WO2005057996A2 - User-definable thermal drift voltage control oscillator - Google Patents

User-definable thermal drift voltage control oscillator Download PDF

Info

Publication number
WO2005057996A2
WO2005057996A2 PCT/US2004/041504 US2004041504W WO2005057996A2 WO 2005057996 A2 WO2005057996 A2 WO 2005057996A2 US 2004041504 W US2004041504 W US 2004041504W WO 2005057996 A2 WO2005057996 A2 WO 2005057996A2
Authority
WO
WIPO (PCT)
Prior art keywords
oscillator
active device
resonator
coupled
network
Prior art date
Application number
PCT/US2004/041504
Other languages
French (fr)
Other versions
WO2005057996A3 (en
Inventor
Ulrich L. Rohde
Ajay Kumar Poddar
Parimal Patel
Original Assignee
Synergy Microwave Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synergy Microwave Corporation filed Critical Synergy Microwave Corporation
Priority to CA002548317A priority Critical patent/CA2548317C/en
Priority to JP2006544040A priority patent/JP4939228B2/en
Publication of WO2005057996A2 publication Critical patent/WO2005057996A2/en
Publication of WO2005057996A3 publication Critical patent/WO2005057996A3/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • H03B5/1841Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K13/00Conveying record carriers from one station to another, e.g. from stack to punching mechanism
    • G06K13/02Conveying record carriers from one station to another, e.g. from stack to punching mechanism the record carrier having longitudinal dimension comparable with transverse dimension, e.g. punched card
    • G06K13/08Feeding or discharging cards
    • G06K13/0806Feeding or discharging cards using an arrangement for ejection of an inserted card
    • G06K13/0825Feeding or discharging cards using an arrangement for ejection of an inserted card the ejection arrangement being of the push-push kind
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/02Details
    • H03B5/04Modifications of generator to compensate for variations in physical values, e.g. power supply, load, temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1203Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier being a single transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1231Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • H03B5/1805Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a coaxial resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/0014Structural aspects of oscillators
    • H03B2200/0028Structural aspects of oscillators based on a monolithic microwave integrated circuit [MMIC]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/003Circuit elements of oscillators
    • H03B2200/004Circuit elements of oscillators including a variable capacitance, e.g. a varicap, a varactor or a variable capacitance of a diode or transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/006Functional aspects of oscillators
    • H03B2200/007Generation of oscillations based on harmonic frequencies, e.g. overtone oscillators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/006Functional aspects of oscillators
    • H03B2200/0076Power combination of several oscillators oscillating at the same frequency

Definitions

  • FIG. 6 illustratively depicts a user-definable thermal profile plot over the temperature range of -40°C to +85°C in accordance with an aspect of the present invention.
  • FIG. 7 illustratively depicts a user-definable thermal profile plot over the temperature range of -40°C to +85°C in accordance with an aspect of the present invention.
  • FIG. 8 illustratively depicts a user-definable thermal profile plot over the temperature range of -40°C to +85°C in accordance with an aspect of the present invention.
  • FIG. 9 depicts a schematic of an oscillator in accordance with an aspect of the present invention.
  • FIG. 10 illustratively depicts a phase noise plot of an oscillator implemented in accordance with an aspect of the present invention.
  • the Q of the tuning diode falls off at high frequency due to the series bulk-resistance R s and can be expressed as
  • the slot-cut-microstrip-line-printed board 440 includes a width, w, a height, h, and length dimensions, l ⁇ and 1 2 .
  • the board 440 also includes a slot d that divides the base of the board 440 into two regions defined by length dimensions, li and 1 2 . These dimensions define the size of the board 440 and can be selected to define the thermal profile of the oscillator.
  • the structure is designed to increase the loaded time average quality factor over the temperature range by selecting an optimum length-width ratio (L/W-ratio) of the each side of the slot-cut-microstrip-line coupling-capacitor.

Abstract

A voltage controlled oscillator (200) that includes a slot-cut-printed-board coupling network (230) between a resonator (240), a tuning diode network (234) and an active device (210) and being operable to act as a common-coupling capacitor between the resonator (240), the tuning diode network (234) and the active device (210).

