WO2005047910A1 - Verfahren und vorrichtung zur messung von funkstörpegeln mit frequenznachführung - Google Patents

Verfahren und vorrichtung zur messung von funkstörpegeln mit frequenznachführung Download PDF

Info

Publication number
WO2005047910A1
WO2005047910A1 PCT/EP2004/011352 EP2004011352W WO2005047910A1 WO 2005047910 A1 WO2005047910 A1 WO 2005047910A1 EP 2004011352 W EP2004011352 W EP 2004011352W WO 2005047910 A1 WO2005047910 A1 WO 2005047910A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
radio interference
measuring
frequency
level
Prior art date
Application number
PCT/EP2004/011352
Other languages
English (en)
French (fr)
Inventor
Matthias Keller
Original Assignee
Rohde & Schwarz Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohde & Schwarz Gmbh & Co. Kg filed Critical Rohde & Schwarz Gmbh & Co. Kg
Priority to JP2006535991A priority Critical patent/JP5189767B2/ja
Priority to US10/595,569 priority patent/US7801489B2/en
Priority to EP04790261A priority patent/EP1678512B1/de
Priority to DE502004002649T priority patent/DE502004002649D1/de
Publication of WO2005047910A1 publication Critical patent/WO2005047910A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0871Complete apparatus or systems; circuits, e.g. receivers or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values

