WO2005046789A1 - Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing - Google Patents

Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing Download PDF

Info

Publication number
WO2005046789A1
WO2005046789A1 PCT/US2004/035862 US2004035862W WO2005046789A1 WO 2005046789 A1 WO2005046789 A1 WO 2005046789A1 US 2004035862 W US2004035862 W US 2004035862W WO 2005046789 A1 WO2005046789 A1 WO 2005046789A1
Authority
WO
WIPO (PCT)
Prior art keywords
heart
cardiac harness
wherem
elecfrodes
electrodes
Prior art date
Application number
PCT/US2004/035862
Other languages
French (fr)
Inventor
Lilip Lau
Matthew G. Fishler
Craig Mar
Original Assignee
Paracor Medical, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paracor Medical, Inc. filed Critical Paracor Medical, Inc.
Priority to JP2006539562A priority Critical patent/JP2007511277A/en
Priority to CA002543365A priority patent/CA2543365A1/en
Priority to EP04796677A priority patent/EP1687059A1/en
Publication of WO2005046789A1 publication Critical patent/WO2005046789A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2478Passive devices for improving the function of the heart muscle, i.e. devices for reshaping the external surface of the heart, e.g. bags, strips or bands
    • A61F2/2481Devices outside the heart wall, e.g. bags, strips or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0587Epicardial electrode systems; Endocardial electrodes piercing the pericardium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2478Passive devices for improving the function of the heart muscle, i.e. devices for reshaping the external surface of the heart, e.g. bags, strips or bands
    • A61F2/2481Devices outside the heart wall, e.g. bags, strips or bands
    • A61F2002/2484Delivery devices therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • A61N1/0563Transvascular endocardial electrode systems specially adapted for defibrillation or cardioversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3756Casings with electrodes thereon, e.g. leadless stimulators

