WO2005038962A2 - Ionically conductive membranes for protection of active metal anodes and battery cells - Google Patents

Ionically conductive membranes for protection of active metal anodes and battery cells Download PDF

Info

Publication number
WO2005038962A2
WO2005038962A2 PCT/US2004/033372 US2004033372W WO2005038962A2 WO 2005038962 A2 WO2005038962 A2 WO 2005038962A2 US 2004033372 W US2004033372 W US 2004033372W WO 2005038962 A2 WO2005038962 A2 WO 2005038962A2
Authority
WO
WIPO (PCT)
Prior art keywords
active metal
battery cell
membrane
lithium
group
Prior art date
Application number
PCT/US2004/033372
Other languages
French (fr)
Other versions
WO2005038962A3 (en
Inventor
Stephen J. Visco
Nimon S. Yevgeniy
Bruce D. Katz
Original Assignee
Polyplus Battery Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/731,771 external-priority patent/US7282302B2/en
Application filed by Polyplus Battery Company filed Critical Polyplus Battery Company
Publication of WO2005038962A2 publication Critical patent/WO2005038962A2/en
Publication of WO2005038962A3 publication Critical patent/WO2005038962A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates generally to separators and electrode structures for use in batteries. More particularly, this invention relates to ionically conductive membranes for protection of active metal anodes from deleterious reaction with air, moisture and other battery components, battery cells incorporating such protected anodes and methods for their fabrication.
  • the low equivalent weight of alkali metals, such as lithium render them particularly attractive as a battery electrode component. Lithium provides greater energy per volume than the traditional battery standards, nickel and cadmium. Unfortunately, no rechargeable lithium metal batteries have yet succeeded in the market place. The failure of rechargeable lithium metal batteries is largely due to cell cycling problems.
  • lithium “dendrites” gradually grow out from the lithium metal electrode, through the electrolyte, and ultimately contact the positive electrode. This causes an internal short circuit in the battery, rendering the battery unusable after a relatively few cycles. While cycling, lithium electrodes may also grow “mossy” deposits which can dislodge from the negative electrode and thereby reduce the battery's capacity.
  • a "protective layer” To address lithium's poor cycling behavior in liquid electrolyte systems, some researchers have proposed coating the electrolyte facing side of the lithium negative electrode with a "protective layer.” Such protective layer must conduct lithium ions, but at the same time prevent contact between the lithium electrode surface and the bulk electrolyte. Many techniques for applying protective layers have not succeeded.
  • lithium metal protective layers are formed in situ by reaction between lithium metal and compounds in the cell's electrolyte which contact the lithium. Most of these in situ films are grown by a controlled chemical reaction after the battery is assembled. Generally, such films have a porous morphology allowing some electrolyte to penetrate to the bare lithium metal surface. Thus, they fail to adequately protect the lithium electrode.
  • Various pre-formed lithium protective layers have been contemplated. For example, US Patent No. 5,314,765 (issued to Bates on May 24, 1994) describes an ex situ technique for fabricating a lithium electrode containing a thin layer of sputtered lithium phosphorus oxynitride ("LiPON”) or related material.
  • LiPON is a glassy single ion conductor (conducts lithium ion) which has been studied as a potential electrolyte for solid state lithium microbatteries that are fabricated on silicon and used to power integrated circuits (See US Patents Nos. 5,597,660, 5,567,210, 5,338,625, and 5,512,147, all issued to Bates et al). Work in the present applicants' laboratories has developed technology for the use of glassy or amorphous protective layers, such as LiPON, in active metal battery electrodes.
  • the membranes may be incorporated in active metal negative electrode (anode) structures and electrochemical devices and components, including battery and fuel cells.
  • the membranes are highly conductive for ions of the active metal, but are otherwise substantially impervious. They are chemically stable on one side to the active metal of the anode (e.g., lithium), and on the other side to the cathode, other battery cell components such as solid or liquid phase electrolytes, including organic or aqueous liquid electrolytes, ambient conditions and other environments corrosive to the active metal of the anode if directly contacted with it.
  • the membrane is capable of protecting an active metal anode from deleterious reaction with other battery components or ambient conditions and decoupling the chemical environments of the anode and cathode enabling use of anode-incompatible materials, such as solvents and electrolytes, on the cathode side without deleterious impact on the anode, and vice versa.
  • anode-incompatible materials such as solvents and electrolytes
  • the membrane may have any suitable composition, for example, it may be a monolithic material chemically compatible with both the anode and cathode environments, or a composite composed of at least two components of different materials having different chemical compatibilities, one chemically compatible witbi the anode environment and the other chemically compatible with the cathode environment.
  • Composite membranes may be composed of a laminate of discrete layers of materials having different chemical compatibility requirements, or it may be composed of a gradual transition between layers of the materials.
  • chemical compatibility or “chemically compatible” it is meant that the referenced material does not react to form a product that is deleterious to battery cell operation when contacted with one or more other referenced battery cell components or manufacturing, handling or storage conditions.
  • a first material layer (or first layer material) of the composite is ionically conductive, and chemically compatible with an active metal electrode material.
  • Chemical compatibility in this aspect of the invention refers both to a material that is chemically stable and therefore substantially unreactive when contacted with an active metal electrode material. It may also refer to a material that is chemically stable with air, to facilitate storage and handling, and reactive when contacted with an active metal electrode material to produce a product that is chemically stable against the active metal electrode material and has the desirable ionic conductivity (i.e., a first layer material). Such a reactive material is sometimes referred to as a "precursor" material.
  • a second material layer of the composite is substantially impervious, ionically conductive and chemically compatible with the first material.
  • All layers of the composite have high ionic conductivity, at least 10 " S/cm, generally at least 10 " S/cm, for example at least 10 "5 S/cm to 10 "4 S/cm, and as high as 10 "3 S/cm or higher so that the overall ionic conductivity of the multi-layer protective structure is at least 10 " S/cm and as high as 10 "3 S/cm or higher.
  • a wide variety of materials may be used in fabricating protective composites in accordance with the present invention, consistent with the principles described above.
  • the first layer, in contact with the active metal may be composed, in whole or in part, of active metal nitrides, active metal phosphides, active metal halides or active metal phosphorus oxynitride-based glass.
  • active metal nitrides active metal phosphides
  • active metal halides active metal phosphorus oxynitride-based glass.
  • Specific examples include Li 3 N, Li 3 P, Lil, LiBr, LiCl, LiF and LiPON.
  • Active metal electrode materials e.g., lithium
  • precursors such as metal nitrides, metal phosphides, metal halides, red phosphorus, iodine, nitrogen or phosphorus containing organics and polymers, and the like with lithium.
  • the in situ formation of the first layer may result from an incomplete conversion of the precursors to their lithiated analog. Nevertheless, such incomplete conversions meet the requirements of a first layer material for a protective composite in accordance with the present invention and are therefore within the scope of the invention.
  • a second layer of the protective composite may be composed of a material that is substantially impervious, ionically conductive and chemically compatible with the first material or precursor and environments normally corrosive to the active metal of the anode, including glassy or amorphous metal ion conductors, such as a phosphorus- based glass, oxide-based glass, phosphorus-oxynitride-based glass, sulfur-based glass, oxide/sulfide based glass, selenide based glass, gallium based glass, germanium-based glass or boracite glass (such as are described D.P. Button et al., Solid State Ionics, Vols.
  • glassy or amorphous metal ion conductors such as a phosphorus- based glass, oxide-based glass, phosphorus-oxynitride-based glass, sulfur-based glass, oxide/sulfide based glass, selenide based glass, gallium based glass, germanium-based glass or boracite glass (such as are
  • ceramic active metal ion conductors such as lithium beta-alumina, sodium beta-alumina, Li superionic conductor (LISICON), Na superionic conductor (NASICON), and the like; or glass-ceramic active metal ion conductors.
  • LiPON Li 3 PO .Li 2 S.SiS 2 , Li 2 S.GeS 2 .Ga 2 S 3 , Li 2 O-HAl 2 O 3 , Na 2 O-l lAl 2 0 3 , (Na, Li) 1+x Ti 2- x Al x (PO 4 ) 3 (0.6 ⁇ x ⁇ 0.9) and crystallographically related structures, Na 3 Zr 2 Si 2 PO 12 , Li Zr 2 Si 2 PO 12 , Na 5 ZrP 3 O 12 , Na 5 TiP 3 O ⁇ 2 , Na 3 Fe 2 P 3 O I2 , Na 4 NbP 3 O 12 , Li 5 ZrP 3 O 12 , Li 5 TiP 3 O 12 , Li 3 Fe 2 P 3 O 12 and Li 4 NbP 3 O 12 , and combinations thereof, optionally sintered or melted.
  • Suitable ceramic ion active metal ion conductors are described, for example, in US Patent No. 4,985,317 to Adachi et al., incorporated by reference herein in its entirety and for all purposes.
  • a particularly suitable glass-ceramic material for the second layer of the protective composite is a lithium ion conductive glass-ceramic having the following composition:
  • the glass-ceramics are obtained by melting raw materials to a melt, casting the melt to a glass and subjecting the glass to a heat treatment.
  • a suitable active metal compatible layer may include a polymer component to enhance its properties.
  • polymer-iodine complexes like poly(2- vinylpyridine)-iodine (P2VP-I 2 ), polyethylene-iodine, or tetraalkylammonium-iodine complexes can react with Li to form a Lil-based film having significantly higher ionic conductivity than that for pure Lil.
  • a suitable first layer may include a material used to facilitate its use, for example, the residue of a wetting layer (e.g., Ag) used to prevent reaction between vapor phase lithium (during deposition) and LiPON when LiPON is used as a first layer material.
  • a suitable second layer may include a polymer component to enhance its properties.
  • a glass-ceramic active metal ion conductor like the glass-ceramic materials described above, may also be combined with polymer electrolytes to form flexible composite sheets of material which may be used as second layer of the protective composite.
  • OHARA Corp. Japan.
  • Li-ion conducting glass-ceramic material such as described above
  • a solid polymer electrolyte based on PEO-Li salt complexes OHARA Corp. manufactures this material in the form of sheet with a thickness of about 50 microns that renders it flexible while maintaining its high ionic conductivity. Because of its relatively high ionic conductivity (better than 4*10 "5 S/cm at room temperature in the case of the OHARA product) and stability toward metallic Li, this type of composite electrolyte can be used at room temperature or elevated temperatures in fully solid-state cells.
  • the layers may be formed using a variety of techniques.
  • the active metal electrode adjacent layer may be formed in situ from the non-deleterious reaction of one or more precursors with the active metal electrode.
  • a Li 3 N layer may be formed on a Li anode by contacting Cu 3 N with the Li anode surface, or Li 3 P may be formed on a Li anode by contacting red phosphorus with the Li anode surface.
  • Fig. 1 is a schematic illustration of an active metal battery cell incorporating an ionically conductive protective membrane in accordance with the present invention.
  • Figs. 2 A and B are a schematic illustrations of ionically conductive protective membrane battery separators in accordance with the present invention.
  • FIG. 3A is a schematic illustration of an active metal anode structure incorporating an ionically conductive protective laminate composite membrane in accordance with the present invention.
  • Fig. 3B is a schematic illustration of an active metal anode structure incorporating an ionically conductive protective graded composite membrane in accordance with the present invention.
  • Figs. 4A-B, 5 and 6A-B are schematic illustrations of alternative methods of making an electrochemical device structure incorporating an ionically conductive protective membrane in accordance with the present invention.
  • Figs. 7A-B and 8A-D are plots of data illustrating the performance benefits of ionically conductive protective membranes in accordance with the present invention.
  • the present invention provides ionically conductive membranes for decoupling the active metal anode and cathode sides of an active metal electrochemical cell, and methods for their fabrication.
  • the membranes may be incorporated in active metal negative electrode (anode) structures and electrochemical devices and components, including battery and fuel cells.
  • the membranes are highly conductive for ions of the active metal, but are otherwise substantially impervious.
  • the membrane is capable of protecting an active metal anode from deleterious reaction with other battery components or ambient conditions and decoupling the chemical environments of the anode and cathode enabling use of anode-incompatible materials, such as solvents and electrolytes, on the cathode side without deleterious impact on the anode, and vice versa.
  • the membrane may have any suitable composition, for example, it may be a monolithic material chemically compatible with both the anode and cathode environments, or a composite composed of at least two components of different materials having different chemical compatibilities, one chemically compatible with the anode environment and the other chemically compatible with the cathode environment.
  • Composite membranes may be composed of at least two components of different materials having different chemical compatibility requirements.
  • the composite may be composed of a laminate of discrete layers of materials having different chemical compatibility requirements, or it may be composed of a gradual transition between layers of the materials.
  • a first material layer of the composite is both ionically conductive and chemically compatible with an active metal electrode material.
  • Chemical compatibility in this aspect of the invention refers to a material that is chemically stable and therefore substantially unreactive when contacted with an active metal electrode material. Active metals are highly reactive in ambient conditions and can benefit from a barrier layer when used as electrodes.
  • alkali metals such as lithium, sodium or potassium
  • alkaline earth metals e.g., calcium or magnesium
  • transitional metals e.g., zinc
  • alloys of two or more of these The following active metals may be used: alkali metals (e.g., Li, Na, K), alkaline earth metals (e.g., Ca, Mg, Ba), or binary or ternary alkali metal alloys with Ca, Mg, Sn, Ag, Zn, Bi, Al, Cd, Ga, In.
  • Preferred alloys include lithium aluminum alloys, lithium silicon alloys, lithium tin alloys, lithium silver alloys, and sodium lead alloys (e.g., Na4Pb).
  • a preferred active metal electrode is composed of lithium.
  • Chemical compatibility also refers to a material that may be chemically stable with oxidizing materials and reactive when contacted with an active metal electrode material to produce a product that is chemically stable against the active metal electrode material and has the desirable ionic conductivity (i.e., a first layer material). Such a reactive material is sometimes referred to as a "precursor" material.
  • a second material layer of the composite is substantially impervious, ionically conductive and chemically compatible with the first material. By substantially impervious it is meant that the material provides a sufficient barrier to battery electrolytes and solvents and other battery component materials that would be damaging to the electrode material to prevent any such damage that would degrade electrode performance from occurring.
  • the second material layer is so impervious to ambient moisture, carbon dioxide, oxygen, etc. that an encapsulated lithium alloy electrode can be handled under ambient conditions without the need for elaborate dry box conditions as typically employed to process other lithium electrodes.
  • the composite protective layer described herein provides such good protection for the lithium (or other active metal)
  • electrodes and electrode/electrolyte composites of this invention may have a quite long shelf life outside of a battery.
  • the invention contemplates not only batteries containing a negative electrode, but unused negative electrodes and electrode/electrolyte laminates themselves.
  • Such negative electrodes and electrode/electrolyte laminates may be provided in the form of sheets, rolls, stacks, etc. Ultimately, they may be integrated with other battery components to fabricate a battery.
  • the enhanced stability of the batteries of this invention will greatly simplify this fabrication procedure.
  • a protective composite in accordance with the present invention may alternatively be a functionally graded layer, as further described below.
  • the first and second materials are inherently ionically conductive. That is, they do not depend on the presence of a liquid electrolyte or other agent for their ionically conductive properties. Additional layers are possible to achieve these aims, or otherwise enhance electrode stability or performance.
  • All layers of the composite have high ionic conductivity, at least 10 " S/cm, generally at least 10 " S/cm, for example at least 10 " 5 S/cm to 10 "4 S/cm, and as high as 10 "3 S/cm or higher so that the overall ionic conductivity of the multi-layer protective structure is at least 10 "7 S/cm and as high as 10 "3 S/cm or higher.
  • Protective Membranes and Structures Fig. 1 illustrates an ionically conductive protective membrane in accordance with the present invention in context as it would be used in an active metal battery cell 120, such as a lithium-sulfur battery, in accordance with the present invention.
  • the membrane 100 is both ionically conductive and chemically compatible with an active metal (e.g., lithium) electrode (anode) 106 on one side, and substantially impervious, ionically conductive and chemically compatible with an electrolyte 110 and/or cathode 112 on the other side.
  • the ionic conductivity of the membrane is at least 10 " 7 S/cm, generally at least 10 "6 S/cm, for example at least 10 "5 S/cm to 10 "4 S/cm, and as high as 10 "3 S/cm or higher.
  • the active metal anode 106 in contact with the first side of the protective membrane is connected with a current collector 108 composed of a conductive metal, such as copper, that is generally inert to and does not alloy with the active metal.
  • the other side of the membrane 100 is (optionally) in contact with an electrolyte 110.
  • the protective membrane 100 may itself be the sole electrolyte of the battery cell. Adjacent to the electrolyte is the cathode 112 with its current collector 114.
  • the protective membrane may be a composite composed of two or more materials that present sides having different chemical compatibility to the anode and electrolyte and/or cathode, respectively.
  • the composite is composed of a first layer of a material that is both ionically conductive and chemically compatible with an active metal electrode material.
  • the composite also includes second layer of a material that is substantially impervious, ionically conductive and chemically compatible with the first material and the cathode/electrolyte environment.
  • the electrolytes and/or cathodes combined with the protected anodes of the present invention may include a wide variety of materials including, but not limited to, those described in the patents of PolyPlus Battery Company, referenced herein below.
  • Fig. 2A illustrates a protective membrane composite battery separator in accordance with one embodiment of the present invention.
  • the separator 200 includes a laminate of discrete layers of materials with different chemical compatibilities.
  • a layer of a first material or precursor 202 is ionically conductive and chemically compatible with an active metal.
  • the first material is not chemically compatible with oxidizing materials (e.g., air, moisture, etc).
  • the first layer, in contact with the active metal may be composed, in whole or in part, of active metal nitrides, active metal phosphides, active metal halides or active metal phosphorus oxynitride-based glasses. Specific examples include Li 3 N, Li 3 P, Lil, LiBr, LiCl and LiF. In at least one instance, LiPON, the first material is chemically compatible with oxidizing materials.
  • the thickness of the first material layer is preferably about 0.1 to 5 microns, or 0.2 to 1 micron, for example about 0.25 micron.
  • the first material may also be a precursor material which is chemically compatible with an active metal and reactive when contacted with an active metal electrode material to produce a product that is chemically stable against the active metal electrode material and has the desirable ionic conductivity (i.e., a first layer material).
  • suitable precursor materials include metal nitrides, red phosphorus, nitrogen and phosphorus containing organics (e.g., amines, phosphines, borazine (B 3 N 3 H 6 ), triazine (C 3 N 3 H 3 )) and halides.
  • Some specific examples include P (red phosphorus), Cu 3 N, SnN x , Zn 3 N 2 , FeN x , CoN x , aluminum nitride (A1N), silicon nitride (Si 3 N 4 ) and I 2 , Br 2 , Cl 2 and F 2 .
  • Such precursor materials can subsequently react with active metal (e.g., Li) to form a Li metal salts, such as the lithium nitrides, phosphides and halides described above.
  • active metal e.g., Li
  • these first layer material precursors may also be chemically stable in air (including moisture and other materials normally present in ambient atmosphere), thus facilitating handling and fabrication.
  • Examples include metal nitrides, for example Cu 3 N.
  • a suitable active metal compatible layer may include a polymer component to enhance its properties.
  • polymer-iodine complexes like poly(2-vinylpyridine)-iodine (P2VP-I ), polyethylene-iodine, or with tetraalkylammonium-iodine complexes can react with Li to form a Lil-based film having significantly higher ionic conductivity than that for pure Lil.
  • the ionic conductivity of the first material is high, at least 10 "7 S/cm, generally at least about 10 " S/cm, and may be as high as 10 " S/cm or higher.
  • a second layer 204 Adjacent to the first material or precursor layer 202 is a second layer 204 that is substantially impervious, ionically conductive and chemically compatible with the first material or precursor, including glassy or amorphous metal ion conductors, such as a phosphorus-based glass, oxide-based glass, phosphorus-oxynitride-based glass, sulfur-based glass, oxide/sulfide based glass, selenide based glass, gallium based glass, germanium-based glass or boracite glass (such as are described D.P. Button et al., Solid State Ionics, Nols.
  • glassy or amorphous metal ion conductors such as a phosphorus-based glass, oxide-based glass, phosphorus-oxynitride-based glass, sulfur-based glass, oxide/sulfide based glass, selenide based glass, gallium based glass, germanium-based glass or boracite glass (such as are described D.P. B
  • ceramic active metal ion conductors such as lithium beta-alumina, sodium beta-alumina, Li superionic conductor (LISICO ⁇ ), ⁇ a superionic conductor ( ⁇ ASICO ⁇ ), and the like; or glass-ceramic active metal ion conductors.
  • LiPO ⁇ Li 3 PO 4 .Li 2 S.SiS 2 , Li 2 S.GeS 2 .Ga 2 S 3 , Li 2 O-l lAl 2 0 3 , ⁇ a 2 O-l lAl 2 O 3 , (Na, Li) 1+x Ti 2- x Al x (PO ) 3 (0.6 ⁇ x ⁇ 0.9) and crystallographically related structures, Na Zr Si 2 PO 12 , Li 3 Zr 2 Si 2 PO 12 , Na 5 ZrP 3 O ⁇ 2 , Na 5 TiP 3 O ⁇ 2 , Na 3 Fe 2 P 3 O ⁇ 2 , Na4NbP 3 O 12 , Li 5 ZrP 3 O 12 , Li 5 TiP 3 O ⁇ 2 , Li 3 Fe 2 P 3 O 12 and Li 4 NbP 3 O 12 , and combinations thereof, optionally sintered or melted.
  • Suitable ceramic ion active metal ion conductors are described, for example, in US Patent No. 4,985,317 to Adachi et al, incorporated by reference herein in its entirety and for all purposes.
  • a particularly suitable glass-ceramic material for the second layer of the protective composite is a lithium ion conductive glass-ceramic having the following composition:
  • the glass-ceramics are obtained by melting raw materials to a melt, casting the melt to a glass and subjecting the glass to a heat treatment.
  • a suitable second layer may include a polymer component to enhance its properties.
  • a glass-ceramic active metal ion conductor like the glass-ceramic materials described above, may also be combined with polymer electrolytes to form flexible composite sheets of material which may be used as second layer of the protective composite.
  • a flexible composite material has been developed by OHARA Corp. (Japan). It is composed of particles of a Li-ion conducting glass-ceramic material, such as described above, and a solid polymer electrolyte based on PEO-Li salt complexes. OHARA Corp. manufactures this material in the form of sheet with a thickness of about 50 microns that renders it flexible while maintaining its high ionic conductivity.
  • the composite barrier layer should have an inherently high ionic conductivity.
  • the ionic conductivity of the composite is at least 10 " S/cm, generally at least about 10 "6 to 10 "5 S/cm, and may be as high as 10 "4 to 10 "3 S/cm or higher.
  • the thickness of the first precursor material layer should be enough to prevent contact between the second material layer and adjacent materials or layers, in particular, the active metal of the anode with which the separator is to be used.
  • the first material layer may have a thickness of about 0.1 to 5 microns; 0.2 to 1 micron; or about 0.25 micron.
  • the thickness of the second material layer is preferably about 0.1 to 1000 microns, or, where the ionic conductivity of the second material layer is about 10 "7 S/cm, about 0.25 to 1 micron, or, where the ionic conductivity of the second material layer is between about 10 " about 10 "3 S/cm, about 10 to 1000 microns, preferably between 1 and 500 microns, and more preferably between 10 and 100 microns, for example 20 microns.
  • the protective composite battery separator may be handled or stored in normal ambient atmospheric conditions without degradation prior to incorporation into a battery cell.
  • the precursor layer 202 is contacted with an active metal (e.g., lithium) electrode.
  • the precursor reacts with the active metal to form an ionically conductive material that is chemically compatible with the active metal electrode material.
  • the second layer is contacted with an electrolyte to which a cathode and current collector is or has been applied. Alternatively, the second layer acts as the sole electrolyte in the battery cell.
