WO2005049973A2 - Verfahren und vorrichtung zur umwandlung von wärme in mechanische arbeit - Google Patents

Verfahren und vorrichtung zur umwandlung von wärme in mechanische arbeit Download PDF

Info

Publication number
WO2005049973A2
WO2005049973A2 PCT/AT2004/000405 AT2004000405W WO2005049973A2 WO 2005049973 A2 WO2005049973 A2 WO 2005049973A2 AT 2004000405 W AT2004000405 W AT 2004000405W WO 2005049973 A2 WO2005049973 A2 WO 2005049973A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
heat
heat exchanger
working medium
outside
Prior art date
Application number
PCT/AT2004/000405
Other languages
English (en)
French (fr)
Other versions
WO2005049973A3 (de
Inventor
Rudolf Hirschmanner
Original Assignee
VÖLKL, Christian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VÖLKL, Christian filed Critical VÖLKL, Christian
Priority to EP04796948A priority Critical patent/EP1714017A2/de
Priority to US10/584,759 priority patent/US7748220B2/en
Priority to CA002550569A priority patent/CA2550569A1/en
Publication of WO2005049973A2 publication Critical patent/WO2005049973A2/de
Publication of WO2005049973A3 publication Critical patent/WO2005049973A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/02Devices for producing mechanical power from solar energy using a single state working fluid
    • F03G6/04Devices for producing mechanical power from solar energy using a single state working fluid gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • F02C1/06Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy using reheated exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/10Closed cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/10Closed cycles
    • F02C1/105Closed cycles construction; details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D11/00Heat-exchange apparatus employing moving conduits
    • F28D11/02Heat-exchange apparatus employing moving conduits the movement being rotary, e.g. performed by a drum or roller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • F28F13/125Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation by stirring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the invention relates to a method for converting heat into mechanical work, in which in a cycle a working medium is compressed to give off heat, then brought into thermal contact with the surroundings via a first heat exchanger, then relaxed to obtain mechanical work, whereupon the cycle is run through again.
  • a working medium is usually compressed, heated, relaxed in the heated state, cooled, whereupon the cycle begins again.
  • the prerequisite for such cyclic processes is that two different temperature levels are available, which are used to heat or cool the working medium.
  • a certain temperature is defined as the ambient temperature, which is the temperature of a medium that is in principle unlimited and available free of charge. This can be, for example, the ambient air temperature or the temperature of a body of water from which water can be extracted in sufficient quantities for the purpose of temperature exchange.
  • the object of the present invention is to provide a method of the type described above which makes it possible to obtain mechanical work from thermal energy with the greatest possible efficiency.
  • Another object of the invention is to provide a device with which the method according to the invention can be carried out.
  • this method is characterized in that, after the expansion, the working medium is passed through a further heat exchanger which is arranged in the interior of a rapidly rotating rotor and which is surrounded on the outside by at least one essentially annular gas space, on the outside of which heat is dissipated ,
  • the inventor of the present invention has recognized that with the inclusion of statistical gas theory in connection with the consideration of gravity acting on the gas molecules or atoms or the acceleration, it is possible to represent circular processes which have a particularly high efficiency.
  • the problem in this context is that the effects caused by gravity are very small, which makes the technical implementation very difficult.
  • the cycle process according to the invention enables the use of thermal energy to generate mechanical work under economically justifiable framework conditions.
  • An essential prerequisite for the method according to the invention is to achieve the highest accelerations by means of a high-speed rotor, the acceleration values achieved being chosen to be as high as possible.
  • the working medium is passed through a compressor downstream of the rotor.
  • the heating caused in the compressor is so low that the working medium cooled in the rotor remains below the ambient temperature. This ensures that the working medium in the first heat exchanger absorbs ambient heat.
  • the working medium is essentially in axial direction is guided by the rotor. In this way, the effects of the high acceleration inside the rotor on the pressure conditions in the working medium can be largely eliminated.
  • the present invention relates to a device for extracting heat at ambient temperature with a rotor which has a heat exchanger which can flow essentially in the axial direction and which is delimited on its outside by a cylindrical wall, on the outside of which at least one essentially annular gas space is provided.
  • this device is characterized in that the heat exchanger is essentially ring-cylindrical and that the gas space is divided into a plurality of ring-cylindrical subspaces in the radial direction. These subspaces can have the same dimensions in the radial direction, but can also be designed differently. Only through the described design of the rotor is it possible to implement a cycle of the type described above in a technically and economically sensible manner.
  • the same gas it is possible for the same gas to be present in the individual subspaces.
  • the pressure on the outside of a subspace is generally greater than the pressure on the inside of the other subspace adjoining this subspace. This means that although the pressure increases from the inside to the outside due to the centripetal acceleration within the individual subspaces, this increase is interrupted at the boundaries of the individual subspaces. This results in a mechanical load on the dividing walls between the individual subspaces, which is, however, technically controllable, since the resulting compressive force acts on the outside and therefore the dividing walls are not subjected to bulging.
  • different gases which in particular have different critical temperatures and pressures, are preferably received in the individual subspaces.
