WO2005059202A1 - Method for forming thin film and base having thin film formed by such method - Google Patents

Method for forming thin film and base having thin film formed by such method Download PDF

Info

Publication number
WO2005059202A1
WO2005059202A1 PCT/JP2004/018322 JP2004018322W WO2005059202A1 WO 2005059202 A1 WO2005059202 A1 WO 2005059202A1 JP 2004018322 W JP2004018322 W JP 2004018322W WO 2005059202 A1 WO2005059202 A1 WO 2005059202A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
thin film
frequency electric
gas
electrode
Prior art date
Application number
PCT/JP2004/018322
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromoto Ii
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2005516295A priority Critical patent/JPWO2005059202A1/en
Publication of WO2005059202A1 publication Critical patent/WO2005059202A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges

Definitions

  • the present invention relates to a novel thin film forming method using an atmospheric pressure plasma discharge treatment and a substrate on which a thin film is formed by the thin film forming method.
  • Patent Document 1 discloses an atmospheric pressure plasma film forming technology capable of achieving discharge even with a gas having a high firing voltage, such as nitrogen gas, by using a pulsed power source.
  • Patent Document 2 discloses an atmospheric pressure plasma method.
  • Patent Literature 3 discloses a technique for forming a nitride film by decomposing a raw material in a plasma space and forming a nitride film in an atmospheric pressure plasma method.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-324795
  • Patent Document 1 the plasma density is low, and a high-quality film cannot be obtained.
  • Patent Document 2 nitrogen excited by plasma is directly sprayed onto the silicon substrate to replace only a very small surface (a few nm) of the silicon substrate with nitrogen. No, no.
  • the present inventors also disclosed in Patent Document 3. Inspection of the indicated technology showed that although silicon oxynitride film could be formed, the raw material tetramethylsilane was not sufficiently decomposed, and a large amount of carbon was mixed into the silicon nitride film. It was found that the function of the silicon film could not be exhibited.
  • the use of expensive argon or helium as the discharge gas has no industrial advantage.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a thin film forming method capable of forming a high-quality thin film containing nitrogen at a high speed, thereby making it possible to manufacture a high-quality thin film at a low cost. To provide. Disclosure of the invention
  • the present inventors have conducted intensive studies and as a result, by applying a specific high-frequency electric field, it is possible to achieve high-density plasma generation even with a discharge gas having a high discharge-starting electric field strength such as nitrogen, and obtain a good-quality thin film. It has been found that it is possible to form films at high speed, to operate cheaply and safely, and to reduce the environmental burden.
  • the present invention has the following configurations.
  • a gas containing a thin film forming gas is supplied to a discharge space under atmospheric pressure or a pressure close to the atmospheric pressure, and a high-frequency electric field is applied to the discharge space to excite the source and excite the substrate.
  • the gas contains a gas having a nitrogen element
  • the thin film formed on the substrate J is a nitride film
  • the electric field is obtained by superimposing a first high-frequency electric field and a second high-frequency electric field.
  • the frequency ⁇ 2 of the second high-frequency electric field is higher than the frequency ⁇ of the first high-frequency electric field
  • the relationship between the intensity V 2 of the second high frequency electric field and the intensity IV of the discharge starting electric field is as follows.
  • the method for forming a thin film wherein the output density of the second high-frequency electric field is 1 W / cm 2 or more.
  • Configuration 8 The configuration according to any one of Configurations 2 to 7, wherein the first high-frequency electric field is applied to the first electrode, and the second high-frequency electric field is applied to the second electrode. Thin film forming method.
  • Structure 12 The structure according to any one of Structures 1 to 11, wherein the thin film forming gas contains at least one selected from an organometallic compound, a metal halide, and a gold hydrogen compound. Thin film formation method.
  • the organic metal compound contains at least one compound selected from an organic silicon compound, an organic titanium compound, an organic tin compound, an organic zinc compound, an organic aluminum compound and an organic aluminum compound.
  • FIG. 1 is a schematic view showing one embodiment of a jet type atmospheric pressure plasma discharge treatment apparatus useful for the present invention.
  • FIG. 2 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus of a type for treating a substrate between opposed electrodes useful in the present invention.
  • FIG. 3 is a perspective view showing an example of a roll rotating electrode having a conductive metallic base material and a dielectric material coated thereon.
  • FIG. 4 is a perspective view showing an example of the structure of a conductive metal base material of a rectangular cylindrical electrode and a dielectric material coated thereon.
  • the plasma discharge treatment is performed under the atmospheric pressure or a pressure near the atmospheric pressure.
  • the pressure at or near the atmospheric pressure is about 20 kPa to 110 kPa, and in order to obtain the good effects described in the present invention, 93 kPa to 104 kP a is preferred.
  • a gas to be supplied between the opposing electrodes discharge space
  • the discharge condition according to the present invention includes a first high-frequency electric field and a second high-frequency electric field in a discharge space.
  • the power density of the second high-frequency electric field is not less than 1 WZ cm 2 .
  • High frequency refers to those having a frequency of at least 0.5 kHz.
  • High-frequency electric field superimposed if are both sine wave becomes a first high-frequency electric field of a frequency ⁇ and the frequency ⁇ higher than the second high-frequency electric field of a frequency omega 2 and the superposed component, its waveform frequency on the sine wave of ⁇ , the ⁇ -shaped waveform higher than the sine wave of frequency ⁇ 2 which it overlaps.
  • the intensity of the electric field at the start of discharge refers to the minimum electric field intensity that can cause a discharge in the discharge space (such as the configuration of the electrode) and the reaction conditions (such as the gas conditions) used in the actual thin film forming method.
  • the discharge starting electric field strength varies somewhat depending on the type of gas supplied to the discharge space, the dielectric material of the electrodes, the distance between the electrodes, etc., in the same discharge space, it is dominated by the discharge starting electric field strength of the discharge gas. .
  • a high-frequency electric field to the discharge space, a discharge capable of forming a thin film can be generated, and high-density plasma necessary for forming a high-quality thin film can be generated.
  • the thin film formation of the present invention cannot be achieved by a method in which two application electrodes are juxtaposed and different high-frequency electric fields are applied to different discharge spaces separated from each other.
  • superposition of a continuous wave such as a sine wave
  • the present invention is not limited to this, and both pulse waves may be used, one may be a continuous wave, and the other may be a z-wave. Absent. Further, it may have a third electric field.
  • the nitride film in the present invention is a film containing 10% or more of a nitrogen element in an XPS (X-ray photoelectron spectroscopy) measurement method. Further, it is preferable that the ratio of the carbon element measured at this time is low. Specifically, it is preferable that the nitrogen element is 20% or more and the carbon element is 3% or less.
  • the feature of the present invention is that by devising a method for applying a high frequency, the plasma density is increased, the raw material is sufficiently decomposed, and the contamination of the carbon component in the raw material with the formed film can be extremely reduced. is there. When nitrogen is used as the discharge gas, a nitride film can be more efficiently formed by the active nitrogen element excited by the plasma.
  • a specific method of applying the high-frequency electric field of the present invention to the same discharge space is to apply a first high-frequency electric field having a frequency ⁇ and an electric field strength Vi to a first electrode constituting the counter electrode.
  • a frequency omega 2 is a field intensity V 2 Rukoto is there.
  • the above-mentioned atmospheric pressure plasma discharge processing apparatus is provided with a gas supply means for supplying a discharge gas and a thin film forming gas between opposed electrodes. Further, it is preferable to have an electrode temperature control means for controlling the temperature of the electrode.
  • a first filter is connected to the first electrode, the first power supply or any one of them
  • a second filter is connected to the second electrode, the second power supply or any one of them.
  • the first filter passes the current of the second high-frequency electric field from the first power supply to the first electrode and sinks the current of the second high-frequency electric field
  • the second filter supplies the second high-frequency electric field to the first power supply. It makes it difficult to pass a high-frequency electric field current.
  • the second filter makes it easier to pass the second high-frequency electric field haze from the second power supply to the second electrode, grounds the current of the first high-frequency electric field, and connects the first high-frequency electric field to the first power supply.
  • the first power supply of the atmospheric pressure plasma discharge treatment apparatus of the present invention has a capability of applying a higher frequency electric field strength higher than that of the second power supply.
  • the high-frequency electric field strength (applied electric field strength) and the discharge starting electric field strength are measured by the following methods.
  • a high-frequency voltage probe (P615A) is installed on each electrode, and the output signal of the high-frequency voltage probe is connected to an oscilloscope (Tektronix, TDS301B) to reduce the electric field strength. Measure. Measurement method of electric field strength IV (unit: kV / mm)
  • a discharge gas is supplied between the electrodes, and the electric field strength between the electrodes is increased.
  • the electric field strength at which the discharge starts is defined as a discharge start electric field strength IV.
  • the measuring instrument is the same as the above-mentioned high-frequency electric field strength measurement.
  • discharge can be started even in a discharge gas having a high discharge start electric field strength such as nitrogen gas, and a high-density and stable plasma state can be maintained.
  • a thin film can be formed.
  • the discharge gas is nitrogen gas according to the above measurement
  • the discharge start electric field intensity IV (1/2 Vp-p) is about 3.7 kV / mm.
  • an electric field strength of ⁇ ⁇ 3.7 kVZmm the nitrogen gas can be excited and turned into a plasma state.
  • the frequency of the first power supply 200 kHz or less can be preferably used.
  • the electric field waveform may be a continuous wave or a pulse wave. The lower limit is preferably about 1 kHz.
  • the frequency of the second power supply is preferably 800 kHz or more.
  • the upper limit is preferably about 200 MHz.
  • the first filter facilitates passage of a current of a first high-frequency electric field from a first power supply to a first electrode, and a current of a second high-permeation electric field. To prevent the passage of the current of the second high-frequency electric field from the second power supply to the first power supply.
  • the second filter makes it easier to pass the current of the second high-frequency electric field from the second electrode 1 to the second electrode, grounds the current of the first high-frequency electric field, and (2) It is difficult to pass the current of the first high-frequency electric field to the power supply.
  • any filter having such properties can be used without limitation.
  • a capacitor of several 10 pF to several tens of thousands pF or a coil of several H can be used according to the frequency of the second power supply.
  • a coil of 10 ⁇ H or more can be used according to the frequency of the first power supply, and it can be used as a filter by grounding it through these coils or a capacitor.
  • the atmospheric pressure plasma discharge treatment apparatus used in the present invention discharges gas between the opposed electrodes, brings the gas introduced between the opposed electrodes into a plasma state, and stands still between the opposed electrodes or between the opposed electrodes. By exposing the transferred substrate to the gas in the plasma state, a thin film is formed on the substrate.
  • an atmospheric pressure plasma discharge treatment apparatus discharges a gas between the opposite electrodes as described above to excite or introduce a gas introduced between the opposite electrodes into a jet state outside the counter electrode. Is a jet method in which a gas in a plasma state is blown out and a thin film is formed on the base material by exposing the base material (which may be left still or transferred) near the counter electrode. Equipment.
  • FIG. 1 is a schematic view showing an example of a jet type atmospheric pressure plasma discharge treatment apparatus useful for the present invention.
  • the jet-type atmospheric pressure plasma discharge treatment apparatus is not shown in FIG. 1 in addition to the plasma discharge treatment apparatus and the electric field applying means having two power supplies (not shown later).
  • This is an apparatus having a gas supply means and an electrode temperature adjusting means.
  • the plasma discharge treatment apparatus 10 has a counter electrode composed of a first electrode 11 and a second electrode 12, and a first power supply 2 is provided between the counter electrode and the first electrode 11.
  • the first high-frequency electric field of the frequency ⁇ from 1 and the electric field strength current I 1 is applied, and the frequency ⁇ 2 from the second power supply 22, the electric field strength V 2 , and the current I 2
  • a second high-frequency electric field is applied.
  • the first power source 21 can apply a higher frequency electric field strength (Vi> V 2 ) higher than the second power source 22 , and the first frequency ⁇ ⁇ of the first power source 21 can be applied to the second power source 22 . a lower frequency than the second frequency ⁇ 2 can be applied.
  • a first filter 23 is provided between the first electrode 11 and the first power supply 21 to facilitate passage of current from the first power supply 21 to the first electrode 11, The current from the power source 22 is grounded so that the current from the second power source 22 to the first power source 21 is difficult to pass. ⁇
  • a second filter 24 is provided between the second electrode 12 and the second power supply 22 to make it easier to pass a current from the second power supply 22 to the second electrode. It is designed so that the current from the power source 21 is grounded so that the current from the first power source 21 to the second power source does not easily pass.
  • Gas G is introduced into the space (discharge space) 13 between the first electrode 11 and the second electrode 12 from the gas supply means as shown in FIG. A high-frequency electric field is applied from 11 and the second electrode 12 to generate a discharge, and the gas G is blown out in a jet shape below the counter electrode (the lower side of the paper) while keeping it in a plasma state.
  • the processing space created by the lower surface and the substrate F is filled with the gas G ° in the plasma state, and the unwinder force of the substrate (not shown) is the force that is unwound and transported, or A thin film is formed near the processing position 14 on the substrate F conveyed from the process.
  • a medium is supplied from the electrode temperature control means as shown in FIG. Heat or cool the electrode through.
  • an insulating material such as distilled water or oil is preferably used.
  • Fig. 1 shows the measuring instruments used to measure the high-frequency electric field strength (applied electric field strength) and the discharge start electric field strength described above.
  • Reference numerals 25 and 26 are high-frequency voltage probes, and reference numerals 27 and 28 are oscilloscopes.
  • jet-type atmospheric pressure plasma discharge treatment devices can be connected in series and discharged in the same plasma state at the same time, they can be treated many times and can be treated at high speed. Also, if each device jets a gas in a different plasma state, it is possible to form a laminated thin film of different layers.
  • FIG. 2 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus of a type for treating a substrate between opposed electrodes useful in the present invention.
  • the atmospheric pressure plasma discharge treatment apparatus of the present invention is an apparatus having at least a plasma discharge treatment apparatus 30, an electric field applying means 40 having two power supplies, a gas supply means 50, and an electrode temperature adjusting means 60. is there.
  • Fig. 2 shows the plasma discharge of the substrate F between the counter rotating electrode (first electrode) 35 and the fixed electrode group (second electrode) 36 with the rectangular rotating electrode 35 (discharge space) 32. This is to form a thin film by processing.
  • the first power supply 41 has a frequency ⁇ from the first power supply, the first high-frequency electric field of the electric field strength current I 1, and the square cylindrical fixed electrode group (second electrode) 36 has a frequency from the second power supply 42.
  • ⁇ 2 electric field strength V 2 , current I 2
  • a second high-frequency electric field is applied.
  • a first filter 43 is provided between the roll rotating electrode (first electrode) 35 and the first power supply 41, and the first filter 43 blocks a current from the first power supply 41 to the first electrode.
  • the comb is designed so that the current from the second power supply 42 is grounded so that the current from the second power supply 42 to the first power supply does not easily pass.
  • a second filter 44 is provided between the prismatic fixed electrode group (second electrode) 36 and the second power supply 42, and the second filter 44 is connected to the second power supply 42 by the second electrode 42.
  • the first power source 41 is designed to make it easier to pass current, and the current from the first power source 41 is grounded so that the current from the first power source 41 to the second power source is hardly passed.
  • the roll rotating electrode 35 may be the second electrode, and the rectangular cylindrical fixed electrode group 36 may be the first electrode.
  • a first power supply is connected to the first electrode, and a second power supply is connected to the second electrode. It is preferable that the first power supply applies a high-frequency electric field strength higher than that of the second power supply.
  • the frequency has the ability to become a ⁇ ⁇ 2.
  • the current be I 1 and I 2.
  • the current I 1 of the first high-frequency electric field is preferably 0.3 to 2 OmA / cm 2 , more preferably 1.0 to 2 OmAZcrm 2 .
  • the current I 2 of the second microwave electric field is preferably 10 to 100 mZcm 2 , more preferably 20 to 10 OmAZcm 2 .
  • the gas G generated by the gas generator 51 of the gas supply means 50 is introduced into the plasma discharge processing container 31 through the supply port 52 by controlling the flow rate.
  • the base material F is unwound from the original roll (not shown) or is transported from the process or is transported from the process. Then, while being wound while being in contact with the roll rotating electrode 35, it is transferred between the square fixed electrode group 36 and the roll rotating electrode (first electrode) 35 and the square cylindrical fixed electrode group (second electrode). With 36 An electric field is applied from both sides to generate discharge plasma between the counter electrodes (discharge space) 32.
  • the substrate F is wound while being kept in contact with the rotary electrode 35, and a thin film is formed on the surface by gas in a plasma state.
  • the base material F is transferred to a next step through a roll-up roll 66 and a guide roll 67 to be wound by a winder (not shown).
  • Discharged exhaust gas G ' is discharged from the exhaust port 53.
  • the medium whose temperature has been adjusted by the electrode temperature adjusting means 60 is fed to heat or cool the roll rotating electrode (first electrode) 35 and the rectangular cylindrical fixed electrode (second electrode) 36.
  • the liquid is fed to both electrodes via the pipe 61 by the liquid pump P, and the temperature is adjusted from the inside of the electrodes.
  • Reference numerals 68 and 69 denote partition plates for separating the plasma discharge treatment container 31 from the outside.
  • FIG. 3 is a perspective view showing an example of the structure of a conductive metallic base material of the roll rotating electrode shown in FIG. 2 and a dielectric material coated thereon.
  • the roll electrode 35a is formed by coating a conductive metallic base material 35A and a dielectric material 35B thereon.
  • the structure is such that a medium for adjusting the temperature (such as water or silicon oil) can be circulated.
  • FIG. 4 is a perspective view showing an example of the structure of a conductive metal base material of a rectangular cylindrical electrode and a dielectric material coated thereon.
  • a rectangular cylindrical electrode 36a has a coating of a dielectric material 36B similar to that of FIG. 3 on a conductive metallic base material 36A, and the structure of the electrode is as follows. It is a metal pipe that becomes a jacket that allows temperature control during discharge.
  • the number of the rectangular cylindrical fixed electrodes is plural along the circumference larger than the circumference of the roll electrode, and the discharge area of the electrode is opposed to the rotary electrode 35. It is represented by the sum of the areas of the fixed square cylindrical fixed electrode surface.
  • the roll electrode 35a and the rectangular cylindrical electrode 36a are respectively provided with a dielectric material 35B on a conductive metal base material 35A and 36A.
  • sealing treatment was performed using a sealing material of an inorganic compound.
  • alumina, silicon nitride, and the like are preferably used. Among them, alumina is particularly preferably used because it is easy to process.
  • the dielectric layer may be a lining treated dielectric provided with an inorganic material by lining.
  • titanium metal or titanium alloy As the conductive metallic base material 35 A and 36 A, titanium metal or titanium alloy, silver, platinum, stainless steel, aluminum, iron, or other metal, or a composite material of iron and ceramics or aluminum is used. Although a composite material with ceramics can be mentioned, titanium metal or a titanium alloy is particularly preferred for the reasons described below.
  • the distance between the opposing first and second electrodes is the shortest distance between the surface of the dielectric and the surface of the conductive metal base material of the other electrode.
  • the distance between the electrodes is uniform in all cases, depending on the thickness of the dielectric provided on the conductive metal base material, the magnitude of the applied electric field, the purpose of utilizing the plasma, etc. From the viewpoint of electric discharge, the thickness is preferably from 0.1 to 2 Otnm, particularly preferably from 0.5 to 2 mm.
  • the plasma discharge processing container 31 may be made of metal as long as it can be insulated from the force electrode, which is preferably a Pyrex (R) glass processing container.
  • the inner surface of an aluminum or stainless steel frame A grease or the like may be adhered, and the metal frame may be subjected to ceramic spraying to have an insulating property.
  • the first power supply (high-frequency power supply) installed in the atmospheric pressure plasma discharge treatment apparatus of the present invention includes:
  • A7 Pearl Industries 400 kHz CF-2000-400 k etc., and any of them can be used (
  • the second power supply (high-frequency power supply)
  • the mark * indicates a pulse from the Heiden Laboratory Impulse high-frequency power supply (100 kHz in continuous mode). It is. Others are high-frequency power supplies to which only a continuous sine wave can be applied. In the present invention, it is preferable to apply an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field to the atmospheric pressure plasma discharge treatment apparatus.
  • the power applied between the opposing electrodes is such that power (output density) of lWZcm 2 or more is supplied to the second electrode (second high-frequency electric field) to excite the discharge gas to generate plasma.
  • Energy is applied to the thin film forming gas to form a thin film.
  • the upper limit of the electric power to be subjected sheet to the second electrode is preferably 50 W / cm 2, more preferably 20W Z cm 2.