Definitions

  • the invention relates to a method and a device for measuring radio interference levels.
  • EMC electromagnetic compatibility
  • the respective strengths of the two devices can be bundled in one system.
  • a system is shown in DE 38 17 500 Cl, in which the desired frequency range is tuned using a spectrum analyzer function and the measured voltage level is compared with a limit value at each measurement frequency and is If the limit value is exceeded by the measured voltage level, the voltage level associated with the measuring frequency is identified as radio interference voltage.
  • the spectrum analyzer function is switched to the test receiver function.
  • the radio interference voltage at the respective measurement frequency is sampled several times with regard to its voltage level and, with a selected statistical evaluation function, is characterized more precisely with regard to its time behavior.
  • a disadvantage of this system-technical combination of spectrum analyzer and measuring receiver is the difficulty in the dynamic measurement of radio interference voltages, the frequencies of which change over time, particularly in the case of continuous EMC measurement.
  • Such drifting radio interference voltages can thus u. U. migrate relatively quickly from the measuring frequency range of the measuring receiver and are therefore lost to the measuring receiver with regard to a more precise analysis of their time behavior.
  • the invention is therefore based on the object of further developing a method and a device for measuring radio interference levels in such a way that radio interference levels identified in the preliminary measurement and whose frequency changes are correctly recorded and evaluated in the subsequent measurement following the preliminary measurement.
  • the object of the invention is achieved by a method and a device for measuring radio interference levels with the features of claims 1 and 5, respectively.
  • Measurement frequency range of the trade fair receiver comes to lie in terms of a correct time analysis.
  • the method according to the invention and the device according to the invention for measuring radio interference voltages can also correctly identify changes in the voltage level of the radio interference voltage over time and correctly take them into account when tracking the frequency of the measuring receiver. In this way, correct detection and evaluation of frequency and amplitude-variable radio interference voltages is possible by the method according to the invention or by the device according to the invention for measuring radio interference voltages.
  • a plurality of selectable evaluation functions are preferably integrated in the measuring receiver, with which a more precise analysis of the time behavior of the radio interference voltage is possible in the final measurement over an evaluation time which is significantly longer than the measuring time of the spectrum analyzer.
  • the method according to the invention and the device according to the invention for measuring radio interference voltages is not only designed for a single radio interference voltage, but also enables the simultaneous identification of several radio interference voltages using the spectrum analyzer as part of a preliminary measurement and the subsequent evaluation of all identified radio interference voltages using the measurement receiver ngers in the final measurement.
  • a preferred embodiment of the invention is shown in the drawing and is described in more detail below. Show it:
  • FIG. 1 shows a circuit diagram of an exemplary embodiment of a device according to the invention for measuring radio interference voltages
  • Fig. 2 is a flowchart of the method according to the invention for measuring radio interference voltages
  • FIG. 3 shows a graphical illustration of an exemplary result of the method according to the invention or of a device according to the invention for measuring radio interference voltages.
  • radio interference voltage and measurement voltage in the sense of radio interference level and measurement level were used universally. What is meant is not only the voltage in the narrower sense as a measurand, but also other measurands such as field strength, currents, etc., which characterize the measurement signal.
  • the term voltage, measuring voltage, radio interference voltage etc. can therefore be replaced as desired by level, measuring level or radio interference level.
  • any desired useful and / or interference signal is received via an antenna 1 of the device according to the invention for measuring radio interference voltages, which is positioned at a specific, selectable measurement location.
  • the device according to the invention for measuring radio interference voltages is positioned at a measuring location which no useful signals occur, only one noise signal is received by the antenna 1 in the undisturbed operating case. If a radio interference occurs, this is received by a high-frequency part 2 via the antenna 1
  • a conversion to the intermediate frequency takes place in the subsequent first mixer 3.
  • a first local oscillator 4 that can be detuned in frequency is tuned over the entire measuring frequency range of the device according to the invention, preferably in a certain adjustable frequency grid. With this first local oscillator 4 tuned to a certain frequency grid within the predetermined measuring frequency range, the frequency spectrum of the received high-frequency radio interference voltage is converted in the first mixer 3 together with the superimposed high-frequency noise voltage m into an intermediate frequency range.
  • the intermediate frequency unit 5 different signal processing functions (e.g. filtering, linearization, etc.) take place with the intermediate frequency signal.
  • the conversion of the intermediate frequency signal m the baseband is carried out in the second mixer 6 which follows.
  • the carrier frequency for converting the baseband is generated by a second local oscillator 7 with a fixed frequency.
  • the baseband signal is cleaned of undesired high-frequency components that lie outside the measuring frequency range or possibly selected sub-measuring frequency ranges.
  • the analog measurement voltage m is transformed into the digital data format.
  • the amount of the digitized time-variable measurement voltage is carried out in the amount generator 10.
  • the digitized time-variable measurement voltage is logarithmized for a semi-logarithmic representation of the measurement result in the logarithmizer 11
  • Access to the signal is illustrated by the symbolic switch 12.
  • the switch 12 receives a control signal from a higher-order controller 17, which determines the time of access.
  • the digitized voltage level of the measuring voltage is detected during access by a detector 13.
  • the digitized voltage level of the measuring voltage detected by the detector 13 is read in by the microcomputer 14.
  • the measuring voltage consisting of the radio interference voltage and the superimposed noise voltage is measured over the entire adjustable measuring frequency range in the adjustable frequency grid.
  • the frequency of the first oscillator 4 is successively tuned over the adjustable measurement frequency range in the adjustable frequency grid with regard to the recording of the frequency spectrum of the measurement voltage by the higher-level frequency and sampling control unit 17 of the microcomputer 14.
  • the access to the digital measuring voltage over the first measuring time which is synchronous with the speed of the frequency tuning, is likewise carried out by the higher-level frequency and sampling control unit 17.
  • the voltage level m measured per measuring frequency is also compared to an adjustable limit value and the Identification of the measured voltage level as radio interference voltage if the limit value is exceeded by the measured voltage level.
  • the voltage levels of the measurement signal, including the identified radio interference voltage levels, recorded at the individual measurement frequencies within the measurement frequency range are temporarily stored in the memory 18.
  • the functional unit measuring receiver 16 By means of a higher-level sequence control integrated in the microcomputer 14, which is not shown in FIG. 1, after the measurement of the frequency spectrum, the measurement voltage is measured in the entire measurement frequency range by the Functional unit spectrum analyzer 15 the operation switched to the functional unit measuring receiver 16.
  • the functional unit measuring receiver 16 In a measuring frequency range of the functional unit measuring receiver 16, which is generally smaller than the adjustable measuring frequency range of the functional unit spectrum analyzer 15, the functional unit measuring receiver 16 carries out a more precise analysis of the time behavior of the individual identified radio interference voltages over several access times within a second measuring time. The measurement and evaluation results of the functional unit measuring receiver 16 are also temporarily stored in the memory 18.
  • the method according to the invention for measuring radio interference voltages initializes the measurement frequency of the device according to the invention in the first method step S10 when the preliminary measurement is carried out by the spectrum analyzer 15 functional unit Fig. 1 z. B. with the user selected lower limit frequency of the measuring frequency range to be measured.
  • the measuring voltage at this measuring frequency is identified as radio interference voltage and the set measuring frequency is defined as the center frequency for a later re-measurement. If the limit value is exceeded by the measuring voltage over a certain frequency range in the case of a broadband radio interference voltage, the spectrum analyzer 15 determines the respective average frequency and defines it as the center frequency.
  • All of the voltages measured in method step S20 for the individual measuring frequencies are stored with their associated voltage levels and frequencies and, in the event of a limit value being exceeded, with their center frequency and with the identification as radio interference voltage in method step S30.
  • the measuring frequency is increased by a frequency grid increment and a new level measurement is carried out with the new measuring frequency in step S20.
  • a continuous (swept) measurement can also be carried out.
  • the preliminary measurement m of the spectrum analyzer 15 functional unit has ended.
  • the method now goes into the operating mode re-measurement, which is carried out by the functional unit measuring receiver 16.
  • a second measuring time which is significantly longer than the first measuring time of the functional unit spectrum analyzer 15, extends over a certain adjustable number of access times Measurement of the voltage level of the measuring voltage.
  • the measuring frequency range of the functional unit measuring receiver 16 is selected so that the center frequency determined by the functional unit spectrum analyzer 15 for each identified radio interference voltage is used as the center frequency of the respective measuring frequency range for the final measurement.
  • the center frequency of the post-measurement is tracked to the center frequency of the marked radio interference voltage identified in the pre-measurement, which enables dynamic measurement of a frequency-variable radio interference voltage.
  • a more precise analysis of the tent behavior of the radio interference voltage is carried out with a calculation function that can be selected by the user on the basis of the voltage level of the measuring voltage measured at the individual access times.
  • This analysis extends to the measuring frequency range of the functional unit measuring receiver 16 with the center frequency of the respective radio interference voltage determined by the functional unit spectrum analyzers 15 as the center frequency of the measuring frequency range.
  • the following functions can be selected by the user as evaluation functions:
  • step S80 the voltage level function values determined by the respectively selected evaluation functions are stored as results of a more precise time analysis of the radio interference voltage for all measuring frequencies within the measuring frequency range of the functional unit measuring receiver 16 belonging to the respective radio interference voltage.
  • the center frequency of the measuring frequency range of the functional unit measuring receiver 16 is set to the central frequency of the radio interference voltage to be measured, which is determined by the functional unit spectrum analyzer 15, and the voltage level of the radio interference voltage to be measured is repeatedly sampled in the set measuring frequency range of the functional unit measuring receiver 16.
  • the method according to the invention for measuring radio interference voltages by the higher-level sequence control is again based on the pre-measurement by the spectrum analyzer function unit 15 switched if the user does not intend to end the EMC measurement.
  • the measuring frequency of the spectrum analyzer becomes corresponding in step S10 the lower limit frequency of the measuring frequency range to be measured.
  • FIG. 3 shows an exemplary measurement result of a measurement of the radio interference voltage, as is presented on a display device 19.
  • the voltage level values and frequency values when using the quasi-peak and average functions are used for an identified radio interference voltage at a determined center frequency of approximately 99.4 MHz in the example Rating shown.
  • the frequency spectrum of the radio interference voltage including the adjacent noise voltage in the measurement frequency range of the functional unit spectrum analyzers 15 is shown with the determined center frequency of the radio interference voltage as the center frequency of the measurement frequency range used.
  • the results of the pre- and post-measurement can be displayed for the other identified radio interference voltages.
  • the spectral course of the evaluation function, in the example quasi-peak and average could also be shown in the lower region 21.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

Ein Verfahren zur Messung von Funkstörpegeln in einem bestimmten Frequenzbereich stimmt in einer Vormessung den Frequenzbereich durch, erfaßt bei jeder Meßfrequenz jeweils einen Meßpegel des zu vermessenden Signals, vergleicht den gemessenen Meßpegel mit einem Grenzwert, kennzeichnet bei Grenzwertüberschreitung des Meßpegel den bei der jeweiligen Meßfrequenz vermessenden Pegel als Funkstörpegel und vermißt in einer Nachmessung jeden gekennzeichneten Funkstörpegel genauer jeweils hinsichtlich seines Zeitverhaltens. Für jeden gekennzeichneten Funkstörpegel wird die Mittenfrequenz des Meßfrequenzbereichs der Nachmessung, die sich zyklisch im Wechsel mit der Nachmessung wiederholt, an die in der vorhergehenden Vormessung neu ermittelte mittlere Frequenz des sich ändernden Funkstörpegels nachgeführt.

