WO2005061564A1 - Preparation of olefin-acrylic copolymers with late transition metal catalysts - Google Patents

Preparation of olefin-acrylic copolymers with late transition metal catalysts Download PDF

Info

Publication number
WO2005061564A1
WO2005061564A1 PCT/US2004/038961 US2004038961W WO2005061564A1 WO 2005061564 A1 WO2005061564 A1 WO 2005061564A1 US 2004038961 W US2004038961 W US 2004038961W WO 2005061564 A1 WO2005061564 A1 WO 2005061564A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
olefin
transition metal
late transition
ethylene
Prior art date
Application number
PCT/US2004/038961
Other languages
French (fr)
Inventor
Jia-Chu Liu
Mark P. Mack
Shao-Hua Guo
Original Assignee
Equistar Chemicals, Lp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equistar Chemicals, Lp filed Critical Equistar Chemicals, Lp
Priority to CA002546447A priority Critical patent/CA2546447A1/en
Priority to DE602004006305T priority patent/DE602004006305T2/en
Priority to EP04811650A priority patent/EP1694723B1/en
Publication of WO2005061564A1 publication Critical patent/WO2005061564A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Definitions

  • the invention relates to olefin-acrylic copolymers. More particularly, the invention relates to preparation of olefin-acrylic copolymers with late transition metal catalysts.
  • EMA ethylene-ethyl acrylate
  • EBA ethylene-butyl acrylate
  • EAA ethylene-acrylic acid
  • olefin polymerization catalysts that incorporate late transition metals (especially iron, nickel, or cobalt) and bulky ⁇ -diimine ligands (or "bis(imines)" have been investigated. These late transition metal catalysts are of interest because, unlike the early transition metal metallocenes or Ziegler catalysts, the late transition metal catalysts can tolerate and incorporate polar comonomers into polyolefins. See U.S. Pat. Nos. 5,866,663 and 5,955,555.
  • late transition metal catalysts Compared to the conventional free radical polymerization, late transition metal catalysts have great ability in tailoring of critical polymer properties: molecular weight, crystallinity or melting point, and polydispersity. Therefore, the late transition metal catalysts may provide better product quality and production consistency. Also, the late transition metal catalysts do not require high temperature and high pressure polymerization. They avoid the use of explosive peroxides. Thus, the late transition metal catalyst polymerization may provide a safer and more cost-effective alternative to the existing free radical technology.
  • the invention is a process for making olefin-acrylic copolymers.
  • the process uses a late transition metal catalyst.
  • the catalyst comprises an activator and a late transition metal complex that contains an isoindoline ligand.
  • the process of the invention comprises polymerizing an olefin and an acrylic monomer in the presence of an activator and a Group 8-10 late transition metal complex.
  • the complex contains an isoindoline ligand.
  • the activator interacts with the complex to produce catalytically active species.
  • Suitable late transition metal complexes include those which have the general structure: L- M— (X) ⁇
  • M is a Group 8-10 late transition metal
  • L is an isoindoline ligand
  • X is a labile ligand
  • n the number of X ligands, is greater than or equal to 1.
  • the M is selected from the group consisting of Fe, Co, Ni, Cu and Zn. More preferably, the M is selected from the group consisting of Fe, Co, and Ni. Most preferably, the M is Fe.
  • the isoindoline ligand preferably has the general structure:
  • the hydrogen of the N-H group may be removed to form an ionic bonding between the nitrogen and the late transition metal.
  • the aromatic ring hydrogen atoms of the above structure are independently substituted. Suitable ring substitute groups include alkyl, aryl, aralkyl, alkylaryl, silyl, halogen, alkoxy, aryloxy, siloxy, nitro, dialkyl amino, diaryl amino groups, and the like.