  • the lower limit is preferably 1.2 WZ cm 2 .
  • the discharge area (cm 2 ) refers to the area of the electrode where discharge occurs.
  • the output density can be improved while maintaining the uniformity of the second high-frequency electric field. be able to.
  • the upper limit of the power supplied to the first electrode is preferably 5 OWZcm 2 .
  • the waveform of the high-frequency electric field is not particularly limited. There are a continuous sine wave continuous oscillation mode called a continuous mode, and an intermittent oscillation mode called an ONZOFF intermittently called a pulse mode.
  • the high-frequency electric field (2) is preferably a continuous sine wave because a denser and higher quality film can be obtained. Electrodes used for such atmospheric pressure plasma thin film formation methods must be able to withstand severe conditions in terms of both structure and performance. Such an electrode is preferably a metal base material coated with a dielectric.
  • the characteristics match between various metallic base materials and the dielectric, and one of the characteristics is a line between the metallic base material and the dielectric.
  • Those combinations difference in thermal expansion coefficient is less than 1 0 X 1 0 one 6 Z ° c.
  • Preferred properly is 8 X 1 0 one 6 / ° C or less, more preferably 5 X 1 0- 6 / ° C or less, further preferable properly is less than 2 X 1 0 one 6 Z ° C.
  • the coefficient of linear thermal expansion is a physical property value of a known material.
  • a combination of a conductive metallic base material and a dielectric material having a difference in linear thermal expansion coefficient within this range includes:
  • Metallic base material is pure titanium or titanium alloy, dielectric is ceramic sprayed coating
  • Metallic base material is pure titanium or titanium alloy, dielectric is glass lining
  • Metallic base material is a composite material of ceramics and iron, and dielectric is ceramic sprayed
  • Metallic base material is a composite material of ceramics and iron, and dielectric is glass lining
  • Metallic base material is a composite material of ceramics and aluminum, and dielectric material is ceramic sprayed coating ''
  • the metallic base material is a composite material of ceramics and aluminum, and the dielectric is glass lining.
  • titanium or a titanium alloy is particularly useful as the metallic base material from the above characteristics.
  • titanium or titanium alloy as the metallic base material and making the dielectric material as described above, there is no deterioration, especially cracking, peeling, or falling off, of the electrodes during use, and long-term use under severe conditions Can withstand.
  • the metallic base material of the electrode useful in the present invention is a titanium composite containing 70% by mass or more of titanium. Gold or titanium metal.
  • the content of titanium in the titanium alloy or the titanium metal can be used without any problem as long as it is 70% by mass or more, but preferably contains 80% by mass or more of titanium. .
  • the titanium alloy or titanium metal useful in the present invention those generally used as industrial pure titanium, corrosion-resistant titanium, high-strength titanium and the like can be used. Examples of industrial pure titanium include TIA, TIB, TIC, TID, etc., all of which contain very little iron, carbon, nitrogen, oxygen, hydrogen, etc. The content is 99% by mass or more.
  • titanium alloy T64, T325, T525, TA3, etc. containing aluminum and containing vanadium and tin can be preferably used.
  • the content is 85% by mass or more.
  • These titanium alloys or titanium metals have a coefficient of thermal expansion smaller than that of stainless steel, for example, AISI 316 by about 1 Z2, and have a dielectric material, described later, applied on the titanium alloy or titanium metal as a metallic base material. Combines well with the body and can withstand high temperatures and prolonged use.
  • the dielectric be an inorganic compound having a relative dielectric constant of 6 to 45.
  • examples of such a dielectric include alumina, nitrogen nitride, and silicon nitride.
  • glass lining materials such as silicate glass and borate glass. Among them, those obtained by spraying ceramics described later are preferably provided by glass lining.
  • a dielectric provided by spraying alumina is preferable.
  • the porosity of the dielectric is 10% by volume or less, preferably 8% by volume or less, and preferably 0 volume. /. Over 5% by volume.
  • the porosity of the dielectric can be measured by a BET adsorption method or a mercury porosimeter. In the examples described later, Shimadzu The porosity is measured using a fragment of a dielectric material coated on a metallic base material by a mercury porosimeter manufactured by the company. High durability is achieved by the dielectric having a low porosity. Examples of the dielectric having such voids and low porosity include a high-density, high-adhesion ceramic sprayed coating formed by an atmospheric plasma spraying method described later. In order to further reduce the porosity, it is preferable to perform a sealing treatment.
  • the above-mentioned atmospheric plasma spraying method is a technology in which fine powders such as ceramics, wires, etc. are charged into a plasma heat source and sprayed as molten or semi-molten fine particles onto the metal base material to be coated to form a film.
  • the plasma heat source is a high-temperature plasma gas in which a molecular gas is heated to a high temperature, dissociated into atoms, and further applied with energy to emit electrons.
  • the spray speed of this plasma gas is high, and compared to conventional arc spraying and flame spraying, the sprayed material collides with the metal base material at a higher speed, so that a high adhesion strength and a high-density coating can be obtained. .
  • the porosity of the dielectric (ceramic sprayed film) to be coated as described above can be obtained.
  • the thickness of the dielectric is 0.5 to 2 mm. This variation in film thickness is desirably 5% or less, preferably 3% or less, and more preferably 1% or less.
  • the sprayed film of ceramic or the like is further subjected to sealing treatment with an inorganic compound as described above.
  • the inorganic compound a metal oxide is preferable, and among them, a compound containing silicon oxide (SiO x) as a main component is particularly preferable.
  • the inorganic compound for pore-sealing treatment is formed by curing by a sol-gel reaction.
  • the inorganic compound for the sealing treatment is mainly composed of a metal oxide, a metal alkoxide or the like is applied as a sealing liquid on the ceramic sprayed film, and Cures due to the
  • the inorganic binder contains silica as a main component
  • the content of the metal oxide after hardening is preferably 60 mol% or more.
  • the content of Si (x is 2 or less) after curing is preferably 60 mol% or more.
  • the Si i content after hardening is measured by analyzing the fault of the dielectric layer by XPS (X-ray photoelectron spectroscopy).
  • the maximum height (Rmax) of the surface roughness defined by JISB 0601 at least on the side of the electrode in contact with the base material is 10 / m or less. It is preferable from the viewpoint of obtaining the effects described in the present invention, but more preferably, the maximum value of the surface roughness is 8 ⁇ m or less, and particularly preferably, it is adjusted to 7 ⁇ m or less. . In this way, the thickness of the dielectric and the gap between the electrodes can be kept constant, the discharge state can be stabilized, and the heat shrinkage difference and residual Eliminating distortion and cracking due to stress, high accuracy, and greatly improved durability.
  • polishing of the dielectric surface is preferably performed at least on the dielectric in contact with the substrate.
  • the center line average surface roughness (R a) specified in JISB 0601 is 0.5 ⁇ m It is preferably at most 0.1 m, more preferably at most 0.1 m.
  • the heat-resistant temperature is 100 ° C. or more. It is more preferably at least 120 ° C, particularly preferably at least 150 ° C. The upper limit is 500 ° C.
  • the heat-resistant temperature refers to the highest temperature that does not cause dielectric breakdown at the voltage used in the atmospheric pressure plasma treatment and can withstand normal discharge. Such a heat resistance temperature is determined by applying the above-described ceramic spraying or a dielectric provided with a layered glass lining having a different amount of bubbles mixed therein, or a range of a difference in linear thermal expansion coefficient between the metallic base material and the dielectric. It can be achieved by appropriately combining means for appropriately selecting the materials inside.
  • the supplied gas contains at least a discharge gas and a thin film forming gas.
  • the discharge gas and the thin film forming gas may be supplied as a mixture or may be supplied separately.
  • the discharge gas is a gas capable of generating a glow discharge capable of forming a thin film.
  • Examples of the discharge gas include nitrogen, a rare gas, air, hydrogen gas, and oxygen, and these may be used alone as a discharge gas or may be used as a mixture.
  • nitrogen is preferable as the discharge gas.
  • 50 to 100% by volume of the discharge gas is nitrogen gas.
  • the discharge gas other than nitrogen preferably contains a rare gas in an amount of less than 50% by volume.
  • the amount of the discharge gas is preferably 90 to 99.9% by volume based on the total amount of gas supplied to the discharge space.
  • Thin film forming gas is a raw material that excites itself and becomes active, and is chemically deposited on a substrate to form a thin film.
  • the gas supplied to the discharge space for forming the thin film used in the present invention is discharge gas and thin film forming gas. There is also.
  • the discharge gas preferably contains 90 to 99.9% by volume of the total gas supplied to the discharge space.
  • Examples of the thin film forming gas used in the present invention include organometallic compounds, halogen metal compounds, and metal hydride compounds.
  • the organometallic compounds useful in the present invention are preferably those represented by the following general formula (I).
  • M is a metal
  • R is an alkyl group
  • R is an alkoxy group
  • R is a group selected from a jS-diketone complex group, a ketocarboxylic ester complex group, a ketocarboxylic acid complex group, and a ketooxy group (ketooxy complex group).
  • Examples of the alkyl group for R include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • Examples of the alkoxy group for R include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a 3,3,3-trifluoropropoxy group.
  • a hydrogen atom of an alkyl group may be substituted with a fluorine atom.
  • 1,4-pentanedione also called acetylaceton or acetoaceton
  • 1,1,1,5,5,5-hexamethyl-2,4-pentanedione 2,2,6,6-tetramethyl-13,51-heptane Dione
  • 1,1,1-trifluoro-2,4-pentanedione and the like examples include, for example, methyl acetate acetate, ethyl acetate acetate, ethyl acetate acetate acetate, and the like. Pill esters, methyl trimethylacetoacetate, methyl trifluoroacetoacetate and the like.
  • ketocarboxylic acids include acetoacetic acid and trimethylacetoacetic acid.
  • Ketooxy includes, for example, acetooxy group ( Or an acetoxy group), a propionyloxy group, a ptyryloxy group, an atariloyloxy group, a methacryloyloxy group, and the like.
  • the number of carbon atoms of these groups is preferably 18 or less, including the organometallic compounds described above. As shown in the examples, it may be a straight-chain or branched one, or a hydrogen atom substituted with a fluorine atom.
  • organometallic compounds are preferred due to handling problems, and organometallic compounds having at least one oxygen in the molecule are preferred.
  • organometallic compounds containing at least one alkoxy group of R, 13-diketone complex group, ⁇ -ketocarboxylic acid ester complex group, ⁇ -ketocarboxylic acid complex group and ketoxoxy group (ketoxoxy group) of R Metal compounds having at least one group selected from complex groups) are preferred.
  • the gas supplied to the discharge space may be mixed with an additive gas which promotes a reaction for forming a thin film, in addition to the discharge gas and the thin film-forming gas.
  • the additive gas include oxygen, ozone, hydrogen peroxide, carbon dioxide, carbon monoxide, hydrogen, and ammonia. Of these, oxygen, carbon monoxide, and hydrogen are preferable. Mixing is preferred.
  • the content is preferably 0.01 to 5% by volume with respect to the total amount of the gas, whereby the reaction is promoted and a dense and high-quality thin film can be formed.
  • the thickness of the formed oxide or composite compound thin film is preferably in the range of 0.1 to: L000 nm.
  • an organometallic compound used for a thin film forming gas a metal halide
  • a metal halide As the metal of the metal hydride, Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, N i, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, In, Ir, Sn, Sb, Cs, Ba, La, Hf, Ta, W , Tl, Bi, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and the like.
  • a metal compound such as an organometallic compound, a halogen metal compound, or a metal hydride compound together with a discharge gas
  • highly functional Si 3 N 4 , NbN, and Ti N Etc. can be obtained.
  • the present invention is not limited to this.
  • the nitriding degree of the nitride is merely an example, and the composition ratio with the metal may be changed as appropriate.
  • the thin film may contain impurities such as a carbon compound, a nitrogen compound, and a hydrogen compound in addition to the metal compound.
  • particularly preferred metals of the metal compound are Si (silicon), Ti (titanium), Sn (tin), Zn (zinc), In (indium) and A 1 (aluminum).
  • the organometallic compounds represented by the above general formula (I) are preferred.
  • the tin compounds useful in the present invention include organotin compounds, tin hydride compounds, tin halides, and the like.
  • organotin compounds include dibutylinoletoxy tin, and ptinoletin tris (2, 41 Pentanedionate), tetraethoxytin, methyltriethoxytin, getylethoxytin, triisopropylethoxytin, ethylethoxytin, methylmethoxytin, isopropylisopropoxytin, tetrabutoxytin, ethoxytin, dimethoxytin, Disopropoxy tin, dibutoxy tin, dibutylyloxy tin, getyl tin, tetrabutyl tin, tin bis (2,4-pentanedionate), ethyl tin acetate acetate, ethoxy tin (2,4-pentanedionate), dimethyl tin Di (2,4-pentanedionate), diacetomethylase Examples of t
  • Titanium compounds useful in the present invention include organotitanium compounds, titanium hydride compounds, titanium halides, and the like.
  • organotitanium compounds include triethoxytitanium, trimethoxytitanium, triisopropoxytitanium, tributoxytitanium, and tetratitanium.
  • Examples of the silicon compound useful in the present invention include an organic silicon compound, a silicon hydride compound, and a halogenated silicon compound.
  • Examples of the organic silicon compound include tetraethylsilane, tetramethylsilane, tetraisopropylsilane, and the like.
  • silicon hydrogen compounds include tetrahydrogenated silane, dimethyldimethyoxysilane, getyl ethoxy silane, getyl silane di (2,4-pentanedionate), methyltrimethoxysilane, methyltriethoxysilane, and ethyltriethoxysilane.
  • silicon halide conjugates such as hydrogenated disilane
  • examples of silicon halide conjugates include tetrachlorosilane, methyltrichlorosilane, and ⁇ -ethyldiethyl silane, all of which can be preferably used in the present invention.
  • fluorine compounds can be used.
  • Two or more of these thin film forming gases can be mixed and used at the same time.
  • two or more of these tin compounds, titanium compounds and silicon compounds may be appropriately mixed and used at the same time.
  • the content of the thin film-forming gas in the total gas is preferably from 0.01 to 10% by volume, more preferably. Is 0.01 to 1% by volume.
  • the substrate used in the present invention will be described.
  • the substrate used in the present invention is not particularly limited as long as it can form a thin film such as a plate-shaped, sheet-shaped or film-shaped flat shape, or a three-dimensional shape such as a lens or a molded product on its surface.
  • the form or material of the base material is not limited as long as the base material is exposed to the mixed gas in the plasma state both in the stationary state and the transfer state, and a uniform thin film is formed.
  • the shape may be a planar shape or a three-dimensional shape. Examples of the planar shape include a glass plate and a resin film. Various materials such as glass, resin, pottery, metal, and nonmetal can be used.
  • glass includes a glass plate or a lens
  • resin includes a resin lens, a resin film, a resin sheet, a resin plate, or the like. Since the resin film can be continuously transferred between or near the electrodes of the atmospheric pressure plasma discharge treatment apparatus according to the present invention to form a transparent conductive film, sputtering is performed. It is suitable for mass production that is not a patch type such as a vacuum system, and is suitable as a continuous high productivity production system.
  • the material of the molded product such as a resin film, a resin sheet, a resin lens, a resin molded product, include cellulose triacetate, cellulose diacetate, cellulose acetate provionate or cellulose acetate butyrate.
  • polyesters such as polyethylene terephthalate ⁇ ⁇ polyethylene naphthalate, polyolefins such as polyethylene ⁇ polypropylene, polyvinylidene chloride, polyvinyl chloride, polyvinyl alcohol, ethylene vinyl alcohol copolymer, syndiotactic polystyrene, polycarbonate, norpolenene Resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone, polysnolephone, polyetherimide, polyamide, fluorine Fat, polymethyl ⁇ chestnut rate, can be cited Atari rate copolymers and the like. These materials may be used singly or as an appropriate mixture.
  • ZEONEX (ZEONOR) (Nippon Zeon Co., Ltd.), ARTON (amorphous cyclopolyolefin resin film) (JSR Co., Ltd.), Pure Ace of polycarbonate film (manufactured by Teijin Limited), cellulose triacetate film
  • KONITAK KC4UX and KC8UX manufactured by Koniki Minolta Co., Ltd.
  • the material has a large intrinsic birefringence V such as polycarbonate, polyarylate, polysulfone, and polyethersulfone, and the material is used, the conditions such as solution casting and melt extrusion, etc.
  • a material that can be used can be obtained by appropriately setting stretching conditions and the like.
  • a cellulose ester film that is nearly optically isotropic is preferably used for the optical element of the present invention.
  • a cellulose ester film a cellulose triacetate film or a cellulose acetate propionate as described above is preferably used. one of.
  • Konica Cat KC4UX a commercial product, is useful. Those having a surface coated with gelatin, polyvinyl alcohol, acrylic resin, polyester resin, cellulose ester resin or the like can also be used.
  • an antiglare layer, a clear hard coat layer, a paria layer, an antifouling layer and the like may be provided on the thin film side of these resin films.
  • an adhesive layer, an alkali barrier coat layer, a gas barrier layer, a solvent-resistant layer, and the like may be provided as necessary.
  • the substrate used in the present invention is not limited to the above description.
  • the film thickness of the film is preferably from 10 to 1,000 ⁇ , more preferably from 40 to 200 im.
  • a long film (1500 m wound film) of Konica Cat KC 4UX was used as a substrate, a back coat layer was applied on the back side and a hard coat layer was applied on the front side as described below, and the film was wound as a film roll.
  • a silicon nitride film was formed on the film using the apparatus shown in FIG. That is, the substrate was unwound from the unwinder of the film roll, and barrier films (Sample Nos. 1 to 9) were produced on the hard coat layer using an atmospheric pressure plasma discharge treatment apparatus.
  • the following backcoat layer coating composition was provided on one side of KONICATAC KC4UX, and a clear hard coat layer with a center line surface roughness (Ra) of 15 nm on a dry film thickness of 4 ⁇ m was provided on the other side. Then, a substrate coated with a clear hard coat layer was prepared.
  • Dipentaerythritol hexaatalylate monomer 60 parts by mass Dipentaerythritol hexaatalylate dimer 20 parts by mass Dipentaerythryl], 1-hexaacrylate terpolymer
  • a set of a roll electrode covered with a dielectric and a plurality of rectangular cylindrical electrodes similarly covered with a dielectric was produced as follows.
  • the roll electrode, which is the first electrode is formed by coating a jacket roll metal base material made of titanium alloy T64, which has cooling means with cooling water, with a high-density, high-adhesion alumina spray coating by the atmospheric pressure plasma method.
  • the diameter of the mouth is 100 mm. Sealing treatment and polishing of the coated dielectric surface were performed, and Rmax was set to 5 m.
  • the final porosity of the dielectric (porosity with penetration) is almost 0% by volume.
  • the SiO 2 x content was 75 mo 1%, the final dielectric film thickness was 1 mm, and the relative dielectric constant of the dielectric material was 10. Furthermore the difference in linear thermal expansion coefficient of the conductive metal base material and the dielectric 1. 7 X 1 0- 6, the heat resistance temperature was 2 6 0 ° C.
  • the rectangular cylindrical electrode of the second electrode was a hollow rectangular cylindrical titanium alloy T64 coated with the same dielectric material under the same conditions as above to form a group of opposed rectangular cylindrical fixed electrodes.
  • the dielectric of this rectangular cylindrical electrode is the same as that of the above-mentioned roll electrode, R max of the dielectric surface, S i i ⁇ content of the dielectric layer, film thickness and relative permittivity of the dielectric, metal base material
  • the difference in linear thermal expansion coefficient between the first electrode and the dielectric, and the heat-resistant temperature of the electrode were almost the same as those of the first electrode. Twenty-five such square-tube electrodes were arranged around the roll rotating electrode, with a counter electrode gap of l mm.
  • an appropriate filter was installed.
  • the first electrode (roll rotating electrode) and the second electrode (square cylindrical fixed electrode group) are adjusted and kept at 80 ° C, and the roll rotating electrode is rotated by a drive as follows. A thin film was formed. The first electric field and the second electric field were set under the following conditions, and each was grounded.
  • the pressure was set to 103 kPa, and the following mixed gas was introduced into each discharge space and the inside of the plasma discharge treatment device, and the back coat layer and clear hard coat layer were coated on the clear hard coat layer of the substrate.
  • a plasma discharge thin film was formed, and barrier films were fabricated as samples 1 to 9.
  • the firing voltage of nitrogen gas in this system was 3.7 kV / miji. All were carried out with a filter installed.
  • Discharge gas nitrogen 98.9 volume 0/0 film forming gas: tetra titanium isopropoxycarbonyl 0.1 volume 0/0
  • Additive gas N 2 ⁇ gas 1 volume 0 / o
  • a nitrogen-containing gas and a discharge gas type were used to form barrier films 1 to 9.
  • the thickness of the formed film was measured and found to be 100 nm.
  • the contents of carbon element and nitrogen element were measured using an XPS surface analyzer.
  • ES CALAB-200R manufactured by VG Scientific was used. The measurement was performed at an output of 600 W (acceleration voltage 15 kV, emission current 4 OmA) using Mg as the X-ray anode. The energy resolution was set to be 1.5 to 1.7 eV when specified by the half-width of the Ag3d5Z2 peak.
  • Oxygen permeation tester manufactured by Modern Contorl; OX—TRAN2 / 2 According to 0
  • OX—TRAN2 / 2 According to 0
  • Table 1 shows the above results.
  • the unit of oxygen transmission concentration is [ml ⁇ 1 ⁇ / m 2 ⁇ Idyn ⁇ atm]
  • the titanium nitride film produced by the method for forming a thin film of the present invention had a low carbon atom ratio, a lower oxygen gas transmittance than that of the comparative example, and had a good parier property.
  • a high-density plasma can be generated using a cheap and safe discharge gas such as nitrogen, a dense thin film can be obtained, and a high-quality thin film can be formed at a high speed.
  • a forming method can be provided. Thereby, a base material having a high-quality thin film with high quality can be provided at low cost.

Abstract

Disclosed is a method for forming a thin film which enables to form a thin film with good quality at a high rate by generating a high-density plasma even when a low-cost discharge gas such as nitrogen is used. By this method, a base having a good and dense thin film can be produced at low cost. Specifically disclosed is a method for forming a thin film wherein a nitride film is formed on a base by supplying a gas containing nitrogen element in a discharge space and applying a high-frequency electric field, wherein a first high-frequency electric field and a second high-frequency electric field are superposed, to the discharge space at or near atmospheric pressure. In this method, the frequency (ω2) of the second high-frequency electric field is higher than the frequency (ω1) of the first high-frequency electric field, the relation among the strength (V1) of the first high-frequency electric field, the strength (V2) of the second high-frequency electric field, and the breakdown electric field strength (IV) satisfies V1 ≥ IV > V2 or V1 > IV ≥ V2, and the power density of the second high-frequency electric field is not less than 1 W/cm2.