Description

Verfahren und Vorrichtung zur Messung von Funkstörpegeln mit Frequenznachführung
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Messung von Funkstörpegeln.
Die Verwendung immer höherer Ubertragungsfrequenzen im Mobilfunk und immer höherer Taktfrequenzen m der Datentechnik stellen zunehmend höhere Anforderungen an die elektromagnetische Verträglichkeit (EMV) vom elektronischen Geräten und Systemen m diesen Anwendungsfeidern. Als wesentliche Voraussetzung für eine optimierte EMV- gerechte Auslegung entsprechender elektronischer Gerate und Systeme ist eine hochwertige EMV-Meßtechnik zur präzisen und zuverlässigen Identifizierung und Charakterisierung von auftretenden elektromagnetischen Störungen zu sehen.
Neben einer hohen Meßgenauigkeit m einer hohen Bandbreite bis m den Hόchstfrequenzbereich sind vor allen fortgeschrittene Meßfunktionen, wie beispielsweise Signal - Statistik, Messung von Leistung und Rauschen im Zeit- und Frequenzbereich, wesentliche Anforderungen an eine hochwertige EMV-Meßtechnik.
Während Spektrum-Analysatoren ihre Stärke m der EMV- Messung hauptsächlich m der schnellen Frequenzmessung bis m den Hochstfrequenzbereich besitzen, liegt der Anwendungsschwerpunkt von Meßempfängern eher m der hoch genauen Berechnung von rechenintensiven Meßfunktionen.
In der systemtechnischen Kombination von Spektrum-Analy- sator und Meßempfänger m einem EMV-Meßplatz können die jeweiligen Stärken der beiden Geräte m einem System gebündelt werden. In der DE 38 17 500 Cl ist ein derartiges System dargestellt, m dem über eine Spektrum- Analysator-Funktion der gewünschte Frequenzbereich durchgestimmt und bei jeder Meßfrequenz der gemessene Spannungspegel mit einem Grenzwert verglichen und bei Über- schreitung des Grenzwertes durch den gemessenen Spannungs- pegel der zur Meßfrequenz gehörige Spannungspegel als Funkstörspannung gekennzeichnet wird. Sobald eine Funkstörspannung auf diese Weise identifiziert wird, erfolgt eine Umschaltung von der Spektrum-Analysator-Funktion zur Meßempf nger-Funktion. In der Meßempf nger-Funktion wird die Funkstörpannung bei der jeweiligen Meßfrequenz mehrfach hinsichtlich ihres Spannungspegels abgetastet und bei ausgewählter statistischer Bewertungsfunktion hin- sichtlich ihres Zeitverhaltens exakter charakterisiert.
Nachteilig an dieser systemtechnischen Kombination von Spektrum-Analysator und Meßempfänger ist insbesondere im Falle einer kontinuierlichen EMV-Messung die Schwierigkeit bei der dynamischen Messung von Funkstörspannungen, deren Frequenzen sich über der Zeit ändern. Derart driftende FunkstörSpannungen, wie sie beispielsweise von primär getakteten Schaltnetzteilen erzeugt werden, können somit u. U. relativ schnell aus dem Meßfrequenzbereich des Meßempfängers wandern und gehen damit dem Meßempfänger hinsichtlich einer genaueren Analyse ihres Zeitverhaltens verloren.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Ver- fahren und eine Vorrichtung zur Messung von Funkstörpegeln derart weiterzuentwickeln, dass in der Vormessung identifizierte und in ihrer Frequenz veränderliche Funkstörpegel in der der Vormessung nachfolgenden Nachmessung richtig erfasst und ausgewertet werden.
Die Aufgabe der Erfindung wird durch ein Verfahren und eine Vorrichtung zur Messung von Funkstörpegeln mit den Merkmalen des Anspruchs 1 bzw. des Anspruchs 5 gelöst. Indem der Spektrum-Analysator im Rahmen der Vormessung sich mit seiner Mittenfrequenz auf die Frequenz der jeweiligen Funkstörspannung abstimmt und diese Frequenzabstimmung des Spektrum-Analysators vom Messempfänger in der Nachmessung übernommen wird, ist gewährleistet, dass der beschränkte Messfrequenzbereich des Messempfängers an die geänderte Frequenz der jeweiligen Funkstörspannung jeweils nachgeführt wird und die jeweils identifizierte Funkstörstörung innerhalb des
Messfrequenzbereiches des Messeempfängers im Hinblick auf eine korrekte Zeitanalyse zu liegen kommt.
Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angeben.
Neben der korrekten Erfassung einer Frequenzdrift der Funkstörspannung kann das erfindungsgemäße Verfahren bzw. die erfindungsgemäße Vorrichtung zur Messung von Funkstörspannungen auch zeitliche Änderungen der Spannungspegels der Funkstörspannung korrekt identifizieren und bei der Frequenznachführung des Meßempfängers korrekt berücksichtigen. Auf diese Weise ist eine korrekten Erfassung und Auswertung von frequenz- und amplitudenveränderlichen Funkstörspannungen durch das erfindungsgemäße Verfahren bzw. durch die erfindungsgemäße Vorrichtung zur Messung von Funkstörspannungen möglich.
In dem Meßempfänger sind vorzugsweise mehrere auswählbare Bewertungsfunktionen integriert, mit denen in der Nachmessung eine exaktere Analyse des Zeitverhaltens der Funkstörspannung über eine gegenüber der Messzeit des Spektrum-Analysators deutlich längeren Auswertezeit möglich ist .
Das erfindungsgemäße Verfahren bzw. die erfindungsgemäße Vorrichtung zur Messung von Funkstörspannungen ist nicht nur für eine einzige Funkstörspannung ausgelegt, sondern ermöglicht die gleichzeitige Identifizierung von mehreren Funkstörspannungen mit Hilfe des Spektrum-Analysators im Rahmen einer Vormessung und die anschließende Auswertung aller identifizierten Funkstörspannungen mit Hilfe des Messempf ngers in der Nachmessung. Eine bevorzugte Ausführungsform der Erfindung ist in der Zeichnung dargestellt und wird nachfolgend näher beschrieben. Es zeigen:
Fig. 1 ein Schaltbild eines Ausführungsbeispiels einer erfindungsgemäßen Vorrichtung zur Messung von FunkstörSpannungen;
Fig. 2 ein Flußdiagramm des erfindungsgemäßen Verfahrens zur Messung von Funkstörspannungen und
Fig. 3 eine grafische Darstellung eines bei- spielhaften Ergebnisses des erfindungsgemäßen Verfahrens bzw. einer erfindungsgemäßen Vorrichtung zur Messung von Funkstörspannungen .
Das erfindungsgemäße Verfahren bzw. die erfindungsgemäße Vorrichtung zur Messung von Funkstörspannungen ist in den Figuren 1 bis 3 dargestellt.
In dieser Anmeldung wurden die Begriffe Funkstörspannung und Meßspannung im Sinne von Funkstörpegel und Meßpegel allgemeingültig verwendet. Gemeint sind nicht nur die Spannung im engeren Sinne als Meßgröße, sondern auch andere Meßgrößen wie Feldstärke, Ströme usw., die das Meßsignal kennzeichnen. Der Begriff Spannung, Meßspannung, Funkstörspannung usw. kann daher beliebig durch Pegel, Meßpegel bzw. Funkstörpegel ersetzt werden.