Definitions

  • the present Mvention relates to a device for treatMg heart failure. More specifically, the Mvention relates to a cardiac harness configured to be fit around, at least a portion of a patient's heart.
  • the cardiac harness includes electrodes attached to a power source for use M defibrillation or pacing.
  • Congestive heart failure (“CHF") is characterized by the failure of the heart to pump blood at sufficient flow rates to meet the metabolic demand of tissues, especially the demand for oxygen.
  • CHF congestive heart failure
  • One characteristic of CHF is remodeling of " at least portions of a patient's heart. Remodeling involves physical change to the size, shape and thickness of the heart wall. For example, a damaged left ventricle may have some localized thinning and stretching of a portion of the myocardium.
  • the thinned portion of the myocardium often is fMictionally impaired, and otlier portions of the myocardium attempt to compensate.
  • Me other portions of the myocardium may expand so Mat the stroke volume of the ventricle is maintained notwithstandMg the impaired zone of the myocardium.
  • Cardiac remodelMg often subjects the heart wall to increased wall tension, or stress, which fiirther impairs the heart's functional performance.
  • the heart wall will dilate fiirther M order to compensate for the impairment caused by such increased stress.
  • a cycle can result, in which dilation leads to forther dilation and greater ftmctional impairment.
  • congestive heart failure has been managed with a variety of
  • Mugs Devices have also been used to improve cardiac output. For example, left ventricular assist pumps help the heart to pump blood. Multi-chamber pacmg lias also been employed to optimally syncMonize the beating of the heart chambers to improve cardiac output. Various skeletal muscles, such as the latissimus dorsi, have been used to assist ventricular pumpMg.
  • Various skeletal muscles such as the latissimus dorsi, have been used to assist ventricular pumpMg.
  • prosthetic "girdles” disposed around the heart.
  • One such design is a prosthetic "sock" or "jacket” that is wrapped around the heart. Patients suffering from congestive heart failure often are at risk to additional cardiac failures, McludMg cardiac arrhythmias.
  • ICD implantable cardioverter/defibrillators
  • ICD's are well known in the art and typically have a lead from the ICD connected to an electrode implanted in the right ventricle. Such electrodes are capable of delivering a defibrillating electrical shock from the ICD to the heart.
  • Other prior art devices have placed the electrodes on the epicardium at various locations, including on or near Me epicardial surface of the right and left heart.
  • These devices also are capable of distributing an electrical current from an implantable cardioverter/defibrillator for pu ⁇ oses of treating venfricular defibrillation or hemodynamically stable or unstable ventricular tachy arrhythmias.
  • Patients suffering from congestive heart failure may also suffer from cardiac failures, McludMg bradycardia and tachycardia.
  • Such disorders typically are treated by both pacemakers and implantable cardioverter/defibrillators.
  • the pacemaker is a device that paces the heart with timed pacing pulses for use M the treatment of bradycardia, where the ventricular rate is too slow, or to treat cardiac rhythms that are too fast, i.e., anti-tachycardia pacing.
  • pacemaker is any cardiac rhythm management device with a pacMg functionality, regardless of any other fiinctions it may perform such as the delivery cardioversion or defibrillation shocks to terminate atrial or ventricular fibrillation.
  • pacing/sensMg can be found in U.S. Patent Nos. 6,574,506 (Kramer et al.) and 6,223,079 (Balcels et al.); and U.S. Publication No. 2003/0130702 (Kramer et al.) and U.S. Publication No. 2003/0195575 (Kramer et al.), the entire contents of which are Mco ⁇ orated herein by reference thereto.
  • a cardiac harness is configured to fit at least a portion of a patient's heart and is associated with one or more electrodes capable of providing defibrillation or pacing functions.
  • rows or strands of undulations are interconnected and associated with coils or defibrillation and/or pacing/sensing leads.
  • the cardiac harness M cludes a number of panels separated by coils or electrodes, whereM the panels have rows or strands of undulations interconnected together so that the panels can flex and can expand and retract circumferentially.
  • the panels of the cardiac harness are coated with a dielectric coating to electrically Msulate the panels from an electrical shock delivered tMough the electrodes.
  • the electrodes are at least partially coated with a dielectric material to Msulate the electrodes from the cardiac harness.
  • the strands or rows of undulations are formed from Nitinol and are coated with a dielectric material such as silicone rubber. In this embodiment, the electrodes are at least partially coated with the same dielectric material of silicone rubber.
  • the electrode portion of the leads are not covered by the dielectric material so that as the electrical shock is delivered by the electrodes to the epicardial surface of the heart, the coated panels and the portion of the electrodes that are coated are insulated by the silicone rubber. M other words, the heart received an electrical shock only where the bare metal of the electrodes are in contact with or are adjacent to the epicardial surface of the heart.
  • the dielectric coating also serves to attach the panels to the electrodes.
  • the electrodes have a first surface and a second surface, the first surface being in contact with the outer surface of the heart, such as the epicardium, and the second surface faces away from the heart.
  • Both the first surface and the second surface do not have a dielectric coating so that an electrical charge can be delivered to the outer surface of the heart for defibrillating or for pacMg.
  • at least a portion of the electrodes are coated with a dielectric coating, such as silicone rubber, ParyleneTM or polyurethane.
  • the dielectric coating serves to Msulate the bare metal portions of the electrode from the cardiac harness, and also to provide attachment means for attachMg Me electrodes to the panels of the cardiac harness.
  • the number of elecfrodes and the number of panels forming the cardiac harness is a matter of choice.
  • the cardiac harness can Mclude two panels separated by two electrodes.
  • the electrodes would be positioned 180° apart, or in some other orientation so that the electrodes could be positioned to provide a optimum electrical shock to the epicardial surface of the heart, preferably adjacent the right ventricle or the left ventricle.
  • the elecfrodes can be positioned 180° apart so that the electrical shock carries tMough Me myocardium adjacent the right ventricle thereby providing an optimal electrical shock for defibrillation or periodic shocks for pacing.
  • tMee leads are associated with the cardiac harness so that there are tMee panels separated by the tMee electrodes.
  • four panels on the cardiac harness are separated by four electrodes.
  • two electrodes are positioned adjacent the left ventricle on or near the epicardial surface of the heart while Me other two electrodes are positioned adjacent the right ventricle on or near the epicardial surface of the heart.
  • an electrical shock is delivered, it passes tMough the myocardium between the two sets of electrodes to shock Me entire ventricles.
  • the cardiac harness includes multiple electrodes separating multiple panels.
  • the embodiment also includes one or more pacing/sensing electrodes (multi-site) for use in sensing heart functions, and delivering pacing stimuli for resynclironization, including biventricular pacing and left ventricle pacMg or right ventricular pacing.
  • pacing stimuli for resynclironization including biventricular pacing and left ventricle pacMg or right ventricular pacing.
  • an electrical shock for defibrillation, or an electrical pacing stimuli for syncMonization or pacing is delivered by a pulse generator, which can include an implantable cardioverter/defibrillator (ICD), a cardiac resyncMonization therapy defibrillator (CRT-D), and/or a pacemaker.
  • ICD implantable cardioverter/defibrillator
  • CRT-D cardiac resyncMonization therapy defibrillator
  • the cardiac harness can be coupled with multiple pacMg/sensMg elecfrodes to provide multi-site pacMg to control cardiac ftmction.
  • the system can be used to treat contractile dysfunction while concuoently treating bradycardia and tachycardia. This will improve pumping ftmction by altering heart chamber contraction sequences while maintaining pumping rate and rhythm.
  • the cardiac harness inco ⁇ orates pacing/sensing electrodes positioned on the epicardial surface of the heart adjacent to the left and right ventricle for pacMg both the left and right ventricles.
  • Me cardiac harness M cludes multiple electrodes separating multiple panels.
  • at least some of the electrodes are positioned on or near (proximate) the epicardial surface of the heart for providing an electrical shock for defibrillation, and other of the electrodes are positioned on the epicardial surface of the heart to provide pacing stimuli useful M syncMonizing the left and right ventricles, cardiac resyncMonization therapy, and biventricular pacing or left venfricular pacing or right ventricular pacing.
  • the cardiac harness M cludes multiple electrodes separating multiple panels.
  • the electrodes provide an electrical shock for defibrillation
  • one of the electrodes a sMgle site electrode
  • the single site electrode is used for left venfricular pacing or right ventricular pacing.
  • the single site electrode also can be positioned near the septum in order to provide bi-venfricular pacing.
  • the cardiac harness includes one or more electrodes associated with the cardiac harness for providing a pacing/sensing function.
  • a single site electrode is positioned on the epicardial surface of the heart adjacent the left ventricle for left ventricular pacMg.
  • a single site electrode is positioned on the surface of the heart adjacent the right ventricle to provide right ventricular pacing.
  • more than one pacMg/sensing electrode is positioned on the epicardial surface of the heart to treat syncMony of both ventricles, McludMg bi- venfricular pacing.
  • the cardiac harness Mcludes coils that separate multiple panels. The coils have a high degree of flexibility, yet are capable of providing column sfrength so Mat the cardiac harness can be delivered by minimally Mvasive access.
  • All embodiments of the cardiac harness are configured for delivery and implantation on the heart using minimally invasive approaches involving cardiac access tMough, for example, subxiphoid, subcostal, or intercostal incisions, and tMough the skin by percutaneous delivery using a catheter.
  • FIGURE 1 depicts a schematic view of a heart with a prior art cardiac harness placed thereon.
  • FIG. 3 depicts a prior art cardiac harness that has been cut out of a flat sheet of material.
  • FIG. 4 depicts Me prior art cardiac harness of FIG. 3 formed Mto a shape configured to fit about a heart.
  • FIG. 5A depicts a flattened view of one embodiment of the cardiac harness of the invention showing two panels connected to two electrodes.
  • FIG. 5D depicts a cross-sectional view of an electrode.
  • FIG. 6A depicts a cross-sectional view of an undulatMg strand or ring.
  • FIG. 6B depicts a cross-sectional view of an undulating strand or ring.
  • FIG. 6C depicts a cross-sectional view of an undulating strand or ring.
  • FIG. 7A depicts an enlarged plan view of a cardiac harness showing tMee electrodes separating three panels, with the far side panel not shown for clarity.
  • FIG. 7B depicts an enlarged partial plan view of the cardiac harness of FIG. 7A showing an elecfrode partially covered with a dielectric material which also serves to attach the panels to the electrode.
  • FIG 8A depicts a transverse cross-sectional view of the heart showing the position of electrodes for defibrillation and/or pacing/sensMg functions.
  • FIG. 8B depicts a transverse cross-sectional view of the heart showing the position of electrodes for defibrillation and/or pacing/sensMgpositions.
  • FIG. 8C depicts a transverse cross-sectional view of the heart showing the position of electrodes for defibrillation and/or pacing/sensingtreatments.
  • FIG. 8D depicts a transverse cross-sectional view of the heart showing the position of electrodes for defibrillation and/or pacing/sensMg functions.
  • FIG. 9 depicts a plan view of one embodiment of a cardiac harness having panels separated by and attached to flexible coils.
  • FIG. 10 depicts a flattened plan view of a cardiac harness similar to that of FIG. 9 but with fewer panels and coils.
  • FIG. 11 depicts a plan view of one embodiment of a cardiac harness having panels separated by and attached to flexible coils.
  • FIG. 12 depicts a plan view of a cardiac harness similar to that shown in FIG. 11 mounted on the epicardial surface of the heart.
  • FIG. 13 depicts a perspective view of a cardiac harness similar to that of FIG. 9 where the harness has been folded to reduce its profile for minimally invasive delivery.
  • FIG. 14 depicts the cardiac harness of FIG. 13 in a partially bent and folded condition to reduce its profile for minimally invasive delivery.
  • FIG. 14 depicts the cardiac harness of FIG. 13 in a partially bent and folded condition to reduce its profile for minimally invasive delivery.
  • FIG. 15A depicts an enlarged plan view of a cardiac harness showing contMuous undulating strands with electrodes overlayMg the strands.
  • FIG. 15B depicts an enlarged partial plan view of the cardiac harness of FIG. 15A showing contMuous imdulating strands with an electrode overlying the strands.
  • FIG. 15C depicts a partial cross-sectional view taken along IMes 15C-15C showing the electrode and undulating strands.
  • FIG. 15D depicts a partial cross-sectional view taken along lines 15D-15D showing the undulating strands in notches in Me elecfrode.
  • FIG. 16 depicts a top view of a fixture for windMg wire to construct the cardiac harness.
  • FIG. 16 depicts a top view of a fixture for windMg wire to construct the cardiac harness.
  • FIG. 17 depicts a plan view of a portion of a cardiac harness showing panels separated by electrodes.
  • FIGS. 18A, 18B and 18C depict various views of a mold used for injecting a dielectric material around the cardiac harness and the electrodes.
  • FIGS. 19 A, 19B and 19C depict various views of molds used in injecting a dielectric material around the cardiac harness and the electrodes.
  • FIG. 20 depicts a top view of a portion of an electrode having a metallic coil windMg.
  • FIG. 21 depicts a side view of the electrode portion shown in FIG. 20.
  • FIG. 22 depicts a cross-sectional view taken along IMes 22-22 showing lumens extending tMough the electrode.
  • FIG. 23 depicts a cross-sectional view taken along lines 23-23 depicting another embodiment of lumens extending tMough the electrode.
  • FIG. 24 depicts a top view of a portion of an electrode having multiple coil windings.
  • FIG. 25A depicts a side view of a portion of a defibrillator electrode combined with a pacing/sensing electrode.
  • FIG. 25B depicts a top view of the elecfrode portion of FIG. 25 A.
  • FIGS. 26A-26C depict various views of a defibrillator electrode combined with a pacing/sensMg electrode.
  • FIG. 27 depicts a side view of an Mtroducer for delivering the cardiac harness tMough minimally Mvasive procedures.
  • FIG. 28 depicts a perspective end view of a dilator with the cardiac harness releasably positioned thereM.
  • FIG. 29 depicts an end view of the Mtroducer with the cardiac harness releasably positioned thereM.
  • FIG. 30 depicts a schematic cross-sectional view of a human thorax with the cardiac harness system being delivered by a delivery device inserted tMough an intercostal space and contacting the heart.
  • FIG. 31 depicts a plan view of the heart with a suction device releasably attached to the apex of the heart.
  • FIG. 32 depicts a plan view of the heart with the suction device attached to the apex and Me introducer positioned to deliver the cardiac harness over the heart.
  • FIG. 33 depicts a plan view of the cardiac harness being deployed from the introducer onto the epicardial surface of the heart.
  • FIG. 34 depicts a plan view of the heart with the cardiac harness being deployed from the introducer onto the epicardial surface of the heart.
  • FIG. 35 depicts a plan view of the heart with the cardiac harness having electrodes attached thereto, surrounding a portion of the heart.
  • FIG. 36 depicts a schematic view of the cardiac harness assembly mounted on the human heart together with leads and an ICD for use in defibrillation or pacing.
  • FIG. 37 depicts an exploded a side view of a delivery system with the introducer Mbe, dilator Mbe, and ejection tube shown prior to assembly.
  • FIG. 38 depicts a cross-sectional view of the introducer tube taken along IMes 38-38.
  • FIG. 39 depicts a cross-sectional view taken along IMes 39-39 showMg the cross-section of the dilator Mbe.
  • FIG. 40 depicts a cross-sectional view taken along lines 40-40 extending tMough the plate of the ejection Mbe and showing the various lumens M the plate.
  • FIG. 41 depicts a cross-sectional view taken along lines 41-41 of the proximal end of the ejection Mbe.
  • This Mvention relates to a method and apparatus for treating heart failure. It is anticipated that remodeling of a diseased heart can be resisted or even reversed by alleviating the wall stresses in such a heart.
  • the present Mvention discloses embodiments and methods for supporting the cardiac wall and for providing defibrillation and/or pacing functions using the same system. Additional embodiments and aspects are also discussed in Applicants' co-pending application entitled “Multi-Panel Cardiac Harness" U.S. Serial No. 60/458,991 filed March 28, 2003, the entirety of which is hereby expressly inco ⁇ orated by reference.
  • FIG. 1 illustrates a mammalian heart 10 having a prior art cardiac wall stress reduction device in the form of a harness applied to it.
  • the harness surrounds a portion of the heart and covers the right ventricle 11, the left ventricle 12, and the apex 13.
  • longiMdinal axis 15 goes tMough the apex and the AV groove 14.
  • the cardiac harness has a series of hMges or spring elements that circumscribe the heart and, collectively, apply a mild compressive force on the heart to alleviate wall stresses.
  • FIG. 1 The cardiac haoiess illustrated in FIG. 1 has at least one undulating strand having a series of spring elements referred to as hinges or spring hinges that are configured to deform as the heart expands during filling. Each nge provides substantially unidirectional elasticity, in that it acts in one direction and does not provide as much elasticity in Me direction pe ⁇ endicular to that direction.
  • FIG. 2A shows a prior art hinge member at rest. The hinge member has a central portion and a pair of arms. As the arms are pulled, as shown in FIG.
  • FIGS. 3 and 4 illustrate another prior art cardiac harness, shown at two points during manufacture of such a harness.
  • the harness is first formed from a relatively thin, flat sheet of material. Any method can be used to form the harness from the flat sheet.
  • the harness is photochemically etched from the material; in another embodiment, the harness is laser-cut from the thin sheet of material.
  • the harness shown in FIGS. 3 and 4 has been etched from a thin sheet of Nitinol, which is superelastic material that also exhibits shape memory properties.
  • the flat sheet of material is Maped over a form, die or the like, and is formed to generally take on the shape of at least a portion of a heart.
  • the cardiac harnesses have a base portion which is sized and configured to generally engage and fit onto a base region of a patient's heart, an apex portion which is sized and shaped so as to generally engage and fit on an apex region of a patient's heart, and a medial portion between the base and apex portions.
  • the harness shown in FIGS. 3 and 4 the harness has strands or rows of undulating wire. As discussed above, the undulations have hinge/spring elements which are elastically bendable M a desired direction. Some of the strands are connected to each other by interconnecting elements. The interconnecting elements help maintain the position of Me sfrands relative to one another.
  • the interconnecting elements allow some relative movement between adjacent strands.
  • the undulating spring elements exert a force in resistance to expansion of the heart.
  • the force exerted by the spring elements tends toward compressing the heart, thus alleviating wall stresses in the heart as the heart expands.
  • the harness helps to decrease the workload of the heart, enabling the heart to more effectively pump blood t ough the patient's body and enablMg the heart an opportunity to heal itself.
  • spring members can be used to create a mildly compressive force on the heart to reduce wall stresses.
  • spring members can be disposed over only a portion of the circumference of the heart or the spring members can cover a substantial portion of the heart.
  • each series of spring hMges of the above cardiac harness embodiments is configured so that as the heart expands during diastole the spring hinges correspondingly will expand, thus storing expansion forces as bendMg energy M Me spring. As such, the stress load on the myocardium is partially relieved by the harness. This reduction in stress helps the myocardium cells to remain healthy and or regain health.
  • the disclosed prior art cardiac harnesses apply a moderate compressive force as the hinge or sprMg elements release the bending energy developed during expansion allowMg the cardiac harness to follow the heart as it contracts and to apply contractile force as well.
  • Other structural configurations for cardiac harnesses exist, however, but all have Mawbacks and do not function optimally to treat CHF and other related diseases or failures.
  • the present Mvention cardiac harness provides a novel approach to treat CHF and provides electrodes associated with the harness to deliver an electrical shock for defibrillation or a pacing stimulus for resyncMonization, or for biventricular pacing/sensMg.
  • the present Mvention is directed to a cardiac harness system for treating the heart.
  • the cardiac harness system of the present invention couples a cardiac harness for treatMg the heart coupled with a cardiac rhythm management device. More particularly, the cardiac harness includes rows or undulating strands of spring elements that provide a compressive force on the heart during diastole and systole in order to relieve wall stress pressure on Me heart.
  • a cardiac rhythm management device for treating any number of irregularities in heart beat due to, among other reasons, congestive heart failure.
  • the cardiac rhythm management device associated with the cardiac harness can include one or more of the following: an implantable cardioverter/defibrillator with associated leads and elecfrodes; a cardiac pacemaker including leads and electrodes used for sensMg cardiac function and providing pacing stimuli to treat syncMony of both vessels; and a combined implantable cardioverter/defibrillator and pacemaker, with associated leads and electrodes to provide a defibrillation shock and/or pacMg/sensing functions.
  • the cardiac harness system includes various configurations of panels connected together to at least partially surround the heart and assist the heart during diastole and systole.
  • the cardiac harness system also includes one or more leads having electrodes associated with the cardiac harness and a source of electrical energy supplied to the elecfrodes for deliveiing a defibrillating shock or pacing stimuli.
  • a cardiac harness 20 includes two panels 21 of generally contMuous undulating strands 22.
  • a panel M cludes rows or undulating strands of hinges or spring elements that are connected together and that are positioned between a pair of electrodes, the rows or undulations being highly elastic in the circumferential direction and, to a lesser extent, in the longiMdinal direction.
  • the undulating sfrands have U-shaped hinges or spring elements 23 capable of expanding and contracting circumferentially along directional lMe 24.
  • the cardiac harness has a base or upper end 25 and an apex or lower end 26.
  • the undulating sfrands are highly elastic in the circumferential direction when placed around the heart 10, and to a lesser degree M a direction parallel to the longitudinal axis 15 of the heart.
  • Similar hinges or sprMg elements are disclosed M co-pending and co- assigned U.S. Serial No. 60/458,991 filed March 28, 2003, the entire contents of which are Mco ⁇ orated hereM by reference. While the FIG.
  • the 5 embodiment appears flat for ease of reference, in use it is substantially cylMdrical (or tapered) to conform to the heart and the right and left side panels would acMally be one panel and there would be no discontinuity in the undulating strands.
  • the undulating sfrands 22 provide a compressive force on the epicardial surface of the heart thereby relieving wall stress.
  • the spring elements 23 expand and confract circumferentially as the heart expands and contracts during the diastolic and systolic functions. As the heart expands, the sprMg elements expand and resist expansion as they continue to open and store expansion forces.
  • the spring elements will confract circumferentially by releasing the stored bendMg forces thereby assisting in both the diastolic and systolic function.
  • bending stresses are absorbed by the spring elements 23 during diastole and are stored in the elements as bendMg energy.
  • DurMg systole when the heart pumps, the heart muscles contract and the heart becomes smaller. Simultaneously, bending energy stored within the spring elements 23 is at least partially released, thereby providing an assist to the heart during systole.
  • the compressive force exerted on the heart by the spring elements of the harness comprises about 10% to 15% of Me mechanical work done as the heart contracts during systole.
  • the harness is not Mtended to replace ventricular pumping, the harness does substantially assist the heart during systole.
  • the undulating strands 22 can have varyMg numbers of spring element 23 depending upon the ampliMde and pitch of the spring elements. For example, by varying the ampliMde of the pitch of the spring elements, the number of undulations per panel will vary as well.
  • the present invention provides for panels that have spring elements with lower ampliMdes and a shorter pitch, thereby increasing the expansion force imparted by the spring element.
  • a sprMg element having a relatively lower ampliMde will be more rigid and resist openMg, thereby storing more bending forces during diastole.
  • the pitch is smaller, there will be more spring elements per unit of length along the undulatMg strand, thereby increasing the overall bending force stored during diastole, and released during systole.
  • the undulating sfrands 22 are connected to each other by grip pads 27.
  • adjacent undulating strands are connected by one or more grip pads attached at the apex 28 of the spring elements 23.
  • the number of grip pads between adjacent midulating strands is a matter of choice and can range from one grip pad between adjacent undulatMg strands, to one grip pad for every apex on the undulatMg strand.
  • the grip pads should be positioned in order to maintain flexibility of the cardiac harness 20 without sacrificing the objectives of maintaining the spacing between adjacent undulatMg sfrands to prevent overlap and to enhance the frictional engagement between the grip pads and the epicardial surface of the heart.
  • the invention is not so limited.
  • the grip pads 27 can be attached anywhere along the length of the spring elements, McludMg the sides 29.
  • the shape of the grip pads 27, as shown, in FIG. 5, can vary to suit a particular purpose.
  • grip pad 27 can be attached to the apex 28 of one undulatMg strand 22, and be attached to two apices on an adjacent undulating strand (see FIG.
  • the cardiac harness would be tapered from the relatively wide base to a relatively narrow bottom toward the apex of the heart, and this would affect the alignment of the apices of the spring elements, and hence the ability of the grip pads 27 to align perfectly and attach to adjacent apices of the spring elements.
  • a forther disclosure and embodiments relating to the undulatMg sfrands and the attachment means in the form of grip pads is found in co-pending and co-assigned U.S. Serial No. 60/486,062 filed July 10, 2003, the entire contents of which are inco ⁇ orated hereM by reference.
  • the undulating strands are connected by Mterconnecting elements made of the same material as the strands.
  • the interconnecting elements can be straight or curved as shown in FIGS. 8A-8B of commonly owned U.S. Patent No. 6,612,979 B2, the entire contents of which, is inco ⁇ orated by reference herein. It is preferred that the undulatMg strands 22 be continuous as shown M FIG. 5. For example, every pair of adjacent undulating sfrands are connected by bar arm 30.
  • the bar arms form part of a continuous wire that is bent to form the undulatMg strands, and then welded at its ends along the bar arm.
  • the weld is not shown in FIG. 5, but can be by any conventional method such as laser welding, fusion bondMg, or conventional welding.
  • the type of wire used to form the undulating sfrands may have a bearing on the method of attaching the ends of the wire used to form the undulating strand.
  • the undulating sfrands be made out of a nickel-titanium alloy, such as Nitinol, which may lose some of its superelastic or shape memory properties if exposed to high heat during conventional welding.
  • a cardiac rhythm management device as previously disclosed.
  • one or more elecfrodes for use in providing defibrillating shock.
  • any number of factors associated with congestive heart failure can lead to fibrillation, acquirMg immediate action to save the patient's life.
  • Diseased hearts often have several maladies.
  • One malady that is not uncommon is irregularity in heartbeat caused by irregularities in the electrical stimulation system of the heart. For example, damage from a cardiac infarction can interrupt the electrical signal of the heart.
  • implantable devices such as pacemakers, help to regulate cardiac rhythm and stimulate heart pumping.
  • a problem with the heart's electrical system can sometimes cause the heart to f ⁇ brillate. During fibrillation, the heart does not beat normally, and sometimes does not pump adequately.
  • a cardiac defibrillator can be used to restore the heart to normal beating.
  • An external defibrillator typically includes a pair of elecfrode paddles applied to the patient's chest. The defibrillator generates an electric field between electrodes.
  • An elecfric current passes tMough the patient's heart and stimulates the heart's electrical system to help restore the heart to regular pumping.
  • a patient's heart begins fibrillating during heart surgery or other open-chest surgeries. M such instances, a special type of defibrillating device is used.
  • An open-chest defibrillator includes special elecfrode paddles that are configured to be applied to the heart on opposite sides of Me heart. A strong electric field is created between the paddles, and an elecfric current passes tMough the heart to defibrillate the heart and restore the heart to regular pumpMg. In some patients that are especially vulnerable to fibrillation, an implantable heart defibrillation device may be used.
  • an implantable heart defibrillation device includes an implantable cardioverter defibrillator (ICD) or a cardiac resyncMonization therapy device (CRT-D) which usually has only one electrode positioned M the right ventricle, and the return electrode is the defibrillator housing itself, typically implanted in the pectoral region.
  • ICD implantable cardioverter defibrillator
  • CRT-D cardiac resyncMonization therapy device
  • an implantable device includes two or more elecfrodes mounted directly on, in or adjacent the heart wall. If the patient's heart begins fibrillating, these electrodes will generate an electric field therebetween in a manner similar to the other defibrillators discussed above.
  • the present Mvention includes several cardiac harness embodiments that enable defibrillation of the heart and other embodiments disclose means for defibrillatMg, resyncMonization, left ventricular pacMg, right ventricular pacing, and biventricular pacing/sensing.
  • the cardiac harness 20 M cludes a pair of leads 31 having conductive electrode portions 32 that are spaced apart and which separate panels 21.
  • the electrodes are formed of a conductive coil wire 33 that is wrapped around a non-conductive member 34, preferably in a helical manner.
  • a conductive wire 35 is attached to the coil wire and to a power source 36.
  • the power source 36 can Mclude any of the followMg, dependmg upon the particular application of the elecfrode: a pulse generator; an implantable cardioverter/defibrillator; a pacemaker; and an implantable cardioverter/defibrillator coupled with a pacemaker. M the embodiment shown in FIG.
  • the elecfrodes are configured to deliver an elecfrical shock, via the conductive xvire and the power source, to the epicardial surface of the heart so that the elecfrical shock passes tMough the myocardium.
  • the elecfrodes are spaced so that they would be about 180° apart around the circumference of the heart in the embodiment shown, they are not so limited. In other words, the elecfrodes can be spaced so that they are about 45° apart, 60° apart, 90° apart, 120° apart, or any arbitrary arc length spacing, or, for that matter, essentially any arc length apart around the circumference of the heart in order to deliver an appropriate electrical shock.
  • the electrodes 32 are configured to deliver an appropriate elecfrical shock to defibrillate the heart.
  • the electrodes 32 are attached to the cardiac harness 20, and more particularly to the undulatMg strands 22, by a dielectric material 37.
  • the dielectric material insulates the elecfrodes from the cardiac harness so that electrical current does not pass from the elecfrode to the harness thereby undesirably shunting current away from the heart for defibrillation.
  • the dielectric material covers the imdulating sfrands 22 and covers at least a portion of the electrodes 32.
  • the middle panel undulating strands are covered with the dielectric material while the right and left side panels are bare metal. While it is preferred that all of the undulatMg sfrands of the panels be coated with the dielectric material, thereby insulating the harness from the elecfric shock delivered by the electrodes, some or all of the undulating sfrands can be bare metal used to deliver the electrical shock to the epicardial surface of the heart for defibrillation or for pacing.
  • the elecfrodes 32 have a conductive discharge first surface 38 that is intended to be proximate to or in direct contact with the epicardial surface of the heart, and a conductive discharge second surface 39 that is opposite to the first surface and faces away from the heart surface.
  • proximate is Mtended to mean that the electrode is positioned near or in direct contact with the outer surface of the heart, such as the epicardial surface of the heart.
  • the first surface and second surface typically will not be covered with the dielectric material 37 so that the bare metal conductive coil can transmit the electrical current from the power source (pulse generator), such as an implantable cardioverter/defibrillator (ICD or CRT-D) 36, to the epicardial surface of the heart.
  • the power source such as an implantable cardioverter/defibrillator (ICD or CRT-D) 36
  • ICD or CRT-D implantable cardioverter/defibrillator
  • either the first or the second surface may be covered with dielectric material in order to preferentially direct the current tMough only one surface.
  • the dielectric material 37 used to attach the electrodes 32 to the undulatMg strands 22 insulates the undulating sfrands from any elecfrical current discharged through the conductive metal coils 33 of the elecfrodes.
  • the dielectric material in this embodiment is flexible so that the elecfrodes can serve as a seam or hinge to fold the cardiac harness 20 into a lower profile for minimally invasive delivery.
  • the cardiac harness can be folded along its length, along the length of the elecfrodes, in order to reduce the profile for intercostal delivery, for example tMough the rib cage or other area typically used for mMimally invasive surgery for accessing the heart.
  • Minimally invasive approaches involving the heart typically are made t ough subxiphoid, subcostal or Mtercostal incisions.
  • the cardiac harness When the cardiac harness is folded, it can be reduced into a circular or a more or less oval shape, both of which promote minimally invasive procedures.
  • FIGS. 5B, 5C, and 5D cross sectional views of Me leads 31 and the electrode portion 32 are shown in FIGS. 5B, 5C, and 5D.
  • the electrode 32 has the coil wire 33 wrapped around the non-conducting member 34 in a helical pattern.
  • the dielectric material 37 provides a spaced connection between the elecfrode and the bar arms 30 at the ends of Me undulating sfrands 22.
  • the dielectric material provides the attachment means between the elecfrodes and the bar arms of the undulating sfrands.
  • the dielectric material 37 not only acts as an insulating non-conductive material, but also provides attachment means between the undulatMg sfrands and the electrodes. Because the dielectric material 37 is relatively thin at the attacMnent points, it is highly flexible and permits the elecfrodes to be flexible along with the cardiac harness panels 21, which will expand and contract as the heart beats as previously described. Referring to FIG. 5C, the non-conductive member 34 extends beyond the coil wire 33 for a distance.
  • the non-conductive member preferably is made from the same material as the dielecfric material 37, typically a silicone rubber or similar material. While it is preferred that the dielecfric material be made from silicone rubber, or a similar material, it also can be made from ParyleneTM (Union Carbide), polyurethanes, PTFE, TFE, and ePTFE. As can be seen, the non-conductive member provides support for the dielecfric material to attach the bar arms 30 of the undulating sfrands 22 in order to connect the strands to the electrode 32.
  • ParyleneTM Union Carbide
  • a conductive wire 35 extends t ough the non-conducting member and attaches to the proximal end of the coil wire 33 so that when an elecfrical current is delivered from the power source 36 tMough conductive wire 35, the electrode coil 33 will be energized.
  • the conductive wire 35 is also covered by non-conducting material 34. Referring to FIG. 5D, it can be seen that the non-conductive member 34 continues to extend beyond the bottom (apex) of the cardiac harness and that conductive wire 35 continues to extend out of the non-conductive member and into the power source 36. In the embodiment shown in FIGS.
  • the cardiac harness is insulated from the elecfrodes by the dielectric material 37 so that there is no shunting of elecfrical currents by the cardiac harness 20 from the elecfrical shock delivered by the elecfrodes during defibrillation or pacing functions.
  • the cardiac harness 20 be comprised of undulating strands 22 made from a solid wire member, such as a superelastic or shape memory material such as Nitinol, and be insulated from the elecfrodes 32, it is possible to use some or all of the undulating sfrands to deliver the elecfrical shock to the epicardial surface of the heart. For example, as shown in FIG.
  • a composite wire 45 can be used to form the undulatMg sfrands 22 and, importantly, to effectively transmit cuoent to deliver an elecfrical shock to the epicardial surface of the heart.
  • the composite wire 45 M cludes a current conducting wire 47 made from, for example silver (Ag), and which is covered by a Nitinol Mbe 46.
  • a highly conductive coating is placed on the Nitinol Mbe.
  • the Nitinol Mbe can be covered with a deposition layer of platinum (Pt) or platinum-iridium (Pt-Ir), or an equivalent material Mcluding iridium oxide (IROX).
  • the composite wire so constructed, will have superior mechanical performance to expand and confract due to the Nitinol tubing, and also will have improved electrical properties resulting from the current conducting wire 47 and improved electrolytic/electrochemical properties via the surface layer of platMum-iridium.
  • the cardiac harness 20 will be capable of delivering a defibrillatMg shock on selected portions of the heart via the undulatMg strands and will also function to impart compressive forces as previously described.
  • the non-conducting insulated undulating strands 22 as shown by cross sectional view FIG.
  • the undulatMg sfrands 22 can be covered with dielecfric material 37 in order to Msulate the sfrands from the electrical current delivered tMough the electrodes while delivering shock on the epicardial surface of the heart.
  • the undulatMg strands 22 are covered by dielecfric material 37 to provide sulation from the electrical shock delivered by the electrodes 32, yet maintain the flexibility and the expansive properties of the undulating sfrands.
  • An Miportant aspect of the invention is to provide a cardiac harness 20 that can be implanted minimally Mvasively and be attached to the epicardial surface of the heart, without requiring suMres, clips, screws, glue or other attachment means.
  • the undulating strands 22 may provide relatively high frictional engagement with the epicardial surface, depending on the cross-sectional shape of the sfrands.
  • the cross- sectional shape of the undulating sfrands 22 can be circular, rectangular, triangular or for that matter, any shape that increases the frictional engagement between the undulatMg sfrands and the epicardial surface of the heart. As shown M FIG.
  • the middle cross-section view having a flat rectangular surface not only has a low profile for enhancing minimally invasive delivery of the cardiac harness, but it also has rectangular edges that may have a tendency to engage and dig into the epicardium to increase the frictional engagement with the epicardial surface of the heart.
  • the necessity for suturing, clippMg, or further attachment means to attach the cardiac harness to the epicardial surface of the heart becomes unnecessary.
  • FIGS. 7 A and 7B a different configuration for cardiac harness 20 and the elecfrodes 32 are shown, as compared to the FIG. 5 embodiments.
  • FIGS. 7 A and 7B tMee elecfrodes are shown separating the tMee panels 21 with undulatMg sfrands 22 extending between the electrodes.
  • springs 23 are formed by the undulating sfrands so that the undulatMg strands can expand and confract durMg the diastolic and systolic functions, and apply a compressive force during both functions.
  • the far side panel of FIG. 7A is not shown for clarity piuposes.
  • the position of the electrodes around the circumference of the heart is a matter of choice, and in the embodiment of FIG. 7A, the electrodes can be spaced an equal distance apart at about 120°.
  • elecfrodes 32 extend beyond the bottom or apex portion of the cardiac harness 20 in order to Msure that the elecfrical shock delivered by the elecfrodes is delivered to the epicardial surface of the heart and McludMg the lower portion of the heart closer to the apex 13.
  • the electrodes 22 have a distal end 50 and a proximal end 51 where the proximal end is positioned closer to the apex 13 of the heart and the distal end is positioned closer to the base or upper portion of the heart.
  • distal is intended to mean further into the body and away from the attendMg physician, and proximal is meant to be closer to the outside of the body and closer to the attending physician.
  • the proximal ends of the elecfrodes are positioned closer to the apex of the heart and provide severaltreatments, including the ability to deliver an elecfrical shock closer to the apex of the heart.
  • the electrode proximal ends also ftmction to provide support for the cardiac harness 20 and the panels 21, and lend support not only during delivery (as will be further described herein) but in separating the panels and in gripping Me epicardial surface of the heart to retain the harness on the heart without slipping.
  • FIGS. 7 and 7B embodiments show electrodes 32 separating tMee panels 21 of the cardiac panel 20, more or fewer elecfrodes and panels can be provided to suit a particular application.
  • four electrodes 32 separate four panels 21, so that two of the elecfrodes can be positioned on opposite sides of the left venfricle and two of the electrodes can be positioned on opposite sides of the right ventricle.
  • elecfrodes preferably all four elecfrodes would be used, with a first set of two electrodes on opposite sides of the right venfricle acting as one (common) electrode and a second set of two electrodes on opposite sides of the left venfricle actMg as the opposite (common) electrode.
  • two of the elecfrodes can be activated while the other two elecfrodes act as dirmmy electrodes in that they would not be activated unless necessary.
  • ICD's implantable cardioverter/defibrillators are capable of delivering approximately thirty to forty joules in order to defibrillate the heart.
  • the electrodes 22 of the cardiac harness 20 of the present Mvention deliver defibrillating shocks havMg less than thirty to forty joules.
  • the commercially available ICD's can be modified to provide lower power levels to suit the present Mvention cardiac harness system with electrodes delivering less than thirty to forty joules of power.
  • one objective of the elecfrode configuration is to create a uniform current density distribution throughout the myocardium. Therefore, in addition to the number of elecfrodes used, their size, shape, and relative positions will also all have an impact on the induced current density distribution.
  • five to eight elecfrodes also are envisioned.
  • the cardiac harness and the associated cardiac rhythm management device can be used not only for providMg a defibrillatMg shock, but also can be used as a pacMg/sensing device for treating the syncMony of both ventricles, for resyncMonization, for bivenfricular pacing and for left ventricular pacing or right venfricular pacing.
  • the heart 10 is shown in cross-section exposing the right venfricle 11 and the left ventricle 12.
  • the cardiac harness 20 is mounted around the outer surface of the heart, preferably on the epicardial surface of the heart, and multiple elecfrodes are associated with the cardiac harness.
  • elecfrodes 32 are attached to the cardiac harness and positioned around the circumference of the heart on opposite sides of the right and left venfricles. In the event that fibrillation should occur, the elecfrodes will provide an elecfrical shock tMough the myocardium and the left and right venfricles in order to defibrillate the heart. Also mounted on the cardiac harness, is a pacing/sensing lead 40 thattreatments to monitor the heart and provide data to a pacemaker. If required, the pacemaker will provide pacing stimuli to syncMonize the ventricles, and/or provide left ventricular pacing, right ventricular pacing or bivenfricular pacing. Thus, for example, in FIG.
  • pairs of pacing/sensing leads 40 are positioned adjacent the left and right venfricle free walls and can be used to provide pacing stimuli to syncMonize the venfricles, or provide left ventricular pacing, right venfricular pacing or biventriculator pacing.
  • proximal Y connectors can simplify the fransition to a post-generator such as Oscor's, iLMk-B15-10.
  • the iLink-B15-10 can be used to link the right and left ventricular free-wall pace/sense leads 40, as shown in 8D.
  • cardiac harness 60 is similar to previously described cardiac harness 20.
  • cardiac harness 60 it also Mcludes panels 61 consistMg of undulatMg strands 62.
  • the undulating strands are continuous and extend tMough coils as will be described.
  • the undulating sfrands act as spring elements 63 as with prior embodiments that will expand and confract along directional line 64.
  • the cardiac harness 60 includes a base or upper end 65 and an apex or lower end 66.
  • grip pads 67 are comiected to adjacent strands, preferably at the apex 68 of the springs.
  • the grip pads 67 could be attached from Me apex of one spring element to the side 69 of a sprMg element, or the grip pad could be attached from the side of one spring to the side of an adjacent spring on an adjacent undulating strand.
  • coils 62 are Mterwoven with the undulatMg strands, which togeMer define the panels 61.
  • the coils typically are formed of a coil of wire such as Nitinol or similar material (staMless steel, MP35N), and are highly flexible along their longiMdinal length.
  • the coils 72 have a coil apex 73 and a coil base 74 to coincide with the harness base 65 and the harness apex 66.
  • the coils can be injected with a non-conducting material so that the undulating sfrands extend tMough gaps in the coils and tMough the non-conducting material.
  • the non-conducting material also fills in the gaps which will prevent the undulatMg strands from touching the coils so there is no metal-to-metal touching between the undulatMg strands and the coils.
  • the non-conducting material is a dielectric material 77 that is formed of silicone rubber or equivalent material as previously described.
  • a dielectric material 78 also covers the undulating sfrands in the event a defibrillating shock or pacing stimuli is delivered to the heart via an external defibrillator (e.g., transthoracic) or other means.
  • coils 72 not only perform the function of beMg highly flexible and provide the attachment means between the coils and the undulating strands, but they also provide structural columns or spMes that assist M deploying the harness 60 over the epicardial surface of the heart.
  • the cardiac harness 60 has been positioned over the heart and delivered by minimally invasive means, as will be described more folly herein.
  • the coils 72 although highly flexible along their longiMdMal length, have sufficient column sfrength M order to push on Me apex 73 of the coils so that the base portion 74 of the coils and of the harness 65 slide over the apex of the heart and along the epicardial surface of the heart until the cardiac harness 60 is positioned over the heart, substantially as shown in FIG. 12.
  • the cardiac harness 60 has multiple panels 61 and multiple coils 72. More or fewer panels and coils can be used in order to achieve a desired result. For example, eight coils are shown in FIGS.
  • the diameter of the coils can be varied in order to increase or decrease flexibility and/or column strength in order to assist in the delivery of the harness over the heart.
  • the coils preferably have a round cross-sectional wire in the form of a tightly wound spiral or helix so that the cross-section of the coil is circular.
  • the cross-sectional shape of the coil need not be circular, but may be more advantageous if it were oval, rectangular, or another shape.
  • coils 72 had an oval shape, where the longer axis of the oval was parallel to the circumference of the heart, the coil would flex along its longiMdinal axis and still provide substantial column strength to assist M delivery of the cardiac harness 60. Further, an oval-shaped coil would provide a lower profile for minimally invasive delivery.
  • the wire cross-section also need not be round/circular, but can consist of a flat ribbon having a rectangular shape for low profile delivery.
  • the coils also can have different shapes, for example they can be closed coils, open coils, laser-cut coils, wire-wound coils, multi-filar coils, or the coil sfrands themselves can be coiled (i.e., coiled coils).
  • the electrode need not have a coil of wire, rather the electrode could be formed by a zig-zag-shaped wire (not shown) extending along the electrode. Such a design would be highly flexible and fatigue resistant yet still be capable of providing a defibrillating shock.
  • the cardiac harness embodiments 60 shown M FIGS. 9-12 can be folded as shown in FIGS. 13 and 14 and yet remain highly flexible for mMimally invasive delivery.
  • the coils 72 act as Mnges or spMes so that the cardiac harness can be folded along the longitudinal axis of the coils.
  • the grip pads typically connecting adjacent undulating sfrands 62 have been omitted for clarity in these embodiments, however, they would be used as previously described.
  • the cardiac harness 60 M cludes both coils 72 and elecfrodes 32.
  • a series of undulating sfrands 22 extend between the coils and the elecfrodes to form panels 21.
  • the coils and electrodes form hinge regions so that the panels can be folded along the longiMdmal axis of the coils and elecfrodes for minimally invasive delivery.
  • the coils not only act as a hMge, but provide column strength as previously described so that the cardiac harness can be delivered minimally invasively by delivery tMough, for example, the intercostal space between the ribs and then pushing the harness over the heart.
  • the elecfrodes provide column sfrength as well, yet remain flexible along their longiMdinal axis, as do the coils.
  • the electrodes 32 or the coils 72 can be mounted on the Mner surface (touching Me heart) or outer surface (away from the heart) of the cardiac harness.
  • the cardiac harness 20 includes continuous undulating strands 22 that extend circumferentially around the heart without any interruptions.
  • the undulatMg strands are interconnected by any interconnecting means, including grip pads 27, as previously described.
  • elecfrodes 32 or coils 72, or both are mounted on an inner surface 80 or an outer surface 81 of the cardiac harness 20.
  • a dielectric material 82 is molded around the elecfrodes or coils and around Me undulating sfrands in order to connect the electrodes and coils to the cardiac harness.
  • the elecfrodes 32 or coils 72 can be formed into a fastening means by forming notches 83 into the electrode (or coil) and which are configured to receive portions of the undulatMg strand 22.
  • the undulating strands 22 are spaced from the coils or electrodes so that there is no overlappMg/touching of metal.
  • the notches 83 are filled with a dielecfric material, preferably silicone rubber, or similar material that insulates the undulating sfrands of the cardiac harness from the elecfrodes yet provides a secure attachment means so that the electrodes or coils remaM firmly attached to the undulating sfrands of the cardiac harness.
  • the electrodes 32 do not have to be M contact with the epicardial surface of the heart in order to deliver a defibrillatMg shock.
  • the electrodes 32 can be mounted on the outer surface 81 of the cardiac harness, and not be in physical contact with the epicardial surface of the heart, yet still deliver a defibrillating shock as previously described.
  • cardiac harnesses can be consfructed from many suitable materials McludMg various metals, fabrics, plastics and braided filaments. Suitable materials also include superelastic materials and materials that exhibit shape memory properties.
  • a prefened embodiment cardiac harness is constructed of Nitinol. Shape memory dielecfric materials can also be employed.
  • Such shape memory dielectric materials can include shape memory polyurethanes or other dielecfric materials such as those containing oligo(e-caprolactone) dimethacrylate and/or poly(e-caprolactone), which are available from mnemoScience.
  • the undulating strands 22 and 62 can be formed in many ways, including by a fixture 90.
  • the fixture 90 has a number of stems 91 that are arranged M a pre-selected pattern that will define the shape of Me undulatMg sfrands 22 and 62.
  • the position of the stems will define the shape of Me undulatMg sfrands, and determine whether the previously disclosed apex of the springs is either in-phase or out-of-phase.
  • the shape of stems 91 will define the shape of the springs in terms of radius of curvature, or other shape, such as a keyhole shape, a U-shape, and the like.
  • the spacing between the stems will determine Me pitch and the ampliMde of the undulating strands which is a matter of choice.
  • a Nitinol wire 92 or other superelastic or shape memory wire having a 0.012 inch diameter is woven between stems 91 in order to form the undulatMg strands.
  • wire diameters can be used to suit a particular need and can range from about 0.007 inch to about 0.020 inch diameter.
  • Other wire cross-section shapes are envisioned to be used with fixMre 90, particularly a flat rectangular-shaped wire and an oval-shaped wire.
  • the Nitinol wire is then heat set to impart the shape memory feature. Any free ends can be connected together by laser bonding, laser welding, or other type of similar connection consistent with the use of Nitinol, or the ends may remaM free and be encapsulated in a dielecfric material to keep them afraumatic, dependmg upon the design. Again referrMg to FIG.
  • the wire is jacketed with NuSil silicone Mbing (Helix Medical) having 0.029 inch outside diameter by 0.012 Mch inside diameter. Thereafter, the jacketed Nitinol wire is placed in molds for transfer of liquid silicone rubber which will insulate the Nitinol wire from any electrical shock from any elecfrodes associated with the cardiac harness, or any other device providing a defibrillatMg shock to the heart.
  • the dimensions of the silicone Mbing will of course vary for different wire dimensions.
  • cardiac harness 100 includes multiple panels 101 similar to those previously described.
  • undulating sfrands 102 form the panels and have multiple spring elements 103 that expand and confract along directional line 104, also as previously described for other embodiments.
  • M the cardiac harness 100 shown in FIG. 17, the ampliMde of the spring elements is relatively smaller Man in other embodiments, and the pitch is higher, meaning there are more spring elements per unit o length relative to other embodiments.
  • the cardiac harness 100 should generate higher bending forces as the heart expands and contracts during the diastolic and systolic cycles.
  • the spring elements 103 of cardiac harness 100 will resist expansion, thereby imparting higher compressive forces on Me wall of Me heart during the diastolic function and will release these higher bending forces during the systolic function as the heart contracts.
  • the pitch and ampliMde of an undulating strand closer to the base or the harness may he configured to impart higher compressive forces on the epicardial surface of the heart than the undulating strands closer to the apex or the lower part of the harness. It also may be desirable to alternate the amplitude and pitch of the spring elements from one undulating strand to the next.
  • FIG. 17 embodiment can be configured with elecfrodes as previously described in other embodiments, or with coils, both of which assist with Me delivery of the cardiac harness by providing column support to the harness.
  • the cardiac harness of the present Mvention having either elecfrodes or coils, can be formed using injection molding techniques as shown in FIGS. 18A- 18C and 19A-19C.
  • the molds in FIGS. 18A-18C are substantially the same as the molds shown in FIGS.
  • bottom mold 110 includes a pattern for receiving the cardiac harness and a coil or an elecfrode.
  • FIG. 18B shows top mold 111
  • FIG. 18C shows end view mold 112. The top mold mates with the bottom mold.
  • the cardiac harness undulatMg strands will fit M undulatMg strand groove 113, which extend to coil groove 114.
  • the previously described elecfrodes or coils fit into coil grooves 114.
  • Injection port 115 is positioned midway along the mold fixtures, however, more than one injection port can be used to insure that the flow of polymer is uniform and consistent.
  • silicone rubber is injected into Me molds so that the silicone rubber flows over the undulating sfrands and the electrodes or the coils.
  • the undulating strands will be attached to the electrodes or the coils by Me silicone rubber according to the pattern shown.
  • Other patterns may be desired and the molds are easily altered to provide any pattern that ensures a secure attachment between the undulatMg sfrands and the electrodes or the coils.
  • the dielecfric material or silicone rubber inside the coils and, if necessary, between the gaps in the coils in order to Msure that the coils and the undulating sfrands are insulated from each other.
  • the silicone rubber fills the inside of the coils, extrudes tMough the gaps M the coils, and forms a skin on the inner and outer surface of the coil. This skin is selectively removed (as will be described) to expose portions of the elecfrode coils so that they can conduct current as described. Further, it is desired that the coils and the undulatMg strands do not overlap or touch in order to reduce any frictional engagement between the metallic coils and the metallic undulatMg sfrands.
  • small projections can be molded along the surface of the coils that will contact the epicardial surface.
  • these small projections preferably formed of silicone rubber, will engage the epicardial surface of the heart and increase the frictional engagement between the coils and the surface of the heart in order to secure the harness to the heart without the use of suMres, clips, or other mechanical attachment means.
  • a portion of a lead having an electrode 120 is shown in the form of a conductive coil 121.
  • the coil can be formed of any suitable wire that is conductive so that an electrical shock can be transmitted tMough the elecfrode and tMough the myocardium of the heart.
  • the coil wire is wrapped around a dielectric material 122 in a helical configuration, however, a spiral wrap or other configuration is possible as long as the coil has superior fatigue resistance and longiMdinal flexibility.
  • conductive coils 121 have high fatigue resistance which is necessary since the coil is on or near the surface of the beating heart so that the coil is constantly flexing along its longiMdinal length in response to heart expansion and contraction.
  • the cross-section of the wire preferably is round or circular, however, it also can be oval shaped or flat (rectangular) in order to reduce the profile of the elecfrode for minimally vasive delivery.
  • a circular, oval or flat wire will have a relatively high fatigue resistance as well as a relatively low profile for delivery purposes.
  • a flat wire coil is highly flexible along the longitudinal axis and it has a relatively high surface area for delivering an elecfrical shock.
  • the electrode 120 has a first surface 123 and a second surface 124. The first surface 123 will be proximate the epicardial surface of the heart, or other portions of the heart, while the second surface will be opposite the first surface and away from the epicardial surface of the heart.
  • a conductive wire extends through the dielecfric material 122 and attaches to the coil wire 121 at one or more locations along the coil or coils, and the conductive wire is connected to a power source (e.g., an ICD) at its other end.
  • a power source e.g., an ICD
  • the cross-section of the electrode 120 can be circular, or as shown in FIG. 23, can be oval for reduced profile for minimally invasive delivery.
  • Other cross-sectional shapes for electrode 120 are available depending upon the particular need. All of these cross-sectional shapes will have relatively high fatigue resistance. As shown in FIGS.
  • multiple lumens 125 can be provided to carry one or more conductive wires from the elecfrode to the power source (pulse generator, ICD, CRT-D, pacemaker, etc.).
  • the lumens also can carry sensing wires that transmit data from a sensor on or in the heart to a pacemaker so that the heart can be monitored.
  • FurMer, Me lumens 125 can be used for other pu ⁇ oses such as drag delivery (therapeutic drugs, steroids, etc.), dye Mjection for visability under fluoroscopy, carrymg a guide wire (not shown) or a stylet to facilitate delivery of the electrodes and the harness, or for other pu ⁇ oses.
  • the lumens 125 can be used to caoy a guide wire (not shown) or a stylet in such a way that the column stiffness of the coil is increased by the guide wire or stylet, or in a manner that will vary the column stiffness as required.
  • a guide wire or a stylet in lumens 125 By varying the column stiffness of the coils with a guide wire or a stylet in lumens 125, the ability to push the carMac harness over the heart (as will be described) will be enhanced.
  • the guide wires or stylets also can be used, to some extent, to steer the coils and hence the cardiac harness during delivery and implantation over the heart.
  • the guide wire or stylet in lumens 125 can be removed after the cardiac harness is implanted so that the coils (electrodes) become more flexible and atraumatic.
  • the elecfrode 120 not only provides an elecfrical conduit for use M defibrillation, but also has sufficient column sfrength when attached to the cardiac harness to assist in the delivery of the harness by minimally invasive means.
  • the coils 121 provide a highly flexible electrode along its longiMdinal length, and also provide a substantial amount of column strength when coupled with a cardiac harness to assist in the delivery of the harness. In forther keeping with the invention of FIGS.
  • a dielecfric material such as silicone rubber 126 can be used to coat elecfrodes 120.
  • silicone rubber 126 will coat the entire elecfrode 120. Soda blasting (or other known material removal process) can be used to remove portions of the silicone rubber skin from the coils 121 in order to expose first surface 123 and second surface 124 (or portions of those surfaces) so that the bare metal coil is exposed to the epicardial surface of the heart.
  • the silicone rubber is removed from both the first surface and the second surface, however, it also may be advantageous to remove the silicone rubber from only the first surface, which is proximate to or in contact with the epicardial surface of the heart.
  • the electrode 120 has a surface area 128 which essentially includes all of the bare metal surface area that is exposed and that will deliver a shock.
  • the amount of surface area per electrode can vary greatly dependMg upon a particular application, however, surface areas in the range from about 50 mm 2 to about 600 mm 2 are typical.
  • the elecfrodes can vary widely due to the variations in the size of the heart to be treated in conjunction with the size of the cardiac harness, generally the length of Me electrode ranges from about 2 cm to about 16 cm.
  • the coil 121 has a length in the range of about 1 cm to about 12 cm.
  • Commercially available leads having one or more elecfrodes are available from several sources and may be used with Me cardiac harness of the present Mvention.
  • Commercially available leads with one or more electrodes is available from Guidant Co ⁇ oration (St.
  • cardiac rhythm management devices including defibrillation and pacing systems available for use in combMation with the cardiac harness of the present invention (possibly with some modification) include, the CONTAK CD®, the INSIGNIA® Plus pacemaker and FLEXTREND® leads, and the VITALITYTM AVT® ICD and ENDOTAK RELIANCE® defibrillation leads, all available from Guidant Co ⁇ oration (St. Paul, MN), and the InSync System available from Medtronic Co ⁇ oration (Minneapolis, MN).
  • Guidant Co ⁇ oration St. Paul, MN
  • InSync System available from Medtronic Co ⁇ oration
  • the conductive coils 121 need not be continuous along Me length of the electrode 120, but can be spatially isolated or staggered along the elecfrode.
  • multiple coil sections 127 similar to the coil 121 shown in FIG. 20, can be spaced along the elecfrode with each coil section bemg attached to the conductive wire so it receives electrical cunent from the power source.
  • the coil sections can be from about 0.5 cm to about 2.0 cm long and be spaced from about 0.5 cm to about 4 cm apart along the electrode.
  • the cardiac rhythm management devices associated with the present invention are implantable devices that provide electrical stimulation to selected chambers of the heart in order to treat disorders of cardiac rhythm and can include pacemakers and implantable cardioverter/defibrillators and/or cardiac resyncMonization therapy devices (CRT-D).
  • a pacemaker is a cardiac rhythm management device which paces the heart with timed pacing pulses.
  • a pacemaker is any cardiac rhythm management device with a pacMg functionality, regardless of any other functions it may perform such as the delivery of cardioversion or defibrillation shocks to terminate afrial or ventricular fibrillation.
  • An important feaMre of the present invention is to provide a cardiac harness having the capability of providing a pacing function in order to treat the syncMony of both ventricles.
  • a pacemaker with associated leads and elecfrodes are associated with and Mco ⁇ orated into the cardiac harness of the present Mvention.
  • the pacing/sensing electrodes alone or in combination with defibrillating elecfrodes, provide treatment to synchronize the venfricles and improve cardiac ftmction.
  • a pacemaker and a pacing/sensMg electrode are Mco ⁇ orated Mto the design of the cardiac harness. As shown in FIGS.
  • a lead (not shown) having a defibrillator elecfrode 130 at its distal end, shown in partial section, not only inco ⁇ orates wire coils 131 used to deliver a defibrillatMg elecfrical shock to the epicardial surface of the heart, but also inco ⁇ orates a pacing/sensMg electrode 132.
  • the defibrillator elecfrode 130 can be attached to any cardiac harness embodiment previously described herein.
  • a non-penetrating pacing/sensing elecfrode 132 is combined with the defibrillating elecfrode 130 M order to provide data relating to heart function.
  • the pacing/sensMg electrode 132 does not penetrate the myocardium in this embodiment, however, it may be beneficial in other embodiments for the pacing or sensing elecfrode to penetrate the myocardium.
  • One advantage of a noii- penefrating pacing/sensing electrode is that there is no danger of puncturing a coronary artery or causing further trauma to the epicardium or myocardium. It is also easier to design since there is no requirement of a penetration mechanism (barb or screw) on the pacing/sensing elecfrode.
  • the pacing/sensing electrode 132 is in direct contact with the epicardial surface of the heart and will provide data via lead wire 133 to the pulse generator (pacemaker), which will Mterpret the data and provide any pacing function necessary to achieve, for example, venfricular resyncMonization therapy, left ventricular pacing, right ventricular pacing, syncMony of both venfricles, and or bivenfricular pacing. As shown in FIG.
  • the pacing/sensing elecfrode 132 is Mco ⁇ orated into a portion of a cardiac harness 134, and more particularly the undulatMg strands 135 are attached by dielecfric material 136 to the pacing/sensing electrode.
  • the wire coils 131 of the defibrillating elecfrode 130 are wrapped around the dielecfric material 136, and the dielectric material insulates the pacing/sensing elecfrode 132 from both the wire coils 131 and from the undulating sfrands 135 of the cardiac harness.
  • pacMg/sensMg elecfrodes 132 can be inco ⁇ orated along defibrillating elecfrode 130, and multiple pacing and sensing electrodes can be Mco ⁇ orated on other elecfrodes associated with the cardiac harness.
  • multi-site pacing (as previously shown in FIGS. 8A-8D) using pacing/sensMg electrodes 132 enables resyncMonization therapy M order to treat the syncMony of both ventricles.
  • Multi-site pacing allows the positioning of the pacing/sensMg elecfrodes to provide bi- venfricular pacing or right venfricular pacing, left venfricular pacing, depending upon the patient's needs.
  • a defibrillating electrode is combined with pacing/sensMg electrodes, for attachment to any of the cardiac harness embodiments disclosed herein.
  • the defibrillating electrode 130 is formed of wire coils 131 wrapped in a helical manner.
  • the helical wire can be a wound wire having a single strand or a quaMafilar wire having four wires bundled together to form the coil.
  • the wire coils 131 are wrapped around dielectric material 136 M a manner similar to that described for the embodiments in FIGS. 25A and 25B.
  • the pacMg/sensing electrode 132 is in the form of a single ring for unipolar operation, and two rings for bi-polar operation.
  • the pacing/sensing elecfrode rings 132 are mounted coaxially with the defibrillatMg electrode wire coils 131, and the conducting wires from the wire coils and the pacMg/sensing ring elecfrode are shown extending tMough Me dielectric material 136 and being insulated from each other.
  • the conducting wires from the defibrillatMg electrode 130 and from the pacing/sensing ring elecfrodes 132 can be bundled into a common lead wire 133 which extends to the pulse generator (an ICD, CRT-D, and or a pacemaker).
  • the pulse generator an ICD, CRT-D, and or a pacemaker.
  • the pacing/sensing elecfrode rings 132 have a diameter that is somewhat larger than the defibrillator electrode coils 131 in order to insure preferential contact by the electrode rings against the epicardial surface of the heart.
  • pacing/sensing elecfrode rings Preferably, several pairs of pacing/sensing elecfrode rings (bipolar) would be positioned on the cardiac harness and be positioned to come into contact with, for example, the left ventricle free wall.
  • Multi-site pacing allows the pacing/sensMg electrode rings 132 to be used for both pacing and resyncMonization concurrently. Further, the pacing/sensing electrode rings 132 also can be used in the absence of defibrillating electrodes 130.
  • the prior disclosure relating to molding of the cardiac harness to the defibrillator electrode applies equally as well to the pacMg/sensMg electrode rings.
  • the wire coil 131 and the pacMg/sensing electrode rings 32 can be fabricated in several ways including by laser cutting stainless steel MbMg or using highly conductive materials in wire form, such as biocompatible platinum wire.
  • the wire coils 131 can be quaMafilar wire (platinum) for improved flexibility and confonnability to the epicardial surface of the heart and be biocompatible.
  • the surface of the pacMg/sensing elecfrodes can vary greatly depending upon the application.
  • the surface area of the pacMg/sensing electrodes are M the range from about 2 mm 2 to about 12 mm 2 , however, this range can vary substantially.
  • the pacMg/sensMg elecfrodes can be formed separately and mounted on the cardiac harness with or without defibrillating elecfrodes.
  • the defibrillatMg elecfrode 130 as disclosed herein can be used with commercially available pacing/sensMg elecfrodes and leads.
  • Oscor Model HT 52PB
  • endocardial/passive fixation leads can be integrated with the defibrillator electrode 130 by molding the leads into Me fibrillator elecfrode using the same molds previously disclosed herein.
  • the foregoing disclosed Mvention Mco ⁇ orating cardiac rhythm management devices into the cardiac harness combines several freatment modalities that are particularly beneficial to patients suffering from congestive heart failure.
  • the cardiac harness provides a compressive force on the heart thereby relieving wall stress, and Miproving cardiac ftmction.
  • the defibrillating and pacMg/sensing electrodes associated with the cardiac harness, along with ICD's and pacemakers, provide numerous treatment options to correct for any number of maladies associated with congestive heart failure.
  • the cardiac rhythm devices can provide elecfrical pacing stimulation to one or more of the heart chambers to improve the coordination of afrial and/or venfricular contractions, which is refeoed to as resyncMonization therapy.
  • Cardiac resyncMonization therapy is pacing stimulation applied to one or more heart chambers, typically the ventricles, in a manner that restores or maMtains syncMonized bilateral contractions of the atria and/or venfricles thereby improving pumpMg efficiency.
  • ResyncMonization pacMg may involve pacing both ventricles in accordance with a syncMonized pacing mode.
  • pacing at more than one site may be therapeutic in patients with hypertrophic obstructive cardiomyopathy, where creating asyncMonous contractions with multi-site pacing reduces the abnormal hyper-contractile ftmction of the venfricle.
  • resyncMonization therapy may be implemented by adding syncMonized pacing to the bradycardia pacMg mode where paces are delivered to one or more syncMonized pacMg sites in a defined time relation to one or more sensing and pacMg events.
  • syncMonized chamber-only pacing is left venfricle only syncMonized pacMg where the rate in syncMonized chambers are the right and left ventricles respectively.
  • Left- ventricle-only pacMg may be advantageous where the conduction velocities withM the venfricles are such that pacing only the left venfricle results in a more coordinated confraction by the venfricles than by conventional right venfricle pacmg or by venfricular pacMg.
  • syncMonized pacing may be applied to multiple sites of a single chamber, such as the left venfricle, the right venfricle, or both ventricles.
  • the pacemakers associated with the present Mvention are typically implanted subcutaneously on a patient's chest and have leads Mreaded to the pacing/electrodes as previously described in order to connect the pacemaker to the electrodes for sensing and pacing.
  • the pacemakers sense intrinsic cardiac elecfrical activity tMough the electrodes disposed on the surface of the heart.
  • Pacemakers are well known in the art and any commercially available pacemaker or combMation defibrillator/pacemaker can be used in accordance with the present invention.
  • the cardiac harness and the associated cardiac rhythm management device system of the present invention can be designed to provide left ventricular pacing.
  • left heart pacing In left heart pacing, there is an initial detection of a spontaneous signal, and upon sensing the mechanical confraction of Me right and left ventricles.
  • the right mechanical afrio-venfricular delay is monitored to provide the timMg between the Mitial sensMg of right atrial activation (known as the P-wave) and right venfricular mechanical confraction.
  • the left heart is controlled to provide pacing which results M left venfricular mechanical contraction in a desired time relation to the right mechanical contraction, e.g., either simultaneous or just preceding the right mechanical confraction.
  • Cardiac output is monitored by impedence measurements and left venfricular pacing is timed to maximize cardiac output.
  • An Miportant feaMre of the present Mvention is the minimally invasive delivery of the cardiac harness and the cardiac rhythm management device system which will be described immediately below. Delivery of the cardiac harness 20,60, and 100 and associated elecfrodes and leads can be accomplished tMough conventional cardio-thoracic surgical techniques such as tMough a median stemotomy. In such a procedure, an incision is made in the pericardial sac and the cardiac harness can be advanced over the apex of the heart and along the epicardial surface of the heart simply by pus ng it on by hand.
  • the Mtact pericardium is over the harness and helps to hold it in place.
  • the previously described grip pads and the compressive force of the cardiac harness on the heart provide sufficient attachment means of the cardiac harness to the epicardial surface so that sutures, clips or staples are unnecessary.
  • Other procedures to gain access to the epicardial surface of the heart include making a slit in the pericardium and leaving it open, making a slit and later closing it, or making a small incision in Me pericardium.
  • Me cardiac harness and associated electrodes and leads may be delivered tMough minimally invasive surgical access to the thoracic cavity, as illustrated in FIGS. 27-36, and more specifically as shown in FIG. 30.
  • a delivery device 140 may be delivered Mto the thoracic cavity 141 between the patient's ribs to gain direct access to the heart 10.
  • a minimally invasive procedure is accomplished on a beatMg heart, without the use of cardio- pulmonary bypass.
  • Access to the heart can be created with conventional surgical approaches.
  • the pericardium may be opened completely or a small incision can be made M the pericardium (pericardiotomy) to allow the delivery system 140 access to the heart.
  • the delivery system of the disclosed embodiments comprises several components as shown in FIGS. 27-36. As shown M FIG. 27, an introducer Mbe 142 is configured for low profile access t ough a patient's ribs.
  • a number of fingers 143 are flexible and have a delivery diameter 144 as shown in FIG. 27, and an expanded diameter 145 as shown in FIG. 29.
  • the delivery diameter is smaller than the expanded diameter.
  • An elastic band 146 expands around the distal end 147 of the fingers and prevents the fingers from overexpanding during delivery of the cardiac harness.
  • the distal end of the fingers is the part of the delivery device 140 that is inserted tMough the patient's ribs to gain direct access to the heart.
  • the delivery device 140 also includes a dilator Mbe 150 that has a distal end
  • the cardiac harness 20,60,100 is collapsed to a low profile configuration and inserted into the distal end of the dilator Mbe, as shown M FIG. 28.
  • the dilator tube has an outside diameter that is slightly smaller than the inside diameter of the introducer Mbe 142.
  • the distal end 151 of the dilator Mbe is inserted into the proximal end 147 of the infroducer tube M close sliding engagement and in a slight frictional engagement.
  • the slidable engagement between the dilator tube and the introducer tube should be with some mild resistance, however, there should be unrestricted slidable movement between the two Mbes.
  • the cardiac harness 20,60,100 is equipped with leads (previously described) having electrodes for use M defibrillation or pacing functions.
  • the delivery system 140 also Mcludes a releasable suction device, such as suction cup 156 at the distal end of the delivery device.
  • the negative pressure suction cup 156 is used to hold the apex of the heart 10.
  • Negative pressure can be applied to the suction cup using a syringe or other vacuum device commonly known in the art.
  • a negative pressure lock can be achieved by a oneway valve stop-cock or a Mbing clamp, also known in the art.
  • the suction cup 156 is formed of a biocompatible material and is preferably stiff enough to prevent any negative pressure loss tMough the heart while manipulating the heart and sliding the cardiac harness 20,60,100 onto the heart. Further, the suction cup 156 can be used to lift and maneuver the heart 10 to facilitate advancement of the harness or to allow visualization and surgical manipulation of the posterior side of Me heart.
  • the suction cup has enough negative pressure to allow a slight pulling in the proximal direction away from the apex of the heart to somewhat elongate the heart (e.g., into a bullet shape) during delivery to facilitate advancing the cardiac harness over the apex and onto the base portion of the heart.
  • the suction cup 156 is attached to the apex of the heart and a negative pressure is Mawn, the cardiac harness, which has been releasably mounted in the distal end 151 of the dilator Mbe 150, can be advanced distally over Me heart, as will be described more folly herein. As shown in FIG.
  • the delivery device 140 has been advanced tMough the intercostal space between the patient's ribs durMg insertion of the Mtroducer Mbe, the fingers 143 are in their delivery diameter 144, which is a low profile for ease of access t ough the small port made tMough the patient's ribs.
  • the dilator Mbe 150 with the cardiac harness 20,60,100 mounted therein, is advanced distally tMough the infroducer Mbe so that the fingers 143 are expanded until they achieve their expanded diameter 145.
  • the suction cup 156 can be attached to the apex 13 of the heart 10 either before or after the dilator tube is advanced to spread the fingers 143 of the infroducer Mbe 142.
  • the dilator Mbe has already expanded the fingers on the infroducer Mbe so that there is a larger opening for the suction cup as it is advanced tMough the inside of a dilator tube, out of the distal end of the introducer Mbe, and placed M contact with the apex of the heart. Thereafter, a negative pressure is Mawn allowing the suction cup to securely attach to the apex of the heart.
  • Visualizing equipment that is commonly known M the art may be used to assist in positioMng the suction cup to the apex.
  • fluoroscopy magnetic resonance imaging (MRI)
  • dye injection to enhance fluoroscopy
  • echocardiography and Mfracardiac, transesophageal, or transthoracic echo
  • Mfracardiac transesophageal, or transthoracic echo
  • Me heart can then be maneuvered somewhat by pullMg on the tubing 157 attached to the suction cup, or by manipulating the infroducer Mbe 142, the dilator tube 150, both in conjunction with the suction cup.
  • the cardiac harness 20,60,100 is advanced distally out of the dilator tube and over the suction cup 156.
  • the suction cup is tapered so that the distal end of the harness slides over Me narrow portion of the taper (the proximal end of the suction cup 158).
  • the suction cup becomes wider at its distal end where it is attached to the apex of the heart, and the cardiac harness continues to slide and expand over the suction cup as it is advanced distally.
  • the cardiac harness continues to be advanced distally, it slides over the apex of the heart and continues to expand as it is pushed out of the dilator tube and along the epicardial surface of the heart. Since the harness and the electrodes 32,120,130 are coated with the previously described dielectric material, preferably silicone rubber, the cardiac harness should slide easily over the epicardial surface of the heart.
  • the silicone rubber offers little resistance and the epicardial surface of the heart has sufficient fluid to allow the harness to easily slide over the wet surface of the heart.
  • the pericardium previously has been cut so that the cardiac harness is sliding over the epicardial surface of the heart with the pericardium over Me cardiac harness to help hold it onto the surface of the heart.
  • the cardiac harness 20,60,100 has been completely advanced out of Me dilator tube so Mat the harness covers at least a portion of the heart 10.
  • the suction cup 156 has been withMawn, and the introducer Mbe 142 and dilator tube 150 also have been withMawn proximally from the patient.
  • a power source 170 such as an ICD, CRT-D, and/or pacemaker
  • the elecfrodes will be attached to the pulse generator to provide a defibrillatMg shock or pacingpositions as previously described.
  • the cardiac harness 20,60,100 was advanced tMough the dilator Mbe by pushing on the proximal end of the elecfrodes 32,120,130, on the lead wires 31,133, and on the proximal end (apex 26) of the cardiac harness.
  • the electrodes have sufficient column sfrength so that pushing on the proximal ends of the elecfrodes assists in pushing the cardiac harness out of the dilator Mbe and over the epicardial surface of the heart.
  • advancement of the cardiac harness is accomplished by hand, by the physician simply pushMg on the elecfrodes and the leads to advance the cardiac harness out of the dilator Mbe to slide onto the epicardial surface of the heart.
  • the delivery device 140 and more specifically mtroducer Mbe 142 and dilator Mbe 150, have a circular cross- section.
  • the cardiac harness 20,60,100 is advanced out of a delivery device 140 having an oval cross-section, the harness distal end will quickly form into a more circular shape M order to assume the configuration of the epicardial surface of the heart as it is advanced distally over the heart.
  • the cardiac harness 2060,100 is advanced out of a delivery device 140 having an oval cross-section, the harness distal end will quickly form into a more circular shape M order to assume the configuration of the epicardial surface of the heart as it is advanced distally over the heart.
  • the cardiac harness 2060,100 is advanced out of a delivery device 140 having an oval cross-section, the harness distal end will quickly form into a more circular shape M order to assume the configuration of the epicardial surface of the heart as it is advanced distally over the heart.
  • the cardiac harness 2060,100 is advanced out of a delivery device 140 having an oval cross-section, the harness distal end will quickly form into a more circular shape M order to assume the configuration of the epicardial surface of the heart as it is advanced distally
  • the pericardial sac helps to enclose the harness to prevent it from shifting or sliding on the epicardial surface of the heart.
  • the harness itself, the elecfrodes 32,120,130, as well as leads 31 and 132 have sufficient column strength in order for the physician to push from the proximal end of the harness to advance it distally tMough Me dilator Mbe 150.
  • the cardiac harness 20,60,100 M cludes coils 72, as opposed to the electrodes and leads, the harness can be delivered in the same manner as previously described with respect to FIGS. 27-36.
  • the coils have sufficient column strength to permit the physician to push on the proximal end of the coils to advance the cardiac harness distally to slide over the apex of the heart and onto the epicardial surface.
  • delivery of the cardiac harness 20,60,100 can be by mechanical means as opposed to the hand delivery previously described. As shown in FIGS.
  • delivery system 180 M cludes an infroducer tube 181 thattreatments the same as introducer Mbe 142. Also, a dilator Mbe 182, which is sized for slidable movement within the infroducer tube, alsotreatments the same as the previously described dilator Mbe 150. An ejection Mbe 183 is sized for slidable movement within the dilator Mbe, that is, the outer diameter of the ejection Mbe is slightly smaller than the inner diameter of the dilator Mbe. As shown in FIGS.
  • the ejection Mbe has a distal end 184 and a proximal end 185, wherein the distal end of the ejection Mbe has a plate that fills the entire inner diameter of the ejection Mbe.
  • the plate has a number of lumens 187 for receiving leads 31,132 and for receiving the suction cup 156 and associated MbMg 157.
  • lumens 188 are sized for receiving leads 31,132 theretMough
  • lumen 189 is sized for receiving suction cup 156 and the associated MbMg 157.
  • the number of lumens 188 M plate 186 will be defined by the number of leads 31,132 associated with the cardiac harness 20,60,100.
  • the suction cup and cardiac harness are on the left side of the schematic, and the ejection Mbe 183 is on the right hand side of Me schematic.
  • the cardiac harness would be mounted M the dilator tube, and the dilator Mbe would extend into the introducer tube, while the ejection Mbe would extend into the dilator Mbe.
  • the leads 31,132 extend tMough lumens 188, while the tubing 157 associated with the suction cup extends tMough lumen 189.
  • the Mbing and the leads extend proximally out of the proximal end of the ejection Mbe, and extend out of the patient during delivery of the harness.
  • the harness can be advanced out of the dilator by advancMg the ejection Mbe 183 in a distal direction toward the apex of the heart.
  • the leads, the cardiac harness and electrodes all provide sufficient column sfrength to allow the plate 186 to impart a pushing force against the cardiac harness to advance it distally over the heart as previously described.
  • Me ejection tube can be withdrawn proximally so that the MbMg 157 and the leads 31,132 slide tMough lumens 189,188 respectively.
  • suitable materials for the delivery system 140,180 can include the class of polymers typically used and approved for biocompatible use within the body.
  • the Mbing associated with delivery systems 140 and 180 are rigid, however, they can be formed of a more flexible material.
  • the delivery systems 140,180 can be curved rather than straight, or can have a flexible joint in order to more appropriately maneuver the cardiac harness 20,60,100 over the epicardial surface of the heart during delivery.
  • the MbMg associated with delivery systems 140,180 can be coated with a lubricious material to facilitate relative movement between the tubes. Lubricious materials commonly known in the art such as TeflonTM can be used to enhance slidable movement between the Mbes. Delivery and implantation of an ICD, CRT-D, pacemaker, leads, and any other device associated with the cardiac rhythm management devices can be performed by means well known in the art.
  • the ICD/CRT-D/pacemaker are delivered tMough the same mmimally invasive access site as the cardiac harness, elecfrodes, and leads.
  • the leads are then comiected to the ICD/CRT-D/pacemaker in a known manner.
  • the ICD or CRT-D or pacemaker (or combination device) is implanted in a known manner in the abdominal area and then the leads are comiected. Since the leads extend from the apical ends of the electrodes (on the cardiac harness) the leads are well positioned to attach to the power source M the abdomMal area.
  • fibrotic tissue it may be desired to reduce the likelMood of the development of fibrotic tissue over the cardiac harness so that the elastic properties of the harness are not compromised. Also, as fibrotic tissue forms over the cardiac harness and electrodes over time, it may become necessary to increase the power of the pacMg stimuli. As fibrotic tissue Mcreases, the right and left venfricular Mresholds may increase, commonly refened to as "exit block.” When exit block is detected, the pacing therapy may have to be adjusted. Certain drugs such as steriods, have been found to inhibit cell growth leading to scar tissue or fibrotic tissue growth.
  • Examples of therapeutic drugs or pharmacologic compounds that may be loaded onto the cardiac harness or Mto a polymeric coating on the harness, on a polymeric sleeve, on Mdividual undulating sfrands on the harness, or infosed tMough the lumens in the electrodes and delivered to the epicardial surface of the heart include steroids, taxol, aspirin, prostaglandins, and the like.
  • Various therapeutic agents such as antitMombogenic or antiproliferative Mugs are used to forther control scar tissue formation.
  • agents M include other antiproliferative substances as well as antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antitMombin, antimitotic, antibiotic, and antioxidant substances.
  • antineoplastics include taxol (paclitaxel and docetaxel).
  • therapeutic drugs or agents M include antiplatelets, anticoagulants, antifibrins, antiMflammatories, antitMombins, and antiproliferatives.
  • antiplatelets examples include, but are not limited to, sodium heparin, low molecular weight heparin, hirudin, argafroban, forskolin, vapiprost, prostacyclM and prostacyclin analogs, dexfran, D-phe-pro-arg-chloromethylketone (synthetic antitMombin), dipyridamole, glycoprotein Ilb/IIIa platelet membrane receptor antagonist, recombinant hirudin, Mrombin inhibitor (available from Biogen located in Cambridge, MA), and 7E-3B® (an antiplatelet drug from Centocor located M Malvern, PA).
  • antimitotic agents include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, aMiamycM, and mutamycin.
  • cytostatic or antiproliferative agents include angiopeptin (a somatostatin analog from Ibsen located in the United KMgdom), angiotensin converting enzyme inhibitors such as Captopril® (available from Squibb located in New York, NY), Cilazapril® (available from Hoffman-LaRoche located M Basel, Switzerland), or Lisinopril® (available from Merck located M Whitehouse Station, NJ); calcium channel blockers (such as Nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3 -fatty acid), histamine antagonists, Lovastatin® (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug from Merck), methofrexate, monoclonal antibodies (such as
  • M examples include alpha-Mterferon, genetically engineered epithelial cells, and dexamethasone.

Abstract

A system for treating the heart includes a cardiac harness associated with a cardiac rhythm management devise which includes at least electrodes and a power source. The cardiac harness applies a compressive force on the heart during diastole and systole. The electrodes will deliver an electrical shock to the heart for defibrillation and/or can be used for pacing/sensing. The cardiac harness and electrodes are delivered and implanted on the heart by minimally invasive access.

Description

CARDIAC HARNESS FOR TREATING CONGESTIVE HEART FAILURE AND FOR DEFIBRILLATING AND/OR PACING/SENSING
BACKGROUND OF THE INVENTION The present Mvention relates to a device for treatMg heart failure. More specifically, the Mvention relates to a cardiac harness configured to be fit around, at least a portion of a patient's heart. The cardiac harness includes electrodes attached to a power source for use M defibrillation or pacing. Congestive heart failure ("CHF") is characterized by the failure of the heart to pump blood at sufficient flow rates to meet the metabolic demand of tissues, especially the demand for oxygen. One characteristic of CHF is remodeling of" at least portions of a patient's heart. Remodeling involves physical change to the size, shape and thickness of the heart wall. For example, a damaged left ventricle may have some localized thinning and stretching of a portion of the myocardium. The thinned portion of the myocardium often is fMictionally impaired, and otlier portions of the myocardium attempt to compensate. As a result, Me other portions of the myocardium may expand so Mat the stroke volume of the ventricle is maintained notwithstandMg the impaired zone of the myocardium. Such expansion may cause the left ventricle to assume a somewhat spherical shape. Cardiac remodelMg often subjects the heart wall to increased wall tension, or stress, which fiirther impairs the heart's functional performance. Often, the heart wall will dilate fiirther M order to compensate for the impairment caused by such increased stress. Thus, a cycle can result, in which dilation leads to forther dilation and greater ftmctional impairment. Historically, congestive heart failure has been managed with a variety of
Mugs. Devices have also been used to improve cardiac output. For example, left ventricular assist pumps help the heart to pump blood. Multi-chamber pacmg lias also been employed to optimally syncMonize the beating of the heart chambers to improve cardiac output. Various skeletal muscles, such as the latissimus dorsi, have been used to assist ventricular pumpMg. Researchers and cardiac surgeons have also experimented with prosthetic "girdles" disposed around the heart. One such design is a prosthetic "sock" or "jacket" that is wrapped around the heart. Patients suffering from congestive heart failure often are at risk to additional cardiac failures, McludMg cardiac arrhythmias. When such arrhythmias occur, the heart must be shocked to return it to a normal cycle, typically by using a defibrillator. Miplantable cardioverter/defibrillators (ICD's) are well known in the art and typically have a lead from the ICD connected to an electrode implanted in the right ventricle. Such electrodes are capable of delivering a defibrillating electrical shock from the ICD to the heart. Other prior art devices have placed the electrodes on the epicardium at various locations, including on or near Me epicardial surface of the right and left heart. These devices also are capable of distributing an electrical current from an implantable cardioverter/defibrillator for puφoses of treating venfricular defibrillation or hemodynamically stable or unstable ventricular tachy arrhythmias. Patients suffering from congestive heart failure may also suffer from cardiac failures, McludMg bradycardia and tachycardia. Such disorders typically are treated by both pacemakers and implantable cardioverter/defibrillators. The pacemaker is a device that paces the heart with timed pacing pulses for use M the treatment of bradycardia, where the ventricular rate is too slow, or to treat cardiac rhythms that are too fast, i.e., anti-tachycardia pacing. As used herein, the term "pacemaker" is any cardiac rhythm management device with a pacMg functionality, regardless of any other fiinctions it may perform such as the delivery cardioversion or defibrillation shocks to terminate atrial or ventricular fibrillation. Particular forms and uses for pacing/sensMg can be found in U.S. Patent Nos. 6,574,506 (Kramer et al.) and 6,223,079 (Balcels et al.); and U.S. Publication No. 2003/0130702 (Kramer et al.) and U.S. Publication No. 2003/0195575 (Kramer et al.), the entire contents of which are Mcoφorated herein by reference thereto. The present invention solves the problems associated with prior art devices relating to a harness for treatMg congestive heart failure and placement of electrodes for use in defibrillation, or for use M pacing. SUMMARY OF THE INVENTION In accordance with the present Mvention, a cardiac harness is configured to fit at least a portion of a patient's heart and is associated with one or more electrodes capable of providing defibrillation or pacing functions. In one embodiment, rows or strands of undulations are interconnected and associated with coils or defibrillation and/or pacing/sensing leads. In another embodiment, the cardiac harness Mcludes a number of panels separated by coils or electrodes, whereM the panels have rows or strands of undulations interconnected together so that the panels can flex and can expand and retract circumferentially. The panels of the cardiac harness are coated with a dielectric coating to electrically Msulate the panels from an electrical shock delivered tMough the electrodes. Further, the electrodes are at least partially coated with a dielectric material to Msulate the electrodes from the cardiac harness. In one embodiment, the strands or rows of undulations are formed from Nitinol and are coated with a dielectric material such as silicone rubber. In this embodiment, the electrodes are at least partially coated with the same dielectric material of silicone rubber. The electrode portion of the leads are not covered by the dielectric material so that as the electrical shock is delivered by the electrodes to the epicardial surface of the heart, the coated panels and the portion of the electrodes that are coated are insulated by the silicone rubber. M other words, the heart received an electrical shock only where the bare metal of the electrodes are in contact with or are adjacent to the epicardial surface of the heart. The dielectric coating also serves to attach the panels to the electrodes. In another embodiment, the electrodes have a first surface and a second surface, the first surface being in contact with the outer surface of the heart, such as the epicardium, and the second surface faces away from the heart. Both the first surface and the second surface do not have a dielectric coating so that an electrical charge can be delivered to the outer surface of the heart for defibrillating or for pacMg. In this embodiment, at least a portion of the electrodes are coated with a dielectric coating, such as silicone rubber, Parylene™ or polyurethane. The dielectric coating serves to Msulate the bare metal portions of the electrode from the cardiac harness, and also to provide attachment means for attachMg Me electrodes to the panels of the cardiac harness. The number of elecfrodes and the number of panels forming the cardiac harness is a matter of choice. For example, in one embodiment the cardiac harness can Mclude two panels separated by two electrodes. The electrodes would be positioned 180° apart, or in some other orientation so that the electrodes could be positioned to provide a optimum electrical shock to the epicardial surface of the heart, preferably adjacent the right ventricle or the left ventricle. In another embodiment, the elecfrodes can be positioned 180° apart so that the electrical shock carries tMough Me myocardium adjacent the right ventricle thereby providing an optimal electrical shock for defibrillation or periodic shocks for pacing. In another embodiment, tMee leads are associated with the cardiac harness so that there are tMee panels separated by the tMee electrodes. In yet another embodiment, four panels on the cardiac harness are separated by four electrodes. In this embodiment, two electrodes are positioned adjacent the left ventricle on or near the epicardial surface of the heart while Me other two electrodes are positioned adjacent the right ventricle on or near the epicardial surface of the heart. As an electrical shock is delivered, it passes tMough the myocardium between the two sets of electrodes to shock Me entire ventricles. another embodiment, there are more than four panels and more than four electrodes forming the cardiac harness. Placement of the electrodes and the panels is a matter of choice. Further, one or more electrodes may be deactivated. In another embodiment, the cardiac harness includes multiple electrodes separating multiple panels. The embodiment also includes one or more pacing/sensing electrodes (multi-site) for use in sensing heart functions, and delivering pacing stimuli for resynclironization, including biventricular pacing and left ventricle pacMg or right ventricular pacing. In each of the embodMients, an electrical shock for defibrillation, or an electrical pacing stimuli for syncMonization or pacing is delivered by a pulse generator, which can include an implantable cardioverter/defibrillator (ICD), a cardiac resyncMonization therapy defibrillator (CRT-D), and/or a pacemaker. Further, in each of the foregoMg embodiments, the cardiac harness can be coupled with multiple pacMg/sensMg elecfrodes to provide multi-site pacMg to control cardiac ftmction. By incoφorating multi-site pacing into the cardiac harness, the system can be used to treat contractile dysfunction while concuoently treating bradycardia and tachycardia. This will improve pumping ftmction by altering heart chamber contraction sequences while maintaining pumping rate and rhythm. In one embodiment, the cardiac harness incoφorates pacing/sensing electrodes positioned on the epicardial surface of the heart adjacent to the left and right ventricle for pacMg both the left and right ventricles. In another embodiment, Me cardiac harness Mcludes multiple electrodes separating multiple panels. In this embodiment, at least some of the electrodes are positioned on or near (proximate) the epicardial surface of the heart for providing an electrical shock for defibrillation, and other of the electrodes are positioned on the epicardial surface of the heart to provide pacing stimuli useful M syncMonizing the left and right ventricles, cardiac resyncMonization therapy, and biventricular pacing or left venfricular pacing or right ventricular pacing. another embodiment, the cardiac harness Mcludes multiple electrodes separating multiple panels. At least some of the electrodes provide an electrical shock for defibrillation, and one of the electrodes, a sMgle site electrode, is used for pacMg and sensing a single ventricle. For example, the single site electrode is used for left venfricular pacing or right ventricular pacing. The single site electrode also can be positioned near the septum in order to provide bi-venfricular pacing. In yet another embodiment, the cardiac harness includes one or more electrodes associated with the cardiac harness for providing a pacing/sensing function. In this embodiment, a single site electrode is positioned on the epicardial surface of the heart adjacent the left ventricle for left ventricular pacMg. Alternatively, a single site electrode is positioned on the surface of the heart adjacent the right ventricle to provide right ventricular pacing. Alternatively, more than one pacMg/sensing electrode is positioned on the epicardial surface of the heart to treat syncMony of both ventricles, McludMg bi- venfricular pacing. In another embodiment, the cardiac harness Mcludes coils that separate multiple panels. The coils have a high degree of flexibility, yet are capable of providing column sfrength so Mat the cardiac harness can be delivered by minimally Mvasive access. All embodiments of the cardiac harness, Mclud g those with electrodes, are configured for delivery and implantation on the heart using minimally invasive approaches involving cardiac access tMough, for example, subxiphoid, subcostal, or intercostal incisions, and tMough the skin by percutaneous delivery using a catheter.
BRIEF DESCRIPTION OF THE DRAWINGS FIGURE 1 depicts a schematic view of a heart with a prior art cardiac harness placed thereon. FIGS. 2A-2B depict a spring hinge of a prior art cardiac harness in a relaxed position and under tension. FIG. 3 depicts a prior art cardiac harness that has been cut out of a flat sheet of material. FIG. 4 depicts Me prior art cardiac harness of FIG. 3 formed Mto a shape configured to fit about a heart. FIG. 5A depicts a flattened view of one embodiment of the cardiac harness of the invention showing two panels connected to two electrodes. FIG. 5B depicts a cross-sectional view of an electrode. FIG. 5C depicts a cross-sectional view of an electrode. FIG. 5D depicts a cross-sectional view of an electrode. FIG. 6A depicts a cross-sectional view of an undulatMg strand or ring. FIG. 6B depicts a cross-sectional view of an undulating strand or ring. FIG. 6C depicts a cross-sectional view of an undulating strand or ring. FIG. 7A depicts an enlarged plan view of a cardiac harness showing tMee electrodes separating three panels, with the far side panel not shown for clarity. FIG. 7B depicts an enlarged partial plan view of the cardiac harness of FIG. 7A showing an elecfrode partially covered with a dielectric material which also serves to attach the panels to the electrode. FIG 8A depicts a transverse cross-sectional view of the heart showing the position of electrodes for defibrillation and/or pacing/sensMg functions. FIG. 8B depicts a transverse cross-sectional view of the heart showing the position of electrodes for defibrillation and/or pacing/sensMg fonctions. FIG. 8C depicts a transverse cross-sectional view of the heart showing the position of electrodes for defibrillation and/or pacing/sensing fonctions. FIG. 8D depicts a transverse cross-sectional view of the heart showing the position of electrodes for defibrillation and/or pacing/sensMg functions. FIG. 9 depicts a plan view of one embodiment of a cardiac harness having panels separated by and attached to flexible coils. FIG. 10 depicts a flattened plan view of a cardiac harness similar to that of FIG. 9 but with fewer panels and coils. FIG. 11 depicts a plan view of one embodiment of a cardiac harness having panels separated by and attached to flexible coils. FIG. 12 depicts a plan view of a cardiac harness similar to that shown in FIG. 11 mounted on the epicardial surface of the heart. FIG. 13 depicts a perspective view of a cardiac harness similar to that of FIG. 9 where the harness has been folded to reduce its profile for minimally invasive delivery. FIG. 14 depicts the cardiac harness of FIG. 13 in a partially bent and folded condition to reduce its profile for minimally invasive delivery. FIG. 15A depicts an enlarged plan view of a cardiac harness showing contMuous undulating strands with electrodes overlayMg the strands. FIG. 15B depicts an enlarged partial plan view of the cardiac harness of FIG. 15A showing contMuous imdulating strands with an electrode overlying the strands. FIG. 15C depicts a partial cross-sectional view taken along IMes 15C-15C showing the electrode and undulating strands. FIG. 15D depicts a partial cross-sectional view taken along lines 15D-15D showing the undulating strands in notches in Me elecfrode. FIG. 16 depicts a top view of a fixture for windMg wire to construct the cardiac harness. FIG. 17 depicts a plan view of a portion of a cardiac harness showing panels separated by electrodes. FIGS. 18A, 18B and 18C depict various views of a mold used for injecting a dielectric material around the cardiac harness and the electrodes. FIGS. 19 A, 19B and 19C depict various views of molds used in injecting a dielectric material around the cardiac harness and the electrodes. FIG. 20 depicts a top view of a portion of an electrode having a metallic coil windMg. FIG. 21 depicts a side view of the electrode portion shown in FIG. 20. FIG. 22 depicts a cross-sectional view taken along IMes 22-22 showing lumens extending tMough the electrode. FIG. 23 depicts a cross-sectional view taken along lines 23-23 depicting another embodiment of lumens extending tMough the electrode. FIG. 24 depicts a top view of a portion of an electrode having multiple coil windings. FIG. 25A depicts a side view of a portion of a defibrillator electrode combined with a pacing/sensing electrode. FIG. 25B depicts a top view of the elecfrode portion of FIG. 25 A. FIGS. 26A-26C depict various views of a defibrillator electrode combined with a pacing/sensMg electrode. FIG. 27 depicts a side view of an Mtroducer for delivering the cardiac harness tMough minimally Mvasive procedures. FIG. 28 depicts a perspective end view of a dilator with the cardiac harness releasably positioned thereM. FIG. 29 depicts an end view of the Mtroducer with the cardiac harness releasably positioned thereM. FIG. 30 depicts a schematic cross-sectional view of a human thorax with the cardiac harness system being delivered by a delivery device inserted tMough an intercostal space and contacting the heart. FIG. 31 depicts a plan view of the heart with a suction device releasably attached to the apex of the heart. FIG. 32 depicts a plan view of the heart with the suction device attached to the apex and Me introducer positioned to deliver the cardiac harness over the heart. FIG. 33 depicts a plan view of the cardiac harness being deployed from the introducer onto the epicardial surface of the heart. FIG. 34 depicts a plan view of the heart with the cardiac harness being deployed from the introducer onto the epicardial surface of the heart. FIG. 35 depicts a plan view of the heart with the cardiac harness having electrodes attached thereto, surrounding a portion of the heart. FIG. 36 depicts a schematic view of the cardiac harness assembly mounted on the human heart together with leads and an ICD for use in defibrillation or pacing. FIG. 37 depicts an exploded a side view of a delivery system with the introducer Mbe, dilator Mbe, and ejection tube shown prior to assembly. FIG. 38 depicts a cross-sectional view of the introducer tube taken along IMes 38-38. FIG. 39 depicts a cross-sectional view taken along IMes 39-39 showMg the cross-section of the dilator Mbe. FIG. 40 depicts a cross-sectional view taken along lines 40-40 extending tMough the plate of the ejection Mbe and showing the various lumens M the plate. FIG. 41 depicts a cross-sectional view taken along lines 41-41 of the proximal end of the ejection Mbe. FIG. 42 depicts a longiMdinal cross-sectional view and schematic of the ejection Mbe with the leads from the elecfrodes extending through the lumens in the plate and the Mbing from the suction cup extending tMough a lumen in the plate.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS This Mvention relates to a method and apparatus for treating heart failure. It is anticipated that remodeling of a diseased heart can be resisted or even reversed by alleviating the wall stresses in such a heart. The present Mvention discloses embodiments and methods for supporting the cardiac wall and for providing defibrillation and/or pacing functions using the same system. Additional embodiments and aspects are also discussed in Applicants' co-pending application entitled "Multi-Panel Cardiac Harness" U.S. Serial No. 60/458,991 filed March 28, 2003, the entirety of which is hereby expressly incoφorated by reference.
PRIOR ART DEVICES FIG. 1 illustrates a mammalian heart 10 having a prior art cardiac wall stress reduction device in the form of a harness applied to it. The harness surrounds a portion of the heart and covers the right ventricle 11, the left ventricle 12, and the apex 13. For convenience of reference, longiMdinal axis 15 goes tMough the apex and the AV groove 14. The cardiac harness has a series of hMges or spring elements that circumscribe the heart and, collectively, apply a mild compressive force on the heart to alleviate wall stresses. The term "cardiac harness" as used herein is a broad term that refers to a device fit onto a patient's heart to apply a compressive force on the heart durMg at least a portion of the cardiac cycle. The cardiac haoiess illustrated in FIG. 1 has at least one undulating strand having a series of spring elements referred to as hinges or spring hinges that are configured to deform as the heart expands during filling. Each nge provides substantially unidirectional elasticity, in that it acts in one direction and does not provide as much elasticity in Me direction peφendicular to that direction. For example, FIG. 2A shows a prior art hinge member at rest. The hinge member has a central portion and a pair of arms. As the arms are pulled, as shown in FIG. 2B, a bendMg moment is imposed on the central portion. The bendMg moment urges the hinge member back to its relaxed condition. Note that a typical strand comprises a series of such hinges, and that the hinges are adapted to elastically expand and retract in the direction of the strand. In the harness illustrated in FIG. 1, the strands of spring elements are constructed of extruded wire that is deformed to form the spring elements. FIGS. 3 and 4 illustrate another prior art cardiac harness, shown at two points during manufacture of such a harness. The harness is first formed from a relatively thin, flat sheet of material. Any method can be used to form the harness from the flat sheet. For example, in one embodiment, the harness is photochemically etched from the material; in another embodiment, the harness is laser-cut from the thin sheet of material. The harness shown in FIGS. 3 and 4 has been etched from a thin sheet of Nitinol, which is superelastic material that also exhibits shape memory properties. The flat sheet of material is Maped over a form, die or the like, and is formed to generally take on the shape of at least a portion of a heart. With further reference to FIGS. 1 and 4, the cardiac harnesses have a base portion which is sized and configured to generally engage and fit onto a base region of a patient's heart, an apex portion which is sized and shaped so as to generally engage and fit on an apex region of a patient's heart, and a medial portion between the base and apex portions. In the harness shown in FIGS. 3 and 4, the harness has strands or rows of undulating wire. As discussed above, the undulations have hinge/spring elements which are elastically bendable M a desired direction. Some of the strands are connected to each other by interconnecting elements. The interconnecting elements help maintain the position of Me sfrands relative to one another. Preferably the interconnecting elements allow some relative movement between adjacent strands. The undulating spring elements exert a force in resistance to expansion of the heart. Collectively, the force exerted by the spring elements tends toward compressing the heart, thus alleviating wall stresses in the heart as the heart expands. Accordingly, the harness helps to decrease the workload of the heart, enabling the heart to more effectively pump blood t ough the patient's body and enablMg the heart an opportunity to heal itself. It should be understood that several arrangements and configurations of spring members can be used to create a mildly compressive force on the heart to reduce wall stresses. For example, spring members can be disposed over only a portion of the circumference of the heart or the spring members can cover a substantial portion of the heart. As the heart expands and contracts during diastole and systole, the contractile cells of the myocardium expand and contract. M a diseased heart, the myocardium may expand such that the cells are distressed and lose at least some contractility. Distressed cells are less able to deal with Me stresses of expansion and contraction. As such, the effectiveness of heart pumping decreases. Each series of spring hMges of the above cardiac harness embodiments is configured so that as the heart expands during diastole the spring hinges correspondingly will expand, thus storing expansion forces as bendMg energy M Me spring. As such, the stress load on the myocardium is partially relieved by the harness. This reduction in stress helps the myocardium cells to remain healthy and or regain health. As the heart contracts during systole, the disclosed prior art cardiac harnesses apply a moderate compressive force as the hinge or sprMg elements release the bending energy developed during expansion allowMg the cardiac harness to follow the heart as it contracts and to apply contractile force as well. Other structural configurations for cardiac harnesses exist, however, but all have Mawbacks and do not function optimally to treat CHF and other related diseases or failures. The present Mvention cardiac harness provides a novel approach to treat CHF and provides electrodes associated with the harness to deliver an electrical shock for defibrillation or a pacing stimulus for resyncMonization, or for biventricular pacing/sensMg.
THE PRESENT INVENTION EMBODIMENTS The present Mvention is directed to a cardiac harness system for treating the heart. The cardiac harness system of the present invention couples a cardiac harness for treatMg the heart coupled with a cardiac rhythm management device. More particularly, the cardiac harness includes rows or undulating strands of spring elements that provide a compressive force on the heart during diastole and systole in order to relieve wall stress pressure on Me heart. Associated with the cardiac harness is a cardiac rhythm management device for treating any number of irregularities in heart beat due to, among other reasons, congestive heart failure. Thus, the cardiac rhythm management device associated with the cardiac harness can include one or more of the following: an implantable cardioverter/defibrillator with associated leads and elecfrodes; a cardiac pacemaker including leads and electrodes used for sensMg cardiac function and providing pacing stimuli to treat syncMony of both vessels; and a combined implantable cardioverter/defibrillator and pacemaker, with associated leads and electrodes to provide a defibrillation shock and/or pacMg/sensing functions. The cardiac harness system includes various configurations of panels connected together to at least partially surround the heart and assist the heart during diastole and systole. The cardiac harness system also includes one or more leads having electrodes associated with the cardiac harness and a source of electrical energy supplied to the elecfrodes for deliveiing a defibrillating shock or pacing stimuli. one embodiment of the invention, as shown in a flattened configuration in FIG. 5, a cardiac harness 20 includes two panels 21 of generally contMuous undulating strands 22. A panel Mcludes rows or undulating strands of hinges or spring elements that are connected together and that are positioned between a pair of electrodes, the rows or undulations being highly elastic in the circumferential direction and, to a lesser extent, in the longiMdinal direction. In this embodiment, the undulating sfrands have U-shaped hinges or spring elements 23 capable of expanding and contracting circumferentially along directional lMe 24. The cardiac harness has a base or upper end 25 and an apex or lower end 26. The undulating sfrands are highly elastic in the circumferential direction when placed around the heart 10, and to a lesser degree M a direction parallel to the longitudinal axis 15 of the heart. Similar hinges or sprMg elements are disclosed M co-pending and co- assigned U.S. Serial No. 60/458,991 filed March 28, 2003, the entire contents of which are Mcoφorated hereM by reference. While the FIG. 5 embodiment appears flat for ease of reference, in use it is substantially cylMdrical (or tapered) to conform to the heart and the right and left side panels would acMally be one panel and there would be no discontinuity in the undulating strands. The undulating sfrands 22 provide a compressive force on the epicardial surface of the heart thereby relieving wall stress. In particular, the spring elements 23 expand and confract circumferentially as the heart expands and contracts during the diastolic and systolic functions. As the heart expands, the sprMg elements expand and resist expansion as they continue to open and store expansion forces. During systole, as the heart 10 contracts, the spring elements will confract circumferentially by releasing the stored bendMg forces thereby assisting in both the diastolic and systolic function. As just discussed, bending stresses are absorbed by the spring elements 23 during diastole and are stored in the elements as bendMg energy. DurMg systole, when the heart pumps, the heart muscles contract and the heart becomes smaller. Simultaneously, bending energy stored within the spring elements 23 is at least partially released, thereby providing an assist to the heart during systole. In a preferred embodiment, the compressive force exerted on the heart by the spring elements of the harness comprises about 10% to 15% of Me mechanical work done as the heart contracts during systole. Although the harness is not Mtended to replace ventricular pumping, the harness does substantially assist the heart during systole. The undulating strands 22 can have varyMg numbers of spring element 23 depending upon the ampliMde and pitch of the spring elements. For example, by varying the ampliMde of the pitch of the spring elements, the number of undulations per panel will vary as well. It may be desired to increase the amount of compressive force the cardiac harness 20 imparts on the epicardial surface of the heart, therefore the present invention provides for panels that have spring elements with lower ampliMdes and a shorter pitch, thereby increasing the expansion force imparted by the spring element. In other words, all other factors being constant, a sprMg element having a relatively lower ampliMde will be more rigid and resist openMg, thereby storing more bending forces during diastole. Further, if the pitch is smaller, there will be more spring elements per unit of length along the undulatMg strand, thereby increasing the overall bending force stored during diastole, and released during systole. Other factors that will affect the compressive force imparted by the cardiac harness onto the epicardial surface of the heart include the shape of the spring elements, the diameter and shape of the wire forming the undulating strands, and the material comprising the sfrands. As shown in FIG. 5, the undulating sfrands 22 are connected to each other by grip pads 27. In the embodiments shown in FIG. 5, adjacent undulating strands are connected by one or more grip pads attached at the apex 28 of the spring elements 23. The number of grip pads between adjacent midulating strands is a matter of choice and can range from one grip pad between adjacent undulatMg strands, to one grip pad for every apex on the undulatMg strand. Importantly, the grip pads should be positioned in order to maintain flexibility of the cardiac harness 20 without sacrificing the objectives of maintaining the spacing between adjacent undulatMg sfrands to prevent overlap and to enhance the frictional engagement between the grip pads and the epicardial surface of the heart. Further, while it is desirable to have the grip pads attached at the apex of the spring elements, the invention is not so limited. The grip pads 27 can be attached anywhere along the length of the spring elements, McludMg the sides 29. Further, the shape of the grip pads 27, as shown, in FIG. 5, can vary to suit a particular purpose. For example, grip pad 27 can be attached to the apex 28 of one undulatMg strand 22, and be attached to two apices on an adjacent undulating strand (see FIG. 7). As shown in FIG. 5, all of the apices point toward each other, and are said to be "out-of-phase." If the apices of the undulations were aligned, they would be "M-phase." The apices are all out-of- phase since the number of spring elements in each undulatMg strand is the same, however, the Mvention contemplates that the number of spring elements in each undulating strand may vary sMce the heart is tapered from its base near the top to its apex 13 at the bottom. Thus, there would be more spring elements and a longer undulating strand per panel at the top or base of the cardiac harness than at the bottom of the cardiac harness near the apex of the heart. AccordMgly, the cardiac harness would be tapered from the relatively wide base to a relatively narrow bottom toward the apex of the heart, and this would affect the alignment of the apices of the spring elements, and hence the ability of the grip pads 27 to align perfectly and attach to adjacent apices of the spring elements. A forther disclosure and embodiments relating to the undulatMg sfrands and the attachment means in the form of grip pads is found in co-pending and co-assigned U.S. Serial No. 60/486,062 filed July 10, 2003, the entire contents of which are incoφorated hereM by reference. While the connections between adjacent undulating sfrands 22 is preferably grip pads 27, in an alternative embodiment (not shown) the undulating strands are connected by Mterconnecting elements made of the same material as the strands. The interconnecting elements can be straight or curved as shown in FIGS. 8A-8B of commonly owned U.S. Patent No. 6,612,979 B2, the entire contents of which, is incoφorated by reference herein. It is preferred that the undulatMg strands 22 be continuous as shown M FIG. 5. For example, every pair of adjacent undulating sfrands are connected by bar arm 30. It is preferred that the bar arms form part of a continuous wire that is bent to form the undulatMg strands, and then welded at its ends along the bar arm. The weld is not shown in FIG. 5, but can be by any conventional method such as laser welding, fusion bondMg, or conventional welding. The type of wire used to form the undulating sfrands may have a bearing on the method of attaching the ends of the wire used to form the undulating strand. For example, it is preferred that the undulating sfrands be made out of a nickel-titanium alloy, such as Nitinol, which may lose some of its superelastic or shape memory properties if exposed to high heat during conventional welding. Associated with the cardiac harness of the present Mvention is a cardiac rhythm management device as previously disclosed. Thus, associated with the cardiac harness as shown in FIG. 5, are one or more elecfrodes for use in providing defibrillating shock. As can be seen immediately below, any number of factors associated with congestive heart failure can lead to fibrillation, acquirMg immediate action to save the patient's life. Diseased hearts often have several maladies. One malady that is not uncommon is irregularity in heartbeat caused by irregularities in the electrical stimulation system of the heart. For example, damage from a cardiac infarction can interrupt the electrical signal of the heart. In some instances, implantable devices, such as pacemakers, help to regulate cardiac rhythm and stimulate heart pumping. A problem with the heart's electrical system can sometimes cause the heart to fϊbrillate. During fibrillation, the heart does not beat normally, and sometimes does not pump adequately. A cardiac defibrillator can be used to restore the heart to normal beating. An external defibrillator typically includes a pair of elecfrode paddles applied to the patient's chest. The defibrillator generates an electric field between electrodes. An elecfric current passes tMough the patient's heart and stimulates the heart's electrical system to help restore the heart to regular pumping. Sometimes a patient's heart begins fibrillating during heart surgery or other open-chest surgeries. M such instances, a special type of defibrillating device is used. An open-chest defibrillator includes special elecfrode paddles that are configured to be applied to the heart on opposite sides of Me heart. A strong electric field is created between the paddles, and an elecfric current passes tMough the heart to defibrillate the heart and restore the heart to regular pumpMg. In some patients that are especially vulnerable to fibrillation, an implantable heart defibrillation device may be used. Typically, an implantable heart defibrillation device includes an implantable cardioverter defibrillator (ICD) or a cardiac resyncMonization therapy device (CRT-D) which usually has only one electrode positioned M the right ventricle, and the return electrode is the defibrillator housing itself, typically implanted in the pectoral region. Alternatively, an implantable device includes two or more elecfrodes mounted directly on, in or adjacent the heart wall. If the patient's heart begins fibrillating, these electrodes will generate an electric field therebetween in a manner similar to the other defibrillators discussed above. Testing has indicated that when defibrillating electrodes are applied external to a heart that is surrounded by a device made of electrically conductive material, at least some of the electrical current disbursed by the electrodes is conducted around the heart by the conductive material, rather than tMough the heart. Thus, the efficacy of defibrillation is reduced. Accordingly, the present Mvention includes several cardiac harness embodiments that enable defibrillation of the heart and other embodiments disclose means for defibrillatMg, resyncMonization, left ventricular pacMg, right ventricular pacing, and biventricular pacing/sensing. In further keeping with the invention, the cardiac harness 20 Mcludes a pair of leads 31 having conductive electrode portions 32 that are spaced apart and which separate panels 21. As shown M FIG. 5, the electrodes are formed of a conductive coil wire 33 that is wrapped around a non-conductive member 34, preferably in a helical manner. A conductive wire 35 is attached to the coil wire and to a power source 36. As used herein, the power source 36 can Mclude any of the followMg, dependmg upon the particular application of the elecfrode: a pulse generator; an implantable cardioverter/defibrillator; a pacemaker; and an implantable cardioverter/defibrillator coupled with a pacemaker. M the embodiment shown in FIG. 5, the elecfrodes are configured to deliver an elecfrical shock, via the conductive xvire and the power source, to the epicardial surface of the heart so that the elecfrical shock passes tMough the myocardium. Even though the elecfrodes are spaced so that they would be about 180° apart around the circumference of the heart in the embodiment shown, they are not so limited. In other words, the elecfrodes can be spaced so that they are about 45° apart, 60° apart, 90° apart, 120° apart, or any arbitrary arc length spacing, or, for that matter, essentially any arc length apart around the circumference of the heart in order to deliver an appropriate electrical shock. As previously described, it may become necessary to defibrillate the heart and the electrodes 32 are configured to deliver an appropriate elecfrical shock to defibrillate the heart. Still referring to FIG. 5, the electrodes 32 are attached to the cardiac harness 20, and more particularly to the undulatMg strands 22, by a dielectric material 37. The dielectric material insulates the elecfrodes from the cardiac harness so that electrical current does not pass from the elecfrode to the harness thereby undesirably shunting current away from the heart for defibrillation. Preferrably, the dielectric material covers the imdulating sfrands 22 and covers at least a portion of the electrodes 32. In the FIG. 5 embodiment, the middle panel undulating strands are covered with the dielectric material while the right and left side panels are bare metal. While it is preferred that all of the undulatMg sfrands of the panels be coated with the dielectric material, thereby insulating the harness from the elecfric shock delivered by the electrodes, some or all of the undulating sfrands can be bare metal used to deliver the electrical shock to the epicardial surface of the heart for defibrillation or for pacing. As will be described in more detail, the elecfrodes 32 have a conductive discharge first surface 38 that is intended to be proximate to or in direct contact with the epicardial surface of the heart, and a conductive discharge second surface 39 that is opposite to the first surface and faces away from the heart surface. As used herein, the term "proximate" is Mtended to mean that the electrode is positioned near or in direct contact with the outer surface of the heart, such as the epicardial surface of the heart. The first surface and second surface typically will not be covered with the dielectric material 37 so that the bare metal conductive coil can transmit the electrical current from the power source (pulse generator), such as an implantable cardioverter/defibrillator (ICD or CRT-D) 36, to the epicardial surface of the heart. In an alternative embodiment, either the first or the second surface may be covered with dielectric material in order to preferentially direct the current tMough only one surface. Further details of the construction and use of the leads 31 and electrodes 33 of the present Mvention, in conjunction with the cardiac harness, will be described more folly hereM. Importantly, the dielectric material 37 used to attach the electrodes 32 to the undulatMg strands 22 insulates the undulating sfrands from any elecfrical current discharged through the conductive metal coils 33 of the elecfrodes. Further, the dielectric material in this embodiment is flexible so that the elecfrodes can serve as a seam or hinge to fold the cardiac harness 20 into a lower profile for minimally invasive delivery. Thus, as will be described M more detail (see FIGS. 13 and 14), the cardiac harness can be folded along its length, along the length of the elecfrodes, in order to reduce the profile for intercostal delivery, for example tMough the rib cage or other area typically used for mMimally invasive surgery for accessing the heart. Minimally invasive approaches involving the heart typically are made t ough subxiphoid, subcostal or Mtercostal incisions. When the cardiac harness is folded, it can be reduced into a circular or a more or less oval shape, both of which promote minimally invasive procedures. In further keeping with the Mvention, cross sectional views of Me leads 31 and the electrode portion 32 are shown in FIGS. 5B, 5C, and 5D. As shown in FIG. 5B, the electrode 32 has the coil wire 33 wrapped around the non-conducting member 34 in a helical pattern. The dielectric material 37 provides a spaced connection between the elecfrode and the bar arms 30 at the ends of Me undulating sfrands 22. The electrodes do not touch or overlap with the bar arms or any portion of the undulating strands. Mstead, the dielectric material provides the attachment means between the elecfrodes and the bar arms of the undulating sfrands. Thus, the dielectric material 37 not only acts as an insulating non-conductive material, but also provides attachment means between the undulatMg sfrands and the electrodes. Because the dielectric material 37 is relatively thin at the attacMnent points, it is highly flexible and permits the elecfrodes to be flexible along with the cardiac harness panels 21, which will expand and contract as the heart beats as previously described. Referring to FIG. 5C, the non-conductive member 34 extends beyond the coil wire 33 for a distance. The non-conductive member preferably is made from the same material as the dielecfric material 37, typically a silicone rubber or similar material. While it is preferred that the dielecfric material be made from silicone rubber, or a similar material, it also can be made from Parylene™ (Union Carbide), polyurethanes, PTFE, TFE, and ePTFE. As can be seen, the non-conductive member provides support for the dielecfric material to attach the bar arms 30 of the undulating sfrands 22 in order to connect the strands to the electrode 32. A conductive wire 35 extends t ough the non-conducting member and attaches to the proximal end of the coil wire 33 so that when an elecfrical current is delivered from the power source 36 tMough conductive wire 35, the electrode coil 33 will be energized. The conductive wire 35 is also covered by non-conducting material 34. Referring to FIG. 5D, it can be seen that the non-conductive member 34 continues to extend beyond the bottom (apex) of the cardiac harness and that conductive wire 35 continues to extend out of the non-conductive member and into the power source 36. In the embodiment shown in FIGS. 5B-5D, the cardiac harness is insulated from the elecfrodes by the dielectric material 37 so that there is no shunting of elecfrical currents by the cardiac harness 20 from the elecfrical shock delivered by the elecfrodes during defibrillation or pacing functions. While it is preferred that the cardiac harness 20 be comprised of undulating strands 22 made from a solid wire member, such as a superelastic or shape memory material such as Nitinol, and be insulated from the elecfrodes 32, it is possible to use some or all of the undulating sfrands to deliver the elecfrical shock to the epicardial surface of the heart. For example, as shown in FIG. 6A, a composite wire 45 can be used to form the undulatMg sfrands 22 and, importantly, to effectively transmit cuoent to deliver an elecfrical shock to the epicardial surface of the heart. The composite wire 45 Mcludes a current conducting wire 47 made from, for example silver (Ag), and which is covered by a Nitinol Mbe 46. In order to improve the surface conductivity of the outer Nitinol tube 46, a highly conductive coating is placed on the Nitinol Mbe. For example, the Nitinol Mbe can be covered with a deposition layer of platinum (Pt) or platinum-iridium (Pt-Ir), or an equivalent material Mcluding iridium oxide (IROX). The composite wire, so constructed, will have superior mechanical performance to expand and confract due to the Nitinol tubing, and also will have improved electrical properties resulting from the current conducting wire 47 and improved electrolytic/electrochemical properties via the surface layer of platMum-iridium. Thus, if some portion or all of the undulating sfrands 22 are made from a composite wire 45, the cardiac harness 20 will be capable of delivering a defibrillatMg shock on selected portions of the heart via the undulatMg strands and will also function to impart compressive forces as previously described. In contrast to the current conducting undulating sfrands of FIG. 6A, are the non-conducting insulated undulating strands 22 as shown by cross sectional view FIG. 6B. As previously described, some or all of the undulatMg sfrands 22 can be covered with dielecfric material 37 in order to Msulate the sfrands from the electrical current delivered tMough the electrodes while delivering shock on the epicardial surface of the heart. Thus, as shown in FIG. 6B, the undulatMg strands 22 are covered by dielecfric material 37 to provide sulation from the electrical shock delivered by the electrodes 32, yet maintain the flexibility and the expansive properties of the undulating sfrands. An Miportant aspect of the invention is to provide a cardiac harness 20 that can be implanted minimally Mvasively and be attached to the epicardial surface of the heart, without requiring suMres, clips, screws, glue or other attachment means. Importantly, the undulating strands 22 may provide relatively high frictional engagement with the epicardial surface, depending on the cross-sectional shape of the sfrands. For example, M the embodiment disclosed in FIG. 6C, the cross- sectional shape of the undulating sfrands 22 can be circular, rectangular, triangular or for that matter, any shape that increases the frictional engagement between the undulatMg sfrands and the epicardial surface of the heart. As shown M FIG. 6C, the middle cross-section view having a flat rectangular surface (wider than tall) not only has a low profile for enhancing minimally invasive delivery of the cardiac harness, but it also has rectangular edges that may have a tendency to engage and dig into the epicardium to increase the frictional engagement with the epicardial surface of the heart. With the proper cross-sectional shape for the undulating sfrands, coupled with the grip pads 27 having a high frictional engagement feature, the necessity for suturing, clippMg, or further attachment means to attach the cardiac harness to the epicardial surface of the heart becomes unnecessary. In another embodiment as shown M FIGS. 7 A and 7B, a different configuration for cardiac harness 20 and the elecfrodes 32 are shown, as compared to the FIG. 5 embodiments. In FIGS. 7 A and 7B, tMee elecfrodes are shown separating the tMee panels 21 with undulatMg sfrands 22 extending between the electrodes. As with previous embodiments, springs 23 are formed by the undulating sfrands so that the undulatMg strands can expand and confract durMg the diastolic and systolic functions, and apply a compressive force during both functions. The far side panel of FIG. 7A is not shown for clarity piuposes. The position of the electrodes around the circumference of the heart is a matter of choice, and in the embodiment of FIG. 7A, the electrodes can be spaced an equal distance apart at about 120°. Alternatively, it may be important to deliver the electrical shock more through the right ventricle requiring the positioning of the electrodes closer to the right venfricle than to the left venfricle. Similarly, it may be more important to deliver an elecfrical shock to the left ventricle as opposed to the right ventricle. Thus, positionMg of electrodes, as with other embodiments, is a matter of choice. Still referring to FIGS. 7 A and 7B, in this embodiment elecfrodes 32 extend beyond the bottom or apex portion of the cardiac harness 20 in order to Msure that the elecfrical shock delivered by the elecfrodes is delivered to the epicardial surface of the heart and McludMg the lower portion of the heart closer to the apex 13. Thus, the electrodes 22 have a distal end 50 and a proximal end 51 where the proximal end is positioned closer to the apex 13 of the heart and the distal end is positioned closer to the base or upper portion of the heart. As used herein, distal is intended to mean further into the body and away from the attendMg physician, and proximal is meant to be closer to the outside of the body and closer to the attending physician. The proximal ends of the elecfrodes are positioned closer to the apex of the heart and provide several fonctions, including the ability to deliver an elecfrical shock closer to the apex of the heart. The electrode proximal ends also ftmction to provide support for the cardiac harness 20 and the panels 21, and lend support not only during delivery (as will be further described herein) but in separating the panels and in gripping Me epicardial surface of the heart to retain the harness on the heart without slipping. While the FIGS. 7 and 7B embodiments show electrodes 32 separating tMee panels 21 of the cardiac panel 20, more or fewer elecfrodes and panels can be provided to suit a particular application. For example, in one preferred embodiment, four electrodes 32 separate four panels 21, so that two of the elecfrodes can be positioned on opposite sides of the left venfricle and two of the electrodes can be positioned on opposite sides of the right ventricle. In this embodiment, preferably all four elecfrodes would be used, with a first set of two electrodes on opposite sides of the right venfricle acting as one (common) electrode and a second set of two electrodes on opposite sides of the left venfricle actMg as the opposite (common) electrode. Alternatively, two of the elecfrodes can be activated while the other two elecfrodes act as dirmmy electrodes in that they would not be activated unless necessary. At present, commercially available implantable cardioverter/defibrillators (ICD's) are capable of delivering approximately thirty to forty joules in order to defibrillate the heart. With respect to the present Mvention, it is preferred that the electrodes 22 of the cardiac harness 20 of the present Mvention deliver defibrillating shocks havMg less than thirty to forty joules. The commercially available ICD's can be modified to provide lower power levels to suit the present Mvention cardiac harness system with electrodes delivering less than thirty to forty joules of power. As a general rule, one objective of the elecfrode configuration is to create a uniform current density distribution throughout the myocardium. Therefore, in addition to the number of elecfrodes used, their size, shape, and relative positions will also all have an impact on the induced current density distribution. Thus, while one to four electrodes are preferred embodiments of the Mvention, five to eight elecfrodes also are envisioned. In keeping with the present invention, the cardiac harness and the associated cardiac rhythm management device can be used not only for providMg a defibrillatMg shock, but also can be used as a pacMg/sensing device for treating the syncMony of both ventricles, for resyncMonization, for bivenfricular pacing and for left ventricular pacing or right venfricular pacing. As shown in FIGS. 8A-8D, the heart 10 is shown in cross-section exposing the right venfricle 11 and the left ventricle 12. The cardiac harness 20 is mounted around the outer surface of the heart, preferably on the epicardial surface of the heart, and multiple elecfrodes are associated with the cardiac harness. More specifically, elecfrodes 32 are attached to the cardiac harness and positioned around the circumference of the heart on opposite sides of the right and left venfricles. In the event that fibrillation should occur, the elecfrodes will provide an elecfrical shock tMough the myocardium and the left and right venfricles in order to defibrillate the heart. Also mounted on the cardiac harness, is a pacing/sensing lead 40 that fonctions to monitor the heart and provide data to a pacemaker. If required, the pacemaker will provide pacing stimuli to syncMonize the ventricles, and/or provide left ventricular pacing, right ventricular pacing or bivenfricular pacing. Thus, for example, in FIG. 8C, pairs of pacing/sensing leads 40 are positioned adjacent the left and right venfricle free walls and can be used to provide pacing stimuli to syncMonize the venfricles, or provide left ventricular pacing, right venfricular pacing or biventriculator pacing. The use of proximal Y connectors can simplify the fransition to a post-generator such as Oscor's, iLMk-B15-10. The iLink-B15-10 can be used to link the right and left ventricular free-wall pace/sense leads 40, as shown in 8D. In another embodiment of the invention, as shown M FIGS. 9-14, cardiac harness 60 is similar to previously described cardiac harness 20. With respect to cardiac harness 60, it also Mcludes panels 61 consistMg of undulatMg strands 62. In the disclosed embodiments, the undulating strands are continuous and extend tMough coils as will be described. The undulating sfrands act as spring elements 63 as with prior embodiments that will expand and confract along directional line 64. The cardiac harness 60 includes a base or upper end 65 and an apex or lower end 66. M order to add stability to Me cardiac harness 60, and to assist in maMtaining the spacing between the undulatMg strands 62, grip pads 67 are comiected to adjacent strands, preferably at the apex 68 of the springs. Alternatively, the grip pads 67 could be attached from Me apex of one spring element to the side 69 of a sprMg element, or the grip pad could be attached from the side of one spring to the side of an adjacent spring on an adjacent undulating strand. In further keeping with the invention as shown M the FIGS. 9-14, in order to add stability and some mechanical stiffness to the cardiac harness 60, coils 62 are Mterwoven with the undulatMg strands, which togeMer define the panels 61. The coils typically are formed of a coil of wire such as Nitinol or similar material (staMless steel, MP35N), and are highly flexible along their longiMdinal length. The coils 72 have a coil apex 73 and a coil base 74 to coincide with the harness base 65 and the harness apex 66. The coils can be injected with a non-conducting material so that the undulating sfrands extend tMough gaps in the coils and tMough the non-conducting material. The non-conducting material also fills in the gaps which will prevent the undulatMg strands from touching the coils so there is no metal-to-metal touching between the undulatMg strands and the coils. Preferably, the non-conducting material is a dielectric material 77 that is formed of silicone rubber or equivalent material as previously described. Further, a dielectric material 78 also covers the undulating sfrands in the event a defibrillating shock or pacing stimuli is delivered to the heart via an external defibrillator (e.g., transthoracic) or other means. Importantly, coils 72 not only perform the function of beMg highly flexible and provide the attachment means between the coils and the undulating strands, but they also provide structural columns or spMes that assist M deploying the harness 60 over the epicardial surface of the heart. Thus, as shown for example in FIG. 12, the cardiac harness 60 has been positioned over the heart and delivered by minimally invasive means, as will be described more folly herein. The coils 72, although highly flexible along their longiMdMal length, have sufficient column sfrength M order to push on Me apex 73 of the coils so that the base portion 74 of the coils and of the harness 65 slide over the apex of the heart and along the epicardial surface of the heart until the cardiac harness 60 is positioned over the heart, substantially as shown in FIG. 12. Referring to the embodiments shown M FIGS. 9 and 11, the cardiac harness 60 has multiple panels 61 and multiple coils 72. More or fewer panels and coils can be used in order to achieve a desired result. For example, eight coils are shown in FIGS. 9 and 11, while fewer coils may provide a harness with greater flexibility since the undulatMg strands 62 would be longer in the space between each coil. Further, the diameter of the coils can be varied in order to increase or decrease flexibility and/or column strength in order to assist in the delivery of the harness over the heart. The coils preferably have a round cross-sectional wire in the form of a tightly wound spiral or helix so that the cross-section of the coil is circular. However, the cross-sectional shape of the coil need not be circular, but may be more advantageous if it were oval, rectangular, or another shape. Thus, if coils 72 had an oval shape, where the longer axis of the oval was parallel to the circumference of the heart, the coil would flex along its longiMdinal axis and still provide substantial column strength to assist M delivery of the cardiac harness 60. Further, an oval-shaped coil would provide a lower profile for minimally invasive delivery. The wire cross-section also need not be round/circular, but can consist of a flat ribbon having a rectangular shape for low profile delivery. The coils also can have different shapes, for example they can be closed coils, open coils, laser-cut coils, wire-wound coils, multi-filar coils, or the coil sfrands themselves can be coiled (i.e., coiled coils). The electrode need not have a coil of wire, rather the electrode could be formed by a zig-zag-shaped wire (not shown) extending along the electrode. Such a design would be highly flexible and fatigue resistant yet still be capable of providing a defibrillating shock. The cardiac harness embodiments 60 shown M FIGS. 9-12, can be folded as shown in FIGS. 13 and 14 and yet remain highly flexible for mMimally invasive delivery. The coils 72 act as Mnges or spMes so that the cardiac harness can be folded along the longitudinal axis of the coils. The grip pads typically connecting adjacent undulating sfrands 62 have been omitted for clarity in these embodiments, however, they would be used as previously described. In an alternative embodiment, similar to the embodiment shown in FIGS. 9- 12, the cardiac harness 60 Mcludes both coils 72 and elecfrodes 32. In this embodiment, as with the previously described embodiments, a series of undulating sfrands 22 extend between the coils and the elecfrodes to form panels 21. In this embodiment, for example, the coils and electrodes form hinge regions so that the panels can be folded along the longiMdmal axis of the coils and elecfrodes for minimally invasive delivery. Further, in this embodiment, there are two coils and four electrodes, with two of the elecfrodes positioned adjacent the right venfricle, with the remaining two elecfrodes being positioned adjacent the left ventricle. The coils not only act as a hMge, but provide column strength as previously described so that the cardiac harness can be delivered minimally invasively by delivery tMough, for example, the intercostal space between the ribs and then pushing the harness over the heart. Likewise, the elecfrodes provide column sfrength as well, yet remain flexible along their longiMdinal axis, as do the coils. Referring to FIGS. 15A-15D, the electrodes 32 or the coils 72 can be mounted on the Mner surface (touching Me heart) or outer surface (away from the heart) of the cardiac harness. Thus, the cardiac harness 20 includes continuous undulating strands 22 that extend circumferentially around the heart without any interruptions. The undulatMg strands are interconnected by any interconnecting means, including grip pads 27, as previously described. In this embodiment, elecfrodes 32 or coils 72, or both, are mounted on an inner surface 80 or an outer surface 81 of the cardiac harness 20. A dielectric material 82 is molded around the elecfrodes or coils and around Me undulating sfrands in order to connect the electrodes and coils to the cardiac harness. Alternatively, as shown in FIG. 15D, the elecfrodes 32 or coils 72 can be formed into a fastening means by forming notches 83 into the electrode (or coil) and which are configured to receive portions of the undulatMg strand 22. The undulating strands 22 are spaced from the coils or electrodes so that there is no overlappMg/touching of metal. The notches 83 are filled with a dielecfric material, preferably silicone rubber, or similar material that insulates the undulating sfrands of the cardiac harness from the elecfrodes yet provides a secure attachment means so that the electrodes or coils remaM firmly attached to the undulating sfrands of the cardiac harness. Importantly, the electrodes 32 do not have to be M contact with the epicardial surface of the heart in order to deliver a defibrillatMg shock. Thus, the electrodes 32 can be mounted on the outer surface 81 of the cardiac harness, and not be in physical contact with the epicardial surface of the heart, yet still deliver a defibrillating shock as previously described. It is to be understood that several embodiments of cardiac harnesses can be constructed and that such embodiments may have varying configurations, sizes, flexibilities, etc. Such cardiac harnesses can be consfructed from many suitable materials McludMg various metals, fabrics, plastics and braided filaments. Suitable materials also include superelastic materials and materials that exhibit shape memory properties. For example, a prefened embodiment cardiac harness is constructed of Nitinol. Shape memory dielecfric materials can also be employed. Such shape memory dielectric materials can include shape memory polyurethanes or other dielecfric materials such as those containing oligo(e-caprolactone) dimethacrylate and/or poly(e-caprolactone), which are available from mnemoScience. In keeping with Me invention, as shown in FIG. 16, the undulating strands 22 and 62 can be formed in many ways, including by a fixture 90. The fixture 90 has a number of stems 91 that are arranged M a pre-selected pattern that will define the shape of Me undulatMg sfrands 22 and 62. The position of the stems will define the shape of Me undulatMg sfrands, and determine whether the previously disclosed apex of the springs is either in-phase or out-of-phase. The shape of stems 91 will define the shape of the springs in terms of radius of curvature, or other shape, such as a keyhole shape, a U-shape, and the like. The spacing between the stems will determine Me pitch and the ampliMde of the undulating strands which is a matter of choice. Preferably, in one exemplary embodiment, a Nitinol wire 92 or other superelastic or shape memory wire having a 0.012 inch diameter, is woven between stems 91 in order to form the undulatMg strands. Other wire diameters can be used to suit a particular need and can range from about 0.007 inch to about 0.020 inch diameter. Other wire cross-section shapes are envisioned to be used with fixMre 90, particularly a flat rectangular-shaped wire and an oval-shaped wire. The Nitinol wire is then heat set to impart the shape memory feature. Any free ends can be connected together by laser bonding, laser welding, or other type of similar connection consistent with the use of Nitinol, or the ends may remaM free and be encapsulated in a dielecfric material to keep them afraumatic, dependmg upon the design. Again referrMg to FIG. 16, after the Nitinol wire is heat set to impart the shape memory feature, the wire is jacketed with NuSil silicone Mbing (Helix Medical) having 0.029 inch outside diameter by 0.012 Mch inside diameter. Thereafter, the jacketed Nitinol wire is placed in molds for transfer of liquid silicone rubber which will insulate the Nitinol wire from any electrical shock from any elecfrodes associated with the cardiac harness, or any other device providing a defibrillatMg shock to the heart. The dimensions of the silicone Mbing will of course vary for different wire dimensions. In another embodiment of the invention, shown in FIG. 17, cardiac harness 100 includes multiple panels 101 similar to those previously described. Further, undulating sfrands 102 form the panels and have multiple spring elements 103 that expand and confract along directional line 104, also as previously described for other embodiments. M the cardiac harness 100 shown in FIG. 17, the ampliMde of the spring elements is relatively smaller Man in other embodiments, and the pitch is higher, meaning there are more spring elements per unit o length relative to other embodiments. Thus, the cardiac harness 100 should generate higher bending forces as the heart expands and contracts during the diastolic and systolic cycles. In other words, the spring elements 103 of cardiac harness 100 will resist expansion, thereby imparting higher compressive forces on Me wall of Me heart during the diastolic function and will release these higher bending forces during the systolic function as the heart contracts. It may be important to provide undulating strands 102 that alternate in ampliMde and pitch within a panel, starting at the base of the harness and extending toward the apex. For example, the pitch and ampliMde of an undulating strand closer to the base or the harness may he configured to impart higher compressive forces on the epicardial surface of the heart than the undulating strands closer to the apex or the lower part of the harness. It also may be desirable to alternate the amplitude and pitch of the spring elements from one undulating strand to the next. Further, where multiple panels are provided, it may be advantageous to provide one ampliMde and pitch of the spring elements of the undulatMg sfrands of one panel, and a different ampliMde and pitch of the spring elements of the undulating sfrands of an adjacent panel. The FIG. 17 embodiment can be configured with elecfrodes as previously described in other embodiments, or with coils, both of which assist with Me delivery of the cardiac harness by providing column support to the harness. The cardiac harness of the present Mvention, having either elecfrodes or coils, can be formed using injection molding techniques as shown in FIGS. 18A- 18C and 19A-19C. The molds in FIGS. 18A-18C are substantially the same as the molds shown in FIGS. 19A-19C, with the exception of" the undulating pattern grooves that receive the undulatMg sfrands previously described. In referring to FIG. 18 A, bottom mold 110 includes a pattern for receiving the cardiac harness and a coil or an elecfrode. For illustration puφoses, FIG. 18B shows top mold 111 and FIG. 18C shows end view mold 112. The top mold mates with the bottom mold. As can be seen, the cardiac harness undulatMg strands will fit M undulatMg strand groove 113, which extend to coil groove 114. The previously described elecfrodes or coils fit into coil grooves 114. Injection port 115 is positioned midway along the mold fixtures, however, more than one injection port can be used to insure that the flow of polymer is uniform and consistent. Preferably, silicone rubber is injected into Me molds so that the silicone rubber flows over the undulating sfrands and the electrodes or the coils. When the cardiac harness assembly is taken out of the mold, the undulating strands will be attached to the electrodes or the coils by Me silicone rubber according to the pattern shown. Other patterns may be desired and the molds are easily altered to provide any pattern that ensures a secure attachment between the undulatMg sfrands and the electrodes or the coils. Importantly, Me molds of FIGS. 18 and 19 can be used to inject the dielecfric material or silicone rubber inside the coils and, if necessary, between the gaps in the coils in order to Msure that the coils and the undulating sfrands are insulated from each other. The silicone rubber fills the inside of the coils, extrudes tMough the gaps M the coils, and forms a skin on the inner and outer surface of the coil. This skin is selectively removed (as will be described) to expose portions of the elecfrode coils so that they can conduct current as described. Further, it is desired that the coils and the undulatMg strands do not overlap or touch in order to reduce any frictional engagement between the metallic coils and the metallic undulatMg sfrands. In order to increase the frictional engagement between the cardiac harness and the epicardial surface of the heart, small projections (not shown) can be molded along the surface of the coils that will contact the epicardial surface. As previously described with respect to the grip pads, these small projections, preferably formed of silicone rubber, will engage the epicardial surface of the heart and increase the frictional engagement between the coils and the surface of the heart in order to secure the harness to the heart without the use of suMres, clips, or other mechanical attachment means. In forther keeping with the invention, as shown in FIGS. 20-23, a portion of a lead having an electrode 120 is shown in the form of a conductive coil 121. The coil can be formed of any suitable wire that is conductive so that an electrical shock can be transmitted tMough the elecfrode and tMough the myocardium of the heart. In this embodiment, the coil wire is wrapped around a dielectric material 122 in a helical configuration, however, a spiral wrap or other configuration is possible as long as the coil has superior fatigue resistance and longiMdinal flexibility. Importantly, conductive coils 121 have high fatigue resistance which is necessary since the coil is on or near the surface of the beating heart so that the coil is constantly flexing along its longiMdinal length in response to heart expansion and contraction. The cross-section of the wire preferably is round or circular, however, it also can be oval shaped or flat (rectangular) in order to reduce the profile of the elecfrode for minimally vasive delivery. A circular, oval or flat wire will have a relatively high fatigue resistance as well as a relatively low profile for delivery purposes. Also, a flat wire coil is highly flexible along the longitudinal axis and it has a relatively high surface area for delivering an elecfrical shock. The electrode 120 has a first surface 123 and a second surface 124. The first surface 123 will be proximate the epicardial surface of the heart, or other portions of the heart, while the second surface will be opposite the first surface and away from the epicardial surface of the heart. A conductive wire (not shown) extends through the dielecfric material 122 and attaches to the coil wire 121 at one or more locations along the coil or coils, and the conductive wire is connected to a power source (e.g., an ICD) at its other end. As shown in FIG. 22, the cross-section of the electrode 120 can be circular, or as shown in FIG. 23, can be oval for reduced profile for minimally invasive delivery. Other cross-sectional shapes for electrode 120 are available depending upon the particular need. All of these cross-sectional shapes will have relatively high fatigue resistance. As shown in FIGS. 22 and 23, multiple lumens 125 can be provided to carry one or more conductive wires from the elecfrode to the power source (pulse generator, ICD, CRT-D, pacemaker, etc.). The lumens also can carry sensing wires that transmit data from a sensor on or in the heart to a pacemaker so that the heart can be monitored. FurMer, Me lumens 125 can be used for other puφoses such as drag delivery (therapeutic drugs, steroids, etc.), dye Mjection for visability under fluoroscopy, carrymg a guide wire (not shown) or a stylet to facilitate delivery of the electrodes and the harness, or for other puφoses. The lumens 125 can be used to caoy a guide wire (not shown) or a stylet in such a way that the column stiffness of the coil is increased by the guide wire or stylet, or in a manner that will vary the column stiffness as required. By varying the column stiffness of the coils with a guide wire or a stylet in lumens 125, the ability to push the carMac harness over the heart (as will be described) will be enhanced. The guide wires or stylets also can be used, to some extent, to steer the coils and hence the cardiac harness during delivery and implantation over the heart. The guide wire or stylet in lumens 125 can be removed after the cardiac harness is implanted so that the coils (electrodes) become more flexible and atraumatic. In keeping with the Mvention, as shown in FIGS. 20-23, the elecfrode 120 not only provides an elecfrical conduit for use M defibrillation, but also has sufficient column sfrength when attached to the cardiac harness to assist in the delivery of the harness by minimally invasive means. As will be further described, the coils 121 provide a highly flexible electrode along its longiMdinal length, and also provide a substantial amount of column strength when coupled with a cardiac harness to assist in the delivery of the harness. In forther keeping with the invention of FIGS. 20-23, a dielecfric material such as silicone rubber 126 can be used to coat elecfrodes 120. During the molding process (previously described), when the elecfrode 120 is attached to the cardiac harness, silicone rubber 126 will coat the entire elecfrode 120. Soda blasting (or other known material removal process) can be used to remove portions of the silicone rubber skin from the coils 121 in order to expose first surface 123 and second surface 124 (or portions of those surfaces) so that the bare metal coil is exposed to the epicardial surface of the heart. Preferably, the silicone rubber is removed from both the first surface and the second surface, however, it also may be advantageous to remove the silicone rubber from only the first surface, which is proximate to or in contact with the epicardial surface of the heart. The electrode 120 has a surface area 128 which essentially includes all of the bare metal surface area that is exposed and that will deliver a shock. The amount of surface area per electrode can vary greatly dependMg upon a particular application, however, surface areas in the range from about 50 mm2 to about 600 mm2 are typical. While it is possible to remove the silicone rubber from only the second surface (facing away from the heart), and leaving the first surface coated with silicone rubber, an electrical shock can still be delivered from the bare metal second surface, however, the electrical shock delivered may not be as efficient as with other embodiments. While the dimensions of the elecfrodes can vary widely due to the variations in the size of the heart to be treated in conjunction with the size of the cardiac harness, generally the length of Me electrode ranges from about 2 cm to about 16 cm. The coil 121 has a length in the range of about 1 cm to about 12 cm. Commercially available leads having one or more elecfrodes are available from several sources and may be used with Me cardiac harness of the present Mvention. Commercially available leads with one or more electrodes is available from Guidant Coφoration (St. Paul, Minnesota), St. Jude Medical (Minneapolis, Minnesota) and Medtronic Coφoration (Minneapolis, Minnesota). Further examples of commercially available cardiac rhythm management devices, including defibrillation and pacing systems available for use in combMation with the cardiac harness of the present invention (possibly with some modification) include, the CONTAK CD®, the INSIGNIA® Plus pacemaker and FLEXTREND® leads, and the VITALITY™ AVT® ICD and ENDOTAK RELIANCE® defibrillation leads, all available from Guidant Coφoration (St. Paul, MN), and the InSync System available from Medtronic Coφoration (Minneapolis, MN). In an alternative embodiment, as shown in FIG. 24, the conductive coils 121 need not be continuous along Me length of the electrode 120, but can be spatially isolated or staggered along the elecfrode. For example, multiple coil sections 127, similar to the coil 121 shown in FIG. 20, can be spaced along the elecfrode with each coil section bemg attached to the conductive wire so it receives electrical cunent from the power source. The coil sections can be from about 0.5 cm to about 2.0 cm long and be spaced from about 0.5 cm to about 4 cm apart along the electrode. The dimensions used herein are by way of example only and can vary to suit a particular application When removing portions of the silicone rubber from the electrode 120 using soda blasting or a similar technique, it may be desirable to leave portions of the electrode masked or insulated so that the masked portion is non-conductive. By masking portions of two elecfrodes positioned, for example, on opposite sides of the left venfricle, it is possible to vector a shock at a desirable angle through the myocardium and venfricle. The shock will travel from the bare metal (unmasked) portion of one electrode tMough the myocardium and the ventricle to the bare metal (unmasked) portion of the opposing elecfrode at a vector angle detern med by the position of the masking on the electrodes. The cardiac rhythm management devices associated with the present invention are implantable devices that provide electrical stimulation to selected chambers of the heart in order to treat disorders of cardiac rhythm and can include pacemakers and implantable cardioverter/defibrillators and/or cardiac resyncMonization therapy devices (CRT-D). A pacemaker is a cardiac rhythm management device which paces the heart with timed pacing pulses. As previously described, common conditions for which pacemakers are used is in Me treatment of bradycardia (ventricular rate is too slow) and tachycardia (cardiac rhythms are too fast). As used herein, a pacemaker is any cardiac rhythm management device with a pacMg functionality, regardless of any other functions it may perform such as the delivery of cardioversion or defibrillation shocks to terminate afrial or ventricular fibrillation. An important feaMre of the present invention is to provide a cardiac harness having the capability of providing a pacing function in order to treat the syncMony of both ventricles. To accomplish the objective, a pacemaker with associated leads and elecfrodes are associated with and Mcoφorated into the cardiac harness of the present Mvention. The pacing/sensing electrodes, alone or in combination with defibrillating elecfrodes, provide treatment to synchronize the venfricles and improve cardiac ftmction. In keeping with the Mvention, a pacemaker and a pacing/sensMg electrode are Mcoφorated Mto the design of the cardiac harness. As shown in FIGS. 25A and 25B, a lead (not shown) having a defibrillator elecfrode 130 at its distal end, shown in partial section, not only incoφorates wire coils 131 used to deliver a defibrillatMg elecfrical shock to the epicardial surface of the heart, but also incoφorates a pacing/sensMg electrode 132. The defibrillator elecfrode 130 can be attached to any cardiac harness embodiment previously described herein. In this embodiment, a non-penetrating pacing/sensing elecfrode 132 is combined with the defibrillating elecfrode 130 M order to provide data relating to heart function. More specifically, the pacing/sensMg electrode 132 does not penetrate the myocardium in this embodiment, however, it may be beneficial in other embodiments for the pacing or sensing elecfrode to penetrate the myocardium. One advantage of a noii- penefrating pacing/sensing electrode is that there is no danger of puncturing a coronary artery or causing further trauma to the epicardium or myocardium. It is also easier to design since there is no requirement of a penetration mechanism (barb or screw) on the pacing/sensing elecfrode. The pacing/sensing electrode 132 is in direct contact with the epicardial surface of the heart and will provide data via lead wire 133 to the pulse generator (pacemaker), which will Mterpret the data and provide any pacing function necessary to achieve, for example, venfricular resyncMonization therapy, left ventricular pacing, right ventricular pacing, syncMony of both venfricles, and or bivenfricular pacing. As shown in FIG. 25B, the pacing/sensing elecfrode 132 is Mcoφorated into a portion of a cardiac harness 134, and more particularly the undulatMg strands 135 are attached by dielecfric material 136 to the pacing/sensing electrode. As can be seen in FIGS. 25A and 25B, the wire coils 131 of the defibrillating elecfrode 130 are wrapped around the dielecfric material 136, and the dielectric material insulates the pacing/sensing elecfrode 132 from both the wire coils 131 and from the undulating sfrands 135 of the cardiac harness. Multiple pacMg/sensMg elecfrodes 132 can be incoφorated along defibrillating elecfrode 130, and multiple pacing and sensing electrodes can be Mcoφorated on other elecfrodes associated with the cardiac harness. In one of the prefened embodiments, multi-site pacing (as previously shown in FIGS. 8A-8D) using pacing/sensMg electrodes 132 enables resyncMonization therapy M order to treat the syncMony of both ventricles. Multi-site pacing allows the positioning of the pacing/sensMg elecfrodes to provide bi- venfricular pacing or right venfricular pacing, left venfricular pacing, depending upon the patient's needs. In another embodiment, shown in FIGS. 26A-26C, a defibrillating electrode is combined with pacing/sensMg electrodes, for attachment to any of the cardiac harness embodiments disclosed herein. In this embodiment, the defibrillating electrode 130 is formed of wire coils 131 wrapped in a helical manner. The helical wire can be a wound wire having a single strand or a quaMafilar wire having four wires bundled together to form the coil. The wire coils 131 are wrapped around dielectric material 136 M a manner similar to that described for the embodiments in FIGS. 25A and 25B. M this embodiment, the pacMg/sensing electrode 132 is in the form of a single ring for unipolar operation, and two rings for bi-polar operation. The pacing/sensing elecfrode rings 132 are mounted coaxially with the defibrillatMg electrode wire coils 131, and the conducting wires from the wire coils and the pacMg/sensing ring elecfrode are shown extending tMough Me dielectric material 136 and being insulated from each other. The conducting wires from the defibrillatMg electrode 130 and from the pacing/sensing ring elecfrodes 132 can be bundled into a common lead wire 133 which extends to the pulse generator (an ICD, CRT-D, and or a pacemaker). As can be seen M FIGS. 26A-26C, the pacing/sensing elecfrode rings 132 have a diameter that is somewhat larger than the defibrillator electrode coils 131 in order to insure preferential contact by the electrode rings against the epicardial surface of the heart. Preferably, several pairs of pacing/sensing elecfrode rings (bipolar) would be positioned on the cardiac harness and be positioned to come into contact with, for example, the left ventricle free wall. Multi-site pacing allows the pacing/sensMg electrode rings 132 to be used for both pacing and resyncMonization concurrently. Further, the pacing/sensing electrode rings 132 also can be used in the absence of defibrillating electrodes 130. The prior disclosure relating to molding of the cardiac harness to the defibrillator electrode applies equally as well to the pacMg/sensMg electrode rings. The wire coil 131 and the pacMg/sensing electrode rings 32 can be fabricated in several ways including by laser cutting stainless steel MbMg or using highly conductive materials in wire form, such as biocompatible platinum wire. As previously disclosed, the wire coils 131 can be quaMafilar wire (platinum) for improved flexibility and confonnability to the epicardial surface of the heart and be biocompatible. The surface of the pacMg/sensing elecfrodes can vary greatly depending upon the application. As an example, in one embodiment, the surface area of the pacMg/sensing electrodes are M the range from about 2 mm2 to about 12 mm2, however, this range can vary substantially. While the disclosed embodiments show Me pacMg/sensing elecfrodes combined with the defibrillating elecfrodes, the pacMg/sensMg elecfrodes can be formed separately and mounted on the cardiac harness with or without defibrillating elecfrodes. The defibrillatMg elecfrode 130 as disclosed herein, can be used with commercially available pacing/sensMg elecfrodes and leads. For example, Oscor (Model HT 52PB) endocardial/passive fixation leads can be integrated with the defibrillator electrode 130 by molding the leads into Me fibrillator elecfrode using the same molds previously disclosed herein. The foregoing disclosed Mvention Mcoφorating cardiac rhythm management devices into the cardiac harness combines several freatment modalities that are particularly beneficial to patients suffering from congestive heart failure. The cardiac harness provides a compressive force on the heart thereby relieving wall stress, and Miproving cardiac ftmction. The defibrillating and pacMg/sensing electrodes associated with the cardiac harness, along with ICD's and pacemakers, provide numerous treatment options to correct for any number of maladies associated with congestive heart failure. In addition to the defibrillation function previously described, the cardiac rhythm devices can provide elecfrical pacing stimulation to one or more of the heart chambers to improve the coordination of afrial and/or venfricular contractions, which is refeoed to as resyncMonization therapy. Cardiac resyncMonization therapy is pacing stimulation applied to one or more heart chambers, typically the ventricles, in a manner that restores or maMtains syncMonized bilateral contractions of the atria and/or venfricles thereby improving pumpMg efficiency. ResyncMonization pacMg may involve pacing both ventricles in accordance with a syncMonized pacing mode. For example, pacing at more than one site (multi-site pacing) at various sites on the epicardial surface of the heart to desyncMonize the confraction sequence of a venfricle (or ventricles) may be therapeutic in patients with hypertrophic obstructive cardiomyopathy, where creating asyncMonous contractions with multi-site pacing reduces the abnormal hyper-contractile ftmction of the venfricle. Further, resyncMonization therapy may be implemented by adding syncMonized pacing to the bradycardia pacMg mode where paces are delivered to one or more syncMonized pacMg sites in a defined time relation to one or more sensing and pacMg events. An example of syncMonized chamber-only pacing is left venfricle only syncMonized pacMg where the rate in syncMonized chambers are the right and left ventricles respectively. Left- ventricle-only pacMg may be advantageous where the conduction velocities withM the venfricles are such that pacing only the left venfricle results in a more coordinated confraction by the venfricles than by conventional right venfricle pacmg or by venfricular pacMg. Further, syncMonized pacing may be applied to multiple sites of a single chamber, such as the left venfricle, the right venfricle, or both ventricles. The pacemakers associated with the present Mvention are typically implanted subcutaneously on a patient's chest and have leads Mreaded to the pacing/electrodes as previously described in order to connect the pacemaker to the electrodes for sensing and pacing. The pacemakers sense intrinsic cardiac elecfrical activity tMough the electrodes disposed on the surface of the heart. Pacemakers are well known in the art and any commercially available pacemaker or combMation defibrillator/pacemaker can be used in accordance with the present invention. The cardiac harness and the associated cardiac rhythm management device system of the present invention can be designed to provide left ventricular pacing. In left heart pacing, there is an initial detection of a spontaneous signal, and upon sensing the mechanical confraction of Me right and left ventricles. In a heart with normal right heart function, the right mechanical afrio-venfricular delay is monitored to provide the timMg between the Mitial sensMg of right atrial activation (known as the P-wave) and right venfricular mechanical confraction. The left heart is controlled to provide pacing which results M left venfricular mechanical contraction in a desired time relation to the right mechanical contraction, e.g., either simultaneous or just preceding the right mechanical confraction. Cardiac output is monitored by impedence measurements and left venfricular pacing is timed to maximize cardiac output. The proper positioning of the pacing/sensing elecfrodes disclosed herein provides the necessary sensing functions and the resulting pacing therapy associated with left ventricular pacing. An Miportant feaMre of the present Mvention is the minimally invasive delivery of the cardiac harness and the cardiac rhythm management device system which will be described immediately below. Delivery of the cardiac harness 20,60, and 100 and associated elecfrodes and leads can be accomplished tMough conventional cardio-thoracic surgical techniques such as tMough a median stemotomy. In such a procedure, an incision is made in the pericardial sac and the cardiac harness can be advanced over the apex of the heart and along the epicardial surface of the heart simply by pus ng it on by hand. The Mtact pericardium is over the harness and helps to hold it in place. The previously described grip pads and the compressive force of the cardiac harness on the heart provide sufficient attachment means of the cardiac harness to the epicardial surface so that sutures, clips or staples are unnecessary. Other procedures to gain access to the epicardial surface of the heart include making a slit in the pericardium and leaving it open, making a slit and later closing it, or making a small incision in Me pericardium. Preferably, however, Me cardiac harness and associated electrodes and leads may be delivered tMough minimally invasive surgical access to the thoracic cavity, as illustrated in FIGS. 27-36, and more specifically as shown in FIG. 30. A delivery device 140 may be delivered Mto the thoracic cavity 141 between the patient's ribs to gain direct access to the heart 10. Preferably, such a minimally invasive procedure is accomplished on a beatMg heart, without the use of cardio- pulmonary bypass. Access to the heart can be created with conventional surgical approaches. For example, the pericardium may be opened completely or a small incision can be made M the pericardium (pericardiotomy) to allow the delivery system 140 access to the heart. The delivery system of the disclosed embodiments comprises several components as shown in FIGS. 27-36. As shown M FIG. 27, an introducer Mbe 142 is configured for low profile access t ough a patient's ribs. A number of fingers 143 are flexible and have a delivery diameter 144 as shown in FIG. 27, and an expanded diameter 145 as shown in FIG. 29. The delivery diameter is smaller than the expanded diameter. An elastic band 146 expands around the distal end 147 of the fingers and prevents the fingers from overexpanding during delivery of the cardiac harness. The distal end of the fingers is the part of the delivery device 140 that is inserted tMough the patient's ribs to gain direct access to the heart. The delivery device 140 also includes a dilator Mbe 150 that has a distal end
151 and a proximal end 152. The cardiac harness 20,60,100 is collapsed to a low profile configuration and inserted into the distal end of the dilator Mbe, as shown M FIG. 28. The dilator tube has an outside diameter that is slightly smaller than the inside diameter of the introducer Mbe 142. As will be discussed more fully herein, the distal end 151 of the dilator Mbe is inserted into the proximal end 147 of the infroducer tube M close sliding engagement and in a slight frictional engagement. The slidable engagement between the dilator tube and the introducer tube should be with some mild resistance, however, there should be unrestricted slidable movement between the two Mbes. The distal end 151 of the dilator tube will expand the fingers 143 of the introducer tube 142 as the dilator Mbe is pushed distally Mto the introducer Mbe as shown in FIG. 29. In the embodiments shown in FIGS. 27-36, the cardiac harness 20,60,100 is equipped with leads (previously described) having electrodes for use M defibrillation or pacing functions. As shown in FIG. 31, the delivery system 140 also Mcludes a releasable suction device, such as suction cup 156 at the distal end of the delivery device. The negative pressure suction cup 156 is used to hold the apex of the heart 10. Negative pressure can be applied to the suction cup using a syringe or other vacuum device commonly known in the art. A negative pressure lock can be achieved by a oneway valve stop-cock or a Mbing clamp, also known in the art. The suction cup 156 is formed of a biocompatible material and is preferably stiff enough to prevent any negative pressure loss tMough the heart while manipulating the heart and sliding the cardiac harness 20,60,100 onto the heart. Further, the suction cup 156 can be used to lift and maneuver the heart 10 to facilitate advancement of the harness or to allow visualization and surgical manipulation of the posterior side of Me heart. The suction cup has enough negative pressure to allow a slight pulling in the proximal direction away from the apex of the heart to somewhat elongate the heart (e.g., into a bullet shape) during delivery to facilitate advancing the cardiac harness over the apex and onto the base portion of the heart. After the suction cup 156 is attached to the apex of the heart and a negative pressure is Mawn, the cardiac harness, which has been releasably mounted in the distal end 151 of the dilator Mbe 150, can be advanced distally over Me heart, as will be described more folly herein. As shown in FIG. 30, the delivery device 140, and more specifically infroducer tube 142, has been advanced tMough the intercostal space between the patient's ribs durMg insertion of the Mtroducer Mbe, the fingers 143 are in their delivery diameter 144, which is a low profile for ease of access t ough the small port made tMough the patient's ribs. Thereafter, the dilator Mbe 150, with the cardiac harness 20,60,100 mounted therein, is advanced distally tMough the infroducer Mbe so that the fingers 143 are expanded until they achieve their expanded diameter 145. The suction cup 156 can be attached to the apex 13 of the heart 10 either before or after the dilator tube is advanced to spread the fingers 143 of the infroducer Mbe 142. Preferably, the dilator Mbe has already expanded the fingers on the infroducer Mbe so that there is a larger opening for the suction cup as it is advanced tMough the inside of a dilator tube, out of the distal end of the introducer Mbe, and placed M contact with the apex of the heart. Thereafter, a negative pressure is Mawn allowing the suction cup to securely attach to the apex of the heart. Visualizing equipment that is commonly known M the art may be used to assist in positioMng the suction cup to the apex. For example, fluoroscopy, magnetic resonance imaging (MRI), dye injection to enhance fluoroscopy, and echocardiography, and Mfracardiac, transesophageal, or transthoracic echo, all can be used to enhance positioning and in attaching the suction cup to the apex of the heart. After negative pressure is Mawn and the suction cup is securely attached (releasably) to the apex of the heart, Me heart can then be maneuvered somewhat by pullMg on the tubing 157 attached to the suction cup, or by manipulating the infroducer Mbe 142, the dilator tube 150, both in conjunction with the suction cup. As previously described, it may be advantageous to pull on the tubing 157 to allow the suction cup to pull on the apex of the heart and elongate the heart somewhat in order to facilitate sliding the harness over the epicardium. As more clearly shown in FIGS. 32-36, the cardiac harness 20,60,100 is advanced distally out of the dilator tube and over the suction cup 156. The suction cup is tapered so that the distal end of the harness slides over Me narrow portion of the taper (the proximal end of the suction cup 158). The suction cup becomes wider at its distal end where it is attached to the apex of the heart, and the cardiac harness continues to slide and expand over the suction cup as it is advanced distally. As the cardiac harness continues to be advanced distally, it slides over the apex of the heart and continues to expand as it is pushed out of the dilator tube and along the epicardial surface of the heart. Since the harness and the electrodes 32,120,130 are coated with the previously described dielectric material, preferably silicone rubber, the cardiac harness should slide easily over the epicardial surface of the heart. The silicone rubber offers little resistance and the epicardial surface of the heart has sufficient fluid to allow the harness to easily slide over the wet surface of the heart. The pericardium previously has been cut so that the cardiac harness is sliding over the epicardial surface of the heart with the pericardium over Me cardiac harness to help hold it onto the surface of the heart. As shown M FIGS. 35 and 36, the cardiac harness 20,60,100 has been completely advanced out of Me dilator tube so Mat the harness covers at least a portion of the heart 10. The suction cup 156 has been withMawn, and the introducer Mbe 142 and dilator tube 150 also have been withMawn proximally from the patient. Prior to removMg the introducer Mbe, a power source 170 (such as an ICD, CRT-D, and/or pacemaker) can be implanted by conventional means. The elecfrodes will be attached to the pulse generator to provide a defibrillatMg shock or pacing fonctions as previously described. In the embodiments shown in FIGS. 27-36, the cardiac harness 20,60,100 was advanced tMough the dilator Mbe by pushing on the proximal end of the elecfrodes 32,120,130, on the lead wires 31,133, and on the proximal end (apex 26) of the cardiac harness. Even though the elecfrodes are designed to be atraumatic and longiMdMally flexible, the electrodes have sufficient column sfrength so that pushing on the proximal ends of the elecfrodes assists in pushing the cardiac harness out of the dilator Mbe and over the epicardial surface of the heart. In one embodiment, advancement of the cardiac harness is accomplished by hand, by the physician simply pushMg on the elecfrodes and the leads to advance the cardiac harness out of the dilator Mbe to slide onto the epicardial surface of the heart. As shown in the embodiments of FIGS. 27-36, the delivery device 140, and more specifically mtroducer Mbe 142 and dilator Mbe 150, have a circular cross- section. It may be preferable, however, to chose other cross-sectional shapes, such as an oval cross-sectional shape for the delivery device. An oval delivery device may be more easily inserted tMough the intercostal space between the patient's ribs for a low profile delivery. Further, as the cardiac harness 20,60,100 is advanced out of a delivery device 140 having an oval cross-section, the harness distal end will quickly form into a more circular shape M order to assume the configuration of the epicardial surface of the heart as it is advanced distally over the heart. In the embodiments shown in FIGS. 35 and 36, the cardiac harness
20,60,100 remains firmly attached to the epicardial surface of the heart without the need for any forther attachment means, such as sutiires, clips, adhesives, or staples. Further, the pericardial sac helps to enclose the harness to prevent it from shifting or sliding on the epicardial surface of the heart. Importantly, during delivery of the cardiac harness 20,60,100, the harness itself, the elecfrodes 32,120,130, as well as leads 31 and 132 have sufficient column strength in order for the physician to push from the proximal end of the harness to advance it distally tMough Me dilator Mbe 150. While the entire cardiac harness assembly is flexible, there is sufficient column strength, especially in the electrodes, to easily slide the cardiac harness over the epicardial surface of the heart in the manner described. In an alternative embodiment, if the cardiac harness 20,60,100 Mcludes coils 72, as opposed to the electrodes and leads, the harness can be delivered in the same manner as previously described with respect to FIGS. 27-36. The coils have sufficient column strength to permit the physician to push on the proximal end of the coils to advance the cardiac harness distally to slide over the apex of the heart and onto the epicardial surface. In another embodiment, delivery of the cardiac harness 20,60,100 can be by mechanical means as opposed to the hand delivery previously described. As shown in FIGS. 37-42, delivery system 180 Mcludes an infroducer tube 181 that fonctions the same as introducer Mbe 142. Also, a dilator Mbe 182, which is sized for slidable movement within the infroducer tube, also fonctions the same as the previously described dilator Mbe 150. An ejection Mbe 183 is sized for slidable movement within the dilator Mbe, that is, the outer diameter of the ejection Mbe is slightly smaller than the inner diameter of the dilator Mbe. As shown in FIGS. 40 and 41, the ejection Mbe has a distal end 184 and a proximal end 185, wherein the distal end of the ejection Mbe has a plate that fills the entire inner diameter of the ejection Mbe. The plate has a number of lumens 187 for receiving leads 31,132 and for receiving the suction cup 156 and associated MbMg 157. Thus, lumens 188 are sized for receiving leads 31,132 theretMough, while lumen 189 is sized for receiving suction cup 156 and the associated MbMg 157. The number of lumens 188 M plate 186 will be defined by the number of leads 31,132 associated with the cardiac harness 20,60,100. Thus, as shown in FIG. 40, there are four lumens 188 for receiving four leads theretMough, and one lumen 189 for receiving the suction cup 156 and MbMg 157 theretMough. The leads and the Mbing 157 extend proximally out the proximal end 185 of the ejection Mbe. As shown M FIG. 42, the suction cup and cardiac harness are on the left side of the schematic, and the ejection Mbe 183 is on the right hand side of Me schematic. For clarity, the dilator tube and Me infroducer Mbe have been omitted, however, in practice the cardiac harness would be mounted M the dilator tube, and the dilator Mbe would extend into the introducer tube, while the ejection Mbe would extend into the dilator Mbe. As can be seen M FIG. 42, the leads 31,132 extend tMough lumens 188, while the tubing 157 associated with the suction cup extends tMough lumen 189. The Mbing and the leads extend proximally out of the proximal end of the ejection Mbe, and extend out of the patient during delivery of the harness. As previously described, after the infroducer is positioned tMough the rib cage, and the apex of the heart is acquired by the suction cup, the harness can be advanced out of the dilator by advancMg the ejection Mbe 183 in a distal direction toward the apex of the heart. The leads, the cardiac harness and electrodes all provide sufficient column sfrength to allow the plate 186 to impart a pushing force against the cardiac harness to advance it distally over the heart as previously described. After the cardiac harness is pushed over the epicardial surface of the heart, Me ejection tube can be withdrawn proximally so that the MbMg 157 and the leads 31,132 slide tMough lumens 189,188 respectively. The ejection tube 183 contMues to be withdrawn proximally so that the proximal end of the leads and the proximal end of tubing 157 are pulled tMough the distal end 184 of the ejection Mbe so that the ejection Mbe is clear of Me leads and the MbMg. As with the previous embodiment, suitable materials for the delivery system 140,180 can include the class of polymers typically used and approved for biocompatible use within the body. Preferably, the Mbing associated with delivery systems 140 and 180 are rigid, however, they can be formed of a more flexible material. Further, the delivery systems 140,180 can be curved rather than straight, or can have a flexible joint in order to more appropriately maneuver the cardiac harness 20,60,100 over the epicardial surface of the heart during delivery. Further, the MbMg associated with delivery systems 140,180 can be coated with a lubricious material to facilitate relative movement between the tubes. Lubricious materials commonly known in the art such as Teflon™ can be used to enhance slidable movement between the Mbes. Delivery and implantation of an ICD, CRT-D, pacemaker, leads, and any other device associated with the cardiac rhythm management devices can be performed by means well known in the art. Preferably, the ICD/CRT-D/pacemaker, are delivered tMough the same mmimally invasive access site as the cardiac harness, elecfrodes, and leads. The leads are then comiected to the ICD/CRT-D/pacemaker in a known manner. In one embodiment of the invention, the ICD or CRT-D or pacemaker (or combination device) is implanted in a known manner in the abdominal area and then the leads are comiected. Since the leads extend from the apical ends of the electrodes (on the cardiac harness) the leads are well positioned to attach to the power source M the abdomMal area. It may be desired to reduce the likelMood of the development of fibrotic tissue over the cardiac harness so that the elastic properties of the harness are not compromised. Also, as fibrotic tissue forms over the cardiac harness and electrodes over time, it may become necessary to increase the power of the pacMg stimuli. As fibrotic tissue Mcreases, the right and left venfricular Mresholds may increase, commonly refened to as "exit block." When exit block is detected, the pacing therapy may have to be adjusted. Certain drugs such as steriods, have been found to inhibit cell growth leading to scar tissue or fibrotic tissue growth. Examples of therapeutic drugs or pharmacologic compounds that may be loaded onto the cardiac harness or Mto a polymeric coating on the harness, on a polymeric sleeve, on Mdividual undulating sfrands on the harness, or infosed tMough the lumens in the electrodes and delivered to the epicardial surface of the heart include steroids, taxol, aspirin, prostaglandins, and the like. Various therapeutic agents such as antitMombogenic or antiproliferative Mugs are used to forther control scar tissue formation. Examples of therapeutic agents or drugs that are suitable for use in accordance with the present invention include 17-beta estradiol, sirolimus, everolimus, actinomycin D (ActD), taxol, paclitaxel, or derivatives and analogs thereof. Examples of agents Mclude other antiproliferative substances as well as antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antitMombin, antimitotic, antibiotic, and antioxidant substances. Examples of antineoplastics include taxol (paclitaxel and docetaxel). Further examples of therapeutic drugs or agents Mclude antiplatelets, anticoagulants, antifibrins, antiMflammatories, antitMombins, and antiproliferatives. Examples of antiplatelets, anticoagulants, antifibrins, and antitMombins include, but are not limited to, sodium heparin, low molecular weight heparin, hirudin, argafroban, forskolin, vapiprost, prostacyclM and prostacyclin analogs, dexfran, D-phe-pro-arg-chloromethylketone (synthetic antitMombin), dipyridamole, glycoprotein Ilb/IIIa platelet membrane receptor antagonist, recombinant hirudin, Mrombin inhibitor (available from Biogen located in Cambridge, MA), and 7E-3B® (an antiplatelet drug from Centocor located M Malvern, PA). Examples of antimitotic agents include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, aMiamycM, and mutamycin. Examples of cytostatic or antiproliferative agents include angiopeptin (a somatostatin analog from Ibsen located in the United KMgdom), angiotensin converting enzyme inhibitors such as Captopril® (available from Squibb located in New York, NY), Cilazapril® (available from Hoffman-LaRoche located M Basel, Switzerland), or Lisinopril® (available from Merck located M Whitehouse Station, NJ); calcium channel blockers (such as Nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3 -fatty acid), histamine antagonists, Lovastatin® (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug from Merck), methofrexate, monoclonal antibodies (such as PDGF receptors), nifroprusside, phosphodiesterase inhibitors, prostaglandin inhibitor (available from GlaxoSmithKline located in United Kingdom), Seramin (a PDGF antagonist), serotonin blockers, steroids, thioprotease Mhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. Other therapeutic drugs or agents which may be appropriate Mclude alpha-Mterferon, genetically engineered epithelial cells, and dexamethasone. Although the present invention has been described M terms of certain prefened embodiments, other embodiments that are apparent to those of ordinary skill in the art are also withM the scope of the invention. Accordingly, the scope of the Mvention is intended to be defMed only by reference to the appended claims. While the dimensions, types of materials and coatings described herein are intended to define the parameters of the Mvention, they are by no means limiting and are exemplary embodiments.

Claims

WHAT IS CLAIMED IS
1. A system for treatMg the heart, comprising: a cardiac harness configured to conform generally to at least a portion of a patient's heart; at least one elecfrode associated with the cardiac harness and positioned proximate to an outer surface of the heart; the at least one elecfrode connected to a power source; and the cardiac harness and the at least one elecfrode configured to be delivered minimally Mvasively.
2. The system of claim 1, whereM two elecfrodes are associated with the cardiac harness.
3. The system of claim 2, wherein one elecfrode is positioned proximate left ventricle and one elecfrode is positioned proximate the right venfricle.
4. The system of claim 1, whereM t ee electrodes are associated with the cardiac harness.
5. The system of claim 4, whereM two of the electrodes are positioned proximate the left venfricle and one electrode is positioned proximate the right venfricle.
6. The system of claim 4, wherein two of the elecfrodes are positioned proximate the right ventricle and one electrode is positioned proximate the left ventricle.
7. The system of claim 1, whereM four elecfrodes are associated with the cardiac harness.
8. The system of claim 7, wherein two elecfrodes are spaced apart and positioned proximate the left venfricle and two electrodes are spaced apart and positioned proximate the right venfricle.
9. The system of claim 1, whereM the cardiac harness is coated with a dielectric material.
10. The system of claim 9, whereM the dielectric material is taken from the group of dielectric materials consisting of silicone rubber, Parylene™, polyurethanes, PTFE, TFE, and ePTFE.
11. The system of claim 1, wherein at least a portion of the at least one electrode is coated with a dielecfric material.
12. The system of claim 11, wherein the dielectric material is taken from the group of dielectric materials consisting of silicone rubber, Parylene™, polyurethanes, PTFE, TFE, and ePTFE.
13. The system of claim 1, wherein the cardiac harness is coated with a dielectric material and the at least one elecfrode is at least partially coated with the dielectric material so that the cardiac harness and the at least one elecfrode are attached by the dielectric material.
14. The system of claim 13, whereM the dielecfric material is taken from the group of dielectric materials consisting of silicone rubber, Parylene™, polyurethanes, PTFE, TFE, and ePTFE.
15. The system of claim 14, whereM the at least one elecfrode has a first surface not coated with the dielectric material and is proximate the outer surface of the heart, and a second surface not coated with the dielecfric material and not in contact with the heart.
16. The system of claim 1, whereM at least one non-conductive coil is attached to the cardiac harness.
17. The system of claim 1, whereM the cardiac harness is formed from a metal alloy.
18. The system of claim 17, wherein the metal alloy is taken from the group of metal alloys consisting of nickel-titanium (NiTi), nickel-titanium- vanadium (NiTiVa), staMless steel, cobalt-cMomium (CoCr), tantalum (Ta), titanium (Ti), superelastic alloys, shape memory alloys, MP35N, platinum-iridium, and Elgiloy™.
19. The system of claim 1, wherein the cardiac harness further comprises undulatMg sfrands aoanged in rows to form panels.
20. The system of claim 19, wherein the undulatMg sfrands are interconnected.
21. The system of claim 20, wherein the interconnections comprise interconnecting elements.
22. The system of claim 21, whereM the Mterconnecting elements connect adjacent undulatMg sfrands.
23. The system of claim 22, wherein the interconnecting elements are made from a dielecfric material.
24. The system of claim 23, wherein the dielectric material forming the intercomiecting elements is taken from Me group of dielecfric materials consisting of silicone rubber, Parylene™, polyurethanes, PTFE, TFE, and ePTFE.
25. The system of claim 21, whereM the interconnecting elements are linear.
26. The system of claim 21, whereM the Mterconnecting elements are non-linear.
27. The system of claim 21, whereM the interconnecting elements are formed from silicone rubber and have a first surface and a second surface, the first surface contacting the outer surface of the heart.
28. The system of claim 27, whereM the interconnecting elements Mclude projections on the first surface to increase gripping force between the interconnecting element and the outer surface of the heart.
29. The system of claim 19, wherein there is no overlap between the undulatMg sfrands and the at least one electrode.
30. The system of claim 1, whereM the at least one elecfrode is M the form of a coil.
31. The system of claim 30, whereM the coil has a hollow core.
32. The system of claim 31, whereM the hollow core is at least partially filled with a dielectric material.
33. The system of claim 32, whereM the coil has gaps, the gaps being separated by the dielectric material.
34. The system of clami 30, whereM the coil has a generally cylindrical cross-section.
35. The system of clami 30, wherein the coil has a generally oval cross- section.
36. The system of claim 30, whereM the coil has a generally rectangular cross-section.
37. The system of claim 30, whereM the coil has a generally triangular cross-section.
38. The system of claim 19, wherein at least one electrode is positioned between adjacent panels.
39. The system of claim 19, wherein the cardiac harness has four panels and four elecfrodes, Me elecfrodes being positioned between adjacent panels.
40. The system of claim 19, wherein the cardiac harness has a plurality of alternating panels and elecfrodes.
41. The system of claim 1, whereM the cardiac harness has undulating strands for applying a compressive force on the heart during diastole and systole.
42. The system of claim 1, whereM multiple elecfrodes are associated with the cardiac harness, a first set of electrodes positioned to deliver a defibrillatMg shock, and a second set of elecfrodes positioned for sensmg the heart and for providing a pacing therapy including syncMony of Me ventricles, resyncMonization, bi-venfricular pacing and left venfricular pacing.
43. The system of claim 1, whereM the cardiac harness is configured to deliver a defibrillatMg shock and the at least one elecfrode is positioned for sensing the heart and for delivering bivenfricular pacing stimuli.
44. The system of claim 1, wherein Me cardiac harness is configured to deliver a defibrillatMg shock and multiple electrodes are positioned for sensing the heart and for providing a pacMg therapy McludMg syncMony of the venfricles, resyncMonization, bi-venfricular pacing and left venfricular pacing.
45. A system for treating the heart, comprising: a cardiac harness configured to conform generally to at least a portion of the heart; a plurality of elecfrodes attached to Me harness by a dielectric material, the elecfrodes being positioned proximate an outer surface of the heart; the elecfrodes being connected to a power source; and the system being configured to be implanted minimally Mvasively so that the cardiac harness covers a substantial portion of the heart.
46. The system of claim 45, whereM the harness has a first length and the electrodes have a second length, the first length beMg different than the second length.
47. The system of claim 45, wherein the cardiac harness has panels separated by the electrodes, the elecfrodes being substantially equidistant apart around the circumference of the heart.
48. The system of claim 47, wherein the electrodes beMg spaced about 180° apart.
49. The system of claim 47, whereM the elecfrodes being spaced about 120° apart.
50. The system of claim 47, wherein the electrodes being spaced about 90° apart.
51. The system of claim 47, whereM the elecfrodes beMg spaced about 60° apart.
52. The system of claim 47, whereM the elecfrodes beMg spaced about 45° apart.
53. The system of claim 47, wherein the elecfrodes being arbitrarily spaced about the cardiac harness.
54. The system of claim 45, wherein Me elecfrodes are formed from coils.
55. The system of claim 54, wherein the coils are flexible and have sufficient column strength to assist in the mMimally Mvasive delivery and implantation of Me cardiac harness .
56. The system of claim 45, wherein at least one of the elecfrodes provides bivenfricular pacing and sensMg and at least one of the elecfrodes provides a defibrillation shock.
57. A system for treating the heart, comprising: a cardiac harness configured to conform generally to at least a portion of a patient's heart; a first set of electrodes attached to the cardiac harness and positioned proximate the outer surface of the heart for providing a defibrillation shock; a second set of elecfrodes attached to the cardiac harness and positioned on the surface of the heart for providing sensMg and pacing of the heart; and the first and the second set of elecfrodes being connected to one or more power sources.
58. The system of claim 57, whereM the cardiac harness and the first and second set of elecfrodes being configured to be delivered minimally invasively.
59. The system of claim 58, whereM the first set of electrodes includes four elecfrodes, two of the electrodes beMg positioned proximate the left venfricle and two of the electrodes being positioned proximate the right ventricle.
60. The system of claim 59, whereM the second set of elecfrodes mclude at least one elecfrode positioned to be M direct contact with the epicardial surface of the heart to provide sensMg of the heart and providmg a pacMg therapy including syncMony of the venfricles, resyncMonization, bi-ventricular pacMg and left venfricular pacing.
61. The system of claim 57, wherein the second set of electrodes are positioned M direct contact with the epicardial surface of the heart to provide sensing of the heart and for generating pacing stimuli to provide sync ony between the left venfricle and the right venfricle.
62. The system of claim 57, wherein the second set of electrodes are positioned M direct contact with the epicardial surface of the heart to provide sensMg of the heart and for generating pacMg stimuli for resyncMonization therapy.
63. The system of claim 57, whereM the second set of electrodes are positioned in direct contact with the epicardial surface of the heart to provide sensing of the heart and for generating pacing stimuli for bivenfricular pacing.
64. The system of claim 57, whereM the second set of electrodes are positioned in direct contact with the epicardial surface of the heart to provide sensing of the heart and for generating pacing stimuli for left ventricular pacing.
PCT/US2004/035862 2003-11-07 2004-10-28 Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing WO2005046789A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006539562A JP2007511277A (en) 2003-11-07 2004-10-28 Cardiac harness for the treatment and defibrillation and / or pacing and / or detection of congestive heart failure
CA002543365A CA2543365A1 (en) 2003-11-07 2004-10-28 Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
EP04796677A EP1687059A1 (en) 2003-11-07 2004-10-28 Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/704,376 US7155295B2 (en) 2003-11-07 2003-11-07 Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US10/704,376 2003-11-07

Publications (1)

Publication Number Publication Date
WO2005046789A1 true WO2005046789A1 (en) 2005-05-26

Family

ID=34552110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/035862 WO2005046789A1 (en) 2003-11-07 2004-10-28 Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing

Country Status (5)

Country Link
US (7) US7155295B2 (en)
EP (1) EP1687059A1 (en)
JP (1) JP2007511277A (en)
CA (1) CA2543365A1 (en)
WO (1) WO2005046789A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107590A3 (en) * 2005-04-01 2007-01-04 Paracor Medical Inc Cardiac harness and method of delivery by minimally invasive access
US7856260B1 (en) 2006-09-06 2010-12-21 Pacesetter, Inc. Implantable cardiac patch for measuring physiologic information
US7920928B1 (en) 2007-01-31 2011-04-05 Pacesetter, Inc. Passive fixation for epicardial lead
US7949411B1 (en) 2007-01-23 2011-05-24 Pacesetter, Inc. Epicardial lead
WO2016073338A1 (en) * 2014-11-05 2016-05-12 Medtronic, Inc. Extravascular lead designs for optimized pacing and sensing having segmented, partially electrically insulated defibrillation coils
US9855419B2 (en) 2009-05-29 2018-01-02 Medtronic, Inc. Leads for selective sensing and virtual electrodes
US10980481B2 (en) 2018-07-31 2021-04-20 Calyan Technologies, Inc. Subcutaneous device for monitoring and/or providing therapies
US10987060B1 (en) 2020-09-14 2021-04-27 Calyan Technologies, Inc. Clip design for a subcutaneous device
US11179571B2 (en) 2018-07-31 2021-11-23 Manicka Institute Llc Subcutaneous device for monitoring and/or providing therapies
US11433233B2 (en) 2020-11-25 2022-09-06 Calyan Technologies, Inc. Electrode contact for a subcutaneous device
US11478650B2 (en) 2018-07-31 2022-10-25 Calyan Technologies, Inc. Subcutaneous device
US11660444B2 (en) 2018-07-31 2023-05-30 Manicka Institute Llc Resilient body component contact for a subcutaneous device
US11717674B2 (en) 2018-07-31 2023-08-08 Manicka Institute Llc Subcutaneous device for use with remote device

Families Citing this family (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7491232B2 (en) 1998-09-18 2009-02-17 Aptus Endosystems, Inc. Catheter-based fastener implantation apparatus and methods with implantation force resolution
US6425856B1 (en) 2000-05-10 2002-07-30 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US8086314B1 (en) 2000-09-27 2011-12-27 Cvrx, Inc. Devices and methods for cardiovascular reflex control
US7840271B2 (en) 2000-09-27 2010-11-23 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US7623926B2 (en) 2000-09-27 2009-11-24 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US7499742B2 (en) 2001-09-26 2009-03-03 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US7616997B2 (en) 2000-09-27 2009-11-10 Kieval Robert S Devices and methods for cardiovascular reflex control via coupled electrodes
DK1423066T3 (en) 2001-09-07 2008-11-17 Mardil Inc Method and apparatus for external cardiac stabilization
JP4405262B2 (en) 2001-11-28 2010-01-27 アプタス エンドシステムズ, インコーポレイテッド Intravascular aneurysm repair system
US9320503B2 (en) 2001-11-28 2016-04-26 Medtronic Vascular, Inc. Devices, system, and methods for guiding an operative tool into an interior body region
US8231639B2 (en) 2001-11-28 2012-07-31 Aptus Endosystems, Inc. Systems and methods for attaching a prosthesis within a body lumen or hollow organ
US20070073389A1 (en) 2001-11-28 2007-03-29 Aptus Endosystems, Inc. Endovascular aneurysm devices, systems, and methods
US20050177180A1 (en) * 2001-11-28 2005-08-11 Aptus Endosystems, Inc. Devices, systems, and methods for supporting tissue and/or structures within a hollow body organ
US7022063B2 (en) 2002-01-07 2006-04-04 Paracor Medical, Inc. Cardiac harness
US7485089B2 (en) * 2002-09-05 2009-02-03 Paracor Medical, Inc. Cardiac harness
US20050059855A1 (en) * 2002-11-15 2005-03-17 Lilip Lau Cardiac harness delivery device and method
US7229405B2 (en) * 2002-11-15 2007-06-12 Paracor Medical, Inc. Cardiac harness delivery device and method of use
AU2003296956A1 (en) * 2002-12-11 2004-06-30 Proteus Biomedical, Inc. Monitoring and treating hemodynamic parameters
EP1585441A4 (en) * 2003-01-24 2008-05-21 Proteus Biomedical Inc Methods and systems for measuring cardiac parameters
US20050144184A1 (en) * 2003-10-01 2005-06-30 Dictaphone Corporation System and method for document section segmentation
US20060009831A1 (en) * 2003-11-07 2006-01-12 Lilip Lau Cardiac harness having leadless electrodes for pacing and sensing therapy
US20050288715A1 (en) * 2003-11-07 2005-12-29 Lilip Lau Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US7155295B2 (en) * 2003-11-07 2006-12-26 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US20050148814A1 (en) * 2004-01-05 2005-07-07 Fischi Michael C. Muscle function augmentation
EP1799101A4 (en) * 2004-09-02 2008-11-19 Proteus Biomedical Inc Methods and apparatus for tissue activation and monitoring
US7722529B2 (en) * 2004-12-28 2010-05-25 Palo Alto Investors Expandable vessel harness for treating vessel aneurysms
US20060189840A1 (en) * 2005-02-18 2006-08-24 Acorn Cardiovascular, Inc. Transmyocardial delivery of cardiac wall tension relief
US20060211948A1 (en) * 2005-03-18 2006-09-21 International Business Machines Corporation Dynamic technique for fitting heart pacers to individuals
JP5027797B2 (en) * 2005-03-31 2012-09-19 プロテウス バイオメディカル インコーポレイテッド Automatic optimization of multi-electrode pacing for cardiac resynchronization
US20090299447A1 (en) * 2005-07-01 2009-12-03 Marc Jensen Deployable epicardial electrode and sensor array
US7587247B2 (en) * 2005-08-01 2009-09-08 Paracor Medical, Inc. Cardiac harness having an optimal impedance range
WO2007021804A2 (en) * 2005-08-12 2007-02-22 Proteus Biomedical, Inc. Evaluation of depolarization wave conduction velocity
US20070100199A1 (en) * 2005-11-03 2007-05-03 Lilip Lau Apparatus and method of delivering biomaterial to the heart
ES2390824T3 (en) * 2005-10-06 2012-11-16 Neuronano Ab Electrode carrier beam
CN101466316B (en) 2005-10-20 2012-06-27 阿普特斯内系统公司 Devices systems and methods for prosthesis delivery and implantation including the use of a fastener tool
JP2007126496A (en) * 2005-11-01 2007-05-24 Shin Etsu Chem Co Ltd Adhesive composition
WO2007103262A2 (en) * 2006-03-01 2007-09-13 The Board Of Trustees Of The Leland Stanford Junior University Implanted cardiac device for defibrillation
US20070208217A1 (en) 2006-03-03 2007-09-06 Acorn Cardiovascular, Inc. Self-adjusting attachment structure for a cardiac support device
WO2007114905A2 (en) * 2006-04-04 2007-10-11 Gem Biosystems, Inc. Pericardial inserts and methods of use
US20070270882A1 (en) 2006-05-19 2007-11-22 Acorn Cardiovascular, Inc. Pericardium management method for intra-pericardial surgical procedures
US20070287883A1 (en) * 2006-06-07 2007-12-13 Lilip Lau Apparatus and method for pulling a cardiac harness onto a heart
US20080097146A1 (en) 2006-06-29 2008-04-24 Acorn Cardiovascular, Inc. Cardiac support device with low friction delivery structures
US7651462B2 (en) 2006-07-17 2010-01-26 Acorn Cardiovascular, Inc. Cardiac support device delivery tool with release mechanism
US7641608B1 (en) * 2006-09-26 2010-01-05 Acorn Cardiovascular, Inc. Sectional cardiac support device and method of delivery
DE102006056156B4 (en) * 2006-11-28 2010-02-25 Siemens Ag Arrangement for recording ECG signals
US8192351B2 (en) 2007-08-13 2012-06-05 Paracor Medical, Inc. Medical device delivery system having integrated introducer
SI2211768T1 (en) * 2007-10-11 2021-11-30 Implantica Patent Ltd. Apparatus for controlling flow in a bodily organ
WO2009048377A1 (en) * 2007-10-11 2009-04-16 Milux Holding Sa Method for assisting flow in a heart
WO2009048397A1 (en) * 2007-10-11 2009-04-16 Milux Holding Sa Method for assisting flow in a heart
US8696543B2 (en) * 2007-10-11 2014-04-15 Kirk Promotion Ltd. Method for controlling flow of intestinal contents in a patient's intestines
WO2009064222A1 (en) * 2007-11-14 2009-05-22 St Jude Medical Ab Tachycardia classification
ES2781686T3 (en) * 2007-12-14 2020-09-04 Edwards Lifesciences Corp Leaflet Junction Frame for a Prosthetic Valve
US20090177028A1 (en) * 2008-01-04 2009-07-09 Anthony John White Non-blood contact cardiac compression device, for augmentation of cardiac function by timed cyclic tensioning of elastic cords in an epicardial location
EP2520252A1 (en) * 2008-02-11 2012-11-07 Corassist Cardiovascular Ltd. Ventricular function assisting devices and methods of use thereof
WO2009131749A2 (en) 2008-02-28 2009-10-29 Proteus Biomedical, Inc. Integrated circuit implementation and fault control system, device, and method
US20110237872A1 (en) * 2008-09-24 2011-09-29 Micardia Corporation Dynamic heart harness
EP2344066B1 (en) * 2008-10-10 2018-02-14 Carsten Nils Gutt Arrangement for implanting
CA2740867C (en) 2008-10-16 2018-06-12 Aptus Endosystems, Inc. Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation
US10220128B1 (en) 2008-11-06 2019-03-05 Allan R. Robinson Implanted cardiac device to treat heart failure
EP2358429A4 (en) * 2008-12-02 2013-05-29 Proteus Digital Health Inc Analyzer compatible communication protocol
US8463407B2 (en) * 2009-03-26 2013-06-11 Kenergy, Inc. MRI compatible implanted lead-electrode interface
AU2009344195A1 (en) * 2009-04-08 2011-12-01 Saluda Medical Pty Limited Stitched components of an active implantable medical device
US8412347B2 (en) 2009-04-29 2013-04-02 Proteus Digital Health, Inc. Methods and apparatus for leads for implantable devices
WO2011011736A2 (en) 2009-07-23 2011-01-27 Proteus Biomedical, Inc. Solid-state thin film capacitor
US8969703B2 (en) 2010-09-13 2015-03-03 Tempronics, Inc. Distributed thermoelectric string and insulating panel
US20120198616A1 (en) * 2010-09-13 2012-08-09 Tarek Makansi Distributed thermoelectric string and insulating panel and applications for local heating, local cooling, and power generation from heat
US8718770B2 (en) 2010-10-21 2014-05-06 Medtronic, Inc. Capture threshold measurement for selection of pacing vector
WO2012071567A2 (en) 2010-11-23 2012-05-31 Lillehei Theodore J Pneumatic or hydraulic cardiac assist devices
US8355784B2 (en) 2011-05-13 2013-01-15 Medtronic, Inc. Dynamic representation of multipolar leads in a programmer interface
KR20140045408A (en) 2011-07-06 2014-04-16 템프로닉스, 인크. Integration of distributed thermoelectric heating and cooling
WO2013166292A1 (en) 2012-05-02 2013-11-07 The Charlotte-Mecklenburg Hospital Authority D/ B/ A Carolinas Healthcare System Devices, systems, and methods for treating cardiac arrhythmias
WO2013177460A1 (en) 2012-05-23 2013-11-28 Lillehei Theodore J Pneumatic or hydraulic cardiac assist devices
US10245436B2 (en) 2012-07-17 2019-04-02 Stimwave Technologies Incorporated Miniature implantable device and methods
US9638442B2 (en) 2012-08-07 2017-05-02 Tempronics, Inc. Medical, topper, pet wireless, and automated manufacturing of distributed thermoelectric heating and cooling
CN104736387B (en) 2012-09-25 2018-01-02 佛吉亚汽车座椅有限责任公司 Seat with thermal
WO2014059433A2 (en) 2012-10-12 2014-04-17 Mardil, Inc. Cardiac treatment system and method
USD717954S1 (en) 2013-10-14 2014-11-18 Mardil, Inc. Heart treatment device
US9242098B2 (en) 2013-10-30 2016-01-26 The Charlotte-Mecklenburg Hospital Authority Devices, systems, and methods for treating cardiac arrhythmias
WO2015066518A1 (en) 2013-11-04 2015-05-07 Tempronics, Inc. Design of thermoelectric string, panel, and covers for function and durability
EP3308833B1 (en) 2014-01-10 2019-06-26 Cardiac Pacemakers, Inc. Methods and systems for improved communication between medical devices
WO2015106015A1 (en) 2014-01-10 2015-07-16 Cardiac Pacemakers, Inc. Systems and methods for detecting cardiac arrhythmias
EP3185952B1 (en) 2014-08-28 2018-07-25 Cardiac Pacemakers, Inc. Implantable cardiac rhythm system and an associated method for triggering a blanking period through a second device
WO2016126968A1 (en) 2015-02-06 2016-08-11 Cardiac Pacemakers, Inc. Systems and methods for safe delivery of electrical stimulation therapy
WO2016126613A1 (en) 2015-02-06 2016-08-11 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US10046167B2 (en) 2015-02-09 2018-08-14 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque ID tag
EP3064131A1 (en) * 2015-03-03 2016-09-07 BIOTRONIK SE & Co. KG Combined vagus-phrenic nerve stimulation apparatus
CN107530002B (en) 2015-03-04 2021-04-30 心脏起搏器股份公司 System and method for treating cardiac arrhythmias
US10050700B2 (en) 2015-03-18 2018-08-14 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
CN107427222B (en) 2015-03-18 2021-02-09 心脏起搏器股份公司 Communication in a medical device system using link quality assessment
EP3337559B1 (en) 2015-08-20 2019-10-16 Cardiac Pacemakers, Inc. Systems and methods for communication between medical devices
CN108136186B (en) 2015-08-20 2021-09-17 心脏起搏器股份公司 System and method for communication between medical devices
US9968787B2 (en) 2015-08-27 2018-05-15 Cardiac Pacemakers, Inc. Spatial configuration of a motion sensor in an implantable medical device
US9956414B2 (en) 2015-08-27 2018-05-01 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
US10226631B2 (en) 2015-08-28 2019-03-12 Cardiac Pacemakers, Inc. Systems and methods for infarct detection
EP3341076B1 (en) 2015-08-28 2022-05-11 Cardiac Pacemakers, Inc. Systems and methods for behaviorally responsive signal detection and therapy delivery
WO2017040115A1 (en) 2015-08-28 2017-03-09 Cardiac Pacemakers, Inc. System for detecting tamponade
WO2017044389A1 (en) 2015-09-11 2017-03-16 Cardiac Pacemakers, Inc. Arrhythmia detection and confirmation
EP3359251B1 (en) 2015-10-08 2019-08-07 Cardiac Pacemakers, Inc. Adjusting pacing rates in an implantable medical device
US10183170B2 (en) 2015-12-17 2019-01-22 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10905886B2 (en) 2015-12-28 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device for deployment across the atrioventricular septum
WO2017127548A1 (en) 2016-01-19 2017-07-27 Cardiac Pacemakers, Inc. Devices for wirelessly recharging a rechargeable battery of an implantable medical device
EP3411113B1 (en) 2016-02-04 2019-11-27 Cardiac Pacemakers, Inc. Delivery system with force sensor for leadless cardiac device
CN108883286B (en) 2016-03-31 2021-12-07 心脏起搏器股份公司 Implantable medical device with rechargeable battery
US10328272B2 (en) 2016-05-10 2019-06-25 Cardiac Pacemakers, Inc. Retrievability for implantable medical devices
US10668294B2 (en) 2016-05-10 2020-06-02 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker configured for over the wire delivery
US10512784B2 (en) 2016-06-27 2019-12-24 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed P-waves for resynchronization pacing management
US11207527B2 (en) 2016-07-06 2021-12-28 Cardiac Pacemakers, Inc. Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10426962B2 (en) 2016-07-07 2019-10-01 Cardiac Pacemakers, Inc. Leadless pacemaker using pressure measurements for pacing capture verification
WO2018017226A1 (en) 2016-07-20 2018-01-25 Cardiac Pacemakers, Inc. System for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system
EP3500342B1 (en) 2016-08-19 2020-05-13 Cardiac Pacemakers, Inc. Trans-septal implantable medical device
CN109640809B (en) 2016-08-24 2021-08-17 心脏起搏器股份公司 Integrated multi-device cardiac resynchronization therapy using P-wave to pacing timing
WO2018039322A1 (en) 2016-08-24 2018-03-01 Cardiac Pacemakers, Inc. Cardiac resynchronization using fusion promotion for timing management
CN114533007A (en) * 2016-08-31 2022-05-27 尼普洛株式会社 Guidewire and method of manufacturing a guidewire
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
CN109803720B (en) 2016-09-21 2023-08-15 心脏起搏器股份公司 Leadless stimulation device having a housing containing its internal components and functioning as a terminal for a battery case and an internal battery
WO2018057626A1 (en) 2016-09-21 2018-03-29 Cardiac Pacemakers, Inc. Implantable cardiac monitor
US10434314B2 (en) 2016-10-27 2019-10-08 Cardiac Pacemakers, Inc. Use of a separate device in managing the pace pulse energy of a cardiac pacemaker
JP7038115B2 (en) 2016-10-27 2022-03-17 カーディアック ペースメイカーズ, インコーポレイテッド Implantable medical device with pressure sensor
WO2018081225A1 (en) 2016-10-27 2018-05-03 Cardiac Pacemakers, Inc. Implantable medical device delivery system with integrated sensor
US10463305B2 (en) 2016-10-27 2019-11-05 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with timing enhancements
US10561330B2 (en) 2016-10-27 2020-02-18 Cardiac Pacemakers, Inc. Implantable medical device having a sense channel with performance adjustment
US10413733B2 (en) 2016-10-27 2019-09-17 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
US10434317B2 (en) 2016-10-31 2019-10-08 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
US10617874B2 (en) 2016-10-31 2020-04-14 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
WO2018089311A1 (en) 2016-11-08 2018-05-17 Cardiac Pacemakers, Inc Implantable medical device for atrial deployment
EP3538213B1 (en) 2016-11-09 2023-04-12 Cardiac Pacemakers, Inc. Systems and devices for setting cardiac pacing pulse parameters for a cardiac pacing device
US10881869B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Wireless re-charge of an implantable medical device
US11147979B2 (en) 2016-11-21 2021-10-19 Cardiac Pacemakers, Inc. Implantable medical device with a magnetically permeable housing and an inductive coil disposed about the housing
US10894163B2 (en) 2016-11-21 2021-01-19 Cardiac Pacemakers, Inc. LCP based predictive timing for cardiac resynchronization
US10881863B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with multimode communication
US10639486B2 (en) 2016-11-21 2020-05-05 Cardiac Pacemakers, Inc. Implantable medical device with recharge coil
US11207532B2 (en) 2017-01-04 2021-12-28 Cardiac Pacemakers, Inc. Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system
EP3573706A1 (en) 2017-01-26 2019-12-04 Cardiac Pacemakers, Inc. Intra-body device communication with redundant message transmission
US10737102B2 (en) 2017-01-26 2020-08-11 Cardiac Pacemakers, Inc. Leadless implantable device with detachable fixation
WO2018140623A1 (en) 2017-01-26 2018-08-02 Cardiac Pacemakers, Inc. Leadless device with overmolded components
US10821288B2 (en) 2017-04-03 2020-11-03 Cardiac Pacemakers, Inc. Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate
US10905872B2 (en) 2017-04-03 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device with a movable electrode biased toward an extended position
WO2018207170A1 (en) * 2017-05-07 2018-11-15 Newpace Ltd. Subcutaneous implantable defibrillator with epicardial lead for resynchronization therapy
WO2019036600A1 (en) 2017-08-18 2019-02-21 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10918875B2 (en) 2017-08-18 2021-02-16 Cardiac Pacemakers, Inc. Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator
CN111093492B (en) * 2017-09-05 2023-01-03 首尔大学校产学协力团 Bioelectrode and forming method thereof
US11109974B2 (en) 2017-09-13 2021-09-07 Diaxamed, Llc Cardiac treatment system and method
CN111107899B (en) 2017-09-20 2024-04-02 心脏起搏器股份公司 Implantable medical device with multiple modes of operation
US11185703B2 (en) 2017-11-07 2021-11-30 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker for bundle of his pacing
WO2019108830A1 (en) 2017-12-01 2019-06-06 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with reversionary behavior
EP3717059A1 (en) 2017-12-01 2020-10-07 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker
EP3717063B1 (en) 2017-12-01 2023-12-27 Cardiac Pacemakers, Inc. Systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker
US11260216B2 (en) 2017-12-01 2022-03-01 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker
US11529523B2 (en) 2018-01-04 2022-12-20 Cardiac Pacemakers, Inc. Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone
US10874861B2 (en) 2018-01-04 2020-12-29 Cardiac Pacemakers, Inc. Dual chamber pacing without beat-to-beat communication
WO2019183514A1 (en) 2018-03-23 2019-09-26 Medtronic, Inc. Vfa cardiac therapy for tachycardia
CN111902187A (en) 2018-03-23 2020-11-06 美敦力公司 VFA cardiac resynchronization therapy
EP3768369A1 (en) 2018-03-23 2021-01-27 Medtronic, Inc. Av synchronous vfa cardiac therapy
US11439507B2 (en) * 2018-06-01 2022-09-13 Tendyne Holdings, Inc. Tether attachment assembly for epicardial pads and devices and methods of delivery for same
EP3856331A1 (en) 2018-09-26 2021-08-04 Medtronic, Inc. Capture in ventricle-from-atrium cardiac therapy
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
JP7075606B2 (en) 2019-02-26 2022-05-26 株式会社iCorNet研究所 Cardiac support net and implantable cardioverter defibrillator
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
WO2021202475A1 (en) * 2020-03-30 2021-10-07 Mayo Foundation For Medical Education And Research Reversible electroporation for cardiac defibrillation
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824028A (en) * 1996-09-20 1998-10-20 The Uab Research Foundation Line electrode oriented relative to fiber direction
US6223079B1 (en) 1997-12-15 2001-04-24 Medtronic, Inc Bi-ventricular pacing method
US20020052538A1 (en) * 2000-03-10 2002-05-02 Lilip Lau Expandable cardiac harness for treating congestive heart failure
US20020082647A1 (en) * 2000-12-22 2002-06-27 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6574506B2 (en) 2000-12-26 2003-06-03 Cardiac Pacemakers, Inc. System and method for timing synchronized pacing
US20030199955A1 (en) * 2002-04-22 2003-10-23 Chester Struble Cardiac restraint with electrode attachment sites

Family Cites Families (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1682119A (en) 1928-08-28 Cleaning device
US96924A (en) * 1869-11-16 Improved door-check
US645497A (en) * 1898-08-05 1900-03-13 Us Standard Motor Vehicle Company Motor-vehicle.
US2278926A (en) * 1941-02-15 1942-04-07 Metal Textile Corp Knitted metallic fabric for belting and other uses
US2826193A (en) * 1956-08-01 1958-03-11 Vineberg Heart Foundation Cardiac resuscitation device
FR92798E (en) * 1966-09-05 1968-12-27 Rhone Poulenc Sa New cardiac assistance prosthesis and its manufacture.
FR1512372A (en) 1966-12-19 1968-02-09 Deformable membrane by internal action
US3587567A (en) * 1968-12-20 1971-06-28 Peter Paul Schiff Mechanical ventricular assistance assembly
US3613672A (en) 1969-07-09 1971-10-19 Peter Schiff Mechanical ventricular assistance cup
US3988782A (en) 1973-07-06 1976-11-02 Dardik Irving I Non-antigenic, non-thrombogenic infection-resistant grafts from umbilical cord vessels and process for preparing and using same
US3966401A (en) * 1974-07-01 1976-06-29 Hancock Laboratories Incorporated Preparing natural tissue for implantation so as to provide improved flexibility
US4065816A (en) * 1975-05-22 1978-01-03 Philip Nicholas Sawyer Surgical method of using a sterile packaged prosthesis
US4011947A (en) * 1975-05-22 1977-03-15 Philip Nicholas Sawyer Packaged prosthetic device
US3983863A (en) 1975-06-02 1976-10-05 American Hospital Supply Corporation Heart support for coronary artery surgery
US4061134A (en) 1975-10-28 1977-12-06 Samuels Peter B Arterial graft device
US4048990A (en) 1976-09-17 1977-09-20 Goetz Robert H Heart massage apparatus
US4192293A (en) * 1978-09-05 1980-03-11 Manfred Asrican Cardiac assist device
JPS6037734B2 (en) 1978-10-12 1985-08-28 住友電気工業株式会社 Tubular organ prosthesis material and its manufacturing method
ES474582A1 (en) * 1978-10-26 1979-11-01 Aranguren Duo Iker Process for installing mitral valves in their anatomical space by attaching cords to an artificial stent
US4211325A (en) 1979-06-07 1980-07-08 Hancock Laboratories, Inc. Heart valve holder
US4372293A (en) * 1980-12-24 1983-02-08 Vijil Rosales Cesar A Apparatus and method for surgical correction of ptotic breasts
US4650770A (en) * 1981-04-27 1987-03-17 Syntex (U.S.A.) Inc. Energy absorbing particle quenching in light emitting competitive protein binding assays
US4428375A (en) * 1982-02-16 1984-01-31 Ellman Barry R Surgical bag for splenorrhaphy
IT1155105B (en) 1982-03-03 1987-01-21 Roberto Parravicini PLANT DEVICE TO SUPPORT THE MYOCARDIUM ACTIVITY
US4403604A (en) 1982-05-13 1983-09-13 Wilkinson Lawrence H Gastric pouch
US4545783A (en) 1983-07-11 1985-10-08 Warner-Lambert Company Rigid medical solution container
US5067957A (en) 1983-10-14 1991-11-26 Raychem Corporation Method of inserting medical devices incorporating SIM alloy elements
US5190546A (en) * 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
US4665906A (en) * 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US4512471A (en) * 1984-04-06 1985-04-23 Angicor Limited Storage unit
US4630597A (en) 1984-04-30 1986-12-23 Adrian Kantrowitz Dynamic aortic patch for thoracic or abdominal implantation
US4628937A (en) 1984-08-02 1986-12-16 Cordis Corporation Mapping electrode assembly
EP0183995B1 (en) * 1984-11-02 1989-08-16 Hitachi, Ltd. Semiconductor device having a polycrystalline silicon interconnection layer and method for its manufacture
DE3441080A1 (en) * 1984-11-09 1986-05-15 Wacker-Chemie GmbH, 8000 München METHOD FOR PROCESSING THE PYROLYSIS PRODUCT FROM THE 1.2 DICHLORETHANE CLEAVAGE WITH HEAT RECOVERY
US4690134A (en) 1985-07-01 1987-09-01 Snyders Robert V Ventricular assist device
SE454942B (en) 1986-05-22 1988-06-13 Astra Tech Ab HEART HELP DEVICE FOR INOPERATION IN BROSTHALAN
US4697703A (en) 1986-07-02 1987-10-06 Malcolm Will Joint prosthesis package
US4840626A (en) 1986-09-29 1989-06-20 Johnson & Johnson Patient Care, Inc. Heparin-containing adhesion prevention barrier and process
FR2605214B1 (en) 1986-10-15 1992-01-10 Ethnor PERIHEPATIC PROSTHESIS
SU1604377A1 (en) 1987-02-23 1990-11-07 Благовещенский государственный медицинский институт Artificial pericardium
US4827932A (en) * 1987-02-27 1989-05-09 Intermedics Inc. Implantable defibrillation electrodes
US4821723A (en) * 1987-02-27 1989-04-18 Intermedics Inc. Biphasic waveforms for defibrillation
US5098369A (en) * 1987-02-27 1992-03-24 Vascor, Inc. Biocompatible ventricular assist and arrhythmia control device including cardiac compression pad and compression assembly
US4750619A (en) * 1987-08-10 1988-06-14 Osteonics Corp. Package with tray for securing and presenting a sterile prosthetic implant element
US4834707A (en) * 1987-09-16 1989-05-30 Evans Phillip H Venting apparatus and method for cardiovascular pumping application
US5031762A (en) 1987-10-07 1991-07-16 Heacox Albert E Three envelope package for sterile specimens
US4838288A (en) 1988-03-14 1989-06-13 Pioneering Technologies, Inc. Heart valve and xenograft washing system
US4960424A (en) 1988-06-30 1990-10-02 Grooters Ronald K Method of replacing a defective atrio-ventricular valve with a total atrio-ventricular valve bioprosthesis
US4863016A (en) 1988-07-25 1989-09-05 Abbott Laboratories Packaging for a sterilizable calibratable medical device
US4976730A (en) 1988-10-11 1990-12-11 Kwan Gett Clifford S Artificial pericardium
US5186711A (en) * 1989-03-07 1993-02-16 Albert Einstein College Of Medicine Of Yeshiva University Hemostasis apparatus and method
US5057117A (en) 1989-04-27 1991-10-15 The Research Foundation Of State University Of New York Method and apparatus for hemostasis and compartmentalization of a bleeding internal bodily organ
US5904690A (en) * 1989-08-16 1999-05-18 Medtronic, Inc. Device or apparatus for manipulating matter
US4997431A (en) * 1989-08-30 1991-03-05 Angeion Corporation Catheter
US4973300A (en) 1989-09-22 1990-11-27 Pioneering Technologies, Inc. Cardiac sling for circumflex coronary artery surgery
FR2656314B1 (en) * 1989-12-22 1992-04-17 Bp Chemicals Snc ZIRCONIUM CATALYST SUPPORTED ON MAGNESIUM CHLORIDE, PROCESS FOR THE PREPARATION AND USE OF THE CATALYST IN OLEFIN POLYMERIZATION.
US5087243A (en) * 1990-06-18 1992-02-11 Boaz Avitall Myocardial iontophoresis
US5131905A (en) 1990-07-16 1992-07-21 Grooters Ronald K External cardiac assist device
US5141515A (en) 1990-10-11 1992-08-25 Eberbach Mark A Apparatus and methods for repairing hernias
WO1992008500A1 (en) 1990-11-09 1992-05-29 Mcgill University Cardiac assist method and apparatus
US5119804A (en) 1990-11-19 1992-06-09 Anstadt George L Heart massage apparatus
US5176711A (en) * 1991-03-06 1993-01-05 Grimes James B Acetabular revision system
US5169381A (en) 1991-03-29 1992-12-08 Snyders Robert V Ventricular assist device
US5197978B1 (en) * 1991-04-26 1996-05-28 Advanced Coronary Tech Removable heat-recoverable tissue supporting device
AU662342B2 (en) * 1991-05-16 1995-08-31 3F Therapeutics, Inc. Cardiac valve
US5584803A (en) 1991-07-16 1996-12-17 Heartport, Inc. System for cardiac procedures
US5571215A (en) 1993-02-22 1996-11-05 Heartport, Inc. Devices and methods for intracardiac procedures
US5150706A (en) 1991-08-15 1992-09-29 Cox James L Cooling net for cardiac or transplant surgery
US5290217A (en) * 1991-10-10 1994-03-01 Earl K. Sipes Method and apparatus for hernia repair
US5524633A (en) 1991-11-25 1996-06-11 Advanced Surgical, Inc. Self-deploying isolation bag
US5192314A (en) * 1991-12-12 1993-03-09 Daskalakis Michael K Synthetic intraventricular implants and method of inserting
US5333624A (en) 1992-02-24 1994-08-02 United States Surgical Corporation Surgical attaching apparatus
CA2089999A1 (en) * 1992-02-24 1993-08-25 H. Jonathan Tovey Resilient arm mesh deployer
WO1993017635A1 (en) * 1992-03-04 1993-09-16 C.R. Bard, Inc. Composite prosthesis and method for limiting the incidence of postoperative adhesions
US5352184A (en) 1992-03-12 1994-10-04 Uresil Corporation Reservoir for enclosing and retrieving body specimens
US5456711A (en) 1992-05-15 1995-10-10 Intervascular Inc. Warp knitted carotid patch having finished selvedged edges
US5766246A (en) 1992-05-20 1998-06-16 C. R. Bard, Inc. Implantable prosthesis and method and apparatus for loading and delivering an implantable prothesis
CA2098896C (en) 1992-06-30 2005-03-29 H. Jonathan Tovey Specimen retrieval pouch and method for use
US5383840A (en) 1992-07-28 1995-01-24 Vascor, Inc. Biocompatible ventricular assist and arrhythmia control device including cardiac compression band-stay-pad assembly
US5279539A (en) * 1992-08-17 1994-01-18 Ethicon, Inc. Drawstring surgical pouch and method of use for preventing ovarian adhesions
US5256132A (en) 1992-08-17 1993-10-26 Snyders Robert V Cardiac assist envelope for endoscopic application
US5336254A (en) 1992-09-23 1994-08-09 Medtronic, Inc. Defibrillation lead employing electrodes fabricated from woven carbon fibers
US5814097A (en) 1992-12-03 1998-09-29 Heartport, Inc. Devices and methods for intracardiac procedures
EP0600140A1 (en) * 1992-12-04 1994-06-08 SULZER Medizinaltechnik AG Container for the packaging of a hollow endoprosthesis
US5356432B1 (en) 1993-02-05 1997-02-04 Bard Inc C R Implantable mesh prosthesis and method for repairing muscle or tissue wall defects
US5797960A (en) * 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US5385528A (en) * 1993-06-17 1995-01-31 Wilk; Peter J. Intrapericardial assist device and associated method
US5533958A (en) 1993-06-17 1996-07-09 Wilk; Peter J. Intrapericardial assist device and associated method
US5800334A (en) 1993-06-17 1998-09-01 Wilk; Peter J. Intrapericardial assist device and associated method
AU686206B2 (en) * 1993-07-12 1998-02-05 Regents Of The University Of California, The Soft tissue augmentation apparatus
US5385156A (en) * 1993-08-27 1995-01-31 Rose Health Care Systems Diagnostic and treatment method for cardiac rupture and apparatus for performing the same
US5460962A (en) 1994-01-04 1995-10-24 Organogenesis Inc. Peracetic acid sterilization of collagen or collagenous tissue
WO1995018593A1 (en) * 1994-01-10 1995-07-13 Cardassist Incorporated Ventricular assist device
US6165210A (en) * 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US5507779A (en) * 1994-04-12 1996-04-16 Ventritex, Inc. Cardiac insulation for defibrillation
US5509428A (en) * 1994-05-31 1996-04-23 Dunlop; Richard W. Method and apparatus for the creation of tricuspid regurgitation
US5582616A (en) 1994-08-05 1996-12-10 Origin Medsystems, Inc. Surgical helical fastener with applicator
US5593424A (en) * 1994-08-10 1997-01-14 Segmed, Inc. Apparatus and method for reducing and stabilizing the circumference of a vascular structure
US5433727A (en) 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
US5749839A (en) * 1994-08-18 1998-05-12 Duke University Direct mechanical bi-ventricular cardiac assist device
US6331188B1 (en) * 1994-08-31 2001-12-18 Gore Enterprise Holdings, Inc. Exterior supported self-expanding stent-graft
US5545210A (en) 1994-09-22 1996-08-13 Advanced Coronary Technology, Inc. Method of implanting a permanent shape memory alloy stent
US5534024A (en) 1994-11-04 1996-07-09 Aeroquip Corporation Intraluminal stenting graft
US5603337A (en) * 1994-12-05 1997-02-18 Jarvik; Robert Two-stage cardiomyoplasty
US5900245A (en) * 1996-03-22 1999-05-04 Focal, Inc. Compliant tissue sealants
US6132438A (en) * 1995-06-07 2000-10-17 Ep Technologies, Inc. Devices for installing stasis reducing means in body tissue
US5647380A (en) 1995-06-07 1997-07-15 W. L. Gore & Associates, Inc. Method of making a left ventricular assist device
US5800528A (en) * 1995-06-13 1998-09-01 Abiomed R & D, Inc. Passive girdle for heart ventricle for therapeutic aid to patients having ventricular dilatation
US5713954A (en) * 1995-06-13 1998-02-03 Abiomed R&D, Inc. Extra cardiac ventricular assist device
US5836311A (en) 1995-09-20 1998-11-17 Medtronic, Inc. Method and apparatus for temporarily immobilizing a local area of tissue
DE19538796C2 (en) * 1995-10-18 1999-09-23 Fraunhofer Ges Forschung Device for supporting the heart function with elastic filling chambers
US6833408B2 (en) * 1995-12-18 2004-12-21 Cohesion Technologies, Inc. Methods for tissue repair using adhesive materials
US6592619B2 (en) * 1996-01-02 2003-07-15 University Of Cincinnati Heart wall actuation device for the natural heart
US5957977A (en) * 1996-01-02 1999-09-28 University Of Cincinnati Activation device for the natural heart including internal and external support structures
US5795729A (en) * 1996-02-05 1998-08-18 Biometric Imaging, Inc. Reductive, energy-transfer fluorogenic probes
US5782746A (en) 1996-02-15 1998-07-21 Wright; John T. M. Local cardiac immobilization surgical device
US5727569A (en) * 1996-02-20 1998-03-17 Cardiothoracic Systems, Inc. Surgical devices for imposing a negative pressure to fix the position of cardiac tissue during surgery
US5605337A (en) * 1996-03-13 1997-02-25 General Motors Corporation Pivoting seal for oil-filled rotating machine
DK0914102T3 (en) * 1996-05-24 2006-01-09 Angiotech Pharm Inc Preparations and methods for treating or preventing diseases of the body canals
US5855601A (en) * 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US6059750A (en) * 1996-08-01 2000-05-09 Thomas J. Fogarty Minimally invasive direct cardiac massage device and method
US6416960B1 (en) * 1996-08-08 2002-07-09 Prolume, Ltd. Detection and visualization of neoplastic tissues and other tissues
US6123662A (en) * 1998-07-13 2000-09-26 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US5702343A (en) * 1996-10-02 1997-12-30 Acorn Medical, Inc. Cardiac reinforcement device
US6071303A (en) * 1996-12-08 2000-06-06 Hearten Medical, Inc. Device for the treatment of infarcted tissue and method of treating infarcted tissue
US6045497A (en) * 1997-01-02 2000-04-04 Myocor, Inc. Heart wall tension reduction apparatus and method
US6406420B1 (en) * 1997-01-02 2002-06-18 Myocor, Inc. Methods and devices for improving cardiac function in hearts
US6077214A (en) * 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US6183411B1 (en) * 1998-09-21 2001-02-06 Myocor, Inc. External stress reduction device and method
US6050936A (en) * 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
US6148233A (en) * 1997-03-07 2000-11-14 Cardiac Science, Inc. Defibrillation system having segmented electrodes
US6390976B1 (en) * 1997-09-17 2002-05-21 Origin Medsystems, Inc. System to permit offpump beating heart coronary bypass surgery
US6190408B1 (en) * 1998-03-05 2001-02-20 The University Of Cincinnati Device and method for restructuring the heart chamber geometry
US6214047B1 (en) * 1998-03-10 2001-04-10 University Of Cincinnati Article and method for coupling muscle to a prosthetic device
US6024096A (en) * 1998-05-01 2000-02-15 Correstore Inc Anterior segment ventricular restoration apparatus and method
US6085754A (en) * 1998-07-13 2000-07-11 Acorn Cardiovascular, Inc. Cardiac disease treatment method
US6547821B1 (en) * 1998-07-16 2003-04-15 Cardiothoracic Systems, Inc. Surgical procedures and devices for increasing cardiac output of the heart
US6818018B1 (en) * 1998-08-14 2004-11-16 Incept Llc In situ polymerizable hydrogels
US6360749B1 (en) * 1998-10-09 2002-03-26 Swaminathan Jayaraman Modification of properties and geometry of heart tissue to influence heart function
US6685627B2 (en) * 1998-10-09 2004-02-03 Swaminathan Jayaraman Modification of properties and geometry of heart tissue to influence heart function
US6587734B2 (en) * 1998-11-04 2003-07-01 Acorn Cardiovascular, Inc. Cardio therapeutic heart sack
US6169922B1 (en) * 1998-11-18 2001-01-02 Acorn Cardiovascular, Inc. Defibrillating cardiac jacket with interwoven electrode grids
US6230714B1 (en) * 1998-11-18 2001-05-15 Acorn Cardiovascular, Inc. Cardiac constraint with prior venus occlusion methods
US6076013A (en) * 1999-01-14 2000-06-13 Brennan; Edward F. Apparatus and methods for treating congestive heart failure
US6701929B2 (en) * 1999-03-03 2004-03-09 Hany Hussein Device and method for treatment of congestive heart failure
US6312725B1 (en) * 1999-04-16 2001-11-06 Cohesion Technologies, Inc. Rapid gelling biocompatible polymer composition
US6192280B1 (en) * 1999-06-02 2001-02-20 Medtronic, Inc. Guidewire placed implantable lead with tip seal
US6633780B1 (en) * 1999-06-07 2003-10-14 The Johns Hopkins University Cardiac shock electrode system and corresponding implantable defibrillator system
US6569082B1 (en) * 1999-08-10 2003-05-27 Origin Medsystems, Inc. Apparatus and methods for cardiac restraint
US20040102804A1 (en) * 1999-08-10 2004-05-27 Chin Albert K. Apparatus and methods for endoscopic surgical procedures
US6193648B1 (en) * 1999-09-21 2001-02-27 Acorn Cardiovascular, Inc. Cardiac constraint with draw string tensioning
US6179791B1 (en) * 1999-09-21 2001-01-30 Acorn Cardiovascular, Inc. Device for heart measurement
US6174279B1 (en) * 1999-09-21 2001-01-16 Acorn Cardiovascular, Inc. Cardiac constraint with tension indicator
US6702732B1 (en) * 1999-12-22 2004-03-09 Paracor Surgical, Inc. Expandable cardiac harness for treating congestive heart failure
US6293906B1 (en) * 2000-01-14 2001-09-25 Acorn Cardiovascular, Inc. Delivery of cardiac constraint jacket
US6425856B1 (en) * 2000-05-10 2002-07-30 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6564718B2 (en) * 2000-05-20 2003-05-20 Baker Hughes, Incorporated Lead free liner composition for shaped charges
US6730016B1 (en) * 2000-06-12 2004-05-04 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6902522B1 (en) * 2000-06-12 2005-06-07 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6482146B1 (en) * 2000-06-13 2002-11-19 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6951534B2 (en) * 2000-06-13 2005-10-04 Acorn Cardiovascular, Inc. Cardiac support device
US6572533B1 (en) * 2000-08-17 2003-06-03 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6887192B1 (en) * 2000-09-08 2005-05-03 Converge Medical, Inc. Heart support to prevent ventricular remodeling
US6846296B1 (en) * 2000-09-14 2005-01-25 Abiomed, Inc. Apparatus and method for detachably securing a device to a natural heart
US6673009B1 (en) * 2000-11-08 2004-01-06 Acorn Cardiovascular, Inc. Adjustment clamp
US6547716B1 (en) * 2000-11-28 2003-04-15 Abiomed, Inc. Passive cardiac restraint systems having multiple layers of inflatable elements
US6620095B2 (en) * 2000-12-22 2003-09-16 Syde A. Taheri Cradle-assisted myocardial repair and treatment
US6575921B2 (en) * 2001-02-09 2003-06-10 Acorn Cardiovascular, Inc. Device for heart measurement
US6738674B2 (en) * 2001-07-25 2004-05-18 Oscor Inc. Implantable coronary sinus lead with mapping capabilities
US6884812B2 (en) * 2001-08-31 2005-04-26 Aventis Pharma Deutschland Gmbh Diarylcycloalkyl derivatives, processes for their preparation and their use as pharmaceuticals
EP1424958A2 (en) * 2001-09-10 2004-06-09 Paracor Medical, Inc. Cardiac harness
US7060023B2 (en) * 2001-09-25 2006-06-13 The Foundry Inc. Pericardium reinforcing devices and methods of using them
US6695769B2 (en) * 2001-09-25 2004-02-24 The Foundry, Inc. Passive ventricular support devices and methods of using them
US6685620B2 (en) * 2001-09-25 2004-02-03 The Foundry Inc. Ventricular infarct assist device and methods for using it
US6867005B2 (en) * 2001-10-24 2005-03-15 Beckman Coulter, Inc. Method and apparatus for increasing the dynamic range and accuracy of binding assays
JP2003147681A (en) * 2001-11-09 2003-05-21 Daikin Ind Ltd Water repellent composition for foam-processing
US7022063B2 (en) * 2002-01-07 2006-04-04 Paracor Medical, Inc. Cardiac harness
US6682475B2 (en) * 2002-06-11 2004-01-27 Acorn Cardiovascular, Inc. Tension indicator for cardiac support device and method therefore
US7485089B2 (en) * 2002-09-05 2009-02-03 Paracor Medical, Inc. Cardiac harness
US7189203B2 (en) * 2002-11-15 2007-03-13 Paracor Medical, Inc. Cardiac harness delivery device and method
US20050059855A1 (en) * 2002-11-15 2005-03-17 Lilip Lau Cardiac harness delivery device and method
US20050283042A1 (en) * 2003-03-28 2005-12-22 Steve Meyer Cardiac harness having radiopaque coating and method of use
US7235042B2 (en) * 2003-09-16 2007-06-26 Acorn Cardiovascular, Inc. Apparatus and method for applying cardiac support device
US7155295B2 (en) * 2003-11-07 2006-12-26 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US20050137673A1 (en) * 2003-11-07 2005-06-23 Lilip Lau Cardiac harness having electrodes and epicardial leads

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824028A (en) * 1996-09-20 1998-10-20 The Uab Research Foundation Line electrode oriented relative to fiber direction
US6223079B1 (en) 1997-12-15 2001-04-24 Medtronic, Inc Bi-ventricular pacing method
US20020052538A1 (en) * 2000-03-10 2002-05-02 Lilip Lau Expandable cardiac harness for treating congestive heart failure
US6612979B2 (en) 2000-03-10 2003-09-02 Paracor Surgical, Inc. Expandable cardiac harness for treating congestive heart failure
US20020082647A1 (en) * 2000-12-22 2002-06-27 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6574506B2 (en) 2000-12-26 2003-06-03 Cardiac Pacemakers, Inc. System and method for timing synchronized pacing
US20030199955A1 (en) * 2002-04-22 2003-10-23 Chester Struble Cardiac restraint with electrode attachment sites

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107590A3 (en) * 2005-04-01 2007-01-04 Paracor Medical Inc Cardiac harness and method of delivery by minimally invasive access
US7856260B1 (en) 2006-09-06 2010-12-21 Pacesetter, Inc. Implantable cardiac patch for measuring physiologic information
US7949411B1 (en) 2007-01-23 2011-05-24 Pacesetter, Inc. Epicardial lead
US7920928B1 (en) 2007-01-31 2011-04-05 Pacesetter, Inc. Passive fixation for epicardial lead
US9002478B1 (en) 2007-01-31 2015-04-07 Pacesetter, Inc. Passive fixation for epicardial lead
US9855419B2 (en) 2009-05-29 2018-01-02 Medtronic, Inc. Leads for selective sensing and virtual electrodes
US10765858B2 (en) 2014-11-05 2020-09-08 Medtronic, Inc. Extravascular lead designs for optimized pacing and sensing having segmented, partially electrically insulated defibrillation coils
CN107106836A (en) * 2014-11-05 2017-08-29 美敦力公司 The blood vessel outer lead design of the pace-making for being used to optimize and sensing of with segmentation, part electric insulation defibrillation coil
WO2016073338A1 (en) * 2014-11-05 2016-05-12 Medtronic, Inc. Extravascular lead designs for optimized pacing and sensing having segmented, partially electrically insulated defibrillation coils
CN107106836B (en) * 2014-11-05 2021-06-11 美敦力公司 Extravascular lead design for optimized pacing and sensing with segmented, partially electrically isolated defibrillation coil
US10980481B2 (en) 2018-07-31 2021-04-20 Calyan Technologies, Inc. Subcutaneous device for monitoring and/or providing therapies
US11179571B2 (en) 2018-07-31 2021-11-23 Manicka Institute Llc Subcutaneous device for monitoring and/or providing therapies
US11478650B2 (en) 2018-07-31 2022-10-25 Calyan Technologies, Inc. Subcutaneous device
US11660444B2 (en) 2018-07-31 2023-05-30 Manicka Institute Llc Resilient body component contact for a subcutaneous device
US11717674B2 (en) 2018-07-31 2023-08-08 Manicka Institute Llc Subcutaneous device for use with remote device
US11896834B2 (en) 2018-07-31 2024-02-13 Calyan Technologies, Inc. Method of injecting subcutaneous device
US10987060B1 (en) 2020-09-14 2021-04-27 Calyan Technologies, Inc. Clip design for a subcutaneous device
US11433233B2 (en) 2020-11-25 2022-09-06 Calyan Technologies, Inc. Electrode contact for a subcutaneous device

Also Published As

Publication number Publication date
US20070112390A1 (en) 2007-05-17
US7225036B2 (en) 2007-05-29
US7155295B2 (en) 2006-12-26
US20050102011A1 (en) 2005-05-12
US7187984B2 (en) 2007-03-06
US20050102015A1 (en) 2005-05-12
US7164952B2 (en) 2007-01-16
US20050102014A1 (en) 2005-05-12
US20050102012A1 (en) 2005-05-12
US20050119717A1 (en) 2005-06-02
US20050102010A1 (en) 2005-05-12
JP2007511277A (en) 2007-05-10
US7149588B2 (en) 2006-12-12
EP1687059A1 (en) 2006-08-09
US7146226B2 (en) 2006-12-05
CA2543365A1 (en) 2005-05-26

Similar Documents

Publication Publication Date Title
US7225036B2 (en) Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US7158839B2 (en) Cardiac harness for treating heart disease
US20050171589A1 (en) Cardiac harness and method of delivery by minimally invasive access
US20070055091A1 (en) Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US20050137673A1 (en) Cardiac harness having electrodes and epicardial leads
US20060009831A1 (en) Cardiac harness having leadless electrodes for pacing and sensing therapy
US20050288715A1 (en) Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US20070106359A1 (en) Cardiac harness assembly for treating congestive heart failure and for pacing/sensing
US20070197859A1 (en) Cardiac harness having diagnostic sensors and method of use
US20050283042A1 (en) Cardiac harness having radiopaque coating and method of use
US20100152531A1 (en) Implantable medical device for drug delivery and method of use
US20070106336A1 (en) Cardiac harness assembly for treating congestive heart failure and for pacing/sensing
EP2307089A2 (en) Cardiac harness for defibrillation and/or pacing/sensing

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2543365

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006539562

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004796677

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004796677

Country of ref document: EP