Description

明細書 薄膜形成方法並びに該方法により薄膜が形成された基材 技術分野  TECHNICAL FIELD A thin film forming method and a substrate on which a thin film is formed by the method
本発明は、大気圧プラズマ放電処理を用いた新規な薄膜形成方法並びに該薄膜形 成方法により薄膜が形成された基材に関する。 背景技術  The present invention relates to a novel thin film forming method using an atmospheric pressure plasma discharge treatment and a substrate on which a thin film is formed by the thin film forming method. Background art
機能性薄膜形成において、スパッタリング法、 CVD法など様々な製膜方法が存 在する力 S、真空を必要としない大気圧プラズマ法がプロセス技術として注目されて いる。 例えば待許文献 1には、パルス電源を用いることにより、窒素ガスのような 放電開始電圧の高いガスでも放電が達成できる大気圧プラズマ製膜技術力、特許文 献 2には大気圧プラズマ法により窒化膜を形成する技術が、また特許文献 3には大 気圧プラズマ法において、プラズマ空間中で原料を分解し、窒化膜を形成する技術 力 それぞれ開示されている。  In the formation of functional thin films, various techniques for film formation, such as sputtering and CVD, exist, and the atmospheric pressure plasma method, which does not require vacuum, has attracted attention as a process technology. For example, Patent Document 1 discloses an atmospheric pressure plasma film forming technology capable of achieving discharge even with a gas having a high firing voltage, such as nitrogen gas, by using a pulsed power source. Patent Document 2 discloses an atmospheric pressure plasma method. Patent Literature 3 discloses a technique for forming a nitride film by decomposing a raw material in a plasma space and forming a nitride film in an atmospheric pressure plasma method.
【特許文献 1】 特開平 10— 1 54598号公報  [Patent Document 1] JP-A-10-154598
【特許文献 2】 特開 2002— 324795号公報  [Patent Document 2] Japanese Patent Application Laid-Open No. 2002-324795
【特許文献3】 特開 2002— 151 513号公報  [Patent Document 3] JP-A-2002-151513
しかしながら、上記特許文献 1の技術ではプラズマ密度が低く、良質な膜が得ら れない。また峥許文献 2の技術ではプラズマにより励起した窒素をシリコン基板に 直接吹き付けてシリコン基板のごく表面(数 nm)を窒素で置換しているにすぎず、 基板の選択性において十分な技術とはいえなレ、。また本発明者らが特許文献 3に開 示されている技術を検証したところ、確かに酸ィヒ珪素の膜はできるものの、原料の テトラメチルシランの分解が不十分で、窒化珪素膜中に炭素成分が多く混入し、十 分な窒化珪素膜の機能を発現できていないことがわかった。また、放電ガスに高価 なアルゴンやへリウムを使用していること力 ら工業的な利点があると ίまいえない。 本発明は、上記の課題に鑑みなされたもので、本発明の目的は、窒素を含有する 良質な薄膜を高速で製膜できる薄膜形成方法を提供し、これにより良質で高性能な 薄膜を安価に提供することにある。 発明の開示 However, according to the technique of Patent Document 1, the plasma density is low, and a high-quality film cannot be obtained. In the technique of Patent Document 2, nitrogen excited by plasma is directly sprayed onto the silicon substrate to replace only a very small surface (a few nm) of the silicon substrate with nitrogen. No, no. The present inventors also disclosed in Patent Document 3. Inspection of the indicated technology showed that although silicon oxynitride film could be formed, the raw material tetramethylsilane was not sufficiently decomposed, and a large amount of carbon was mixed into the silicon nitride film. It was found that the function of the silicon film could not be exhibited. In addition, the use of expensive argon or helium as the discharge gas has no industrial advantage. The present invention has been made in view of the above problems, and an object of the present invention is to provide a thin film forming method capable of forming a high-quality thin film containing nitrogen at a high speed, thereby making it possible to manufacture a high-quality thin film at a low cost. To provide. Disclosure of the invention
本発明者らは、鋭意検討の結果、特定の高周波電界を印加することで、 窒素等の 放電開始電界強度の高い放電ガスでも、高密度プラズマの発生が達成でき、 良質な 薄膜が得られ、 高速に製膜でき、 更には、 安価、 且つ安全に運転でき、環境負荷の 低減も達成できることを見いだした。  The present inventors have conducted intensive studies and as a result, by applying a specific high-frequency electric field, it is possible to achieve high-density plasma generation even with a discharge gas having a high discharge-starting electric field strength such as nitrogen, and obtain a good-quality thin film. It has been found that it is possible to form films at high speed, to operate cheaply and safely, and to reduce the environmental burden.
即ち本発明は、 以下の構成よりなる。  That is, the present invention has the following configurations.
(構成 1 ) 大気圧もしくはその近傍の圧力下、放電空間に薄膜形成ガスを含有す るガスを供給し、前記放電空間に高周波電界を印加することにより前記 スを励起 し、基材を励起した前記ガスに晒すことにより前記基材上に薄膜を形成する薄膜形 成方法において、前記ガスは窒素元素を有するガスを含有し、前記基材 Jに形成さ れる薄膜が窒化膜であり、前記高周波電界が、第 1の高周波電界および第 2の高周 波電界を重畳したものであり、 前記第 1の高周波電界の周波数 ω ιより前記第 2の 高周波電界の周波数 ω2が高く、前記第 1の高周波電界の強さ 前記第 2の高周 波電界の強さ V 2及び放電開始電界の強さ I Vとの関係が、 (Configuration 1) A gas containing a thin film forming gas is supplied to a discharge space under atmospheric pressure or a pressure close to the atmospheric pressure, and a high-frequency electric field is applied to the discharge space to excite the source and excite the substrate. In the thin film forming method of forming a thin film on the substrate by exposing to the gas, the gas contains a gas having a nitrogen element, the thin film formed on the substrate J is a nitride film, The electric field is obtained by superimposing a first high-frequency electric field and a second high-frequency electric field. The frequency ω2 of the second high-frequency electric field is higher than the frequency ωι of the first high-frequency electric field, and The relationship between the intensity V 2 of the second high frequency electric field and the intensity IV of the discharge starting electric field is as follows.
V > I V〉V。 又は V1> IV≥V2 を満たし、 V>IV> V. Or satisfy V 1 > IV ≥ V 2 ,
前記第 2の高周波電界の出力密度が、 1 W/ c m 2以上であることを特徴とする薄 膜形成方法。 The method for forming a thin film, wherein the output density of the second high-frequency electric field is 1 W / cm 2 or more.
(構成 2) 前記放電空間が、対向する第 1電極と第 2電極とで構成されることを 特徴とする構成 1に記載の薄膜形成方法。 '  (Structure 2) The thin-film forming method according to Structure 1, wherein the discharge space includes a first electrode and a second electrode facing each other. '
(構成 3) 前記第 2の高周波電界の出力密度が、 5 OW/ cm2以下であること を特徴とする構成 1又は 2に記載の薄膜形成方法。 (Structure 3) The thin film forming method according to Structure 1 or 2, wherein the output density of the second high-frequency electric field is 5 OW / cm 2 or less.
(構成 4) 前記第 2の高周波電界の出力密度が、 2 OW/ cm2以下であること を特徴とする構成 3に記載の薄膜形成方法。 (Structure 4) The thin film forming method according to Structure 3, wherein the output density of the second high-frequency electric field is 2 OW / cm 2 or less.
(構成 5) 前記第 1の高周波電界の出力密度が 1W/ cm2以上であることを特 徴とする構成 1〜 4の何れか 1構成に記載の薄膜形成方法。 (Structure 5) The thin film forming method according to any one of structures 1 to 4, wherein an output density of the first high-frequency electric field is 1 W / cm 2 or more.
(構成 6) 前記第 1の高周波電界の出力密度が、 5 OWZ cm2以下であること を特徴とする構成 5に記載の薄膜形成方法。 (Structure 6) The thin film forming method according to Structure 5, wherein the output density of the first high-frequency electric field is 5 OWZ cm 2 or less.
(構成 7 ) 前記第 1の高周波電界おょぴ前記第 2の高周波電界がサイン波である ことを特徴とする構成 1〜 6の何れか 1構成に記載の薄膜形成方法。  (Structure 7) The method of forming a thin film according to any one of structures 1 to 6, wherein the first high-frequency electric field and the second high-frequency electric field are sine waves.
(構成 8 ) 前記第 1の高周波電界を前記第 1電極に印加し、前記第 2の高周波電 界を前記第 2電極に印加することを特徴とする構成 2〜 7の何れか 1構成に記載 の薄膜形成方法。  (Configuration 8) The configuration according to any one of Configurations 2 to 7, wherein the first high-frequency electric field is applied to the first electrode, and the second high-frequency electric field is applied to the second electrode. Thin film forming method.
(構成 9) 前記放電空間に供給される全ガス量の 90〜99. 9体積%が放電ガ スであることを特徴とする構成 1〜 8の何れか 1構成に記載の薄膜形成方法。 (Structure 9) The thin film forming method according to any one of structures 1 to 8, wherein 90 to 99.9% by volume of the total amount of gas supplied to the discharge space is discharge gas.
(構成 10 ) 前記放電ガスが、 50〜 100体積%の窒素ガスを含有することを 特徴とする構成 9に記載の薄膜形成方法。 ― (Structure 10) The method for forming a thin film according to Structure 9, wherein the discharge gas contains 50 to 100% by volume of nitrogen gas. ―
(構成 1 1 ) 前記放電ガスが、 50体積%未満の希ガスを含有することを特数と する構成 9又は 1 0に記載の薄膜形成方法。 (Structure 11) A special feature is that the discharge gas contains a rare gas of less than 50% by volume. 10. The method for forming a thin film according to Configuration 9 or 10.
(構成 1 2 ) 前記薄膜形成ガスが、有機金属化合物、 ハロゲン化金属、金屑水素 化合物から選ばれる少なくとも一つを含有することを特徴とする構成 1〜1 1の 何れか 1構成に記載の薄膜形成方法。  (Structure 12) The structure according to any one of Structures 1 to 11, wherein the thin film forming gas contains at least one selected from an organometallic compound, a metal halide, and a gold hydrogen compound. Thin film formation method.
(構成 1 3 ) 前記有機金属化合物が、 有機珪素化合物、有機チタン化合物、 有機 錫化合物、有機亜鉛化合物、有機ィンジゥム化合物およぴ有機アルミニゥムィヒ合物 から選ばれる少なくとも一つの化合物を含有することを特徴とする構成 1 2に記 載の薄膜形成方法。  (Constitution 13) The organic metal compound contains at least one compound selected from an organic silicon compound, an organic titanium compound, an organic tin compound, an organic zinc compound, an organic aluminum compound and an organic aluminum compound. The method for forming a thin film described in Configuration 1 or 2.
(構成 1 4 ) 構成 1〜1 3の何れか 1構成に記載の薄膜形成方法により形成され た薄膜を有することを特徴とする基材。 図面の簡単な説明  (Constitution 14) A base material having a thin film formed by the thin film forming method according to any one of the constitutions 1 to 13. Brief Description of Drawings
第 1図は本発明に有用なジエツト方式の大気圧プラズマ放電処理装置の一^!を 示した概略図である。  FIG. 1 is a schematic view showing one embodiment of a jet type atmospheric pressure plasma discharge treatment apparatus useful for the present invention.
第 2図は本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放 電処理装置の一例を示す概略図である。  FIG. 2 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus of a type for treating a substrate between opposed electrodes useful in the present invention.
第 3図は導電性の金属質母材とその上に被覆されている誘電体を有するロール 回転電極の一例を示す斜視図である。  FIG. 3 is a perspective view showing an example of a roll rotating electrode having a conductive metallic base material and a dielectric material coated thereon.
第 4図は角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の 構造の一例を示す斜視図である。 発明を実施するための最良の形態  FIG. 4 is a perspective view showing an example of the structure of a conductive metal base material of a rectangular cylindrical electrode and a dielectric material coated thereon. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において、プラズマ放電処理は、大気圧もしくはその近傍の圧力下で行わ れる力 大気圧もしくはその近傍の圧力とは 20 k P a〜1 1 0 k P a程度であり、 本発明に記載の良好な効果を得るためには、 9 3 k P a〜1 04 k P aが好ましい。 本発明の薄膜形成方法において、 対向電極間 (放電空間) に供給するガス (ま、 少 なくとも、電界により励起する放電ガスと、そのエネルギーを受け取ってプヲズマ 状態あるいは励起状態になり薄膜を形成する薄膜形成ガスを含んでいる。そして窒 素元素を有するガスを含有することを特徴とする。本発明における放電条件 ίま、放 電空間に、第 1の高周波電界と第 2の高周波電界とを重畳し、前記第 1の高周波電 界の周波数 ωιより前記第 2の高周波電界の周波数 ω2が高く、且つ、前記第 1の高 周波電界の強さ Vい 前記第 2の高周波電界の強さ V2及ぴ放電開始電界の強さ I Vとの関係が、 In the present invention, the plasma discharge treatment is performed under the atmospheric pressure or a pressure near the atmospheric pressure. The pressure at or near the atmospheric pressure is about 20 kPa to 110 kPa, and in order to obtain the good effects described in the present invention, 93 kPa to 104 kP a is preferred. In the thin film forming method of the present invention, a gas to be supplied between the opposing electrodes (discharge space) (at least, a discharge gas excited by an electric field, and a plasma state or an excited state by receiving the energy to form a thin film) The discharge condition according to the present invention includes a first high-frequency electric field and a second high-frequency electric field in a discharge space. superimposed, said first of said second high-frequency electric field than the frequency ωι of the high frequency electric field frequency omega 2 is high, and the strength of the have strength V of the first high frequency electric field and the second high-frequency electric field The relationship between V 2 and the intensity of the electric field at the start of discharge IV
Vx≥ I V>V2 V x ≥ I V> V 2
又は V1〉 I V≥V2 を満たし、 Or V 1 〉 IV≥V 2
前記第 2の高周波電界の出力密度が、 1 WZ c m 2以上であることを特 ί敷とする。 高周波とは、少なくとも 0. 5 kHzの周波数を有するものを言う。重畳する高周 波電界が、 ともにサイン波である場合、 第 1の高周波電界の周波数 ωιと該周波数 ωιより高い第 2の高周波電界の周波数 ω2とを重ね合わせた成分となり、 その波形 は周波数 ωιのサイン波上に、それより高い周波数 ω2のサイン波が重なった維歯状 の波形となる。 The power density of the second high-frequency electric field is not less than 1 WZ cm 2 . High frequency refers to those having a frequency of at least 0.5 kHz. High-frequency electric field superimposed, if are both sine wave becomes a first high-frequency electric field of a frequency ωι and the frequency ωι higher than the second high-frequency electric field of a frequency omega 2 and the superposed component, its waveform frequency on the sine wave of ωι, the維歯-shaped waveform higher than the sine wave of frequency ω 2 which it overlaps.
本発明において、放電開始電界の強さとは、実際の薄膜形成方法に使用さ る放 電空間 (電極の構成など) 及び反応条件 (ガス条件など) において放電を起こすこ とのできる最低電界強度のことを指す。放電開始電界強度は、放電空間に供給され るガス種や電極の誘電体種又は電極間距離などによつて多少変動するが、同じ放電 空間においては、放電ガスの放電開始電界強度に支配される。上記で述べたよ うな 高周波電界を放電空間に印加することによって、薄膜形成可能な放電を起こし、高 品位な薄膜形成に必要な高密度プラズマを発生することができると推定される。こ こで重要なのは、 このような高周波電界が対向する電極に印加され、すなわち、 同 じ放電空間に印加されることである。印加電極を 2つ併置し、離間した異なる放電 空間それぞれに、異なる高周波電界を印加する方法では、本発明の薄膜形成は達成 できない。 なお上記でサイン波等の連続波の重畳について説明したが、 これに限ら れるものではなく、両方パルス波であっても、一方が連続波でもう一方が z、°ルス波 であってもかまわない。 また、 更に第 3の電界を有していてもよい。 In the present invention, the intensity of the electric field at the start of discharge refers to the minimum electric field intensity that can cause a discharge in the discharge space (such as the configuration of the electrode) and the reaction conditions (such as the gas conditions) used in the actual thin film forming method. Refers to Although the discharge starting electric field strength varies somewhat depending on the type of gas supplied to the discharge space, the dielectric material of the electrodes, the distance between the electrodes, etc., in the same discharge space, it is dominated by the discharge starting electric field strength of the discharge gas. . As mentioned above It is presumed that by applying a high-frequency electric field to the discharge space, a discharge capable of forming a thin film can be generated, and high-density plasma necessary for forming a high-quality thin film can be generated. What is important here is that such a high-frequency electric field is applied to the opposite electrode, that is, to the same discharge space. The thin film formation of the present invention cannot be achieved by a method in which two application electrodes are juxtaposed and different high-frequency electric fields are applied to different discharge spaces separated from each other. Although superposition of a continuous wave such as a sine wave has been described above, the present invention is not limited to this, and both pulse waves may be used, one may be a continuous wave, and the other may be a z-wave. Absent. Further, it may have a third electric field.
本発明における窒素元素を含有するガスとしては、 具体的には窒素 (N2) 、 窒 化酸素 (NO) 、 ニ窒化酸素 (N20) 、 アンモニア (NH3) 、 ヒドラジン (N2 H4) 、 モノメチルヒ ドラジン (CH6N2) 、 1 , 1—ジメチルヒドラジン (C2 H8N2) 、 1, 2—ジメチルヒドラジン (C2H8N2) 等が挙げられ、 好ましく は窒素 (N2) 、 窒化酸素 (NO) 、 ニ窒化酸素 (N20) 、 アンモニア (NH3) である。 本発明における窒化膜とは、 XP S (X- r a y Ph o t o e l e c t o r o n S p e c t r o s c o p y )測定法おいて窒素元素を 1 0 %以上含有す る膜のことである。又、 このときに測定される炭素元素の比率は低いほうが好まし い。 具体的には窒素元素は 20%以上、炭素元素は 3%以下が好ましい。 本発明の '特徴は、高周波の印加方法を工夫することによりプラズマ密度がアップし、 原料の 分解が十分になされ、原科中の炭素成分の形成膜への混入を極めて低くすることが できることである。 また、放電ガスに窒素を用いる場合にはプラズマにより励起し た活性窒素元素により窒化膜をより効率よく作成することが可能になる。 As the gas containing a nitrogen element in the present invention, specifically, nitrogen (N 2 ), oxygen nitride (NO), oxygen dinitride (N 20 ), ammonia (NH 3 ), hydrazine (N 2 H 4) ), Monomechiruhi hydrazine (CH 6 N 2), 1 , 1- dimethylhydrazine (C 2 H 8 N 2) , 1, 2- dimethylhydrazine (C 2 H 8 N 2), and the like, preferably nitrogen (N 2 ), oxygen nitride (NO), oxygen dinitride (N 20 ), and ammonia (NH 3 ). The nitride film in the present invention is a film containing 10% or more of a nitrogen element in an XPS (X-ray photoelectron spectroscopy) measurement method. Further, it is preferable that the ratio of the carbon element measured at this time is low. Specifically, it is preferable that the nitrogen element is 20% or more and the carbon element is 3% or less. The feature of the present invention is that by devising a method for applying a high frequency, the plasma density is increased, the raw material is sufficiently decomposed, and the contamination of the carbon component in the raw material with the formed film can be extremely reduced. is there. When nitrogen is used as the discharge gas, a nitride film can be more efficiently formed by the active nitrogen element excited by the plasma.
上記本発明の高周波電界を、 同一放電空間に印加する具体的な方法は、対向電極 を構成する第 1電極に周波数 ω,であって電界強度 V iである第 1の高周波電界を 印加する第 1電源を接続し、第 2電極に周波数 ω 2であって電界強度 V 2である第 2 の高周波電界を印加する第 2電源を接続した大気圧プラズマ放電処理装置を用い ることである。 上記の大気圧プラズマ放電処理装置には、対向電極間に、放電ガス と薄膜形成ガスとを供給するガス供給手段を備える。更に、電極の温度を制御する 電極温度制御手段を有することが好ましい。 また、第 1電極、第 1電源又はそれら の間の何れかには第 1フィルタを、また第 2電極、第 2電源又はそれらの間の何れ かには第 2フィルタを接続することが好ましく、第 1フィルタは第 1電源から第 1 電極への第丄の高周波電界の電流を通過しゃすくし、第 2の高周波電界の電流を ースして、第 2電源から第 1電源への第 2の高周波電界の電流を通過しにくくする。 また、第 2フィルタはその逆で、第 2電源から第 2電極への第 2の高周波電界の霞 流を通過しやすくし、第 1の高周波電界の電流をアースして、第 1電源から第 2霞 源への第 1の高周波電界の電流を通過しにくくする機能が備わっているものを使 用する。 ここで、 通過しにくいとは、 好ましくは、 電流の 2 0 %以下、 より好まし くは 1 0 %以下しか通さないことをいう。逆に通過しやすいとは、好ましくは電流 の 8 0 %以上、 より好ましくは 9 0 %以上を通すことをいう。 A specific method of applying the high-frequency electric field of the present invention to the same discharge space is to apply a first high-frequency electric field having a frequency ω and an electric field strength Vi to a first electrode constituting the counter electrode. In connecting the first power source for applying, using an atmospheric pressure plasma discharge treatment apparatus connected to a second power source for applying a second high frequency electric field to the second electrode a frequency omega 2 is a field intensity V 2 Rukoto is there. The above-mentioned atmospheric pressure plasma discharge processing apparatus is provided with a gas supply means for supplying a discharge gas and a thin film forming gas between opposed electrodes. Further, it is preferable to have an electrode temperature control means for controlling the temperature of the electrode. Further, it is preferable that a first filter is connected to the first electrode, the first power supply or any one of them, and a second filter is connected to the second electrode, the second power supply or any one of them. The first filter passes the current of the second high-frequency electric field from the first power supply to the first electrode and sinks the current of the second high-frequency electric field, and the second filter supplies the second high-frequency electric field to the first power supply. It makes it difficult to pass a high-frequency electric field current. The second filter, on the other hand, makes it easier to pass the second high-frequency electric field haze from the second power supply to the second electrode, grounds the current of the first high-frequency electric field, and connects the first high-frequency electric field to the first power supply. 2 Use a device that has a function to make it difficult to pass the current of the first high-frequency electric field to the haze source. Here, “hard to pass” means that preferably only 20% or less, more preferably 10% or less of the current is passed. Conversely, passing easily means that 80% or more, more preferably 90% or more of the current is passed.