Wie in Fig. 1 dargestellt, wird über eine Antenne 1 der erfindungsgemäßen Vorrichtung zur Messung von Funkstörspannungen, die an einem bestimmten auswählbaren Meßort positioniert ist, jedes beliebige Nutz- und/oder Störsignal empfangen. Unter der Voraussetzung, dass die erfindungsgemäße Vorrichtung zur Messung von Funkstörspannungen an einem Meßort positioniert ist, an dem keine Nutzsignale auftreten, wird von der Antenne 1 im ungestörten Betriebsfall nur ein Rauschsignal empfangen. Bei Auftreten einer Funkstorung wird diese von einem Hochfrequenzteil 2 über die Antenne 1 empfangen
Im sich anschließenden ersten Mischer 3 erfolgt eine Umsetzung auf die Zwischenfrequenz. Hierzu wird ein m seiner Frequenz verstimmbarer erster lokaler Oszillator 4 über den gesamten Meßfrequenzbereich der erfmdungsgemaßen Vorrichtung vorzugsweise m einem bestimmten einstellbaren Frequenzraster durchgestimmt. Mit diesem m einem bestimmten Frequenzraster innerhalb des vorgegebenen Meßfrequenzbereiches durchgestimmten ersten lokaler Oszillator 4 wird im ersten Mischer 3 das Frequenzspektrum der empfangenen hochfrequenten Funkstorspannung zusammen mit der überlagerten hochfrequenten Rauschspannung m einen Zwischenfrequenzbereich umgesetzt.
In der Zwischenfrequenzemheit 5 erfolgen mit dem Zwischenfrequenzsignal unterschiedliche Signalverarbei- tungsfunktionen (z.B. Filterung, Linearisierung usw.). Die Umsetzung des Zwischenfrequenzsignals m das Basisband wird im darauf folgenden zweiten Mischer 6 durchgeführt . Die Tragerfrequenz zur Umsetzung m das Basisband wird von einem zweiten lokalen Oszillator 7 mit fixer Frequenz erzeugt .
In einem sich anschließenden Tiefpassfilter 8 erfolgt eine Bereinigung des Basisbandsignals von unerwünschten hoherfrequenten Anteilen, die außerhalb des Meßfrequenzbereiches bzw. evtl. ausgewählter Untermeßfrequenzbereiche liegen. Im Analog-/Dιgιtal -Wandler 9 wird die analoge Meßspannung m das digitale Datenformat transformiert Die Betragsbildung der digitalisierten zeitveranderlichen Meßspannung wird im Betragsbildner 10 durchgeführt Eine Logarithmierung der digitalisierten zeitveranderlichen Meßspannung für eine halblogarithmische Darstellung des Messergebnisses erfolgt im Logarithmierer 11 Der Zugriff auf das Signal ist durch den symbolischen Schalter 12 veranschaulicht. Hierzu erhält der Schalter 12 von einer übergeordneten Steuerung 17 ein Steuersignal, das den Zeitpunkt des Zugriffs bestimmt. Der digitalisierte Spannungspegel der Meßspannung wird während des Zugriffs m einem Detektor 13 erfaßt.
Der mit dem Detektor 13 erfaßte digitalisierte Spannungspegel der Meßspannung wird vom Mikrorechner 14 eingelesen. Mittels der Funktionseinheit Spektrum- Analysator 15 des Mikrorechner 14 wird die aus der Funkstörspannung und der überlagerten Rauschspannung bestehende Meßspannung über den gesamten einstellbaren Messfrequenzbereich im einstellbaren Frequenzraster gemessen. Hierzu wird durch die übergeordnete Frequenz- und Abtaststeuereinheit 17 des Mikrorechners 14 die Frequenz des ersten Oszillators 4 über den einstellbaren Messfrequenzbereich im einstellbaren Frequenzraster im Hinblick auf die Aufnahme des Frequenzspektrums der Meßspannung sukzessive durchgestimmt. Der zur Geschwindigkeit der Frequenzdurchstimmung synchrone Zugriff auf die digitale Meßspannung über die erste Meßzeit erfolgt ebenfalls durch die übergeordnete Frequenz- und Abtaststeuereinheit 17. In der Funktionseinheit Spektrum-Analysator 15 erfolgt auch der Vergleich des pro Meßfrequenz gemessenen Spannungspegels m Relation zu einem einstellbaren Grenzwert und die Kennzeichnung des gemessenen Spannungspegels als Funkstörspannung im Falle eines Überschreitens des Grenzwertes durch den gemessenen Spannungspegel . Die zu den einzelnen Meßfrequenzen innerhalb des Meßfrequenzbereiches erfaßten Spannungspegel des Meßsignals inklusive der identifizierten Funkstörspannungspegel werden im Speicher 18 zwischengespeichert.
Durch eine im Mikrorechner 14 integrierte übergeordnete Ablaufsteuerung, die in Fig. 1 nicht dargestellt ist, wird nach Ablauf der Vermessung des Frequenzspektrums der Meßspannung im gesamten Meßfrequenzbereich durch die Funktionseinheit Spektrum-Analysator 15 der Betrieb auf die Funktionseinheit Meßempfänger 16 umgeschaltet. In einem Meßfrequenzbereich der Funktionseinheit Meßempfanger 16, der im allgemeinen kleiner als der einstellbare Meßfrequenzbereich der Funktionseinheit Spektrum- Analysator 15 ist, findet m der Funktionseinheit Meßempfänger 16 eine genauere Analyse des Zeitverhaltens der einzelnen identifizierten Funkstorspannungen über mehrere Zugriffszeitpunkte im Rahmen einer zweiten Meßzeit statt. Die Meß- und Auswertungsergebnisse der Funktionseinheit Meßempfänger 16 werden ebenfalls im Speicher 18 zwischengespeichert.
Sämtliche Meßergebnisse werden m einer Darstellungs- emrichtung 19, z. B. einem Display, m grafische Form zur Visualisierung und nachfolgenden Ergebnisdiskussion bereitgestellt .
Das erfindungsgemaße Verfahren zur Messung von Funkstör- Spannungen, dessen Verfahrensschritte im Flußdiagramm m Fig. 2 dargestellt sind, führt m der beginnenden Vormessung, die von der Funktionseinheit Spektrum- Analysator 15 durchgeführt wird, im ersten Verfahrensschritt S10 eine Initialisierung der Meßfrequenz der erfindungsgemäßen Vorrichtung nach Fig. 1 z. B. mit der vom Anwender gewählten unteren Grenzfrequenz des zu vermessenden Meßfrequenzbereiches durch.
Im darauf folgenden Verfahrensschritt S20 wird bei der gewählten Meßfrequenz der Spannungspegel des aus der Funkstörspannung und überlagerter Rauschspannung bestehenden Meßspannung innerhalb einer ersten Meßzeit erfasst . Der jeweils gemessene Spannungspegel wird im Verfahrensschritt S20 mit einem vom Anwender gewählten Grenzwert verglichen. Bei dem Grenzwert handelt es sich üblicherweise um einen über den ganzen Meßfrequenzbereich konstanten Wert, der im Sinne eines Markers über den gesamten Meßfrequenzbereich gelegt wird. Prinzipiell ist aber auch die Verwendung eines über den gesamten Meßfrequenzbereich veränderlichen Grenzwertverlaufs möglich.
Überschreitet der bei der jeweiligen Meßfrequenz gemessene Spannungspegel der Meßspannung den Grenzwert, so wird die Meßspannung bei dieser Meßfrequenz als Funkstorspannung gekennzeichnet und die eingestellte Meßfrequenz als Mittenfrequenz für eine spatere Nachmessung festgelegt . Liegt eine Überschreitung des Grenzwertes durch die Meßspannung über einen bestimmten Frequenzbereich im Falle einer breitbandigen Funkstörspannung vor, so wird von der Funktionseinheit Spektrum-Analysator 15 die jeweilige mittlere Frequenz ermittelt und als Mittenfrequenz festgelegt .