  • a pressure control device is provided in a particularly preferred embodiment of the invention, which is connected to the ring-cylindrical partial spaces in order to adjust the internal pressure.
  • the ring-cylindrical subspaces are preferably separated from one another by thin-walled cylindrical partition walls. In this way, the mechanical loads on the individual components can be minimized.
  • FIG. 1 shows a schematic illustration of a device for carrying out the method according to the invention
  • FIG. 2 shows a rotor of the device from FIG. 1 on an enlarged scale
  • Fig. 3 is a section along line III-III in Fig. 2
  • 4 is a diagram illustrating the temperature profile in the radial direction of the rotor
  • Fig. 5 is a Ts diagram explaining the cycle.
  • the device of FIG. 1 consists of a turbine 11 for expanding the working medium, which is divided into two sections 11a, 11b.
  • a heat exchanger 11c is provided in the first section 11a in order to enable isothermal expansion.
  • a generator 12 is driven by the turbine 11 and at the same time a rotor 13 of a centrifuge is driven, through which the working medium flows in the axial direction. Compression takes place in a turbine 14, whereupon the working medium is returned to the turbine 11 via a return line 15.
  • the rotor 13 has a ring-cylindrical heat exchanger 18 and a plurality of gas spaces 17a, 17b, 17c, 17d, which are also ring-cylindrical and are located outside the heat exchanger 18. It should be noted that the dimension Solutions of the heat exchanger 18 and the gas spaces 17a, 17b, 17c, 17d in the radial direction in Fig. 1 are exaggerated, because in real versions, these dimensions are very small, and the heat exchanger 18 and the gas spaces 17a, 17b, 17c, 17d are in the vicinity of the outer jacket of the rotor 13. On the outside, the rotor 13 is equipped with cooling fins 19, which represent a heat exchanger for dissipating heat. This is indicated by the arrows 20.
  • the gas spaces 17a, 17b, 17c, 17d are preferably filled with different gases, the innermost gas space 17a being filled with helium, for example, the adjoining gas space 17b with xenon, the third gas space 17c with nitrogen or a suitable hydrocarbon and the outermost one Gas space 17d with a suitable refrigerant.
  • the rapid rotation of the rotor 13 causes a temperature gradient from the outside to the inside in the gas spaces 17a, 17b, 17c, 17d, which greatly cools the working medium in the heat exchanger 17.
  • heat is supplied to the ambient temperature level, which is indicated by the arrows 21.
  • An increase in efficiency can be achieved if the waste heat from the rotor 13 is likewise fed to the heat exchanger 16 in accordance with the arrows 20.
  • the rotor 13 is shown in detail in a modified embodiment.
  • the working medium is fed inside a hollow first shaft 22, which is mounted in a bearing 23, and is guided radially to the heat exchanger 18 to the outside via distribution lines 24.
  • the working medium flows in the axial direction to the opposite side of the rotor 13 in order to be guided radially inward in further distribution lines 25 to a further shaft 26 which is mounted in a bearing 27.
  • four gas spaces 17a, 17b, 17c, 17d are provided radially one inside the other.
  • a heat exchanger 18 for removing the heat is arranged on the outside.
  • a housing 28 is schematically indicated, in which the rotor is rotatably arranged and which has a plurality of magnets 29 in the circumferential direction.
  • the magnets 29 serve to relieve the bearings 23 and 27 at high speeds and interact with magnets (not shown) on the outside of the rotor 13 itself.
  • the polarity is directed so that the magnets 29 and the magnets on the rotor 13 repel each other, as a result of which an inward force is exerted on the outer surface of the rotor 13, which significantly reduces the high mechanical loads due to the centrifugal forces and enables higher speeds.
  • At least one gas container 30 is provided in the interior of the rotor 13 and is connected to one of the gas spaces 17a, 17b, 17c, 17d via lines (not shown).
  • the expansion tank 30 has sub-tanks, not shown, which are individually connected to the individual gas spaces 17a, 17b, 17c, 17d.
  • the average pressure level in the gas spaces 17a, 17b, 17c, 17d can be kept largely independent of the respective speed of the rotor 13 at a predetermined value, so that the mechanical stress on the partition walls between the heat exchanger 18 and the gas spaces 17a, 17b , 17c, 17d remains within predetermined limits.
  • Table 1 relating to the innermost gas space 17a, Table 2 to the gas space 17b, table 3 on the gas space 17c and table 4 on the gas space 17d.
  • the left half of the table indicates the state variables on the outer wall of the respective gas space 17a, 17b, 17c, 17d, and the right half of the table indicates the state variables on the inner wall of the respective gas space 17a, 17b, 17c, 17d.
  • Tables 1 to 4 mean: T temperature in K d density in kg / m 3 P pressure in MPa s entropy in kJ / kgK u internal energy in kJ / kg h enthalpy in kJ / kg
  • Fig. 3 shows schematically a section along line III - III in Fig. 2, wherein the heat exchanger 18 and the cooling fins 19 are omitted to increase clarity. Arrows 20 symbolize the heat flow.
  • FIG. 4 shows a diagram which schematically indicates the temperature distribution in the radial direction of the rotor 13, which is indicated by r.
  • the curve Ki represents the temperature T in the idling state, ie when no heat flow occurs, which is the case when the rotor 13 is insulated on the inside and outside.
  • the curve K 2 represents the temperature T during operation, ie when there is a heat flow in the radial direction.
  • FIG. 5 shows an idealized T-s diagram in which the temperature is plotted against the entropy.
  • the cycle is run in the direction of arrows 31.
  • the temperature difference of the centrifuge i.e. of the rotor 13 via the gas spaces 17a, 17b, 17c, 17d. Due to the losses in heat transfer, the temperature difference 33 that can actually be used in the cyclic process is significantly smaller.
  • the states 1, 2, 3, 4 in the diagram correspond to the states at the points designated analogously in FIG. 1. It should be noted, for example, that the state changes 1 ⁇ 2 and 3 ⁇ 4 are not exactly isothermal in the case of a single-phase working medium ,
  • Table 5 shows the state variables in the individual points under idealized assumptions.
  • the present invention makes it possible to implement a device and a cycle which have efficiencies which are significantly higher than those of conventional solutions.