  • a protective composite in accordance with the present invention may alternatively be compositionally and functionally graded, as illustrated in Fig. 2B.
  • deposition technology such as RF sputter deposition, electron beam deposition, thermal spray deposition, and or plasma spray deposition, it is possible to use multiple sources to lay down a graded film. In this way, the discrete interface between layers of distinct composition and functional character is replaced by a gradual transition of from one layer to the other.
  • first material lithium or other active metal
  • second material the proportion of the first material to the second material in the composite may vary widely based on ionic conductivity and mechanical strength issues, for example. In many, but not all, embodiments the second material will dominate.
  • suitable ratios of first to second materials may be 1-1000 or 1-500, for example about 1 to 200 where the second material has greater strength and ionic conductivity than the first (e.g., 2000A of LiPON and 20-30microns of OHARA glass-ceramic).
  • the transition between materials may occur over any (e.g., relatively short, long or intermediate) distance in the composite.
  • Other aspects of the invention apply to these graded protective composites substantially as to the discrete-layered laminate protective composites, for example, they may be used in the electrode and cell embodiments, etc.
  • Fig. 3A illustrates an encapsulated anode structure incorporating a protective laminate composite in accordance with the present invention.
  • the structure 300 includes an active metal electrode 308, e.g., lithium, bonded with a current collector 310, e.g., copper, and a protective composite 302.
  • the protective composite 302 is composed of a first layer 304 of a material that is both ionically conductive and chemically compatible with an active metal electrode material, but not chemically compatible with oxidizing materials (e.g., air).
  • the first layer, in contact with the active metal may be composed, in whole or in part, of active metal nitrides, active metal phosphides or active metal halides. Specific examples include Li 3 N, Li P, Lil, LiBr, LiCl and LiF.
  • the thickness of the first material layer is preferably about 0.1 to 5 microns, or 0.2 to 1 micron, for example about 0.25 micron.
  • Active metal electrode materials e.g., lithium
  • precursors such as metal nitrides, metal phosphides, metal halides, red phosphorus, iodine and the like with lithium.
  • First layer composites which may include electronically conductive metal particles, formed as a result of in situ conversions meet the requirements of a first layer material for a protective composite in accordance with the present invention and are therefore within the scope of the invention.
  • a second layer 306 of the protective composite is composed of a substantially impervious, ionically conductive and chemically compatible with the first material or precursor, including glassy or amorphous metal ion conductors, such as a phosphorus- based glass, oxide-based glass, phosphorus-oxynitride-based glass, sulfur-based glass, oxide/sulfide based glass, selenide based glass, gallium based glass, germanium-based glass or boracite glass; ceramic active metal ion conductors, such as lithium beta- alumina, sodium beta-alumina, Li superionic conductor (LISICON), Na superionic conductor (NASICON), and the like; or glass-ceramic active metal ion conductors.
  • glassy or amorphous metal ion conductors such as a phosphorus- based glass, oxide-based glass, phosphorus-oxynitride-based glass, sulfur-based glass, oxide/sulfide based glass, selenide based
  • LiPON Li 3 PO 4 .Li 2 S.SiS 2 , Li 2 S.GeS 2 .Ga 2 S 3 , Li 2 O-l lAl 2 O 3 , Na 2 O-l lAl 2 O 3 , (Na, Li) ⁇ +x Ti 2- x Al x (PO 4 ) 3 (0.6 ⁇ x ⁇ 0.9) and crystallographically related structures, Na 3 Zr 2 Si 2 P0 12 , Li 3 Zr 2 Si 2 PO 12 , Na 5 ZrP 3 O 12 , Na 5 TiP 3 O 12 , Na 3 Fe 2 P 3 O 12 , Na 4 NbP 3 O 12 , Li 5 ZrP 3 O 12) Li 5 TiP 3 O 12 , Li 3 Fe 2 P 3 O 12 and Li 4 NbP 3 O 12 , and combinations thereof, optionally sintered or melted.
  • Suitable ceramic ion active metal ion conductors are described, for example, in US Patent No. 4,985,317 to Adachi et al, incorporated by reference herein in its entirety and for all purposes.
  • Suitable glass-ceramic ion active metal ion conductors are described, for example, in US Patents Nos. 5,702,995, 6,030,909, 6,315,881 and 6,485,622, previously incorporated herein by reference and are available from OHARA Corporation, Japan.
  • the ionic conductivity of the composite is at least 10 "7 S/cm, generally at least
  • the thickness of the second material layer is preferably about 0.1 to 1000 microns, or, where the ionic conductivity of the second material layer is about 10 "7 S/cm, about 0.25 to 1 micron, or, where the ionic conductivity of the second material layer is between about 10 " about 10 "3 S/cm, 10 to 1000 microns, preferably between 1 and 500 micron, and more preferably between 10 and 100 microns, for example 20 microns.
  • the first layer 304 is adjacent to an active metal (e.g., lithium) anode and the second layer 306 is adjacent to an electrolyte or, where the second layer is the sole electrolyte in the battery cell, a cathode.
  • Either layer may also include additional components.
  • a suitable first active metal compatible layer 304 may include a polymer component to enhance its properties.
  • a suitable second layer 306 may include a polymer component to enhance its properties.
  • a glass-ceramic active metal ion conductor like that available from OHARA Corporation, described above, may be fabricated within a polymer matrix that renders it flexible while maintaining its high ionic conductivity (available from OHARA Corporation, Japan).
  • the layers may be formed using a variety of techniques. These include deposition or evaporation (including e-beam evaporation) of layers of material, such as LiN 3 or an ionically conductive glass.
  • the active metal electrode adjacent layer may be formed in situ from the non-deleterious reaction of one or more precursors with the active metal electrode.
  • a LiN 3 layer may be formed on a Li anode by contacting CuN 3 with the Li anode surface, or LiP 3 may be formed on a Li anode by contacting red phosphorus with the Li anode surface.
  • a protective composite in accordance with the present invention may alternatively be compositionally and functionally graded, as illustrated in Fig. 3B.
  • deposition technology such as RF sputter deposition, electron beam deposition, thermal spray deposition, and or plasma spray deposition, it is possible to use multiple sources to lay down a graded film. In this way, the discrete interface between layers of distinct composition and functional character is replaced by a gradual transition of from one layer to the other.
  • first material lithium or other active metal
  • second material substantially impervious and stable to the cathode, other battery cell components and preferably to ambient conditions
  • suitable ratios of first to second materials may be 1-1000 or 1-500, for example about 1 to 200 where the second material has greater strength and ionic conductivity than the first (e.g., 2000A of LiPON and 20-30microns of OHARA glass-ceramic).
  • the transition between materials may occur over any (e.g., relatively short, long or intermediate) distance in the composite.
  • a first material and second material are coated with another material such as a transient and/or wetting layer.
  • an OHARA glass ceramic plate is coated with a LiPON layer, followed by a thin silver (Ag) coating.
  • the Ag When lithium is evaporated onto this structure, the Ag is converted to Ag-Li and diffuses, at least in part, into the greater mass of deposited lithium, and a protected lithium electrode is created.
  • the thin Ag coating prevents the hot (vapor phase) lithium from contacting and adversely reaction with the LiPON first material layer. After deposition, the solid phase lithium is stable against the LiPON.
  • transient/wetting e.g., Sn
  • first layer material combinations can be used to achieve the desired result.
  • the invention encompasses protected anode structures with fully-formed protective layers and battery separators incorporating ambient stable precursors, each of which may be handled or stored in normal ambient atmospheric conditions without degradation prior to incorporation into a battery cell.
  • Battery cells and methods for making separators, anode structures and battery cells are also provided.
  • Battery Cells Protected active metal anodes as described herein may be incorporated into a variety of battery cell structures. These includes fully solid state battery cells and battery cells with gel and liquid electrolyte systems, including, but not limited to, those described in the patents of PolyPlus Battery Company, referenced herein.
  • Solid and Gel State Batteries A solid state battery cell in accordance with the present invention may include a protected anode as described herein against a polymer electrolyte such as polyethylene oxide (PEO), and a PEO/carbon/metal-oxide type cathode.
  • PEO polyethylene oxide
  • PEO PEO/carbon/metal-oxide type cathode
  • gel-state electrolytes in which non-aqueous solvents have been gelled through the use of a gelling agent such as polyacrylonitrile (PAN), polyethylene oxide (PEO), polyvinylidene fluoride (PVDF), or polymerizable monomers that are added to the non-aqueous solvent system and polymerized in situ by the use of heat or radiation may be used.
  • a gelling agent such as polyacrylonitrile (PAN), polyethylene oxide (PEO), polyvinylidene fluoride (PVDF), or polymerizable monomers that are added to the non-aqueous solvent system and polymerized in situ by the use of heat or radiation
  • PAN polyacrylonitrile
  • PEO polyethylene oxide
  • PVDF polyvinylidene fluoride
  • polymerizable monomers that are added to the non-aqueous solvent system and polymerized in situ by the use of heat or radiation
  • Liquid Electrolytes One of the main requirements of the liquid electrolyte system for all Li-metal and Li-ion battery cells is its compatibility with the anode material.
  • the liquid electrolytes of existing Li-metal and Li-ion cells are not thermodynamically stable toward Li metal, Li alloys, and Li-C compounds, but rather kinetically stable due to formation of a solid electrolyte interface (SEI) protecting the anode surface from a continuous reaction with components of the electrolyte. Therefore, only a very limited spectrum of aprotic solvents and supporting salts is suitable for use in Li-metal and Li-ion batteries with an unprotected anode.
  • SEI solid electrolyte interface
  • the binary, ternary or multicomponent mixtures of alkyl carbonates or their mixtures with ethers are used as solvents, and LiPF 6 is generally used as a supporting salt in electrolytes for Li-ion batteries.
  • the main component of these solvent mixtures is ethylene carbonate (EC). It has been shown that without the presence of EC in the electrolyte, the SEI formed does not provide enough protection for anode surface, and cell's cyclability is very poor. However, EC has a high melting point of 35 °C and a high viscosity that limits the rate capability and the cell's low temperature performance. Another important disadvantage of existing Li-ion batteries is the irreversible capacity loss during the first charge associated with in situ formation of the SEI.
  • Protection of the anode with an ionically conductive protective membrane in accordance with the present invention allows for use of a very wide spectrum of solvents and supporting salts in rechargeable and primary batteries with Li metal anodes.
  • the protected anode is completely decoupled from the electrolyte, so electrolyte compatibility with the anode is no longer an issue; solvents and salts which are not kinetically stable to Li can be used.
  • Improved performance can be obtained with conventional liquid electrolytes, as noted above and as described, for example, in US Patent No. 6,376,123, previously incorporated herein by reference.
  • the electrolyte solution can be composed of only low viscosity solvents, such as ethers like 1,2-dimethoxy ethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran, 1 ,3-dioxolane (DIOX), 4-methyldioxolane (4-MeDIOX) or organic carbonates like dimethylcarbonate (DMC), ethylmethylcarbonate (EMC), diethylcarbonate (DEC), or their mixtures.
  • super low viscosity ester solvents or co-solvents such as methyl formate and methyl acetate, which are very reactive to unprotected Li, can be used.
  • Ionic conductivity and diffusion rates are inversely proportional to viscosity such that all other things being equal, battery performance improves as the viscosity of the solvent decreases.
  • the use of such electrolyte solvent systems significantly improves battery performance, in particular discharge and charge characteristics at low temperatures.
  • Ionic Liquids Ionic liquids are organic salts with melting points under 100 degrees, often even lower than room temperature. The most common ionic liquids are imidazolium and pyridinium derivatives, but also phosphonium or tetralkylammonium compounds are also known. Ionic liquids have the desirable attributes of high ionic conductivity, high thermal stability, no measurable vapor pressure, and non-flammability.
  • ionic liquids are l-Ethyl-3-methylimidazolium tosylate (EMLM-Ts), 1- Butyl-3-methylimidazolium octyl sulfate (BMIM-OctSO4), l-Ethyl-3- methylimidazolium hexafluorophosphate, and l-Hexyl-3-methylimidazolium tetrafluoroborate.
  • cathodes Another important advantage associated with the use of ionically conductive protective membranes in accordance with the present invention in battery cells is that both lithiated intercalation compounds and unlithiated intercalation compounds can be used as cathode materials. As a result, protection of the anode with ionically conductive composite materials allows for use of a variety of 2, 3, 4 and 5 V cathodes suitable for fabrication of primary and rechargeable batteries for a wide range of applications.
  • Examples of lithiated metal oxide based cathodes suitable for rechargeable cells with protected Li anodes in accordance with the present invention include: Li x CoO 2 , Li x NiO 2 , Li x Mn 2 0 and LiFePO .
  • Examples of unlithiated metal oxide or sulfide based cathodes suitable for use both for primary and rechargeable cells with protected Li anodes in accordance with the present invention include: AgxV 2 O 5 , CuxV 2 O 5 , V 2 O 5 , V 6 0i 3 , FeS 2 and TiS 2 .
  • Examples of metal oxide based cathodes suitable for primary cells with protected Li anodes in accordance with the present invention include: Mn0 2 , CuO, Ag 2 CrO 4 and MoO 3 .
  • Examples of metal sulfide based positive electrodes for primary cells with protected Li anodes in accordance with the present invention include: CuS and FeS.
  • active sulfur cathodes including elemental sulfur and polysulfides, as described in the patents of PolyPlus Battery Company cited and incorporated by reference below are suitable cathodes for protected lithium metal anode battery cells in accordance with the present invention. Fabrication Techniques Materials and techniques for fabrication of active metal battery cells are described, for example, in US Patents Nos. 5,686,201and 6,376,123 issued to Chu on November 11, 1997.
  • the active metal electrode may also be an active metal alloy electrode, as further described in U.S. Patent Application No. 10/189,908 filed July 3, 2002, titled “ENCAPSULATED ALLOY ELECTRODES,” and naming Steven J. Visco, Yevgeniy S. Nimon and Bruce D. Katz as inventors.
  • the battery component materials, including anodes, cathodes, separators, protective layers, etc., and techniques disclosed therein are generally applicable to the present invention and each of these patent applications is incorporated herein by reference in its entirety for all purposes.
  • a protective membrane in accordance with the present invention may be formed using a variety of methods. These include deposition or evaporation.
  • Protective membrane composites of the present invention may be formed by deposition or evaporation (including e-beam evaporation) of the first layer of material or precursor on the second layer of material.
  • the first layer may be formed in situ from the non-deleterious reaction of one or more precursors with an active metal electrode or material, by deposition or evaporation of lithium on the precursor, by direct contact of the precursor with a lithium metal (e.g., foil), or by plating of the precursor with lithium through a second layer material.
  • the second layer material may also be formed on the first layer material, as described further below. Referring to Fig. 4 A, a first method for forming a protective membrane composite in accordance with the present invention is shown.
  • a first layer that is a highly ionically conductive active metal chemically compatible material, is directly deposited onto a second layer material, that is a substantially impervious, ionically conductive material, for example, a highly ionically conductive glass or glass-ceramic material such as LiPON or an OHARA glass-ceramic material described above.
  • a second layer material that is a substantially impervious, ionically conductive material, for example, a highly ionically conductive glass or glass-ceramic material such as LiPON or an OHARA glass-ceramic material described above.
  • This can be done by a variety of techniques including RF sputtering, e-beam evaporation, thermal evaporation, or reactive thermal or e-beam evaporation, for example.
  • lithium is evaporated in a nitrogen plasma to form a lithium nitride (Li 3 N) layer on the surface of a glass-ceramic material such as the OHARA material described above. This is followed by evaporation of lithium metal onto the Li 3 N film.
  • the Li 3 N layer separates the lithium metal electrode from the second material layer, but allows Li ions to pass from the Li electrode through the glass.
  • active metal, and first and second layer materials, as described herein may be used as well.
  • Fig. 4B a second method for forming a protective membrane composite in accordance with the present invention is shown.
  • the ionically conductive chemically compatible first layer material is formed in situ following formation of a precursor layer on the second layer material.
  • a surface of a glass-ceramic layer for example one composed of the OHARA material described above, is coated with red phosphorus, a precursor for an active metal (in this case lithium) phosphide. Then a layer of lithium metal is deposited onto the phosphorus.
  • Li 3 P is an ionically conductive material that is chemically compatible with both the lithium anode and the glass-ceramic material.
  • the glass-ceramic (or other second layer material) is not in direct contact with the lithium electrode.
  • active metal first layer precursor and second layer materials, as described herein, may be used as well.
  • a protective membrane composite in accordance with the present invention may alternatively be compositionally and functionally graded so that there is a gradual transition of from one layer to the other.
  • a plasma spray operation with two spray heads one for the deposition of a first component material, such as Li 3 N, Cu 3 N, Li 3 P, LiPON, or other appropriate material, and the other for the deposition of a second component material, such as an OHARA glass-ceramic, may be used.
  • the first plasma spray process begins by laying down a layer of pure glass-ceramic material, followed by a gradual decrease in flow as the second plasma spray torch is gradually turned on, finishing with the glass-ceramic spray head turned off, such that there is a gradient from pure glass-ceramic to pure LiPON or Li 3 N, etc., for example.
  • one side of the membrane is stable to active metal (e.g., lithium, sodium, etc.) and the other side is substantially impervious and stable to the cathode, other battery cell components and preferably to ambient conditions.
  • Electron beam deposition or thermal spray deposition may also be used. Given the parameters described herein, one or skill in the art will be able to use any of these techniques to form the graded composites of the invention.
  • lithium is then bonded to the graded membrane on the first layer material (stable to active metal) side of the graded protective composite, for example by evaporation of lithium onto the protective composite as described above. It may also be desirable to add a bonding layer on top of the lithium stable side of the graded composite protective layer, such as Sn, Ag, Al, etc., before applying lithium. h any of the forgoing methods described with reference to Figs. 4A-B and 5, rather than forming a lithium (or other active metal) layer on the first layer material or precursor, the first layer material or precursor of the protective composite may be contacted with the lithium by bonding metallic lithium to the protective interlayer material or precursor, for example by direct contact with extruded lithium metal foil.
  • a suitable substrate e.g., having a wetting layer, such as a film of tin on copper
  • a first layer material precursor e.g., Cu 3 N
  • a second layer material e.g., a (ionically) conductive glass.
  • An active metal electrode may then be formed by plating the tin electrode with lithium (or other active metal), through the first and second layer materials.
  • the Cu 3 N precursor is also converted to Li 3 N by this operation to complete the protective composite in accordance with the present invention on a lithium metal electrode. Details of an active metal plating process are described in commonly assigned US Patent No. 6,402,795, previously incorporated by reference.
  • lithium foils are typically extruded and have numerous surface defects due to this process, many of which have deep recesses that would be unreachable by line-of-sight deposition techniques such as RF sputter deposition, thermal and E-beam evaporation, etc.
  • active metals such as lithium may be reactive to the thin-film deposition environment leading to further deterioration of the surface during the coating process. This typically leads to gaps and holes in a membrane deposited onto the surface of an active metal electrode.
  • inverting the process this problem is avoided; lithium is deposited on the protective membrane rather than the protective membrane being deposited on lithium.
  • Glass, and glass-ceramic membranes can be made quite smooth either by melt-casting techniques, cut and polish methods, or a variety of known methods leading to smooth surfaces (lithium is a soft metal that cannot be polished). Single or multiple smooth, gap-free membranes may then be deposited onto the smooth surface. After deposition is complete, active metal can be deposited onto the smooth surface by evaporation, resulting is a active meta/protective membrane interface that is smooth and gap-free. Alternatively, a transient bonding layer such as Ag can be deposited onto the protective membrane such that extruded lithium foil can be joined to the membrane by pressing the foil against the Ag layer. Also as noted above, in an alternative embodiment of the invention the first layer may include additional components.
  • a suitable first layer may include a polymer component to enhance its properties.
  • polymer-iodine complexes like poly(2-vinylpyridine)-iodine (P2VP-I 2 ), polyethylene-iodine, or tetraalkylammonium-iodine can react with Li to form an ionically conductive Lil- based film that is chemically compatible with both an active metal and a second layer material as described herein.
  • P2VP-I 2 poly(2-vinylpyridine)-iodine
  • polyethylene-iodine polyethylene-iodine
  • tetraalkylammonium-iodine can react with Li to form an ionically conductive Lil- based film that is chemically compatible with both an active metal and a second layer material as described herein.
  • halogens may also be used in this manner, for example in bromine complexes.
  • a first embodiment of this aspect of the present invention is shown.
  • a polymer layer and a layer of iodine are coated on a second layer material surface and allowed to react forming polymer-iodine complex.
  • a thin layer of polymer may be applied to the second material layer (e.g., conductive glass) using brushing, dipping, or spraying.
  • a conductive glass layer may be coated with a thin (e.g., 0.5 to 2.0 micron, preferably 0.1 to 0.5 micron) layer of P2VP in this way.
  • One technique for applying an iodine coating is sublimation of crystalline iodine that can be achieved at room temperature (e.g., about 20 to 25°C) in a reactor placed in the dry box or in a dry room.
  • a sublimed layer of iodine can be made very thin (e.g., 0.05 to 1.0 microns and the rate of sublimation can be adjusted by varying the temperature or distance between the substrate and source of iodine.
  • high concentrations e.g., 50 to 100 g/liter of iodine can be dissolved in an organic solvent, such as acetonitrile and n-heptane.
  • Dissolved iodine can be coated on the conductive glass surface by such methods as dip coating, spraying or brushing, among others.
  • treatment conditions can be easily changed by varying the length of coating treatment and iodine concentrations.
  • iodine sources for this technique include metal iodides are Agl and Pbl 2 , which are known to be used as the cathode materials in solid-state batteries with Li anode and Lil-based solid electrolyte.
  • lithium or other active metal
  • a Lil- containing composite protective barrier layer on the Li anode Referring to Fig. 6B, an alternative embodiment of this aspect of the present invention is shown.
  • a conductive glass (or other second layer material) surface is coated with a thin layer of iodine, such as by a technique described above, that can react with Li forming Lil layer (A).
  • Active metal for example lithium foil
  • B polymer
  • iodine reacts with the polymer layer and, as a result, Lil- containing composite protective barrier layer with reduced impedance is formed.
  • Example 1 Impedance measurements using LIPON in composite protective layer Approximately 0.75 microns of LiPON was RF sputter-deposited onto copper foil samples in a MRC 8671 Sputter Deposition system. Some of the copper foil samples were coated with an additional layer of Cu 3 N (approximately 0.9 microns) by RF Magnetron sputtering of a copper target in a nitrogen environment.
  • LiPON/Cu sample was transferred to a vacuum evaporator, and approximately 3 to 7 microns of lithium metal was evaporated directly onto the LiPON surface.
  • Another Cu 3 N/LiPON/Cu sample was coated with a similar thickness of lithium.
  • the impedance for the unprotected LiPON/Cu sample is shown in Fig. 7A; the evaporation of lithium onto the LiPON surface led to a dramatic rise in the resistance of the sample, which is undesirable for electrochemical devices.
  • the beneficial effects of the protective Cu 3 N film is seen in Fig. 7B; the impedance is dramatically lower in this case.
  • Example 2 Impedance measurements using glass-ceramic active metal ion conductor (OHARA) in composite protective layer Samples of Li + conductive glass-ceramic plates were received from OHARA Corporation. Approximately 3 to 7 microns of lithium was evaporated directly onto the OHARA glass-ceramic plate. The deleterious reaction of lithium with the electrolyte is seen in Fig. 8A; the impedance of the sample is quite large, approximately 40,000 ⁇ cm 2 . A film of Cu 3 N (about 0.9 microns thick) was RF Magnetron sputter-deposited onto a second sample of glass-ceramic plate, with subsequent evaporation of about 3 to 7 microns of lithium. The beneficial effect of the Cu 3 N film can be seen in Fig.
  • OHARA glass-ceramic active metal ion conductor