更に、本発明の大気圧プラズマ放電処理装置の第 1電源は、第 2電源より高い高 周波電界強度を印加できる能力を有していることが好ましい。 ここで、本発明でレ、 う高周波電界強度 (印加電界強度) と放電開始電界強度は、 下記の方法で測定さ; たものをいう。  Further, it is preferable that the first power supply of the atmospheric pressure plasma discharge treatment apparatus of the present invention has a capability of applying a higher frequency electric field strength higher than that of the second power supply. Here, in the present invention, the high-frequency electric field strength (applied electric field strength) and the discharge starting electric field strength are measured by the following methods.
高周波電界強度 V 及び V 2 (単位: k V/mm) の測定方法: How to measure high-frequency electric field strength V and V 2 (unit: kV / mm):
各電極部に高周波電圧プローブ(P 6 0 1 5 A) を設置し、該高周波電圧プローブ、 の出力信号をオシロスコープ(T e k t r o n i x社製、 T D S 3 0 1 2 B ) に換 続し、 電界強度を測定する。 放電開始電界強度 I V (単位: k V/mm) の測定方法: A high-frequency voltage probe (P615A) is installed on each electrode, and the output signal of the high-frequency voltage probe is connected to an oscilloscope (Tektronix, TDS301B) to reduce the electric field strength. Measure. Measurement method of electric field strength IV (unit: kV / mm)
電極間に放電ガスを供給し、 この電極間の電界強度を増大させていき、放電が始ま る電界強度を放電開始電界強度 I Vと定義する。測定器は上記高周波電界強度測定 と同じである。 A discharge gas is supplied between the electrodes, and the electric field strength between the electrodes is increased. The electric field strength at which the discharge starts is defined as a discharge start electric field strength IV. The measuring instrument is the same as the above-mentioned high-frequency electric field strength measurement.
本発明で規定する放電条件をとることにより、例え窒素ガスのように放電開始電 界強度が高い放電ガスでも、放電を開始し、高密度で安定なプラズマ状態を,維持で き、高性能な薄膜形成を行うことができるのである。上記の測定により放電ガスを 窒素ガスとした場合、 その放電開始電界強度 I V (1/2 Vp-p) は 3. 7 k V /mm程度であり、 従って、 上記の関係において、 第 1の高周波電界強度を、 λ ≥ 3. 7 kVZmmとして印加することによって窒素ガスを励起し、プラズマ状態 にすることができる。 ここで、 第 1電源の周波数としては、 200 kHz以下を好 ましく用いることができる。 またこの電界波形としては、連続波でもパルス波でも よい。 下限は 1 kH z程度が望ましい。 一方、 第 2電源の周波数としては、 8 00 kH z以上が好ましく用いられる。 この第 2電源の周波数が高い程、プラズマ密度 が高くなり、 緻密で良質な薄膜が得られる。 上限は 200MH z程度が望ましレ、。 このような 2つの電源から高周波電界を印加するのは、第 1の高周波電界によって 高い放電開始電界強度を有する放電ガスの放電を開始するのが必要であり、また第 2の高周波電界の高い周波数および高い出力密度によりプラズマ密度を高く して 緻密で良質な薄膜を形成することが本発明の重要な点である。 By adopting the discharge conditions defined in the present invention, discharge can be started even in a discharge gas having a high discharge start electric field strength such as nitrogen gas, and a high-density and stable plasma state can be maintained. A thin film can be formed. When the discharge gas is nitrogen gas according to the above measurement, the discharge start electric field intensity IV (1/2 Vp-p) is about 3.7 kV / mm. By applying an electric field strength of λ ≥ 3.7 kVZmm, the nitrogen gas can be excited and turned into a plasma state. Here, as the frequency of the first power supply, 200 kHz or less can be preferably used. The electric field waveform may be a continuous wave or a pulse wave. The lower limit is preferably about 1 kHz. On the other hand, the frequency of the second power supply is preferably 800 kHz or more. The higher the frequency of the second power supply, the higher the plasma density, and a dense and high-quality thin film can be obtained. The upper limit is preferably about 200 MHz. Applying a high-frequency electric field from such two power sources requires that the discharge of a discharge gas having a high discharge starting electric field strength be started by the first high-frequency electric field, and that the high-frequency electric field of the second high-frequency electric field be high. It is an important point of the present invention to form a dense and high quality thin film by increasing the plasma density due to the high power density.
また、第 1の高周波電界の出力密度を高くすることで、放電の均一性を維持した まま、第 2の高周波電界の出力密度を向上させることができる。 これにより、 更な る均一高密度プラズマが生成でき、更なる製膜速度の向上と、膜質の向上が両立で さる。 本発明に用いられる大気圧プラズマ放電処理装置において、前記第 1フィルタは、 第 1電源から第 1電極への第 1の高周波電界の電流を通過しやすくし、第 2の高周 嫁電界の電流をアースして、第 2電源から第 1電源への第 2の高周波電界の電流を 通過しにくくする。 また、第 2フィルタはその逆で、第 2電¾1から第 2電極への第 2の高周波電界の電流を通過しやすくし、 第 1の高周波電界の電流をアースして、 第 1電源から第 2電源への第 1の高周波電界の電流を通過しにくくする。本発明に おいて、 かかる性質のあるフィルタであれば制限無く使用できる。例えば、第 1フ ィルタとしては、 第 2電源の周波数に応じて数 1 0 p F〜数万 p Fのコンデンサ、 もしくは数 H程度のコイルを用いることができる。 第 2フィルタとしては、 第 1電源の周波数に応じて 1 0 μ H以上のコイルを用い、これらのコイルまたはコン デンサを介してアース接地することでフィルタとして使用できる。 Further, by increasing the output density of the first high-frequency electric field, it is possible to improve the output density of the second high-frequency electric field while maintaining the uniformity of the discharge. As a result, more uniform high-density plasma can be generated, and both a further improvement in the film forming speed and an improvement in the film quality can be achieved. In the atmospheric pressure plasma discharge processing apparatus used in the present invention, the first filter facilitates passage of a current of a first high-frequency electric field from a first power supply to a first electrode, and a current of a second high-permeation electric field. To prevent the passage of the current of the second high-frequency electric field from the second power supply to the first power supply. The second filter, on the other hand, makes it easier to pass the current of the second high-frequency electric field from the second electrode 1 to the second electrode, grounds the current of the first high-frequency electric field, and (2) It is difficult to pass the current of the first high-frequency electric field to the power supply. In the present invention, any filter having such properties can be used without limitation. For example, as the first filter, a capacitor of several 10 pF to several tens of thousands pF or a coil of several H can be used according to the frequency of the second power supply. As the second filter, a coil of 10 μH or more can be used according to the frequency of the first power supply, and it can be used as a filter by grounding it through these coils or a capacitor.
本発明に用いられる大気圧プラズマ放電処理装置は、上述のように、対向電極の 間で放電させ、前記対向電極間に導入したガスをプラズマ状態とし、前記対向電極 間に静置あるいは電極間を移送される基材を該プラズマ状態のガスに晒すことに よって、該基材の上に薄膜を形成させるものである。 また他の方式として、 大気圧 プラズマ放電処理装置は、上記同様の対向電極間で放電させ、該対向電極間に導入 したガスを励起しまたはプラズマ状態とし、該対向電極外にジエツト状に励起また はプラズマ状態のガスを吹き出し、該対向電極の近傍にある基材(静置していても 移送されていてもよい)を晒すことによつて該基材の上に薄膜を形成させるジエツ ト方式の装置がある。  As described above, the atmospheric pressure plasma discharge treatment apparatus used in the present invention discharges gas between the opposed electrodes, brings the gas introduced between the opposed electrodes into a plasma state, and stands still between the opposed electrodes or between the opposed electrodes. By exposing the transferred substrate to the gas in the plasma state, a thin film is formed on the substrate. As another method, an atmospheric pressure plasma discharge treatment apparatus discharges a gas between the opposite electrodes as described above to excite or introduce a gas introduced between the opposite electrodes into a jet state outside the counter electrode. Is a jet method in which a gas in a plasma state is blown out and a thin film is formed on the base material by exposing the base material (which may be left still or transferred) near the counter electrode. Equipment.
第 1図は、本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を 示した概略図である。 ジエツト方式の大気圧プラズマ放電処理装置は、プラズマ放 電処理装置、二つの電源を有する電界印加手段の他に、第 1図では図示してない(後 述の第 2図に図示してある) 力 ガス供給手段、電極温度調節手段を有している装 置である。プラズマ放電処理装置 1 0は、第 1電極 1 1と第 2電極 1 2から構成さ れている対向電極を有しており、該対向電極間に、第 1電極 1 1からは第 1電源 2 1からの周波数 ω ι、電界強度 電流 I 1の第 1の高周波電界が印加され、 また 第 2電極 1 2からは第 2電源 2 2からの周波数 ω2、電界強度 V 2、電流 I 2の第 2 の高周波電界が印加されるようになっている。第 1電源 2 1は第 2電源 2 2より高 い高周波電界強度 (V i > V 2) を印加でき、 また第 1電?原 2 1の第 1の周波数 ω ι は第 2電源 2 2の第 2の周波数 ω2より低い周波数を印加できる。 第 1電極 1 1と 第 1電源 2 1との間には、第 1フィルタ 2 3が設置されており、第 1電源 2 1から 第 1電極 1 1への電流を通過しやすくし、 第 2電源 2 2からの電流をアースして、 第 2電?原 2 2から第 1電源 2 1への電流が通過しにくくなるように設計されてい る。 · FIG. 1 is a schematic view showing an example of a jet type atmospheric pressure plasma discharge treatment apparatus useful for the present invention. The jet-type atmospheric pressure plasma discharge treatment apparatus is not shown in FIG. 1 in addition to the plasma discharge treatment apparatus and the electric field applying means having two power supplies (not shown later). This is an apparatus having a gas supply means and an electrode temperature adjusting means. The plasma discharge treatment apparatus 10 has a counter electrode composed of a first electrode 11 and a second electrode 12, and a first power supply 2 is provided between the counter electrode and the first electrode 11. The first high-frequency electric field of the frequency ωι from 1 and the electric field strength current I 1 is applied, and the frequency ω 2 from the second power supply 22, the electric field strength V 2 , and the current I 2 A second high-frequency electric field is applied. The first power source 21 can apply a higher frequency electric field strength (Vi> V 2 ) higher than the second power source 22 , and the first frequency ω ι of the first power source 21 can be applied to the second power source 22 . a lower frequency than the second frequency ω 2 can be applied. A first filter 23 is provided between the first electrode 11 and the first power supply 21 to facilitate passage of current from the first power supply 21 to the first electrode 11, The current from the power source 22 is grounded so that the current from the second power source 22 to the first power source 21 is difficult to pass. ·
また、第 2電極 1 2と第 2電源 2 2との間には、第 2フィルター 2 4が設置され ており、第 2電源 2 2から第 2電極への電流を通過しやすくし、第 1電源 2 1力 ら の電流をアースして、第 1電源 2 1から第 2電源への電流を通過しにくくするよう に設計されている。 第 1電極 1 1と第 2電極 1 2との対向電極間 (放電空間) 1 3 に、後述の第 2図に図示してあるようなガス供給手段からガス Gを導入し、第 1電 極 1 1と第 2電極 1 2から高周波電界を印加して放電を発生させ、ガス Gをプラズ マ状態にしながら対向電極の下側 (紙面下側) にジ ット状に吹き出させて、対向 電極下面と基材 Fとで作る処理空間をプラズマ状態のガス G° で満たし、図示して ない基材の元卷き (アンワインダー) 力 ^巻きほぐされて搬送して来る力、 あるい は前工程から搬送して来る基材 Fの上に、 処理位置 1 4付近で薄膜を形成させる。 薄月莫形成中、後述の第 2図に図示してあるような電極温度調節手段から媒体が配管 を通って電極を加熱または冷却する。プラズマ放電処理の際の基材の温度によって は、得られる薄膜の物性や組成等は変化することがあり、 これに対して適宜制御す ることが望ましい。 温度調節の媒体としては、蒸留水、 油等の絶縁性材料が好まし く用いられる。 プラズマ放電処理の際、幅手方向あるいは長手方向での基材の温度 ムラができるだけ生じないように電極の内部の温度を均等に調節することが望ま れる。 In addition, a second filter 24 is provided between the second electrode 12 and the second power supply 22 to make it easier to pass a current from the second power supply 22 to the second electrode. It is designed so that the current from the power source 21 is grounded so that the current from the first power source 21 to the second power source does not easily pass. Gas G is introduced into the space (discharge space) 13 between the first electrode 11 and the second electrode 12 from the gas supply means as shown in FIG. A high-frequency electric field is applied from 11 and the second electrode 12 to generate a discharge, and the gas G is blown out in a jet shape below the counter electrode (the lower side of the paper) while keeping it in a plasma state. The processing space created by the lower surface and the substrate F is filled with the gas G ° in the plasma state, and the unwinder force of the substrate (not shown) is the force that is unwound and transported, or A thin film is formed near the processing position 14 on the substrate F conveyed from the process. During the formation of the thin moon, a medium is supplied from the electrode temperature control means as shown in FIG. Heat or cool the electrode through. Depending on the temperature of the substrate during the plasma discharge treatment, the physical properties and composition of the obtained thin film may change, and it is desirable to appropriately control the change. As a temperature control medium, an insulating material such as distilled water or oil is preferably used. During the plasma discharge treatment, it is desirable to uniformly adjust the temperature inside the electrode so as to minimize the unevenness of the substrate temperature in the width direction or the longitudinal direction.
また、第 1図に前述の高周波電界強度(印加電界強度) と放電開始電界強度の測 定に使用する測定器を示した。 2 5及び 2 6は高周波電圧プローブであり、 2 7及 び 2 8はオシロスコープである。  Fig. 1 shows the measuring instruments used to measure the high-frequency electric field strength (applied electric field strength) and the discharge start electric field strength described above. Reference numerals 25 and 26 are high-frequency voltage probes, and reference numerals 27 and 28 are oscilloscopes.
ジヱット方式の大気圧プラズマ放電処理装置を複数基接して直列に並べて同時 に同じプラズマ状態のガスを放電させることができるので、何回も処理され高速で 処理することもできる。また各装置が異なったプラズマ状態のガスをジエツト嘖射 すれば、 異なった層の積層薄膜を形成することもできる。  Since a plurality of jet-type atmospheric pressure plasma discharge treatment devices can be connected in series and discharged in the same plasma state at the same time, they can be treated many times and can be treated at high speed. Also, if each device jets a gas in a different plasma state, it is possible to form a laminated thin film of different layers.
第 2図は本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放 電処理装置の一例を示す概略図である。 本発明の大気圧プラズマ放電処理装置は、 少なくとも、 プラズマ放電処理装置 3 0、 二つの電源を有する電界印加手段 4 0、 ガス供給手段 5 0、 電極温度調節手段 6 0を有している装置である。 第 2図は、 口 ール回転電極 (第 1電極) 3 5と角筒型固定電極群 (第 2電極) 3 6との対向電極 間(放電空間) 3 2で、基材 Fをプラズマ放電処理して薄膜を形成するものである。 ロール回転電極 (第 1電極) 3 5と角筒型固定電極群 (第 2電極) 3 6との間の放 電空間 (対向電極間) 3 2に、 ロール回転電極 (第 1電極) 3 5には第 1電源 4 1 力 ら周波数 ω ι、電界強度 電流 I 1の第 1の高周波電界を、 また角筒型固定電 極群 (第 2電極) 3 6には第 2電源 4 2から周波数 ω 2、 電界強度 V 2、電流 I 2の 第 2の高周波電界をかけるようになつている。 ロール回転電極 (第 1電極) 35と 第 1電源 41との間には、第 1フィルタ 43が設置されており、第 1フィルタ 43 は第 1電源 41力 ら第 1電極への電流を通過しゃ くし、第 2電源 42からの電流 をアースして、第 2電源 42から第 1電源への電流を通過しにくくするように設計 されている。また、角筒型固定電極群(第 2電極) 3 6と第 2電源 42との間には、 第 2フィルタ 44が設置されており、第 2フィルダー 44は、第 2電源 42から第 2電極への電流を通過しやすくし、第 1電?原 41力 らの電流をアースして、第 1電 源 41から第 2電源への電流を通過しにくくする tうに設計されている。 なお、本 発明においては、 ロール回転電極 35を第 2電極、 また角筒型固定電極群 36を第 1電極としてもよい。何れにしろ第 1電極には第 1 電源が、 また第 2電極には第 2 電源が接続される。 第 1電源は第 2電源より高い高周波電界強度 、 > を 印加することが好ましい。 FIG. 2 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus of a type for treating a substrate between opposed electrodes useful in the present invention. The atmospheric pressure plasma discharge treatment apparatus of the present invention is an apparatus having at least a plasma discharge treatment apparatus 30, an electric field applying means 40 having two power supplies, a gas supply means 50, and an electrode temperature adjusting means 60. is there. Fig. 2 shows the plasma discharge of the substrate F between the counter rotating electrode (first electrode) 35 and the fixed electrode group (second electrode) 36 with the rectangular rotating electrode 35 (discharge space) 32. This is to form a thin film by processing. Discharge space (between counter electrodes) between roll rotating electrode (first electrode) 35 and square-tube fixed electrode group (second electrode) 36 Roll rotating electrode (first electrode) 35 The first power supply 41 has a frequency ωι from the first power supply, the first high-frequency electric field of the electric field strength current I 1, and the square cylindrical fixed electrode group (second electrode) 36 has a frequency from the second power supply 42. ω 2 , electric field strength V 2 , current I 2 A second high-frequency electric field is applied. A first filter 43 is provided between the roll rotating electrode (first electrode) 35 and the first power supply 41, and the first filter 43 blocks a current from the first power supply 41 to the first electrode. The comb is designed so that the current from the second power supply 42 is grounded so that the current from the second power supply 42 to the first power supply does not easily pass. In addition, a second filter 44 is provided between the prismatic fixed electrode group (second electrode) 36 and the second power supply 42, and the second filter 44 is connected to the second power supply 42 by the second electrode 42. The first power source 41 is designed to make it easier to pass current, and the current from the first power source 41 is grounded so that the current from the first power source 41 to the second power source is hardly passed. In the present invention, the roll rotating electrode 35 may be the second electrode, and the rectangular cylindrical fixed electrode group 36 may be the first electrode. In any case, a first power supply is connected to the first electrode, and a second power supply is connected to the second electrode. It is preferable that the first power supply applies a high-frequency electric field strength higher than that of the second power supply.
また、 周波数は ωι2となる能力を有している。 また、 電流は I 1く I 2とな ることが好ましい。第 1の高周波電界の電流 I 1【 、好ましくは 0. 3〜2 OmA /cm2, さらに好ましくは 1. 0〜2 OmAZcrm2である。 また、 第 2の髙周 波電界の電流 I 2は、 好ましくは 10〜100m Zcm2、 さらに好ましくは 2 0〜10 OmAZcm2である。 In addition, the frequency has the ability to become a ωι <ω 2. Further, it is preferable that the current be I 1 and I 2. The current I 1 of the first high-frequency electric field is preferably 0.3 to 2 OmA / cm 2 , more preferably 1.0 to 2 OmAZcrm 2 . The current I 2 of the second microwave electric field is preferably 10 to 100 mZcm 2 , more preferably 20 to 10 OmAZcm 2 .