Alle im Verfahrensschritt S20 zu den einzelnen Meßfrequenzen gemessenen Spannungen werden mit ihren dazugehörigen Spannungspegeln und Frequenzen sowie im Falle einer Grenzwertύberschreitung mit ihrer Mitten- frequenz und mit der Kennzeichnung als Funkstorspannung im Verfahrensschritt S30 abgespeichert.
Liegt der Wert der Meßfrequenz unterhalb der vom Anwender ausgewählten oberen Grenzfrequenz des zu vermessenden Meßfrequenzbereiches, so wird die Meßfrequenz um einen Frequenzrastermkrement erhöht und mit der neuen Meßfrequenz in Verfahrensschritt S20 eine neue Pegelmessung durchgeführt. Alternativ kann aber auch eine kontinuierliche (gesweepte) Messung durchgeführt werden.
Hat die eingestellte Meßfrequenz die vom Anwender ausgewählte obere Grenzfrequenz des zu vermessenden Meßfrequenzbereiches erreicht, so ist die Vormessung m der Funktionseinheit Spektrum-Analysator 15 beendet . Das Verfahren geht nun über in die Betriebsart Nachmessung, die von der Funktionseinheit Meßempfanger 16 durchgeführt wird. Für jede der m der Vormessung von der Funktionseinheit Spektrum-Analysator 15 gekennzeichneten Funkstόrspannungen erfolgt im Verfahrenschritt S60 eine über eine bestimmte einstellbare Anzahl von Zugriffszeitpunkten sich erstreck- kende zweite Meßzeit, die deutlich länger als die erste Meßzeit der Funktionseinheit Spektrum-Analysator 15 ist, eine Messung des Spannungspegels der Meßspannung. Hierbei wird der Meßfrequenzbereich der Funktionseinheit Meßempfänger 16 so gewählt, daß die von der Funktionseinheit Spektrum-Analysator 15 für jede gekennzeichnete Funkstörspannung ermittelte Mittenfrequenz als Mittenfrequenz des jeweiligen Meßfrequenzbereichs für die Nachmessung benutzt wird. Aufgrund der zyklischen Wiederholung von Nach- und Vormessung wird somit die Mittenfrequenz der Nachmessung auf die m der Vormessung identifizierte Mittenfrequenz der gekennzeichneten Funkstörspannung nachgeführt, womit eine dynamische Messung einer frequenzveränderlichen Funkstörspannung möglich ist.
Im darauf folgenden Verfahrensschritt S70 wird mit einer vom Anwender auswahlbaren Berechnungsfunktion auf der Basis der zu den einzelnen Zugriffszeitpunkten gemessenen Spannungspegel der Meßspannung eine genauere Analyse des Zeltverhaltens der Funkstorspannung durchgeführt. Diese Analyse erstreckt sich auf den Meßfrequenzbereich der Funktionseinheit Meßempfänger 16 mit der von der Funktionseinheit Spektrum-Analysatoren 15 ermittelten Mittenfrequenz der jeweiligen Funkstorspannung als Mittenfrequenz des Meßfrequenzbereiches. Als Bewertungsfunktionen können hierbei beispielsweise folgende Funktionen vom Anwender ausgewählt werden:
• Sample-Funktion: Identifizierung des augenblicklichen Spannungspegels der Funkstόrspannung
• Max-peak-Funktion: Identifizierung des maximalen Spannungspegel der Funkstorstörung
• Mm-peak-Funktion: Identifizierung des minimalen Spannungspegel ist der Funkstόrspannung
• Quasi -peak-Funktion : Bewertung, die das Storvermogen des Signals bewertet • Average-Funktion: lineares Mitteln der abgetasteten Spannungspegel der Funkstörspannung
• RMS-Funktion: quadratisches Mitteln der abgetasteten Spannungspegel der Funkstörspannung
Im Verfahrensschritt S80 werden für alle Meßfrequenzen innerhalb des zur jeweiligen Funkstörspannung gehörigen Meßfrequenzbereiches der Funktionseinheit Meßempfänger 16 die durch die jeweils ausgewählten Bewertungsfunktionen ermittelten Spannungspegelfunktionswerte als Ergebnisse einer genaueren Zeitanalyse der Funkstorspannung abgespeichert .
Sind noch nicht alle von der Funktionseinheit Spektrum- Analysator 15 gekennzeichneten Funkstorspannungen im Rahmen der Nachmessung von der Funktionseinheit Meßempfänger 16 genau vermessen, so erfolgt im Verfahrensschritt S60 für die nächste noch nicht m der Nachmessung vermessene Funkstörspannung eine genauere Vermessung des Zeitver- haltens, indem die Mittenfrequenz des Meßfrequenzbereiches der Funktionseinheit Meßempfänger 16 auf die von der Funktionseinheit Spektrum-Analysator 15 ermittelten Mittenfrequenz der im Folgenden zu vermessenden Funkstör- pannung eingestellt wird und eine wiederholte Abtastung der Spannungspegel der zu vermessenden Funkstorspannung im eingestellten Meßfrequenzbereich der Funktionseinheit Meßempfänger 16 durchgeführt wird.
Sind alle von der Funktionseinheit Spektrum-Analysator 15 m der Vormessung gekennzeichneten Funkstörspannungen von der Funktionseinheit Meßempfänger 16 m der Nachmessung genauer vermessen und analysiert, so wird das erfindungsgemäße Verfahren zur Messung von Funkstorspannungen von der übergeordneten Ablaufsteuerung wieder auf die Vormessung durch die Funktionseinheit Spektrum- Analysator 15 umgeschaltet, falls vom Anwender keine Beendigung der EMV-Messung beabsichtigt wird. In der sich nun wiederholenden Vormessung wird im Verfahrensschritt S10 die Meßfrequenz des Spektrum-Analysators entsprechend der unteren Grenzfrequenz des zu vermessenden Meßfrequenzbereiches eingestellt.
In Fig. 3 ist ein beispielhaftes Meßergebnis einer Messung der Funkstόrspannung, wie sie auf einer Darstellungseinrichtung 19 dargeboten wird, dargestellt. Im oberen Bereich 20 der Darstellung, der den Ergebnissen der Nachmessung reserviert ist, werden bei einer ermittelten Mittenfrequenz von im Beispiel ca. 99,4 MHz für eine identifizierte Funkstörspannung die Spannungspegelwerte und Frequenzwerte bei Verwendung der Quasi -Peak- und der Average-Funktion als Bewertung dargestellt. Im unteren Bereich 21 der Darstellung ist das Frequenzspektrum der Funkstörspannung inklusive der benachbarten Rauschspannung im Meßfrequenzbereich der Funktionseinheit Spektrum- Analysatoren 15 mit der ermittelten Mittenfrequenz der Funkstörspannung als Mittenfrequenz des verwendeten Meßfrequenzbereiches dargestellt. Analog können für die übrigen identifizierten Funkstörspannungen die Ergebnisse der Vor- und Nachmessung dargestellt werden. In dem unteren Bereich 21 konnten auch der spektrale Verlauf der Bewertungsfunktion, im Beispiel Quasi -Peak und Average, zusätzlich dargestellt werden.
Wesentlich ist, daß bei jeder Nachmessung eine Frequenznachführung erfolgt . Dabei wird bei einer Nachmessung dann ein neuer Maximalwert gespeichert bzw. der bisher gespeicherte Maximalwert überschrieben, wenn dieser großer als alle bisher erfaßten Maximalwerte ist. Zusätzlich wird der zu diesem neuen Maximalwert gehörende Frequenzwert gespeichert .
Die Erfindung ist nicht auf das beschriebene
Ausfύhrungsbeispiel beschränkt. Samtliche beschriebene Funktionen und Elemente können beliebig miteinander kombiniert werden.