Abstract

Die Erfindung betrifft ein Verfahren zur Umwandlung von Wärme in mechanische Arbeit, bei dem in einem Kreisprozess ein Arbeitsmedium unter Abgabe von Wärme verdichtet wird, danach über einen ersten Wärmetauscher (16) in thermischen Kontakt mit der Umgebung gebracht wird, danach unter Gewinnung mechanischer Arbeit entspannt wird, worauf der Kreisprozess erneut durchlaufen wird. Ein hoher Wirkungsgrad wird dadurch erreicht, dass das Arbeitsmedium nach der Entspannung durch einen weiteren Wärmetauscher (18) geführt wird, der im Inneren eines schnell rotierenden Rotors (13) angeordnet ist und der an seiner Außenseite von mindestens einem im Wesentlichen ringförmigen Gasraum (17a, 17b, 17c, 17d) umgeben ist, an dessen Außenseite Wärme abgeführt wird. Weiters betrifft die Erfindung eine Vorrichtung zur Durchführung des Verfahrens.

Description

Verfahren und Vorrichtung zur Umwandlung von Wärme in mechanische Arbeit
Fachgebiet der Erfindung
Die Erfindung betrifft ein Verfahren zur Umwandlung von Wärme in mechanische Arbeit, bei dem in einem Kreisprozess ein Arbeitsmedium unter Abgabe von Wärme verdichtet wird, danach über einen ersten Wärmetauscher in thermischen Kontakt mit der Umgebung gebracht wird, danach unter Gewinnung mechanischer Arbeit entspannt wird, worauf der Kreisprozess erneut durchlaufen wird.
Stand der Technik
Es sind verschiedene Arbeitsverfahren bekannt, um Wärmeenergie in mechanische Arbeit umzuwandeln. Üblicherweise wird bei solchen Kreisprozessen ein Arbeitsmedium verdichtet, erwärmt, im erwärmten Zustand entspannt, abgekühlt, worauf der Kreisprozess von vorne beginnt. Voraussetzung für solche Kreisprozesse ist, dass zwei unterschiedliche Temperaturniveaus zur Verfügung stehen, die zum Erwärmen bzw. Abkühlen des Arbeitsmediums herangezogen werden. Im Allgemeinen wird dabei eine bestimmte Temperatur als Umgebungstemperatur definiert, und zwar ist das die Temperatur eines Mediums, das im Prinzip unbegrenzt und kostenfrei zur Verfügung steht. Dies kann beispielsweise die Lufttemperatur der Umgebung sein oder die Temperatur eines Gewässers, aus dem Wasser zu Zwecken des Temperaturaustauschs in ausreichender Menge entnommen werden kann.
Es sind bisher keine Kreisprozesse bekannt, mit denen es möglich ist, mechanische Arbeit aus Wärmeenergie zu gewinnen, ohne über ein Wärmeträgermedium zu verfügen, dessen Temperatur sich wesentlich von der Umgebungstemperatur unterscheidet. Nach bisheriger Auffassung ist ein solcher Kreisprozess durch den zweiten Hauptsatz der Wärmelehre ausgeschlossen. In einer präziseren Fassung des zweiten Hauptsatzes der Wärmelehre wird ausgesagt, dass der Wirkungsgrad jeglichen Kreisprozesses zur Umwandlung von thermischer Energie in mechanische Arbeit den sogenannten Carnot-Wirkungsgrad nicht übersteigen kann, der sich aus dem Verhältnis der zur Verfügung stehenden Temperaturniveaus berechnet. Real existierende Verfahren und Vorrichtungen sind jedoch im Allgemeinen auch vom Carnot-wirkungsgard weit entfernt.
Es sind Vorrichtungen zur Erzeugung von Temperaturdifferenzen bekannt, die gasdynamische Effekte benutzen, die bei hohen Beschleunigungen auftreten, um Temperaturdifferenzen herzustellen. Diese Vorrichtungen sind jedoch nicht geeignet, um Kreisprozesse zur Gewinnung von mechanischer Arbeit durchzuführen.
Die DE 38 12 928 A zeigt eine Vorrichtung, die versucht, die obigen Nachteile zu überwinden. Jedoch auch mit einer solchen Vorrichtung ist keine wentliche Verbesserung des Wirkungsgrads möglich.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren der oben beschriebenen Art anzugeben, das es ermöglicht, mechanische Arbeit aus thermischer Energie mit einem größtmöglichen Wirkungsgrad zu gewinnen.
Eine weitere Aufgabe der Erfindung ist es, eine Vorrichtung anzugeben, mit der die Durchführung des erfindungsgemäßen Verfahrens möglich ist.
Kurzbeschreibung der Erfindung
Erfindungsgemäß ist dieses Verfahren dadurch gekennzeichnet, dass das Arbeitsmedium nach der Entspannung durch einen weiteren Wärmetauscher geführt wird, der im Inneren eines schnell rotierenden Rotors angeordnet ist und der an seiner Außenseite von mindestens einem im Wesentlichen ringförmigen Gasraum umgeben ist, an dessen Außenseite Wärme abgeführt wird.