Abstract

Disclosed are ionically conductive membranes for protection of active metal anodes and methods for their fabrication. The membranes (100) may be incorporated in active metal negative electrode (anode) structures and battery cells. In accordance with the invention, the membrane has the desired properties of high overall ionic conductivity and chemical stability towards the anode (106), the cathode (112) and ambient conditions encountered in battery manufacturing. The membrane is capable of protecting an active metal anode (106) from deleterious reaction with other battery components or ambient conditions while providing a high level of ionic conductivity to facilitate manufacture and/or enhance performance of a battery cell in which the membrane is incorporated.

Description

lONICALLY CONDUCTIVE MEMBRANES FOR PROTECTION OF ACTIVE METAL ANODES AND BATTERY CELLS
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to separators and electrode structures for use in batteries. More particularly, this invention relates to ionically conductive membranes for protection of active metal anodes from deleterious reaction with air, moisture and other battery components, battery cells incorporating such protected anodes and methods for their fabrication. 2. Description of Related Art The low equivalent weight of alkali metals, such as lithium, render them particularly attractive as a battery electrode component. Lithium provides greater energy per volume than the traditional battery standards, nickel and cadmium. Unfortunately, no rechargeable lithium metal batteries have yet succeeded in the market place. The failure of rechargeable lithium metal batteries is largely due to cell cycling problems. On repeated charge and discharge cycles, lithium "dendrites" gradually grow out from the lithium metal electrode, through the electrolyte, and ultimately contact the positive electrode. This causes an internal short circuit in the battery, rendering the battery unusable after a relatively few cycles. While cycling, lithium electrodes may also grow "mossy" deposits which can dislodge from the negative electrode and thereby reduce the battery's capacity. To address lithium's poor cycling behavior in liquid electrolyte systems, some researchers have proposed coating the electrolyte facing side of the lithium negative electrode with a "protective layer." Such protective layer must conduct lithium ions, but at the same time prevent contact between the lithium electrode surface and the bulk electrolyte. Many techniques for applying protective layers have not succeeded. Some contemplated lithium metal protective layers are formed in situ by reaction between lithium metal and compounds in the cell's electrolyte which contact the lithium. Most of these in situ films are grown by a controlled chemical reaction after the battery is assembled. Generally, such films have a porous morphology allowing some electrolyte to penetrate to the bare lithium metal surface. Thus, they fail to adequately protect the lithium electrode. Various pre-formed lithium protective layers have been contemplated. For example, US Patent No. 5,314,765 (issued to Bates on May 24, 1994) describes an ex situ technique for fabricating a lithium electrode containing a thin layer of sputtered lithium phosphorus oxynitride ("LiPON") or related material. LiPON is a glassy single ion conductor (conducts lithium ion) which has been studied as a potential electrolyte for solid state lithium microbatteries that are fabricated on silicon and used to power integrated circuits (See US Patents Nos. 5,597,660, 5,567,210, 5,338,625, and 5,512,147, all issued to Bates et al). Work in the present applicants' laboratories has developed technology for the use of glassy or amorphous protective layers, such as LiPON, in active metal battery electrodes. (See, for example, US Patents 6,025,094, issued 02/15/00, 6,402,795, issued 06/11/02, 6,214,061, issued 04/10/01 and 6,413,284, issued 07/02/02, all assigned to PolyPlus Battery Company). Despite this progress, alternative protective layers and structures that could also enhance active metal, particularly lithium metal, battery performance continue to be sought. In particular, protective layers that combine the characteristics of high ionic conductivity and chemical stability to materials and conditions on either side of the protective layer are desired. SUMMARY OF THE INVENTION The present invention provides ionically conductive membranes for decoupling the active metal anode and cathode sides of an active metal electrochemical cell, and methods for their fabrication. The membranes may be incorporated in active metal negative electrode (anode) structures and electrochemical devices and components, including battery and fuel cells. The membranes are highly conductive for ions of the active metal, but are otherwise substantially impervious. They are chemically stable on one side to the active metal of the anode (e.g., lithium), and on the other side to the cathode, other battery cell components such as solid or liquid phase electrolytes, including organic or aqueous liquid electrolytes, ambient conditions and other environments corrosive to the active metal of the anode if directly contacted with it. The membrane is capable of protecting an active metal anode from deleterious reaction with other battery components or ambient conditions and decoupling the chemical environments of the anode and cathode enabling use of anode-incompatible materials, such as solvents and electrolytes, on the cathode side without deleterious impact on the anode, and vice versa. This broadens the array of materials that may be used in active metal electrochemical cells and facilitates cell fabrication while providing a high level of ionic conductivity to enhance performance of an electrochemical cell in which the membrane is incorporated. The membrane may have any suitable composition, for example, it may be a monolithic material chemically compatible with both the anode and cathode environments, or a composite composed of at least two components of different materials having different chemical compatibilities, one chemically compatible witbi the anode environment and the other chemically compatible with the cathode environment. Composite membranes may be composed of a laminate of discrete layers of materials having different chemical compatibility requirements, or it may be composed of a gradual transition between layers of the materials. By "chemical compatibility" (or "chemically compatible") it is meant that the referenced material does not react to form a product that is deleterious to battery cell operation when contacted with one or more other referenced battery cell components or manufacturing, handling or storage conditions. A first material layer (or first layer material) of the composite is ionically conductive, and chemically compatible with an active metal electrode material. Chemical compatibility in this aspect of the invention refers both to a material that is chemically stable and therefore substantially unreactive when contacted with an active metal electrode material. It may also refer to a material that is chemically stable with air, to facilitate storage and handling, and reactive when contacted with an active metal electrode material to produce a product that is chemically stable against the active metal electrode material and has the desirable ionic conductivity (i.e., a first layer material). Such a reactive material is sometimes referred to as a "precursor" material. A second material layer of the composite is substantially impervious, ionically conductive and chemically compatible with the first material. Additional layers are possible to achieve these aims, or otherwise enhance electrode stability or performance. All layers of the composite have high ionic conductivity, at least 10" S/cm, generally at least 10" S/cm, for example at least 10"5S/cm to 10"4S/cm, and as high as 10"3S/cm or higher so that the overall ionic conductivity of the multi-layer protective structure is at least 10" S/cm and as high as 10"3S/cm or higher. A wide variety of materials may be used in fabricating protective composites in accordance with the present invention, consistent with the principles described above. For example, the first layer, in contact with the active metal, may be composed, in whole or in part, of active metal nitrides, active metal phosphides, active metal halides or active metal phosphorus oxynitride-based glass. Specific examples include Li3N, Li3P, Lil, LiBr, LiCl, LiF and LiPON. Active metal electrode materials (e.g., lithium) may be applied to these materials, or they may be formed in situ by contacting precursors such as metal nitrides, metal phosphides, metal halides, red phosphorus, iodine, nitrogen or phosphorus containing organics and polymers, and the like with lithium. The in situ formation of the first layer may result from an incomplete conversion of the precursors to their lithiated analog. Nevertheless, such incomplete conversions meet the requirements of a first layer material for a protective composite in accordance with the present invention and are therefore within the scope of the invention. A second layer of the protective composite may be composed of a material that is substantially impervious, ionically conductive and chemically compatible with the first material or precursor and environments normally corrosive to the active metal of the anode, including glassy or amorphous metal ion conductors, such as a phosphorus- based glass, oxide-based glass, phosphorus-oxynitride-based glass, sulfur-based glass, oxide/sulfide based glass, selenide based glass, gallium based glass, germanium-based glass or boracite glass (such as are described D.P. Button et al., Solid State Ionics, Vols. 9-10, Part 1, 585-592 (December 1983); ceramic active metal ion conductors, such as lithium beta-alumina, sodium beta-alumina, Li superionic conductor (LISICON), Na superionic conductor (NASICON), and the like; or glass-ceramic active metal ion conductors. Specific examples include LiPON, Li3PO .Li2S.SiS2, Li2S.GeS2.Ga2S3, Li2O-HAl2O3, Na2O-l lAl203, (Na, Li)1+xTi2- xAlx(PO4)3 (0.6< x< 0.9) and crystallographically related structures, Na3Zr2Si2PO12, Li Zr2Si2PO12, Na5ZrP3O12, Na5TiP32, Na3Fe2P3OI2, Na4NbP3O12, Li5ZrP3O12, Li5TiP3O12, Li3Fe2P3O12 and Li4NbP3O12, and combinations thereof, optionally sintered or melted. Suitable ceramic ion active metal ion conductors are described, for example, in US Patent No. 4,985,317 to Adachi et al., incorporated by reference herein in its entirety and for all purposes. A particularly suitable glass-ceramic material for the second layer of the protective composite is a lithium ion conductive glass-ceramic having the following composition:
Composition mol % P2O5 26-55% SiO2 0-15% GeO2 + ' πo2 25-50% in which . GeO2 0-50% TiO2 0-50% ZrO2 0-10% M2O3 0 < 10% Al2O3 0-15% Ga2O3 0-15% Li2O 3-25%
and containing a predominant crystalline phase composed of Li1+x(M,Al,Ga)x(Ge ι. yTiy)2-x(PO )3 where X< 0.8 and 0< Y< 1.0, and where M is an element selected from the group consisting of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb and/or and Li1+x+yQxTi2-xSiyP3-yO12 where 0< X< 0.4 and 0< Y< 0.6, and where Q is Al or Ga. The glass-ceramics are obtained by melting raw materials to a melt, casting the melt to a glass and subjecting the glass to a heat treatment. Such materials are available from OHARA Corporation, Japan and are further described in US Patent Nos. 5,702,995, 6,030,909, 6,315,881 and 6,485,622, incorporated herein by reference. Either layer may also include additional components. For instance, a suitable active metal compatible layer (first layer) may include a polymer component to enhance its properties. For example, polymer-iodine complexes like poly(2- vinylpyridine)-iodine (P2VP-I2), polyethylene-iodine, or tetraalkylammonium-iodine complexes can react with Li to form a Lil-based film having significantly higher ionic conductivity than that for pure Lil. Also, a suitable first layer may include a material used to facilitate its use, for example, the residue of a wetting layer (e.g., Ag) used to prevent reaction between vapor phase lithium (during deposition) and LiPON when LiPON is used as a first layer material. In solid state embodiments, a suitable second layer may include a polymer component to enhance its properties. For example, a glass-ceramic active metal ion conductor, like the glass-ceramic materials described above, may also be combined with polymer electrolytes to form flexible composite sheets of material which may be used as second layer of the protective composite. One important example of such a flexible composite material has been developed by OHARA Corp. (Japan). It is composed of particles of a Li-ion conducting glass-ceramic material, such as described above, and a solid polymer electrolyte based on PEO-Li salt complexes. OHARA Corp. manufactures this material in the form of sheet with a thickness of about 50 microns that renders it flexible while maintaining its high ionic conductivity. Because of its relatively high ionic conductivity (better than 4*10"5 S/cm at room temperature in the case of the OHARA product) and stability toward metallic Li, this type of composite electrolyte can be used at room temperature or elevated temperatures in fully solid-state cells. In addition, the layers may be formed using a variety of techniques. These include deposition or evaporation (including e-beam evaporation) of layers of ' material, such as Li3N or an ionically conductive glass. Also, as noted above, the active metal electrode adjacent layer may be formed in situ from the non-deleterious reaction of one or more precursors with the active metal electrode. For example, a Li3N layer may be formed on a Li anode by contacting Cu3N with the Li anode surface, or Li3P may be formed on a Li anode by contacting red phosphorus with the Li anode surface. The invention encompasses protected anode structures with fully-formed protective layers and battery separators incorporating ambient stable precursors, each of which may be handled or stored in normal ambient atmospheric conditions without degradation prior to incorporation into a battery cell. Battery cells and methods for making composites and battery cells are also provided. These and other features of the invention are further described and exemplified in the detailed description below. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic illustration of an active metal battery cell incorporating an ionically conductive protective membrane in accordance with the present invention. Figs. 2 A and B are a schematic illustrations of ionically conductive protective membrane battery separators in accordance with the present invention. Fig. 3A is a schematic illustration of an active metal anode structure incorporating an ionically conductive protective laminate composite membrane in accordance with the present invention. Fig. 3B is a schematic illustration of an active metal anode structure incorporating an ionically conductive protective graded composite membrane in accordance with the present invention. Figs. 4A-B, 5 and 6A-B are schematic illustrations of alternative methods of making an electrochemical device structure incorporating an ionically conductive protective membrane in accordance with the present invention. Figs. 7A-B and 8A-D are plots of data illustrating the performance benefits of ionically conductive protective membranes in accordance with the present invention. DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS Reference will now be made in detail to specific embodiments of the invention. Examples of the specific embodiments are illustrated in the accompanying drawings. While the invention will be described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the invention to such specific embodiments. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. The present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention. When used in combination with "comprising," "a method comprising," "a device comprising" or similar language in this specification and the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Introduction The present invention provides ionically conductive membranes for decoupling the active metal anode and cathode sides of an active metal electrochemical cell, and methods for their fabrication. The membranes may be incorporated in active metal negative electrode (anode) structures and electrochemical devices and components, including battery and fuel cells. The membranes are highly conductive for ions of the active metal, but are otherwise substantially impervious. They are chemically stable on one side to the active metal of the anode (e.g., lithium), and on the other side to the cathode, other battery cell components such as solid or liquid phase electrolytes, including organic or aqueous liquid electrolytes, and preferably to ambient conditions. The membrane is capable of protecting an active metal anode from deleterious reaction with other battery components or ambient conditions and decoupling the chemical environments of the anode and cathode enabling use of anode-incompatible materials, such as solvents and electrolytes, on the cathode side without deleterious impact on the anode, and vice versa. This broadens the array of materials that may be used in active metal electrochemical cells and facilitates cell fabrication while providing a high level of ionic conductivity to enhance performance of an electrochemical cell in which the membrane is incorporated. The membrane may have any suitable composition, for example, it may be a monolithic material chemically compatible with both the anode and cathode environments, or a composite composed of at least two components of different materials having different chemical compatibilities, one chemically compatible with the anode environment and the other chemically compatible with the cathode environment. Composite membranes may be composed of at least two components of different materials having different chemical compatibility requirements. The composite may be composed of a laminate of discrete layers of materials having different chemical compatibility requirements, or it may be composed of a gradual transition between layers of the materials. By "chemical compatibility" (or "chemically compatible") it is meant that the referenced material does not react to form a product that is deleterious to battery cell operation when contacted with one or more other referenced battery cell components or manufacturing, handling or storage conditions. A first material layer of the composite is both ionically conductive and chemically compatible with an active metal electrode material. Chemical compatibility in this aspect of the invention refers to a material that is chemically stable and therefore substantially unreactive when contacted with an active metal electrode material. Active metals are highly reactive in ambient conditions and can benefit from a barrier layer when used as electrodes. They are generally alkali metals such (e.g., lithium, sodium or potassium), alkaline earth metals (e.g., calcium or magnesium), and/or certain transitional metals (e.g., zinc), and/or alloys of two or more of these. The following active metals may be used: alkali metals (e.g., Li, Na, K), alkaline earth metals (e.g., Ca, Mg, Ba), or binary or ternary alkali metal alloys with Ca, Mg, Sn, Ag, Zn, Bi, Al, Cd, Ga, In. Preferred alloys include lithium aluminum alloys, lithium silicon alloys, lithium tin alloys, lithium silver alloys, and sodium lead alloys (e.g., Na4Pb). A preferred active metal electrode is composed of lithium. Chemical compatibility also refers to a material that may be chemically stable with oxidizing materials and reactive when contacted with an active metal electrode material to produce a product that is chemically stable against the active metal electrode material and has the desirable ionic conductivity (i.e., a first layer material). Such a reactive material is sometimes referred to as a "precursor" material. A second material layer of the composite is substantially impervious, ionically conductive and chemically compatible with the first material. By substantially impervious it is meant that the material provides a sufficient barrier to battery electrolytes and solvents and other battery component materials that would be damaging to the electrode material to prevent any such damage that would degrade electrode performance from occurring. Thus, it should be non-swellable and free of pores, defects, and any pathways allowing air, moisture, electrolyte, etc. to penetrate though it to the first material. Preferably, the second material layer is so impervious to ambient moisture, carbon dioxide, oxygen, etc. that an encapsulated lithium alloy electrode can be handled under ambient conditions without the need for elaborate dry box conditions as typically employed to process other lithium electrodes. Because the composite protective layer described herein provides such good protection for the lithium (or other active metal), it is contemplated that electrodes and electrode/electrolyte composites of this invention may have a quite long shelf life outside of a battery. Thus, the invention contemplates not only batteries containing a negative electrode, but unused negative electrodes and electrode/electrolyte laminates themselves. Such negative electrodes and electrode/electrolyte laminates may be provided in the form of sheets, rolls, stacks, etc. Ultimately, they may be integrated with other battery components to fabricate a battery. The enhanced stability of the batteries of this invention will greatly simplify this fabrication procedure. In addition to the protective composite laminate structure described above, a protective composite in accordance with the present invention may alternatively be a functionally graded layer, as further described below. It should be noted that the first and second materials are inherently ionically conductive. That is, they do not depend on the presence of a liquid electrolyte or other agent for their ionically conductive properties. Additional layers