Description

USER-DEFINABLE THERMAL DRIFT VOLTAGE CONTROL OSCILLATOR TECHNICAL FIELD In one aspect, the present invention relates to circuitry • for voltage-controlled oscillators (VCOs) . Preferably such circuitry maintains the noise performance of the oscillator over a temperature range of -40°C to +85°C and reduces the thermal drift, i.e., drifts in frequency owing to a change in temperature, to approximately 100 kilohertz (kHz). BACKGROUND ART A voltage controlled oscillator (VCO) or oscillator is a component that can be used to translate DC voltage into a radio frequency (RF) voltage or signal. The magnitude of the output signal is dependent on the design of the VCO circuit and the frequency of operation is determined by a resonator that provides an input signal. Clock generation and clock recovery circuits typically use VCOs within a phase locked loop (PLL) to either generate a clock from an external reference or from an incoming data stream. VCOs affect the performance of PLLs . In addition, PLLs are typically considered essential components in communication networking as the generated clock signal is typically used to either transmit or recover the underlying service information so that the information can be used for its intended purpose. PLLs are also important in wireless networks as they enable the communications equipment to quickly lock onto the carrier frequency on which communications are transmitted. The popularity of mobile telephones has renewed interest in and generated more attention in wireless architectures. This popularity has further spawned renewed interest in the design of low noise wideband oscillators. The recent explosive growth in the new families of cellular telephones and base stations using universal mobile telephone systems (UMTS) has stirred a need for developing an ultra-low noise oscillator with a fairly wide tuning range. The demands of wideband sources have generally increased telescopically because of the explosive growth of wireless communications. In particular, modern communication systems are typically multi-band and multi-mode, therefore requiring a wideband low noise source that preferably allows simultaneous access to DCS 1800, PCS 1900 and WCDMA (wideband code division multiple access) networks by a single wideband VCO. The dynamic operating range and noise performance of a VCO may limit or affect the performance of the PLL itself, which in turn may affect the performance of the device in which the PLL is employed, e.g., RF transceivers, a cell phone, a modem card, etc.
Broadband tunability of VCOs represents one of the more fundamental tradeoffs in the design of a VCO, impacting both the technology and the topology used. The dynamic time average quality factor (i.e., Q-factor) of the resonator as well as the tuning diode noise contribution affect the noise performance of a VCO. Furthermore, the dynamic loaded Q is, in general, inversely proportional to the operating frequency range of the VCO. Despite the continuous improvement in VCO technology, low phase noise typically remains a bottleneck and poses a challenge to RF transceiver (transmitter - receivers) design. In addition, oscillator/VCO design typically poses a challenge to the RF trans-receiver system. This is typically considered due to the more demanding parameters of the VCO design: low phase noise, low power consumption and wide frequency tuning range. Improvements in oscillator/VCO technology have continued with time, yielding ever-smaller sources with enhanced phase noise and tuning linearity but the phenomena of the thermal drift over the temperature range (-40°C to +85°C) has not been properly addressed. The wide operating temperature range of the oscillator/VCOs coupled with a general lack of information on the thermal drift-profile creates a need for the development of a uniform and user-definable thermal drift profile oscillator with a relatively low thermal drift over the wide operating temperature range and operating frequency band. Usually, high-stability oscillators are built with a quartz crystal up to frequencies of several hundred megahertz. However, in order to achieve better stability and lower costs, the SAW (surface acoustic wave) resonator based oscillator is generally considered a better choice for an ultra low phase noise low thermal drift oscillator. SAW resonators are typically used in oscillators as a two-port resonator and have a relatively small pull-in range that usually does not support a sufficient tuning range to compensate for tolerances due to the circuit components and thermal drift over the operating temperature range (-40°C to
+85°C) . In addition, SAW devices are comparatively expensive compared to CROs (ceramic resonator based oscillator) and their availability and performance are limited to a selected frequency and narrow operating temperature range (-20°C to +70°C) making them unsuitable for operating in stringent temperature environments and/or low cost applications . In addition, the thermal drift of a ceramic resonator based oscillator/VCOs is typically around 5 - 10 MHz over a temperature range of -40°C to +85°C. The ceramic resonator based VCO is usually also susceptible to phase hits that may occur in a PLL. Thus, there is a need for a user-definable thermal drift oscillator operable over a wide temperature range, which offers a cost-effective solution to the phase hit problem. SUMMARY OF THE INVENTION An aspect of the present invention is an oscillator. The oscillator preferably comprises an active device having first, second and third terminals and circuitry coupled between the first and second terminals of the active device. The circuitry is preferably operative to provide a bias voltage to the active device and feedback a select amount of phase noise to the active device . The oscillator further preferably comprises a tuning diode coupled to the second terminal of the active device through a slot-cut-printed-board coupling network. In accordance with this aspect of the present invention, the slot-cut-printed-board coupling network desirably acts as an evanescent mode buffer between a resonator coupled thereto and the active device. Further in accordance with this aspect of the present invention, the slot-cut-printed-board coupling network operates to control a profile of the thermal drift of the active device or, in general, the oscillator. Further still in accordance with this aspect of the present invention, a feedback capacitor is preferably coupled between the second and third terminals of the active device. In addition, the oscillator may further desirably comprise a first filter and a second filter coupled to the third terminal so as to provide two-stage regenerative filter. Further in accordance with this aspect of the present invention, the active device may comprise a bipolar transistor or a field effect transistor and the first, second and third terminals respectively comprise the collector, base and emitter nodes of either of the transistors. Another aspect of the present invention is an oscillator that preferably comprises an active device and circuitry coupled between a resonator, a tuning diode network and the active device. The circuitry is preferably operable to act as a common- coupling capacitor between the resonator, the tuning diode network and the active device. In accordance with this aspect of the present invention, the circuitry controls a thermal drift profile of the oscillator over an operating temperature range. In accordance with this aspect of the present invention, the circuitry desirably comprises a slot-cut-microstrip-line, whose dimensions are selectable to define a thermal profile of the oscillator. Further in accordance with this aspect of the present invention, the circuitry acts as an evanescent-mode-buffer between the resonator and the active device. Further still, the tuning diode network is capacitively coupled to the circuitry. Further in accordance with this aspect of the present invention, the resonator preferably comprises a ceramic resonator. Further still, the active device desirably comprises either a field effect transistor or a bipolar transistor. In another aspect, the present invention comprises an apparatus comprising a phase lock loop for generating a clock signal used to transmit or recover information communicated from or to the apparatus . In addition, the phase lock loop preferably comprises a voltage-controlled oscillator for generating the clock signal. Most preferably, the voltage-controlled oscillator preferably comprises an active device; and a slot-cut-microstrip- line coupled between a resonator, a tuning diode network and the active device that is operable to act as a common-coupling capacitor between the resonator, the tuning diode network and said active device. Preferably, the apparatus comprises a wireless device and most preferably comprises a cellular telephone. In addition, the apparatus may also comprise a personal digital assistant. In another aspect, the present invention comprises an apparatus that comprises a phase lock loop for generating a clock signal used to transmit or recover information communicated from or to the apparatus. The phase lock loop desirably includes a voltage-controlled oscillator for generating the clock signal. The voltage controlled oscillator preferably comprises an active device; and a slot-cut-microstrip-line coupled between a resonator, a tuning diode network and the active device and operable to act as a common-coupling capacitor between the resonator, the tuning diode network and said active device. The apparatus may desirably comprise a wireless device, and most desirably comprises a cellular telephone. Further in accordance with this aspect of the present invention, the apparatus preferably comprises a personal digital assistant. In another aspect, the present invention comprises a telephone. The telephone preferably comprises a phase lock loop for generating a clock signal used to transmit or recover information communicated from or to the telephone. The phase lock loop preferably comprises a voltage-controlled oscillator for generating the clock signal, the voltage controlled oscillator comprising, an active device; and circuitry coupled between a resonator, a tuning diode network and the active device and operable to act as a common-coupling capacitor between the resonator, the tuning diode network and said active device. In accordance with this aspect of the present invention, the information may be communicated over a wireless or wired network. In a method aspect, the present invention comprises coupling a capacitor between a resonator, a tuning diode network and an active device; and operating the capacitor as an evanescent mode buffer between the resonator and the active device to compensate for drifts in an output frequency of the oscillator due to temperature changes. The method may further desirably comprise biasing the active device at a predetermined voltage such that the capacitor maintains the predetermined voltage level by compensating for drifts in an output frequency of the oscillator due to temperature changes. Further in accordance with the method, the evanescent mode buffer compensates for drifts in the output frequency of the oscillator due to temperature changes by storing additional energy generated by the oscillator due to temperature changes .
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A and IB depict circuits of a tuning diode in accordance with an aspect of the present invention. FIG. 2 depicts a schematic of an oscillator in accordance with an aspect of the present invention. FIG. 3 depicts a schematic of an oscillator in accordance with an aspect of the present invention. FIG. 4 depicts a schematic of an oscillator in accordance with an aspect of the present invention. FIG. 5 illustratively depicts a user-definable thermal profile plot over the temperature range of -40°C to +85°C in accordance with an aspect of the present invention. FIG. 6 illustratively depicts a user-definable thermal profile plot over the temperature range of -40°C to +85°C in accordance with an aspect of the present invention. FIG. 7 illustratively depicts a user-definable thermal profile plot over the temperature range of -40°C to +85°C in accordance with an aspect of the present invention. FIG. 8 illustratively depicts a user-definable thermal profile plot over the temperature range of -40°C to +85°C in accordance with an aspect of the present invention. FIG. 9 depicts a schematic of an oscillator in accordance with an aspect of the present invention. FIG. 10 illustratively depicts a phase noise plot of an oscillator implemented in accordance with an aspect of the present invention. BEST MODE FOR CARRYING OUT INVENTION FIGS. 1A and IB depict circuits that illustrate a tuning diode using resistors, capacitors and inductors. As shown in FIG. 1A, a tuning diode may be depicted as a two-port device (as shown, ports 1 and 2) having a resistor Rs connected to port 1 and in series with an inductor Ls . Rs and Ls are connected in series to resistor Rp and a variable capacitor Cj, which are in parallel with each other. Cj reflects the junction capacitance of the tuning diode and is variable in response to temperature changes. The circuit further includes a capacitor Cc in parallel with Rs, Ls and Cj between ports 1 and 2 and an inductor Ls. between port 2, Cj, Cc and Rp, as shown. FIG. IB shows a simplified equivalent circuit of a tuning diode and includes resistor Rp in parallel with capacitor Cc. The capacitor Cc is also in series with resistor Rs . With reference to FIGS. 1A and IB, the expression for the junction capacitance of the tuning diode under a reverse bias condition is given by: dQ ^ ε0εr(T)A ε0εrA
Cjr,d .,A,V) = dV dj [2Ksε0(Vbi - VA) (NA + ND)} 1/2 a NAND
Under the abrupt junction assumption, the depletion region thickness, dj, is given by:
[2Ksε0(Vbi - VA) (NA + ND)}1/2 dj = q NAND Where, ND and NA are the donor and acceptor volume densities Vbi is the built-in potential and is given by:
Figure imgf000010_0001
Under reverse bias conditions, the spacing dj is a function of the applied voltage VA<0 and this effect is used to produce a variable capacitor. The equivalent capacitance of a junction per unit area is given as : C,-(εr,d,.,A) dE qBε (m+l) m,+2) c(q,B,ε) = - ΠI H = ε0εr(T) - A dV (m + 2)(V + ) ε„ε„ 15 c(q,B,ε) = [2Ksε0(Vbi-VA)(NA+ND)] 1/2 NAND
Q = ε0εr(T)E Where,
Q = Charge per unit area ε =εoεr, εr = Dielectric constant
A = Device cross sectional area d = Depletion layer width c = Capacitance per unit area m = Impurity exponent q = Charge
B = Magnetic field
T = Temperature
V = Reverse voltage applied across the diode E= Electric field Combining all the constants terms together, including the area of the diode, into the constant, Cd, the expression for capacitance is given as : CA
Cjiε^dj.A.V) -- (V + φY cd =c0(φγ
Figure imgf000011_0001
Where, γ = Capacitance exponent and depends on the doping geometry of the diode. Its value varies from 1/3 to 2 for Si (silica) diode. The value of γ for an abrupt junction diode is H, but such diodes have a limited tuning ratio. For wideband tunability, a hyper abrupt junction diode is preferred, and value of γ is 1 or 2. φ = The junction contact potential (0.7V for Si (silica)) Co = Value of capacitance at zero voltage Cc = Case capacitance Cj = Junction capacitance The tuning ratio (TR) is given by
Figure imgf000011_0002
The oscillator frequency varies proportionally to 1/Vc and for the linear tuning range junction capacitance should vary as 1/V2 (γ=2) . The frequency ratio is given as the square root of the tuning ratio TR The Q of the tuning diode is a function of the reverse bias voltage, frequency and temperature. The expression for the Q of the tuning diode is given by:
Figure imgf000011_0003
C,
C = [Cc +.Cy(*r,rf,, F)] = Cc + (V + φY
The Q of the tuning diode falls off at high frequency due to the series bulk-resistance Rs and can be expressed as
Figure imgf000012_0001
U2l High-frequency R.
The Q of the tuning diode falls off at low frequencies due to thee bbaacckk iresistance of the reverse-biased diode Rp and can be expressed as : ω CRl ω CRl
Gel ■Low -frequency => ω CR„ Rp +Rs2C2RRp 2
[Q] OC /? 'Low- frequency P
Where
Rp= Parallel resistance or back resistance of the diode Rs= Bulk resistance of the diode-device material
Lε= Internal lead inductance
L s <= External lead inductance
Cc = Case capacitance As the junction-temperature increases, the leakage current increases and it lowers the back resistance Rp of the diode. The increase in the junction temperature causes a slight decrease in
Rs, but the effects of the decreasing Rp are greater and this forces the effective Q to decrease. The change in the value of the capacitance of the tuning diode with respect to temperature causes frequency drifts of the oscillator/VCOs circuit. The change in the value of the capacitance with temperature can be given by:
C oc [τ °
C(F) = (0) (V + φY dC(V) γ C(0) dφ dT (V + φ)(r+1 dT
Figure imgf000013_0001
Figure imgf000013_0002
dφ -2.3(mV/° C) , for Si (silica) ~dT Where Tcc is a temperature coefficient. From above, the temperature coefficient is inversely proportional to the applied voltage and directly proportional to the diode slope γ. In addition, tuning diode capacitance increases with an increase in temperature, whereas capacitance drift decreases with an increase in reverse bias voltage, i.e., at a higher reverse voltage drift is at a minimum as compared to at a low reverse voltage. The capacitance constant C is a function of the geometric dimension and varies with the dielectric constant, which is also a function of temperature. The net thermal drift of an oscillator/VCO is generally due to the tuning diode, active device, resonator and passive components in the oscillator circuitry. The approach of adding a negative temperature coefficient compensating capacitor typically does not compensate for the tuning diode temperature coefficient Tcc because the change in the capacitance is not constant, but instead varies with the applied reverse bias voltage across the tuning diode over the temperature. The general approach of nullifying the temperature dependency of the tuning diode's built in contact potential φ by adding a forward bias diode or transistor-emitter-follower in series with the tuning voltage of the tuning diode network comes at the cost of higher phase noise and non-uniform thermal drift over the temperature range. In accordance with an aspect of the present invention, the thermal drift is compensated for by introducing a common coupling-capacitor between a resonator, an active device and a tuning diode network of an oscillator. The coupling capacitor may comprise a slot-cut-microstripline or any other variable capacitive storage element. The slot-cut-microstripline controls the profile of the thermal drift and also acts as an evanescent- mode-buffer between the resonator and the active device, so that the time average dynamic loaded Q of the resonator is enhanced and provides low noise performance over the operating frequency band of the oscillator. In particular, FIG. 2 shows an oscillator 200 in accordance with an aspect of the present invention. The oscillator includes a three-terminal device 210 having a first terminal 214, a second terminal 216 and a third terminal 218. The three-terminal device may comprise any three-terminal device that can provide a 180° phase shift between any two terminals and preferably includes a bipolar or field effect transistor. A feedback-bias network 224 is connected between the first and second terminals, 214, 216, respectively. A slot-cut-printed-board-coupling network 230 is coupled to the second terminal and to a tuning diode network 234. The slot-cut-printed-board-coupling network 230 is also coupled to a resonator 240. In addition, the oscillator 200 includes a feedback capacitor 244 between the second and third terminals, 216, 218, respectively, and a pair of filters, 250, 252 coupled in series to the third terminal 218. An output signal is taken between first filter 250 and second filter 252. In accordance with this aspect of the present invention, the slot-cut-printed-board-coupling network 230 compensates for capacitance changes in the tuning-diode network 234 due to changes in operating temperature of the environment or the oscillator 200. In addition, and as discussed in further detail below, the slot-cut-printed-board-coupling network 230 may be implemented so as to define the thermal drift profile of the oscillator, i.e., the change in output frequency due to change in operating temperature. The physical dimensions of the slot-cut- printed-board may be chosen to define a particular thermal profile, e.g., see FIGS. 5-8. The slot-cut-printed-board- coupling network 230 also acts as an evanescent mode buffer between the resonator 240 and the three terminal device 210 by storing additional energy that may develop in the oscillator as the temperature changes . The additional energy is then typically released without increasing the phase noise of the output signal. In particular, the network 230 provides a storage element, e . g. , a capacitor, that generally operates to store excess energy that may develop in the circuit due to temperature changes and releasing such energy so that phase noise performance of the oscillator is controlled during the temperature changes. For example, if the bias voltage increases due to a change in temperature, the capacitor assists in lowering the bias voltage to or near the optimal operating point. Turning now to FIG. 3, there is illustrated a oscillator 300 in accordance with an aspect of the present invention. The oscillator includes an active device 310 having three terminals, 313, 315, 317. The active device 310 may comprise a bipolar transistor or field effect transistor wherein the first, second and third terminals 313, 315, 317 comprise, respectively, the collector, base and emitter nodes of the transistor. In general, the active device 310 may comprise any device that can provide a 180° phase shift between the first terminal 313 and second terminal 315. The first terminal 313 is connected to a feedback-bias network 323. The network 323 includes a voltage source Vcc coupled to the first terminal 313 that is used for biasing the active device 310 by providing a predetermined voltage at the first terminal 313. The network 323 also includes a pair of transistors Q2, Q3 (which are illustrated as bipolar transistors, but may also be field effect transistors) and associated circuit elements such as capacitors, resistors and inductors that couple a selected amount of the signal from the first terminal 313 to the second terminal 315. The second terminal 315 is also capacitively coupled to tuning network 329, slot-cut-printed-board-coupling capacitor 332 and a resonator 338. As shown, the tuning network 329, slot-cut- printed-board-coupling capacitor 332 and resonator 338 are coupled in parallel. In addition, the tuning network 329 is capacitively coupled via coupling capacitor 340. The slot-cut- printed-board-coupling capacitor 332 compensates for changes in the capacitance, which are in turn caused by the changes in the junction contact potential, e.g., dΦ/dT, of the tuning network 329 as a result of changes in the operating temperature of oscillator 300 or the environment. The oscillator 300 further includes a feedback capacitor 342 that is coupled to the third terminal 317 through a resistor 344 and to ground through capacitor 348. Capacitor 342, resistor 344 and capacitor 348 together form a network that feeds back a select portion of the signal from the third terminal 317 to the second terminal 315. The oscillator 300 also includes a pair of filters 356, 358 coupled to the third terminal 317 that provide two-stage regenerative filtering. An output signal is capacitively coupled to output port 360 between the filters 356, 358. As shown, filter 356 preferably comprises an LC filter and filter 358 preferably comprises an RC filter. The time constants of these filters are preferably adjusted to the fundamental frequency of operation. Turning now to FIG. 4, there is shown an oscillator 400 in accordance with another aspect of the present invention. The oscillator 400 includes a three-terminal device 410 that is inductively coupled to a bias voltage source Vcc via first terminal 413. The second terminal 415 of the device 410 is inductively coupled to a second voltage source Vb- A feedback capacitor Ci is coupled to third terminal 417 through a resistor R. The third terminal 417 is also coupled to first and second filters, 422, 424, to provide regenerative filtering. In addition, the oscillator includes a slot-cut-microstrip-line- printed board 440 that is coupled to a tuning diode network 442, a resonator 448 and the second terminal 415 of the three terminal device 410. The tuning network 442 includes circuit elements that are similarly arranged as discussed above in relation to tuning network 329. The resonator 448 is preferably a ceramic resonator and is capacitively coupled to terminal 452 of the slot-cut-microstrip- line-printed board 440. The tuning network 442 and second terminal 415 are similarly coupled to terminals 454 and 456 of the slot-cut-microstrip-line-printed board 440. As shown, the slot-cut-microstrip-line-printed board 440 includes a width, w, a height, h, and length dimensions, lχ and 12. The board 440 also includes a slot d that divides the base of the board 440 into two regions defined by length dimensions, li and 12. These dimensions define the size of the board 440 and can be selected to define the thermal profile of the oscillator. In accordance with this aspect of the present invention, the structure is designed to increase the loaded time average quality factor over the temperature range by selecting an optimum length-width ratio (L/W-ratio) of the each side of the slot-cut-microstrip-line coupling-capacitor. In general, the printed board 440 preferably comprises a variable capacitor or storage element that operates as an evanescent mode buffer and allows a user to define a thermal profile. In particular, the L/W ratio and d may be selected so to provide a thermal profile as shown in FIGS. 5-8. For example, as shown in FIG. 5 the thermal profile 500 may designed to take the shape of a parabola over the operating temperature range of -40 °C to 85°C. The dimensions of the board 440 for providing a parabolic thermal profile as shown in FIG. 5 are as follows: lι/wι=l, l2/w2=0.5, d=0.01 inch, h=ll mils. In addition, lι=0.06 inches, wχ=0.06 inches, 12=0.03 inches, w2=0.06 inches and er=10. FIGS. 6-8 may be achieved by adjusting the ratios of 1/w. Furthermore, by changing the dimensions of the board, different user definable profiles may be achieved. As shown, in FIG. 6 the thermal profile 600 may take the shape of an inverted parabola. FIGS. 7 and 8 illustrate linear thermal profiles 700, 800. In addition, as shown in FIGS. 7 and 8 the thermal drift is less than 100 kHz. Turning now to FIG. 9, there is shown an oscillator 900 in accordance with an aspect of the present invention. The oscillator 900 includes similar circuitry to FIG. 5 except that the resonator 910 includes a pair of ceramic resonators coupled in parallel with each other. FIG. 10 shows a phase noise plot 1000 of an oscillator operating at 1200 MHz in accordance with an aspect of the present invention. As FIG. 10 shows, the phase noise is approximately - 110 dBc/Hz at 1 kHz. A voltage-controlled oscillator implemented in accordance with the present invention may be employed in any number of devices that are used to communicate on data, telephone, cellular or, in general, communications network. Such devices may include but are not limited to, for example, cellular phones, personal digital assistants, modem cards, lap tops, satellite telephones. As a general matter, the oscillator circuitry shown in the various drawings and described above may be employed in a PLL to either generate a clock signal that may be used to transmit or recover information transmitted or received over a network. In addition to wireless networks, the circuitry of the present invention may be employed in wired networks, satellite networks, etc. In addition, and in accordance with additional aspects of the present invention, the slot-cut-microstrip-line board or coupling capacitor as described above maybe further integrated with coupled resonator oscillators disclosed in commonly assigned U.S. Patent Application Nos. 10/912,209 and 10/937,525, the disclosures of which are incorporated by reference herein. Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims .

Claims

CLAIMS 1. An oscillator, comprising: an active device having first, second and third terminals; circuitry coupled between the first and second terminals of said active device and operative to provide a bias voltage to said active device and feedback a select amount of phase noise into said active device; and a tuning diode coupled to the second terminal of said active device through a slot-cut-printed-board coupling network.
2. The oscillator of claim 1, wherein the slot-cut- printed-board coupling network acts as an evanescent mode buffer between a resonator coupled thereto and said active device.
3. The oscillator of claim 1, wherein the slot-cut- printed-board coupling network operates to control a profile of the thermal drift of the oscillator.
4. The oscillator of claim 1, further comprising a feedback capacitor coupled between the second and third terminals .
5. The oscillator of claim 1, further comprising a first filter and a second filter coupled to the third terminal of said active device so as to provide two-stage regenerative filtering.
6. The oscillator of claim 5, further comprising means coupled between said first and second filters for providing an output signal.
7. The oscillator of claim 1, wherein said active device comprises a field effect transistor and the first, second and third terminals respectively comprise the collector, base and emitter nodes of the transistor.
8. The oscillator of claim 1, wherein said active device comprises a bipolar transistor and the first, second and third terminals respectively comprise the collector, base and emitter nodes of the transistor.
9. A voltage controlled oscillator, comprising: an active device; and circuitry coupled between a resonator, a tuning diode network and the active device and operable to act as a common- coupling capacitor between the resonator, the tuning diode network and said active device.
10. The voltage controlled oscillator of claim 9, wherein said circuitry controls a thermal drift profile of the oscillator over an operating temperature range.
11. The voltage controlled oscillator of claim 9, wherein said circuitry acts as an evanescent-mode-buffer between the resonator and said active device.
12. The voltage controlled oscillator of claim 9, wherein the tuning diode network is capacitively coupled to said circuitry.
13. The voltage controlled oscillator of claim 9, further comprising a network coupled to said active device for biasing said three terminal device.
14. The voltage controlled oscillator of claim 9, wherein the resonator comprises a ceramic resonator.
15. The voltage-controlled oscillator of claim 9, wherein the resonator comprises a pair of ceramic resonators coupled in parallel .
16. The voltage-controlled oscillator of claim 9, further comprising a first filter and a second filter coupled to the active device so as to provide two-stage regenerative filter at an output port of the oscillator.
17. The voltage controlled oscillator of claim 9, wherein said active device comprises a field effect transistor.
18. The voltage controlled oscillator of claim 9, wherein said active device comprises a bipolar transistor.
19. An apparatus, comprising: a phase lock loop for generating a clock signal used to transmit or recover information communicated from or to the apparatus, wherein the phase lock loop includes a voltage- controlled oscillator for generating the clock signal, the voltage controlled oscillator comprising, an active device; and a slot-cut-microstrip-line coupled between a resonator, a tuning diode network and the active device and operable to act as a common-coupling capacitor between the resonator, the tuning diode network and said active device.
20. The apparatus of claim 19, wherein the apparatus comprises a wireless device.
21. The apparatus of claim 19, wherein the wireless device is a cellular telephone.
22. The apparatus of claim 19, wherein the apparatus comprises a personal digital assistant.
23. A telephone, comprising: a phase lock loop for generating a clock signal used to transmit or recover information communicated from or to the telephone, wherein the phase lock loop includes a voltage- controlled oscillator for generating the clock signal, the voltage controlled oscillator comprising, an active device; and circuitry coupled between a resonator, a tuning diode network and the active device and operable to act as a common- coupling capacitor between the resonator, the tuning diode network and said active device.
24. The telephone of claim 23, wherein the information is communicated over a wireless network.
25. The telephone of claim 23, wherein the information is communicated over a wired network.
26. A method of defining a thermal profile of an oscillator, comprising coupling a capacitor between a resonator, a tuning diode network and an active device; and operating the capacitor as an evanescent mode buffer between the resonator and the active device to compensate for drifts in an output frequency of the oscillator due to temperature changes .
27. The method of claim 26, further comprising biasing the active device at predetermined voltage such that the capacitor maintains the predetermined voltage level to compensate for drifts in an output frequency of the oscillator due to temperature changes.
28. The method of claim 26, wherein the evanescent mode buffer compensates for drifts in the output frequency of the oscillator due to temperature changes by storing additional energy generated by the oscillator due to temperature changes.
PCT/US2004/041504 2003-12-09 2004-12-09 User-definable thermal drift voltage control oscillator WO2005057996A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002548317A CA2548317C (en) 2003-12-09 2004-12-09 User-definable thermal drift voltage control oscillator
JP2006544040A JP4939228B2 (en) 2003-12-09 2004-12-09 Voltage controlled oscillator with user-configurable thermal drift

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US52795703P 2003-12-09 2003-12-09
US60/527,957 2003-12-09
US52867003P 2003-12-11 2003-12-11
US60/528,670 2003-12-11
US56348104P 2004-04-19 2004-04-19
US60/563,481 2004-04-19

Publications (2)

Publication Number Publication Date
WO2005057996A2 true WO2005057996A2 (en) 2005-06-23
WO2005057996A3 WO2005057996A3 (en) 2006-03-30

Family

ID=34527973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/041504 WO2005057996A2 (en) 2003-12-09 2004-12-09 User-definable thermal drift voltage control oscillator

Country Status (5)

Country Link
US (1) US7265642B2 (en)
EP (2) EP1542353B1 (en)
JP (1) JP4939228B2 (en)
CA (1) CA2548317C (en)
WO (1) WO2005057996A2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1046651A1 (en) * 1999-04-19 2000-10-25 Koninklijke Universiteit Nijmegen Composition and method for modulating dendritic cell-T interaction
EP1505720B1 (en) * 2003-08-06 2018-07-18 Synergy Microwave Corporation Tunable frequency, low phase noise and low thermal drift oscillator
US7292113B2 (en) * 2003-09-09 2007-11-06 Synergy Microwave Corporation Multi-octave band tunable coupled-resonator oscillator
US7088189B2 (en) * 2003-09-09 2006-08-08 Synergy Microwave Corporation Integrated low noise microwave wideband push-push VCO
JP4939228B2 (en) 2003-12-09 2012-05-23 シナジー マイクロウェーブ コーポレーション Voltage controlled oscillator with user-configurable thermal drift
US7262670B2 (en) * 2003-12-09 2007-08-28 Synergy Microwave Corporation Low thermal drift, tunable frequency voltage controlled oscillator
EP1589655B1 (en) * 2004-04-21 2019-08-21 Synergy Microwave Corporation Wideband voltage controlled oscillator employing evanescent mode coupled-resonators
CA2515982C (en) * 2004-08-16 2008-07-22 Synergy Microwave Corporation Low noise, hybrid tuned wideband voltage controlled oscillator
RU2404505C2 (en) * 2005-05-20 2010-11-20 Синерджи Майкровэйв Корпорейшн Adjustable generator with serial and parallel adjusted resonant circuits
KR100696205B1 (en) * 2005-08-26 2007-03-20 한국전자통신연구원 Optical Module and Optical Module Package
CA2566283C (en) 2005-11-02 2011-10-18 Synergy Microwave Corporation User-definable, low cost, low phase hit and spectrally pure tunable oscillator
EP1786096A3 (en) * 2005-11-15 2007-06-27 Synergy Microwave Corproation Low cost multi-octave-band tunable oscillator having low and uniform phase noise
ATE542291T1 (en) 2008-08-23 2012-02-15 Si Ware Systems METHOD, SYSTEM AND APPARATUS FOR PRECISE AND STABLE LC-BASED REFERENCE OSCILLATORS
US8451071B2 (en) * 2008-11-24 2013-05-28 Raytheon Company Low noise oscillators
JP5597998B2 (en) * 2010-01-15 2014-10-01 三菱電機株式会社 High frequency double wave oscillator
US8603885B2 (en) 2011-01-04 2013-12-10 International Business Machines Corporation Flat response device structures for bipolar junction transistors
CN103888080B (en) * 2014-03-31 2016-06-29 加驰(厦门)微电子技术有限公司 push-push microwave voltage controlled oscillator integrated circuit
CN107332514A (en) * 2017-06-30 2017-11-07 西安电子科技大学 A kind of push-push voltage controlled oscillator without varactor
EP4020798A1 (en) * 2020-12-23 2022-06-29 Carrier Corporation Oscillator circuit comprising surface integrated waveguide resonator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142255A (en) * 1990-05-07 1992-08-25 The Texas A&M University System Planar active endfire radiating elements and coplanar waveguide filters with wide electronic tuning bandwidth
EP1093216A2 (en) * 1999-09-30 2001-04-18 Nortel Networks Limited Coaxial resonator and oscillation circuits featuring coaxial
US20010035794A1 (en) * 2000-04-27 2001-11-01 Murata Manufacturing Co., Ltd. Oscillator and communication apparatus

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2524035A (en) * 1948-02-26 1950-10-03 Bell Telphone Lab Inc Three-electrode circuit element utilizing semiconductive materials
US2502488A (en) * 1948-09-24 1950-04-04 Bell Telephone Labor Inc Semiconductor amplifier
US3373379A (en) * 1966-06-17 1968-03-12 Motorola Inc Crystal oscillator with temperature compensation
JPS5632841B2 (en) * 1975-01-30 1981-07-30
US4338576A (en) * 1978-07-26 1982-07-06 Tdk Electronics Co., Ltd. Ultrasonic atomizer unit utilizing shielded and grounded elements
US4310809A (en) * 1979-04-27 1982-01-12 Westinghouse Electric Corp. Low noise microstrip voltage controlled oscillator
JPS5726902A (en) 1980-07-25 1982-02-13 Hitachi Ltd Fet oscillation circuit
DE3136348A1 (en) * 1981-09-14 1983-03-24 Philips Patentverwaltung Gmbh, 2000 Hamburg MICROWAVE OSCILLATOR IN COUNTER-SWITCHING
JPS5972205A (en) 1982-10-18 1984-04-24 Ricoh Co Ltd Frequency varying method of lc oscillator for analog value detection
JPS59139708A (en) 1983-01-27 1984-08-10 Fujitsu Ltd Piezoelectric oscillator
US4619001A (en) * 1983-08-02 1986-10-21 Matsushita Electric Industrial Co., Ltd. Tuning systems on dielectric substrates
US4633197A (en) * 1985-03-29 1986-12-30 Motorola, Inc. Single resonant tank modulated oscillator
US4621241A (en) * 1985-06-07 1986-11-04 Vari-L Company, Inc. Wide range electronic oscillator
US4677396A (en) * 1985-12-06 1987-06-30 Zenith Electronics Corporation Surface mounted component UHF oscillator
US4692714A (en) * 1986-10-20 1987-09-08 Raytheon Company Single resonator push-push oscillator
US4812784A (en) * 1987-11-19 1989-03-14 International Business Machines Corporation Temperature stable voltage controlled oscillator with super linear wide frequency range
FR2625051B1 (en) * 1987-12-18 1990-04-20 Thomson Hybrides Microondes DOUBLE FREQUENCY OSCILLATOR, TUNED BY VARACTORS
JPH01228120A (en) * 1988-03-09 1989-09-12 Hitachi Shonan Denshi Co Ltd Capacitor for temperature compensation
JPH01261002A (en) * 1988-04-12 1989-10-18 Fujitsu Ltd Strip line resonator
US5053649A (en) * 1988-12-21 1991-10-01 Ultra Network Technologies Method and apparatus for high speed phase detection
JPH02177520A (en) * 1988-12-28 1990-07-10 Nippon Oil & Fats Co Ltd Manufacture of semiconductor porcelain substrate
JPH0354903A (en) * 1989-03-31 1991-03-08 Kyocera Corp Oscillation circuit
JP2700921B2 (en) * 1989-05-24 1998-01-21 京セラ株式会社 Composite circuit board with built-in capacitor
US5231361A (en) * 1990-02-05 1993-07-27 Trw Inc. Voltage controlled push-push oscillator with parallel resonant tank circuits
JP2847573B2 (en) * 1990-09-10 1999-01-20 富士通株式会社 Voltage controlled oscillator
US5041799A (en) * 1990-11-05 1991-08-20 Motorola, Inc. Temperature compensation circuit for a crystal oscillator
JPH04196604A (en) * 1990-11-26 1992-07-16 Nippon Telegr & Teleph Corp <Ntt> Oscillator
DE59310107D1 (en) * 1992-04-03 2000-11-02 Siemens Ag Oesterreich OSCILLATOR FOR A FREQUENCY FROM 1.6 TO 3 GHz
JP3221579B2 (en) * 1992-08-12 2001-10-22 株式会社日立国際電気 PLL circuit using voltage controlled oscillator
JPH06120731A (en) * 1992-10-05 1994-04-28 Nec Corp Microwave oscillator
US5373264A (en) * 1993-01-21 1994-12-13 Hewlett-Packard Company Negative resistance oscillator with electronically tunable base inductance
US5363067A (en) * 1993-05-19 1994-11-08 Motorola, Inc. Microstrip assembly
US5402087A (en) * 1994-04-08 1995-03-28 B.E.L.-Tronics Limited Voltage controlled push-push oscillator
US5650754A (en) * 1995-02-15 1997-07-22 Synergy Microwave Corporation Phase-loched loop circuits and voltage controlled oscillator circuits
JPH09191226A (en) * 1995-11-07 1997-07-22 Nec Corp Crystal oscillator
JPH09270602A (en) 1996-04-01 1997-10-14 Matsushita Electric Ind Co Ltd Receiver
US5748051A (en) * 1996-05-16 1998-05-05 Z-Communications, Inc. Low phase noise UHF and microwave oscillator
US5661439A (en) * 1996-07-11 1997-08-26 Northrop Grumman Corporation Method and apparatus for cancelling phase noise
JPH1051234A (en) 1996-08-05 1998-02-20 Tdk Corp Voltage control oscillator and its control method
US5821410A (en) * 1996-09-20 1998-10-13 Regents Of The University Of California Scanning tip microwave near field microscope
JPH10209714A (en) 1996-11-19 1998-08-07 Sharp Corp Voltage-controlled pass band variable filter and high-frequency circuit module using the same
DE19652146B4 (en) * 1996-12-14 2006-06-29 Sennheiser Electronic Gmbh & Co. Kg Low noise oscillator circuit
US5854578A (en) * 1997-09-15 1998-12-29 Motorola, Inc. Active circuit having a temperature stable bias
US6124767A (en) * 1998-05-21 2000-09-26 Delphi Components, Inc. RF/Microwave oscillator
US6321074B1 (en) * 1999-02-18 2001-11-20 Itron, Inc. Apparatus and method for reducing oscillator frequency pulling during AM modulation
US6326854B1 (en) * 1999-09-30 2001-12-04 Nortel Networks Limited Coaxial resonator and oscillation circuits featuring coaxial resonators
JP2001119205A (en) * 1999-10-20 2001-04-27 Kyocera Corp High frequency filter
JP2001185951A (en) * 1999-12-24 2001-07-06 Murata Mfg Co Ltd Voltage-controlled oscillator and communication device
JP3818624B2 (en) * 2000-02-23 2006-09-06 株式会社ルネサステクノロジ Wireless communication system
JP2001244739A (en) * 2000-02-29 2001-09-07 Kyocera Corp Voltage-controlled oscillator and its frequency adjustment method
JP2001308638A (en) * 2000-04-18 2001-11-02 Alps Electric Co Ltd Voltage controlled oscillator
DE10033741B4 (en) 2000-07-12 2012-01-26 Synergy Microwave Corp. oscillator circuit
US6462627B1 (en) 2000-08-25 2002-10-08 Tropian Inc. Oscillator circuit having reduced phase noise
DE60142055D1 (en) * 2000-08-31 2010-06-17 Citizen Holdings Co Ltd TEMPERATURE COMPENSATION OSCILLATOR
JP2002151353A (en) * 2000-11-15 2002-05-24 Alps Electric Co Ltd Dielectric thin film, manufacturing method therefor, and temperature-compensating capacitor
JP2002261542A (en) * 2000-12-27 2002-09-13 Murata Mfg Co Ltd Oscillator and communication device using the same
US6466099B2 (en) * 2001-01-03 2002-10-15 Motorola, Inc. Voltage controlled oscillator (VCO) in colpitts configuration
US6486744B1 (en) * 2001-05-16 2002-11-26 Digital Microwave Corporation Low phase noise voltage-controlled oscillator and method of using the same
US6630869B2 (en) * 2001-06-27 2003-10-07 Harris Corporation Very low phase noise temperature stable voltage controlled oscillator
JP3921362B2 (en) * 2001-07-30 2007-05-30 日本電波工業株式会社 Temperature compensated crystal oscillator
US6624726B2 (en) * 2001-08-31 2003-09-23 Motorola, Inc. High Q factor MEMS resonators
TW522637B (en) * 2002-02-22 2003-03-01 Accton Technology Corp Low-phase noise oscillator with a microstrip resonator
US6489853B1 (en) * 2002-03-19 2002-12-03 Z-Communications, Inc. Low phase noise oscillator
US6765444B2 (en) * 2002-11-18 2004-07-20 Neoaxiom Corporation Cross clocked lock detector circuit for phase locked loop
US6859118B2 (en) * 2003-01-02 2005-02-22 Harris Corporation System and method for an ultra low noise micro-wave coaxial resonator oscillator using ⅝ths wavelength resonator
JP4939228B2 (en) 2003-12-09 2012-05-23 シナジー マイクロウェーブ コーポレーション Voltage controlled oscillator with user-configurable thermal drift

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142255A (en) * 1990-05-07 1992-08-25 The Texas A&M University System Planar active endfire radiating elements and coplanar waveguide filters with wide electronic tuning bandwidth
EP1093216A2 (en) * 1999-09-30 2001-04-18 Nortel Networks Limited Coaxial resonator and oscillation circuits featuring coaxial
US20010035794A1 (en) * 2000-04-27 2001-11-01 Murata Manufacturing Co., Ltd. Oscillator and communication apparatus

Also Published As

Publication number Publication date
WO2005057996A3 (en) 2006-03-30
JP4939228B2 (en) 2012-05-23
EP1542354A1 (en) 2005-06-15
CA2548317C (en) 2009-04-21
US20050156683A1 (en) 2005-07-21
US7265642B2 (en) 2007-09-04
CA2548317A1 (en) 2005-06-23
JP2007514376A (en) 2007-05-31
EP1542353A1 (en) 2005-06-15
EP1542354B1 (en) 2021-02-03
EP1542353B1 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
US7262670B2 (en) Low thermal drift, tunable frequency voltage controlled oscillator
CA2548317C (en) User-definable thermal drift voltage control oscillator
EP1589655B1 (en) Wideband voltage controlled oscillator employing evanescent mode coupled-resonators
US7586381B2 (en) User-definable, low cost, low phase hit and spectrally pure tunable oscillator
RU2404505C2 (en) Adjustable generator with serial and parallel adjusted resonant circuits
JP5036966B2 (en) LC oscillator with wide tuning range and low phase noise
US7545229B2 (en) Tunable frequency, low phase noise and low thermal drift oscillator
US7365612B2 (en) Low noise, hybrid tuned wideband voltage controlled oscillator
US7292113B2 (en) Multi-octave band tunable coupled-resonator oscillator
EP1619789B1 (en) Low thermal drift, tunable frequency voltage controlled oscillator
EP1926207B1 (en) Low noise, hybrid tuned wideband voltage controlled oscillator
JP4903570B2 (en) Variable frequency oscillator
Baberg et al. Low-Noise VCOs: Key components for base stations

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2548317

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006544040

Country of ref document: JP