Der Erfinder der vorliegenden Erfindung hat erkannt, dass unter Einbeziehung der statistischen Gastheorie in Zusammenhang mit der Berücksichtigung der auf die Gasmoleküle oder Atome wirkenden Schwerkraft bzw. der Beschleunigung die Darstellung von Kreisprozessen möglich ist, die einen besonders hohen Wirkungsgrad aufweisen. Problematisch in diesem Zusammenhang ist jedoch, dass die durch die Schwerkraft hervorgerufenen Effekte sehr klein sind, wodurch die technische Umsetzung sehr schwierig ist. Durch den erfindungsgemäßen Kreisprozess kann die Nutzung von Wärmeenergie zur Erzeugung von mechanischer Arbeit unter wirtschaftlich vertretbaren Rahmenbedingungen erreicht werden. Eine wesentliche Voraussetzung für das erfindungsgemäße Verfahren ist die Erzielung höchster Beschleunigungen durch einen schnell laufenden Rotor, wobei die erzielten Beschleunigungswerte so hoch als möglich gewählt werden.
Besonders bevorzugt ist es, wenn das Arbeitsmedium stromabwärts des Rotors durch einen Verdichter geführt wird. Die im Verdichter hervorgerufene Erwärmung ist jedenfalls so gering, dass das im Rotor abgekühlte Arbeitsmedium unterhalb der Umgebungstemperatur verbleibt. Dadurch ist gewährleistet, dass das Arbeitsmedium im ersten Wärmetauscher Umgebungswärme aufnimmt.
In einer besonders begünstigten Ausführungsvariante des erfindungsgemäßen Verfahrens ist vorgesehen, dass das Arbeitsmedium im Wesentlichen in Axial- richtung durch den Rotor geführt wird. Auf diese Weise können die Auswirkungen der hohen Beschleunigung im Inneren des Rotors auf die Druckverhältnisse im Arbeitsmedium weitgehend eliminiert werden.
Weiters betrifft die vorliegende Erfindung eine Vorrichtung zur Entnahme von Wärme bei Umgebungstemperatur mit einem Rotor, der einen im Wesentlichen in Axialrichtung durchströmbaren Wärmetauscher aufweist, der an seiner Außenseite von einer zylindrischen Wand begrenzt ist, an deren Außenseite mindestens ein im Wesentlichen ringförmiger Gasraum vorgesehen ist.
Erfindungsgemäß ist diese Vorrichtung dadurch gekennzeichnet, dass der Wärmetauscher im Wesentlichen ringzylindrisch ausgebildet ist und dass der Gasraum in Radialrichtung in mehrere ringzylindrische Teilräume unterteilt ist. Diese Teilräume können in Radialrichtung die gleich Abmessung aufweisen, aber auch unterschiedlich ausgebildet sein. Erst durch die beschriebene Ausbildung des Rotors ist es möglich, in technischer und ökonomisch sinnvoller Weise einen Kreisprozess der oben beschriebenen Art zu realisieren.
Prinzipiell ist es möglich, dass in den einzelnen Teilräumen jeweils das gleiche Gas vorliegt. In einem solchen Fall ist im Allgemeinen der Druck an der Außenseite eines Teilraums größer als der Druck an der Innenseite des außen an diesen Teilraum anschließenden weiteren Teilraums. Das heißt, dass zwar innerhalb der einzelnen Teilräume der Druck durch die Zentripetal-Beschleunigung von Innen nach Außen zunimmt, diese Zunahme aber an den Grenzen der einzelnen Teilräume unterbrochen ist. Daraus resultiert eine mechanische Belastung der Trennwände zwischen den einzelnen Teilräumen, die jedoch technisch beherrschbar ist, da die resultierende Druckkraft nach Außen wirkt und daher die Trennwände nicht auf Beulung belastet sind. In bevorzugter Weise sind jedoch in den einzelnen Teilräumen unterschiedliche Gase aufgenommen, die insbesondere unterschiedliche kritische Temperaturen und Drücke aufweisen. Auf diese Weise kann erreicht werden, dass die Druckbelastung der Trennwände minimiert wird, da im Gleichgewichtszustand innen und außen im Wesentlichen der gleiche Druck anliegt. Es liegt auch im Bereich der vorliegenden Erfindung, dass anstelle reiner Gase Gasgemische eingesetzt werden, die im Betrieb der Vorrichtung Konzentrationsgradienten ausbilden.