are possible to achieve these aims, or otherwise enhance electrode stability or performance. All layers of the composite have high ionic conductivity, at least 10" S/cm, generally at least 10" S/cm, for example at least 10" 5S/cm to 10"4S/cm, and as high as 10"3S/cm or higher so that the overall ionic conductivity of the multi-layer protective structure is at least 10"7S/cm and as high as 10"3S/cm or higher. Protective Membranes and Structures Fig. 1 illustrates an ionically conductive protective membrane in accordance with the present invention in context as it would be used in an active metal battery cell 120, such as a lithium-sulfur battery, in accordance with the present invention. The membrane 100 is both ionically conductive and chemically compatible with an active metal (e.g., lithium) electrode (anode) 106 on one side, and substantially impervious, ionically conductive and chemically compatible with an electrolyte 110 and/or cathode 112 on the other side. The ionic conductivity of the membrane is at least 10" 7S/cm, generally at least 10"6S/cm, for example at least 10"5S/cm to 10"4S/cm, and as high as 10"3S/cm or higher. The active metal anode 106 in contact with the first side of the protective membrane is connected with a current collector 108 composed of a conductive metal, such as copper, that is generally inert to and does not alloy with the active metal. The other side of the membrane 100, is (optionally) in contact with an electrolyte 110. Alternatively, in some embodiments, the protective membrane 100 may itself be the sole electrolyte of the battery cell. Adjacent to the electrolyte is the cathode 112 with its current collector 114. The protective membrane may be a composite composed of two or more materials that present sides having different chemical compatibility to the anode and electrolyte and/or cathode, respectively. The composite is composed of a first layer of a material that is both ionically conductive and chemically compatible with an active metal electrode material. The composite also includes second layer of a material that is substantially impervious, ionically conductive and chemically compatible with the first material and the cathode/electrolyte environment. As described further below, given the protection afforded by the protective membranes of the present invention, the electrolytes and/or cathodes combined with the protected anodes of the present invention may include a wide variety of materials including, but not limited to, those described in the patents of PolyPlus Battery Company, referenced herein below. Fig. 2A illustrates a protective membrane composite battery separator in accordance with one embodiment of the present invention. The separator 200 includes a laminate of discrete layers of materials with different chemical compatibilities. A layer of a first material or precursor 202 is ionically conductive and chemically compatible with an active metal. In most cases, the first material is not chemically compatible with oxidizing materials (e.g., air, moisture, etc). The first layer, in contact with the active metal, may be composed, in whole or in part, of active metal nitrides, active metal phosphides, active metal halides or active metal phosphorus oxynitride-based glasses. Specific examples include Li3N, Li3P, Lil, LiBr, LiCl and LiF. In at least one instance, LiPON, the first material is chemically compatible with oxidizing materials. The thickness of the first material layer is preferably about 0.1 to 5 microns, or 0.2 to 1 micron, for example about 0.25 micron. As noted above, the first material may also be a precursor material which is chemically compatible with an active metal and reactive when contacted with an active metal electrode material to produce a product that is chemically stable against the active metal electrode material and has the desirable ionic conductivity (i.e., a first layer material). Examples of suitable precursor materials include metal nitrides, red phosphorus, nitrogen and phosphorus containing organics (e.g., amines, phosphines, borazine (B3N3H6), triazine (C3N3H3)) and halides. Some specific examples include P (red phosphorus), Cu3N, SnNx, Zn3N2, FeNx, CoNx, aluminum nitride (A1N), silicon nitride (Si3N4) and I2, Br2, Cl2 and F2. Such precursor materials can subsequently react with active metal (e.g., Li) to form a Li metal salts, such as the lithium nitrides, phosphides and halides described above. In some instances, these first layer material precursors may also be chemically stable in air (including moisture and other materials normally present in ambient atmosphere), thus facilitating handling and fabrication. Examples include metal nitrides, for example Cu3N. Also, a suitable active metal compatible layer may include a polymer component to enhance its properties. For example, polymer-iodine complexes like poly(2-vinylpyridine)-iodine (P2VP-I ), polyethylene-iodine, or with tetraalkylammonium-iodine complexes can react with Li to form a Lil-based film having significantly higher ionic conductivity than that for pure Lil. The ionic conductivity of the first material is high, at least 10"7 S/cm, generally at least about 10" S/cm, and may be as high as 10" S/cm or higher. Adjacent to the first material or precursor layer 202 is a second layer 204 that is substantially impervious, ionically conductive and chemically compatible with the first material or precursor, including glassy or amorphous metal ion conductors, such as a phosphorus-based glass, oxide-based glass, phosphorus-oxynitride-based glass, sulfur-based glass, oxide/sulfide based glass, selenide based glass, gallium based glass, germanium-based glass or boracite glass (such as are described D.P. Button et al., Solid State Ionics, Nols. 9-10, Part 1, 585-592 (December 1983); ceramic active metal ion conductors, such as lithium beta-alumina, sodium beta-alumina, Li superionic conductor (LISICOΝ), Νa superionic conductor (ΝASICOΝ), and the like; or glass-ceramic active metal ion conductors. Specific examples include LiPOΝ, Li3PO4.Li2S.SiS2, Li2S.GeS2.Ga2S3, Li2O-l lAl203, Νa2O-l lAl2O3, (Na, Li)1+xTi2- xAlx(PO )3 (0.6< x< 0.9) and crystallographically related structures, Na Zr Si2PO12, Li3Zr2Si2PO12, Na5ZrP32, Na5TiP32, Na3Fe2P32, Na4NbP3O12, Li5ZrP3O12, Li5TiP32, Li3Fe2P3O12 and Li4NbP3O12, and combinations thereof, optionally sintered or melted. Suitable ceramic ion active metal ion conductors are described, for example, in US Patent No. 4,985,317 to Adachi et al, incorporated by reference herein in its entirety and for all purposes. A particularly suitable glass-ceramic material for the second layer of the protective composite is a lithium ion conductive glass-ceramic having the following composition:
Composition mol % P2O5 26-55% SiO2 0-15% GeO2 + TiO2 25-50% in which GeO2 0-50% TiO2 0-50% ZrO2 0-10% M2O3 0 < 10% Al2O3 0-15% Ga2O3 0-15% Li2O 3-25%
and containing a predominant crystalline phase composed of Li1+x(M,Al,Ga)x(Ge ι. yTiy)2-x(PO4)3 where X< 0.8 and 0< Y< 1.0, and where M is an element selected from the group consisting of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb and/or and Liι+x+yQxTi2-xSiyP3_yO12 where 0< X< 0.4 and 0< Y< 0.6, and where Q is Al or Ga. The glass-ceramics are obtained by melting raw materials to a melt, casting the melt to a glass and subjecting the glass to a heat treatment. Such materials are available from OHARA Corporation, Japan and are further described in US Patent Nos. 5,702,995, 6,030,909, 6,315,881 and 6,485,622, incorporated herein by reference. The high conductivity of some of these glasses, ceramics and glass-ceramics (ionic conductivity in the range of about 10" to 10" S/cm or greater) may enhance performance of the protected lithium anode, and allow relatively thick films to be deposited without a large penalty in terms of ohmic resistance. Also, for solid state applications, a suitable second layer may include a polymer component to enhance its properties. For example, a glass-ceramic active metal ion conductor, like the glass-ceramic materials described above, may also be combined with polymer electrolytes to form flexible composite sheets of material which may be used as second layer of the protective composite. One important example of such a flexible composite material has been developed by OHARA Corp. (Japan). It is composed of particles of a Li-ion conducting glass-ceramic material, such as described above, and a solid polymer electrolyte based on PEO-Li salt complexes. OHARA Corp. manufactures this material in the form of sheet with a thickness of about 50 microns that renders it flexible while maintaining its high ionic conductivity. Because of its relatively high ionic conductivity (better than 4*10"5 S/cm at room temperature in the case of the OHARA product) and stability toward metallic Li, this type of composite electrolyte can be used at room temperature or elevated temperatures in fully solid-state cells. The composite barrier layer should have an inherently high ionic conductivity. In general, the ionic conductivity of the composite is at least 10" S/cm, generally at least about 10"6 to 10"5 S/cm, and may be as high as 10"4 to 10"3 S/cm or higher. The thickness of the first precursor material layer should be enough to prevent contact between the second material layer and adjacent materials or layers, in particular, the active metal of the anode with which the separator is to be used. For example, the first material layer may have a thickness of about 0.1 to 5 microns; 0.2 to 1 micron; or about 0.25 micron. The thickness of the second material layer is preferably about 0.1 to 1000 microns, or, where the ionic conductivity of the second material layer is about 10"7 S/cm, about 0.25 to 1 micron, or, where the ionic conductivity of the second material layer is between about 10" about 10"3 S/cm, about 10 to 1000 microns, preferably between 1 and 500 microns, and more preferably between 10 and 100 microns, for example 20 microns. When the first material layer is a precursor material chemically stable in air, for example Cu3N or LiPON, the protective composite battery separator may be handled or stored in normal ambient atmospheric conditions without degradation prior to incorporation into a battery cell. When the separator is incorporated into a battery cell, the precursor layer 202 is contacted with an active metal (e.g., lithium) electrode. The precursor reacts with the active metal to form an ionically conductive material that is chemically compatible with the active metal electrode material. The second layer is contacted with an electrolyte to which a cathode and current collector is or has been applied. Alternatively, the second layer acts as the sole electrolyte in the battery cell. In either case, the combination of the two layers in the protective composite protects the active metal electrode and the electrolyte and/or cathode from deleterious reaction with one another. In addition to the protective composite laminates described above, a protective composite in accordance with the present invention may alternatively be compositionally and functionally graded, as illustrated in Fig. 2B. Through the use of appropriate deposition technology such as RF sputter deposition, electron beam deposition, thermal spray deposition, and or plasma spray deposition, it is possible to use multiple sources to lay down a graded film. In this way, the discrete interface between layers of distinct composition and functional character is replaced by a gradual transition of from one layer to the other. The result, as with the discrete layer composites described above, is a bi-functionally compatible ionically conductive composite 220 stable on one side 214 to lithium or other active metal (first material), and on the other side 216 substantially impervious and stable to ambient conditions, and ultimately, when incorporated into a battery cell, to the cathode, other battery cell components (second material), h this embodiment, the proportion of the first material to the second material in the composite may vary widely based on ionic conductivity and mechanical strength issues, for example. In many, but not all, embodiments the second material will dominate. For example, suitable ratios of first to second materials may be 1-1000 or 1-500, for example about 1 to 200 where the second material has greater strength and ionic conductivity than the first (e.g., 2000A of LiPON and 20-30microns of OHARA glass-ceramic). The transition between materials may occur over any (e.g., relatively short, long or intermediate) distance in the composite. Other aspects of the invention apply to these graded protective composites substantially as to the discrete-layered laminate protective composites, for example, they may be used in the electrode and cell embodiments, etc. Fig. 3A illustrates an encapsulated anode structure incorporating a protective laminate composite in accordance with the present invention. The structure 300 includes an active metal electrode 308, e.g., lithium, bonded with a current collector 310, e.g., copper, and a protective composite 302. The protective composite 302 is composed of a first layer 304 of a material that is both ionically conductive and chemically compatible with an active metal electrode material, but not chemically compatible with oxidizing materials (e.g., air). For example, the first layer, in contact with the active metal, may be composed, in whole or in part, of active metal nitrides, active metal phosphides or active metal halides. Specific examples include Li3N, Li P, Lil, LiBr, LiCl and LiF. The thickness of the first material layer is preferably about 0.1 to 5 microns, or 0.2 to 1 micron, for example about 0.25 micron. Active metal electrode materials (e.g., lithium) may be applied to these materials, or they may be formed in situ by contacting precursors such as metal nitrides, metal phosphides, metal halides, red phosphorus, iodine and the like with lithium. The in situ formation of the first layer may be by way of conversion of the precursors to a lithiated analog, for example, according to reactions of the following type (using P, CuN3, and Pbl2 precursors as examples): 1. 3Li + P = Li3P (reaction of the precursor to form Li-ion conductor); 2(a). 3Li + Cu3N = Li3N + 3 Cu (reaction to form Li-ion conductor/metal composite); 2(b). 2Li + Pbl2 = 2 Lil + Pb (reaction to form Li-ion conductor/metal composite). First layer composites, which may include electronically conductive metal particles, formed as a result of in situ conversions meet the requirements of a first layer material for a protective composite in accordance with the present invention and are therefore within the scope of the invention. A second layer 306 of the protective composite is composed of a substantially impervious, ionically conductive and chemically compatible with the first material or precursor, including glassy or amorphous metal ion conductors, such as a phosphorus- based glass, oxide-based glass, phosphorus-oxynitride-based glass, sulfur-based glass, oxide/sulfide based glass, selenide based glass, gallium based glass, germanium-based glass or boracite glass; ceramic active metal ion conductors, such as lithium beta- alumina, sodium beta-alumina, Li superionic conductor (LISICON), Na superionic conductor (NASICON), and the like; or glass-ceramic active metal ion conductors. Specific examples include LiPON, Li3PO4.Li2S.SiS2, Li2S.GeS2.Ga2S3, Li2O-l lAl2O3, Na2O-l lAl2O3, (Na, Li)ι+xTi2- xAlx(PO4)3 (0.6< x< 0.9) and crystallographically related structures, Na3Zr2Si2P012, Li3Zr2Si2PO12, Na5ZrP3O12, Na5TiP3O12, Na3Fe2P3O12, Na4NbP3O12, Li5ZrP3O12) Li5TiP3O12, Li3Fe2P3O12 and Li4NbP3O12, and combinations thereof, optionally sintered or melted. Suitable ceramic ion active metal ion conductors are described, for example, in US Patent No. 4,985,317 to Adachi et al, incorporated by reference herein in its entirety and for all purposes. Suitable glass-ceramic ion active metal ion conductors are described, for example, in US Patents Nos. 5,702,995, 6,030,909, 6,315,881 and 6,485,622, previously incorporated herein by reference and are available from OHARA Corporation, Japan. The ionic conductivity of the composite is at least 10"7S/cm, generally at least
10"6S/cm, for example at least 10"5S/cm to 10"4S/cm, and as high as 10"3S/cm or higher. The thickness of the second material layer is preferably about 0.1 to 1000 microns, or, where the ionic conductivity of the second material layer is about 10"7 S/cm, about 0.25 to 1 micron, or, where the ionic conductivity of the second material layer is between about 10" about 10"3 S/cm, 10 to 1000 microns, preferably between 1 and 500 micron, and more preferably between 10 and 100 microns, for example 20 microns. When the anode structure is incorporated in a battery cell, the first layer 304 is adjacent to an active metal (e.g., lithium) anode and the second layer 306 is adjacent to an electrolyte or, where the second layer is the sole electrolyte in the battery cell, a cathode. Either layer may also include additional components. For instance, a suitable first active metal compatible layer 304 may include a polymer component to enhance its properties. For example, polymer-iodine complexes like poly(2-vinylpyridine)- iodine (P2VP-I2), polyethylene-iodine, or with tetraalkylammonium-iodine can react with Li to form a Lil-based film having significantly higher ionic conductivity than that for pure Lil. Also, for solid state applications, a suitable second layer 306 may include a polymer component to enhance its properties. For example, a glass-ceramic active metal ion conductor like that available from OHARA Corporation, described above, may be fabricated within a polymer matrix that renders it flexible while maintaining its high ionic conductivity (available from OHARA Corporation, Japan). In addition, the layers may be formed using a variety of techniques. These include deposition or evaporation (including e-beam evaporation) of layers of material, such as LiN3 or an ionically conductive glass. Also, as noted above, the active metal electrode adjacent layer may be formed in situ from the non-deleterious reaction of one or more precursors with the active metal electrode. For example, a LiN3 layer may be formed on a Li anode by contacting CuN3 with the Li anode surface, or LiP3 may be formed on a Li anode by contacting red phosphorus with the Li anode surface. As noted above with regard to the protective membrane separator structures described in connection with Figs. 2A and B, in addition to the protective composite laminates described above, a protective composite in accordance with the present invention may alternatively be compositionally and functionally graded, as illustrated in Fig. 3B. Through the use of appropriate deposition technology such as RF sputter deposition, electron beam deposition, thermal spray deposition, and or plasma spray deposition, it is possible to use multiple sources to lay down a graded film. In this way, the discrete interface between layers of distinct composition and functional character is replaced by a gradual transition of from one layer to the other. The result, as with the discrete layer composites described above, is a bi-functionally compatible ionically conductive composite 320 stable on one side 314 to lithium or other active metal (first material), and on the other side 316 substantially impervious and stable to the cathode, other battery cell components and preferably to ambient conditions (second material). As noted with reference to the graded separator in Fig. 2B, in this embodiment the proportion of the first material to the second material in the composite may vary widely based on ionic conductivity and mechanical strength issues, for example. In many, but not all, embodiments the second material will dominate. For example, suitable ratios of first to second materials may be 1-1000 or 1-500, for example about 1 to 200 where the second material has greater strength and ionic conductivity than the first (e.g., 2000A of LiPON and 20-30microns of OHARA glass-ceramic). The transition between materials may occur over any (e.g., relatively short, long or intermediate) distance in the composite. Also, an approach may be used where a first material and second material are coated with another material such as a transient and/or wetting layer. For example, an OHARA glass ceramic plate is coated with a LiPON layer, followed by a thin silver (Ag) coating. When lithium is evaporated onto this structure, the Ag is converted to Ag-Li and diffuses, at least in part, into the greater mass of deposited lithium, and a protected lithium electrode is created. The thin Ag coating prevents the hot (vapor phase) lithium from contacting and adversely reaction with the LiPON first material layer. After deposition, the solid phase lithium is stable against the LiPON. A multitude of such transient/wetting (e.g., Sn) and first layer material combinations can be used to achieve the desired result. Thus, the invention encompasses protected anode structures with fully-formed protective layers and battery separators incorporating ambient stable precursors, each of which may be handled or stored in normal ambient atmospheric conditions without degradation prior to incorporation into a battery cell. Battery cells and methods for making separators, anode structures and battery cells are also provided. Battery Cells Protected active metal anodes as described herein may be incorporated into a variety of battery cell structures. These includes fully solid state battery cells and battery cells with gel and liquid electrolyte systems, including, but not limited to, those described in the patents of PolyPlus Battery Company, referenced herein. Solid and Gel State Batteries A solid state battery cell in accordance with the present invention may include a protected anode as described herein against a polymer electrolyte such as polyethylene oxide (PEO), and a PEO/carbon/metal-oxide type cathode. Alternatively, gel-state electrolytes in which non-aqueous solvents have been gelled through the use of a gelling agent such as polyacrylonitrile (PAN), polyethylene oxide (PEO), polyvinylidene fluoride (PVDF), or polymerizable