  • A is an aryl or a heteroaryl group.
  • A is aryl, it preferably is phenyl- or alkyl-substituted, such as 4-methylphenyl or 2,4,6-trimethylphenyl (2-mesityl).
  • A is heteroaryl, it is preferably 2-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 2- pyrazinyl, 2-imidazolyl, 2-thiazolyl, or 2-oxazolyl.
  • the aryl and heteroaryl groups can be fused to other rings, as in a 2-naphthyl, 2-benzothiazolyl or 2- benzimidazolyl group.
  • the X is independently selected from the group consisting of hydrogen and halides. More preferably, X is a halide. Most preferably, X is chloride.
  • Suitable activators include alumoxane and alkylaluminum compounds.
  • suitable alumoxane compounds include methyl alumoxane (MAO), polymeric MAO (PMAO), ethyl alumoxane, diisobutyl alumoxane, and the like.
  • suitable alkylaluminum compounds include triethylaluminum, diethyl aluminum chloride, trimethylaluminum, triisobutyl aluminum, and the like.
  • Suitable alumoxane compounds also include those that are modified. Methods for the modification of alumoxanes are known. For instance, U.S. Pat. No.
  • Suitable activators also include acid salts that contain non-nucleophilic anions. These compounds generally consist of bulky ligands attached to boron or aluminum. Examples include lithium tetrakis(pentafluorophenyl)borate, lithium tetrakis-(pentafluorophenyl) aluminate, anilinium tetrakis(pentafluorophenyl)borate, and the like.
  • Suitable activators further include organoboranes, which are compounds of boron and one or more alkyl, aryl, or aralkyl groups.
  • organoboranes include substituted and unsubstituted trialkyl and triarylboranes such as tris(pentafluorophenyl)borane,, triphenylborane, tri-n-octylborane, and the like.
  • Suitable organoborane activators are described in U.S. Pat. Nos. 5, 153,157, 5, 198,401 , and 5,241 ,025.
  • Suitable activators also include aluminoboronates, which are the reaction products of alkyl aluminum compounds and organoboronic acids.
  • the late transition metal complex, the activator, or both are optionally supported , onto an inorganic solid or organic polymer support.
  • Suitable supports include silica, alumina, silica-aluminas, magnesia, titania, clays, zeolites, or the like.
  • the support is preferably treated thermally, chemically, or both prior to use to reduce the concentration of surface hydroxyl groups.
  • Thermal treatment consists of heating (or "calcining") the support in a dry atmosphere at elevated temperature, preferably greater than about 100°C, and more preferably from about 150°C to about 600°C, prior to use.
  • Suitable olefins include ⁇ -olefins, cyclic olefins, conjugated dienes, and mixtures thereof. C 2 -C 20 ⁇ -olefins are preferred. Ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, and mixtures thereof are particularly preferred. Ethylene and propylene are most preferred.
  • Suitable acrylic monomers include C ⁇ -C 20 alkyl acrylates, C ⁇ -C 20 alkyl methacrylates, C 6 -C 20 aryl acrylates, C 6 -C 20 aryl methacrylates, the like, and mixtures thereof.
  • suitable acrylic monomers are n-butyl acrylate, n-butyl methacrylate, methyl methacrylate, t-butyl methacrylate, iso-butyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate, and mixtures thereof.
  • the processes can be performed in slurry, solution, gas phase, or bulk, or a combination of these. Solution and slurry processes are preferred.
  • the polymerizations can be performed over a wide temperature range, such as about -30°C to about 280°C. A more preferred range is from about 30°C to about 180°C; most preferred is the range from about 50°C to about 150°C.
  • Molar ratio of olefin/acrylic monomer is preferably within the range of 99/1 to 50/50. More preferably, the ratio is within the range of 95/5 to 75/25.
  • Polymers made by the process of the invention have many applications as acrylic functionalized polyolefin. They can be used for making films. They can also be used for adhesives.
  • olefin-acrylic copolymers which can be made by the process of the invention include ethylene-methyl methacrylate (EMA), ethylene-ethyl acrylate (EEA), ethylene-butyl acrylate (EBA), propylene-methyl methacrylate, and the likes. These polymers have found many applications such as in medical packaging, disposable gloves, and cable compounding.
  • Catalyst Preparation A 100-mL round-bottom flask equipped with a nitrogen inlet and an internal fritted-glass filter is charged with phthalimide (2.94 g, 20.0 mmol) and ethyl acetate (60 mL). (The fritted-glass filter is attached to the end of a glass tube, which is inserted into the reactor through a rubber septum. The filter is easily raised above or lowered below the surface of liquids in the reactor.) 2,4,6-Trimethylaniline (5.41 g, 40.0 mmol, 2.0 eq.) and iron(ll) chloride (2.54 g, 20.0 mmol) are added to the flask, and the mixture is stirred under nitrogen at room temperature for 1 h.
  • the yellow mixture is heated to reflux (77°C) for 10 h, and is then stirred at room temperature for 32 h. A brown precipitate forms.
  • the reaction mixture is concentrated by stripping out the ethyl acetate under a stream of nitrogen.
  • Cold diethyl ether (30 mL) is added to the residue, and the mixture is stirred to wash the residue.
  • the glass filter is immersed in the liquid phase, which is then removed at reduced pressure through the internal filter. The solids are dried under vacuum for 2 h to give a brown powder. Yield: 10.11 g (99.4%).
  • the polymerization is performed in an Endeavor (AdvantageTM Series 3400 Process Chemistry Workstation, made by Argonaut Technologies, Inc.).
  • the Endeavor contains eight pressure reactor tubes each with individual temperature, pressure, stirring, and injection controls.
  • the Endeavor is placed in a glove box for manual manipulations and an inert atmosphere of nitrogen.
  • a pre-programmed computer monitors and collects data on pressure, temperature, ethylene consumption in each reactor tube as a function of the reaction time.
  • a reactor tube (10 mL) is charged with n-butyl acrylate (4 mL), tri-isobutyl aluminum (0.1 mL, 1.0 M hexane solution), MAO (0.08 mL, 1.0 M toluene solution), and the catalyst (0.2 mL, 1.0 M toluene solution).
  • the reactor tube is then sealed.
  • the reactor is pressured with ethylene to 400 psig and heated to 100°C.
  • the polymerization continues at these temperature and pressure readings for about an hour with continuous feeding of ethylene.
  • the ethylene consumption is about 0.73 gram (0.026 mole).
  • unreacted acrylate is removed by vacuum, yielding 1.8 grams of polymer.
  • the polymer has an acrylate/ethylene molar ratio: 1 :3.1 (calculated based on the monomer consumption); Mw: 2.1x 10 5 ; and Mn: 8.8x10 3 .
  • a 100-mL round-bottom flask equipped with a nitrogen inlet and an internal fritted-glass filter is charged with phthalimide (2.94 g, 20.0 mmol) and ethyl acetate (50 mL).
  • 2-Aminopyridine (3.77 g, 40.0 mmol, 2.1 eq.) and iron(II) chloride (2.54 g, 20.0 mmol) are added to the flask, and the mixture is stirred under nitrogen at room temperature for 1 h. The mixture is stirred at room temperature for 120 h, yielding a white precipitate.
  • Example 3 Copolymerization Of Ethylene And n-Butyl Acrylate With Nickel(ll) 1 ,3-Bis(2- mesitylimino)isoindoline Complex and MAO Activator
  • Example 2 Polymerization The polymerization procedure of Example 1 is followed. Ethylene consumption is 0.84 gram (0.03 mole), and 2.16 grams of polymer is collected. The polymer has an acrylate/ethylene molar ratio: 1 :3.0; Mw: 2.0x10 5 ; and Mn: 7.6x10 3 .

Abstract

A process for making olefin-acrylic copolymers is disclosed. The process comprises polymerizing an olefin and an acrylic monomer in the presence of an activator and a Group 8-10 late transition metal complex. The late transition metal catalyst contains an isoindoline ligand.

Description

PREPARATION OF OLEFIN-ACRYLIC COPOLYMERS WITH LATE TRANSITION METAL CATALYSTS FIELD OF THE INVENTION
The invention relates to olefin-acrylic copolymers. More particularly, the invention relates to preparation of olefin-acrylic copolymers with late transition metal catalysts.
BACKGROUND OF THE INVENTION Currently, specialty polyolefins, such as ethylene-methyl methacrylate
(EMA), ethylene-ethyl acrylate (EEA), ethylene-butyl acrylate (EBA), and ethylene-acrylic acid (EAA) are made by high temperature, high pressure free radical polymerizations. These polymers have been used in medical packaging, disposable gloves, cable compounding, adhesives, and many other applications. However, these materials are expensive.
Since the late 1990s, olefin polymerization catalysts that incorporate late transition metals (especially iron, nickel, or cobalt) and bulky α-diimine ligands (or "bis(imines)") have been investigated. These late transition metal catalysts are of interest because, unlike the early transition metal metallocenes or Ziegler catalysts, the late transition metal catalysts can tolerate and incorporate polar comonomers into polyolefins. See U.S. Pat. Nos. 5,866,663 and 5,955,555.
Recently, new late transition metal catalysts that contain isoindoline ligands have been developed. See co-pending Appl. Ser. No. 09/947,745, filed on September 6, 2001. These catalysts have showed higher activity than the bis(imines)-based late transition catalysts. Moreover, these catalysts are relatively easy to prepare. However, these catalysts have not been explored for the use in the preparation of olefin-acrylic copolymers.
Compared to the conventional free radical polymerization, late transition metal catalysts have great ability in tailoring of critical polymer properties: molecular weight, crystallinity or melting point, and polydispersity. Therefore, the late transition metal catalysts may provide better product quality and production consistency. Also, the late transition metal catalysts do not require high temperature and high pressure polymerization. They avoid the use of explosive peroxides. Thus, the late transition metal catalyst polymerization may provide a safer and more cost-effective alternative to the existing free radical technology.
In summary, exploring new methods for the preparation of olefin-acrylic copolymers is important to the industry. More particularly, the methods would use the newly developed late transition metal catalysts. Ideally, the catalysts would not only be able to tolerate the acrylic comonomers but also have high activity and be easy to make.
SUMMARY OF THE INVENTION
The invention is a process for making olefin-acrylic copolymers. The process uses a late transition metal catalyst. The catalyst comprises an activator and a late transition metal complex that contains an isoindoline ligand.
DETAILED DESCRIPTION OF THE INVENTION
The process of the invention comprises polymerizing an olefin and an acrylic monomer in the presence of an activator and a Group 8-10 late transition metal complex. The complex contains an isoindoline ligand. The activator interacts with the complex to produce catalytically active species.
Suitable late transition metal complexes include those which have the general structure: L- M— (X)π
M is a Group 8-10 late transition metal; L is an isoindoline ligand; X is a labile ligand, n, the number of X ligands, is greater than or equal to 1.
Preferably, the M is selected from the group consisting of Fe, Co, Ni, Cu and Zn. More preferably, the M is selected from the group consisting of Fe, Co, and Ni. Most preferably, the M is Fe. The isoindoline ligand preferably has the general structure:
Figure imgf000004_0001
When forming a late transition metal complex, the hydrogen of the N-H group may be removed to form an ionic bonding between the nitrogen and the late transition metal. Optionally, the aromatic ring hydrogen atoms of the above structure are independently substituted. Suitable ring substitute groups include alkyl, aryl, aralkyl, alkylaryl, silyl, halogen, alkoxy, aryloxy, siloxy, nitro, dialkyl amino, diaryl amino groups, and the like.
A is an aryl or a heteroaryl group. When A is aryl, it preferably is phenyl- or alkyl-substituted, such as 4-methylphenyl or 2,4,6-trimethylphenyl (2-mesityl). When A is heteroaryl, it is preferably 2-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 2- pyrazinyl, 2-imidazolyl, 2-thiazolyl, or 2-oxazolyl. The aryl and heteroaryl groups can be fused to other rings, as in a 2-naphthyl, 2-benzothiazolyl or 2- benzimidazolyl group.
A few exemplary isoindolines appear below:
Figure imgf000005_0001
Preferably, the X is independently selected from the group consisting of hydrogen and halides. More preferably, X is a halide. Most preferably, X is chloride.
Suitable activators include alumoxane and alkylaluminum compounds. Examples of suitable alumoxane compounds include methyl alumoxane (MAO), polymeric MAO (PMAO), ethyl alumoxane, diisobutyl alumoxane, and the like. Examples of suitable alkylaluminum compounds include triethylaluminum, diethyl aluminum chloride, trimethylaluminum, triisobutyl aluminum, and the like. Suitable alumoxane compounds also include those that are modified. Methods for the modification of alumoxanes are known. For instance, U.S. Pat. No. 4,990,640 teaches the modification of alumoxanes with active hydrogen- containing compounds such as ethylene glycol. U.S. Pat. No. 6,340,771 teaches modifying MAO with sugar to make "sweet" MAO. Also, U.S. Pat. No. 5,543,377 teaches modifying alumoxanes with ketoalcohols and β-diketones.
Suitable activators also include acid salts that contain non-nucleophilic anions. These compounds generally consist of bulky ligands attached to boron or aluminum. Examples include lithium tetrakis(pentafluorophenyl)borate, lithium tetrakis-(pentafluorophenyl) aluminate, anilinium tetrakis(pentafluorophenyl)borate, and the like.
Suitable activators further include organoboranes, which are compounds of boron and one or more alkyl, aryl, or aralkyl groups. Suitable organoboranes include substituted and unsubstituted trialkyl and triarylboranes such as tris(pentafluorophenyl)borane,, triphenylborane, tri-n-octylborane, and the like. Suitable organoborane activators are described in U.S. Pat. Nos. 5, 153,157, 5, 198,401 , and 5,241 ,025. Suitable activators also include aluminoboronates, which are the reaction products of alkyl aluminum compounds and organoboronic acids. These activators are described in U.S. Pat. Nos. 5,414,180 and 5,648,440. The late transition metal complex, the activator, or both are optionally supported, onto an inorganic solid or organic polymer support. Suitable supports include silica, alumina, silica-aluminas, magnesia, titania, clays, zeolites, or the like. The support is preferably treated thermally, chemically, or both prior to use to reduce the concentration of surface hydroxyl groups. Thermal treatment consists of heating (or "calcining") the support in a dry atmosphere at elevated temperature, preferably greater than about 100°C, and more preferably from about 150°C to about 600°C, prior to use. A variety of different chemical treatments can be used, including reaction with organo-aluminum, -magnesium, -silicon, or -boron compounds. See, for example, the techniques described in U.S. Pat. No. 6,211 ,311. Suitable olefins include α-olefins, cyclic olefins, conjugated dienes, and mixtures thereof. C2-C20 α-olefins are preferred. Ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, and mixtures thereof are particularly preferred. Ethylene and propylene are most preferred. Suitable acrylic monomers include Cι-C20 alkyl acrylates, Cι-C20 alkyl methacrylates, C6-C20 aryl acrylates, C6-C20 aryl methacrylates, the like, and mixtures thereof. Examples of suitable acrylic monomers are n-butyl acrylate, n-butyl methacrylate, methyl methacrylate, t-butyl methacrylate, iso-butyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate, and mixtures thereof.
The processes can be performed in slurry, solution, gas phase, or bulk, or a combination of these. Solution and slurry processes are preferred. The polymerizations can be performed over a wide temperature range, such as about -30°C to about 280°C. A more preferred range is from about 30°C to about 180°C; most preferred is the range from about 50°C to about 150°C.
Molar ratio of olefin/acrylic monomer is preferably within the range of 99/1 to 50/50. More preferably, the ratio is within the range of 95/5 to 75/25.
Polymers made by the process of the invention have many applications as acrylic functionalized polyolefin. They can be used for making films. They can also be used for adhesives.
Examples of olefin-acrylic copolymers which can be made by the process of the invention include ethylene-methyl methacrylate (EMA), ethylene-ethyl acrylate (EEA), ethylene-butyl acrylate (EBA), propylene-methyl methacrylate, and the likes. These polymers have found many applications such as in medical packaging, disposable gloves, and cable compounding.
The following examples merely illustrate the invention. Those skilled in the art will recognize many variations that are within the spirit of the invention and scope of the claims. EXAMPLE 1 Copolymerization Of Ethylene And n-Butyl Acrylate With Iron(ll) 1 ,3-Bis(2- Mesitylimino)isoindoline Complex And Mao Activator
Catalyst Preparation A 100-mL round-bottom flask equipped with a nitrogen inlet and an internal fritted-glass filter is charged with phthalimide (2.94 g, 20.0 mmol) and ethyl acetate (60 mL). (The fritted-glass filter is attached to the end of a glass tube, which is inserted into the reactor through a rubber septum. The filter is easily raised above or lowered below the surface of liquids in the reactor.) 2,4,6-Trimethylaniline (5.41 g, 40.0 mmol, 2.0 eq.) and iron(ll) chloride (2.54 g, 20.0 mmol) are added to the flask, and the mixture is stirred under nitrogen at room temperature for 1 h. The yellow mixture is heated to reflux (77°C) for 10 h, and is then stirred at room temperature for 32 h. A brown precipitate forms. The reaction mixture is concentrated by stripping out the ethyl acetate under a stream of nitrogen. Cold diethyl ether (30 mL) is added to the residue, and the mixture is stirred to wash the residue. The glass filter is immersed in the liquid phase, which is then removed at reduced pressure through the internal filter. The solids are dried under vacuum for 2 h to give a brown powder. Yield: 10.11 g (99.4%).
Polymerization
The polymerization is performed in an Endeavor (Advantage™ Series 3400 Process Chemistry Workstation, made by Argonaut Technologies, Inc.). The Endeavor contains eight pressure reactor tubes each with individual temperature, pressure, stirring, and injection controls. The Endeavor is placed in a glove box for manual manipulations and an inert atmosphere of nitrogen. A pre-programmed computer monitors and collects data on pressure, temperature, ethylene consumption in each reactor tube as a function of the reaction time.
A reactor tube (10 mL) is charged with n-butyl acrylate (4 mL), tri-isobutyl aluminum (0.1 mL, 1.0 M hexane solution), MAO (0.08 mL, 1.0 M toluene solution), and the catalyst (0.2 mL, 1.0 M toluene solution). The reactor tube is then sealed. The reactor is pressured with ethylene to 400 psig and heated to 100°C. The polymerization continues at these temperature and pressure readings for about an hour with continuous feeding of ethylene. The ethylene consumption is about 0.73 gram (0.026 mole). After polymerization, unreacted acrylate is removed by vacuum, yielding 1.8 grams of polymer. The polymer has an acrylate/ethylene molar ratio: 1 :3.1 (calculated based on the monomer consumption); Mw: 2.1x 105; and Mn: 8.8x103.
EXAMPLE 2 Copolymerization Of Ethylene And n-Butyl Acrylate With Iron(ll) 1,3-Bis(2- pyridylimino)isoindoline Complex and MAO Activator
Catalyst Preparation
A 100-mL round-bottom flask equipped with a nitrogen inlet and an internal fritted-glass filter is charged with phthalimide (2.94 g, 20.0 mmol) and ethyl acetate (50 mL). 2-Aminopyridine (3.77 g, 40.0 mmol, 2.1 eq.) and iron(II) chloride (2.54 g, 20.0 mmol) are added to the flask, and the mixture is stirred under nitrogen at room temperature for 1 h. The mixture is stirred at room temperature for 120 h, yielding a white precipitate.
Samples are removed from the bottom of the flask at 24, 48, and 120 h. Each sample is dried under vacuum for 0.5 h, and a small portion of each (40 mg) is dissolved in toluene (20 mL) and tested in an ethylene polymerization experiment. (Polymerization results for the 24 h sample appear in Table 1.) The rest of the reaction mixture is stripped under vacuum after the 120 h stirring period. After washing with cold diethyl ether (3 X 20 mL), the white solids are dried under vacuum for 1 h. Total yield: 8.40 g (98.6%).
Polymerization
The polymerization procedure of Example 1 is followed. The ethylene consumption 0.59 gram (0.021 mole), and 1.7 grams of polymer is collected. The polymer has an acrylate/ethylene molar ratio: 1 :2.4; Mw: 1.9x105; and Mn: 8.5x103. EXAMPLE 3 Copolymerization Of Ethylene And n-Butyl Acrylate With Nickel(ll) 1 ,3-Bis(2- mesitylimino)isoindoline Complex and MAO Activator
Catalyst Preparation A 100-mL round-bottom flask equipped as described earlier is charged with phthalimide (2.94 g, 20.0 mmol) and ethyl acetate (60 mL). 2,4,6- Trimethylaniline (5.41 g, 40.0 mmol, 2.0 eq.) and nickel(ll) chloride (2.63 g, 20.0 mmol) are added to the flask, and the mixture is stirred under nitrogen at room temperature for 24 h. A brown precipitate forms. The reaction mixture is concentrated by stripping out the ethyl acetate under a stream of nitrogen. Cold diethyl ether (30 mL) is added to the residue, and the mixture is stirred to wash the residue. The liquid phase is removed at reduced pressure through the internal filter. The solids are dried under vacuum for 2 h to give a brown powder. Yield: 9.60 g (93.8%).
Polymerization The polymerization procedure of Example 1 is followed. Ethylene consumption is 0.84 gram (0.03 mole), and 2.16 grams of polymer is collected. The polymer has an acrylate/ethylene molar ratio: 1 :3.0; Mw: 2.0x105; and Mn: 7.6x103.

Claims

We claim:
1. A process which comprises polymerizing an olefin and an acrylic monomer in the presence of an activator and a Group 8-10 late transition metal complex having an isoindoline ligand.
2. The process of claim 1 wherein the complex has the general structure: L-M-(X)n
Wherein M is a Group 8-10 late transition metal, L is an isoindoline ligand, X is a labile ligand, n, the number of the X ligands, is greater than or equal to 1.
3, The process of claim 2 wherein the isoindoline ligand L has the general structure:
Figure imgf000011_0001
wherein A and A' are the same or different and selected from aryl or heteroaryl groups.
4. The process of claim 3 wherein A and A' are the same and are selected from aryl groups.
5. The process of claim 3 wherein A and A' are the same and are selected from heteroaryl groups.
6. The process of claim 2 wherein M is selected from the group consisting of Ni, Co, and Fe.
7. The process of claim 2 wherein M is Fe.
8. The process of claim 2 wherein X is independently selected from the group consisting of hydrogen and halides.
9. The process of claim 2 wherein X is independently selected from halides.
10. The process of claim 1 wherein the complex comprises Fe and 1,3-bis(2- mesitylimino)isoindoline ligand.
11. The process of claim 1 wherein the complex comprises Fe and 1 ,3-bis(2- pyridylimino)isoindoline ligand.
12. The process of claim 1 wherein the activator is selected from the group consisting of alkyl alumoxanes, alkylaluminum compounds, aluminoboronates, organoboranes, ionic borates, and ionic aluminates.
13. The process of claim 1 wherein the activator is an alumoxane.
14. The process of claim 1 wherein the olefin is selected from the group consisting of C2-10 α-olefins, cyclic olefins, dienes, and mixtures thereof.
15. The process of claim 1 wherein the olefin is selected from the group consisting of ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, and mixtures thereof.
16. The process of claim 1 wherein the olefin is ethylene.
17. The process of claim 1 wherein the acrylic monomer is selected from the group consisting of Cι-C20 alkyl acrylates, Cι-C20 alkyl methacrylates, C6-C2o aryl acrylates, C6-C20 aryl methacrylates, and mixtures thereof.
18. The process of claim 1 wherein the acrylic monomer is selected from the group consisting of n-butyl acrylate, n-butyl methacrylate, methyl methacrylate, t-butyl methacrylate, iso-butyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate, and mixtures thereof.
19. The process of claim 1 wherein the olefin is ethylene and the acrylic monomer is n-butyl acrylate.
PCT/US2004/038961 2003-12-11 2004-11-19 Preparation of olefin-acrylic copolymers with late transition metal catalysts WO2005061564A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002546447A CA2546447A1 (en) 2003-12-11 2004-11-19 Preparation of olefin-acrylic copolymers with late transition metal catalysts
DE602004006305T DE602004006305T2 (en) 2003-12-11 2004-11-19 PREPARATION OF OLEFIN ACRYLIC COPOLYMERS WITH CATALYSTS BASED ON LATE TRANSITION METALS
EP04811650A EP1694723B1 (en) 2003-12-11 2004-11-19 Preparation of olefin-acrylic copolymers with late transition metal catalysts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/733,631 2003-12-11
US10/733,631 US6844402B1 (en) 2003-12-11 2003-12-11 Preparation of olefin-acrylic copolymers with late transition metal catalysts

Publications (1)

Publication Number Publication Date
WO2005061564A1 true WO2005061564A1 (en) 2005-07-07

Family

ID=33565388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/038961 WO2005061564A1 (en) 2003-12-11 2004-11-19 Preparation of olefin-acrylic copolymers with late transition metal catalysts

Country Status (7)

Country Link
US (1) US6844402B1 (en)
EP (1) EP1694723B1 (en)
CN (1) CN1890275A (en)
AT (1) ATE361327T1 (en)
CA (1) CA2546447A1 (en)
DE (1) DE602004006305T2 (en)
WO (1) WO2005061564A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903169B1 (en) * 2003-12-30 2005-06-07 Equistar Chemicals, Lp LTMC polymerization of unsaturated monomers
KR102363032B1 (en) * 2018-03-21 2022-02-16 주식회사 엘지화학 Method For Preparing Transition Metal Complex
EP4017862A1 (en) * 2019-08-20 2022-06-29 Dow Global Technologies LLC Bis(phosphino)-phenoxy nickel(ii) catalysts for the copolymerization of ethylene and acrylate monomers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030065113A1 (en) * 2001-09-06 2003-04-03 Jia-Chu Liu Transition metal catalysts for olefin polymerization

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153157A (en) 1987-01-30 1992-10-06 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
US5241025A (en) 1987-01-30 1993-08-31 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
US5198401A (en) 1987-01-30 1993-03-30 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
KR930002411B1 (en) 1988-09-14 1993-03-30 미쓰이세끼유 가가꾸고오교오 가부시끼가이샤 Benzene-insoluble organoalumium oxy-compounds and process for preparing same
US5449650A (en) 1992-12-08 1995-09-12 Mitsubishi Petrochemical Company Limited Catalyst components for polymerization of olefins and use thereof
US5414180A (en) 1993-07-14 1995-05-09 Phillips Petroleum Company Organo-aluminoxy product and use
CA2129794A1 (en) 1993-08-10 1995-02-11 Toshiyuki Tsutsui Olefin polymerization catalysts and methods of olefin polymerization
US5880241A (en) 1995-01-24 1999-03-09 E. I. Du Pont De Nemours And Company Olefin polymers
US5714556A (en) 1995-06-30 1998-02-03 E. I. Dupont De Nemours And Company Olefin polymerization process
DE69702978T3 (en) 1996-06-17 2009-08-13 Exxonmobil Chemical Patents Inc., Baytown POLYMERIZATION METHOD UNDER INCREASED PRESSURE WITH TRANSFER METAL CATALYST SYSTEMS
IL129929A0 (en) 1996-12-17 2000-02-29 Du Pont Polymerization of ethylene with specific iron or cobalt complexes novel pyridinebis (imines) and novel complexes of pyridinebis(imines) with iron and cobalt
US6410660B1 (en) 1998-03-27 2002-06-25 E. I. Du Pont De Nemours And Company Polymerization of olefins
US6211311B1 (en) 1999-05-25 2001-04-03 Equistar Chemicals, L.P. Supported olefin polymerization catalysts
US6310165B1 (en) 1999-11-18 2001-10-30 Eastman Kodak Company Polymerization process with novel catalyst system
US6340771B1 (en) 1999-12-22 2002-01-22 Nova Chemicals (International) S. A. “Sweet” MAO
US6501000B1 (en) 2000-04-04 2002-12-31 Exxonmobil Research And Engineering Company Late transition metal catalyst complexes and oligomers therefrom
US6506859B1 (en) 2000-08-18 2003-01-14 Exxonmobil Research And Engineering Company Polymerization using late transition metal catalyst complexes formed in situ
US6562973B1 (en) 2001-08-15 2003-05-13 Equistar Chemicals, Lp Method for making late transition metal catalysts for olefin polymerization
US6515071B1 (en) 2002-05-22 2003-02-04 Ashland Inc. Process for the preparation of dicyclopentadiene modified polyester resins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030065113A1 (en) * 2001-09-06 2003-04-03 Jia-Chu Liu Transition metal catalysts for olefin polymerization

Also Published As

Publication number Publication date
DE602004006305T2 (en) 2008-01-03
US6844402B1 (en) 2005-01-18
EP1694723B1 (en) 2007-05-02
ATE361327T1 (en) 2007-05-15
EP1694723A1 (en) 2006-08-30
DE602004006305D1 (en) 2007-06-14
CN1890275A (en) 2007-01-03
CA2546447A1 (en) 2005-07-07

Similar Documents

Publication Publication Date Title
WO2009032051A1 (en) Olefin polymerization process
WO2011011041A1 (en) Catalysts based on 2-aryl-8-anilinoquinoline ligands
AU6990100A (en) Copolymers of ethylene with C3-C12 alpha olefins
US6759361B2 (en) Aluminoboronate activators for single-site olefin polymerization catalysts
WO2009032048A1 (en) Olefin polymerization process
KR101146875B1 (en) Transition metal catalytic systems and methods for preparing ethylene homopolymers or copolymers of ethylene and olefins using the same
EP3184556A1 (en) Supported metallocene catalyst and polyolefin preparation method using same
EP1268565A1 (en) Ethylene polymerization process
EP1694723B1 (en) Preparation of olefin-acrylic copolymers with late transition metal catalysts
US7473746B2 (en) LTMC polymerization of unsaturated monomers
US6630547B1 (en) Use of silanes to control molecular weight in olefin polymerizations
WO2009032050A1 (en) Olefin polymerization process
US20110251362A1 (en) Olefin polymerization catalysts
CN116057083A (en) Polyethylene and preparation method thereof
JP2021525307A (en) Catalyst composition and method for producing polyolefin using it
MXPA06007479A (en) Ltmc polymerization of unsaturated monomers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480036164.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2546447

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004811650

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004811650

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2004811650

Country of ref document: EP