Aufgrund der extrem schnellen Rotation des Rotors unterscheiden sich die im inneren des Rotors vorliegenden Drücke im Ruhezustand wesentlich von denen im Betriebszustand. Um die Belastung der Trennwände und der anderen Bauteile zu minimieren, ist in einer besonders bevorzugten Ausführungsvariante der Erfindung eine Drucksteuerungseinrichtung vorgesehen, die mit den ringzylindrischen Teilräumen in Verbindung steht, um den Innendruck einzustellen. Beson- ders bevorzugter Weise sind die Ringzylindrischen Teilräume durch dünnwandige zylindrische Trennwände voneinander getrennt. Auf diese Weise können die mechanischen Belastungen der einzelnen Bauteile minimiert werden.
Kurzbeschreibung der Figuren
In der Folge die vorliegende Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher erläutert. Es zeigen: Fig. 1 eine schematische Darstellung einer Vorrichtung zur Durchführung des erfindungsgemäßem Verfahrens; Fig. 2 einen Rotor der Vorrichtung von Fig. 1 im vergrößerten Maßstab; Fig. 3 einen Schnitt nach Linie III-III in Fig. 2; Fig. 4 ein Diagramm, das den Temperaturverlauf in Radialrichtung des Rotors darstellt; und Fig. 5 ein Ts-Diagramm, das den Kreisprozess erklärt.
Detaillierte Beschreibung der bevorzugten Ausführungsvarianten
Die Vorrichtung von Fig. 1 besteht aus einer Turbine 11 zur Expansion des Arbeitsmediums, die in zwei Abschnitte 11a, 11b unterteilt ist. Im ersten Abschnitt 11a ist ein Wärmetauscher 11c vorgesehen, um eine isotherme Expansion zu ermöglichen. Grundsätzlich ist es dabei möglich, mehrere Turbinenstufen vorzusehen, in denen das Arbeitsmedium adiabat entspannt wird und die Wärmetauscher zwischen den einzelnen Turbinenstufen vorzusehen, wodurch nur eine näherungsweise isotherme Entspannung erreicht wird. Sofern der Wärmetauscher 11c in der Turbine 11 selbst vorgesehen ist, kann tatsächlich eine weitgehende isotherme Entspannung erreicht werden. Im zweiten Abschnitt 11b der Turbine 11 erfolgt eine adiabate Entspannung. Daher liegt das Kühlmedium am Ausgang der Turbine 11 mit einer Temperatur vor, die unter der Umgebungstemperatur liegt.
Von der Turbine 11 wird ein Generator 12 angetrieben und gleichzeitig wird ein Rotor 13 einer Zentrifuge angetrieben, die von dem Arbeitsmedium in Axialrichtung durchströmt wird. In einer Turbine 14 erfolgt eine Verdichtung, worauf das Arbeitsmedium über eine Rückführleitung 15 wieder zu der Turbine 11 rückgeführt wird.
Der Rotor 13 besitzt einen ringzylindrischen Wärmetauscher 18 und mehrere Gasräume 17a, 17b, 17c, 17d, die ebenfalls ringzylindrisch ausgebildet sind und außerhalb des Wärmetauschers 18 liegen. Es ist anzumerken, dass die Abmes- sungen des Wärmetauschers 18 und der Gasräume 17a, 17b, 17c, 17d in Radialrichtung in Fig. 1 übertrieben dargestellt sind, denn bei realen Ausführungen sind diese Abmessungen sehr klein, und der Wärmetauscher 18 und die Gasräume 17a, 17b, 17c, 17d liegen in der Nähe des äußeren Mantels des Rotors 13. An seiner Außenseite ist der Rotor 13 mit Kühlrippen 19 ausgestattet, die einen Wärmetauscher zur Abfuhr von Wärme darstellen. Dies ist durch die Pfeile 20 angedeutet.
In bevorzugter Weise sind die Gasräume 17a, 17b, 17c, 17d mit unterschiedlichen Gasen gefüllt, wobei der innerste Gasraum 17a beispielsweise mit Helium gefüllt ist, der daran anschließende Gasraum 17b mit Xenon, der dritte Gasraum 17c mit Stickstoff oder einem passenden Kohlenwasserstoff und der äußerste Gasraum 17d mit einem passenden Kältemittel. Durch die schnelle Rotation des Rotors 13 wird in den Gasräumen 17a, 17b, 17c, 17d ein Temperaturgefälle von außen nach innen hervorgerufen, die das Arbeitsmedium im Wärmetauscher 17 stark abkühlt.
In dem Wärmetauscher 16 wird Wärme auf dem Temperaturniveau der Umgebung zugeführt, was durch die Pfeile 21 angedeutet ist. Eine Erhöhung des Wirkungsgrades kann erzielt werden, wenn die Abwärme des Rotors 13 entsprechend den Pfeilen 20 ebenfalls dem Wärmetauscher 16 zugeführt wird.
In Fig. 2 ist der Rotor 13 in einer abgewandelten Ausführungsvariante detailliert dargestellt. Das Arbeitsmedium wird im Inneren einer hohlgebohrten ersten Welle 22, die in einem Lager 23 gelagert ist, zugeführt und über Verteilleitungen 24 radial zum Wärmetauscher 18 nach außen geführt. Im Inneren des Wärmetauschers 18 strömt das Arbeitsmedium in Axialrichtung zur gegenüberliegenden Seite des Rotors 13, um in weiteren Verteilleitungen 25 radial nach innen zu einer weiteren Welle 26 geführt zu werden, die in einem Lager 27 gelagert ist. Wie bei der vorigen Ausführungsvariante sind vier Gasräume 17a, 17b, 17c, 17d radial ineinander vorgesehen. An der Außenseite ist ein Wärmetauscher 18 zur Abfuhr der Wärme angeordnet. Schematisch angedeutet ist ein Gehäuse 28, in dem der Rotor drehbar angeordnet ist, das in Umfangsrichtung eine Vielzahl von Magneten 29 aufweist. Die Magnete 29 dienen dazu bei hohen Drehzahlen die Lager 23 und 27 zu entlasten und sind mit nicht dargestellten Magneten an der Außenseite des Rotors 13 selbst in Wechselwirkung. Dabei ist die Polarität so gerichtet, dass sich die Magnete 29 und die Magnete am Rotor 13 abstoßen, wodurch eine nach innen gerichtete Kraft auf die Mantelfläche des Rotors 13 ausgeübt wird, die die hohen mechanischen Beanspruchungen aufgrund der Fliehkräfte deutlichen verringert und höhere Drehzahlen ermöglicht. Im Inneren des Rotors 13 ist mindestens ein Gasbehälter 30 vorgesehen, der mit einem der Gasräume 17a, 17b, 17c, 17d über nicht dargestellte Leitungen in Verbindung steht. Vor- zugsweise jedoch besitzt der Ausgleichsbehälter 30 nicht dargestellte Unterbehälter die einzeln mit den einzelnen Gasräumen 17a, 17b, 17c, 17d verbunden sind. Auf diese Weise kann das mittlere Druckniveau in den Gasräumen 17a, 17b, 17c, 17d weitgehend unabhängig von der jeweiligen Drehzahl des Rotors 13 auf einem vorbestimmten Wert gehalten werden, so dass die mechanische Beanspruchung der Trennwände zwischen dem Wärmetauscher 18 und den Gasräumen 17a, 17b, 17c, 17d innerhalb vorbestimmter Grenzen bleibt.
In den folgenden Tabellen 1 bis 4 sind im Wege eines Ausführungsbeispiels die Zustandsgrößen des Gases bzw. der Gase in den einzelnen Gasräumen 17a, 17b, 17c, 17d angegeben, wobei sich die Tabelle 1 auf den innersten Gasraum 17a bezieht, Tabelle 2 auf den Gasraum 17b, Tabelle 3 auf den Gasraum 17c und Tabelle 4 auf den Gasraum 17d. Die linke Tabellenhälfte gibt dabei jeweils die Zustandsgrößen an der Außenwand des jeweiligen Gasraums 17a, 17b, 17c, 17d an, und die rechte Tabellenhälfte gibt dabei jeweils die Zustandsgrößen an der Innenwand des jeweiligen Gasraums 17a, 17b, 17c, 17d an.
In den Tabellen 1 bis 4 bedeuten: T Temperatur in K d Dichte in kg/m3 P Druck in MPa s Entropie in kJ/kgK u innere Energie in kJ/kg h Enthalpie in kJ/kg
Tabelle 1
Tabelle 2
Figure imgf000008_0001
Figure imgf000008_0002
Tabelle 3
Tabelle 4
Figure imgf000009_0001
Figure imgf000009_0002
Fig. 3 zeigt schematisch einen Schnitt nach Linie III - III in Fig. 2, wobei zur Erhöhung der Übersichtlichkeit der Wärmetauscher 18 und die Kühlrippen 19 weggelassen sind. Pfeile 20 symbolisieren dem Wärmestrom.
In Fig. 4 ist ein Diagramm dargestellt, das schematisch die Temperaturverteilung in Radialrichtung des Rotors 13 angibt, die durch r angegeben ist. Die Kurve Ki stellt die Temperatur T im Leerlaufzustand dar, d.h. dann, wenn kein Wärmestrom auftritt, was der Fall ist, wenn der Rotor 13 innen und außen isoliert ist. Die Kurve K2 stellt die Temperatur T im Betrieb dar, d.h. dann, wenn ein Wärmestrom in Radialrichtung vorliegt.
Fig. 5 zeigt ein idealisiertes T-s - Diagramm, bei dem die Temperatur über der Entropie aufgetragen ist. Der Kreisprozess wird in der Richtung der Pfeile 31 durchlaufen. Mit dem Doppelpfeil 32 ist die Temperaturdifferenz der Zentrifuge, d.h. des Rotors 13 über die Gasräume 17a, 17b, 17c, 17d dargestellt. Bedingt durch die Verluste beim Wärmeübergang ist die tatsächlich im Kreisprozess nutzbare Temperaturdifferenz 33 deutlich geringer. Die Zustände 1, 2, 3, 4 in dem Diagramm entsprechen den Zuständen an den analog bezeichneten Punkten in Fig. 1. Es ist beispielsweise anzumerken, dass bei einem einphasigen Arbeitsmedium die Zustandsänderungen 1 -> 2 und 3-> 4 nicht genau isotherm sind.
Die Tabelle 5 gibt die Zustandsgrößen in den einzelnen Punkten unter idealisierten Annahmen an. Tabelle 5
Figure imgf000010_0001
Figure imgf000010_0002
Die vorliegende Erfindung ermöglicht es, eine Vorrichtung und einen Kreisprozess zu realisieren, die Wirkungsgrade aufweisen, die wesentlich über denen herkömmlicher Lösungen liegen.

Claims

P A T E N T A S P R Ü C H E
1. Verfahren zur Umwandlung von Wärme in mechanische Arbeit, bei dem in einem Kreisprozess ein Arbeitsmedium unter Abgabe von Wärme verdichtet wird, danach über einen ersten Wärmetauscher (16) in thermischen Kontakt mit der Umgebung gebracht wird, danach unter Gewinnung mechanischer Arbeit entspannt wird, worauf der Kreisprozess erneut durchlaufen wird, dadurch gekennzeichnet, dass das Arbeitsmedium nach der Entspannung durch einen weiteren Wärmetauscher (18) geführt wird, der im Inneren eines schnell rotierenden Rotors (13) angeordnet ist und der an seiner Außenseite von mindestens einem im Wesentlichen ringförmigen Gasraum (17a, 17b, 17c, 17d) umgeben ist, an dessen Außenseite Wärme abgeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Arbeitsmedium stromabwärts des Rotors (13) durch einen Verdichter geführt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Arbeitsmedium im ersten Wärmetauscher (16) Umgebungswärme aufnimmt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Arbeitsmedium im Wesentlichen in Axialrichtung durch den Rotor (13) geführt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass im Rotor (13) eine Temperaturdifferenz von mindestens 100 K, vorzugsweise von mindestens 300 K und besonders vorzugsweise von mindestens 500 K aufgebaut wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass an der Außenseite des Rotors (13) Wärme über Kühlrippen abgeführt wird.
7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass an der Außenseite des Rotors (13) Wärme über einen dritten Wärmetauscher (19) abgeführt wird.
8. Vorrichtung zur Umwandlung von Wärme in mechanische Arbeit, mit einem Rotor (13), der einen im Wesentlichen in Axialrichtung durchströmbaren Wärmetauscher (18) aufweist, der an seiner Außenseite von einer zylindri- schen Wand begrenzt ist, an deren Außenseite mindestens ein im Wesentlichen ringförmigen Gasraum (17a, 17b, 17c, 17d) vorgesehen ist, dadurch gekennzeichnet, dass der Wärmetauscher (18) im Wesentlichen ringzylindrisch ausgebildet ist, und dass der Gasraum (17a, 17b, 17c, 17d) in Radialrichtung in mehrere ringzylindrische Teilräume (17a, 17b, 17c, 17d) unterteilt ist.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass in den einzelnen Teilräumen (17a, 17b, 17c, 17d) unterschiedliche Gase aufgenommen sind.
10. Vorrichtung nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass eine Drucksteuerungseinrichtung vorgesehen ist, die mit den ringzylindrischen Teilräumen (17a, 17b, 17c, 17d) in Verbindung steht, um den Innendruck einzustellen.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Drucksteuerungseinrichtung im Bereich der Achse des Rotors (13) vorgesehen ist.
12. Vorrichtung nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass die ringzylindrischen Teilräume (17a, 17b, 17c, 17d) durch dünnwandige zylindrische Trennwände voneinander getrennt sind.
13. Vorrichtung nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass die Zuleitung und die Ableitung des Arbeitsmediums durch die Achsen (22, 26) des Rotors (13) erfolgt.
14. Vorrichtung nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass der Rotor (13) in einem Gehäuse (28) gelagert ist, das Magnete (29) aufweist, die eine nach innen gerichtete Magnetkraft auf den Rotorumfang ausüben.
15. Vorrichtung nach einem der Ansprüche 8 bis 14, dadurch gekennzeichnet, dass der Gasraum (17a, 17b, 17c, 17d) in Radialrichtung in mindestens drei, vorzugsweise mindestens vier ringzylindrische Teilräume (17a, 17b, 17c, 17d) unterteilt ist.
2004 11 18 Ba
PCT/AT2004/000405 2003-11-20 2004-11-18 Verfahren und vorrichtung zur umwandlung von wärme in mechanische arbeit WO2005049973A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04796948A EP1714017A2 (de) 2003-11-20 2004-11-18 Verfahren und vorrichtung zur umwandlung von wärme in mechanische arbeit
US10/584,759 US7748220B2 (en) 2003-11-20 2004-11-18 Method and device for converting heat into mechanical work
CA002550569A CA2550569A1 (en) 2003-11-20 2004-11-18 Method and apparatus for converting heat into mechanical work

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0186503A AT413734B (de) 2003-11-20 2003-11-20 Verfahren zur entnahme von wärme bei umgebungstemperatur
ATA1865/2003 2003-11-20

Publications (2)

Publication Number Publication Date
WO2005049973A2 true WO2005049973A2 (de) 2005-06-02
WO2005049973A3 WO2005049973A3 (de) 2005-08-11

Family

ID=34596333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2004/000405 WO2005049973A2 (de) 2003-11-20 2004-11-18 Verfahren und vorrichtung zur umwandlung von wärme in mechanische arbeit

Country Status (5)

Country Link
US (1) US7748220B2 (de)
EP (1) EP1714017A2 (de)
AT (1) AT413734B (de)
CA (1) CA2550569A1 (de)
WO (1) WO2005049973A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070034A2 (de) 2008-12-18 2010-06-24 Htps Hirschmanner Kg Verfahren zur nutzung von wärme

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339604B (zh) * 2013-04-29 2018-06-29 谢塞尔有限公司 热力机
KR102392820B1 (ko) * 2015-05-21 2022-05-02 주식회사 브라이트론 회전팬 블레이드부 자체의 표면냉각효과를 이용한 냉각팬
WO2017134481A1 (en) * 2016-02-02 2017-08-10 Monarch Power Technology (Hk) Ltd. A tapering spiral gas turbine for combined cooling, heating, power, pressure, work and water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019325A (en) * 1975-09-05 1977-04-26 Murphy Jr Paschal H Energy converter
US4044562A (en) * 1974-05-02 1977-08-30 Will Clarke England Multirotary energy conversion valve
DE3812928A1 (de) * 1988-04-18 1989-11-02 Engel Wilhelm Energieerzeugungsvorrichtung (waermeschleuder 2 mit kreisprozess)
DE3807783A1 (de) * 1988-03-09 1989-11-09 Engel Wilhelm Energieerzeugungsvorrichtung waermeschleuder 1

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004426A (en) * 1971-06-14 1977-01-25 Nikolaus Laing Thermal prime mover
GB1470707A (en) * 1974-10-08 1977-04-21 United Turbine Ab & Co Gas turbine plant where a circulating medium is indirectly heated
US4442677A (en) * 1980-11-17 1984-04-17 The Franklin Institute Variable effect absorption machine and process
US4781241A (en) * 1987-08-27 1988-11-01 International Fuel Cells Corporation Heat exchanger for fuel cell power plant reformer
EP0539636B1 (de) * 1991-10-31 1996-06-05 Honda Giken Kogyo Kabushiki Kaisha Gasturbine
SE510583C2 (sv) * 1994-10-24 1999-06-07 Sab Wabco Ab Säkerhetsbromsarrangemang i en bromsaktuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044562A (en) * 1974-05-02 1977-08-30 Will Clarke England Multirotary energy conversion valve
US4019325A (en) * 1975-09-05 1977-04-26 Murphy Jr Paschal H Energy converter
DE3807783A1 (de) * 1988-03-09 1989-11-09 Engel Wilhelm Energieerzeugungsvorrichtung waermeschleuder 1
DE3812928A1 (de) * 1988-04-18 1989-11-02 Engel Wilhelm Energieerzeugungsvorrichtung (waermeschleuder 2 mit kreisprozess)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070034A2 (de) 2008-12-18 2010-06-24 Htps Hirschmanner Kg Verfahren zur nutzung von wärme
WO2010070034A3 (de) * 2008-12-18 2011-03-24 Htps Hirschmanner Kg Verfahren zur nutzung von wärme

Also Published As

Publication number Publication date
WO2005049973A3 (de) 2005-08-11
US20060277909A1 (en) 2006-12-14
US7748220B2 (en) 2010-07-06
EP1714017A2 (de) 2006-10-25
ATA18652003A (de) 2005-09-15
AT413734B (de) 2006-05-15
CA2550569A1 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
EP3286412B1 (de) Energiespeichervorrichtung sowie verfahren zur speicherung von energie
DE2715499A1 (de) Verfahren und vorrichtung zur nutzung von energie aus unterirdischen geothermischen quellen
EP2909452B1 (de) Vorrichtung zum erzeugen elektrischer energie mittels eines orc-kreislaufs
EP3186506B1 (de) Vorrichtung und verfahren zum speichern von energie
WO2005045203A2 (de) Verfahren zum betreiben einer turbomaschine, und turbomaschine
EP0021302B1 (de) Aus einer geothermischen Wärmequelle versorgtes Wärmekraftwerk
WO2012040864A1 (de) Wärmepumpe
EP3230571B1 (de) Vorrichtung und verfahren zum vorübergehenden speichern von gas und wärme
WO2020015963A1 (de) Thermoelektrischer oder thermomechanischer wandler und computergesteuerte oder elektronisch gesteuerte verfahren
AT413734B (de) Verfahren zur entnahme von wärme bei umgebungstemperatur
DE2119558A1 (de) Kühlkompressor
DE3841640A1 (de) Verfahren zur gewinnung von waermeenergie aus umweltfluida
EP3141710A1 (de) Vorrichtung und verfahren zum betrieb von volumetrischen expansionsmaschinen
DE112016000565B4 (de) Einheit zum Umwandeln von Wärme in mechanische Energie
EP3559564B1 (de) Verfahren und vorrichtung zur erzeugung von prozesskälte und prozessdampf
EP3814633A1 (de) Scheibenläuferturbine, verfahren zum betrieb einer scheibenläuferturbine, einrichtung zur umwandlung thermischer energie in mechanische energie, verfahren zur umwandlung thermischer energie in mechanische energie sowie verfahren zur umwandlung thermischer energie in elektrische energie
DE2263779A1 (de) Verfahren zum erwaermen oder kuehlen von medien und vorrichtung zur ausfuehrung des verfahrens
DE920205C (de) Einrichtung zur Erzeugung und Nutzbarmachung einer Druckgasstroemung
DE10035289A1 (de) Vorrichtung zur Erzeugung von mechanischer Energie mit einer mit äußerer Verbrennung arbeitenden Wärmekraftmaschine
AT133801B (de) Verdichter mit nachgeschalteter Expansionsturbine für Luft- oder Gasaufbereitungsanlagen.
DE822871C (de) Verfahren und Vorrichtung zur annaehernd isothermen Verdichtung von Luft oder Gas sowie zur annaehernd isothermen Entspannung derselben
DE3533184A1 (de) Waermekraftmaschine zur nutzung von umweltwaerme, insbesondere von atmosphaerischer luftwaerme
AT520661A1 (de) Thermodynamische Maschine mit Ackeret-Keller Kreisprozess
DE202022107104U1 (de) Anlage zur Erzeugung von Eis, Eisbrei/Eispartikeln, Schnee, Hydraten, Kaltwasser oder deren Kombinationen bzw. Mischung/Suspension in einem geschlossenen Prozess
DE3935048A1 (de) Energieumwandlungsvorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004796948

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2550569

Country of ref document: CA

Ref document number: 3542/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006277909

Country of ref document: US

Ref document number: 10584759

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004796948

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10584759

Country of ref document: US