Claims

Ansprüche
1. Verfahren zur Messung von Funkstorpegeln m einem bestimmten Frequenzbereich, indem m einer Vormessung der Frequenzbereich durchgestimmt wird, bei jeder Meßfrequenz jeweils ein Meßpegel des zu vermessenden Signals erfaßt und mit einem Grenzwert verglichen wird und bei Überschreitung des Grenzwertes durch den Meßpegel der bei der jeweiligen Meßfrequenz gemessene Pegel als Funkstörpegel gekennzeichnet wird und m einer Nachmessung jeder gekennzeichnete Funkstörpegel jeweils hinsichtlich seines Zeitverhaltens genauer vermessen wird, dadurch gekennzeichnet, daß für jeden gekennzeichnete Funkstörpegel die Mittenfrequenz des Meßfrequenzbereichs der Nachmessung, die sich zyklisch im Wechsel mit der Vormessung wiederholt, an die m der vorhergehenden Vormessung neu ermittelte mittlere Frequenz des sich ändernden Funkstörpegels nachgeführt wird.
2. Verfahren zur Messung von Funkstorpegeln nach Anspruch 1 , dadurch gekennzeichnet, daß m jeder sich zyklisch im Wechsel mit der Nachmessung wiederholenden Vormessung der Meßpegel jedes sich gegenüber der vorhergehenden Vormessung m seiner Frequenz und/oder seinem Meßpegel verändernden Funkstörpegels bestimmt wird.
3. Verfahren zur Messung von Funkstόrpegeln nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß der Frequenzbereich bei der Vormessung m einem bestimmten Frequenzraster durchgestimmt wird.
4. Verfahren zur Messung von Funkstörpegeln nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Meßpegel des jeweiligen Funkstörpegels m einer zweiten Meßzeit der Nachmessung gegenüber einer ersten Meßzeit der Vormessung mehrfach wiederholt gemessen wird.
5. Verfahren zur Messung von Funkstorpegeln nach
Anspruch 4 , dadurch gekennzeichnet, daß aus den bei der Nachmessung mehrfach abgetasteten Meßpegeln für eden gekennzeichneten Funkstörpegel ein nach einem aus mehreren einstellbaren Bewertungsverfahren bewerteter Pegel ermittelt werden.
6. Vorrichtung zur Messung von Funkstorpegeln nach einem der Ansprüche 1 bis 4, wobei die Vorrichtung eine Funktionseinheit Spektrum- Analysator (15) zur Identifizierung der Funkstörpegel und zur Ermittlung der mittleren Frequenz der identifizierten Funkstόrpegel im Rahmen einer Vormessung und eine Funktionseinheit Meßempfanger (16) zur mehrfachen Abtastung der Meßpegel der von der Funktionseinheit Spektrum-Analysator (15) identifizierten Funkstorpegel und zur statistischen Bewertung der abgetasteten Meßpegel im Rahmen einer Nachmessung aufweist .
PCT/EP2004/011352 2003-10-27 2004-10-11 Verfahren und vorrichtung zur messung von funkstörpegeln mit frequenznachführung WO2005047910A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006535991A JP5189767B2 (ja) 2003-10-27 2004-10-11 周波数追跡を用いて電波干渉レベルを測定する方法および装置
US10/595,569 US7801489B2 (en) 2003-10-27 2004-10-11 Method and device for measuring radio interference levels with frequency tracking
EP04790261A EP1678512B1 (de) 2003-10-27 2004-10-11 Verfahren und vorrichtung zur messung von funkstörpegeln mit frequenznachführung
DE502004002649T DE502004002649D1 (de) 2003-10-27 2004-10-11 Verfahren und vorrichtung zur messung von funkstörpegeln mit frequenznachführung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10350063.4 2003-10-27
DE10350063A DE10350063A1 (de) 2003-10-27 2003-10-27 Verfahren und Vorrichtung zur Messung von Funkstörpegeln mit Frequenznachführung

Publications (1)

Publication Number Publication Date
WO2005047910A1 true WO2005047910A1 (de) 2005-05-26

Family

ID=34485101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/011352 WO2005047910A1 (de) 2003-10-27 2004-10-11 Verfahren und vorrichtung zur messung von funkstörpegeln mit frequenznachführung

Country Status (5)

Country Link
US (1) US7801489B2 (de)
EP (1) EP1678512B1 (de)
JP (1) JP5189767B2 (de)
DE (2) DE10350063A1 (de)
WO (1) WO2005047910A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198965A (ja) * 2006-01-27 2007-08-09 Sony Corp 妨害電磁波測定システム、妨害電磁波測定方法およびその方法をコンピュータに実行させるためのプログラム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL159342A0 (en) 2001-06-12 2004-06-01 Research In Motion Ltd Certificate management and transfer system and method
DE102005010882A1 (de) * 2005-03-09 2006-09-14 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Vorrichtung zur Identifizierung von Funkstörpegeln asynchron zur Messung des Frequenzspektrums
DE102007054678B3 (de) * 2007-11-14 2009-04-02 Wago Verwaltungsgesellschaft Mbh Verfahren zur Erkennung von Störquellen für Automatisierungseinrichtungen und Störquellenerkennungseinheit hierzu
US20090291643A1 (en) * 2008-05-22 2009-11-26 Ralink Technology Corporation Method and system for measuring noise signal
EP2315527A4 (de) 2008-08-13 2013-03-06 James Messina Breitspektrum-tier-repellent und verfahren
WO2010064438A1 (ja) * 2008-12-04 2010-06-10 日本電信電話株式会社 制御局装置、送信局装置、通信方法、及び通信システム
US20100197257A1 (en) * 2009-02-04 2010-08-05 Qualcomm Incorporated Adjustable receive filter responsive to frequency spectrum information
CN102590686B (zh) * 2012-03-08 2015-10-28 中国南方电网有限责任公司超高压输电公司检修试验中心 一种双极直流输电线路无线电干扰确定方法
US10158431B2 (en) * 2017-04-25 2018-12-18 Bae Systems Information And Electronic Systems Integration Inc. Dynamic relay assignment for jamming mitigation in wireless networks
US10237885B2 (en) 2017-05-01 2019-03-19 Bae Systems Information And Electronic Systems Integration Inc. Multiple access wireless network with low latency subnet
CN107480319B (zh) * 2017-06-21 2021-09-28 中国电力科学研究院 一种高压直流输电分裂导线的优化布置方法及系统
US20220123848A1 (en) * 2019-01-21 2022-04-21 Nec Corporation Wireless communication quality visualization system, wireless communication quality visualization device, and measurement apparatus
US11323352B2 (en) * 2019-01-30 2022-05-03 Rohde & Schwarz Gmbh & Co. Kg Test system and test method
CN111562467B (zh) * 2020-03-24 2022-11-25 中国电力科学研究院有限公司 一种基于地面合成电场测量数据的起晕判定方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859933A (en) * 1988-06-24 1989-08-22 Hewlett-Packard Company Narrowband signal recognition for EMI measurement
DE3817500C1 (de) * 1988-05-21 1989-10-05 Rohde & Schwarz Gmbh & Co Kg, 8000 Muenchen, De
US5119018A (en) * 1989-01-10 1992-06-02 Anritsu Corporation Spectrum analyzer having functions for simultaneously executing plural kinds of detections and displaying resultants thereof
US6509742B1 (en) * 2000-04-18 2003-01-21 Fuji Xerox Co., Ltd. Electromagnetic noise measurement apparatus, electromagnetic noise measurement method and recording medium

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2804867A1 (de) * 1978-02-04 1979-08-09 Deutsche Bundespost Schaltungsanordnung zur messung von stoerimpulsen, die infolge von bitfehlern in einem digitalen nachrichtenuebertragungssystem am analogausgang auftreten
DE3027364C2 (de) * 1980-07-18 1983-01-20 Rohde & Schwarz GmbH & Co KG, 8000 München Schaltungsanordnung für einen Funkstörmessempfänger zur Bewertung von Eingangsimpulsen
JPS6216683Y2 (de) * 1981-03-20 1987-04-27
JPS59157574A (ja) * 1983-02-27 1984-09-06 Anritsu Corp スペクトラムアナライザ
JPS62229085A (ja) * 1986-03-31 1987-10-07 Toshiba Corp 周波数アジリテイレ−ダ
JP2520614B2 (ja) * 1986-11-17 1996-07-31 アンリツ株式会社 スペクトラムアナライザ
DE3817000A1 (de) * 1988-05-19 1989-11-23 Basf Ag Kraftstoffe fuer ottomotoren
DE3817499C1 (en) * 1988-05-21 1989-09-28 Rohde & Schwarz Gmbh & Co Kg, 8000 Muenchen, De Method for the measurement of broadcast interference
JP2942569B2 (ja) * 1989-02-28 1999-08-30 アンリツ株式会社 Emi測定装置
US5119076A (en) * 1989-12-26 1992-06-02 Tektronix, Inc. Measuring spectral features using a cursor and a marker
JPH0481671A (ja) * 1990-07-24 1992-03-16 Yokogawa Electric Corp Emi測定方法
JP2594282Y2 (ja) * 1992-02-03 1999-04-26 株式会社アドバンテスト スペクトラム・アナライザ
JP3138314B2 (ja) * 1992-03-16 2001-02-26 株式会社アドバンテスト 非同期校正回路及び周波数検出回路
DE4239741A1 (de) * 1992-11-26 1994-06-01 Rohde & Schwarz Verfahren zum Messen der Funkstörfeldstärke von elektrischen Geräten
DE4420448C1 (de) * 1994-06-10 1995-09-14 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Messung der Feldstärke in einem Funkkanal und dessen Nachbarkanälen mittels Zero-IF
CA2162347C (en) * 1995-11-07 2001-01-09 Gary Gunthorpe Method and apparatus for high-speed scanning of electromagnetic field levels
JP2001244901A (ja) * 2000-02-29 2001-09-07 Advantest Corp 電波利用の調査方法及び装置
US7454222B2 (en) * 2000-11-22 2008-11-18 Dragonwave, Inc. Apparatus and method for controlling wireless communication signals
JP3666648B2 (ja) * 2001-01-11 2005-06-29 日本電気株式会社 クロック周波数変調回路及び該変調回路を搭載した電子機器
JP2002344397A (ja) * 2001-05-21 2002-11-29 Ntt Docomo Inc 妨害波探索システムおよび妨害波探索方法
US6700388B1 (en) * 2002-02-19 2004-03-02 Itt Manufacturing Enterprises, Inc. Methods and apparatus for detecting electromagnetic interference
JP3800222B2 (ja) * 2004-02-19 2006-07-26 日本電気株式会社 送信電力制御のための目標値制御システム及びその方法並びに基地局及び携帯通信端末
WO2008012954A1 (fr) * 2006-07-27 2008-01-31 Panasonic Corporation Appareil de communication sans fil, système lan sans fil, procédé de détection d'interférence, et procédé d'évitement d'interférence
US7813701B2 (en) * 2006-08-29 2010-10-12 Piping Hot Networks Limited Interference optimized OFDM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3817500C1 (de) * 1988-05-21 1989-10-05 Rohde & Schwarz Gmbh & Co Kg, 8000 Muenchen, De
US4859933A (en) * 1988-06-24 1989-08-22 Hewlett-Packard Company Narrowband signal recognition for EMI measurement
US5119018A (en) * 1989-01-10 1992-06-02 Anritsu Corporation Spectrum analyzer having functions for simultaneously executing plural kinds of detections and displaying resultants thereof
US6509742B1 (en) * 2000-04-18 2003-01-21 Fuji Xerox Co., Ltd. Electromagnetic noise measurement apparatus, electromagnetic noise measurement method and recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198965A (ja) * 2006-01-27 2007-08-09 Sony Corp 妨害電磁波測定システム、妨害電磁波測定方法およびその方法をコンピュータに実行させるためのプログラム

Also Published As

Publication number Publication date
JP2007509333A (ja) 2007-04-12
US20080274702A1 (en) 2008-11-06
JP5189767B2 (ja) 2013-04-24
EP1678512B1 (de) 2007-01-10
DE10350063A1 (de) 2005-05-25
US7801489B2 (en) 2010-09-21
DE502004002649D1 (de) 2007-02-22
EP1678512A1 (de) 2006-07-12

Similar Documents

Publication Publication Date Title
EP1678512B1 (de) Verfahren und vorrichtung zur messung von funkstörpegeln mit frequenznachführung
DE19515037B4 (de) Digitale Signalmodulationsanalysevorrichtung
DE60112185T2 (de) Signalartbestimmung
DE102007046595A1 (de) Algorithmen und Verfahren zum Abfühlen eines Spektrums #
DE112005001355T5 (de) Vorrichtung zum Analysieren von Breitbandsignalen, Breitband-Periodenjitter und Breitbandversatz
DE3817500C1 (de)
DE69932981T2 (de) Breitband-Signalanalysator
WO2014173866A1 (de) Messverfahren und messgerät zur vermessung von breitbandigen messsignalen
WO2012168228A1 (de) Messgerät und verfahren zur vermessung eines signals mit mehreren teilsignalen
WO2013023952A1 (de) Verfahren und vorrichtung zur automatischen zuweisung eines signals zu einer messanwendung
EP1701167B1 (de) Verfahren und Vorrichtung zur Identifizierung von Funkstörpegeln asynchron zur Messung des Frequenzspektrums
DE102004050912B4 (de) Verfahren und Vorrichtung zur Erhöhung des Dynamikbereichs und der Meßgenauigkeit einer Meßeinrichtung zur Spektrum- und/oder Netzwerkanalyse
DE2827422C3 (de) Verfahren und Schaltungsanordnung zum Messen von Kennwerten eines Vierpols, insbesondere einer Datenübertragungsstrecke
DE3414929C2 (de) Funküberwachungssystem
EP1699142A1 (de) Verfahren zur Analyse von Funksignalen
DE10315372B4 (de) Verfahren und Vorrichtung zum Bereitstellen eines Messsignals und Vorrichtung zur Erfassung einer elektromagnetischen Störung
EP2958242B1 (de) Verfahren und vorrichtung zum verarbeiten eines rundfunksignals
WO2015014881A1 (de) Messgerät und messverfahren zur bestimmung eines aktiven kanals
DE102020127244A1 (de) Peilsystem sowie Verfahren zur Peilung eines Störsignals in einem Hochfrequenzsignal
EP0473949B1 (de) Analysator, insbesondere Netzwerkanalysator, zum frequenzselektiven Messen und Darstellen von frequenzabhängigen Messparametern
EP0002790B1 (de) Messeinrichtung für eine Frequenzanalyse von Signalpegeln innerhalb eines grossen Dynamikbereiches
DE102020007046B3 (de) Spektrumanalysator, System und Verfahren zum Ausleiten von Daten aus einem Spektrumanalysator
WO1995034823A1 (de) Verfahren und vorrichtung zur messung der feldstärke in einem funkkanal und dessen nachbarkanälen mittels zero-if
WO2003016927A1 (de) Verfahren und vorrichtung zum bestimmen des spektralen verlaufs von elektromagnetischen signalen innerhalb eines vorgegebenen frequenzbereichs
DE10232195B4 (de) Verfahren und Vorrichtung zum Messen der Symbolrate eines digital modulierten Hochfrequenzsignals

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004790261

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006535991

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10595569

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004790261

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2004790261

Country of ref document: EP