ガス供給手段 50のガス発生装置 51で発生さ tたガス Gは、流量を制御して給 気口 52よりプラズマ放電処理容器 31内に導入する。基材 Fを、図示されていな ぃ元卷きから巻きほぐして搬送して来る力 又は 工程から搬送して来て、ガイド ロール 64を経てエップロール 65で基材に同伴 れて来る空気等を遮断し、ロー ル回転電極 35に接触したまま卷き回しながら角 型固定電極群 36との間に移 送し、 ロール回転電極 (第 1電極) 35と角筒型固定電極群 (第 2電極) 36との 両方から電界をかけ、 対向電極間 (放電空間) 3 2で放電プラズマを発生させる。 基材 Fは口ール回転電極 3 5に接触したまま巻き回されながらプラズマ状態のガ スにより表面に薄膜が形成される。 基材 Fは、 -ップロール 6 6、 ガイドロール 6 7を経て、 図示してない卷き取り機で卷き取る力 次工程に移送する。 The gas G generated by the gas generator 51 of the gas supply means 50 is introduced into the plasma discharge processing container 31 through the supply port 52 by controlling the flow rate. The base material F is unwound from the original roll (not shown) or is transported from the process or is transported from the process. Then, while being wound while being in contact with the roll rotating electrode 35, it is transferred between the square fixed electrode group 36 and the roll rotating electrode (first electrode) 35 and the square cylindrical fixed electrode group (second electrode). With 36 An electric field is applied from both sides to generate discharge plasma between the counter electrodes (discharge space) 32. The substrate F is wound while being kept in contact with the rotary electrode 35, and a thin film is formed on the surface by gas in a plasma state. The base material F is transferred to a next step through a roll-up roll 66 and a guide roll 67 to be wound by a winder (not shown).
放電処理済みの処理排ガス G' は排気口 5 3より排出する。薄膜形成中、 ロール 回転電極 (第 1電極) 3 5及び角筒型固定電極 (第 2電極) 3 6を加熱または冷却 するために、電極温度調節手段 6 0で温度を調節した媒体を、送液ポンプ Pで配管 6 1を経て両電極に送り、電極内側から温度を調節する。 なお、 6 8及び 6 9はプ ラズマ放電処理容器 3 1と外界とを仕切る仕切板である。  Discharged exhaust gas G 'is discharged from the exhaust port 53. During the formation of the thin film, the medium whose temperature has been adjusted by the electrode temperature adjusting means 60 is fed to heat or cool the roll rotating electrode (first electrode) 35 and the rectangular cylindrical fixed electrode (second electrode) 36. The liquid is fed to both electrodes via the pipe 61 by the liquid pump P, and the temperature is adjusted from the inside of the electrodes. Reference numerals 68 and 69 denote partition plates for separating the plasma discharge treatment container 31 from the outside.
第 3図は、第 2図に示したロール回転電極の導電性の金属質母材とその上に被覆 されている誘電体の構造の一例を示す斜視図である。第 3図において、 ロール電極 3 5 aは導電性の金属質母材 3 5 Aとその上に誘電体 3 5 Bが被覆されたもので ある。 プラズマ放電処理中の電極表面温度を制御するため、温度調節用の媒体 (水 もしくはシリコンオイル等) が循環できる構造となっている。  FIG. 3 is a perspective view showing an example of the structure of a conductive metallic base material of the roll rotating electrode shown in FIG. 2 and a dielectric material coated thereon. In FIG. 3, the roll electrode 35a is formed by coating a conductive metallic base material 35A and a dielectric material 35B thereon. In order to control the electrode surface temperature during the plasma discharge treatment, the structure is such that a medium for adjusting the temperature (such as water or silicon oil) can be circulated.
第 4図は、角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の 構造の一例を示す斜視図である。 第 4図において、角筒型電極 3 6 aは、導電性の 金属質母材 3 6 Aに対し、第 3図同様の誘電体 3 6 Bの被覆を有しており、該電極 の構造は金属質のパイプになっていて、それがジャケットとなり、放電中の温度調 節が行えるようになつている。 なお、角筒型固定電極の数は、上記ロール電極の円 周より大きな円周上に沿って複数本設置されていおり、該電極の放電面積は口ール 回転電極 3 5に対向している全角筒型固定電極面の面積の和で表される。第 2図に 示した角筒型電極 3 6 aは、 円筒型電極でもよいが、角筒型電極は円筒型電極に比 ベて、 放電範囲 (放電面積) を広げる効果があるので、本発明に好ましく用いられ る。 第 3図及ぴ第 4図において、 ロール電極 3 5 a及び角筒型電極 3 6 aは、 それ ぞれ導電性の金属質母材 3 5 A及び 3 6 Aの上に誘電体 3 5 B及ぴ 3 6 Bとして のセラミックスを溶射後、無機化合物の封孔材料を用いて封孔処理したものである。 セラミックス誘電 #:は片肉で 1 mm程度の被覆であればよい。溶射に用いるセラミ ックス材としては、 アルミナ、 窒化珪素等が好ましく用いられるが、 この中でもァ ルミナが加工し易いので、 特に好ましく用いられる。 また、誘電体層が、 ライニン グにより無機材料を設けたライニング処理誘電体であってもよい。 FIG. 4 is a perspective view showing an example of the structure of a conductive metal base material of a rectangular cylindrical electrode and a dielectric material coated thereon. In FIG. 4, a rectangular cylindrical electrode 36a has a coating of a dielectric material 36B similar to that of FIG. 3 on a conductive metallic base material 36A, and the structure of the electrode is as follows. It is a metal pipe that becomes a jacket that allows temperature control during discharge. The number of the rectangular cylindrical fixed electrodes is plural along the circumference larger than the circumference of the roll electrode, and the discharge area of the electrode is opposed to the rotary electrode 35. It is represented by the sum of the areas of the fixed square cylindrical fixed electrode surface. The cylindrical electrode 36a shown in FIG. 2 may be a cylindrical electrode, but the rectangular electrode has an effect of expanding the discharge range (discharge area) as compared with the cylindrical electrode. Preferably used for The In FIGS. 3 and 4, the roll electrode 35a and the rectangular cylindrical electrode 36a are respectively provided with a dielectric material 35B on a conductive metal base material 35A and 36A. In addition, after thermal spraying ceramics as 36B, sealing treatment was performed using a sealing material of an inorganic compound. Ceramic dielectric #: should be a single-walled material with a coating of about 1 mm. As the ceramic material used for thermal spraying, alumina, silicon nitride, and the like are preferably used. Among them, alumina is particularly preferably used because it is easy to process. Further, the dielectric layer may be a lining treated dielectric provided with an inorganic material by lining.
導電性の金属質母材 3 5 A及び 3 6 Aとしては、 チタン金属またはチタン合金、 銀、 白金、 ステンレススティール、 アルミニウム、 鉄等の金属等や、 鉄とセラミッ タスとの複合材料またはアルミニゥムとセラミックスとの複合材料を挙げること ができるが、 後述の理由からはチタン金属またはチタン合金が特に好ましい。  As the conductive metallic base material 35 A and 36 A, titanium metal or titanium alloy, silver, platinum, stainless steel, aluminum, iron, or other metal, or a composite material of iron and ceramics or aluminum is used. Although a composite material with ceramics can be mentioned, titanium metal or a titanium alloy is particularly preferred for the reasons described below.
対向する第 1電極および第 2の電極の電極間距離は、電極の一方に誘電体を設け た場合、該誘電体表面ともう一方の電極の導電性の金属質母材表面との最短距離の ことを言う。双方の電極に誘電体を設けた場合、誘電体表面同士の距離の最短距離 のことを言う。 電極間距離は、 導電性の金属質母材に設けた誘電体の厚さ、 印加電 界強度の大きさ、プラズマを利用する目的等を考慮して決定される力 いずれの場 合も均一な放電を行う観点から 0 . 1〜2 O tnmが好ましく、 特に好ましくは 0 . 5〜 2 mmである。  When a dielectric is provided on one of the electrodes, the distance between the opposing first and second electrodes is the shortest distance between the surface of the dielectric and the surface of the conductive metal base material of the other electrode. Say that. When both electrodes are provided with a dielectric, this means the shortest distance between the dielectric surfaces. The distance between the electrodes is uniform in all cases, depending on the thickness of the dielectric provided on the conductive metal base material, the magnitude of the applied electric field, the purpose of utilizing the plasma, etc. From the viewpoint of electric discharge, the thickness is preferably from 0.1 to 2 Otnm, particularly preferably from 0.5 to 2 mm.
本発明に有用な導電性の金属質母材及び誘電体についての詳細については後述 する。  Details of the conductive metallic base material and the dielectric material useful in the present invention will be described later.
プラズマ放電処理容器 3 1はパイレックス (R)ガラス製の処理容器等が好まし く用いられる力 電極との絶縁がとれれば金属製を用いることも可能である。例え ば、アルミニウムまたは、 ステンレススティールのフレームの内面にポリイミド樹 脂等を張り付けても良く、該金属フレームにセラミックス溶射を行レ、絶縁性をとつ てもよい。 第 1図において、 平行した両電極の両側面 (基材面近くまで) を上記の ような材質の物で覆うことが好ましい。 The plasma discharge processing container 31 may be made of metal as long as it can be insulated from the force electrode, which is preferably a Pyrex (R) glass processing container. For example, the inner surface of an aluminum or stainless steel frame A grease or the like may be adhered, and the metal frame may be subjected to ceramic spraying to have an insulating property. In FIG. 1, it is preferable to cover both side surfaces (up to near the base material surface) of both parallel electrodes with the above-mentioned material.
本発明の大気圧プラズマ放電処理装置に設置する第 1電源(高周波電源) として は、  The first power supply (high-frequency power supply) installed in the atmospheric pressure plasma discharge treatment apparatus of the present invention includes:
印加電源記号 メーカー 周波数 製品名 Applied power supply symbol Manufacturer Frequency Product name
A1 神鋼電機 3 kHz SPG3-4500  A1 Shinko Electric 3 kHz SPG3-4500
A2 神鋼電機 5 kHz SPG5— 4500  A2 Shinko Electric 5 kHz SPG5— 4500
A3 春日電機 15 kHz AG 1 -023  A3 Kasuga Electric 15 kHz AG 1 -023
A4 神鋼電機 50 kHz SPG50— 4500  A4 Shinko Electric 50 kHz SPG50— 4500
A 5 ハイデン研究所 100 kHz * PHF- 6 k  A 5 Heiden Laboratory 100 kHz * PHF- 6 k
A6 パール工業 200 kHz CF— 2000— 200 k A 7 パール工業 400 kHz CF-2000-400 k 等の市販のものを挙げることができ、 何れも使用することができる ( A6 Pearl Industries 200 kHz CF—2000—200 k A7 Pearl Industries 400 kHz CF-2000-400 k etc., and any of them can be used (
また、 第 2電源 (高周波電源) としては、 The second power supply (high-frequency power supply)
1電源記号 メ、 —カー 周波; 製品名  1 Power supply symbol, —Car frequency; Product name
B 1 パ、ール工業 800 kH z CF— 2000- 800 k B 1 Par, 800 kH z CF— 2000-800 k
B 2 パ、 —ル工業 2MH Z C F— 2000- 2M B 2 PA, —Le Industrial 2MH Z C F— 2000-2M
B 3 パ、ール工業 13. 56MH Z CF- 5000- 13M B 3 PA, RL 13.56MH Z CF-5000-13M
B 4 パ、ール工業 27MH Z CF- 2000- 27MB 4 P / A, 27MHZ CF-2000- 27M
B 5 パ、 —ル工業 150MH Z C F— 2000- 150M 等の市販のものを挙げることができ、何れも好ましく使用できる。 なお、 上記電源 のうち、 *印はハイデン研究所ィンパルス高周波電源(連続モードで 100 k H z ) である。それ以外は連続サイン波のみ印加可能な高周波電源である。本発明におい ては、 このような電界を印加して、均一で安定な放電状態を保つことができる電極 を大気圧プラズマ放電処理装置に採用することが好ましい。 Commercially available products such as B5PA, RL Kogyo 150MH ZCF-2000-150M, etc., can be preferably used. In addition, of the above power supplies, the mark * indicates a pulse from the Heiden Laboratory Impulse high-frequency power supply (100 kHz in continuous mode). It is. Others are high-frequency power supplies to which only a continuous sine wave can be applied. In the present invention, it is preferable to apply an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field to the atmospheric pressure plasma discharge treatment apparatus.
本発明において、対向する電極間に印加する電力は、第 2電極(第 2の高周波電 界) に lWZcm2以上の電力 (出力密度) を供給し、 放電ガスを励起してプラズ マを発生させ、エネルギーを薄膜形成ガスに与え、薄膜を形成する。 第 2電極に供 給する電力の上限値としては、 好ましくは 50W/cm2、 より好ましくは 20W Z cm2である。 下限値は、 好ましくは 1. 2 WZ cm2である。 なお、 放電面積 (cm2) は、 電極において放電が起こる範囲の面積のことを指す。 また、 第 1電 極 (第 1の高周波電界) にも、 lWZcm2以上の電力 (出力密度) を供給するこ とにより、第 2の高周波電界の均一性を維持したまま、出力密度を向上させること ができる。 これにより、 更なる均一高密度プラズマを生成でき、更なる製膜速度の 向上と膜質の向上が両立できる。 好ましくは 5 W/ cm2以上である。 第 1電極に 供給する電力の上限値は、 好ましくは 5 OWZcm2である。 ここで高周波電界の 波形としては、特に限定されない。連続モードと呼ばれる連続サイン波状の連続発 振モードと、パルスモードと呼ばれる O NZO F Fを断続的に行う断続発振モード 等があり、 そのどちらを採用してもよいが、少なくとも第 2電極側 (第 2の高周波 電界) は連続サイン波の方がより緻密で良質な膜が得られるので好ましい。 このよ うな大気圧プラズマによる薄膜形成法に使用する電極は、構造的にも、性能的にも 過酷な条件に耐えられるものでなければならない。 このような電極としては、金属 質母材上に誘電体を被覆したものであることが好ましい。 In the present invention, the power applied between the opposing electrodes is such that power (output density) of lWZcm 2 or more is supplied to the second electrode (second high-frequency electric field) to excite the discharge gas to generate plasma. Energy is applied to the thin film forming gas to form a thin film. The upper limit of the electric power to be subjected sheet to the second electrode is preferably 50 W / cm 2, more preferably 20W Z cm 2. The lower limit is preferably 1.2 WZ cm 2 . The discharge area (cm 2 ) refers to the area of the electrode where discharge occurs. Also, by supplying power (output density) of lWZcm 2 or more to the first electrode (first high-frequency electric field), the output density can be improved while maintaining the uniformity of the second high-frequency electric field. be able to. As a result, more uniform high-density plasma can be generated, and both a further improvement in the film forming speed and an improvement in the film quality can be achieved. It is preferably at least 5 W / cm 2 . The upper limit of the power supplied to the first electrode is preferably 5 OWZcm 2 . Here, the waveform of the high-frequency electric field is not particularly limited. There are a continuous sine wave continuous oscillation mode called a continuous mode, and an intermittent oscillation mode called an ONZOFF intermittently called a pulse mode. Either of these may be adopted, but at least the second electrode side (the first The high-frequency electric field (2) is preferably a continuous sine wave because a denser and higher quality film can be obtained. Electrodes used for such atmospheric pressure plasma thin film formation methods must be able to withstand severe conditions in terms of both structure and performance. Such an electrode is preferably a metal base material coated with a dielectric.
本発明に使用する誘電体被覆電極においては、様々な金属質母材と誘電体との間 に特性が合うものが好ましく、その一つの特性として、金属質母材と誘電体との線 熱膨張係数の差が 1 0 X 1 0一6 Z°c以下となる組み合わせのものである。 好ま しくは 8 X 1 0一 6 /°C以下、 更に好ましくは 5 X 1 0— 6 /°C以下、 更に好ま しくは 2 X 1 0一 6 Z°C以下である。 なお、 線熱膨張係数とは、 周知の材料特有 の物性値である。線熱膨張係数の差が、 この範囲にある導電性の金属質母材と誘電 体との組み合わせとしては、 In the dielectric coated electrode used in the present invention, it is preferable that the characteristics match between various metallic base materials and the dielectric, and one of the characteristics is a line between the metallic base material and the dielectric. Those combinations difference in thermal expansion coefficient is less than 1 0 X 1 0 one 6 Z ° c. Preferred properly is 8 X 1 0 one 6 / ° C or less, more preferably 5 X 1 0- 6 / ° C or less, further preferable properly is less than 2 X 1 0 one 6 Z ° C. The coefficient of linear thermal expansion is a physical property value of a known material. A combination of a conductive metallic base material and a dielectric material having a difference in linear thermal expansion coefficient within this range includes:
1 :金属質母材が純チタンまたはチタン合金で、 誘電体がセラミックス溶射被膜 1: Metallic base material is pure titanium or titanium alloy, dielectric is ceramic sprayed coating
2 :金属質母材が純チタンまたはチタン合金で、 誘電体がガラスライニング2: Metallic base material is pure titanium or titanium alloy, dielectric is glass lining
3 :金属質母材がステンレススチールで、 誘電体がセラミックス溶射被膜 3: Metallic base material is stainless steel, dielectric is ceramic sprayed coating
4 :金属質母材がステンレススチールで、 誘電体がガラスライニング  4: Metallic base material is stainless steel, dielectric is glass lining
5 :金属質母材がセラミッタスおよび鉄の複合材料で、誘電体がセラミックス溶射  5: Metallic base material is a composite material of ceramics and iron, and dielectric is ceramic sprayed
6 :金属質母材がセラミックスおよび鉄の複合材料で、誘電体がガラスライニング6: Metallic base material is a composite material of ceramics and iron, and dielectric is glass lining
7:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がセラミックス 溶射皮膜 '7: Metallic base material is a composite material of ceramics and aluminum, and dielectric material is ceramic sprayed coating ''
8 :金属質母材がセラミッタスおよびアルミの複合材料で、誘電体がガラスライ- ング等がある。 8: The metallic base material is a composite material of ceramics and aluminum, and the dielectric is glass lining.
線熱膨張係数の差という観点では、 上記 1項、 2項及び 5〜 8項が好ましく、 特 に 1項が好ましい。  From the viewpoint of the difference in linear thermal expansion coefficient, the above-mentioned items 1, 2, and 5 to 8 are preferable, and particularly, item 1 is preferable.
本発明において、金属質母材は、上記の特性からはチタンまたはチタン合金が特 に有用である。金属質母材をチタンまたはチタン合金とすることにより、誘電体を 上記とすることにより、 使用中の電極の劣化、 特にひび割れ、 剥がれ、 脱落等がな く、 過酷な条件での長時間の使用に耐えることができる。  In the present invention, titanium or a titanium alloy is particularly useful as the metallic base material from the above characteristics. By using titanium or titanium alloy as the metallic base material and making the dielectric material as described above, there is no deterioration, especially cracking, peeling, or falling off, of the electrodes during use, and long-term use under severe conditions Can withstand.
本発明に有用な電極の金属質母材は、チタンを 7 0質量%以上含有するチタン合 金またはチタン金属である。本発明において、チタン合金またはチタン金属中のチ タンの含有量は、 7 0質量%以上であれば、 問題なく使用できるが、好ましくは 8 0質量%以上のチタンを含有しているものが好ましい。本発明に有用なチタン合金 またはチタン金属は、 工業用純チタン、耐食性チタン、高力チタン等として一般に 使用されているものを用いることができる。 工業用純チタンとしては、 T I A、 T I B、 T I C、 T I D等を挙げることができ、何れも鉄原子、炭素原子、窒素原子、 酸素原子、水素原子等を極僅か含有しているもので、 チタンの含有量としては、 9 9質量%以上を有している。 また、 チタン合金としては、 アルミニウムを含有し、 その他バナジウムや錫を含有している T 6 4、 T 3 2 5、 T 5 2 5、 T A 3等を好 ましく用いることができ、 これらのチタン含有量としては、 8 5質量%以上を含有 しているものである。これらのチタン合金またはチタン金属はステンレススチール、 例えば A I S I 3 1 6に比べて、熱膨張係数が 1 Z 2程度小さく、金属質母材とし てチタン合金またはチタン金属の上に施された後述の誘電体との組み合わせがよ く、 高温、 長時間での使用に耐えることができる。 The metallic base material of the electrode useful in the present invention is a titanium composite containing 70% by mass or more of titanium. Gold or titanium metal. In the present invention, the content of titanium in the titanium alloy or the titanium metal can be used without any problem as long as it is 70% by mass or more, but preferably contains 80% by mass or more of titanium. . As the titanium alloy or titanium metal useful in the present invention, those generally used as industrial pure titanium, corrosion-resistant titanium, high-strength titanium and the like can be used. Examples of industrial pure titanium include TIA, TIB, TIC, TID, etc., all of which contain very little iron, carbon, nitrogen, oxygen, hydrogen, etc. The content is 99% by mass or more. Further, as the titanium alloy, T64, T325, T525, TA3, etc. containing aluminum and containing vanadium and tin can be preferably used. The content is 85% by mass or more. These titanium alloys or titanium metals have a coefficient of thermal expansion smaller than that of stainless steel, for example, AISI 316 by about 1 Z2, and have a dielectric material, described later, applied on the titanium alloy or titanium metal as a metallic base material. Combines well with the body and can withstand high temperatures and prolonged use.
一方、誘電体に求められる特性としては、 具体的には、 比誘電率が 6〜4 5の無 機化合物であることが好ましく、 また、 このような誘電体としては、 アルミナ、 窒, 化珪素等のセラミックス、 あるいは、 ケィ酸塩系ガラス、 ホウ酸塩系ガラス等のガ ラスライニング材等がある。 この中では、後述のセラミックスを溶射したものゃガ ラスライニングにより設けたものが好ましレ、。特にアルミナを溶射して設けた誘電 体が好ましい。 または、 上述のような大電力に耐える仕様の一つとして、誘電体の 空隙率が 1 0体積%以下、好ましくは 8体積%以下であることで、好ましくは 0体 積。 /。を越えて 5体積%以下である。 なお、誘電体の空隙率は、 B E T吸着法や水銀 ポロシメーターにより測定することができる。後述の実施例においては、島津製作 所製の水銀ポロシメーターにより金属質母材に被覆された誘電体の破片を用い、空 隙率を測定する。誘電体が、低い空隙率を有することにより、高耐久性が達成され る。 このような空隙を有しつつも空隙率が低い誘電体としては、後述の大気プラズ マ溶射法等による高密度、高密着のセラミックス溶射被膜等を挙げることができる。 更に空隙率を下げるためには、 封孔処理を行うことが好ましい。 On the other hand, as the characteristics required for the dielectric, specifically, it is preferable that the dielectric be an inorganic compound having a relative dielectric constant of 6 to 45. Examples of such a dielectric include alumina, nitrogen nitride, and silicon nitride. And glass lining materials such as silicate glass and borate glass. Among them, those obtained by spraying ceramics described later are preferably provided by glass lining. In particular, a dielectric provided by spraying alumina is preferable. Alternatively, as one of the specifications that can withstand the large power as described above, the porosity of the dielectric is 10% by volume or less, preferably 8% by volume or less, and preferably 0 volume. /. Over 5% by volume. The porosity of the dielectric can be measured by a BET adsorption method or a mercury porosimeter. In the examples described later, Shimadzu The porosity is measured using a fragment of a dielectric material coated on a metallic base material by a mercury porosimeter manufactured by the company. High durability is achieved by the dielectric having a low porosity. Examples of the dielectric having such voids and low porosity include a high-density, high-adhesion ceramic sprayed coating formed by an atmospheric plasma spraying method described later. In order to further reduce the porosity, it is preferable to perform a sealing treatment.