monomers that are added to the non-aqueous solvent system and polymerized in situ by the use of heat or radiation may be used. Examples of suitable solid and gel state electrolytes and batteries incorporating them are described, for example, in US Patent No. 6,376,123, issued April 23, 2002 and titled RECHARGEABLE POSΠTVE ELECTRODES, assigned to PolyPlus Battery Company, the assignee of the present application, which is incorporated herein by reference in its entirety and for all purposes. Liquid Electrolytes One of the main requirements of the liquid electrolyte system for all Li-metal and Li-ion battery cells is its compatibility with the anode material. The liquid electrolytes of existing Li-metal and Li-ion cells are not thermodynamically stable toward Li metal, Li alloys, and Li-C compounds, but rather kinetically stable due to formation of a solid electrolyte interface (SEI) protecting the anode surface from a continuous reaction with components of the electrolyte. Therefore, only a very limited spectrum of aprotic solvents and supporting salts is suitable for use in Li-metal and Li-ion batteries with an unprotected anode. In particular, the binary, ternary or multicomponent mixtures of alkyl carbonates or their mixtures with ethers are used as solvents, and LiPF6 is generally used as a supporting salt in electrolytes for Li-ion batteries. The main component of these solvent mixtures is ethylene carbonate (EC). It has been shown that without the presence of EC in the electrolyte, the SEI formed does not provide enough protection for anode surface, and cell's cyclability is very poor. However, EC has a high melting point of 35 °C and a high viscosity that limits the rate capability and the cell's low temperature performance. Another important disadvantage of existing Li-ion batteries is the irreversible capacity loss during the first charge associated with in situ formation of the SEI. Protection of the anode with an ionically conductive protective membrane in accordance with the present invention allows for use of a very wide spectrum of solvents and supporting salts in rechargeable and primary batteries with Li metal anodes. The protected anode is completely decoupled from the electrolyte, so electrolyte compatibility with the anode is no longer an issue; solvents and salts which are not kinetically stable to Li can be used. Improved performance can be obtained with conventional liquid electrolytes, as noted above and as described, for example, in US Patent No. 6,376,123, previously incorporated herein by reference. Moreover, the electrolyte solution can be composed of only low viscosity solvents, such as ethers like 1,2-dimethoxy ethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran, 1 ,3-dioxolane (DIOX), 4-methyldioxolane (4-MeDIOX) or organic carbonates like dimethylcarbonate (DMC), ethylmethylcarbonate (EMC), diethylcarbonate (DEC), or their mixtures. Also, super low viscosity ester solvents or co-solvents such as methyl formate and methyl acetate, which are very reactive to unprotected Li, can be used. As is known to those skilled in the art, ionic conductivity and diffusion rates are inversely proportional to viscosity such that all other things being equal, battery performance improves as the viscosity of the solvent decreases. The use of such electrolyte solvent systems significantly improves battery performance, in particular discharge and charge characteristics at low temperatures. Ionic Liquids Ionic liquids are organic salts with melting points under 100 degrees, often even lower than room temperature. The most common ionic liquids are imidazolium and pyridinium derivatives, but also phosphonium or tetralkylammonium compounds are also known. Ionic liquids have the desirable attributes of high ionic conductivity, high thermal stability, no measurable vapor pressure, and non-flammability. Representative ionic liquids are l-Ethyl-3-methylimidazolium tosylate (EMLM-Ts), 1- Butyl-3-methylimidazolium octyl sulfate (BMIM-OctSO4), l-Ethyl-3- methylimidazolium hexafluorophosphate, and l-Hexyl-3-methylimidazolium tetrafluoroborate. Although there has been substantial interest in ionic liquids for electrochemical applications such as capacitors and batteries, they are unstable to metallic lithium and lithiated carbon. However, protected lithium anodes as described in this invention are isolated from direct chemical reaction, and consequently lithium metal batteries using ionic liquids can be developed as an embodiment of the present invention. Such batteries should be particularly stable at elevated temperatures. Cathodes Another important advantage associated with the use of ionically conductive protective membranes in accordance with the present invention in battery cells is that both lithiated intercalation compounds and unlithiated intercalation compounds can be used as cathode materials. As a result, protection of the anode with ionically conductive composite materials allows for use of a variety of 2, 3, 4 and 5 V cathodes suitable for fabrication of primary and rechargeable batteries for a wide range of applications. Examples of lithiated metal oxide based cathodes suitable for rechargeable cells with protected Li anodes in accordance with the present invention include: LixCoO2, LixNiO2, LixMn20 and LiFePO . Examples of unlithiated metal oxide or sulfide based cathodes suitable for use both for primary and rechargeable cells with protected Li anodes in accordance with the present invention include: AgxV2O5, CuxV2O5, V2O5, V60i3, FeS2 and TiS2. Examples of metal oxide based cathodes suitable for primary cells with protected Li anodes in accordance with the present invention include: Mn02, CuO, Ag2CrO4 and MoO3. Examples of metal sulfide based positive electrodes for primary cells with protected Li anodes in accordance with the present invention include: CuS and FeS. In addition, active sulfur cathodes including elemental sulfur and polysulfides, as described in the patents of PolyPlus Battery Company cited and incorporated by reference below are suitable cathodes for protected lithium metal anode battery cells in accordance with the present invention. Fabrication Techniques Materials and techniques for fabrication of active metal battery cells are described, for example, in US Patents Nos. 5,686,201and 6,376,123 issued to Chu on November 11, 1997. Further description of materials and techniques for fabrication of active metal battery cells having anode protective layers are described, for example, in U.S. Patent Application No. 09/139,601, filed August 25, 1998 (now U.S. Patent No. 6,214,061, issued April 10, 2001), titled ENCAPSULATED LITHIUM ALLOY ELECTRODES HAVING BARRIER LAYERS, and naming May-Ying Chu, Steven J. Visco and Lutgard C. DeJonge as inventors; U.S. Patent Application No. 09/086,665 filed May 29, 1998 (now U.S. Patent No. 6,025,094, issued May 15, 2000), titled PROTECTIVE COATINGS FOR NEGATIVE ELECTRODES, and naming Steven J. Visco and May-Ying Chu as inventors; U.S. Patent Application No. 09/139,603 filed August 25, 1998 (now U.S. Patent No. 6,402,795, issued June 11, 2002), titled "PLATING METAL NEGATIVE ELECTRODES UNDER PROTECTIVE COATINGS," and naming May-Ying Chu, Steven J. Visco and Lutgard C. DeJonghe as inventors; U.S. Patent Application No. 09/139,601 filed August 25, 1998 (now U.S. Patent No. 6,214,061, issued April 10, 2001), titled "METHOD FOR FORMING ENCAPSULATED LITHIUM ELECTRODES HAVING GLASS PROTECTIVE LAYERS," and naming Steven J. Visco and Floris Y. Tsang as inventors. The active metal electrode may also be an active metal alloy electrode, as further described in U.S. Patent Application No. 10/189,908 filed July 3, 2002, titled "ENCAPSULATED ALLOY ELECTRODES," and naming Steven J. Visco, Yevgeniy S. Nimon and Bruce D. Katz as inventors. The battery component materials, including anodes, cathodes, separators, protective layers, etc., and techniques disclosed therein are generally applicable to the present invention and each of these patent applications is incorporated herein by reference in its entirety for all purposes. In particular, a protective membrane in accordance with the present invention may be formed using a variety of methods. These include deposition or evaporation. Protective membrane composites of the present invention may be formed by deposition or evaporation (including e-beam evaporation) of the first layer of material or precursor on the second layer of material. Also, as noted above and described further below, the first layer may be formed in situ from the non-deleterious reaction of one or more precursors with an active metal electrode or material, by deposition or evaporation of lithium on the precursor, by direct contact of the precursor with a lithium metal (e.g., foil), or by plating of the precursor with lithium through a second layer material. In some embodiments, the second layer material may also be formed on the first layer material, as described further below. Referring to Fig. 4 A, a first method for forming a protective membrane composite in accordance with the present invention is shown. A first layer, that is a highly ionically conductive active metal chemically compatible material, is directly deposited onto a second layer material, that is a substantially impervious, ionically conductive material, for example, a highly ionically conductive glass or glass-ceramic material such as LiPON or an OHARA glass-ceramic material described above. This can be done by a variety of techniques including RF sputtering, e-beam evaporation, thermal evaporation, or reactive thermal or e-beam evaporation, for example. In the particular example illustrated in the figure, lithium is evaporated in a nitrogen plasma to form a lithium nitride (Li3N) layer on the surface of a glass-ceramic material such as the OHARA material described above. This is followed by evaporation of lithium metal onto the Li3N film. The Li3N layer separates the lithium metal electrode from the second material layer, but allows Li ions to pass from the Li electrode through the glass. Of course, other active metal, and first and second layer materials, as described herein, may be used as well. Alternatively, referring to Fig. 4B, a second method for forming a protective membrane composite in accordance with the present invention is shown. The ionically conductive chemically compatible first layer material is formed in situ following formation of a precursor layer on the second layer material. In the particular example illustrated in the figure, a surface of a glass-ceramic layer, for example one composed of the OHARA material described above, is coated with red phosphorus, a precursor for an active metal (in this case lithium) phosphide. Then a layer of lithium metal is deposited onto the phosphorus. The reaction of lithium and phosphorus forms Li3P according to the following reaction: 3Li + P = Li3P. Li3P is an ionically conductive material that is chemically compatible with both the lithium anode and the glass-ceramic material. In this way, the glass-ceramic (or other second layer material) is not in direct contact with the lithium electrode. Of course, other active metal, first layer precursor and second layer materials, as described herein, may be used as well. Alternative precursor examples include CuN3> which may be formed as a thin layer on a second layer material (e.g., glass-ceramic) and contacted with a Li anode in a similar manner according to the following reaction: 3Li + Cu3N = Li3N + 3 Cu; or lead iodide which may be formed as a thin layer on a polymer electrolyte and contacted with a Li anode in a similar manner according to the following reaction: 2Li + PbI2 = 2 LiI + Pb. h another alternative, illustrated in Fig. 5, a protective membrane composite in accordance with the present invention may alternatively be compositionally and functionally graded so that there is a gradual transition of from one layer to the other. For example, a plasma spray operation with two spray heads, one for the deposition of a first component material, such as Li3N, Cu3N, Li3P, LiPON, or other appropriate material, and the other for the deposition of a second component material, such as an OHARA glass-ceramic, may be used. The first plasma spray process begins by laying down a layer of pure glass-ceramic material, followed by a gradual decrease in flow as the second plasma spray torch is gradually turned on, finishing with the glass-ceramic spray head turned off, such that there is a gradient from pure glass-ceramic to pure LiPON or Li3N, etc., for example. In this way, one side of the membrane is stable to active metal (e.g., lithium, sodium, etc.) and the other side is substantially impervious and stable to the cathode, other battery cell components and preferably to ambient conditions. Electron beam deposition or thermal spray deposition may also be used. Given the parameters described herein, one or skill in the art will be able to use any of these techniques to form the graded composites of the invention. To form a protected anode, lithium is then bonded to the graded membrane on the first layer material (stable to active metal) side of the graded protective composite, for example by evaporation of lithium onto the protective composite as described above. It may also be desirable to add a bonding layer on top of the lithium stable side of the graded composite protective layer, such as Sn, Ag, Al, etc., before applying lithium. h any of the forgoing methods described with reference to Figs. 4A-B and 5, rather than forming a lithium (or other active metal) layer on the first layer material or precursor, the first layer material or precursor of the protective composite may be contacted with the lithium by bonding metallic lithium to the protective interlayer material or precursor, for example by direct contact with extruded lithium metal foil.
In a further embodiment, a suitable substrate, e.g., having a wetting layer, such as a film of tin on copper, may be coated with a first layer material precursor, e.g., Cu3N. This may then be coated with a second layer material, e.g., a (ionically) conductive glass. An active metal electrode may then be formed by plating the tin electrode with lithium (or other active metal), through the first and second layer materials. The Cu3N precursor is also converted to Li3N by this operation to complete the protective composite in accordance with the present invention on a lithium metal electrode. Details of an active metal plating process are described in commonly assigned US Patent No. 6,402,795, previously incorporated by reference. With regard to the fabrication methods described above it is important to note that commercial lithium foils are typically extruded and have numerous surface defects due to this process, many of which have deep recesses that would be unreachable by line-of-sight deposition techniques such as RF sputter deposition, thermal and E-beam evaporation, etc. Another issue is that active metals such as lithium may be reactive to the thin-film deposition environment leading to further deterioration of the surface during the coating process. This typically leads to gaps and holes in a membrane deposited onto the surface of an active metal electrode. However, by inverting the process, this problem is avoided; lithium is deposited on the protective membrane rather than the protective membrane being deposited on lithium. Glass, and glass-ceramic membranes can be made quite smooth either by melt-casting techniques, cut and polish methods, or a variety of known methods leading to smooth surfaces (lithium is a soft metal that cannot be polished). Single or multiple smooth, gap-free membranes may then be deposited onto the smooth surface. After deposition is complete, active metal can be deposited onto the smooth surface by evaporation, resulting is a active meta/protective membrane interface that is smooth and gap-free. Alternatively, a transient bonding layer such as Ag can be deposited onto the protective membrane such that extruded lithium foil can be joined to the membrane by pressing the foil against the Ag layer. Also as noted above, in an alternative embodiment of the invention the first layer may include additional components. For instance, a suitable first layer may include a polymer component to enhance its properties. For example, polymer-iodine complexes like poly(2-vinylpyridine)-iodine (P2VP-I2), polyethylene-iodine, or tetraalkylammonium-iodine can react with Li to form an ionically conductive Lil- based film that is chemically compatible with both an active metal and a second layer material as described herein. Without intending to be bound by theory, it is expected that the use of polymer-iodine charge transfer complexes can lead to formation of composites containing Lil and polymer and having significantly higher ionic conductivity than that for pure Lil. Other halogens may also be used in this manner, for example in bromine complexes. Referring to Fig. 6A, a first embodiment of this aspect of the present invention is shown. A polymer layer and a layer of iodine are coated on a second layer material surface and allowed to react forming polymer-iodine complex. According to this method, a thin layer of polymer may be applied to the second material layer (e.g., conductive glass) using brushing, dipping, or spraying. For example, a conductive glass layer may be coated with a thin (e.g., 0.5 to 2.0 micron, preferably 0.1 to 0.5 micron) layer of P2VP in this way. One technique for applying an iodine coating is sublimation of crystalline iodine that can be achieved at room temperature (e.g., about 20 to 25°C) in a reactor placed in the dry box or in a dry room. A sublimed layer of iodine can be made very thin (e.g., 0.05 to 1.0 microns and the rate of sublimation can be adjusted by varying the temperature or distance between the substrate and source of iodine. Alternatively, high concentrations (e.g., 50 to 100 g/liter of iodine can be dissolved in an organic solvent, such as acetonitrile and n-heptane. Dissolved iodine can be coated on the conductive glass surface by such methods as dip coating, spraying or brushing, among others. In this case, treatment conditions can be easily changed by varying the length of coating treatment and iodine concentrations. Examples of iodine sources for this technique include metal iodides are Agl and Pbl2, which are known to be used as the cathode materials in solid-state batteries with Li anode and Lil-based solid electrolyte. Then, lithium (or other active metal) is contacted with the polymer-iodine complex on the conductive glass (or other second layer material), for example by evaporation or pressing onto the glass coated with this complex. The result is a Lil- containing composite protective barrier layer on the Li anode. Referring to Fig. 6B, an alternative embodiment of this aspect of the present invention is shown. A conductive glass (or other second layer material) surface is coated with a thin layer of iodine, such as by a technique described above, that can react with Li forming Lil layer (A). Active metal, for example lithium foil, can be coated with a thin layer of polymer (B), for example as described above, and then contacted with the iodine layer on the glass. After assembly, iodine reacts with the polymer layer and, as a result, Lil- containing composite protective barrier layer with reduced impedance is formed. Examples The following examples provide details illustrating advantageous properties, in particular very low impedance, of composite membrane protective structures in accordance with the present invention on lithium electrodes. These examples are provided to exemplify and more clearly illustrate aspects of the present invention and are in no way intended to be limiting. Example 1: Impedance measurements using LIPON in composite protective layer Approximately 0.75 microns of LiPON was RF sputter-deposited onto copper foil samples in a MRC 8671 Sputter Deposition system. Some of the copper foil samples were coated with an additional layer of Cu3N (approximately 0.9 microns) by RF Magnetron sputtering of a copper target in a nitrogen environment. One LiPON/Cu sample was transferred to a vacuum evaporator, and approximately 3 to 7 microns of lithium metal was evaporated directly onto the LiPON surface. Another Cu3N/LiPON/Cu sample was coated with a similar thickness of lithium. The impedance for the unprotected LiPON/Cu sample is shown in Fig. 7A; the evaporation of lithium onto the LiPON surface led to a dramatic rise in the resistance of the sample, which is undesirable for electrochemical devices. The beneficial effects of the protective Cu3N film is seen in Fig. 7B; the impedance is dramatically lower in this case.
Example 2: Impedance measurements using glass-ceramic active metal ion conductor (OHARA) in composite protective layer Samples of Li+ conductive glass-ceramic plates were received from OHARA Corporation. Approximately 3 to 7 microns of lithium was evaporated directly onto the OHARA glass-ceramic plate. The deleterious reaction of lithium with the electrolyte is seen in Fig. 8A; the impedance of the sample is quite large, approximately 40,000 Ωcm2. A film of Cu3N (about 0.9 microns thick) was RF Magnetron sputter-deposited onto a second sample of glass-ceramic plate, with subsequent evaporation of about 3 to 7 microns of lithium. The beneficial effect of the Cu3N film can be seen in Fig. 8B; the impedance of the glass-ceramic is dramatically improved relative to the plate without the Cu N film. Superimposition of Figs. 8A and 8B in Fig. 8C further illustrates the dramatic improvement in performance for the Cu3N protected plate. The ionically conductive nature of the protective film is seen in 8D, where lithium is moved across the Li/Cu3N/glass interface; this is presumably due to conversion of the ionically insulating Cu3N film to highly conductive Li3N + Cu. Conclusion Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. It should be noted that there are many alternative ways of implementing both the process and compositions of the present invention. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein. All references cited herein are incorporated by reference for all purposes.

Claims

CLAIMSWhat is claimed is:
1. An electrochemical device component, comprising: an active metal electrode having a first surface and a second surface; and a protective membrane on the first surface of the electrode and having a smooth gap-free interface therewith, the membrane being ionically conductive and chemically compatible with the active metal on a side in contact with the active metal electrode, and substantially impervious, ionically conductive and chemically compatible with active metal corrosive environments on the other side; wherein the ionic conductivity of the membrane is at least 10"7 S/cm.
2. The component of claim 1, wherein the protective membrane is a composite having a gradual transition between a first material and a second material.
3. The component of claim 2, wherein the composite comprises: the first material in contact with the electrode, the first material being ionically conductive and chemically compatible with the active metal; and the second material in contact with the first material, the second material being substantially impervious, ionically conductive and chemically compatible with the first material and active metal corrosive environments.
4. The component of claim 3, wherein the ratio of the first material to the second material in the composite is less than 1-1000.
5. The component of any preceding claim, wherein the ionic conductivity of the membrane is at least 10"6 S/cm.
6. The component of claim 5, wherein the ionic conductivity of the membrane is at least 10"5 S/cm.
7. The component of claim 6, wherein the ionic conductivity of the membrane is at least 10"4 S/cm.
8. The component of any preceding claim, wherein the active metal of the electrode is lithium or a lithium alloy.
9. The component of any of claims 3-8, wherein the first material comprises a material selected from the group consisting of active metal nitrides, active metal phosphides, and active metal halides, and active metal phosphorus oxynitride glass.
10. The component of any of claims 3-8, wherein the first material comprises a material selected from the group consisting of Li3N, Li3P and Lil, LiBr, LiCl, LiF, and LiPON.
11. The component of any of claims 3-10, wherein the second material comprises a material selected from the group consisting of glassy or amorphous metal ion conductors, ceramic active metal ion conductors, and glass-ceramic active metal ion conductors.
12. The component of any of claim 3-10, wherein the second material comprises a material selected from the group consisting of LiPON, Li3PO4.Li2S.SiS2, Li2S .GeS2.Ga2S3, LISICON, NASICON, sodium beta-alumina and lithium beta- alumina.
13. The component of any of claims 3-8 and 11-12, wherein the first material comprises a complex of an active metal halide and a polymer.
14. The component of any of claims 3-10 and 13, wherein the second material is an ion conductive glass-ceramic having the following composition: Composition mol % P2O5 26-55% SiO2 0-15% GeO2 + TiO2 25-50% in which GeO2 0-50% TiO2 0-50% ZrO2 0-10% M2O3 0 < 10% Al2O3 0-15% Ga2O3 0-15% Li2O 3-25%
and containing a predominant crystalline phase composed of Li1+x(M,Al,Ga)x(Ge 1. yTiy)2-x(P0 )3 where X< 0.8 and 0< Y< 1.0, and where M is an element selected from the group consisting of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb and/or and Li1+x+yQxTi2-xSiyP3-yO12 where 0< X< 0.4 and 0< Y< 0.6, and where Q is Al or Ga.
15. The component of any of claims 3-10 and 13, wherein the second material is a flexible membrane comprising particles of an ion conductive glass-ceramic having the following composition: Composition mol % P2O5 26-55% SiO2 0-15% GeO2 + TiO2 25-50% in which i GeO2 0-50% TiO2 0-50% ZrO2 0-10% M2O3 0 < 10% Al2O3 0-15% Ga2O3 0-15% Li2O 3-25%
and containing a predominant crystalline phase composed of Li1+x(M,Al,Ga)x(Ge . yTiy)2-x(PO )3 where X< 0.8 and 0< Y< 1.0, and where M is an element selected from the group consisting of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb and/or and Li1+x+yQxTi2-xSiyP3-yO12 where 0< X< 0.4 and 0< Y< 0.6, and where Q is Al or Ga in a solid polymer electrolyte.
16. The component of any of claims 3-10 and 13, wherein the second material is an ion conductive ceramic having the following composition: Composition mol %
Figure imgf000033_0001
SiO2 0-15% GeO2 + TiO2 25-50% in which GeO2 0-50% TiO2 0-50% ZrO2 0-10% M2O3 0 < 10% Al2O3 0-15% Ga2O3 0-15% __ __
and containing a predominant crystalline phase composed of Liι+x(M,Al,Ga)x(Ge \. yTiy)2-x(PO4)3 where X< 0.8 and 0< Y< 1.0, and where M is an element selected from the group consisting of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb and/or and Li1+x+yQxTi2-xSiyP3-y012 where 0< X< 0.4 and 0< Y< 0.6, and where Q is Al or Ga.
17. The component of any preceding claim, further comprising a current collector on the second surface of the active metal electrode.
18. A protective composite battery separator, comprising: a protective membrane, the membrane being ionically conductive and chemically compatible with an active metal on a first side, and substantially impervious, ionically conductive and chemically compatible with active metal corrosive environments on the other side; wherein the ionic conductivity of the membrane is at least 10"7 S/cm.
19. The separator of claim 18, wherein the protective membrane is a composite having a gradual transition between a first material and a second material.
20. The separator of claim 19, wherein the composite comprises: the first material in contact with the electrode, the first material being ionically conductive and chemically compatible with the active metal; and the second material in contact with the first material, the second material being substantially impervious, ionically conductive and chemically compatible with the first material and active metal corrosive environments.
21. A method of fabricating an electrochemical device component, the method comprising: providing a protective membrane, the membrane being ionically conductive and chemically compatible with an active metal on a first side, and substantially impervious, ionically conductive and chemically compatible with active metal corrosive environments on the other side, the membrane having ionic conductivity of at least 10"7 S/cm; applying an active metal material to the first side of the composite to form an active metal anode.
22. The method of claim 21, wherein the protective membrane is a composite having a gradual transition between a first material and a second material.
23. An active metal battery cell, comprising: an active metal negative electrode having a first surface and a second surface; a protective membrane on the first surface of the electrode and having a smooth gap-free interface therewith, the membrane being ionically conductive and chemically compatible with the active metal on a side in contact with the active metal electrode, and substantially impervious, ionically conductive and chemically compatible with active metal corrosive environments on the other side, the membrane having wherein ionic conductivity of at least 10"7 S/cm; optionally, an electrolyte; and a positive electrode.
24. The battery cell of claim 23, wherein the protective membrane is a composite having a gradual transition between a first material and a second material.
25. The battery cell of claim 24, wherein the composite comprises: the first material in contact with the electrode, the first material being ionically conductive and chemically compatible with the active metal; and the second material in contact with the first material, the second material being substantially impervious, ionically conductive and chemically compatible with the first material and active metal corrosive environments.
26. The battery cell of claim 23, wherein the membrane is the sole electrolyte.
27. The battery cell of claim 23, further comprising a solid polymeric electrolyte.
28. The battery cell of claim 23, further comprising a gel type electrolyte comprising one or more non-aqueous electrolytes gelled with a gelling agent.
29. The battery cell of claim 28, wherein the electrolyte is selected from the group consisting of methyl cellulose, polyacrylonitrile (PAN), polyvinylidene fluoride (PNDF), PEO, and monomers that can be gelled in situ with heat or radiation.
30. The battery cell of claim 23, wherein the cell comprises a liquid electrolyte.
31. The battery cell of claim 30, wherein the liquid electrolyte consists essentially of organic solvents having a lower viscosity than that of ethylene carbonate.
32. The battery cell of claim 31 , wherein the liquid electrolyte comprises solvents selected from the group consisting of ethers, esters, and organic carbonates.
33. The battery cell of claim 32, wherein the liquid electrolyte comprises solvents selected from the group consisting of 1 ,2-dimethoxy ethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran, 1,3-dioxolane (DIOX), 4-methyldioxolane (4-MeDIOX), dimethylcarbonate (DMC), ethylmethylcarbonate (EMC), diethylcarbonate (DEC), and mixtures thereof.
34. The battery cell of claim 33, wherein the liquid electrolyte further comprises solvents selected from the group consisting of methyl formate (MF) and methyl acetate (MA).
35. The battery cell of claim 23, wherein the cell comprises an ionic liquid electrolyte.
36. The battery cell of claim 35, wherein the ionic liquid is selected from the group consisting of imidazolium and pyridinium derivatives and phosphonium and tetralkylammonium compounds comprising l-Ethyl-3-methylimidazolium tosylate (EMEVI-Ts), l-Butyl-3-methylimidazolium octyl sulfate (BMIM-OctSO4), l-Ethyl-3- methylimidazolium hexafluorophosphate, and l-Hexyl-3-methylimidazolium tetrafluoroborate.
37. The battery cell of claim 23, wherein the anode is lithium metal and the cathode is one of lithiated intercalation compounds and unlithiated intercalation compounds.
38. The battery cell of claim 37, wherein the cathode is selected to provide a cell voltage of from about 2 to 5 Volts.
39. The battery cell of claim 37, wherein the cathode is selected from the group consisting of LixCo02, LixNiO2, LixMn2O4, LiFePO4, AgxV2O5, CuxV2O5, V2O5,
V6O13, FeS2, TiS2, MnO2, CuO, Ag2CrO4, MoO3, CuS and FeS.
40. The battery cell of any of claim 23, wherein the anode comprises lithium metal and the cathode comprises active sulfur.
41. The battery cell of claim 40, wherein the cathode is selected from the group consisting of elemental sulfur and polysulfides.
42. The battery cell of claim 25, wherein the ratio of the first material to the second material in the composite is less than 1-1000.
43. The battery cell of any of claims 23-42, wherein the ionic conductivity of the membrane is at least 10" S/cm.
44. The battery cell of claim 43, wherein the ionic conductivity of the membrane is at least 10"5 S/cm.
45. The battery cell of claim 44, wherein the ionic conductivity of the membrane is at least 10"4 S/cm.
46. The battery cell of any of claims 25-45, wherein the first material comprises a material selected from the group consisting of active metal nitrides, active metal phosphides, and active metal halides, and active metal phosphorus oxynitride glass.
47. The battery cell of any of claims 25-45, wherein the first material comprises a material selected from the group consisting of Li3N, Li3P and Lil, LiBr, LiCl, LiF, and LiPON.
48. The battery cell of any of claims 25-47, wherein the second material comprises a material selected from the group consisting of glassy or amorphous metal ion conductors, ceramic active metal ion conductors, and glass-ceramic active metal ion conductors.
49. The battery cell of any of claim 25-47, wherein the second material comprises a material selected from the group consisting of LiPON, Li3PO4.Li2S.SiS2, Li2S.GeS2.Ga2S3, LISICON, NASICON, sodium beta-alumina and lithium beta- alumina.
50. The battery cell of any of claims 25-45 and 48-49, wherein the first material comprises a complex of an active metal halide and a polymer.
51. The battery cell of any of claims 25-47 and 50, wherein the second material is an ion conductive glass-ceramic having the following composition: Composition mol % P2O5 26-55% SiO2 0-15% Ge02 + TiO2 25-50% in which GeO2 0-50% TiO2 0-50% ZrO2 0-10% M203 0 < 10% A1203 0-15% Ga2O3 0-15% Li20 3-25%
and containing a predominant crystalline phase composed of Li1+x(M,Al,Ga)x(Ge μ yTiy)2-x(PO )3 where X< 0.8 and 0< Y< 1.0, and where M is an element selected from the group consisting of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb and/or and Li1+x+yQxTi2-xSiyP3-yO12 where 0< X< 0.4 and 0< Y< 0.6, and where Q is Al or Ga.
52. The battery cell of any of claims 25-47 and 50, wherein the second material is a flexible membrane comprising particles of an ion conductive glass-ceramic having i the following composition: Composition mol % P2O5 26-55% SiO2 0-15% Ge02 + TiO2 25-50% in which GeO2 0-50% TiO2 0-50% ZrO2 0-10% M203 0 < 10% A1203 0-15% Ga203 0-15% Li20 3-25% and containing a predominant crystalline phase composed of Li1+x(M,Al,Ga)x(Ge ι_ yTiy)2-x(P04)3 where X< 0.8 and 0< Y< 1.0, and where M is an element selected from the group consisting of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb and/or and Li1+x+yQxTi2-xSiyP3-yO12 where 0< X< 0.4 and 0< Y< 0.6, and where Q is Al or Ga in a solid polymer electrolyte.
53. The battery cell of any of claims 25-47 and 50, wherein the second material is an ion conductive ceramic having the following composition: Composition mol % P2O5 26-55% SiO2 0-15% GeO2 + TiO2 25-50% in which GeO2 0-50% TiO2 0-50% ZrO2 0-10% M2O3 0 < 10 ) __ o-15% Ga2O3 0-15% Li2O 3-25%
and containing a predominant crystalline phase composed of Li1+x(M,Al,Ga)x(Ge ι_ yTiy) -x(PO )3 where X< 0.8 and 0< Y< 1.0, and where M is an element selected from the group consisting of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb and/or and Li1+x+yQxTi2-xSiyP3-yO12 where 0< X< 0.4 and 0< Y< 0.6, and where Q is Al or Ga.
54. The battery cell of claims 23-53, further comprising a current collector on the second surface of the active metal electrode.
55. The battery cell of any of claims 23-54, wherein the cell is a primary cell.
56. The battery cell of any of claims 23-54, wherein the cell is a secondary cell.
57. The method of claim 22, wherein the composite comprises: the first material in contact with the electrode, the first material being ionically conductive and chemically compatible with the active metal; and the second material in contact with the first material, the second material being substantially impervious, ionically conductive and chemically compatible with the first material and active metal corrosive environments.
58. The method of claim 57, wherein the forming of the membrane comprises: deposition of the membrane by a multi-source deposition operation.
59. The method of claim 58, wherein the deposition operation is selected from the group consisting of plasma spray, electron beam deposition and thermal spray.
60. The method of claim 59, wherein the deposition operation is plasma spray.
61. The method of claim 60, wherein the plasma spray operation is conducted with a plurality of spray heads comprising a first spray head for the deposition of the first material or a first material precursor, and a second spray head for the deposition of the second material.
62. The method of claim 61, wherein the plasma spray process begins by depositing a layer of pure second material by the second spray head, followed by a gradual decrease in flow from the second spray head as the first spray head is gradually turned on, and finishing with the second spray head turned off, such that there is a gradient from pure second material to pure first material or precursor.
63. The method of any of claims 57-62, wherein the active metal of the anode is lithium or a lithium alloy.
64. The method of any of claims 57-63, wherein the first material and precursors are selected from the group consisting of active metal nitrides, active metal phosphides, active metal halides, active metal phosphorus oxynitride glass, a complex of an active metal halide and a polymer, metal nitrides, red phosphorus, amines, phosphines, borazine (B3N3H6), triazine (C3N3H3) and halides.
65. The method of any of claims 57-64, wherein the second material is selected from the group consisting of substantially impervious phosphorus-based glass, oxide- based glass, sulfur-based glass, oxide/sulfide based glass, selenide based glass, gallium based glass, germanium based glass, glass-ceramic active metal ion conductors, sodium beta-alumina and lithium beta-alumina.
66. The method of any of claims 57-65, wherein the first material or precursor layer is LiPON, and the active metal anode is lithium deposited by evaporation on a transient layer formed on the LiPON prior to lithium deposition, whereby the transient layer prevents reaction between vapor phase lithium and the LiPON.
67. The method of claim 66, wherein the transient layer comprises a metal miscible in lithium.
68. The method of claim 67, wherein the metal is Ag.
69. The method of any of claims 22-23 and 57-68, further comprising applying a current collector to the active metal anode.
PCT/US2004/033372 2003-10-14 2004-10-08 Ionically conductive membranes for protection of active metal anodes and battery cells WO2005038962A2 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US51171003P 2003-10-14 2003-10-14
US60/511,710 2003-10-14
US51894803P 2003-11-10 2003-11-10
US60/518,948 2003-11-10
US10/731,771 2003-12-05
US10/731,771 US7282302B2 (en) 2002-10-15 2003-12-05 Ionically conductive composites for protection of active metal anodes
US10/772,228 US7390591B2 (en) 2002-10-15 2004-02-03 Ionically conductive membranes for protection of active metal anodes and battery cells
US10/772,228 2004-02-03

Publications (2)

Publication Number Publication Date
WO2005038962A2 true WO2005038962A2 (en) 2005-04-28
WO2005038962A3 WO2005038962A3 (en) 2005-12-29

Family

ID=34468491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/033372 WO2005038962A2 (en) 2003-10-14 2004-10-08 Ionically conductive membranes for protection of active metal anodes and battery cells

Country Status (2)

Country Link
US (1) US7390591B2 (en)
WO (1) WO2005038962A2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038953A2 (en) * 2003-10-14 2005-04-28 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US7824806B2 (en) 2005-08-09 2010-11-02 Polyplus Battery Company Compliant seal structures for protected active metal anodes
US7998626B2 (en) 2003-11-10 2011-08-16 Polyplus Battery Company Active metal fuel cells
US8048570B2 (en) 2005-08-09 2011-11-01 Polyplus Battery Company Compliant seal structures for protected active metal anodes
US8129052B2 (en) 2005-09-02 2012-03-06 Polyplus Battery Company Polymer adhesive seals for protected anode architectures
US8236446B2 (en) 2008-03-26 2012-08-07 Ada Technologies, Inc. High performance batteries with carbon nanomaterials and ionic liquids
US8277691B2 (en) 2008-05-05 2012-10-02 Ada Technologies, Inc. High performance carbon nanocomposites for ultracapacitors
US8284539B2 (en) 2006-08-02 2012-10-09 Ada Technologies, Inc. High performance ultracapacitors with carbon nanomaterials and ionic liquids
US8404388B2 (en) 2005-08-09 2013-03-26 Polyplus Battery Company Compliant seal structures for protected active metal anodes
US9627691B2 (en) 2013-02-07 2017-04-18 Ada Technologies, Inc. Metalized, three-dimensional structured oxygen cathode materials for lithium/air batteries and method for making and using the same
US9660265B2 (en) 2011-11-15 2017-05-23 Polyplus Battery Company Lithium sulfur batteries and electrolytes and sulfur cathodes thereof
US9660311B2 (en) 2011-08-19 2017-05-23 Polyplus Battery Company Aqueous lithium air batteries
US9666850B2 (en) 2004-02-06 2017-05-30 Polyplus Battery Company Safety enhanced Li-ion and lithium metal battery cells having protected lithium electrodes with enhanced separator safety against dendrite shorting
US9905860B2 (en) 2013-06-28 2018-02-27 Polyplus Battery Company Water activated battery system having enhanced start-up behavior
CN108878970A (en) * 2018-06-29 2018-11-23 华中科技大学 A kind of composition polymer solid electrolyte, solid state lithium battery and preparation method thereof
CN109546210A (en) * 2018-11-14 2019-03-29 山东大学 A kind of high voltage solid lithium battery electrolyte and preparation method thereof
CN110451781A (en) * 2019-07-01 2019-11-15 中国科学院上海光学精密机械研究所 A kind of high ionic conductivity mixes chlorine molybdophosphate glass and preparation method thereof
CN110890542A (en) * 2020-01-14 2020-03-17 桑顿新能源科技(长沙)有限公司 Lithium ion battery anode material and preparation method thereof, lithium ion battery anode, lithium ion battery and power utilization equipment

Families Citing this family (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911280B1 (en) * 2001-12-21 2005-06-28 Polyplus Battery Company Chemical protection of a lithium surface
US20080057386A1 (en) 2002-10-15 2008-03-06 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
US7282302B2 (en) * 2002-10-15 2007-10-16 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
KR20050070053A (en) * 2002-10-15 2005-07-05 폴리플러스 배터리 컴퍼니 Ionically conductive composites for protection of active metal anodes
US7608178B2 (en) * 2003-11-10 2009-10-27 Polyplus Battery Company Active metal electrolyzer
US7282295B2 (en) * 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US20060078790A1 (en) * 2004-10-05 2006-04-13 Polyplus Battery Company Solid electrolytes based on lithium hafnium phosphate for active metal anode protection
US20060079601A1 (en) * 2004-10-13 2006-04-13 Gullo Mark J Foundry sandcore mold release composition
US20060079600A1 (en) * 2004-10-13 2006-04-13 Gopalratnam Usha S Anti-stick coating for surfaces
WO2007001201A1 (en) * 2005-06-24 2007-01-04 Universal Supercapacitors Llc Current collector for double electric layer electrochemical capacitors and method of manufacture thereof
US7833645B2 (en) 2005-11-21 2010-11-16 Relion, Inc. Proton exchange membrane fuel cell and method of forming a fuel cell
WO2007062220A2 (en) * 2005-11-23 2007-05-31 Polyplus Battery Company Li/air non-aqueous batteries
US8182943B2 (en) * 2005-12-19 2012-05-22 Polyplus Battery Company Composite solid electrolyte for protection of active metal anodes
US7875655B2 (en) 2006-01-20 2011-01-25 Material Innovations, Llc Carpet waste composite
US20080070104A1 (en) * 2006-09-19 2008-03-20 Caleb Technology Corporation Forming Polymer Electrolyte Coating on Lithium-Ion Polymer Battery Electrode
US7527894B2 (en) 2006-09-19 2009-05-05 Caleb Technology Corporation Identifying defective electrodes in lithium-ion polymer batteries
US20080070108A1 (en) * 2006-09-19 2008-03-20 Caleb Technology Corporation Directly Coating Solid Polymer Composite Having Edge Extensions on Lithium-Ion Polymer Battery Electrode Surface
US20080070103A1 (en) * 2006-09-19 2008-03-20 Caleb Technology Corporation Activation of Anode and Cathode in Lithium-Ion Polymer Battery
EP2087540A4 (en) * 2006-10-13 2014-01-22 Ceramatec Inc Advanced metal-air battery having a ceramic membrane electrolyte
EP2114648B1 (en) * 2006-11-22 2014-09-03 Material Innovations, LLC Wood-plastic composites using recycled carpet waste and methods of manufacturing
KR20090088427A (en) 2006-11-27 2009-08-19 유니버셜 수퍼캐패시터즈 엘엘씨 Electrode for use with double electric layer electrochemical capacitors having high specific parameters
US8332028B2 (en) * 2006-11-28 2012-12-11 Polyplus Battery Company Protected lithium electrodes for electro-transport drug delivery
US8472163B2 (en) * 2007-02-19 2013-06-25 Universal Supercapacitors Llc Negative electrode current collector for heterogeneous electrochemical capacitor and method of manufacture thereof
US8026020B2 (en) 2007-05-08 2011-09-27 Relion, Inc. Proton exchange membrane fuel cell stack and fuel cell stack module
US9293778B2 (en) 2007-06-11 2016-03-22 Emergent Power Inc. Proton exchange membrane fuel cell
US20090005824A1 (en) * 2007-06-29 2009-01-01 Polyplus Battery Company Electrotransport devices, methods and drug electrode assemblies
US8323820B2 (en) 2008-06-16 2012-12-04 Polyplus Battery Company Catholytes for aqueous lithium/air battery cells
US8771879B2 (en) * 2007-09-05 2014-07-08 Ceramatec, Inc. Lithium—sulfur battery with a substantially non-porous lisicon membrane and porous lisicon layer
US20090069740A1 (en) * 2007-09-07 2009-03-12 Polyplus Battery Company Protected donor electrodes for electro-transport drug delivery
US8012621B2 (en) 2007-11-26 2011-09-06 Ceramatec, Inc. Nickel-metal hydride battery using alkali ion conducting separator
US9209445B2 (en) 2007-11-26 2015-12-08 Ceramatec, Inc. Nickel-metal hydride/hydrogen hybrid battery using alkali ion conducting separator
US8216722B2 (en) 2007-11-27 2012-07-10 Ceramatec, Inc. Solid electrolyte for alkali-metal-ion batteries
US8088270B2 (en) * 2007-11-27 2012-01-03 Ceramatec, Inc. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides
US10320033B2 (en) 2008-01-30 2019-06-11 Enlighten Innovations Inc. Alkali metal ion battery using alkali metal conductive ceramic separator
US20090189567A1 (en) * 2008-01-30 2009-07-30 Joshi Ashok V Zinc Anode Battery Using Alkali Ion Conducting Separator
US8323817B2 (en) * 2008-09-12 2012-12-04 Ceramatec, Inc. Alkali metal seawater battery
US9475998B2 (en) 2008-10-09 2016-10-25 Ceramatec, Inc. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides
BRPI0922481A2 (en) 2008-12-19 2018-06-05 Fiber Composites Llc wood-plastic composites using ionomer capstocks and manufacturing methods
KR101943647B1 (en) * 2009-02-23 2019-01-29 가부시키가이샤 무라타 세이사쿠쇼 Nonaqueous electrolyte composition, nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
WO2010107833A2 (en) * 2009-03-16 2010-09-23 Ceramatec, Inc. Sodium-sulfur battery with a substantially non-porous membrane and enhanced cathode utilization
KR20120101414A (en) 2009-10-27 2012-09-13 솔베이 플루오르 게엠베하 Lithium sulfur battery
DK2497133T3 (en) 2009-11-05 2019-04-08 Field Upgrading Usa Inc SODIUM BASED SOLID SECONDARY CELL WITH A CERAMIC SODIUM CONDUCTIVE SEPARATOR
US9252455B1 (en) 2010-04-14 2016-02-02 Hrl Laboratories, Llc Lithium battery structures employing composite layers, and fabrication methods to produce composite layers
US8481195B1 (en) 2010-04-14 2013-07-09 Hrl Laboratories, Llc Lithium battery structures
US8735003B2 (en) 2010-06-16 2014-05-27 Alliance For Sustainable Energy, Llc Lithium-ion batteries having conformal solid electrolyte layers
US8771855B2 (en) 2010-08-11 2014-07-08 Ceramatec, Inc. Alkali metal aqueous battery
JP2013537699A (en) * 2010-08-24 2013-10-03 ビーエイエスエフ・ソシエタス・エウロパエア Electrolyte materials for use in electrochemical cells
US9831043B2 (en) 2010-09-09 2017-11-28 California Institute Of Technology Electrochemical energy storage systems and methods
CN103181016B (en) 2010-09-13 2016-06-22 加利福尼亚大学董事会 Ionic gel electrolyte, energy storage device and manufacture method thereof
US20120094193A1 (en) * 2010-10-19 2012-04-19 Robert Bosch Gmbh High specific-energy li/o2-co2 battery
US10170798B2 (en) 2010-12-01 2019-01-01 Field Upgrading Usa, Inc. Moderate temperature sodium battery
DE102011013018B3 (en) * 2011-03-04 2012-03-22 Schott Ag Lithium-ion conductive glass-ceramic and use of glass-ceramic
US20140045078A1 (en) 2011-04-26 2014-02-13 Solvay Sa Lithium air battery cell
US10158110B2 (en) 2011-07-11 2018-12-18 California Institute Of Technology Separators for electrochemical systems
US9379368B2 (en) 2011-07-11 2016-06-28 California Institute Of Technology Electrochemical systems with electronically conductive layers
KR101851564B1 (en) * 2011-10-27 2018-04-25 삼성전자주식회사 Electrolyte for lithium air battery and lithium air battery including the same
US8828575B2 (en) 2011-11-15 2014-09-09 PolyPlus Batter Company Aqueous electrolyte lithium sulfur batteries
US8828573B2 (en) 2011-11-15 2014-09-09 Polyplus Battery Company Electrode structures for aqueous electrolyte lithium sulfur batteries
US8828574B2 (en) 2011-11-15 2014-09-09 Polyplus Battery Company Electrolyte compositions for aqueous electrolyte lithium sulfur batteries
ES2733323T3 (en) * 2012-01-16 2019-11-28 Enlighten Innovations Inc Solid electrolyte compound alkaline ion conductor
US10355305B2 (en) 2012-01-16 2019-07-16 Enlighten Innovations Inc. Alkali metal intercalation material as an electrode in an electrolytic cell
KR20150016210A (en) 2012-03-01 2015-02-11 엑셀라트론 솔리드 스테이트 엘엘씨 High Capacity Solid State Composite Cathode, Solid State Composite Separator, Solid-State Rechargeable Lithium Battery and Methods of Making Same
US8932771B2 (en) 2012-05-03 2015-01-13 Polyplus Battery Company Cathode architectures for alkali metal / oxygen batteries
EP3339870B1 (en) * 2012-06-13 2021-08-04 LG Chem, Ltd. Apparatus and method for estimating soc of secondary battery including blended cathode material
KR102034718B1 (en) 2012-07-06 2019-10-22 삼성전자주식회사 Anode for lithium air battery and Lithium air battery comprising the anode
US9548511B2 (en) 2012-07-18 2017-01-17 Nthdegree Technologies Worldwide Inc. Diatomaceous energy storage devices
EP2875515B1 (en) 2012-07-18 2017-08-23 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10396365B2 (en) 2012-07-18 2019-08-27 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10854929B2 (en) 2012-09-06 2020-12-01 Field Upgrading Usa, Inc. Sodium-halogen secondary cell
US9793525B2 (en) 2012-10-09 2017-10-17 Johnson Battery Technologies, Inc. Solid-state battery electrodes
US9397341B2 (en) 2012-10-10 2016-07-19 Nthdegree Technologies Worldwide Inc. Printed energy storage device
US9520598B2 (en) 2012-10-10 2016-12-13 Nthdegree Technologies Worldwide Inc. Printed energy storage device
US9577289B2 (en) 2012-12-17 2017-02-21 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
US9362546B1 (en) 2013-01-07 2016-06-07 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
US10164231B2 (en) 2013-02-05 2018-12-25 Hrl Laboratories, Llc Separators for lithium-sulfur batteries
ES2817901T3 (en) * 2013-03-04 2021-04-08 Enlighten Innovations Inc Alkali metal intercalation material as an electrode in an electrolytic cell
US9276292B1 (en) 2013-03-15 2016-03-01 Imprint Energy, Inc. Electrolytic doping of non-electrolyte layers in printed batteries
US11888149B2 (en) 2013-03-21 2024-01-30 University Of Maryland Solid state battery system usable at high temperatures and methods of use and manufacture thereof
CA2820635A1 (en) * 2013-06-21 2014-12-21 Hydro-Quebec All-solid state polymer li-s electrochemical cells and their manufacturing processes
KR102071269B1 (en) 2013-07-17 2020-01-30 엔티에이치 디그리 테크놀로지스 월드와이드 인코포레이티드 Printed silver oxide batteries
EP3039737B1 (en) * 2013-08-30 2019-05-08 Robert Bosch GmbH Li-ion battery with coated electrolyte
ES2890654T3 (en) 2013-10-07 2022-01-21 Quantumscape Battery Inc Garnet Materials for Li Secondary Batteries and Manufacturing Methods and Use of the Garnet Materials
US10714724B2 (en) 2013-11-18 2020-07-14 California Institute Of Technology Membranes for electrochemical cells
WO2015074065A1 (en) 2013-11-18 2015-05-21 California Institute Of Technology Electrochemical separators with inserted conductive layers
US9520627B2 (en) 2014-03-06 2016-12-13 International Business Machines Corporation Ion conducting hybrid membranes
US10530011B1 (en) 2014-07-21 2020-01-07 Imprint Energy, Inc. Electrochemical cells and metal salt-based electrolytes
US9627727B2 (en) * 2014-07-22 2017-04-18 Toyota Motor Engineering & Manufacturing North America, Inc. Lithium-air battery with cathode separated from free lithium ion
KR20170070239A (en) * 2014-10-28 2017-06-21 유니버시티 오브 메릴랜드, 컬리지 파크 Interfacial layers for solid-state batteries and methods of making same
US10164289B2 (en) 2014-12-02 2018-12-25 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
US10147968B2 (en) 2014-12-02 2018-12-04 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
US11749834B2 (en) 2014-12-02 2023-09-05 Polyplus Battery Company Methods of making lithium ion conducting sulfide glass
US10601071B2 (en) 2014-12-02 2020-03-24 Polyplus Battery Company Methods of making and inspecting a web of vitreous lithium sulfide separator sheet and lithium electrode assemblies
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
EP3283450A4 (en) 2015-04-16 2018-10-17 QuantumScape Corporation Setter plates for solid electrolyte fabrication and methods of using the same to prepare dense solid electrolytes
US10847833B2 (en) 2015-05-21 2020-11-24 Sion Power Corporation Glass-ceramic electrolytes for lithium-sulfur batteries
CN107925081B (en) * 2015-08-11 2021-07-13 日本电气硝子株式会社 Negative electrode active material for electricity storage device
US9735445B2 (en) 2015-09-14 2017-08-15 Nanotek Instruments, Inc. Alkali metal or alkali-ion batteries having high volumetric and gravimetric energy densities
KR102644157B1 (en) * 2015-09-14 2024-03-07 나노텍 인스트러먼츠, 인코포레이티드 Alkali metal or alkaline-ion cells with high volumetric and gravimetric energy densities
WO2017096258A1 (en) 2015-12-02 2017-06-08 California Institute Of Technology Three-dimensional ion transport networks and current collectors for electrochemical cells
US10163540B2 (en) 2015-12-03 2018-12-25 Nanotek Instruments, Inc. Production process for highly conducting and oriented graphene film
EP3394918A1 (en) 2015-12-21 2018-10-31 Johnson IP Holding, LLC Solid-state batteries, separators, electrodes, and methods of fabrication
US10218044B2 (en) 2016-01-22 2019-02-26 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
US9966630B2 (en) 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
WO2017197039A1 (en) 2016-05-10 2017-11-16 Polyplus Battery Company Solid-state laminate electrode assemblies and methods of making
EP3455892B1 (en) 2016-05-13 2024-02-07 QuantumScape Battery, Inc. Solid electrolyte separator bonding agent
US11158880B2 (en) 2016-08-05 2021-10-26 Quantumscape Battery, Inc. Translucent and transparent separators
CN106129366A (en) * 2016-08-23 2016-11-16 贵州玉屏迈威科技有限公司 A kind of anode material of lithium battery and preparation method thereof
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US11916200B2 (en) 2016-10-21 2024-02-27 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
JP2019536235A (en) * 2016-11-22 2019-12-12 カムエクス パワー エルエルシーCAMX Power LLC Stable low voltage electrochemical cell
US10559398B2 (en) 2017-05-15 2020-02-11 International Business Machines Corporation Composite solid electrolytes for rechargeable energy storage devices
JP7326163B2 (en) * 2017-05-24 2023-08-15 シオン・パワー・コーポレーション Ionically conductive compound and related uses
US10347937B2 (en) 2017-06-23 2019-07-09 Quantumscape Corporation Lithium-stuffed garnet electrolytes with secondary phase inclusions
US11489193B2 (en) 2017-06-23 2022-11-01 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
US10868293B2 (en) 2017-07-07 2020-12-15 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
US10629950B2 (en) 2017-07-07 2020-04-21 Polyplus Battery Company Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
US10862171B2 (en) 2017-07-19 2020-12-08 Polyplus Battery Company Solid-state laminate electrode assembly fabrication and making thin extruded lithium metal foils
US11600850B2 (en) 2017-11-06 2023-03-07 Quantumscape Battery, Inc. Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
KR20200121827A (en) 2018-02-15 2020-10-26 유니버시티 오브 매릴랜드, 칼리지 파크 Aligned porous solid electrolyte structure, electrochemical device including same, and method of manufacturing same
CN108878751B (en) * 2018-07-03 2021-07-30 宁德卓高新材料科技有限公司 Conductive ceramic composite diaphragm and solid-state battery
CN109244369A (en) * 2018-10-24 2019-01-18 桑德集团有限公司 Lithium anode and preparation method thereof and all-solid lithium-ion battery
CN109830653B (en) * 2018-12-28 2022-01-04 北京立开源科技有限公司 Composite positive electrode of battery and electrochemical battery composed of composite positive electrode
US11569527B2 (en) 2019-03-26 2023-01-31 University Of Maryland, College Park Lithium battery
US11631889B2 (en) 2020-01-15 2023-04-18 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
KR102525354B1 (en) * 2020-10-13 2023-04-24 성균관대학교산학협력단 Energy storing device, lithium growth control layer and electrode structure for the energy storing device
US11572646B2 (en) 2020-11-18 2023-02-07 Material Innovations Llc Composite building materials and methods of manufacture

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314765A (en) * 1993-10-14 1994-05-24 Martin Marietta Energy Systems, Inc. Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method
US5702995A (en) * 1995-11-15 1997-12-30 Kabushiki Kaisha Ohara Lithium ion conductive glass-ceramics
EP0838441A2 (en) * 1996-10-28 1998-04-29 Kabushiki Kaisha Ohara Lithium ion conductive glass-ceramics and electric cells and gas sensors using the same
US6025094A (en) * 1994-11-23 2000-02-15 Polyplus Battery Company, Inc. Protective coatings for negative electrodes
EP1162675A2 (en) * 2000-06-08 2001-12-12 Sumitomo Electric Industries, Ltd. Negative electrode of lithium secondary battery
US20020034688A1 (en) * 1999-11-01 2002-03-21 May-Ying Chu Encapsulated lithium alloy electrodes having barrier layers
WO2002050933A2 (en) * 2000-12-21 2002-06-27 Moltech Corporation Lithium anodes for electrochemical cells

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607417A (en) 1967-12-04 1971-09-21 Ionics Battery cell
US3625769A (en) 1969-03-21 1971-12-07 Gulton Ind Inc Fuel cell
US3912536A (en) 1971-03-27 1975-10-14 Montedison Spa Negative electrode for solid electrolyte cells
US3703415A (en) 1971-06-01 1972-11-21 Gen Electric Primary sodium-water battery
US3976509A (en) 1975-04-04 1976-08-24 Lockheed Missiles & Space Company, Inc. Electrolyte compositions
US4007057A (en) 1975-12-29 1977-02-08 Lockheed Missiles & Space Company, Inc. Cell comprising an alkali metal and aqueous electrolyte
US4091182A (en) 1976-03-01 1978-05-23 General Electric Company Sealed lithium electrochemical cell with sodium beta-alumina electrolyte
US4162202A (en) 1976-03-08 1979-07-24 P. R. Mallory & Co. Inc. Means for improving contact between Li and the anode current collector
US4163084A (en) 1978-07-27 1979-07-31 Lockheed Missiles & Space Company, Inc. Electrochemically stable cathode
US4210707A (en) 1978-11-20 1980-07-01 General Electric Company Sealed lithium-type electrochemical cell
US4405416A (en) 1980-07-18 1983-09-20 Raistrick Ian D Molten salt lithium cells
US4402995A (en) 1982-01-28 1983-09-06 Ray-O-Vac Corporation Treatment of lithium anodes
JPS5931573A (en) 1982-08-16 1984-02-20 Nippon Telegr & Teleph Corp <Ntt> Negative electrode for lithium battery
US4414293A (en) 1982-09-20 1983-11-08 The United States Of America As Represented By The United States Department Of Energy Parasitic corrosion resistant anode for use in metal/air or metal/O2 cells
US4981672A (en) 1983-06-27 1991-01-01 Voltaix, Inc. Composite coating for electrochemical electrode and method
US4833048A (en) 1988-03-31 1989-05-23 The United States Of America As Represented By The United States Department Of Energy Metal-sulfur type cell having improved positive electrode
US4985317A (en) 1988-11-30 1991-01-15 Japan Synthetic Rubber Co., Ltd. Lithium ion-conductive solid electrolyte containing lithium titanium phosphate
US5108856A (en) 1989-03-13 1992-04-28 Westinghouse Electric Corp. Electrolyte compositions and methods
US4917974A (en) 1989-04-14 1990-04-17 The United States Of America As Represented By The Department Of Energy Lithium/organosulfur redox cell having protective solid electrolyte barrier formed on anode and method of making same
US5162175A (en) 1989-10-13 1992-11-10 Visco Steven J Cell for making secondary batteries
US5525442A (en) 1990-09-14 1996-06-11 Westinghouse Electric Corporation Alkali metal battery
US5427873A (en) 1990-09-14 1995-06-27 Westinghouse Electric Corporation Lithium-water battery
US5166011A (en) 1990-11-07 1992-11-24 Alupower, Inc. Process for forming an argentic oxide containing bipolar electrode and product produced thereby and deferred actuated battery assembly employing same
US5100523A (en) 1990-12-17 1992-03-31 Ford Motor Company Use of amorphous carbon to promote adhesion between electroactive polymer films and conductive substrates
US5213908A (en) 1991-09-26 1993-05-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen
US5336384A (en) 1991-11-14 1994-08-09 The Dow Chemical Company Membrane-electrode structure for electrochemical cells
US5696201A (en) 1992-04-06 1997-12-09 Matec Holding Ag Sound and heat insulation having little odor
US5338625A (en) 1992-07-29 1994-08-16 Martin Marietta Energy Systems, Inc. Thin film battery and method for making same
CA2110097C (en) 1992-11-30 2002-07-09 Soichiro Kawakami Secondary battery
US5409786A (en) 1993-02-05 1995-04-25 Eveready Battery Company, Inc. Inactive electrochemical cell having an ionically nonconductive polymeric composition activated by electrolyte salt solution
EP0614239A3 (en) 1993-03-01 1996-10-16 Tadiran Ltd Non-aqueous safe secondary cell.
US5342710A (en) 1993-03-30 1994-08-30 Valence Technology, Inc. Lakyer for stabilization of lithium anode
US5387479A (en) 1993-06-16 1995-02-07 Valence Technology, Inc. Electrodes for rechargeable lithium batteries
US5569520A (en) 1994-01-12 1996-10-29 Martin Marietta Energy Systems, Inc. Rechargeable lithium battery for use in applications requiring a low to high power output
US5648187A (en) 1994-02-16 1997-07-15 Moltech Corporation Stabilized anode for lithium-polymer batteries
US5961672A (en) 1994-02-16 1999-10-05 Moltech Corporation Stabilized anode for lithium-polymer batteries
US5516598A (en) 1994-07-28 1996-05-14 Polyplus Battery Company, Inc. Secondary cell using organosulfur/metal charge transfer materials as positive electrode
US5686201A (en) 1994-11-23 1997-11-11 Polyplus Battery Company, Inc. Rechargeable positive electrodes
US5814420A (en) 1994-11-23 1998-09-29 Polyplus Battery Company, Inc. Rechargeable positive electrodes
US6017651A (en) 1994-11-23 2000-01-25 Polyplus Battery Company, Inc. Methods and reagents for enhancing the cycling efficiency of lithium polymer batteries
US6030720A (en) 1994-11-23 2000-02-29 Polyplus Battery Co., Inc. Liquid electrolyte lithium-sulfur batteries
US6358643B1 (en) 1994-11-23 2002-03-19 Polyplus Battery Company Liquid electrolyte lithium-sulfur batteries
US5523179A (en) 1994-11-23 1996-06-04 Polyplus Battery Company Rechargeable positive electrode
US5582623A (en) 1994-11-23 1996-12-10 Polyplus Battery Company, Inc. Methods of fabricating rechargeable positive electrodes
US6376123B1 (en) 1994-11-23 2002-04-23 Polyplus Battery Company Rechargeable positive electrodes
US5510209A (en) 1995-01-05 1996-04-23 Eic Laboratories, Inc. Solid polymer electrolyte-based oxygen batteries
US5792335A (en) 1995-03-13 1998-08-11 Magnesium Technology Limited Anodization of magnesium and magnesium based alloys
US5652068A (en) 1995-11-14 1997-07-29 Northrop Grumman Corporation Metal-air battery with improved air supply
US5665481A (en) 1995-11-14 1997-09-09 Northrop Grumman Corporation Metal-air battery
US6315881B1 (en) 1995-11-15 2001-11-13 Kabushiki Kaisha Ohara Electric cells and gas sensors using alkali ion conductive glass ceramic
US5882812A (en) 1997-01-14 1999-03-16 Polyplus Battery Company, Inc. Overcharge protection systems for rechargeable batteries
US6096447A (en) 1997-11-05 2000-08-01 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US6068950A (en) 1997-11-19 2000-05-30 Wilson Greatbatch Ltd. Organic phosphate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US6402795B1 (en) * 1998-02-18 2002-06-11 Polyplus Battery Company, Inc. Plating metal negative electrodes under protective coatings
US6214061B1 (en) 1998-05-01 2001-04-10 Polyplus Battery Company, Inc. Method for forming encapsulated lithium electrodes having glass protective layers
JP4745472B2 (en) 1998-07-16 2011-08-10 株式会社オハラ Lithium ion conductive glass ceramic, battery using the same, and gas sensor
US6210832B1 (en) 1998-09-01 2001-04-03 Polyplus Battery Company, Inc. Mixed ionic electronic conductor coatings for redox electrodes
US6200704B1 (en) 1998-09-01 2001-03-13 Polyplus Battery Company, Inc. High capacity/high discharge rate rechargeable positive electrode
US6198701B1 (en) 1998-09-03 2001-03-06 Polyplus Battery Company, Inc. Electrochemical timer
US6537701B1 (en) 1998-09-03 2003-03-25 Polyplus Battery Company, Inc. Coated lithium electrodes
US6955866B2 (en) 1998-09-03 2005-10-18 Polyplus Battery Company Coated lithium electrodes
US6110236A (en) 1998-09-11 2000-08-29 Polyplus Battery Company, Inc. Method of preparing electrodes having evenly distributed component mixtures
US6203942B1 (en) 1998-10-22 2001-03-20 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
US6146787A (en) 1998-11-11 2000-11-14 Bechtel Bwxt Idaho, Llc Solid polymer battery electrolyte and reactive metal-water battery
US6194098B1 (en) 1998-12-17 2001-02-27 Moltech Corporation Protective coating for separators for electrochemical cells
US6200701B1 (en) 1999-01-25 2001-03-13 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable cells
US6495285B2 (en) 1999-01-25 2002-12-17 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable electrochemical cells
US6225002B1 (en) 1999-02-05 2001-05-01 Polyplus Battery Company, Inc. Dioxolane as a proctector for lithium electrodes
US6358651B1 (en) 1999-02-26 2002-03-19 Reveo, Inc. Solid gel membrane separator in rechargeable electrochemical cells
US6228527B1 (en) 1999-03-02 2001-05-08 The United States Of America As Represented By The Secretary Of The Navy Magnesium solution phase catholyte seawater electrochemical system
JP3643289B2 (en) 1999-04-30 2005-04-27 株式会社オハラ Glass ceramic composite electrolyte and lithium secondary battery
US6489055B1 (en) 1999-06-25 2002-12-03 Sanyo Electric Co., Ltd. Lithium secondary battery
US6413285B1 (en) 1999-11-01 2002-07-02 Polyplus Battery Company Layered arrangements of lithium electrodes
US6797428B1 (en) 1999-11-23 2004-09-28 Moltech Corporation Lithium anodes for electrochemical cells
US7247408B2 (en) 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
US6511772B2 (en) 2001-01-17 2003-01-28 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a phosphate additive in the electrode active mixture
US6632573B1 (en) 2001-02-20 2003-10-14 Polyplus Battery Company Electrolytes with strong oxidizing additives for lithium/sulfur batteries
US6537698B2 (en) 2001-03-21 2003-03-25 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a phosphonate additive in the electrode active mixture
US7070632B1 (en) 2001-07-25 2006-07-04 Polyplus Battery Company Electrochemical device separator structures with barrier layer on non-swelling membrane
US6991662B2 (en) 2001-09-10 2006-01-31 Polyplus Battery Company Encapsulated alloy electrodes
US6911280B1 (en) 2001-12-21 2005-06-28 Polyplus Battery Company Chemical protection of a lithium surface

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314765A (en) * 1993-10-14 1994-05-24 Martin Marietta Energy Systems, Inc. Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method
US6025094A (en) * 1994-11-23 2000-02-15 Polyplus Battery Company, Inc. Protective coatings for negative electrodes
US5702995A (en) * 1995-11-15 1997-12-30 Kabushiki Kaisha Ohara Lithium ion conductive glass-ceramics
EP0838441A2 (en) * 1996-10-28 1998-04-29 Kabushiki Kaisha Ohara Lithium ion conductive glass-ceramics and electric cells and gas sensors using the same
US20020034688A1 (en) * 1999-11-01 2002-03-21 May-Ying Chu Encapsulated lithium alloy electrodes having barrier layers
EP1162675A2 (en) * 2000-06-08 2001-12-12 Sumitomo Electric Industries, Ltd. Negative electrode of lithium secondary battery
WO2002050933A2 (en) * 2000-12-21 2002-06-27 Moltech Corporation Lithium anodes for electrochemical cells

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645543B2 (en) 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
WO2005038953A3 (en) * 2003-10-14 2006-04-13 Polyplus Battery Co Inc Active metal/aqueous electrochemical cells and systems
WO2005038953A2 (en) * 2003-10-14 2005-04-28 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US7998626B2 (en) 2003-11-10 2011-08-16 Polyplus Battery Company Active metal fuel cells
US10529971B2 (en) 2004-02-06 2020-01-07 Polyplus Battery Company Safety enhanced li-ion and lithium metal battery cells having protected lithium electrodes with enhanced separator safety against dendrite shorting
US10916753B2 (en) 2004-02-06 2021-02-09 Polyplus Battery Company Lithium metal—seawater battery cells having protected lithium electrodes
US11646472B2 (en) 2004-02-06 2023-05-09 Polyplus Battery Company Making lithium metal—seawater battery cells having protected lithium electrodes
US9666850B2 (en) 2004-02-06 2017-05-30 Polyplus Battery Company Safety enhanced Li-ion and lithium metal battery cells having protected lithium electrodes with enhanced separator safety against dendrite shorting
US8404388B2 (en) 2005-08-09 2013-03-26 Polyplus Battery Company Compliant seal structures for protected active metal anodes
US9130198B2 (en) 2005-08-09 2015-09-08 Polyplus Battery Company Compliant seal structures for protected active metal anodes
US8048570B2 (en) 2005-08-09 2011-11-01 Polyplus Battery Company Compliant seal structures for protected active metal anodes
US7824806B2 (en) 2005-08-09 2010-11-02 Polyplus Battery Company Compliant seal structures for protected active metal anodes
US8445136B2 (en) 2005-09-02 2013-05-21 Polyplus Battery Company Lithium/sulfur battery with hermetically sealed anode
US8691444B2 (en) 2005-09-02 2014-04-08 Polyplus Battery Company Lithium battery with hermetically sealed anode
US8129052B2 (en) 2005-09-02 2012-03-06 Polyplus Battery Company Polymer adhesive seals for protected anode architectures
US8284539B2 (en) 2006-08-02 2012-10-09 Ada Technologies, Inc. High performance ultracapacitors with carbon nanomaterials and ionic liquids
US8236446B2 (en) 2008-03-26 2012-08-07 Ada Technologies, Inc. High performance batteries with carbon nanomaterials and ionic liquids
US8277691B2 (en) 2008-05-05 2012-10-02 Ada Technologies, Inc. High performance carbon nanocomposites for ultracapacitors
US9660311B2 (en) 2011-08-19 2017-05-23 Polyplus Battery Company Aqueous lithium air batteries
US9660265B2 (en) 2011-11-15 2017-05-23 Polyplus Battery Company Lithium sulfur batteries and electrolytes and sulfur cathodes thereof
US9627691B2 (en) 2013-02-07 2017-04-18 Ada Technologies, Inc. Metalized, three-dimensional structured oxygen cathode materials for lithium/air batteries and method for making and using the same
US9905860B2 (en) 2013-06-28 2018-02-27 Polyplus Battery Company Water activated battery system having enhanced start-up behavior
CN108878970A (en) * 2018-06-29 2018-11-23 华中科技大学 A kind of composition polymer solid electrolyte, solid state lithium battery and preparation method thereof
CN108878970B (en) * 2018-06-29 2021-05-18 华中科技大学 Composite polymer solid electrolyte, solid lithium battery and preparation method thereof
CN109546210A (en) * 2018-11-14 2019-03-29 山东大学 A kind of high voltage solid lithium battery electrolyte and preparation method thereof
CN109546210B (en) * 2018-11-14 2020-09-29 山东大学 High-voltage all-solid-state lithium battery electrolyte and preparation method thereof
CN110451781A (en) * 2019-07-01 2019-11-15 中国科学院上海光学精密机械研究所 A kind of high ionic conductivity mixes chlorine molybdophosphate glass and preparation method thereof
CN110890542A (en) * 2020-01-14 2020-03-17 桑顿新能源科技(长沙)有限公司 Lithium ion battery anode material and preparation method thereof, lithium ion battery anode, lithium ion battery and power utilization equipment

Also Published As

Publication number Publication date
WO2005038962A3 (en) 2005-12-29
US20040191617A1 (en) 2004-09-30
US7390591B2 (en) 2008-06-24

Similar Documents

Publication Publication Date Title
US9362538B2 (en) Advanced lithium ion batteries based on solid state protected lithium electrodes
US7390591B2 (en) Ionically conductive membranes for protection of active metal anodes and battery cells
US7858223B2 (en) Electrochemical device component with protected alkali metal electrode
US20160351878A1 (en) Advanced lithium ion batteries based on solid state protected lithium electrodes
US7282296B2 (en) Ionically conductive composites for protection of active metal anodes
US6991662B2 (en) Encapsulated alloy electrodes
US6413285B1 (en) Layered arrangements of lithium electrodes
US6737197B2 (en) Encapsulated lithium alloy electrodes having barrier layers
US6214061B1 (en) Method for forming encapsulated lithium electrodes having glass protective layers
US8652686B2 (en) Substantially impervious lithium super ion conducting membranes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase