such as blood, urine and the like. These microfluidic devices bring small amounts of a liquid sample into contact with reagents to provide a qualitative or quantitative measure of the presence or absence of an analyte of interest. Typically, a measured amount of the sample is moved through one or more chambers containing reagents or conditioning agents used to prepare the sample for contacting the reagents. The amount of the sample is usually less than 10 ⁇ L and the chambers are of a similar size. They are interconnected by capillary passageways through which the sample moves by capillary forces or by an applied force, such as centrifugal force.
  • a conditioning liquid in order to dilute the sample or otherwise prepare the sample for subsequent reaction.
  • assays often require a sample be contacted to minimize interference, to control reaction conditions such as pH, co-factors or ionic strength, to form complexes such as multi-dentate ligands, proteins such as antibody-antigen complexes, nucleic acids, polycarbohydrates, lipids or metals, to lysis cells e.g. bacteria, red blood cells or white blood cells, and to react analytes and metabolites into detectable form.
  • lysis cells e.g. bacteria, red blood cells or white blood cells
  • Movement of small amounts of liquids through narrow passageways by capillary forces involves the interaction of the liquid with the walls of the passageways. If the liquid is aqueous, which is typical of biological samples, and the walls of the passageway are hydrophilic and narrow, for example 200 to 200 ⁇ m wide and 1 to 200 ⁇ m deep, the surface energy of the liquid creates a force which can move the liquid through the
  • the large surface to volume ratio means that the surface effects on the liquid are large.
  • the Reynolds Number a dimensionless unit which is related to the character of the liquid flow, is very low, indicating that the liquid flow is laminar, and not turbulent. Laminar flow is streamline flow, with the velocity increasing with the distance from the wall. Mixing of a sample with conditioning liquids is difficult when laminar flow predominates. Mixing is usually done by creating turbulent conditions.
  • liquids in laminar flow are brought into close contact, relying on diffusion of molecules from one layer of liquid to another to create a mixture of the liquids.
  • active micro mixers that use macro scale techniques e.g., mechanical stirring, including active elements can require very complex and costly devices.
  • U.S. Published Patent Application 2002/0097532 disclosed a disc containing many channels. Two liquids were passed through a zig-zag channel in laminar flow while the disc was rotated, with mixing said to occur by diffusion. A T-Sensor is shown in U.S. Published Patent Application 2001/0042712. The sensor contacts a liquid sample with an indicator liquid, the streams flowing in parallel laminar flow with diffusion between them.
  • U.S. Published Application 2001/0048637 discloses a similar device, which overcomes the "butterfly effect" caused by greater diffusion at the walls than in the center of the parallel laminar flow streams.
  • the inventors indicate that a Reynolds number of 320 is achieved and the first and second fluids have Reynolds numbers between 1 and 2000. Therefore, the flow is in a region between laminar flow and turbulent flow.
  • U.S. Patent 5,921,678 discloses a liquid mixer in which two streams of liquid meet head- on and exit together in a channel at 90° from the entrance channels. The Reynolds number of the streams is said to be 2000-6000. Sharp-edged pillars are shown to assist in generating turbulence at the intersection of the mixing streams.
  • U.S. Published Application 2002/0048535 shows a device in which two liquids are combined during rotation of the device to transfer the liquids from one container to another.
  • Patent 6,264,900 provides mixing of parallel laminar flow streams for carrying out fast chemical reactions.
  • U.S. Patent 6,065,864 discloses a micro-mixing system including bubble-controlled pumps and valves to establish circulating flow in a mixing chamber. The present inventors wished to provide effective mixing of liquid reagents or conditioning liquids with sample fluids in microfluidic devices. Such mixing is made difficult by the mismatch between the viscosity and volume of the liquids to be mixed. Their solution to the problem will be described in detail below.
  • Liquids are mixed in microfluidic devices by a method in which at least two liquids are dispensed into a first chamber to combine the liquids.
  • the liquids are dispensed into the first chamber from wells containing the liquids.
  • the combined liquids are discharged from the first chamber through at least one capillary passageway into a second chamber to mix the liquids.
  • two or more parallel capillary passageways are used.
  • the second chamber is in liquid communication with at least a third mixing chamber through at least one capillary passageway. Mixing of liquids results when they enter and leave chambers that are large relative to the narrow channels through which they enter and leave.
  • the disturbance in the flow pattern of the liquids is considered to be responsible for the mixing that is observed to occur.
  • droplets have been observed to form when the liquids exit from a capillary passageway into a large chamber. Such droplets may contribute to mixing as they coalesce within the chamber.
  • the mixing process is completed by forcing the liquids in the first chamber through one or more capillary passageways into the second chamber.
  • the capillary passageways have cross-sectional dimensions between 1 and 2000 ⁇ m, preferably 200 to 1000 ⁇ m, or as may be required by the properties of the liquids.
  • the length of the capillaries between the two chambers will be between 0.5 to 100 mm, preferably 1-50 mm.
  • the cross-sectional shape of the capillary passageways is not believed to be critical. Typically, the passageways have a rectangular cross-section, but the shape will be determined by the method used to form the passageways. The dimensions in a typical design will be chosen to provide a liquid velocity of 1 mm sec or more in the passageways, taking into account the liquid viscosity and applied force.
  • Each of the two chambers is larger than the total volume of the liquids being mixed.
  • the volume of each chamber is about two times larger than the volume of the combined liquids or more.
  • the depth of each chamber is sufficient to provide free space above the liquids after they have entered the chamber.
  • the space above the liquid will be sufficient to allow the liquid entering the chamber to separate into droplets, e.g. about 100 ⁇ m or more. More preferably, the depth of the chamber will have about twice the depth needed to hold the volume of combined liquids being mixed.
  • the capillary passageways preferably are located in the free space above the liquid in the chambers.
  • Figure 1 illustrate mixing of two liquids according to the invention.
  • Figure 2 shows an alternative embodiment of the invention.
  • Figure 3 illustrates a microfluidic device.
  • microfluidic devices employing the invention typically use channels having cross- sectional dimensions in the range of about 1 to 2000 ⁇ m, preferably about 200-1000 ⁇ m.
  • the dimension may refer to the diagonal of the rectangle. The minimum dimension for such channels is believed to be about
  • Channels in the preferred range make it possible to move liquid samples by capillary forces alone. It is also possible to stop movement by capillary walls that have been treated to become hydrophobic relative to the sample fluid or by marked changes in the channel dimensions. Resistance to flow can be overcome by applying a pressure difference, for example, by pumping, vacuum, electroosmosis, heating, absorbent materials, additional capillarity or centrifugal force. As a result, liquids can be metered and moved from one region of the device to another as required for the analysis being carried out in microfluidic device.
  • a mathematical model can be used to relate the pressure difference (e.g.
  • the analytical devices of the invention may be referred to as "chips". They are generally small and flat, typically about 1 to 2 inches square (25 to 50 mm square) or disks having a radius of about 40 to 80 mm. The volume of samples will be small. For example, they will contain
  • the chambers holding the sample fluids and reagents typically will be relatively wide and shallow in order that the samples can be easily seen and changes resulting from reaction of the samples can be measured by suitable equipment.
  • passageways typically will have a cross-sectional dimension in the range of 1 to 2000 ⁇ m
  • the shape will be determined by the method used to form the
  • passageways will be at least 5 ⁇ m in many practical applications where samples contain particles
  • the capillaries and chambers can be formed, such as injection molding, laser ablation, diamond milling or embossing, it is preferred to use injection molding in order to reduce the cost of the chips.
  • a base portion of the chip will contain the desired network of chambers and capillaries. After reagent compounds have been placed in the chambers as desired, a top portion will be attached over the base to complete the chip.
  • the chips usually are intended to be disposable after a single use. Consequently, they will be made of inexpensive materials to the extent possible, while being compatible with the reagents and the samples which are to be analyzed.
  • the chips will be made of plastics such as polycarbonate, polystyrene, polyacrylates, or polyurethene, alternatively, they can be made from silicates, glass, wax or metal.
  • the capillary passageways will be adjusted to be either hydrophobic or hydrophilic, properties which are defined with respect to the contact angle formed at a solid surface by a liquid sample or reagent.
  • a surface is considered hydrophilic if the contact angle of water on the surface is less than 90 degrees and hydrophobic if the contact angle is greater than 90°.
  • the surface energy is adjusted by plasma induced polymerization at the surface of the passageways.
  • the analytical devices of the invention may also be made with other methods used to control the surface energy of the capillary walls, such as coating with hydrophilic or hydrophobic materials, grafting, or corona treatments.
  • the surface energy of the capillary walls may be adjusted for use with the intended sample fluid. For example, to prevent deposits on the walls of a hydrophobic passageway or to assure that none of the liquid is left in a passageway.
  • the surface is generally hydrophilic since the liquid tends to wet the surface and the surface tension forces causes the liquid to flow in the passageway.
  • the surface energy of capillary passageways is adjusted so that the contact angle of water on the surface is between 10° to 60° when the passageway is to contact whole blood or a contact angle of water on the surface of 25° to 80° when the passageway is to contact urine. Movement of liquids through the capillaries may be prevented by capillary stops, which, as the name suggests, prevent liquids from flowing through the capillary. If the capillary passageway is hydrophilic and promotes liquid flow, then a hydrophobic capillary stop can be used, i.e. a smaller passageway having hydrophobic walls.
  • the liquid is not able to pass through the hydrophobic stop because the combination of the small size and the non-wettable walls results in a surface tension force which opposes the entry of the liquid.
  • the capillary is hydrophobic, no stop is necessary between a chamber and the capillary.
  • the liquid in the chamber is prevented from entering the capillary until sufficient force is applied, such as by centrifugal force, to cause the liquid to overcome the opposing surface tension force and to pass through the hydrophobic passageway.
  • centrifugal force is only needed to start the flow of liquid. Once the walls of the hydrophobic passageway are fully in contact with the liquid, the opposing force is reduced because presence of liquid lowers the energy barrier associated with the hydrophobic surface.
  • the liquid no longer requires centrifugal force in order to flow. While not required, it may be convenient in some instances to continue applying centrifugal force while liquid flows through the capillary passageways in order to facilitate rapid analysis.
  • a pressure difference must be applied to overcome the effect of the hydrophobic stop.
  • the pressure difference needed is a function of the surface tension of the liquid, the cosine of its contact angle with the hydrophilic capillary and the change in dimensions of the capillary. That is, a liquid having a high surface tension will require less force to overcome a hydrophobic stop than a liquid having a lower surface tension.
  • a liquid which wets the walls of the hydrophilic capillary i.e. it has a low contact angle, will require more force to overcome the hydrophobic stop than a liquid which has a higher contact angle.
  • the smaller the hydrophobic channel the greater the force which must be applied.
  • a sample liquid presumed to be aqueous
  • a hydrophilic stop can also be used, even through the capillary is hydrophilic.
  • Such a stop is wider and deeper than the capillary forming a "capillary jump" and thus the liquid's surface tension creates a lower force promoting flow of liquid. If the change in dimensions between the capillary and the wider stop is sufficient, then the liquid will stop at the entrance to the capillary stop. It has been found that the liquid will eventually creep along the hydrophilic walls of the stop, but by proper design of the shape this movement can be delayed sufficiently so that stop is effective, even though the walls are hydrophilic.
  • Microfluidic devices can take many forms as needed for the analytical procedures which measure the analyte of interest.
  • the microfluidic devices typically employ a system of capillary passageways connecting chambers containing dry or liquid reagents or conditioning materials.
  • Analytical procedures may include preparation of a metered sample by diluting the sample, prereacting the analyte to ready it for subsequent reactions, removing interfering components, mixing reagents, lysising cells, capturing bio molecules, carrying out enzymatic reactions or incubating for binding events, staining, or deposition. Such preparatory steps may be carried out before or during metering of the sample, or after metering but before carrying out reactions which provide a measure of the analyte.
  • a sample will be combined with a conditioning liquid or with a reagent liquid and then transferred to a mixing chamber before being sent to subsequent processing. It will be evident that intimate mixing of the sample with the reagent or conditioning liquid is important to accurate and reproducable results.
  • the flow in microfluidic devices is typically laminar, that is, the viscosity of the liquid has a greater effect than the inertia of the flowing liquid so that the liquid flows linearly without being turbulent.
  • laminar flow conditions One consequence of laminar flow conditions is that mixing of two or more liquids is slow since it principally results from molecular diffusion.
  • some microfluidic devices have been designed to improve diffusion between layers of liquids in laminar flow. Many of these devices do not intend that complete mixing occurs, but in others provision for close contacting of liquid streams is provided. In the present invention, complete mixing is wanted. It has been found that through mixing can be achieved by proper design of the device so that uniform mixtures are produced combining liquid samples with liquid reagents or conditioning agents that have differing viscosities and volumes.
  • Combining the individual droplets is presumed to provide further mixing in a process analogous to layering. That is, if two incompatible liquids are combined by successively dividing and layering them, ultimately the layers become so thin as to be indistinguishable. Thus, if thousands of droplets are combined, any separation of the two liquids is not evident and the liquids are effectively completely mixed. Also, a certain degree of mixing by molecular diffusion is presumed to occur as the subdivision of the liquids proceeds and the distance which molecules must move is reduced. While the degree of mixing may be determined after it has occurred, the design of the necessary microfluidic features will vary depending on the relative volumes of the liquids to be mixed and on their physical properties and may require experimental confirmation. This general description of the mixing process applies to various liquids.
  • Fig. 1 One such process is shown in a simplified diagram in Fig. 1, discussed below.
  • Movement of the liquids typically requires application of force to overcome the resistance to flow inherent in the use of small passageways and that resulting from capillary stops added to prevent liquids from flowing. Centrifugal force is often used for this purpose, but other methods which can produce the needed force may be used, including air pressure, vacuum, electroosmosis, absorbent materials, additional capillarity and the like.
  • the force applied is sufficient to create a flow of liquid in the capillary passageways of 1 mm/sec or more.
  • passageways have cross-sectional dimensions between 1 ⁇ m and 2000 ⁇ m, preferably 200 to 1000 ⁇ m, as determined by the physical properties of the liquids.
  • the passageways will have a length between 0.5 and 100 mm, preferably 1 -50 mm, depending on the arrangement of chambers and passageways on the chip.
  • the difference in dimensions between those of the capillary passageways and the associated chambers is so large that the movement of liquids from one chamber to another creates a disturbance in the flow. Further, the surface tension of the liquids is believed to be responsible for the droplets which have been observed to form at the point where liquids exit the capillary passageways and enter a larger chamber for mixing.
  • the droplets are forced to the outside of the receiving chamber by centrifugal force (in the typical case), where they recombine.
  • the chambers may be various shapes, but typically they will be generally circular or square. They may contain internal features such as steps or ramps. Such features are believed to have a minor effect on mixing of the liquids, although they may be included for other reasons. It is considered important that sufficient space be provided in the mixing chambers above the liquids being mixed. At least 100 ⁇ m free space is believed to be needed in a typical chamber containing about 0.1 to 50 ⁇ L.
  • the chambers will have a volume about twice that of the total volume of the liquids being mixed and the depth of the chambers will be about twice that of the liquid level in the chamber.
  • FIGS 1 A&B show mixing according to the invention in a simplified form such as will occur in microfluidic devices.
  • a sample liquid in container 10 is retained in container 10 until released by applying force e.g., centrifugal force to overcome capillary stop 12.
  • a liquid reagent or a conditioning liquid e.g., a buffer solution remains in container 14 by a capillary stop 16 until the necessary force has been applied.
  • the two liquids flow through capillaries into first chamber 18.
  • Chamber 18 receives the sample and the second liquid at the same time so that preliminary mixing occurs, as the liquids enter chamber 18. In most cases, the mixing is not adequate and a second step is needed.
  • the combined liquids leave first chamber 18 through at least one capillary passageway 20 and enter the second mixing chamber 22.
  • the liquid may form small droplets as it leaves capillary 20 and enters the mixing chamber, thereby mixing the liquids within the droplets as they are formed. Further mixing is accomplished as the droplets recombine at the bottom of the mixing chamber 22.
  • three capillary passageways e.g., 20, 20a and 20b are used to connect the first chamber 18 to the second mixing chamber 22. More than three capillaries may be used, as in Example 1 below.
  • the capillaries will not have the same diameter so that the velocity in the capillaries varies, producing different sized droplets, and further improving mixing. If multiple capillaries are used, they may be arranged to cause the exiting liquids to meet within chamber 22. Another alternative shown in Fig. 2A&B is particularly useful when liquids having different viscosities are being mixed.
  • the capillaries 20 et al would discharge into a premixing chamber 24, from which additional capillaries 21 et al would carry the combined liquids to the mixing chamber 22. Additional pre-mixing chambers could be provided to further improve mixing.
  • the capillary passageways 20 and 21 typically will be positioned at the top of a chip containing the deeper chambers. Thus, when force is applied to the liquids, they move up to the passageways and then enter the next chamber.
  • One alternative would be to combine the capillaries supplying the separate liquids before entering the first chamber. This would have the advantage of creating a degree of mixing in the combined capillary as the liquid velocity increases, which would lead to more mixing created by the entry to the chamber.
  • the first chamber could be provided with microstructures to create localized eddies or disturbancies to improve mixing.
  • the liquids could be deposited directly in the first chamber 18 rather than being first placed in wells 10 and 14. It has already been suggested that when multiple capillaries are used to supply the liquids to the second mixing chamber, the capillaries could have different diameters and that they could be arranged to impinge as the liquid streams/droplets enter the mixing chamber. Another alternative would be to manifold the several capillaries before entering the second mixing chamber to obtain the advantages associated with entrance created eddies and changes in liquid velocity.
  • the second mixing chamber could also be provided with microstructures to assist mixing.
  • the microfluidic device illustrated in Fig. 3 will be described in Example 3 as used in a particular analytical procedure. The device mixes a liquid in chamber 18 with a metered sample contained in capillary 14 and chamber 16.
  • the liquids are received in chamber 20 and transferred to mixing chamber 30, from which the mixed liquids flow out for analysis.
  • Another aspect of the invention relates to the movement of mixed liquids to downstream chambers for further processing. It will be evident that mixing should be completed before the liquids are moved. Several possible means for preventing premature movement of the liquids before mixing is complete have been considered.
  • the mixed liquids enter a capillary positioned above the normal depth of the liquid in the mixing well. It has been found that, after centrifugal force holding the liquid in position in the mixing chamber is reduced, the liquid tends to creep up along the walls of the chamber and can reach the exit capillary.
  • the exit capillary is entered from below the level of liquid in the mixing chamber but not until the resistance of a hydraulic stop is overcome by application of the necessary force.
  • the exit capillary is located above the liquid depth in the mixing chamber and the natural tendency for the liquid to move by capillary forces is assisted by providing microstructures, for example a grooved ramp leading to the exit capillary.
  • Microfluidic devices have many applications. Analyses may be carried out on samples of many biological fluids, including but not limited to blood, urine, water, saliva, spinal fluid, intestinal fluid, food, and blood plasma. Blood and urine are of particular interest. A sample of the fluid to be tested is deposited in the sample well and subsequently measured in one or more metering capillaries or wells into the amount to be analyzed. The metered sample will be assayed for the analyte of interest, including for example a protein, a cell, a small organic molecule, or a metal. Examples of such proteins include albumin, HbAlc, protease, protease inhibitor, CRP, esterase and BNP.
  • proteins include albumin, HbAlc, protease, protease inhibitor, CRP, esterase and BNP.
  • Cells which may be analyzed include E.coli, pseudomonas, white blood cells, red blood cells, h.pylori, strep a, chlamdia, and mononucleosis.
  • Metals which may be detected include iron, manganese, sodium, potassium, lithium, calcium, and magnesium.
  • color developed by the reaction of reagents with a sample is measured.
  • Other spectroscopic analysis of the sample are possible, using sensors positioned for detecting absorbance, reflectance, transmission and emission such as fluorescence, phosphorescence, luminescence, and other changes in the near and far infrared, Raman, and ultraviolet wavelengths. It is also feasible to make electrical measurements of the sample, using electrodes positioned in the small wells in the device.
  • Examples of such analyses include electrochemical signal transducers based on amperometric, impedimetric, potentimetric detection methods. Examples include the detection of oxidative and reductive chemistries and the detection of binding events.
  • reagent methods which could be used in microfluidic devices. Reagents undergo changes whereby the intensity of the signal generated is proportional to the concentration of the analyte measured in the clinical specimen. These reagents contain indicator dyes, metals, enzymes, polymers, antibodies, electrochemically reactive ingredients and various other chemicals dried onto carriers. Carriers often used are papers, membranes or polymers with various sample uptake and transport properties. They can be introduced into the reagent chambers in the microfluidic devices. A number of uses for reagents are possible.
  • an analyte can be reacted with reagent in a first chamber and then the reacted reagent directed to a second chamber for further reaction.
  • a reagent can be re-suspensed in a liquid in a first chamber and moved to a second chamber for a reaction.
  • An analyte or reagent can be trapped in a first or second chamber and a determination of free versus bound reagent be made.
  • a third liquid reagent can be used to wash materials trapped in the second chamber and to move materials to the waste chamber. The determination of a free versus bound reagent is particularly useful for multizone immunoassay and nucleic acid assays.
  • Immunoassays There are various types of multizone immunoassay s that could be adapted to these devices. In the case of adaption of immunochromatography assays, reagents and filters are placed into separate chambers and do not have to be in physical contact as chromatographic forces are not in play. Immunoassays or DNA assay can be developed for detection of bacteria such as Gram negative species (e.g. E. Coli, Entereobacter, Pseudomonas, Klebsiella) and Gram positive species (e.g. Staphylococcus Aureus, Entereococc). Immunoassays can be developed for complete panels of proteins and peptides such as albumin,
  • hemoglobin myoglobulin, ⁇ -1-microglobulin, immunoglobulins, enzymes, glycoproteins, protease inhibitors, drugs and cytokines.
  • Potential applications where dried reagents are resolubilized include, filtration, sedimentation analysis, cell lysis, cell sorting (mass differences) and centrifugal separation.
  • Enrichment (concentration) of sample analyte on a solid phase can be used to improved sensitivity.
  • the emiched microbeads could be separated by continuous centrifugation.
  • Multiplexing can be used (e.g. metering of a variety of reagent chambers in parallel and/or in sequence) allowing multiple channels, each producing a defined discrete result. Multiplexing can be done by a capillary array comprising a multiplicity of metering capillary loops, and fluidly connected with the entry port, or an array of dosing channels and/or capillary stops connected to each of the metering capillary loops. Combination with secondary forces such as magnetic forces can be used in the device design.
  • Example 3 illustrates the invention used in carrying out an assay for measuring the glycated hemoglobin (HcAlc) content of a patient's blood which can indicate the condition of diabetic patients.
  • the method used has been the subject of a number of patents, most recently U.S. 6,043,043. Normally the concentration of glycated hemoglobin is in the range of 3 to 6 percent. But, in diabetic patients it may rise to a level about 3 to 4 times higher.
  • the assay measures the average blood glucose concentration to which hemoglobin has been exposed over a period of about 100 days.
  • Monclonal antibodies specifically developed for the glycated N- terminal peptide residue in hemoglobin Ale are labeled with colored latex particles and brought into contact with a sample of blood to attach the labeled antibodies to the glycated hemoglobin.
  • the blood sample is first denatured by contact with a denaturant/oxidant e.g. lithium thiocyanate as described in Lewis U.S. 5,258,311.
  • the denatured and labeled blood sample is contacted with an agglutinator reagent and the turbidity formed is proportional to the amount of the glycated hemoglobin present in the sample.
  • the total amount of hemoblobin present is also measured in order to provide the percentage of the hemoglobin which is glycated.
  • the mixing of the blood sample with the denaturant/oxidant is carried out in accordance with the present invention.
  • Example 1 A microfluidic device was made having the general configuration shown in Fig. 1, including five parallel capillaries 20 et al connecting chambers 18 and 22.
  • the sample well 10 was filled with 10 ⁇ L of a phenol red solution with buffer (pH 4.0).
  • the well 14 was filled with 10 ⁇ L of a solution of phenol red (pH 7.0).
  • 10 mm long capillaries connected the sample and reagent chambers to the first chamber 18. Each capillary was 200 ⁇ m deep and 700 ⁇ m wide, containing 0.4 ⁇ L.
  • the first chamber 18 was 5.5 mm in diameter, 1.5 mm deep, and had a capacity of about 36 ⁇ L.
  • the second chamber 22 was 5.5 mm in diameter and 1.1 mm deep, with a capacity of about 26 ⁇ L.
  • the device was placed on a platform and rotated at 2500 rpm at a distance of about 28 mm to overcome the resistance of the stops 12 and 16 and to deliver the liquids from wells 10 and 14 at the same time to first chamber 18.
  • the mixed liquids passed immediately through five capillary passageways (20 et al) connecting first chamber 18 and the second chamber 22. Each capillary was 3.5 mm long, 200 ⁇ m deep, and 200 ⁇ m wide.
  • the color of the liquid collected in second chamber 22 was uniformly yellow, indicating complete mixing had occurred. It was found that once the centrifugal force was removed, the liquid moved up along the sides of second mixing chamber 22, so the exiting capillaries (not shown in Fig. 1) could be filled.
  • Example 2 Another microfluidic device was made, which differed from the device of Example 1 in that only one capillary passageway connected the first chamber 18 and the second chamber 22. Also, the second chamber 22 was provided with a series of five steps ramped down in the direction of the centrifugal force that was applied.
  • the first chamber 18 was 5.5 mm in diameter, 1.5 mm deep, and had a capacity of about 36 ⁇ L.
  • the second chamber 22 was 5 mm wide and 7 mm long with an average depth of about 1.2 mm and a volume of about 46 ⁇ L.
  • Example 3 In this example, a test for HbAlc was carried out in a microfluidic chip of the type shown in Figure 3. The surface energy of the internal features had been adjusted to provide a contact angle of 25° for water on the surface and were covered with a polypropylene film lid (Excel
  • sample port 10 A sample of blood was introduced via sample port 10, from which it proceeded by capillary action to the pre-chamber 12 and then to metering capillary 14.
  • the auxiliary metering well 16 is optional, only being provided where the sample size requires additional volume.
  • the denaturant/oxidizing liquid (9.62 ⁇ L) (Sigma mammalian cell lysis/extraction reagent) was contained in well 18. It was emptied into the first chamber 20 (18.84 ⁇ L) at the same time the metering well 16 and the associated metering capillary 14 are emptied by application of centrifugal force by spinning at 1200 rpm at a distance of 29 mm to overcome the capillary stops (not shown).
  • the first chamber 20 provided space for the blood sample and the denaturant/oxidant.
  • the combined liquids were transferred through a set of three 2000 ⁇ m long capillary passageways having cross-sectional dimensions of 30 by 30 ⁇ m.
  • the second chamber 30 received and mixed the liquids. As the force is removed the fluid exited from the top of chamber 30 into chamber 24 through capillary passageway 23. Excess liquids were transferred to waste well 31 by spinning at 2500 rpm at a distance of 43 mm! Chamber 24 provided uniform contact of the preconditioned sample with labeled monoclonal antibodies disposed on a dry substrate and served as a second metering area. The volume of the sample in the capillary leading to chamber 24 was 2.0 ⁇ L. Contact of unbound labeled antibodies with the agglutinator, which was disposed on a substrate was carried out in chamber 26, producing a color which was measured to determine the amount of glycated hemoglobin in the sample.
  • centrifugal force by spinning at 2500 rpm at a distance of 53 mm caused the incubated conjugate in chamber 24 and the wash buffer in chamber 22 to empty into chamber 26.
  • the remaining wells provided space for excess sample (28), excess denatured sample (31), and for a wicking material (32) used to draw the sample over the substrate in chamber 26.
  • a 2 ⁇ L sample was pipetted into sample port 10, from which it passed through a passageway located within the chip (not shown) and entered the pre-chamber 12, metering capillary 14, and auxiliary metering chamber 16. Any excess sample passed into overflow well 28, which contains a wetness detector. No centrifugal force was applied, although up to 400 rpm could have been used.
  • the sample size (0.3 ⁇ L) was determined by the volume of the capillary 14 and the metering chamber 16.
  • a capillary stop at the entrance of the capillary connecting well 16 and the first chamber 20 prevented further movement of the blood sample until overcome by centrifugal force, in this example provided by spinning the chip at 1200 rpm.
  • the denaturant/oxidant solution (Sigma mammalian cell lysis/extraction reagent) also was prevented from leaving well 18 by a capillary stop until 1200 rpm was used to transfer lO ⁇ L of the denaturant/oxidant solution along with the metered blood sample into the first chamber 20 and thereafter into second mixing chamber 30.
  • the volume of the first chamber 20 was about twice the size of the combined denaturant/oxidant solution and the blood sample.
  • the second chamber 30 After mixing, 2 ⁇ L of the mixture leaves the second chamber 30 through a capillary and enters chamber 24 where microstructures assure uniform wetting of the substrate (a fibrous Whatman glass conjugate release membrane) containing the latex labeled monoclonal antibodies for HbAlc. Incubation was completed within a few minutes, after which the labeled sample was released to chamber 26 by raising the rotation speed to 2500 rpm to overcome the capillary stop (not shown) at the outlet of chamber 24. The labeled sample contacted the agglutinator (polyaminoaspartic acid HbAlc peptide) which was striped on a Whatman 5 ⁇ m pore size nitrocellulose reagent in concentrations of 0.1 to 3 mg/mL.
  • the agglutinator polyaminoaspartic acid HbAlc peptide
  • the absorbent material (Whatman glass fiber membrane) in well 32 facilitated uniform passage of the labeled sample over the strip. While the labeled sample was released to chamber 26 at 2500 rpm, the buffer solution (phosphate buffered saline) left well 22 and passed through chamber 24 and over the strip in chamber 26 to improve the accuracy of the reading of the bands on the strip. The color developed was measured by reading the reflectance with a digital camera.
  • the buffer solution phosphate buffered saline
  • Example 4 The chip of Fig. 3 was tested with two types of solutions.
  • a solution of phosphate buffer at pH4 was introduced as sample inlet 10, from which it was transferred to sample capillary 14 and well 16. Then, this solution was combined with the phosphate buffer at pHl 0 in chamber 18 in the first mixing chamber 20. It was found that mixing of the two buffer solutions was substantially complete in chamber 30 at a pH7 by dye measurement.
  • a lysis buffer lithium thiocyanate
  • Example 5 In order to simulate the mixing of blood with an aqueous buffer solution in a microfluidic device having the general configuration and design elements of Fig. 1, 25% of polyethylene glycol (PEG 20,000 mw) was added to a 0.5 N NaOH solution. The viscosity was approximately that of human blood. lO ⁇ L (of the PEG/NaOH solution was added to well 10 and 100 ⁇ L of a pH4 buffer (50 mm phosphate) was added to well 14. Phenol red pH indicator was used to indicate the progress of mixing as the two solutions were combined in chambers 18 and 22. It was found that visually the liquids tended to appear as separate liquids while under higher applied centrifugal force, but that complete mixing occurred when the centrifugal force was reduced. From a series of similar tests, it was concluded that there was no significant difference in mixing efficiency between the chip with one and four capillaries, between chips with rectangular and cylindrical receiving chambers, between chips with and without ramp structures, and complete mixing of viscous fluids is possible.
  • Example 6 The efficiency of lysing blood with a buffer was tested by centrifuging diluted samples of the mixed blood and buffer and by examining the mixed blood and buffer with a Bayer occult blood reagent pad. If the lysis is incomplete, red pellets of blood form in the centrifuge or dark green spots appear in the occult blood pad. For comparison, solutions of 50 ⁇ L blood and 500 ⁇ L diluted or undiluted lysing buffer (lithium thiocyanate) were incubated for 3 minutes and then spun in a centrifuge at 1300 rpm for 10 minutes. Then, the solution was diluted 100 fold in phosphate buffer saline solution (pH7.0) and centrifuged again at 1300 rpm for 10 minutes.
  • phosphate buffer saline solution pH7.0

Abstract

Mixing of liquids in a microfluidic device is accomplished by dispensing the liquids into a first chamber (18) to produce combined liquid. The liquids are thereafter discharged through at least one capillary (20) from the first chamber into a second chamber (22) for complete mixing.

Description

MIXING IN MICROFLUIDIC DEVICES
Background of the Invention This invention relates generally to microfluidic devices, particularly to devices used for analysis of biological samples, such as blood, urine and the like. These microfluidic devices bring small amounts of a liquid sample into contact with reagents to provide a qualitative or quantitative measure of the presence or absence of an analyte of interest. Typically, a measured amount of the sample is moved through one or more chambers containing reagents or conditioning agents used to prepare the sample for contacting the reagents. The amount of the sample is usually less than 10 μL and the chambers are of a similar size. They are interconnected by capillary passageways through which the sample moves by capillary forces or by an applied force, such as centrifugal force. In many cases, it is necessary to contact the sample with a conditioning liquid in order to dilute the sample or otherwise prepare the sample for subsequent reaction. For example, assays often require a sample be contacted to minimize interference, to control reaction conditions such as pH, co-factors or ionic strength, to form complexes such as multi-dentate ligands, proteins such as antibody-antigen complexes, nucleic acids, polycarbohydrates, lipids or metals, to lysis cells e.g. bacteria, red blood cells or white blood cells, and to react analytes and metabolites into detectable form. Mixing of the sample with a conditioning liquid presents problems related to the small size of the microfluidic device. Movement of small amounts of liquids through narrow passageways by capillary forces involves the interaction of the liquid with the walls of the passageways. If the liquid is aqueous, which is typical of biological samples, and the walls of the passageway are hydrophilic and narrow, for example 200 to 200 μm wide and 1 to 200 μm deep, the surface energy of the liquid creates a force which can move the liquid through the
passageway. The large surface to volume ratio means that the surface effects on the liquid are large. The Reynolds Number, a dimensionless unit which is related to the character of the liquid flow, is very low, indicating that the liquid flow is laminar, and not turbulent. Laminar flow is streamline flow, with the velocity increasing with the distance from the wall. Mixing of a sample with conditioning liquids is difficult when laminar flow predominates. Mixing is usually done by creating turbulent conditions. In much of the prior art relating to microfluidics, liquids in laminar flow are brought into close contact, relying on diffusion of molecules from one layer of liquid to another to create a mixture of the liquids. In active micro mixers that use macro scale techniques e.g., mechanical stirring, including active elements can require very complex and costly devices. In U.S. Patent 6,136,272, Weigl et al disclose a device that creates two or more shallow laminar layers to facilitate the diffusion of molecules from one layer to an adjacent layer. The patentees stated that their device was designed so that the Reynolds Number is below 1, preferably less than 0.1. They observed that when the Reynolds Number is greater than 1 , flow can be laminar, but that such systems are prone to developing turbulence when the flow pattern is disturbed. Thus, the patentees system was designed to assure laminar flow with diffusional mixing. Enhanced diffusion is created between parallel streams in laminar flow in another U.S.
Published Patent Application 2002/0076300 (Weigl et al). U.S. Published Patent Application 2002/0097532 disclosed a disc containing many channels. Two liquids were passed through a zig-zag channel in laminar flow while the disc was rotated, with mixing said to occur by diffusion. A T-Sensor is shown in U.S. Published Patent Application 2001/0042712. The sensor contacts a liquid sample with an indicator liquid, the streams flowing in parallel laminar flow with diffusion between them. U.S. Published Application 2001/0048637 discloses a similar device, which overcomes the "butterfly effect" caused by greater diffusion at the walls than in the center of the parallel laminar flow streams. U.S. Published Application 2002/0076350 illustrates another method of improving diffusion between laminar flow streams. Parallel laminar flow streams were moved through 90° turns to change the aspect ratio of the streams, thereby improving diffusion between the streams. Micro-mixers are described in U.S. 6,190, 034 Bl and U.S. 6,241,379 Bl. Liquids are mixed by creating thin layers to facilitate mixing by diffusion. The patents and applications discussed above are related to passing a reagent stream adjacent to a sample stream so that by diffusion a reaction occurs and then is measured. In other patents and applications mixing is attempted by various means, despite the liquids being in laminar flow. In U.S. Published Application 2001/0048900 mixing separate streams by creating a vortex in a chamber. In some embodiments, the inventors indicate that a Reynolds number of 320 is achieved and the first and second fluids have Reynolds numbers between 1 and 2000. Therefore, the flow is in a region between laminar flow and turbulent flow. U.S. Patent 5,921,678 discloses a liquid mixer in which two streams of liquid meet head- on and exit together in a channel at 90° from the entrance channels. The Reynolds number of the streams is said to be 2000-6000. Sharp-edged pillars are shown to assist in generating turbulence at the intersection of the mixing streams. U.S. Published Application 2002/0048535 shows a device in which two liquids are combined during rotation of the device to transfer the liquids from one container to another. U.S. Patent 6,264,900 provides mixing of parallel laminar flow streams for carrying out fast chemical reactions. U.S. Patent 6,065,864 discloses a micro-mixing system including bubble-controlled pumps and valves to establish circulating flow in a mixing chamber. The present inventors wished to provide effective mixing of liquid reagents or conditioning liquids with sample fluids in microfluidic devices. Such mixing is made difficult by the mismatch between the viscosity and volume of the liquids to be mixed. Their solution to the problem will be described in detail below.
Summary of the Invention Liquids are mixed in microfluidic devices by a method in which at least two liquids are dispensed into a first chamber to combine the liquids. In a preferred embodiment, the liquids are dispensed into the first chamber from wells containing the liquids. In a second step, the combined liquids are discharged from the first chamber through at least one capillary passageway into a second chamber to mix the liquids. In some embodiments, two or more parallel capillary passageways are used. In another embodiment, the second chamber is in liquid communication with at least a third mixing chamber through at least one capillary passageway. Mixing of liquids results when they enter and leave chambers that are large relative to the narrow channels through which they enter and leave. The disturbance in the flow pattern of the liquids is considered to be responsible for the mixing that is observed to occur. In some instances, droplets have been observed to form when the liquids exit from a capillary passageway into a large chamber. Such droplets may contribute to mixing as they coalesce within the chamber. The mixing process is completed by forcing the liquids in the first chamber through one or more capillary passageways into the second chamber. In microfluidic devices using the method of the invention, the capillary passageways have cross-sectional dimensions between 1 and 2000 μm, preferably 200 to 1000 μm, or as may be required by the properties of the liquids. The length of the capillaries between the two chambers will be between 0.5 to 100 mm, preferably 1-50 mm. The cross-sectional shape of the capillary passageways is not believed to be critical. Typically, the passageways have a rectangular cross-section, but the shape will be determined by the method used to form the passageways. The dimensions in a typical design will be chosen to provide a liquid velocity of 1 mm sec or more in the passageways, taking into account the liquid viscosity and applied force. Each of the two chambers is larger than the total volume of the liquids being mixed. Preferably, the volume of each chamber is about two times larger than the volume of the combined liquids or more. The depth of each chamber is sufficient to provide free space above the liquids after they have entered the chamber. Preferably, the space above the liquid will be sufficient to allow the liquid entering the chamber to separate into droplets, e.g. about 100 μm or more. More preferably, the depth of the chamber will have about twice the depth needed to hold the volume of combined liquids being mixed. The capillary passageways preferably are located in the free space above the liquid in the chambers.
Brief Description of the Drawings Figure 1 illustrate mixing of two liquids according to the invention. Figure 2 shows an alternative embodiment of the invention. Figure 3 illustrates a microfluidic device.
Description of the Preferred Embodiments Flow in Microchannels The microfluidic devices employing the invention typically use channels having cross- sectional dimensions in the range of about 1 to 2000μm, preferably about 200-1000 μm. When the channels have a cross-section that is generally rectangular, the dimension may refer to the diagonal of the rectangle. The minimum dimension for such channels is believed to be about
5μm for many practical applications, since smaller channels may effectively filter out components in the sample being analyzed. Where not a problem, smaller dimensions may be used. Channels in the preferred range make it possible to move liquid samples by capillary forces alone. It is also possible to stop movement by capillary walls that have been treated to become hydrophobic relative to the sample fluid or by marked changes in the channel dimensions. Resistance to flow can be overcome by applying a pressure difference, for example, by pumping, vacuum, electroosmosis, heating, absorbent materials, additional capillarity or centrifugal force. As a result, liquids can be metered and moved from one region of the device to another as required for the analysis being carried out in microfluidic device. A mathematical model can be used to relate the pressure difference (e.g. centrifugal force), the fluid physical properties, the fluid surface tension, the surface energy of the capillary walls, the capillary size and the surface energy of particles contained in fluids to be analyzed. It is possible to predict the flow rate of a fluid through the capillary and the desired degree of hydrophobicity or hydrophilicity. The following general principles can be drawn from the relationship of these factors. For any given passageway, the interaction of a liquid with the surface of the passageway may or may not have a significant effect on the movement of the liquid. When the surface to volume ratio of the passageway is large i.e. the cross-sectional area is small, the interactions between the liquid and the walls of the passageway become very significant. This is especially , the case when one is concerned with passageways with nominal diameters less than about
200μm, when capillary forces related to the surface energies of the liquid sample and the walls
predominate. When the walls are wetted by the liquid, the liquid moves through the passageway without external forces being applied. Conversely, when the walls are not wetted by the liquid, the liquid attempts to withdraw from the passageway. These general tendencies can be employed to cause a liquid to move through a passageway or to stop moving at the junction with another passageway having a different cross-sectional area. If the liquid is at rest, then it can be moved by a pressure difference, such as by applying centrifugal force. Other means could be used, including air pressure, vacuum, electroosmosis, heating, absorbent materials, additional capillarity and the like, which are able to apply the needed pressure difference at the junction between passageways having different cross-sectional areas or surface energies. In the present invention high capillary forces are available, making it possible to move liquids by capillary forces alone, without requiring external forces, except for short periods when a capillary stop must be overcome. However, the smaller passageways inherently are more likely to be sensitive to obstruction from particles in the biological samples or the reagents. Consequently, the surface energy of the passageway walls is adjusted as required for use with the sample fluid to be tested, e.g. blood, urine, and the like. This feature allows more flexible designs of analytical devices to be made.
Microfluidic Analytical Devices The analytical devices of the invention may be referred to as "chips". They are generally small and flat, typically about 1 to 2 inches square (25 to 50 mm square) or disks having a radius of about 40 to 80 mm. The volume of samples will be small. For example, they will contain
only about 0.1 to 10 μL for each assay, although the total volume of a specimen may range from
10 to 200 μL. The chambers holding the sample fluids and reagents typically will be relatively wide and shallow in order that the samples can be easily seen and changes resulting from reaction of the samples can be measured by suitable equipment. The interconnecting capillary
passageways typically will have a cross-sectional dimension in the range of 1 to 2000 μm,
preferably 200 to 500 μm. The shape will be determined by the method used to form the
passageways but passageways having rectangular cross-sections are preferred. The depth of the
passageways will be at least 5 μm in many practical applications where samples contain particles,
but may be smaller where the nature of the sample permits. While there are several ways in which the capillaries and chambers can be formed, such as injection molding, laser ablation, diamond milling or embossing, it is preferred to use injection molding in order to reduce the cost of the chips. Generally, a base portion of the chip will contain the desired network of chambers and capillaries. After reagent compounds have been placed in the chambers as desired, a top portion will be attached over the base to complete the chip. The chips usually are intended to be disposable after a single use. Consequently, they will be made of inexpensive materials to the extent possible, while being compatible with the reagents and the samples which are to be analyzed. In most instances, the chips will be made of plastics such as polycarbonate, polystyrene, polyacrylates, or polyurethene, alternatively, they can be made from silicates, glass, wax or metal. The capillary passageways will be adjusted to be either hydrophobic or hydrophilic, properties which are defined with respect to the contact angle formed at a solid surface by a liquid sample or reagent. Typically, a surface is considered hydrophilic if the contact angle of water on the surface is less than 90 degrees and hydrophobic if the contact angle is greater than 90°. Preferably, the surface energy is adjusted by plasma induced polymerization at the surface of the passageways. The analytical devices of the invention may also be made with other methods used to control the surface energy of the capillary walls, such as coating with hydrophilic or hydrophobic materials, grafting, or corona treatments. The surface energy of the capillary walls may be adjusted for use with the intended sample fluid. For example, to prevent deposits on the walls of a hydrophobic passageway or to assure that none of the liquid is left in a passageway. For most passageways in the microfluidic devices of the invention, the surface is generally hydrophilic since the liquid tends to wet the surface and the surface tension forces causes the liquid to flow in the passageway. For example, the surface energy of capillary passageways is adjusted so that the contact angle of water on the surface is between 10° to 60° when the passageway is to contact whole blood or a contact angle of water on the surface of 25° to 80° when the passageway is to contact urine. Movement of liquids through the capillaries may be prevented by capillary stops, which, as the name suggests, prevent liquids from flowing through the capillary. If the capillary passageway is hydrophilic and promotes liquid flow, then a hydrophobic capillary stop can be used, i.e. a smaller passageway having hydrophobic walls. The liquid is not able to pass through the hydrophobic stop because the combination of the small size and the non-wettable walls results in a surface tension force which opposes the entry of the liquid. Alternatively, if the capillary is hydrophobic, no stop is necessary between a chamber and the capillary. The liquid in the chamber is prevented from entering the capillary until sufficient force is applied, such as by centrifugal force, to cause the liquid to overcome the opposing surface tension force and to pass through the hydrophobic passageway. However, centrifugal force is only needed to start the flow of liquid. Once the walls of the hydrophobic passageway are fully in contact with the liquid, the opposing force is reduced because presence of liquid lowers the energy barrier associated with the hydrophobic surface. Consequently, the liquid no longer requires centrifugal force in order to flow. While not required, it may be convenient in some instances to continue applying centrifugal force while liquid flows through the capillary passageways in order to facilitate rapid analysis. When a hydrophobic stop is located in a hydrophilic capillary, a pressure difference must be applied to overcome the effect of the hydrophobic stop. In general, the pressure difference needed is a function of the surface tension of the liquid, the cosine of its contact angle with the hydrophilic capillary and the change in dimensions of the capillary. That is, a liquid having a high surface tension will require less force to overcome a hydrophobic stop than a liquid having a lower surface tension. A liquid which wets the walls of the hydrophilic capillary, i.e. it has a low contact angle, will require more force to overcome the hydrophobic stop than a liquid which has a higher contact angle. The smaller the hydrophobic channel, the greater the force which must be applied. When the capillary passageways are hydrophilic, a sample liquid (presumed to be aqueous) will naturally flow through the capillary without requiring additional force. If a capillary stop is needed, one alternative is to use a narrower hydrophobic section which can serve as a stop as described above. A hydrophilic stop can also be used, even through the capillary is hydrophilic. Such a stop is wider and deeper than the capillary forming a "capillary jump" and thus the liquid's surface tension creates a lower force promoting flow of liquid. If the change in dimensions between the capillary and the wider stop is sufficient, then the liquid will stop at the entrance to the capillary stop. It has been found that the liquid will eventually creep along the hydrophilic walls of the stop, but by proper design of the shape this movement can be delayed sufficiently so that stop is effective, even though the walls are hydrophilic. In order to design chips in which centrifugal force is applied to overcome hydrophilic or hydrophobic stops empirical tests or computational flow simulation can be used to provide useful information enabling one to arrange the position of liquid-containing chambers on chips and size the interconnecting capillary channels so that liquid sample can be moved as required by providing the needed force by adjusting the rotational speed. Microfluidic devices can take many forms as needed for the analytical procedures which measure the analyte of interest. The microfluidic devices typically employ a system of capillary passageways connecting chambers containing dry or liquid reagents or conditioning materials. Analytical procedures may include preparation of a metered sample by diluting the sample, prereacting the analyte to ready it for subsequent reactions, removing interfering components, mixing reagents, lysising cells, capturing bio molecules, carrying out enzymatic reactions or incubating for binding events, staining, or deposition. Such preparatory steps may be carried out before or during metering of the sample, or after metering but before carrying out reactions which provide a measure of the analyte. In such analytical procedures a sample will be combined with a conditioning liquid or with a reagent liquid and then transferred to a mixing chamber before being sent to subsequent processing. It will be evident that intimate mixing of the sample with the reagent or conditioning liquid is important to accurate and reproducable results. As is well known, the flow in microfluidic devices is typically laminar, that is, the viscosity of the liquid has a greater effect than the inertia of the flowing liquid so that the liquid flows linearly without being turbulent. One consequence of laminar flow conditions is that mixing of two or more liquids is slow since it principally results from molecular diffusion. As discussed above, some microfluidic devices have been designed to improve diffusion between layers of liquids in laminar flow. Many of these devices do not intend that complete mixing occurs, but in others provision for close contacting of liquid streams is provided. In the present invention, complete mixing is wanted. It has been found that through mixing can be achieved by proper design of the device so that uniform mixtures are produced combining liquid samples with liquid reagents or conditioning agents that have differing viscosities and volumes.
Mixing of Liquids If accurate analytical results are to be obtained, mixing of samples with larger volumes of liquid reagents or conditioning liquids is important. Although thorough mixing has been shown to occur in the combination of chambers and capillaries that are described here, the process by which the mixing occurs is not fully understood. Much of the prior art presumes that laminar flow prevents efficient mixing and therefore emphasizes creation of thin layers of liquid flowing in parallel to facilitate diffusional mixing. The present inventors believe that in their methods, localized effects occur that benefit mixing, but are difficult to measure. When liquids pass through capillaries, they are in laminar flow; therefore, one would expect that little mixing occurs. However, as liquids enter and exit capillaries connecting relatively large chambers it is probable that some localized eddies or disturbancies are created as the liquids speed up or slow down and flow around distinct edges. Thus, while the flow may be nominally laminar in nature, the effects created at the intersection of walls of the capillaries and chambers with the liquid may contribute to mixing of the liquids. Furthermore, energy is added to the liquids by the application of centrifugal (or other) force to force the liquids to overcome capillary stops. The liquids will be accelerated and decelerated as they move from their initial positions through capillaries into large chambers. It has been observed that droplets often form as the liquids exit from capillaries. Forming droplets that combine different liquids may induce mixing of the liquids. Combining the individual droplets is presumed to provide further mixing in a process analogous to layering. That is, if two incompatible liquids are combined by successively dividing and layering them, ultimately the layers become so thin as to be indistinguishable. Thus, if thousands of droplets are combined, any separation of the two liquids is not evident and the liquids are effectively completely mixed. Also, a certain degree of mixing by molecular diffusion is presumed to occur as the subdivision of the liquids proceeds and the distance which molecules must move is reduced. While the degree of mixing may be determined after it has occurred, the design of the necessary microfluidic features will vary depending on the relative volumes of the liquids to be mixed and on their physical properties and may require experimental confirmation. This general description of the mixing process applies to various liquids. However, the conditions used require modification depending on the viscosity and relative volumes of the liquids being mixed. It will be evident that mixing a viscous liquid with one that is much less viscous will be more difficult than mixing two liquids having similar low viscosities. Mixing two viscous liquids also will be difficult to do uniformly. Combining two liquids having significantly different volumes would be expected to more difficult than mixing liquids of equal volumes. It has been found that certain parameters can be used to define the conditions needed for producing mixing of liquids according to the invention. In general, two or more liquids are combined in a first chamber, which is emptied through at least one connecting capillary
passageway into a second chamber, where the liquids complete the mixing process. One such process is shown in a simplified diagram in Fig. 1, discussed below. Movement of the liquids typically requires application of force to overcome the resistance to flow inherent in the use of small passageways and that resulting from capillary stops added to prevent liquids from flowing. Centrifugal force is often used for this purpose, but other methods which can produce the needed force may be used, including air pressure, vacuum, electroosmosis, absorbent materials, additional capillarity and the like. The force applied is sufficient to create a flow of liquid in the capillary passageways of 1 mm/sec or more. These passageways have cross-sectional dimensions between 1 μm and 2000 μm, preferably 200 to 1000 μm, as determined by the physical properties of the liquids. The passageways will have a length between 0.5 and 100 mm, preferably 1 -50 mm, depending on the arrangement of chambers and passageways on the chip. The difference in dimensions between those of the capillary passageways and the associated chambers is so large that the movement of liquids from one chamber to another creates a disturbance in the flow. Further, the surface tension of the liquids is believed to be responsible for the droplets which have been observed to form at the point where liquids exit the capillary passageways and enter a larger chamber for mixing. The droplets are forced to the outside of the receiving chamber by centrifugal force (in the typical case), where they recombine. The chambers may be various shapes, but typically they will be generally circular or square. They may contain internal features such as steps or ramps. Such features are believed to have a minor effect on mixing of the liquids, although they may be included for other reasons. It is considered important that sufficient space be provided in the mixing chambers above the liquids being mixed. At least 100 μm free space is believed to be needed in a typical chamber containing about 0.1 to 50 μL. Preferably, the chambers will have a volume about twice that of the total volume of the liquids being mixed and the depth of the chambers will be about twice that of the liquid level in the chamber. Larger chambers and greater depths are assumed to provide improve mixing, but may not be optimum. Smaller chambers and smaller depths may provide satisfactory results, although it is expected that mixing will be impaired as less air space above the liquids is available. Figures 1 A&B show mixing according to the invention in a simplified form such as will occur in microfluidic devices. A sample liquid in container 10 is retained in container 10 until released by applying force e.g., centrifugal force to overcome capillary stop 12. Similarly, a liquid reagent or a conditioning liquid e.g., a buffer solution remains in container 14 by a capillary stop 16 until the necessary force has been applied. The two liquids flow through capillaries into first chamber 18. Chamber 18 receives the sample and the second liquid at the same time so that preliminary mixing occurs, as the liquids enter chamber 18. In most cases, the mixing is not adequate and a second step is needed. The combined liquids leave first chamber 18 through at least one capillary passageway 20 and enter the second mixing chamber 22. The liquid may form small droplets as it leaves capillary 20 and enters the mixing chamber, thereby mixing the liquids within the droplets as they are formed. Further mixing is accomplished as the droplets recombine at the bottom of the mixing chamber 22. In another embodiment of Fig. 1, three capillary passageways e.g., 20, 20a and 20b are used to connect the first chamber 18 to the second mixing chamber 22. More than three capillaries may be used, as in Example 1 below. Preferably, the capillaries will not have the same diameter so that the velocity in the capillaries varies, producing different sized droplets, and further improving mixing. If multiple capillaries are used, they may be arranged to cause the exiting liquids to meet within chamber 22. Another alternative shown in Fig. 2A&B is particularly useful when liquids having different viscosities are being mixed. The capillaries 20 et al would discharge into a premixing chamber 24, from which additional capillaries 21 et al would carry the combined liquids to the mixing chamber 22. Additional pre-mixing chambers could be provided to further improve mixing. In both sectional views, Fig. IB and Fig. 2B, it can be seen that the capillary passageways 20 and 21 typically will be positioned at the top of a chip containing the deeper chambers. Thus, when force is applied to the liquids, they move up to the passageways and then enter the next chamber. Having described several embodiments found to provide effective mixing in practice, it will be understood that certain variants suggest themselves for consideration in particular cases. One alternative would be to combine the capillaries supplying the separate liquids before entering the first chamber. This would have the advantage of creating a degree of mixing in the combined capillary as the liquid velocity increases, which would lead to more mixing created by the entry to the chamber. Then too, the first chamber could be provided with microstructures to create localized eddies or disturbancies to improve mixing. In the simplest case, the liquids could be deposited directly in the first chamber 18 rather than being first placed in wells 10 and 14. It has already been suggested that when multiple capillaries are used to supply the liquids to the second mixing chamber, the capillaries could have different diameters and that they could be arranged to impinge as the liquid streams/droplets enter the mixing chamber. Another alternative would be to manifold the several capillaries before entering the second mixing chamber to obtain the advantages associated with entrance created eddies and changes in liquid velocity. The second mixing chamber could also be provided with microstructures to assist mixing. The microfluidic device illustrated in Fig. 3 will be described in Example 3 as used in a particular analytical procedure. The device mixes a liquid in chamber 18 with a metered sample contained in capillary 14 and chamber 16. The liquids are received in chamber 20 and transferred to mixing chamber 30, from which the mixed liquids flow out for analysis. Another aspect of the invention relates to the movement of mixed liquids to downstream chambers for further processing. It will be evident that mixing should be completed before the liquids are moved. Several possible means for preventing premature movement of the liquids before mixing is complete have been considered. In one method, the mixed liquids enter a capillary positioned above the normal depth of the liquid in the mixing well. It has been found that, after centrifugal force holding the liquid in position in the mixing chamber is reduced, the liquid tends to creep up along the walls of the chamber and can reach the exit capillary. In a second method, the exit capillary is entered from below the level of liquid in the mixing chamber but not until the resistance of a hydraulic stop is overcome by application of the necessary force. In a third method, the exit capillary is located above the liquid depth in the mixing chamber and the natural tendency for the liquid to move by capillary forces is assisted by providing microstructures, for example a grooved ramp leading to the exit capillary.
Applications Microfluidic devices have many applications. Analyses may be carried out on samples of many biological fluids, including but not limited to blood, urine, water, saliva, spinal fluid, intestinal fluid, food, and blood plasma. Blood and urine are of particular interest. A sample of the fluid to be tested is deposited in the sample well and subsequently measured in one or more metering capillaries or wells into the amount to be analyzed. The metered sample will be assayed for the analyte of interest, including for example a protein, a cell, a small organic molecule, or a metal. Examples of such proteins include albumin, HbAlc, protease, protease inhibitor, CRP, esterase and BNP. Cells which may be analyzed include E.coli, pseudomonas, white blood cells, red blood cells, h.pylori, strep a, chlamdia, and mononucleosis. Metals which may be detected include iron, manganese, sodium, potassium, lithium, calcium, and magnesium. In many applications, color developed by the reaction of reagents with a sample is measured. Other spectroscopic analysis of the sample are possible, using sensors positioned for detecting absorbance, reflectance, transmission and emission such as fluorescence, phosphorescence, luminescence, and other changes in the near and far infrared, Raman, and ultraviolet wavelengths. It is also feasible to make electrical measurements of the sample, using electrodes positioned in the small wells in the device. Examples of such analyses include electrochemical signal transducers based on amperometric, impedimetric, potentimetric detection methods. Examples include the detection of oxidative and reductive chemistries and the detection of binding events. There are various reagent methods which could be used in microfluidic devices. Reagents undergo changes whereby the intensity of the signal generated is proportional to the concentration of the analyte measured in the clinical specimen. These reagents contain indicator dyes, metals, enzymes, polymers, antibodies, electrochemically reactive ingredients and various other chemicals dried onto carriers. Carriers often used are papers, membranes or polymers with various sample uptake and transport properties. They can be introduced into the reagent chambers in the microfluidic devices. A number of uses for reagents are possible. For example, an analyte can be reacted with reagent in a first chamber and then the reacted reagent directed to a second chamber for further reaction. Also, a reagent can be re-suspensed in a liquid in a first chamber and moved to a second chamber for a reaction. An analyte or reagent can be trapped in a first or second chamber and a determination of free versus bound reagent be made. A third liquid reagent can be used to wash materials trapped in the second chamber and to move materials to the waste chamber. The determination of a free versus bound reagent is particularly useful for multizone immunoassay and nucleic acid assays. There are various types of multizone immunoassay s that could be adapted to these devices. In the case of adaption of immunochromatography assays, reagents and filters are placed into separate chambers and do not have to be in physical contact as chromatographic forces are not in play. Immunoassays or DNA assay can be developed for detection of bacteria such as Gram negative species (e.g. E. Coli, Entereobacter, Pseudomonas, Klebsiella) and Gram positive species (e.g. Staphylococcus Aureus, Entereococc). Immunoassays can be developed for complete panels of proteins and peptides such as albumin,
hemoglobin, myoglobulin, α-1-microglobulin, immunoglobulins, enzymes, glycoproteins, protease inhibitors, drugs and cytokines. See, for examples: Greenquist in U.S. 4,806,311, Multizone analytical Element Having Labeled Reagent Concentration Zone, Feb. 21, 1989, Liotta in U.S. 4,446,232, Enzyme Immunoassay with Two-Zoned Device Having Bound Antigens, May 1, 1984. Potential applications where dried reagents are resolubilized include, filtration, sedimentation analysis, cell lysis, cell sorting (mass differences) and centrifugal separation. Enrichment (concentration) of sample analyte on a solid phase (e.g. microbeads) can be used to improved sensitivity. The emiched microbeads could be separated by continuous centrifugation. Multiplexing can be used (e.g. metering of a variety of reagent chambers in parallel and/or in sequence) allowing multiple channels, each producing a defined discrete result. Multiplexing can be done by a capillary array comprising a multiplicity of metering capillary loops, and fluidly connected with the entry port, or an array of dosing channels and/or capillary stops connected to each of the metering capillary loops. Combination with secondary forces such as magnetic forces can be used in the device design. Particle such as magnetic beads used as a carrier for reagents or for capturing of sample constituents such as analytes or interfering substances. Separation of particles by physical properties such as density (analog to split fractionation). Example 3 below illustrates the invention used in carrying out an assay for measuring the glycated hemoglobin (HcAlc) content of a patient's blood which can indicate the condition of diabetic patients. The method used has been the subject of a number of patents, most recently U.S. 6,043,043. Normally the concentration of glycated hemoglobin is in the range of 3 to 6 percent. But, in diabetic patients it may rise to a level about 3 to 4 times higher. The assay measures the average blood glucose concentration to which hemoglobin has been exposed over a period of about 100 days. Monclonal antibodies specifically developed for the glycated N- terminal peptide residue in hemoglobin Ale are labeled with colored latex particles and brought into contact with a sample of blood to attach the labeled antibodies to the glycated hemoglobin. Before attaching the labeled antibodies, the blood sample is first denatured by contact with a denaturant/oxidant e.g. lithium thiocyanate as described in Lewis U.S. 5,258,311. Then, the denatured and labeled blood sample is contacted with an agglutinator reagent and the turbidity formed is proportional to the amount of the glycated hemoglobin present in the sample. The total amount of hemoblobin present is also measured in order to provide the percentage of the hemoglobin which is glycated. The mixing of the blood sample with the denaturant/oxidant is carried out in accordance with the present invention.
Example 1 A microfluidic device was made having the general configuration shown in Fig. 1, including five parallel capillaries 20 et al connecting chambers 18 and 22. The sample well 10 was filled with 10 μL of a phenol red solution with buffer (pH 4.0). The well 14 was filled with 10 μL of a solution of phenol red (pH 7.0). 10 mm long capillaries connected the sample and reagent chambers to the first chamber 18. Each capillary was 200 μm deep and 700 μm wide, containing 0.4 μL. The first chamber 18 was 5.5 mm in diameter, 1.5 mm deep, and had a capacity of about 36 μL. The second chamber 22 was 5.5 mm in diameter and 1.1 mm deep, with a capacity of about 26 μL. The device was placed on a platform and rotated at 2500 rpm at a distance of about 28 mm to overcome the resistance of the stops 12 and 16 and to deliver the liquids from wells 10 and 14 at the same time to first chamber 18. The mixed liquids passed immediately through five capillary passageways (20 et al) connecting first chamber 18 and the second chamber 22. Each capillary was 3.5 mm long, 200 μm deep, and 200 μm wide. The color of the liquid collected in second chamber 22 was uniformly yellow, indicating complete mixing had occurred. It was found that once the centrifugal force was removed, the liquid moved up along the sides of second mixing chamber 22, so the exiting capillaries (not shown in Fig. 1) could be filled.
Example 2 Another microfluidic device was made, which differed from the device of Example 1 in that only one capillary passageway connected the first chamber 18 and the second chamber 22. Also, the second chamber 22 was provided with a series of five steps ramped down in the direction of the centrifugal force that was applied. The first chamber 18 was 5.5 mm in diameter, 1.5 mm deep, and had a capacity of about 36 μL. The second chamber 22 was 5 mm wide and 7 mm long with an average depth of about 1.2 mm and a volume of about 46 μL. The single capillary (3 mm long, 200 μm deep, 500 μm wide) exited at the top of the stepped ramp. The mixing chamber and the two capillaries supplying the dilution chamber had the same dimensions as in Example 1. 10 μL of a phenol red solution (pH. 7.0) was added to well 10 and 10 μL of phenol red solution with buffer (pH 4.0) was added to well 14. The device was rotated at a speed which was sufficient to overcome the capillary stops and deliver the two solutions to the ramped dilution chamber and then to the mixing chamber. The color of the liquid in the mixing chamber was found to be uniform, indicating complete mixing had occurred. Example 3 In this example, a test for HbAlc was carried out in a microfluidic chip of the type shown in Figure 3. The surface energy of the internal features had been adjusted to provide a contact angle of 25° for water on the surface and were covered with a polypropylene film lid (Excel
2930). A sample of blood was introduced via sample port 10, from which it proceeded by capillary action to the pre-chamber 12 and then to metering capillary 14. The auxiliary metering well 16 is optional, only being provided where the sample size requires additional volume. The
volume of the sample in capillary 14 and well 16 was 0.3 μL. The denaturant/oxidizing liquid (9.62 μL) (Sigma mammalian cell lysis/extraction reagent) was contained in well 18. It was emptied into the first chamber 20 (18.84 μL) at the same time the metering well 16 and the associated metering capillary 14 are emptied by application of centrifugal force by spinning at 1200 rpm at a distance of 29 mm to overcome the capillary stops (not shown). The first chamber 20 provided space for the blood sample and the denaturant/oxidant. The combined liquids were transferred through a set of three 2000 μm long capillary passageways having cross-sectional dimensions of 30 by 30 μm. The second chamber 30 received and mixed the liquids. As the force is removed the fluid exited from the top of chamber 30 into chamber 24 through capillary passageway 23. Excess liquids were transferred to waste well 31 by spinning at 2500 rpm at a distance of 43 mm! Chamber 24 provided uniform contact of the preconditioned sample with labeled monoclonal antibodies disposed on a dry substrate and served as a second metering area. The volume of the sample in the capillary leading to chamber 24 was 2.0 μL. Contact of unbound labeled antibodies with the agglutinator, which was disposed on a substrate was carried out in chamber 26, producing a color which was measured to determine the amount of glycated hemoglobin in the sample. Application of a centrifugal force by spinning at 2500 rpm at a distance of 53 mm caused the incubated conjugate in chamber 24 and the wash buffer in chamber 22 to empty into chamber 26. The remaining wells provided space for excess sample (28), excess denatured sample (31), and for a wicking material (32) used to draw the sample over the substrate in chamber 26. A 2μL sample was pipetted into sample port 10, from which it passed through a passageway located within the chip (not shown) and entered the pre-chamber 12, metering capillary 14, and auxiliary metering chamber 16. Any excess sample passed into overflow well 28, which contains a wetness detector. No centrifugal force was applied, although up to 400 rpm could have been used. The sample size (0.3 μL) was determined by the volume of the capillary 14 and the metering chamber 16. A capillary stop at the entrance of the capillary connecting well 16 and the first chamber 20 prevented further movement of the blood sample until overcome by centrifugal force, in this example provided by spinning the chip at 1200 rpm. The denaturant/oxidant solution (Sigma mammalian cell lysis/extraction reagent) also was prevented from leaving well 18 by a capillary stop until 1200 rpm was used to transfer lOμL of the denaturant/oxidant solution along with the metered blood sample into the first chamber 20 and thereafter into second mixing chamber 30. The volume of the first chamber 20 was about twice the size of the combined denaturant/oxidant solution and the blood sample. After mixing, 2μL of the mixture leaves the second chamber 30 through a capillary and enters chamber 24 where microstructures assure uniform wetting of the substrate (a fibrous Whatman glass conjugate release membrane) containing the latex labeled monoclonal antibodies for HbAlc. Incubation was completed within a few minutes, after which the labeled sample was released to chamber 26 by raising the rotation speed to 2500 rpm to overcome the capillary stop (not shown) at the outlet of chamber 24. The labeled sample contacted the agglutinator (polyaminoaspartic acid HbAlc peptide) which was striped on a Whatman 5 μm pore size nitrocellulose reagent in concentrations of 0.1 to 3 mg/mL. The absorbent material (Whatman glass fiber membrane) in well 32 facilitated uniform passage of the labeled sample over the strip. While the labeled sample was released to chamber 26 at 2500 rpm, the buffer solution (phosphate buffered saline) left well 22 and passed through chamber 24 and over the strip in chamber 26 to improve the accuracy of the reading of the bands on the strip. The color developed was measured by reading the reflectance with a digital camera.
Example 4 The chip of Fig. 3 was tested with two types of solutions. In the first test, a solution of phosphate buffer at pH4 was introduced as sample inlet 10, from which it was transferred to sample capillary 14 and well 16. Then, this solution was combined with the phosphate buffer at pHl 0 in chamber 18 in the first mixing chamber 20. It was found that mixing of the two buffer solutions was substantially complete in chamber 30 at a pH7 by dye measurement. When blood was the sample, a more viscous liquid than the buffer, mixing with a lysis buffer (lithium thiocyanate) from chamber 18 required use of both first chamber 20 and second chamber 30 of Fig. 3.
Example 5 In order to simulate the mixing of blood with an aqueous buffer solution in a microfluidic device having the general configuration and design elements of Fig. 1, 25% of polyethylene glycol (PEG 20,000 mw) was added to a 0.5 N NaOH solution. The viscosity was approximately that of human blood. lOμL (of the PEG/NaOH solution was added to well 10 and 100 μL of a pH4 buffer (50 mm phosphate) was added to well 14. Phenol red pH indicator was used to indicate the progress of mixing as the two solutions were combined in chambers 18 and 22. It was found that visually the liquids tended to appear as separate liquids while under higher applied centrifugal force, but that complete mixing occurred when the centrifugal force was reduced. From a series of similar tests, it was concluded that there was no significant difference in mixing efficiency between the chip with one and four capillaries, between chips with rectangular and cylindrical receiving chambers, between chips with and without ramp structures, and complete mixing of viscous fluids is possible.
Example 6 The efficiency of lysing blood with a buffer was tested by centrifuging diluted samples of the mixed blood and buffer and by examining the mixed blood and buffer with a Bayer occult blood reagent pad. If the lysis is incomplete, red pellets of blood form in the centrifuge or dark green spots appear in the occult blood pad. For comparison, solutions of 50 μL blood and 500 μL diluted or undiluted lysing buffer (lithium thiocyanate) were incubated for 3 minutes and then spun in a centrifuge at 1300 rpm for 10 minutes. Then, the solution was diluted 100 fold in phosphate buffer saline solution (pH7.0) and centrifuged again at 1300 rpm for 10 minutes. Mixing of blood in the lysing buffer in a microfluidic device was carried out, after which the mixture was taken from the mixing chamber and diluted 100 and 10,000-fold in phosphate buffer and test by the centrifugation and occult blood reagent methods. It was found that the blood had been substantially completely lysed in the microfluidic device. A further study showed that the lysis of blood occurred almost instantly during the mixing provided in the microfluidic device.

Claims

WHAT IS CLAIMED IS: 1. A method of mixing liquids in microfluidic devices comprising: (a) dispensing at least a first liquid and a second liquid into a first chamber to form combined liquid; (b) discharging said combined liquid of (a) from said first chamber into a second chamber via at least one capillary passageway in liquid communication with said first chamber, to complete mixing of said combined liquids.
2. A method of mixing liquids of Claim 1 wherein said combined liquid of (a) is discharged into said second chamber through more than one capillary passageway.
3. A method of mixing liquids of Claim 2 wherein said combined liquid of (a) is discharged into said second chamber through at least two capillary passageways.
4. A method of mixing liquids of Claim 1 wherein said second chamber is in liquid communication with at least a third chamber through at least one capillary passageway.
5. A method of Claim 1 wherein said combined liquid of (a) is discharged into said second chamber in the form of droplets.
6. A method of Claim 1 wherein said first chamber has a volume of at least about twice that of the combined liquid of (a).
7. A method of Claim 1 wherein said second chamber has a volume of at least about twice that of the combined liquid of (a).
8. A method of Claim 6 wherein said first chamber has a depth of at least about twice that required to hold the combined volume of (a).
9. A method of Claim 7 wherein said second chamber has a depth of at least about twice that required to hold the combined volume of (a).
10. A method of Claim 1 wherein a space of at least 100 μm is above the level of liquid in the first chamber.
11. A method of Claim 1 wherein a space of at least 100 μm is above the level of liquid in the second chamber.
12. A method of Claim 1 wherein said at least one capillary passageway has a cross- sectional dimension of 1 to 2000 μm.
13. A method of Claim 12 wherein said at least one capillary passageway has a cross- sectional dimension of 200 to 1000 μm.
14. A method of Claim 1 wherein said at least one capillary passageway has a length of 0.5 to 100 mm.
15. A method of Claim 14 wherein said at least one capillary passageway has a length of 1 to 50 mm.
16. A method of Claim 1 wherein three or more capillary passageways are in liquid communication between said first and second chambers.
17. A method of Claim 1 wherein at least one of said first and second chambers contains steps or ramps to assist mixing of said combined liquids.
18. A method of Claim 1 wherein the velocity of said combined liquids of (a) in said at least one capillary passageway is at least 1 mm/sec.
19. A method of Claim 1 wherein said first and second liquids are dispensed from wells into said first chamber through capillary passageways.
20. A method of Claim 1 wherein the combined liquids are completely mixed and thereafter moved to downstream chambers for further processing.
21. A microfluidic device comprising: (a) a first chamber for receiving and combining at least a first liquid and a second liquid; (b) a second chamber for complete mixing of said at least first and second liquids, said second chamber being in liquid communication with said first chamber via at least one capillary passageway.
22. A microfluidic device of Claim 21 wherein said first and second chambers are in liquid communication through more than one capillary passageway.
23. A microfluidic of Claim 22 wherein said first and second chambers are in liquid communication through at least two capillary passageways.
24. A microfluidic device of Claim 21 wherein said second chamber is in liquid communication with at least a third chamber through at least one capillary passageway.
25. A microfluidic device of Claim 21 wherein said first chamber has a volume of at least about twice that of the combined volume of said first and second containers.
26. A microfluidic device of Claim 21 wherein said second chamber has a volume of at least about twice that of the combined volume of said first and second containers.
27. A microfluidic device of Claim 25 wherein said first chamber has a depth of at least about twice the required to hold the combined volume of said first and second containers.
28. A microfluidic device of Claim 26 wherein said second chamber has a depth of at least about twice that required to hold the combined volume of said first and second containers.
29. A microfluidic device of Claim 21 wherein a space of at least 100 μm is above the level of liquid in the first chamber.
30. A microfluidic device of Claim 21 wherein a space of at least 100 μm is above the level of liquid in the second chamber.
31. A microfluidic device of Claim 21 wherein said at least one capillary passageway has a cross-sectional dimension of 1 to 2000 μm.
32. A microfluidic device of Claim 31 wherein said at least one capillary passageway has a cross-sectional dimension of 200 to 1000 μm.
33. A microfludic device of Claim 21 wherein said at least one capillary passageway has a length of 0.5 to 100 mm.
34. A microfluidic device of Claim 33 wherein said at least one capillary passageway has a length of 1 to 50 mm.
35. A microfluidic device of Claim 21 wherein three or more capillary passageways are in liquid communication between said first and second chambers.
36. A microfluidic device of Claim 21 wherein said at least one passageway is sized to provide a velocity of combined liquids of at least 1 mm/sec.
37. A microfluidic device of Claim 21 wherein at least one of said first and second chambers contains steps or ramps to assist mixing or removal of said first and second liquids.
38. A microfluidic device of Claim 21 wherein said first chamber is in liquid communication through capillary passageways with wells containing said at least first and second liquids.
39. A microfluidic device of Claim 21 wherein said second chamber contains means for preventing premature movement of said liquids before mixing is complete.
PCT/US2004/025354 2003-08-19 2004-08-05 Mixing in microfluidic devices WO2005018787A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006523888A JP4707035B2 (en) 2003-08-19 2004-08-05 Mixing in microfluidic devices
PL04780223T PL1658130T3 (en) 2003-08-19 2004-08-05 Mixing in microfluidic devices
CA2533107A CA2533107C (en) 2003-08-19 2004-08-05 Mixing in microfluidic devices
DE602004013339T DE602004013339T2 (en) 2003-08-19 2004-08-05 MIXING IN MICROFLUID DEVICES
DK04780223T DK1658130T3 (en) 2003-08-19 2004-08-05 Mixture in microfluidic devices
EP04780223A EP1658130B1 (en) 2003-08-19 2004-08-05 Mixing in microfluidic devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/643,862 2003-08-19
US10/643,862 US7347617B2 (en) 2003-08-19 2003-08-19 Mixing in microfluidic devices

Publications (1)

Publication Number Publication Date
WO2005018787A1 true WO2005018787A1 (en) 2005-03-03

Family

ID=34193979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/025354 WO2005018787A1 (en) 2003-08-19 2004-08-05 Mixing in microfluidic devices

Country Status (12)

Country Link
US (1) US7347617B2 (en)
EP (1) EP1658130B1 (en)
JP (1) JP4707035B2 (en)
AT (1) ATE392947T1 (en)
CA (1) CA2533107C (en)
DE (1) DE602004013339T2 (en)
DK (1) DK1658130T3 (en)
ES (1) ES2305856T3 (en)
PL (1) PL1658130T3 (en)
PT (1) PT1658130E (en)
TW (1) TW200516253A (en)
WO (1) WO2005018787A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135779A1 (en) * 2006-05-22 2007-11-29 Nidec Sankyo Corporation Mixing pump device and fuel cell
JP2008134174A (en) * 2006-11-29 2008-06-12 Toshiba Corp Microchemical analysis system, microchemical analyzer, and micro mixing device
JP2010508162A (en) * 2006-10-28 2010-03-18 ピーツーアイ リミティド New product
CN101449056B (en) * 2006-05-22 2011-12-07 日本电产三协株式会社 Mixing pump device and fuel cell
CN105618167A (en) * 2016-01-27 2016-06-01 杭州霆科生物科技有限公司 Centrifugal microfluidic chip for preparing droplets in high-throughput manner
US10898895B2 (en) 2018-09-13 2021-01-26 Talis Biomedical Corporation Vented converging capillary biological sample port and reservoir

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048734A (en) 1995-09-15 2000-04-11 The Regents Of The University Of Michigan Thermal microvalves in a fluid flow method
US6692700B2 (en) 2001-02-14 2004-02-17 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US7829025B2 (en) 2001-03-28 2010-11-09 Venture Lending & Leasing Iv, Inc. Systems and methods for thermal actuation of microfluidic devices
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US6852287B2 (en) 2001-09-12 2005-02-08 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US7010391B2 (en) 2001-03-28 2006-03-07 Handylab, Inc. Methods and systems for control of microfluidic devices
US7323140B2 (en) 2001-03-28 2008-01-29 Handylab, Inc. Moving microdroplets in a microfluidic device
US6919058B2 (en) * 2001-08-28 2005-07-19 Gyros Ab Retaining microfluidic microcavity and other microfluidic structures
EP2402089A1 (en) 2003-07-31 2012-01-04 Handylab, Inc. Processing particle-containing samples
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
WO2005108620A2 (en) 2004-05-03 2005-11-17 Handylab, Inc. Processing polynucleotide-containing samples
EP1944079B1 (en) * 2004-06-11 2012-05-30 Corning Incorporated Microstructure designs for optimizing mixing and pressure drop
DE102004049730B4 (en) * 2004-10-11 2007-05-03 Technische Universität Darmstadt Microcapillary reactor and method for controlled mixing of non-homogeneously miscible fluids using this microcapillary reactor
DE102005000835B3 (en) * 2005-01-05 2006-09-07 Advalytix Ag Method and device for dosing small quantities of liquid
JP4693657B2 (en) * 2005-03-29 2011-06-01 シチズンホールディングス株式会社 Biosensor
JP2007121275A (en) * 2005-09-27 2007-05-17 Fujifilm Corp Microchip and liquid mixing method and blood testing method using microchip
DE102005057685A1 (en) * 2005-12-01 2007-06-06 Boehringer Ingelheim Pharma Gmbh & Co. Kg Inhaler and storage for a dry drug formulation and methods and use thereof
EP2001990B1 (en) 2006-03-24 2016-06-29 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US7998708B2 (en) * 2006-03-24 2011-08-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
JP4915690B2 (en) * 2006-05-23 2012-04-11 国立大学法人電気通信大学 Micro chemical chip equipment
WO2008060604A2 (en) 2006-11-14 2008-05-22 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
WO2008061165A2 (en) 2006-11-14 2008-05-22 Handylab, Inc. Microfluidic cartridge and method of making same
WO2008080049A2 (en) 2006-12-22 2008-07-03 3M Innovative Properties Company Thermal transfer methods and structures for microfluidic systems
TW200844420A (en) * 2006-12-22 2008-11-16 3M Innovative Properties Co Enhanced sample processing devices, systems and methods
JP5004577B2 (en) * 2006-12-27 2012-08-22 ローム株式会社 Method for determining whether the amount and / or quality of a liquid reagent in a liquid reagent built-in microchip is normal, and the liquid reagent built-in microchip
KR100885267B1 (en) * 2007-05-09 2009-02-23 삼성전기주식회사 Apparatus for analysing asample using centrifugal forec and inertia
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
US8287820B2 (en) * 2007-07-13 2012-10-16 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US8105783B2 (en) 2007-07-13 2012-01-31 Handylab, Inc. Microfluidic cartridge
US8133671B2 (en) 2007-07-13 2012-03-13 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
EP3741869A1 (en) 2007-07-13 2020-11-25 Handylab, Inc. Polynucleotide capture materials and methods of using same
USD621060S1 (en) 2008-07-14 2010-08-03 Handylab, Inc. Microfluidic cartridge
US8182763B2 (en) 2007-07-13 2012-05-22 Handylab, Inc. Rack for sample tubes and reagent holders
CN101971035B (en) * 2008-01-21 2013-10-16 三星电子株式会社 Thin-film layered centrifuge device and analysis method using the same
DE102008009199A1 (en) * 2008-02-15 2009-08-27 Forschungszentrum Karlsruhe Gmbh Reaction mixer system for mixing and chemical reaction of at least two fluids
US20100009351A1 (en) * 2008-07-11 2010-01-14 Handylab, Inc. Polynucleotide Capture Materials, and Method of Using Same
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
EP2328681B1 (en) * 2008-07-15 2014-11-26 L3 Technology Limited Assay test card
US7976789B2 (en) * 2008-07-22 2011-07-12 The Board Of Trustees Of The University Of Illinois Microfluidic device for preparing mixtures
TWI402500B (en) * 2008-09-19 2013-07-21 Actherm Inc Testing strip
JP5429774B2 (en) * 2008-10-01 2014-02-26 シャープ株式会社 Liquid feeding structure, micro-analysis chip and analyzer using the same
US8318439B2 (en) 2008-10-03 2012-11-27 Micronics, Inc. Microfluidic apparatus and methods for performing blood typing and crossmatching
US8053239B2 (en) * 2008-10-08 2011-11-08 The Governing Council Of The University Of Toronto Digital microfluidic method for protein extraction by precipitation from heterogeneous mixtures
KR101099495B1 (en) * 2008-10-14 2011-12-28 삼성전자주식회사 Centrifugal force-based microfluidic device, method of manufacturing the same and sample analysis method using the same
EP2366450A4 (en) * 2008-11-26 2016-03-23 Sumitomo Bakelite Co Microchannel device
GB2473425A (en) * 2009-09-03 2011-03-16 Vivacta Ltd Fluid Sample Collection Device
KR20110046867A (en) * 2009-10-29 2011-05-06 삼성전자주식회사 Microfluidic device comprising gas providing unit, and method for mixing liquids and generate emulsion using the same
TWI421495B (en) * 2009-10-30 2014-01-01 Univ Nat Cheng Kung Microfluidic chip
EP2329877A1 (en) * 2009-12-04 2011-06-08 Roche Diagnostics GmbH Microfluidic element for analysing a fluid sample
GB201014805D0 (en) 2010-09-07 2010-10-20 Multi Sense Technologies Ltd Microfluidics based assay device
WO2012062646A1 (en) * 2010-11-10 2012-05-18 Boehringer Ingelheim Microparts Gmbh Method for filling a blister packaging with liquid, and blister packaging with a cavity for filling with liquid
WO2012092394A1 (en) 2010-12-29 2012-07-05 Cardinal Health 414, Llc Closed vial fill system for aseptic dispensing
JP6116490B2 (en) 2011-03-09 2017-04-19 ピクセル メディカル テクノロジーズ リミテッド Disposable cartridge for the preparation of sample fluid containing cells to be analyzed
CA2833262C (en) 2011-04-15 2020-08-18 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
KR20140022399A (en) 2011-05-18 2014-02-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Systems and methods for volumetric metering on a sample processing device
EP2709762B1 (en) 2011-05-18 2021-03-31 DiaSorin S.p.A. Systems and methods for detecting the presence of a selected volume of material in a sample processing device
EP2709760B1 (en) 2011-05-18 2019-06-05 DiaSorin S.p.A. Systems and methods for valving on a sample processing device
US20130102772A1 (en) 2011-07-15 2013-04-25 Cardinal Health 414, Llc Systems, methods and devices for producing, manufacturing and control of radiopharmaceuticals-full
US9417332B2 (en) 2011-07-15 2016-08-16 Cardinal Health 414, Llc Radiopharmaceutical CZT sensor and apparatus
US20130020727A1 (en) 2011-07-15 2013-01-24 Cardinal Health 414, Llc. Modular cassette synthesis unit
USD692162S1 (en) 2011-09-30 2013-10-22 Becton, Dickinson And Company Single piece reagent holder
KR102121853B1 (en) 2011-09-30 2020-06-12 벡톤 디킨슨 앤드 컴퍼니 Unitized reagent strip
CN104040238B (en) 2011-11-04 2017-06-27 汉迪拉布公司 Polynucleotides sample preparation apparatus
WO2013096643A1 (en) * 2011-12-23 2013-06-27 Gigagen Methods and apparatuses for droplet mixing
CA2863637C (en) 2012-02-03 2021-10-26 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
CA2864641C (en) 2012-02-16 2021-05-04 National Research Council Of Canada Centrifugal microfluidic mixing apparatus and method
WO2014058885A1 (en) * 2012-10-08 2014-04-17 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Micronozzle atomizers and methods of manufacture and use
GB201219014D0 (en) * 2012-10-23 2012-12-05 Cambridge Entpr Ltd Fluidic device
CN105026932B (en) * 2013-03-15 2017-06-13 西门子医疗保健诊断公司 Micro-fluidic distributing equipment
US9416776B2 (en) 2013-03-15 2016-08-16 Siemens Healthcare Diagnostics Inc. Microfluidic distributing device
US10386377B2 (en) 2013-05-07 2019-08-20 Micronics, Inc. Microfluidic devices and methods for performing serum separation and blood cross-matching
US10434511B2 (en) 2014-03-14 2019-10-08 University Of Kansas Non-invasive monitoring cancer using integrated microfluidic profiling of circulating microvesicles
US10350599B2 (en) 2014-03-14 2019-07-16 University Of Kansas Non-invasive monitoring cancer using integrated microfluidic profiling of circulating microvesicles
JP6549355B2 (en) * 2014-06-16 2019-07-24 株式会社エンプラス Fluid handling device
US9422547B1 (en) 2015-06-09 2016-08-23 Gigagen, Inc. Recombinant fusion proteins and libraries from immune cell repertoires
CN105056821B (en) * 2015-08-17 2017-05-03 江苏大学 Cross micromixer with symmetrical elliptic-arc-shaped baffles
WO2017103967A1 (en) * 2015-12-14 2017-06-22 株式会社日立製作所 Droplet forming device, droplet forming method, and liquid treatment system
CN105498875A (en) * 2016-01-27 2016-04-20 杭州霆科生物科技有限公司 Centrifugal micro-fluidic chip for preparing liquid drops
WO2017146744A1 (en) * 2016-02-27 2017-08-31 Hewlett-Packard Development Company, L.P. Sample preparation system
WO2017161350A1 (en) * 2016-03-18 2017-09-21 Alere San Diego, Inc. Microfluidic device, system and method
JP7387430B2 (en) * 2016-06-27 2023-11-28 ゾエティス サービシズ リミテッド ライアビリティ カンパニー Devices with modified conduits
GB201611442D0 (en) 2016-06-30 2016-08-17 Lumiradx Tech Ltd Fluid control
JP6965526B2 (en) * 2016-12-01 2021-11-10 富士フイルム和光純薬株式会社 Solution mixing method in microfluidic equipment, microfluidic equipment system and microfluidic equipment
WO2018186823A1 (en) 2017-04-03 2018-10-11 Hewlett-Packard Development Company, L.P. Biological fluid dilution devices
CA3076194A1 (en) * 2017-09-19 2019-03-28 Hifibio Sas Particle sorting in a microfluidic system
CN108760661B (en) * 2018-09-08 2023-06-09 重庆科技学院 Multi-channel detection chip for heavy metal ions in petroleum wastewater
EP3941491A4 (en) 2019-03-21 2023-03-29 Gigamune, Inc. Engineered cells expressing anti-viral t cell receptors and methods of use thereof
US11008627B2 (en) 2019-08-15 2021-05-18 Talis Biomedical Corporation Diagnostic system
KR102167079B1 (en) * 2019-10-08 2020-10-16 (주)파즈코리아 Device and method for selective transfer
CN216856526U (en) 2019-12-23 2022-07-01 胡桃夹子治疗公司 Microfluidic device, microfluidic mixing apparatus and microfluidic apparatus
US11660598B2 (en) * 2020-08-07 2023-05-30 Overture Life, Inc. Microfluidic devices and methods for delivering solutions to biological material
CN114425260B (en) * 2020-10-29 2023-05-30 中国石油化工股份有限公司 Liquid-liquid mixing device and mixing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030044322A1 (en) * 2001-08-28 2003-03-06 Gyros Ab Retaining microfluidic microcavity and other microfluidic structures
US20030133358A1 (en) * 2002-01-11 2003-07-17 Nanostream, Inc. Multi-stream microfluidic aperture mixers

Family Cites Families (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US112961A (en) * 1871-03-21 Improvement in portable furnaces
US114738A (en) * 1871-05-09 Improvement in base-burning stoves
US3799742A (en) * 1971-12-20 1974-03-26 C Coleman Miniaturized integrated analytical test container
US3798459A (en) * 1972-10-06 1974-03-19 Atomic Energy Commission Compact dynamic multistation photometer utilizing disposable cuvette rotor
US3804533A (en) * 1972-11-29 1974-04-16 Atomic Energy Commission Rotor for fluorometric measurements in fast analyzer of rotary
US3856649A (en) 1973-03-16 1974-12-24 Miles Lab Solid state electrode
US3992158A (en) 1973-08-16 1976-11-16 Eastman Kodak Company Integral analytical element
US4233029A (en) 1978-10-25 1980-11-11 Eastman Kodak Company Liquid transport device and method
US4310399A (en) * 1979-07-23 1982-01-12 Eastman Kodak Company Liquid transport device containing means for delaying capillary flow
DE3044385A1 (en) * 1980-11-25 1982-06-24 Boehringer Mannheim Gmbh, 6800 Mannheim METHOD FOR CARRYING OUT ANALYTICAL PROVISIONS AND ROTOR INSERT ELEMENT SUITABLE FOR THIS
US4446232A (en) * 1981-10-13 1984-05-01 Liotta Lance A Enzyme immunoassay with two-zoned device having bound antigens
US4587220A (en) * 1983-03-28 1986-05-06 Miles Laboratories, Inc. Ascorbate interference-resistant composition, device and method for the determination of peroxidatively active substances
JPS6077768A (en) * 1983-10-06 1985-05-02 テルモ株式会社 Liquid dialytic apparatus
US4534659A (en) * 1984-01-27 1985-08-13 Millipore Corporation Passive fluid mixing system
US4618476A (en) 1984-02-10 1986-10-21 Eastman Kodak Company Capillary transport device having speed and meniscus control means
US5141868A (en) * 1984-06-13 1992-08-25 Internationale Octrooi Maatschappij "Octropa" Bv Device for use in chemical test procedures
US4727036A (en) * 1985-08-08 1988-02-23 Molecular Diagnostics, Inc. Antibodies for use in determining hemoglobin A1c
US4658022A (en) * 1985-08-08 1987-04-14 Molecular Diagnostics, Inc. Binding of antibody reagents to denatured protein analytes
US4647654A (en) * 1984-10-29 1987-03-03 Molecular Diagnostics, Inc. Peptides useful in preparing hemoglobin A1c immunogens
US4676274A (en) * 1985-02-28 1987-06-30 Brown James F Capillary flow control
US4756884A (en) * 1985-08-05 1988-07-12 Biotrack, Inc. Capillary flow device
US5164598A (en) 1985-08-05 1992-11-17 Biotrack Capillary flow device
US4963498A (en) * 1985-08-05 1990-10-16 Biotrack Capillary flow device
US4806311A (en) * 1985-08-28 1989-02-21 Miles Inc. Multizone analytical element having labeled reagent concentration zone
US4755472A (en) * 1986-01-16 1988-07-05 Miles Inc. Stable composition for the determination of peroxidatively active substances
DE3721237A1 (en) * 1987-06-27 1989-01-05 Boehringer Mannheim Gmbh DIAGNOSTIC TEST CARRIER AND METHOD FOR THE PRODUCTION THEREOF
US4970171A (en) 1987-11-09 1990-11-13 Miles Inc. Denaturant reagents for convenient determination of hemoglobin derivatives in blood
US4968742A (en) 1987-11-09 1990-11-06 Miles Inc. Preparation of ligand-polymer conjugate having a controlled number of introduced ligands
US5372918A (en) 1988-03-11 1994-12-13 Fuji Photo Film Co., Ltd. Method of processing a silver halide color reversal photographic light-sensitive material
US4908112A (en) * 1988-06-16 1990-03-13 E. I. Du Pont De Nemours & Co. Silicon semiconductor wafer for analyzing micronic biological samples
US5939272A (en) * 1989-01-10 1999-08-17 Biosite Diagnostics Incorporated Non-competitive threshold ligand-receptor assays
US5160702A (en) 1989-01-17 1992-11-03 Molecular Devices Corporation Analyzer with improved rotor structure
US5286454A (en) * 1989-04-26 1994-02-15 Nilsson Sven Erik Cuvette
US5024647A (en) * 1989-06-13 1991-06-18 The United States Of America As Represented By The United States Department Of Energy Centrifugal contactor with liquid mixing and flow control vanes and method of mixing liquids of different phases
US5258311A (en) 1989-07-13 1993-11-02 Miles Inc. Lithium salts as red blood cell lysing and hemoglobin denaturing reagents
US5151369A (en) 1989-07-13 1992-09-29 Miles Inc. Lithium salts as red blood cell lysing and hemoglobin denaturing reagents
US5053197A (en) 1989-07-19 1991-10-01 Pb Diagnostic Systems, Inc. Diagnostic assay module
US5110555A (en) * 1989-09-18 1992-05-05 Miles Inc. Capillary flow apparatus for inoculation of a test substrate
US5089420A (en) * 1990-01-30 1992-02-18 Miles Inc. Composition, device and method of assaying for a peroxidatively active substance utilizing amine borate compounds
US5318894A (en) * 1990-01-30 1994-06-07 Miles Inc. Composition, device and method of assaying for peroxidatively active substances
US5922615A (en) * 1990-03-12 1999-07-13 Biosite Diagnostics Incorporated Assay devices comprising a porous capture membrane in fluid-withdrawing contact with a nonabsorbent capillary network
US5250439A (en) 1990-07-19 1993-10-05 Miles Inc. Use of conductive sensors in diagnostic assays
US5202261A (en) * 1990-07-19 1993-04-13 Miles Inc. Conductive sensors and their use in diagnostic assays
US5208163A (en) * 1990-08-06 1993-05-04 Miles Inc. Self-metering fluid analysis device
WO1992005282A1 (en) 1990-09-14 1992-04-02 Biosite Diagnostics, Inc. Antibodies to complexes of ligand receptors and ligands and their utility in ligand-receptor assays
EP0497077B1 (en) * 1991-01-28 1996-07-17 Ciba-Geigy Ag Device for preparing samples for analyses
SE9100392D0 (en) * 1991-02-08 1991-02-08 Pharmacia Biosensor Ab A METHOD OF PRODUCING A SEALING MEANS IN A MICROFLUIDIC STRUCTURE AND A MICROFLUIDIC STRUCTURE COMPRISING SUCH SEALING MEANS
JP3290988B2 (en) 1991-04-11 2002-06-10 バイオサイト・ダイアグノスティックス・インコーポレイテッド Novel conjugates and assays for simultaneous detection of multiple ligands
DE69213826T2 (en) * 1991-06-06 1997-01-30 Bayer Ag Test strips with merocyanine and nitro or nitroso substituted polyhalogenated phenolsulfonphthaleins as protein indicators
US5187104A (en) * 1991-06-06 1993-02-16 Miles Inc. Nitro or nitroso substituted polyhalogenated phenolsulfonephthaleins as protein indicators in biological samples
US5296192A (en) * 1992-04-03 1994-03-22 Home Diagnostics, Inc. Diagnostic test strip
US5222808A (en) * 1992-04-10 1993-06-29 Biotrack, Inc. Capillary mixing device
US5637469A (en) * 1992-05-01 1997-06-10 Trustees Of The University Of Pennsylvania Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems
US5458852A (en) 1992-05-21 1995-10-17 Biosite Diagnostics, Inc. Diagnostic devices for the controlled movement of reagents without membranes
US6019944A (en) * 1992-05-21 2000-02-01 Biosite Diagnostics, Inc. Diagnostic devices and apparatus for the controlled movement of reagents without membranes
US6037455A (en) * 1992-11-09 2000-03-14 Biosite Diagnostics Incorporated Propoxyphene derivatives and protein and polypeptide propoxyphene derivative conjugates and labels
DE4303923A1 (en) * 1993-02-10 1994-08-11 Microparts Gmbh Process for removing plastics from microstructures
US5529681A (en) * 1993-03-30 1996-06-25 Microparts Gesellschaft Fur Mikrostrukturtechnik Mbh Stepped mould inserts, high-precision stepped microstructure bodies, and methods of producing the same
US6043043A (en) * 1993-04-02 2000-03-28 Bayer Corporation Method for the determination of hemoglobin adducts
US5360595A (en) 1993-08-19 1994-11-01 Miles Inc. Preparation of diagnostic test strips containing tetrazolium salt indicators
US5478751A (en) 1993-12-29 1995-12-26 Abbott Laboratories Self-venting immunodiagnositic devices and methods of performing assays
US5424125A (en) * 1994-04-11 1995-06-13 Shakespeare Company Monofilaments from polymer blends and fabrics thereof
US5627041A (en) * 1994-09-02 1997-05-06 Biometric Imaging, Inc. Disposable cartridge for an assay of a biological sample
US5834314A (en) 1994-11-07 1998-11-10 Abbott Laboratories Method and apparatus for metering a fluid
US5585069A (en) 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
DE19520298A1 (en) 1995-06-02 1996-12-05 Bayer Ag Sorting device for biological cells or viruses
DE19536856C2 (en) * 1995-10-03 1997-08-21 Danfoss As Micromixer and mixing process
DE19536901A1 (en) * 1995-10-04 1997-04-10 Microparts Gmbh Process for producing integrated electrodes in plastic molds, plastic molds with integrated electrodes and their use
DE19540292C1 (en) * 1995-10-28 1997-01-30 Karlsruhe Forschzent Static micromixer
DE19541266A1 (en) * 1995-11-06 1997-05-07 Bayer Ag Method and device for carrying out chemical reactions using a microstructure lamella mixer
US5716851A (en) * 1996-01-16 1998-02-10 Bayer Corporation Glass/cellulose as protein reagent
DE19604289C2 (en) * 1996-02-07 1998-04-23 Danfoss As Micromixer
US5942443A (en) * 1996-06-28 1999-08-24 Caliper Technologies Corporation High throughput screening assay systems in microscale fluidic devices
US5885470A (en) * 1997-04-14 1999-03-23 Caliper Technologies Corporation Controlled fluid transport in microfabricated polymeric substrates
US6399023B1 (en) 1996-04-16 2002-06-04 Caliper Technologies Corp. Analytical system and method
EP0909385B1 (en) 1996-06-28 2008-09-10 Caliper Life Sciences, Inc. Method of transporting fluid samples within a microfluidic channel
US5800690A (en) 1996-07-03 1998-09-01 Caliper Technologies Corporation Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces
US5826981A (en) 1996-08-26 1998-10-27 Nova Biomedical Corporation Apparatus for mixing laminar and turbulent flow streams
US6447727B1 (en) * 1996-11-19 2002-09-10 Caliper Technologies Corp. Microfluidic systems
AU6036998A (en) * 1997-01-24 1998-08-18 Regents Of The University Of California, The Apparatus and method for planar laminar mixing
WO1998033585A1 (en) * 1997-02-05 1998-08-06 California Institute Of Technology Microfluidic sub-millisecond mixers
JP3356784B2 (en) * 1997-02-28 2002-12-16 バースタイン テクノロジーズ,インコーポレイティド Optical disc and method for performing optical analysis of a sample
US5965375A (en) 1997-04-04 1999-10-12 Biosite Diagnostics Diagnostic tests and kits for Clostridium difficile
US5964995A (en) 1997-04-04 1999-10-12 Caliper Technologies Corp. Methods and systems for enhanced fluid transport
US5993750A (en) * 1997-04-11 1999-11-30 Eastman Kodak Company Integrated ceramic micro-chemical plant
DE19716073A1 (en) * 1997-04-17 1998-10-22 Boehringer Mannheim Gmbh Dosing device for dispensing small amounts of liquid
US5976336A (en) 1997-04-25 1999-11-02 Caliper Technologies Corp. Microfluidic devices incorporating improved channel geometries
WO1998049548A1 (en) * 1997-04-25 1998-11-05 Caliper Technologies Corporation Microfluidic devices incorporating improved channel geometries
US5932315A (en) * 1997-04-30 1999-08-03 Hewlett-Packard Company Microfluidic structure assembly with mating microfeatures
EP0983504A2 (en) * 1997-05-23 2000-03-08 Gamera Bioscience Corporation Devices and methods for using centripetal acceleration to drive fluid movement in a microfluidics system
US6090251A (en) * 1997-06-06 2000-07-18 Caliper Technologies, Inc. Microfabricated structures for facilitating fluid introduction into microfluidic devices
US5869004A (en) 1997-06-09 1999-02-09 Caliper Technologies Corp. Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems
US5959291A (en) 1997-06-27 1999-09-28 Caliper Technologies Corporation Method and apparatus for measuring low power signals
US6001231A (en) 1997-07-15 1999-12-14 Caliper Technologies Corp. Methods and systems for monitoring and controlling fluid flow rates in microfluidic systems
US5876675A (en) * 1997-08-05 1999-03-02 Caliper Technologies Corp. Microfluidic devices and systems
US6002475A (en) 1998-01-28 1999-12-14 Careside, Inc. Spectrophotometric analytical cartridge
US5989402A (en) 1997-08-29 1999-11-23 Caliper Technologies Corp. Controller/detector interfaces for microfluidic systems
US5965410A (en) 1997-09-02 1999-10-12 Caliper Technologies Corp. Electrical current for controlling fluid parameters in microchannels
DE19741492A1 (en) * 1997-09-19 1999-03-25 Microparts Gmbh Process for the production of microstructure bodies
US6012902A (en) * 1997-09-25 2000-01-11 Caliper Technologies Corp. Micropump
US5842787A (en) 1997-10-09 1998-12-01 Caliper Technologies Corporation Microfluidic systems incorporating varied channel dimensions
US5958694A (en) 1997-10-16 1999-09-28 Caliper Technologies Corp. Apparatus and methods for sequencing nucleic acids in microfluidic systems
DE19746583A1 (en) * 1997-10-22 1999-04-29 Merck Patent Gmbh Micro-mixer for liquid, viscous or gaseous phases
US6176991B1 (en) * 1997-11-12 2001-01-23 The Perkin-Elmer Corporation Serpentine channel with self-correcting bends
US5994150A (en) 1997-11-19 1999-11-30 Imation Corp. Optical assaying method and system having rotatable sensor disk with multiple sensing regions
US6074725A (en) * 1997-12-10 2000-06-13 Caliper Technologies Corp. Fabrication of microfluidic circuits by printing techniques
DE19755529A1 (en) * 1997-12-13 1999-06-17 Roche Diagnostics Gmbh Analysis system for sample liquids
US5948227A (en) 1997-12-17 1999-09-07 Caliper Technologies Corp. Methods and systems for performing electrophoretic molecular separations
DE19815684A1 (en) * 1998-04-08 1999-10-14 Roche Diagnostics Gmbh Process for the preparation of analytical aids
AU3975399A (en) * 1998-05-07 1999-11-23 Purdue Research Foundation An (in situ) micromachined mixer for microfluidic analytical systems
DE69800630T2 (en) * 1998-07-29 2001-08-23 Agilent Technologies Inc Chip for electrophoretic separation of molecules and method for using the same
US6540896B1 (en) * 1998-08-05 2003-04-01 Caliper Technologies Corp. Open-Field serial to parallel converter
JP3012608B1 (en) * 1998-09-17 2000-02-28 農林水産省食品総合研究所長 Microchannel device and method for producing emulsion using the same
AU763497B2 (en) * 1998-10-13 2003-07-24 Biomicro Systems, Inc. Fluid circuit components based upon passive fluid dynamics
US6086740A (en) * 1998-10-29 2000-07-11 Caliper Technologies Corp. Multiplexed microfluidic devices and systems
US6062261A (en) * 1998-12-16 2000-05-16 Lockheed Martin Energy Research Corporation MicrofluIdic circuit designs for performing electrokinetic manipulations that reduce the number of voltage sources and fluid reservoirs
EP1022599B1 (en) * 1998-12-25 2005-07-20 Canon Kabushiki Kaisha Optical scanner and electrophotographic printer employing the same
EP1230544B1 (en) * 1999-06-18 2004-07-28 Gamera Bioscience Corporation Devices and methods for the performance of miniaturized homogeneous assays
US6527432B2 (en) * 2000-05-15 2003-03-04 Tecan Trading Ag Bidirectional flow centrifugal microfluidic devices
WO2002001184A1 (en) * 2000-06-23 2002-01-03 Micronics, Inc. Fluid mixing on (partially) covered sample slides
US6734401B2 (en) * 2000-06-28 2004-05-11 3M Innovative Properties Company Enhanced sample processing devices, systems and methods
US6890093B2 (en) * 2000-08-07 2005-05-10 Nanostream, Inc. Multi-stream microfludic mixers
EP2299256A3 (en) * 2000-09-15 2012-10-10 California Institute Of Technology Microfabricated crossflow devices and methods
US20020041831A1 (en) * 2000-09-18 2002-04-11 Battrell C. Frederick Externally controllable surface coatings for microfluidic devices
JP2004509335A (en) * 2000-09-18 2004-03-25 ユニバーシティ オブ ワシントン Microfluidic device for rotating operation of fluid interface between multiple flow streams
US6939451B2 (en) * 2000-09-19 2005-09-06 Aclara Biosciences, Inc. Microfluidic chip having integrated electrodes
US6443677B1 (en) * 2000-12-14 2002-09-03 Illinois Tool Works Inc. Nut plate and method for making same
US6552879B2 (en) * 2001-01-23 2003-04-22 International Business Machines Corporation Variable voltage threshold ESD protection
SE0104077D0 (en) * 2001-10-21 2001-12-05 Gyros Ab A method and instrumentation for micro dispensation of droplets

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030044322A1 (en) * 2001-08-28 2003-03-06 Gyros Ab Retaining microfluidic microcavity and other microfluidic structures
US20030133358A1 (en) * 2002-01-11 2003-07-17 Nanostream, Inc. Multi-stream microfluidic aperture mixers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WALTER S ET AL: "FLUIDDYNAMISCHE ASPEKTE IN MIKROSTRUKTURREAKTOREN", CHEMIE. INGENIEUR. TECHNIK, VERLAG CHEMIE GMBH. WEINHEIM, DE, vol. 71, no. 5, May 1999 (1999-05-01), pages 447 - 455, XP000828911, ISSN: 0009-286X *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135779A1 (en) * 2006-05-22 2007-11-29 Nidec Sankyo Corporation Mixing pump device and fuel cell
GB2451400A (en) * 2006-05-22 2009-01-28 Nidec Sankyo Corp Mixing pump device and fuel cell
GB2451400B (en) * 2006-05-22 2011-08-10 Nidec Sankyo Corp Mixing pump device and fuel cell
CN101449056B (en) * 2006-05-22 2011-12-07 日本电产三协株式会社 Mixing pump device and fuel cell
JP2010508162A (en) * 2006-10-28 2010-03-18 ピーツーアイ リミティド New product
US8945478B2 (en) 2006-10-28 2015-02-03 P2I Ltd. Microfabricated devices with coated or modified surface and method of making same
JP2008134174A (en) * 2006-11-29 2008-06-12 Toshiba Corp Microchemical analysis system, microchemical analyzer, and micro mixing device
US9327255B2 (en) 2006-11-29 2016-05-03 Kabushiki Kaisha Toshiba Microchemical analysis device, a micro mixing device, and a microchemical analysis system comprising the same
CN105618167A (en) * 2016-01-27 2016-06-01 杭州霆科生物科技有限公司 Centrifugal microfluidic chip for preparing droplets in high-throughput manner
US10898895B2 (en) 2018-09-13 2021-01-26 Talis Biomedical Corporation Vented converging capillary biological sample port and reservoir

Also Published As

Publication number Publication date
DE602004013339T2 (en) 2009-07-02
PT1658130E (en) 2008-07-16
DE602004013339D1 (en) 2008-06-05
CA2533107C (en) 2012-04-17
EP1658130B1 (en) 2008-04-23
JP4707035B2 (en) 2011-06-22
EP1658130A1 (en) 2006-05-24
ES2305856T3 (en) 2008-11-01
US7347617B2 (en) 2008-03-25
TW200516253A (en) 2005-05-16
DK1658130T3 (en) 2008-09-01
ATE392947T1 (en) 2008-05-15
PL1658130T3 (en) 2008-10-31
JP2007502979A (en) 2007-02-15
US20050041525A1 (en) 2005-02-24
CA2533107A1 (en) 2005-03-03

Similar Documents

Publication Publication Date Title
US7347617B2 (en) Mixing in microfluidic devices
JP2007502979A5 (en)
US7125711B2 (en) Method and apparatus for splitting of specimens into multiple channels of a microfluidic device
JP4571129B2 (en) Method for uniformly applying fluid to reaction reagent area
US20040265172A1 (en) Method and apparatus for entry and storage of specimens into a microfluidic device
US7459127B2 (en) Method and apparatus for precise transfer and manipulation of fluids by centrifugal and/or capillary forces
US20080257754A1 (en) Method and apparatus for entry of specimens into a microfluidic device
EP2519354B1 (en) Sample processing cartridge and method of processing and/or analysing a sample under centrifugal force

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2533107

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004780223

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006523888

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004780223

Country of ref document: EP