上記、 大気プラズマ溶射法は、.セラミックス等の微粉末、 ワイヤ等をプラズマ熱 源中に投入し、溶融または半溶融状態の微粒子として被覆対象の金属質母材に吹き 付け、 皮膜を形成させる技術である。 プラズマ熱源とは、分子ガスを高温にし、原 子に解離させ、更にエネルギーを与えて電子を放出させた高温のプラズマガスであ る。 このプラズマガスの噴射速度は大きく、従来のアーク溶射やフレーム溶射に比 ベて、溶射材料が高速で金属質母材に衝突するため、密着強度が高く、 高密度な被 膜を得ることができる。詳しくは、特開 2 0 0 0— 3 0 1 6 5 5号に記載の高温被 曝部材に熱遮蔽皮膜を形成する溶射方法を参照することができる。この方法により、 上記のような被覆する誘電体 (セラミック溶射膜) の空隙率にすることができる。 また、 大電力に耐える別の好ましい仕様としては、誘電体の厚みが 0 . 5〜2 mm であることである。 この膜厚変動は、 5 %以下であることが望ましく、好ましくは 3 %以下、更に好ましくは 1 %以下である。誘電体の空隙率をより低減させるため には、 上記のようにセラミックス等の溶射膜に、 更に、無機化合物で封孔処理を行 うことが好ましレ、。 前記無機化合物としては、金属酸ィ匕物が好ましく、 この中では 特に酸化ケィ素 (S i O x ) を主成分として含有するものが好ましい。  The above-mentioned atmospheric plasma spraying method is a technology in which fine powders such as ceramics, wires, etc. are charged into a plasma heat source and sprayed as molten or semi-molten fine particles onto the metal base material to be coated to form a film. It is. The plasma heat source is a high-temperature plasma gas in which a molecular gas is heated to a high temperature, dissociated into atoms, and further applied with energy to emit electrons. The spray speed of this plasma gas is high, and compared to conventional arc spraying and flame spraying, the sprayed material collides with the metal base material at a higher speed, so that a high adhesion strength and a high-density coating can be obtained. . For details, reference can be made to a thermal spraying method for forming a heat shielding film on a high-temperature exposed member described in JP-A-2000-310655. By this method, the porosity of the dielectric (ceramic sprayed film) to be coated as described above can be obtained. Another preferable specification that can withstand high power is that the thickness of the dielectric is 0.5 to 2 mm. This variation in film thickness is desirably 5% or less, preferably 3% or less, and more preferably 1% or less. In order to further reduce the porosity of the dielectric, it is preferable that the sprayed film of ceramic or the like is further subjected to sealing treatment with an inorganic compound as described above. As the inorganic compound, a metal oxide is preferable, and among them, a compound containing silicon oxide (SiO x) as a main component is particularly preferable.
封孔処理の無機化合物は、ゾルゲル反応により硬化して形成したものであること が好ましい。封孔処理の無機化合物が金属酸ィ匕物を主成分とするものである場合に は、金属アルコキシド等を封孔液として前記セラミック溶射膜上に塗布し、 ゾルゲ ル反応により硬化する。無機ィ匕合物がシリカを主成分とするものの場合には、アル コキシシランを封孔液として用いることが好ましい。ここでゾルゲル反応の促進に は、エネルギー処理を用いることが好ましい。エネルギー処理としては、熱硬ィ匕(好 ましくは 2 0 0 °C以下) や、 紫外線照射などがある。 更に封孔処理の仕方として、 封孔液を希釈し、 コーティングと硬化を逐次で数回繰り返すと、 よりいつそう無機 質ィ匕が向上し、 劣化の無い緻密な電極ができる。 . It is preferable that the inorganic compound for pore-sealing treatment is formed by curing by a sol-gel reaction. In the case where the inorganic compound for the sealing treatment is mainly composed of a metal oxide, a metal alkoxide or the like is applied as a sealing liquid on the ceramic sprayed film, and Cures due to the In the case where the inorganic binder contains silica as a main component, it is preferable to use alkoxysilane as the sealing liquid. Here, it is preferable to use energy treatment to promote the sol-gel reaction. Examples of the energy treatment include thermosetting (preferably 200 ° C. or less) and ultraviolet irradiation. Further, as a sealing treatment, when the sealing liquid is diluted, and coating and curing are repeated several times sequentially, the inorganic material can be further improved and a dense electrode without deterioration can be obtained. .
本発明に係る誘電体被覆電極の金属アルコキシド等を封孔液として、セラミック ス溶射膜にコーティングした後、 ゾルゲル反応で硬化する封孔処理を行う場合、硬 化した後の金属酸化物の含有量は 6 0モル%以上であることが好ましい。封孔液の 金属アルコキシドとしてアルコキシシランを用いた場合には、 硬化後の S i Ο χ ( xは 2以下)含有量が 6 0モル%以上であることが好ましい。硬化後の S i Ο χ 含有量は、 X P S (X線光電子分光法) により誘電体層の断層を分析することによ り測定する。  When coating a ceramic sprayed film with a metal alkoxide or the like of the dielectric-coated electrode according to the present invention as a sealing liquid, and then performing a sealing treatment in which the coating is cured by a sol-gel reaction, the content of the metal oxide after hardening. Is preferably 60 mol% or more. When alkoxysilane is used as the metal alkoxide of the sealing liquid, the content of Si (x is 2 or less) after curing is preferably 60 mol% or more. The Si i content after hardening is measured by analyzing the fault of the dielectric layer by XPS (X-ray photoelectron spectroscopy).
本発明の薄膜形成方法に係る電極においては、電極の少なくとも基材と接する側 の J I S B 0 6 0 1で規定される表面粗さの最大高さ (Rm a x )が 1 0 / m 以下になるように調整すること力 本発明に記載の効果を得る観点から好ましいが、 更に好ましくは、表面粗さの最大値が 8 μ m以下であり、 特に好ましくは、 7 μ m 以下に調整することである。このように誘電体被覆電極の誘電体表面を研磨仕上げ する等の方法により、誘電体の厚み及び電極間のギヤップを一定に保つことができ、 放電状態を安定化できること、更に熱収縮差や残留応力による歪やひび割れを無く し、 且つ、 高精度で、 耐久性を大きく向上させることができる。 誘電体表面の研磨 仕上げは、 少なくとも基材と接する側の誘電体において行われることが好ましレ、。 更に J I S B 0 6 0 1で規定される中心線平均表面粗さ (R a ) は 0 . 5 μ m 以下が好ましく、 更に好ましくは 0 . 1 m以下である。 In the electrode according to the method for forming a thin film of the present invention, the maximum height (Rmax) of the surface roughness defined by JISB 0601 at least on the side of the electrode in contact with the base material is 10 / m or less. It is preferable from the viewpoint of obtaining the effects described in the present invention, but more preferably, the maximum value of the surface roughness is 8 μm or less, and particularly preferably, it is adjusted to 7 μm or less. . In this way, the thickness of the dielectric and the gap between the electrodes can be kept constant, the discharge state can be stabilized, and the heat shrinkage difference and residual Eliminating distortion and cracking due to stress, high accuracy, and greatly improved durability. Polishing of the dielectric surface is preferably performed at least on the dielectric in contact with the substrate. Furthermore, the center line average surface roughness (R a) specified in JISB 0601 is 0.5 μm It is preferably at most 0.1 m, more preferably at most 0.1 m.
本発明に使用する誘電体被覆電極において、大電力に耐える他の好ましい仕様と しては、耐熱温度が 1 0 0 °C以上であることである。更に好ましくは 1 2 0で以上、 特に好ましくは 1 5 0 °C以上である。 また上限は 5 0 0 °Cである。 なお、耐熱温度 とは、大気圧プラズマ処理で用いられる電圧において絶縁破壊が発生せず、正常に 放電できる状態において耐えられる最も高い温度のことを指す。このような耐熱温 度は、上記のセラミックス溶射や、泡混入量の異なる層状のガラスライニングで設 けた誘電体を適用したり、上記金属質母材と誘電体の線熱膨張係数の差の範囲内の 材料を適宜選択する手段を適宜組み合わせることによって達成可能である。  Another preferable specification of the dielectric-coated electrode used in the present invention that withstands large power is that the heat-resistant temperature is 100 ° C. or more. It is more preferably at least 120 ° C, particularly preferably at least 150 ° C. The upper limit is 500 ° C. The heat-resistant temperature refers to the highest temperature that does not cause dielectric breakdown at the voltage used in the atmospheric pressure plasma treatment and can withstand normal discharge. Such a heat resistance temperature is determined by applying the above-described ceramic spraying or a dielectric provided with a layered glass lining having a different amount of bubbles mixed therein, or a range of a difference in linear thermal expansion coefficient between the metallic base material and the dielectric. It can be achieved by appropriately combining means for appropriately selecting the materials inside.
次に、 放電空間に供給するガスについて説明する。  Next, the gas supplied to the discharge space will be described.
供給するガスは、少なくとも放電ガスおよび薄膜形成ガスを含有する。放電ガス と薄膜形成ガスは混合して供給してもよいし、別々に供給してもかまわなレ、。放電 ガスとは、薄膜形成可能なグロ一放電を起こすことのできるガスである。放電ガス としては、 窒素、 希ガス、 空気、 水素ガス、 酸素などがあり、 これらを単独で放電 ガスとして用いても、 混合して用いてもかまわない。本発明において、放電ガスと して好ましいのは窒素である。放電ガスの 5 0〜1 0 0体積%が窒素ガスであるこ とが好ましい。 このとき、放電ガスとして窒素以外の放電ガスとしては、希ガスを 5 0体積%未満含有することが好ましい。 また、放電ガスの量は、放電空間に供給 する全ガス量に対し、 9 0〜9 9 . 9体積%含有することが好ましい。薄膜形成ガ スとは、それ自身が励起して活性となり、基材上に化学的に堆積して薄膜を形成す る原料のことである。  The supplied gas contains at least a discharge gas and a thin film forming gas. The discharge gas and the thin film forming gas may be supplied as a mixture or may be supplied separately. The discharge gas is a gas capable of generating a glow discharge capable of forming a thin film. Examples of the discharge gas include nitrogen, a rare gas, air, hydrogen gas, and oxygen, and these may be used alone as a discharge gas or may be used as a mixture. In the present invention, nitrogen is preferable as the discharge gas. Preferably, 50 to 100% by volume of the discharge gas is nitrogen gas. At this time, the discharge gas other than nitrogen preferably contains a rare gas in an amount of less than 50% by volume. Further, the amount of the discharge gas is preferably 90 to 99.9% by volume based on the total amount of gas supplied to the discharge space. Thin film forming gas is a raw material that excites itself and becomes active, and is chemically deposited on a substrate to form a thin film.
次に、本発明に使用する薄膜を形成するために放電空間に供給するガスについて 説明する。 基本的に放電ガスと薄膜形成ガスであるが、更に、 添加ガスを加えるこ ともある。 放電空間に供給する全ガス量中、 放電ガスを 9 0〜9 9 . 9体積%含有 することが好ましい。 Next, the gas supplied to the discharge space for forming the thin film used in the present invention will be described. Basically, it is discharge gas and thin film forming gas. There is also. The discharge gas preferably contains 90 to 99.9% by volume of the total gas supplied to the discharge space.
本発明に使用する薄膜形成ガスとしては、有機金属化合物、ハロゲン金属化合物、 金属水素化合物等を挙げることができる。本発明に有用な有機金属化合物は下記の 一般式 (I ) で示すものが好ましい。  Examples of the thin film forming gas used in the present invention include organometallic compounds, halogen metal compounds, and metal hydride compounds. The organometallic compounds useful in the present invention are preferably those represented by the following general formula (I).
一般式 ( I )  General formula (I)
R X MR y R z RX MR y R z
式中、 Mは金属、 R はアルキル基、 R はアルコキシ基、 R は jS—ジケトン錯 体基、 ーケトカルボン酸エステル錯体基、 ーケトカルボン酸錯体基及ぴケトォ キシ基(ケトォキシ錯体基)から選ばれる基であり、金属 Mの価数を mとした場合、 x + y + z = mであり、 x = 0〜! II、 または x = 0〜! n— 1であり、 y = 0〜m、 z = 0〜mで、 何れも 0または正の整数である。 R のアルキル基としては、 メチ ル基、 ェチル基、 プロピル基、 ブチル基等を挙げることができる。 R のアルコキ シ基としては、例えば、 メ トキシ基、エトキシ基、プロポキシ基、ブトキシ基、 3, 3 , 3 -トリフルォロプロボキシ基等を挙げることができる。 またアルキル基の水 素原子をフッ素原子に置換したものでもよい。 R の ]3—ジケトン錯体基、 β—ケ トカルボン酸エステル錯体基、 β—ケトカルボン酸錯体基及びケトォキシ基(ケト ォキシ錯体基)から選ばれる基としては、 β—ジケトン錯体基として、例えば、 2, 4一ペンタンジオン (ァセチルァセトンあるいはァセトァセトンともいう) 、 1, 1 , 1 , 5 , 5 , 5—へキサメチルー 2, 4—ペンタンジオン、 2 , 2, 6, 6 - テトラメチル一 3 , 5一ヘプタンジオン、 1, 1 , 1ー卜リフルオロー 2 , 4一べ ンタンジオン等を挙げることができ、 βーケトカルボン酸ェステル錯体基として、 例えば、 ァセト酢酸メチルエステル、 ァセト酢酸ェチルエステル、 ァセト酢酸プロ ピルエステル、 トリメチルァセト酢酸ェチル、 トリフルォロァセト酢酸メチル等を 挙げることができ、 ーケトカルボン酸として、 例えば、 ァセト酢酸、 トリメチル ァセト酢酸等を挙げることができ、 またケトォキシとして、例えば、 ァセトォキシ 基 (またはァセトキシ基) 、 プロピオニルォキシ基、 プチリロキシ基、 アタリロイ ルォキシ基、 メタクリロイルォキシ基等を挙げることができる。 これらの基の炭素 原子数は、上記例有機金属示化合物を含んで、 1 8以下が好ましい。 また例示にも あるように直鎖または分岐のもの、また水素原子をフッ素原子に置換したものでも よい。 In the formula, M is a metal, R is an alkyl group, R is an alkoxy group, R is a group selected from a jS-diketone complex group, a ketocarboxylic ester complex group, a ketocarboxylic acid complex group, and a ketooxy group (ketooxy complex group). And if the valence of the metal M is m, then x + y + z = m and x = 0 ~! II, or x = 0 ~! n−1, y = 0 to m, z = 0 to m, each of which is 0 or a positive integer. Examples of the alkyl group for R include a methyl group, an ethyl group, a propyl group, and a butyl group. Examples of the alkoxy group for R include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a 3,3,3-trifluoropropoxy group. Further, a hydrogen atom of an alkyl group may be substituted with a fluorine atom. R 3] selected from the group consisting of a 3-diketone complex group, a β-ketocarboxylic ester complex group, a β-ketocarboxylic acid complex group, and a ketoxoxy group (ketoxoxy complex group). 1,4-pentanedione (also called acetylaceton or acetoaceton), 1,1,1,5,5,5-hexamethyl-2,4-pentanedione, 2,2,6,6-tetramethyl-13,51-heptane Dione, 1,1,1-trifluoro-2,4-pentanedione and the like. Examples of β-ketocarboxylic acid ester complex groups include, for example, methyl acetate acetate, ethyl acetate acetate, ethyl acetate acetate acetate, and the like. Pill esters, methyl trimethylacetoacetate, methyl trifluoroacetoacetate and the like. Examples of ketocarboxylic acids include acetoacetic acid and trimethylacetoacetic acid. Ketooxy includes, for example, acetooxy group ( Or an acetoxy group), a propionyloxy group, a ptyryloxy group, an atariloyloxy group, a methacryloyloxy group, and the like. The number of carbon atoms of these groups is preferably 18 or less, including the organometallic compounds described above. As shown in the examples, it may be a straight-chain or branched one, or a hydrogen atom substituted with a fluorine atom.
本発明において取り扱いの問題から、有機金属化合物が好ましく、分子内に少な くとも一つ以上の酸素を有する有機金属化合物が好ましレ、。このようなものとして R のアルコキシ基を少なくとも一つを含有する有機金属化合物、 また R の 13— ジケトン錯体基、 βーケトカルボン酸エステル錯体基、 β—ケトカルボン酸錯体基 及ぴケトォキ -シ基(ケトォキシ錯体基)から選ばれる基を少なくとも一つ有する金 属化合物が好ましい。  In the present invention, organometallic compounds are preferred due to handling problems, and organometallic compounds having at least one oxygen in the molecule are preferred. As such, organometallic compounds containing at least one alkoxy group of R, 13-diketone complex group, β-ketocarboxylic acid ester complex group, β-ketocarboxylic acid complex group and ketoxoxy group (ketoxoxy group) of R Metal compounds having at least one group selected from complex groups) are preferred.
本発明において、放電空間に供給するガスには、放電ガス、薄膜形成性ガスの他 に、薄膜形成の反応を促進する添加ガスを混合してもよい。 添加ガスとしては、酸 素、 オゾン、 過酸化水素、 二酸化炭素、 一酸化炭素、 水素、 アンモニア等を挙げる ことができるが、酸素、一酸素化炭素及び水素が好ましく、 これらから選択される 成分を混合させるのが好ましい。 その含有量はガス全量に対して 0 . 0 1〜5体 積%含有させることが好ましく、 それによつて反応促進され、 且つ、緻密で良質な 薄膜を形成することができる。上記形成された酸化物または複合化合物の薄膜の膜 厚は、 0 . 1〜: L 0 0 0 n mの範囲が好ましい。  In the present invention, the gas supplied to the discharge space may be mixed with an additive gas which promotes a reaction for forming a thin film, in addition to the discharge gas and the thin film-forming gas. Examples of the additive gas include oxygen, ozone, hydrogen peroxide, carbon dioxide, carbon monoxide, hydrogen, and ammonia. Of these, oxygen, carbon monoxide, and hydrogen are preferable. Mixing is preferred. The content is preferably 0.01 to 5% by volume with respect to the total amount of the gas, whereby the reaction is promoted and a dense and high-quality thin film can be formed. The thickness of the formed oxide or composite compound thin film is preferably in the range of 0.1 to: L000 nm.
本発明において、 薄膜形成性ガスに使用する有機金属化合物、 ハロゲン化金属、 金属水素化合物の金属として、 L i、 B e、 B、 Na、 Mg、 A l、 S i、 K、 C a、 S c、 T i、 V、 C r、 Mn、 F e、 C o、 N i、 Cu、 Zn、 Ga、 Ge、 Rb、 S r、 Y、 Z r、 Nb、 Mo、 I n、 I r、 Sn、 S b、 C s、 B a、 L a、 H f 、 Ta、 W、 T l、 B i、 C e、 P r、 Nd、 Pm、 Eu、 Gd、 Tb、 Dy、 Ho、 E r、 Tm、 Yb、 L u等を挙げることができる。 In the present invention, an organometallic compound used for a thin film forming gas, a metal halide, As the metal of the metal hydride, Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, N i, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, In, Ir, Sn, Sb, Cs, Ba, La, Hf, Ta, W , Tl, Bi, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and the like.
本発明の薄膜形成方法で、 上記のような有機金属化合物、 ハロゲン金属化合物、 金属水素化合物等の金属化合物を放電ガスと共に使用することにより高機能性の S i 3N4、 NbN、 T i N等の薄膜を得ることができる。 なお本発明はこれに限 られるものではない。 なお、 前記窒化物の窒化度はあくまでも一例であり、 金属と の組成比は適宜変化して良い。 また、 薄膜には、 上記金属化合物以外に、 炭素化合 物、 窒素化合物、 水素化合物等の不純物が含有されてもよい。 In the method of forming a thin film of the present invention, by using a metal compound such as an organometallic compound, a halogen metal compound, or a metal hydride compound together with a discharge gas, highly functional Si 3 N 4 , NbN, and Ti N Etc. can be obtained. The present invention is not limited to this. The nitriding degree of the nitride is merely an example, and the composition ratio with the metal may be changed as appropriate. In addition, the thin film may contain impurities such as a carbon compound, a nitrogen compound, and a hydrogen compound in addition to the metal compound.
本発明において、 特に好ましい金属化合物の金属は、 上記のうち S i (珪素) 、 T i (チタン) 、 S n (錫) 、 Zn (亜鉛) 、 I n (インジウム) 及ぴ A 1 (アル ミニゥム) であり、 これらの金属と結合する金属化合物のうち、 上記一般式 (I) で示した有機金属化合物が好ましい。本発明に有用な錫化合物としては、有機錫化 合物、 錫水素化合物、 ハロゲン化錫等であり、 有機錫化合物としては、 例えば、 ジ ブチノレジェトキシ錫、 プチノレ錫トリス (2, 4一ペンタンジオナート) 、 テトラエ トキシ錫、 メチルトリエトキシ錫、 ジェチルジェトキシ錫、 トリイソプロピルェト キシ錫、 ェチルエトキシ錫、 メチルメ トキシ錫、 イソプロピルイソプロポキシ錫、 テトラブトキシ錫、 ジェトキシ錫、 ジメ トキシ錫、 ジィソプロポキシ錫、 ジブトキ シ錫、 ジブチリロキシ錫、 ジェチル錫、 テトラブチル錫、 錫ビス (2, 4—ペンタ ンジオナート) 、 ェチル錫ァセトァセトナート、 エトキシ錫 (2, 4—ペンタンジ. オナート) 、 ジメチル錫ジ (2, 4一ペンタンジオナート) 、 ジァセトメチルァセ タート錫、 ジァセトキシ錫、 ジブトキシジァセトキシ錫、 ジァセトォキシ錫ジァセ トァセトナート等、 ハロゲン化錫としては、 二塩化錫、 四塩ィ匕錫等を挙げることが でき、 何れも本発明において、 好ましく用いることができる。 また、 これらの薄膜 形成性ガスを 2種以上同時に混合して使用してもよい。 In the present invention, particularly preferred metals of the metal compound are Si (silicon), Ti (titanium), Sn (tin), Zn (zinc), In (indium) and A 1 (aluminum). And among the metal compounds binding to these metals, the organometallic compounds represented by the above general formula (I) are preferred. The tin compounds useful in the present invention include organotin compounds, tin hydride compounds, tin halides, and the like. Examples of the organotin compounds include dibutylinoletoxy tin, and ptinoletin tris (2, 41 Pentanedionate), tetraethoxytin, methyltriethoxytin, getylethoxytin, triisopropylethoxytin, ethylethoxytin, methylmethoxytin, isopropylisopropoxytin, tetrabutoxytin, ethoxytin, dimethoxytin, Disopropoxy tin, dibutoxy tin, dibutylyloxy tin, getyl tin, tetrabutyl tin, tin bis (2,4-pentanedionate), ethyl tin acetate acetate, ethoxy tin (2,4-pentanedionate), dimethyl tin Di (2,4-pentanedionate), diacetomethylase Examples of tin halides include tin dichloride and tetrachloroditin tin, diacetoxytin, dibutoxydiacetoxytin, diacetoxytin diacetacetonate, and the like.All of these are preferably used in the present invention. be able to. Further, two or more of these thin film forming gases may be mixed and used at the same time.
本発明に有用なチタン化合物としては、 有機チタン化合物、 チタン水素化合物、 ハロゲン化チタン等があり、 有機チタン化合物としては、 例えば、 トリエトキシチ タン、 トリメ トキシチタン、 トリイソプロポキシチタン、 トリブトキシチタン、 テ トラエトキシチタン、 テトライソプロポキシチタン、 メチノレジメ トキシチタン、 ェ チノレトリエトキシチタン、 メチルトリイソプロポキシチタン、 トリエチノレチタン、 トリイソプロピルチタン、 トリブチルチタン、 テトラェチルチタン、 テトライソプ 口ピルチタン、 テトラブチルチタン、 テトラジメチルァミノチタン、 ジメチルチタ ンジ ( 2 , 4一ペンタンジオナート) 、 ェチルチタントリ ( 2, 4—ペンタンジォ ナート) 、 チタントリス (2 , 4 _ペンタンジオナート) 、 チタントリス (ァセト メチルァセタート) 、 トリァセトキシチタン、 ジプロポキシプロピオニルォキシチ タン等、ジブチリロキシチタン、チタン水素化合物としてはモノチタン水素化合物、 ジチタン水素化合物等、 ハロゲン化チタンとしては、 トリクロ口チタン、 テトラク ロロチタン等を挙げることができ、何れも本発明において好ましく用いることがで きる。またこれらの薄膜形成性ガスを 2種以上を同時に混合して使用することがで さる。  Titanium compounds useful in the present invention include organotitanium compounds, titanium hydride compounds, titanium halides, and the like. Examples of the organotitanium compounds include triethoxytitanium, trimethoxytitanium, triisopropoxytitanium, tributoxytitanium, and tetratitanium. Ethoxytitanium, tetraisopropoxytitanium, methinoresimethytoxytitanium, ethynoletriethoxytitanium, methyltriisopropoxytitanium, triethynoletitanium, triisopropyltitanium, tributyltitanium, tetraethyltitanium, tetraisotopyl pilltitanium, tetrabutyltitanium, tetradimethyltitanium Amino titanium, dimethyl titanium (2,4-pentanedionate), ethyl titanium tri (2,4-pentanedionate), titanium tris (2,4-pentanedionate), titanium Tris (acetomethyl acetate), triacetoxytitanium, dipropoxypropionyloxytitanium, etc., dibutylyloxytitanium, titanium hydrogen compounds as monotitanium hydride compounds, dititanium hydride compounds, etc. Tetrachlorotitanium and the like can be mentioned, and any of them can be preferably used in the present invention. Also, two or more of these thin film forming gases can be mixed and used at the same time.
本発明に有用な珪素化合物としては、 有機珪素化合物、珪素水素化合物、 ハロゲ ン化珪素化合物等を挙げることができ、 有機珪素化合物としては、 例えば、 テトラ ェチルシラン、 テトラメチルシラン、 テトライソプロビルシラン、 テトラブチルシ ラン、 テトラエトキシシラン、 テトライソプロボキシシラン、 テトラブトキシシラ ン、ジメチルジメ トキシシラン、ジェチルジェトキシシラン、ジェチルシランジ( 2, 4一ペンタンジオナート) 、 メチルトリメ トキシシラン、 メチルトリエトキシシラ ン、ェチルトリエトキシシラン等、珪素水素化合物としては、テトラ水素化シラン、 へキサ水素化ジシラン等、 ハロゲン化珪素ィ匕合物としては、 テトラクロロシラン、 メチルトリクロロシラン、 ジェチルジク口 πシラン等を挙げることができ、何れも 本発明において好ましく用いることができる。 また、前記フッ素化合物を使用する ことができる。これらの薄膜形成性ガスを 2種以上を同時に混合して使用すること ができる。 また、 屈折率の微調整にこれら錫化合物、 チタン化合物、 珪素化合物を 適宜 2種以上同時に混合して使用してもよい。薄膜形成性ガスについて、放電ブラ ズマ処理により基材上に均一な薄膜を形成する観点から、全ガス中の含有率は、 0 . 0 1 - 1 0体積%で有することが好ましいが、更に好ましくは、 0 . 0 1〜 1体積% である。 Examples of the silicon compound useful in the present invention include an organic silicon compound, a silicon hydride compound, and a halogenated silicon compound. Examples of the organic silicon compound include tetraethylsilane, tetramethylsilane, tetraisopropylsilane, and the like. Tetrabutylsilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysila Examples of silicon hydrogen compounds include tetrahydrogenated silane, dimethyldimethyoxysilane, getyl ethoxy silane, getyl silane di (2,4-pentanedionate), methyltrimethoxysilane, methyltriethoxysilane, and ethyltriethoxysilane. Examples of silicon halide conjugates, such as hydrogenated disilane, include tetrachlorosilane, methyltrichlorosilane, and π-ethyldiethyl silane, all of which can be preferably used in the present invention. Further, the above-mentioned fluorine compounds can be used. Two or more of these thin film forming gases can be mixed and used at the same time. For fine adjustment of the refractive index, two or more of these tin compounds, titanium compounds and silicon compounds may be appropriately mixed and used at the same time. From the viewpoint of forming a uniform thin film on the substrate by discharge plasma treatment, the content of the thin film-forming gas in the total gas is preferably from 0.01 to 10% by volume, more preferably. Is 0.01 to 1% by volume.
本発明に用いられる基材について説明する。 本発明に用いられる基材としては、 板状、 シート状またはフィルム状の平面形状のもの、 あるいはレンズその他成形物 等の立体形状のもの等の薄膜をその表面に形成できるものであれば特に限定はな い。基材が静置状態でも移送状態でもプラズマ状態の混合ガスに晒され、均一の薄 膜が形成されるものであれば基材の形態または材質には制限なレ、。形態的には平面 形状、 立体形状でもよく、 平面形状のものとしては、 ガラス板、 樹脂フィルム等を 挙げることができる。 材質的には、 ガラス、 樹脂、 陶器、 金属、 非金属等様々のも のを使用できる。 具体的には、 ガラスとしては、 ガラス板やレンズ等、 樹脂として は、 樹脂レンズ、 樹脂フィルム、 樹脂シート、 樹脂板等を挙げることができる。 榭 脂フィルムは本発明に係る大気圧プラズマ放電処理装置の電極間または電極の近 傍を連続的に移送させて透明導電膜を形成することができるので、スパッタリング のような真空系のようなパッチ式でない、大量生産に向き、連続的な生産性の高い 生産方式として好適である。 樹脂フィルム、 樹脂シート、 樹脂レンズ、 樹脂成形物 等成形物の材質としては、 セルローストリァセテ一ト、 セルロースジアセテート、 セルロースァセテ一トプロビオネ一トまたはセルロースァセテ一トブチレ一トの ようなセノレロースエステノレ、ポリエチレンテレフタレートゃポリエチレンナフタレ ートのようなポリエステル、ポリエチレンゃポリプロピレンのようなポリオレフィ ン、 ポリ塩化ビニリデン、 ポリ塩化ビュル、 ポリビュルアルコール、 エチレンビニ ルアルコールコポリマー、シンジオタクティックポリスチレン、ポリカーボネート、 ノルポルネン樹脂、 ポリメチルペンテン、 ポリエーテルケトン、 ポリイミ ド、 ポリ エーテルスルフォン、 ポリスノレフォン、 ポリエーテルィミ ド、 ポリアミ ド、 フッ素 樹脂、ポリメチルァクリレート、アタリレートコポリマー等を挙げることができる。 これらの素材は単独であるレヽは適宜混合されて使用することもできる。中でもゼォ ネックスゃゼォノア (日本ゼオン (株) 製) 、非晶質シクロポリオレフイン樹脂フ イルムの A R T O N (ジエイエスアール (株) 製) 、 ポリカーボネートフィルムの ピュアエース (帝人 (株) 製) 、セルローストリアセテートフィルムのコニカタツ ク K C 4 U X、 K C 8 U X (コニ力ミノルタ (株) 製) などの市販品を好ましく使 用することができる。 更に、 ポリカーボネート、 ポリアリレート、 ポリスルフォン 及びポリエーテルスルフォンなどの固有複屈折率の大き V、素材であつても、溶液流 延製膜、 溶融押し出し製膜等の条件、 更には縦、横方向に延伸条件等を適宜設定す ることにより使用することができるものを得ることができる。これらのうち光学的 に等方性に近いセルロースエステルフィルムが本発明の光学素子に好ましく用い られる。 セルロースエステルフィルムとしては、上記のようにセルローストリァセ テートフィルム、セルロースアセテートプロピオネートが好ましく用いられるもの の一つである。セルローストリアセテートフィルムとしては巿販品のコニカタック KC4UX等が有用である。 これらの樹脂の表面にゼラチン、ポリビュルアルコー ル、 アクリル樹脂、 ポリエステル樹脂、 セルロースエステル樹脂等を塗設したもの も使用できる。またこれら榭脂フィルムの薄膜側に防眩層、クリァハードコート層、 パリア層、 防汚層等を設けてもよい。 また、 必要に応じて接着層、 アルカリバリア コート層、 ガスバリア層ゃ耐溶剤性層等を設けてもよい。 また、本発明に用いられ る基材は、上記の記載に限定されない。 フィルム形状のものの膜厚としては 1 0〜 1 000 μπιが好ましく、 より好ましくは 40〜200 imである。 The substrate used in the present invention will be described. The substrate used in the present invention is not particularly limited as long as it can form a thin film such as a plate-shaped, sheet-shaped or film-shaped flat shape, or a three-dimensional shape such as a lens or a molded product on its surface. No. The form or material of the base material is not limited as long as the base material is exposed to the mixed gas in the plasma state both in the stationary state and the transfer state, and a uniform thin film is formed. The shape may be a planar shape or a three-dimensional shape. Examples of the planar shape include a glass plate and a resin film. Various materials such as glass, resin, pottery, metal, and nonmetal can be used. Specifically, glass includes a glass plate or a lens, and resin includes a resin lens, a resin film, a resin sheet, a resin plate, or the like. Since the resin film can be continuously transferred between or near the electrodes of the atmospheric pressure plasma discharge treatment apparatus according to the present invention to form a transparent conductive film, sputtering is performed. It is suitable for mass production that is not a patch type such as a vacuum system, and is suitable as a continuous high productivity production system. Examples of the material of the molded product such as a resin film, a resin sheet, a resin lens, a resin molded product, include cellulose triacetate, cellulose diacetate, cellulose acetate provionate or cellulose acetate butyrate. Estenolle, polyesters such as polyethylene terephthalate フ タ polyethylene naphthalate, polyolefins such as polyethylene ゃ polypropylene, polyvinylidene chloride, polyvinyl chloride, polyvinyl alcohol, ethylene vinyl alcohol copolymer, syndiotactic polystyrene, polycarbonate, norpolenene Resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone, polysnolephone, polyetherimide, polyamide, fluorine Fat, polymethyl § chestnut rate, can be cited Atari rate copolymers and the like. These materials may be used singly or as an appropriate mixture. Among them, ZEONEX (ZEONOR) (Nippon Zeon Co., Ltd.), ARTON (amorphous cyclopolyolefin resin film) (JSR Co., Ltd.), Pure Ace of polycarbonate film (manufactured by Teijin Limited), cellulose triacetate film Commercially available products such as KONITAK KC4UX and KC8UX (manufactured by Koniki Minolta Co., Ltd.) can be preferably used. In addition, even if the material has a large intrinsic birefringence V such as polycarbonate, polyarylate, polysulfone, and polyethersulfone, and the material is used, the conditions such as solution casting and melt extrusion, etc. A material that can be used can be obtained by appropriately setting stretching conditions and the like. Of these, a cellulose ester film that is nearly optically isotropic is preferably used for the optical element of the present invention. As the cellulose ester film, a cellulose triacetate film or a cellulose acetate propionate as described above is preferably used. one of. As a cellulose triacetate film, Konica Cat KC4UX, a commercial product, is useful. Those having a surface coated with gelatin, polyvinyl alcohol, acrylic resin, polyester resin, cellulose ester resin or the like can also be used. Further, an antiglare layer, a clear hard coat layer, a paria layer, an antifouling layer and the like may be provided on the thin film side of these resin films. Further, an adhesive layer, an alkali barrier coat layer, a gas barrier layer, a solvent-resistant layer, and the like may be provided as necessary. Further, the substrate used in the present invention is not limited to the above description. The film thickness of the film is preferably from 10 to 1,000 μπι, more preferably from 40 to 200 im.
【実施例】  【Example】
本発明を実施例により詳述するが、 これらに限定されない。  The present invention will be described in more detail with reference to Examples, but it should not be construed that the invention is limited thereto.
実施例 1  Example 1
基材としてコニカタック KC 4UXの長尺フィルム (1 500 m卷きフィルム) を用い、下記のように裏面側にバックコート層及び表側にハードコート層を塗設し、 フィルムロールとして巻き取った。 この基材を使用し、第 2図の装置を用いてフィ ルム上に窒化珪素膜を作製した。すなわち、基材を該フィルムロールのアンワイン ダ一から卷きほぐし、ハードコート層の上に大気圧プラズマ放電処理装置でバリア フィルム (試料 No. 1〜9) を作製した。  A long film (1500 m wound film) of Konica Cat KC 4UX was used as a substrate, a back coat layer was applied on the back side and a hard coat layer was applied on the front side as described below, and the film was wound as a film roll. Using this substrate, a silicon nitride film was formed on the film using the apparatus shown in FIG. That is, the substrate was unwound from the unwinder of the film roll, and barrier films (Sample Nos. 1 to 9) were produced on the hard coat layer using an atmospheric pressure plasma discharge treatment apparatus.
〔基材の準備〕  (Preparation of base material)
〈クリァハードコート層塗布済み基材の作製〉  <Preparation of base material coated with clear hard coat layer>
コニカタック KC 4 UXの片面に下記のバックコート層塗布組成物を設け、他の 面に、乾燥膜厚で 4 μ mの中心線表面粗さ (R a) 1 5 nmのクリァハードコート 層を設け、 クリァハードコート層塗布済み基材を作製した。  The following backcoat layer coating composition was provided on one side of KONICATAC KC4UX, and a clear hard coat layer with a center line surface roughness (Ra) of 15 nm on a dry film thickness of 4 μm was provided on the other side. Then, a substrate coated with a clear hard coat layer was prepared.
《バッタコート層塗布組成物》 アセトン 3 0質量部 酢酸ェチル 4 5質量部 イソプロピノレアルコ„ール << Grass coat layer coating composition >> Acetone 30 parts by mass Ethyl acetate 45 5 parts by mass Isopropinoyl alcohol
ジァセチルセルロース 0 . 5質量部 ァエロジル 2 0 0 V (日本ァェ口ジル社製) の 2質量%ァセトン分散液  0.5% by mass of diacetyl cellulose 2% by mass of aerosil 200 V (manufactured by Nippon Aechijiru Co., Ltd.)
0 . 1質量部 0.1 parts by mass
《クリァハードコート層塗布組成物》 << Clear hard coat layer coating composition >>
ジペンタエリスリ トールへキサアタリレート単量体 6 0質量部 ジペンタエリスリ トールへキサアタリレート 2量体 2 0質量部 ジペンタエリスリ ]、一ルへキサァクリ レート 3量体以上の成分  Dipentaerythritol hexaatalylate monomer 60 parts by mass Dipentaerythritol hexaatalylate dimer 20 parts by mass Dipentaerythryl], 1-hexaacrylate terpolymer
2 0質量部  20 parts by mass
.ジメトキシベンゾフエノン 4質量部 酢酸ェチル 5 0質量部 メチルェチルケトン 5 0質量部 イソプロピルアルコール 5 0'質量部 Dimethoxybenzophenone 4 parts by mass Ethyl acetate 50 parts by mass Methylethyl ketone 50 parts by mass Isopropyl alcohol 50 'parts by mass
〔電極の作製〕 (Preparation of electrode)
前述の第 2図の大気圧プラズマ放電処理装置において、誘電体で被覆したロール 電極及び同様に誘電体を被覆した複数の角筒型電極のセットを以下のように作製 した。第 1電極となるロール電極は、冷却水による冷却手段を有するチタン合金 T 6 4製ジャケットロール金属質母材に対して、大気圧プラズマ法により高密度、高 密着性のアルミナ溶射膜を被覆し、 口ール径 1 0 0 0 mm φ となるようにした。 封孔処理及ぴ被覆した誘電体表面研磨を行い、 Rm a Xを 5 mとした。最終的 な誘電体の空隙率(貫通性のある空隙率) はほぼ 0体積%、 このときの誘電体層の S i O x含有率は 7 5 m o 1 %、 また、最終的な誘電体の膜厚は 1 mm、誘電体の 比誘電率は 1 0であった。更に導電性の金属質母材と誘電体の線熱膨張係数の差は 1 . 7 X 1 0— 6で、 耐熱温度は 2 6 0 °Cであった。 In the atmospheric pressure plasma discharge treatment apparatus shown in FIG. 2, a set of a roll electrode covered with a dielectric and a plurality of rectangular cylindrical electrodes similarly covered with a dielectric was produced as follows. The roll electrode, which is the first electrode, is formed by coating a jacket roll metal base material made of titanium alloy T64, which has cooling means with cooling water, with a high-density, high-adhesion alumina spray coating by the atmospheric pressure plasma method. The diameter of the mouth is 100 mm. Sealing treatment and polishing of the coated dielectric surface were performed, and Rmax was set to 5 m. The final porosity of the dielectric (porosity with penetration) is almost 0% by volume. The SiO 2 x content was 75 mo 1%, the final dielectric film thickness was 1 mm, and the relative dielectric constant of the dielectric material was 10. Furthermore the difference in linear thermal expansion coefficient of the conductive metal base material and the dielectric 1. 7 X 1 0- 6, the heat resistance temperature was 2 6 0 ° C.
一方、第 2電極の角筒型電極は、 中空の角筒型のチタン合金 T 6 4に対し、上記 同様の誘電体を同条件にて被覆し、対向する角筒型固定電極群とした。 この角筒型 電極の誘電体については上記ロール電極のものと、誘電体表面の R m a x、誘電体 層の S i Ο χ含有率、また誘電体の膜厚と比誘電率、金属質母材と誘電体の線熱膨 張係数の差、更に電極の耐熱温度は、第 1電極とほぼ同じ物性値に仕上がった。 こ の角筒型電極をロール回転電極のまわりに、対向電極間隙を l mmとして 2 5本配 置した。 角筒型固定電極群の放電総面積は、 1 5 0 c m (幅手方向の長さ) X 4 c m (搬送方向の長さ) X 2 5本 (電極の数) = 1 5 0 0 0 c m 2であった。 なお、 何れもフィルターは適切なものを設置した。 プラズマ放電中、第 1電極(ロール回転電極)及び第 2電極(角筒型固定電極群) が 8 0 °Cになるように調節保温し、ロール回転電極はドライブで回転させて次のよ うに薄膜形成を行った。第 1電界と第 2電界については以下の条件とし、ぞれぞれ をアースに接地した。 On the other hand, the rectangular cylindrical electrode of the second electrode was a hollow rectangular cylindrical titanium alloy T64 coated with the same dielectric material under the same conditions as above to form a group of opposed rectangular cylindrical fixed electrodes. The dielectric of this rectangular cylindrical electrode is the same as that of the above-mentioned roll electrode, R max of the dielectric surface, S i i χ content of the dielectric layer, film thickness and relative permittivity of the dielectric, metal base material The difference in linear thermal expansion coefficient between the first electrode and the dielectric, and the heat-resistant temperature of the electrode were almost the same as those of the first electrode. Twenty-five such square-tube electrodes were arranged around the roll rotating electrode, with a counter electrode gap of l mm. The total discharge area of the rectangular cylindrical fixed electrode group is 150 cm (length in the width direction) X 4 cm (length in the transport direction) X 25 (number of electrodes) = 1500 cm Was 2 . In each case, an appropriate filter was installed. During the plasma discharge, the first electrode (roll rotating electrode) and the second electrode (square cylindrical fixed electrode group) are adjusted and kept at 80 ° C, and the roll rotating electrode is rotated by a drive as follows. A thin film was formed. The first electric field and the second electric field were set under the following conditions, and each was grounded.
(第 1電界)  (1st electric field)
電源種類 ; A 5  Power supply type; A5
周波数 ω ι ; 1 0 0 k H ζ Frequency ω ι ; 100 k H ζ
電界強度 ; 8 k V/mm  Electric field strength: 8 kV / mm
(第 2電界)  (Second electric field)
; B 3 周波数 ω2 ; 13. 56Μ B 3 Frequency ω 2 ; 13.56Μ
電界強度 V2 ; 0. 8 k V/mm Electric field strength V 2 ; 0.8 kV / mm
圧力は 103 kP aとし、下記の混合ガスをそれぞれの放電空間及ぴプラズマ放 電処理装置内部へ導入し、上記バックコート層及ぴクリァハードコート層塗布済み 基材のクリァハードコート層の上にプラズマ放電薄膜形成を行い、バリアフィルム を作製し試料 1〜 9とした。 なお、 この系での窒素ガスの放電開始電圧は 3. 7 k V/mijiであった。 何れもフィルターを設置して実施した。  The pressure was set to 103 kPa, and the following mixed gas was introduced into each discharge space and the inside of the plasma discharge treatment device, and the back coat layer and clear hard coat layer were coated on the clear hard coat layer of the substrate. A plasma discharge thin film was formed, and barrier films were fabricated as samples 1 to 9. The firing voltage of nitrogen gas in this system was 3.7 kV / miji. All were carried out with a filter installed.
《混合ガス組成物》  << mixed gas composition >>
放電ガス:窒素 98. 9体積0 /0 薄膜形成性ガス:テトラチタンイソプロポキシ 0. 1体積0 /0 Discharge gas: nitrogen 98.9 volume 0/0 film forming gas: tetra titanium isopropoxycarbonyl 0.1 volume 0/0
(リンテック社製気化器にてアルゴンガスに混合して気化)  (Evaporated by mixing with argon gas with Lintec vaporizer)
添加ガス: N 2〇ガス 1体積0 /o なお表 1のように窒素含有ガス、放電ガス種、 を採用してバリアフィルム 1〜9 とした。 製膜した膜厚を測定したところ、 100 nmであった。 Additive gas: N 2〇 gas 1 volume 0 / o As shown in Table 1, a nitrogen-containing gas and a discharge gas type were used to form barrier films 1 to 9. The thickness of the formed film was measured and found to be 100 nm.
〔膜の評価〕  [Evaluation of membrane]
《炭素含有率 ·窒素含有率の測定》  《Measurement of carbon content and nitrogen content》
炭素元素 ·窒素元素の含有率は X P S表面分析装置を用いて測定した。本実施例 においては VGサイェンティフィックス社製 E S CALAB- 200 Rを用いた。 X線アノードには Mgを用い、 出力 600W (加速電圧 15 k V, ェミッション電 流 4 OmA) で測定した。 エネルギー分解能は、 Ag 3 d 5Z2ピークの半値幅で 規定したとき、 1. 5〜1. 7 e Vとなるように設定した。  The contents of carbon element and nitrogen element were measured using an XPS surface analyzer. In the present example, ES CALAB-200R manufactured by VG Scientific was used. The measurement was performed at an output of 600 W (acceleration voltage 15 kV, emission current 4 OmA) using Mg as the X-ray anode. The energy resolution was set to be 1.5 to 1.7 eV when specified by the half-width of the Ag3d5Z2 peak.
《ガスバリア性の評価》  《Evaluation of gas barrier properties》
酸素透過試験器 (Mo d e r n Co n t o r o l社製; OX— TRAN2/2 0) により、対象のフィルムの 23°C、相対湿度 80%の雰囲気下における酸素透 過度を測定した。 以上の結果を表 1に示す。 Oxygen permeation tester (manufactured by Modern Contorl; OX—TRAN2 / 2 According to 0), the oxygen permeability of the target film in an atmosphere at 23 ° C and a relative humidity of 80% was measured. Table 1 shows the above results.
【表 1】 【table 1】
※酸素透過濃度の単位は [ml · 1 μ τα/m2 · Idyn · atm] * The unit of oxygen transmission concentration is [ml · 1 μτα / m 2 · Idyn · atm]
本発明の薄膜形成方法で作製した窒化チタン膜は、炭素原子比率が低く、酸素ガ スの透過率が比較例よりも低く、 パリア性が良好であった。 産業上の利用可能性 The titanium nitride film produced by the method for forming a thin film of the present invention had a low carbon atom ratio, a lower oxygen gas transmittance than that of the comparative example, and had a good parier property. Industrial applicability
本発明により、窒素のような安価且つ安全な放電ガスを用いて、高密度プラズマ を発生させることができ、また緻密な薄膜を得ることができ、更に良質な薄膜を高 速で製膜できる薄膜形成方法を提供できる。これにより良質で高性能の薄膜を有す る基材を安価に提供できる。  According to the present invention, a high-density plasma can be generated using a cheap and safe discharge gas such as nitrogen, a dense thin film can be obtained, and a high-quality thin film can be formed at a high speed. A forming method can be provided. Thereby, a base material having a high-quality thin film with high quality can be provided at low cost.

Claims

請求の範囲 The scope of the claims
1. 大気圧もしくはその近傍の圧力下、 放電空間に薄膜形成ガスを含有するガス を供給し、前記放電空間に高周波電界を印加することにより前記ガスを励起し、励 起した前記ガスに基材を晒すことにより前記基材上に薄膜を形成する薄膜形成方 法において、前記ガスは窒素元素を有するガスを含有し、前記基材上に形成される 薄膜が窒化膜であり、前記高周波電界が、第 1の高周波電界および第 2の高周波電 界を重畳したものであり、 前記第 1の高周波電界の周波数 ωιより前記第 2の高周 波電界の周波数 ω2が高く、前記第 1の高周波電界の強さ V1 前記第 2の高周波電 界の強さ V2及び放電開始電界の強さ I Vとの関係が、 1. A gas containing a thin film forming gas is supplied to a discharge space at or near atmospheric pressure, and a high-frequency electric field is applied to the discharge space to excite the gas, and a substrate is applied to the excited gas. In the method of forming a thin film on the substrate by exposing the substrate, the gas contains a gas having a nitrogen element, the thin film formed on the substrate is a nitride film, and the high-frequency electric field is is obtained by superimposing the first high frequency electric field and the second high-frequency electric field, the first frequency omega 2 is higher in the second high-frequency electric field than the frequency ωι high frequency electric field, said first high-frequency relationship between the intensity IV intensity V 2, and a discharge start electric field strength V 1 and the second high-frequency electric field of the electric field,
Vx≥ I V>V2 V x ≥ I V> V 2
又は V1> I V≥V2 を満たし、 前記第 2の高周波電界の出力密度が、 1 W/ c m2以上であることを特徴とする薄膜形成方法。 Or V 1> IV≥V 2 to meet the power density of the second high frequency electric field is, thin film forming method which is characterized in that at 1 W / cm 2 or more.
2. 前記放電空間が、 対向する第 1電極と第 2電極とで構成されることを特徴と する請求の範囲第 1項記載の薄膜形成方法。 2. The method for forming a thin film according to claim 1, wherein the discharge space includes a first electrode and a second electrode facing each other.
3. 前記第 2の高周波電界の出力密度が、 5 OW/ cm2以下であることを特徴 とする請求の範囲第 1項記載の薄膜形成方法。 3. The method according to claim 1, wherein an output density of the second high-frequency electric field is 5 OW / cm 2 or less.
4. 前記第 2の高周波電界の出力密度が、 2 OWZ cm 2以下であることを特徴 とする請求の範囲第 3項記載の薄膜形成方法。 4. The method according to claim 3, wherein an output density of the second high-frequency electric field is 2 OWZ cm 2 or less.
5 . 前記第 1の高周波電界の出力密度が 1 W/ c m 2以上であることを特徴とす る請求の範囲第 1項記載の薄膜形成方法。 5. The method for forming a thin film according to claim 1, wherein an output density of the first high-frequency electric field is 1 W / cm 2 or more.
6 . 前記第 1の高周波電界の出力密度が、 5 O WZ c m 2以下であることを特徴 とする請求の範囲第 5項記載の薄膜形成方法。 6. The method for forming a thin film according to claim 5, wherein an output density of the first high-frequency electric field is 5 O WZ cm 2 or less.
7 . 前記第 1の高周波電界及び前記第 2の高周波電界がサイン波であることを特 徴とする請求の範囲第 1項記載の薄膜形成方法。 7. The thin film forming method according to claim 1, wherein the first high-frequency electric field and the second high-frequency electric field are sine waves.
8 . 前記第 1の高周波電界を前記第 1電極に印加し、 前記第 2の高周波電界を前 記第 2電極に印加することを特徴とする請求の範囲第 2項記載の薄膜形成方法。 8. The method for forming a thin film according to claim 2, wherein the first high-frequency electric field is applied to the first electrode, and the second high-frequency electric field is applied to the second electrode.
9 . 前記放電空間に供給される全ガス量の 9 0〜 9 9 . 9体積%が放電ガスであ ることを特徴とする請求の範囲第 1項記載の薄膜形成方法。 9. The method for forming a thin film according to claim 1, wherein 90 to 99.9% by volume of the total gas supplied to the discharge space is a discharge gas.
1 0 . 前記放電ガスが、 5 0〜 1 0 0体積%の窒素ガスを含有することを特徴と する請求の範囲第 9項記載の薄膜形成方法。 10. The method according to claim 9, wherein the discharge gas contains 50 to 100% by volume of nitrogen gas.
1 1 . 前記放電ガスが、 5 0体積%未満の希ガスを含有することを特徴とする請 求の範囲第 9項記載の薄膜形成方法。 11. The method for forming a thin film according to claim 9, wherein the discharge gas contains less than 50% by volume of a rare gas.
1 2 . 前記薄膜形成ガスが、 有機金属化合物、 ハロゲン化金属、 金属水素化合物 カ ら選ばれる少なくとも一つを含有することを特徴とする請求の範囲第 1項記載 の薄膜形成方法。 12. The film according to claim 1, wherein the thin film forming gas contains at least one selected from an organometallic compound, a metal halide, and a metal hydride. Thin film forming method.
1 3 . 前記有機金属化合物が、 有機珪素化合物、 有機チタン化合物、 有機錫化合 物、 有機亜鉛化合物、 有機インジウム化合物及び有機アルミニウム化合物から選 ばれる少なくとも一つの化合物を含有することを特徴とする請求の範囲第 1 2項 記載の薄膜形成方法。 13. The organic metal compound contains at least one compound selected from an organic silicon compound, an organic titanium compound, an organic tin compound, an organic zinc compound, an organic indium compound and an organic aluminum compound. 3. The method for forming a thin film according to item 1 or 2.
1 4 . 請求の範囲第 1項〜第 1 3項の何れか 1項記載の薄膜形成方法により形成 された薄膜を有することを特徴とする基材。 14. A base material having a thin film formed by the thin film forming method according to any one of claims 1 to 13.
PCT/JP2004/018322 2003-12-16 2004-12-02 Method for forming thin film and base having thin film formed by such method WO2005059202A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516295A JPWO2005059202A1 (en) 2003-12-16 2004-12-02 Thin film forming method and substrate on which a thin film is formed by the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003417706 2003-12-16
JP2003-417706 2003-12-16

Publications (1)

Publication Number Publication Date
WO2005059202A1 true WO2005059202A1 (en) 2005-06-30

Family

ID=34697077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018322 WO2005059202A1 (en) 2003-12-16 2004-12-02 Method for forming thin film and base having thin film formed by such method

Country Status (2)

Country Link
JP (1) JPWO2005059202A1 (en)
WO (1) WO2005059202A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7934232B1 (en) 2000-05-04 2011-04-26 Jerding Dean F Navigation paradigm for access to television services
US7961643B2 (en) 2005-09-07 2011-06-14 Mcdonald James F Optimizing data rates for video services to a subscriber
US7962370B2 (en) 2000-06-29 2011-06-14 Rodriguez Arturo A Methods in a media service system for transaction processing
US7975277B1 (en) 2000-04-03 2011-07-05 Jerding Dean F System for providing alternative services
US7992163B1 (en) 1999-06-11 2011-08-02 Jerding Dean F Video-on-demand navigational system
US8006262B2 (en) 2001-06-29 2011-08-23 Rodriguez Arturo A Graphic user interfaces for purchasable and recordable media (PRM) downloads
US8006273B2 (en) 2001-06-29 2011-08-23 Rodriguez Arturo A Updating download options for unavailable media content
US8020184B2 (en) 1999-06-11 2011-09-13 Jerding Dean F Channel control system for exiting from an interactive program guide
US8032914B2 (en) 2000-11-10 2011-10-04 Rodriguez Arturo A Systems and methods for dynamically allocating bandwidth in a digital broadband delivery system
US8037504B2 (en) 1999-06-11 2011-10-11 Jerding Dean F Video on demand system with selectable options of configurable random-access control
US8069259B2 (en) 2000-06-09 2011-11-29 Rodriguez Arturo A Managing removal of media titles from a list
US8161388B2 (en) 2004-01-21 2012-04-17 Rodriguez Arturo A Interactive discovery of display device characteristics
US8191093B2 (en) 2001-06-29 2012-05-29 Rodriguez Arturo A Providing information pertaining to audio-visual and personal bi-directional services
US8516525B1 (en) 2000-06-09 2013-08-20 Dean F. Jerding Integrated searching system for interactive media guide
US8640172B2 (en) 2001-06-29 2014-01-28 Cisco Technology, Inc. System and method for characterization of purchasable and recordable media (PRM)
US8707153B2 (en) 2000-06-09 2014-04-22 Cisco Technology, Inc. Displaying comment data corresponding to a video presentation
US8745656B2 (en) 2002-02-11 2014-06-03 Cisco Technology, Inc. Tracking of presented television advertisements
JP2016062803A (en) * 2014-09-19 2016-04-25 パナソニックIpマネジメント株式会社 Device and method for plasma processing, and manufacturing method of electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326387A (en) * 1996-06-06 1997-12-16 Matsushita Electric Ind Co Ltd Film formation method and its device
JP2002043286A (en) * 2000-07-19 2002-02-08 Tokyo Electron Ltd Plasma processing device
JP2003092200A (en) * 2000-12-12 2003-03-28 Canon Inc Method and apparatus for vacuum treatment, semiconductor apparatus and production method for semiconductor apparatus
JP2003105541A (en) * 2001-09-28 2003-04-09 Konica Corp Method of forming film, base material and display device
JP2004068143A (en) * 2002-06-10 2004-03-04 Konica Minolta Holdings Inc Thin film depositing method, and base material with thin film deposited thereon by the thin film depositing method
JP2004084027A (en) * 2002-08-28 2004-03-18 Konica Minolta Holdings Inc Functional body and method for forming the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326387A (en) * 1996-06-06 1997-12-16 Matsushita Electric Ind Co Ltd Film formation method and its device
JP2002043286A (en) * 2000-07-19 2002-02-08 Tokyo Electron Ltd Plasma processing device
JP2003092200A (en) * 2000-12-12 2003-03-28 Canon Inc Method and apparatus for vacuum treatment, semiconductor apparatus and production method for semiconductor apparatus
JP2003105541A (en) * 2001-09-28 2003-04-09 Konica Corp Method of forming film, base material and display device
JP2004068143A (en) * 2002-06-10 2004-03-04 Konica Minolta Holdings Inc Thin film depositing method, and base material with thin film deposited thereon by the thin film depositing method
JP2004084027A (en) * 2002-08-28 2004-03-18 Konica Minolta Holdings Inc Functional body and method for forming the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7992163B1 (en) 1999-06-11 2011-08-02 Jerding Dean F Video-on-demand navigational system
US8056106B2 (en) 1999-06-11 2011-11-08 Rodriguez Arturo A Video on demand system with dynamic enablement of random-access functionality
US8037504B2 (en) 1999-06-11 2011-10-11 Jerding Dean F Video on demand system with selectable options of configurable random-access control
US8020184B2 (en) 1999-06-11 2011-09-13 Jerding Dean F Channel control system for exiting from an interactive program guide
US7992166B2 (en) 2000-04-03 2011-08-02 Jerding Dean F Providing alternative services based on receiver configuration and type of display device
US7975277B1 (en) 2000-04-03 2011-07-05 Jerding Dean F System for providing alternative services
US8739212B2 (en) 2000-05-04 2014-05-27 Cisco Technology, Inc. Configuration of presentations of selectable TV services according to usage
US7934232B1 (en) 2000-05-04 2011-04-26 Jerding Dean F Navigation paradigm for access to television services
US8516525B1 (en) 2000-06-09 2013-08-20 Dean F. Jerding Integrated searching system for interactive media guide
US8707153B2 (en) 2000-06-09 2014-04-22 Cisco Technology, Inc. Displaying comment data corresponding to a video presentation
US8069259B2 (en) 2000-06-09 2011-11-29 Rodriguez Arturo A Managing removal of media titles from a list
US7962370B2 (en) 2000-06-29 2011-06-14 Rodriguez Arturo A Methods in a media service system for transaction processing
US8032914B2 (en) 2000-11-10 2011-10-04 Rodriguez Arturo A Systems and methods for dynamically allocating bandwidth in a digital broadband delivery system
US8640172B2 (en) 2001-06-29 2014-01-28 Cisco Technology, Inc. System and method for characterization of purchasable and recordable media (PRM)
US8191093B2 (en) 2001-06-29 2012-05-29 Rodriguez Arturo A Providing information pertaining to audio-visual and personal bi-directional services
US8006273B2 (en) 2001-06-29 2011-08-23 Rodriguez Arturo A Updating download options for unavailable media content
US8006262B2 (en) 2001-06-29 2011-08-23 Rodriguez Arturo A Graphic user interfaces for purchasable and recordable media (PRM) downloads
US8745656B2 (en) 2002-02-11 2014-06-03 Cisco Technology, Inc. Tracking of presented television advertisements
US8161388B2 (en) 2004-01-21 2012-04-17 Rodriguez Arturo A Interactive discovery of display device characteristics
US9615139B2 (en) 2004-01-21 2017-04-04 Tech 5 Determining device that performs processing of output pictures
US8189472B2 (en) 2005-09-07 2012-05-29 Mcdonald James F Optimizing bandwidth utilization to a subscriber premises
US7961643B2 (en) 2005-09-07 2011-06-14 Mcdonald James F Optimizing data rates for video services to a subscriber
JP2016062803A (en) * 2014-09-19 2016-04-25 パナソニックIpマネジメント株式会社 Device and method for plasma processing, and manufacturing method of electronic device

Also Published As

Publication number Publication date
JPWO2005059202A1 (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP5115522B2 (en) Thin film formation method
JP4433680B2 (en) Thin film formation method
WO2005059202A1 (en) Method for forming thin film and base having thin film formed by such method
JP5082242B2 (en) Thin film formation method
JP4876918B2 (en) Transparent conductive film
JP5157169B2 (en) GAS BARRIER LAMINATE, ORGANIC ELECTROLUMINESCENCE ELEMENT AND METHOD FOR PRODUCING GAS BARRIER LAMINATE
WO2006067952A1 (en) Gas-barrier thin film laminate, gas-barrier resin base and organic el device
WO2007077871A1 (en) Moistureproof cellulose ester film, polarizer-protective film, and polarizer
WO2008044474A1 (en) Method for forming transparent conductive film
JP2007038445A (en) Gas barrier thin film laminate, gas barrier resin base material and organic electroluminescence device
JP2007113043A (en) Gas barrier thin film-stacked body, gas barrier resin base material, and organic electroluminescence device using the same
JPWO2008047549A1 (en) Transparent conductive film substrate and method for forming titanium oxide-based transparent conductive film used therefor
JP2005272957A (en) Surface treatment method and base material surface-treated by the surface treatment method
JP4686956B2 (en) Method for forming functional body
JP4539059B2 (en) Method for producing transparent conductive film laminate
JP4534081B2 (en) Thin film forming equipment
JP2005107044A (en) Fresnel lens for display
JP4821324B2 (en) Transparent and highly gas-barrier substrate and method for producing the same
JP4269754B2 (en) Transparent conductive film laminate and method for producing the same
JP2005060770A (en) Thin film deposition apparatus
JP4483234B2 (en) Cleaning method for atmospheric pressure plasma processing apparatus and atmospheric pressure plasma processing apparatus
JP2006175633A (en) Gas barrier thin film laminate, gas barrier resin base material and organic el device
JP2005200737A (en) Method of forming transparent electroconductive film
JP4432429B2 (en) Manufacturing method of lenticular lens for display
JP2006267347A (en) Thin film, reflection preventing base material, semiconductor device, particulate manufacturing method and thin film manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516295

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase