WO2005078922A1 - Automatic matching and tuning unit - Google Patents

Automatic matching and tuning unit Download PDF

Info

Publication number
WO2005078922A1
WO2005078922A1 PCT/CA2005/000182 CA2005000182W WO2005078922A1 WO 2005078922 A1 WO2005078922 A1 WO 2005078922A1 CA 2005000182 W CA2005000182 W CA 2005000182W WO 2005078922 A1 WO2005078922 A1 WO 2005078922A1
Authority
WO
WIPO (PCT)
Prior art keywords
microprocessor
front panel
input
control
matching
Prior art date
Application number
PCT/CA2005/000182
Other languages
French (fr)
Inventor
John R. Pinks
Original Assignee
Nautel Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nautel Limited filed Critical Nautel Limited
Priority to CA002558294A priority Critical patent/CA2558294A1/en
Publication of WO2005078922A1 publication Critical patent/WO2005078922A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages

Definitions

  • the present invention relates to a matching and tuning unit (AMTU), which connects the output from a low or medium frequency high power radio transmitter to an antenna with a complex input impedance.
  • AMTU matching and tuning unit
  • a sensor measures the value of the radio frequency current applied to the antenna.
  • An RS485 serial link between the microprocessor in the AMTU and a microprocessor in the associated transmitter adjusts the output power
  • US Patent No. 5,631 ,611 uses a similar technique to that embodied in the present invention in that tuned, mutually coupled coils are used to adjust the resistive component of the input impedance.
  • US 5,631 ,611 requires a large, very expensive, high power variable vacuum capacitor to tune the
  • a matching and tuning network for connecting a source of RF power to a complex load, the network comprising a primary circuit, a secondary circuit and a tertiary
  • the primary circuit comprising a variable tuning capacitor connected in series with a primary winding of a pair of mutually coupled coils connected to the source of RF power;
  • the secondary circuit comprising a series connection of a secondary winding of the pair of mutually coupled coils and a fixed capacitor connected to an input of a transformer;
  • the tertiary circuit comprising
  • the matching and tuning network further comprising: input voltage sensing means; input current sensing means; impedance detector means connected to both the input voltage
  • the impedance detector means controls means for varying the coupling between the primary winding and the secondary winding of the pair of mutually coupled coils
  • the phase detector means controls means for varying the inductance of the tapped loading coil
  • a control circuit for controlling a matching and tuning network according to the
  • control circuit comprising: a first and a second microprocessor connected by a serial link; a first control signal representative of the input voltage of the source of RF power output by the voltage detector means and input to the first microprocessor; a second control signal representative of the input current of the source of RF power output by
  • the first microprocessor receives and compares the first and second control signals and generates a sixth control signal to control the means for varying the coupling between the primary and secondary winding of the pair of mutually coupled coils; the first microprocessor receives the third and fourth control signals and generates a seventh control signal to control means for varying the inductance of the tapped loading coil; and the second microprocessor generates an eighth control signal to control the output power level of the source of RF power.
  • FIG. 1 is a schematic block diagram of the matching network according to an embodiment the present invention
  • FIG. 2 is a circuit diagram showing the tuned, mutually coupled coils of the embodiment of FIG. 1
  • FIG. 3 is a circuit diagram of the equivalent circuit to the circuitry of FIG. 2.
  • FIG. 2 shows the circuit diagram of this arrangement.
  • the inductances of the primary 23 and the secondary 24 windings of the mutually coupled coils are equal and are tuned for series resonance at the operating carrier frequency by equal capacitors 21 and 22.
  • Figure 3 shows the equivalent circuit of this arrangement shown in 5 Figure 2.
  • j square root of -1
  • angular velocity of the input frequency in radians per second
  • FIG. 15 shows a schematic block diagram of the Automatic Matching and Tuning Unit.
  • the transmitter (1 ) is connected via a radio frequency coaxial
  • the transmitter has an output power level that may be adjusted by both local front panel controls and an external remote power trim control.
  • Input voltage sensing means 2 and input current sensing means 3 sample the high power input signal and generate dc voltages proportional,
  • Phase detector means 4 measures the phase angle between the rf input voltage and rf input current. The detector has two output lines. If the phase angle is zero no output signal is generated. If the voltage leads the current, a
  • variable tuning capacitor 5 This variable tuning capacitor comprises an array of six fixed, high power rf capacitors which are selectively connected in parallel during
  • each capacitor has a value of twice the value of the previous capacitor in the sequence) providing 64 different combinations to cover the required operating range from 190 kHz to 535 kHz.
  • the adjustable mutually coupled coils 6, comprise two similar coils wound on cylindrical formers.
  • the primary winding is mounted in a fixed position.
  • the secondary winding has an outer diameter that is slightly smaller than the inner diameter of the primary winding, such that it can be moved inside the primary on the same axis. It has more turns spaced slightly closer together
  • the secondary winding of mutually coupled coils 6 is connected via a single high power rf capacitor 7 that is approximately resonant with its inductance at the center of the operating frequency band, to the input of ferrite cored transformer 8.
  • This rf autotransformer has fixed tapping positions which are set up during initial installation to present a desired impedance value at the secondary winding of the coupled coils.
  • This transformer also provides a dc path to ground for the antenna, such that static voltage generation within the antenna is eliminated.
  • Antenna current sensing means 9 samples the rf current that is applied to the input of the loading coil.
  • the components of the AMTU are housed in an aluminum cabinet to contain the magnetic field of the loading coils. This is necessary to prevent external conditions from affecting the inductance of the loading coils and to prevent their strong magnetic field from causing undesi rable external effects.
  • the loading coil 10 comprises a pair of coils wound on cylindrical formers that are mounted side by side.
  • the coils are wound in opposite directions (one in a clockwise direction and the other in a counterclockwise direction). This causes their combined magnetic flux to follow a tightly controlled path that is much more contained than that which is obtained with a single solenoid. This enables the size of the aluminum cabinet of the AMTU to be reduced, without introducing excessive eddy current losses.
  • the coils contain multiple fixed tapping positions, which are selected during initial installation to resonate with the capacitance of the antenna.
  • the coils may be connected either in series or in parallel, providing a wide selection of their combined inductance value.
  • ferrite slug assemblies are coaxially moved in or out to provide an inductance variation.
  • a cylindrical copper slug is inserted into one of the coils to obtain the required inductance variation.
  • the tuning function is actuated by a lead screw driven by a second bi-directional dc motor 13.
  • the loading coil 10 is connected to the load in series through a high voltage insulator 19.
  • the dc voltages representing voltage and current produced by means 2 and 3 are compared by microprocessor 11. If they are equal, the microprocessor 11 turns on a match normal indicator.
  • the microprocessor turns off the match normal indicator and turns on a match high indicator.
  • the microprocessor 11 also produces a signal causing the bi-directional motor 12 to reduce the coupling coefficient between the mutually coupled coils 6.
  • the match high indicator is turned off and the match normal indicator is turned on.
  • the microprocessor 11 turns off the match normal indicator and turns on a match low indicator. It also generates a signal to operate the bi-directional motor 12 to increase the coupling coefficient between the mutually coupled coils 6.
  • the microprocessor When a correctly matched condition is re-established the microprocessor turns off the match low indicator and turns on the match normal indicator.
  • the two output lines from phase detector means 4 are fed to microprocessor 11. If a positive voltage exists on either output line, the microprocessor 11 turns on the appropriate tune high or tune low indicator.
  • the microprocessor 11 then controls the bi-directional DC motor 13 to adjust the inductance of the tapped loading coils 10 to reduce the phase angle to zero.
  • the tune high/low indicator When a tuned condition is re-established, the tune high/low indicator is turned off and a tune normal indicator is turned on. Seven momentary action, front panel switches are used to control the operation of microprocessor 11.
  • LOC/REM switch toggles functional control between local and remote locations.
  • microprocessor 11 is designed to return to the state that existed at initiation of the interruption.
  • the dc voltage representing the mean value of the Antenna Current produced by antenna current sensing means 9 is fed via microprocessor 11 and an RS485 serial link to microprocessor 14.
  • Microprocessor 14 controls the output power level of the transmitter 1 to maintain the antenna current at the level that was set up during the initial installation.
  • the dc voltages representing the level of the RF Voltage and RF Current from input voltage sensing means 2 and input current sensing means 3 are fed to a power detector 17.
  • This power detector adds the two signals together to determine the forward power and subtracts the two signals to determine the reflected power for display on a front panel meter 20 as selected by selector
  • the required multiplication function is provided by use of a square law scale on the meter. This meter can also be switched by selector switch 18 to display the antenna current on a second, linear scale.
  • the present invention relates to a matching and tuning unit (AMTU) which connects the output from a low or medium frequency high power radio transmitter to an antenna with a complex input impedance.
  • AMTU matching and tuning unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

An automatic matching and tuning unit (AMTU), which connects the output from a low or medium frequency, high power radio transmitter, to an antenna with a complex input impedance. The transmitter requires a resistive 50-ohm terminating impedance whereas the input impedance to the antenna comprises a low resistance value in series with a high capacitive reactance. The AMTU resonates the antenna's reactance with a series connected adjustable loading coil. Sensors measure the phase angle between the input current and voltage and maintain a continuous tuned condition using a microprocessor controlled tuning motor. The resulting input resistance is transformed to 50 ohms using a tapped matching transformer in conjunction with pair of resonant, mutually coupled coils with an adjustable mutual coupling coefficient. Sensors measure the input resistance and adjust the mutual coupling coefficient using a microprocessor-controlled motor to maintain the required 50-ohm input impedance.

Description

AUTOMATIC MATCHING AND TUNING UNIT
Field of the Invention 5 The present invention relates to a matching and tuning unit (AMTU), which connects the output from a low or medium frequency high power radio transmitter to an antenna with a complex input impedance.
Background of the Invention
0 Most state-of-the-art high power radio transmitters which operate in the low or medium frequency bands unitize class D switching amplifiers which are much more efficient than their predecessors which operated as Class B linear amplifiers. This very significant improvement in efficiency has greatly reduced the size of the modern equipment, because large cooling surfaces are no
5 longer required. Asa result, these transmitters are much more susceptible than their predecessors to the effects of mismatch at their output terminals which results in reflected power being dissipated in the heat sinks of their final amplifiers. The task of establishing and maintaining an acceptable matched condition between transmitters and antennas, which operate in the low and
:0 medium frequency bands present a uniquely difficult situation. This is due to the fact that the physical height of these antennas is typically much lower than an optimum value. This deficiency in physical height results in an antenna input impedance that is equivalent to a low value resistance in series with a high capacitive reactance. The purpose of the AMTU is to transform this complex
.5 input impedance to the purely resistive 50 ohm value required to terminate the transmitter and to compensate for weather related changes in both the capacitive reactance and the resistance of the antenna so that the transmitter remains perfectly matched at all times. The value of the input resistance of the AMTU is transformed to the
10 required 50 ohm value by the combination of a ferrite cored transformer with fixed tapping positions together with a pair of tuned, air cored, mutually coupled coils. Sensors are used to measure the value of the resistance at the input to coefficient between the mutually coupled coils to maintain an input resistance value of 50 ohms. In addition, the antenna current is monitored and feedback to the associated transmitter is used to maintain it at a constant value during weather
5 related variations of loss resistance components of the antenna's equivalent circuit. A sensor measures the value of the radio frequency current applied to the antenna. An RS485 serial link between the microprocessor in the AMTU and a microprocessor in the associated transmitter adjusts the output power
0 level from the transmitter in order to maintain a constant antenna current when weather related changes to the loss resistance components of the antenna's input resistance occur. The use of "TEE" or "PI" networks to implement the necessary impedance transformation, in which inductance and capacitor values are varied
5 to obtain a matched condition is well known in the art. These networks suffer from the drawback that the component values are inter-dependent. A change in the value of any component affects both the resistance and the phase angle of the input impedance making automatic adjustment difficult. With the present invention the component changes to correct for reactive and resistive variations
:0 are independent, making automatic tuning and matching easier to implement. US Patent No. 5,631 ,611 , uses a similar technique to that embodied in the present invention in that tuned, mutually coupled coils are used to adjust the resistive component of the input impedance. However US 5,631 ,611 requires a large, very expensive, high power variable vacuum capacitor to tune the
:5 secondary winding of the coupled coils. In the present invention, this variable capacitor is not required. A tuned condition in the secondary circuit of the mutually coupled coils is achieved by automatic adjustment of the loading coil inductance. The present invention also improves upon US 5,631 ,611 with the addition of a feedback loop to maintain the antenna at a constant value. Summary of the Invention According to a first aspect of the present invention, there is provided a matching and tuning network for connecting a source of RF power to a complex load, the network comprising a primary circuit, a secondary circuit and a tertiary
5 circuit; the primary circuit comprising a variable tuning capacitor connected in series with a primary winding of a pair of mutually coupled coils connected to the source of RF power; the secondary circuit comprising a series connection of a secondary winding of the pair of mutually coupled coils and a fixed capacitor connected to an input of a transformer; the tertiary circuit comprising
.0 a connection of an output of the transformer and an input of a tapped loading coil connected to the load; the tapped loading coil comprising a pair of cylindrically oppositely wound coils mounted side by side; the matching and tuning network further comprising: input voltage sensing means; input current sensing means; impedance detector means connected to both the input voltage
5 sensing means and the input current sensing means; a phase detector means; and antenna current sensing means; wherein the impedance detector means controls means for varying the coupling between the primary winding and the secondary winding of the pair of mutually coupled coils, the phase detector means controls means for varying the inductance of the tapped loading coil so
.0 as to maintain a constant input impedance and a zero phase shift at the input to the network and the antenna current sensing means controls means for varying the output power level of the source of RF power. According to a second aspect of the present invention, there is provided a control circuit for controlling a matching and tuning network according to the
5 first aspect of the present invention, the control circuit comprising: a first and a second microprocessor connected by a serial link; a first control signal representative of the input voltage of the source of RF power output by the voltage detector means and input to the first microprocessor; a second control signal representative of the input current of the source of RF power output by
SO the input current detector means and input to the first microprocessor; a third control signal representative of a situation where the input voltage leads the input current of the source of RF power and input to the first microprocessor; a fourth control signal representative of a situation where the input voltage lags the input current of the source of RF power and input to the first microprocessor; and a fifth control signal representative of the antenna current output by the antenna current detector means and input to the first microprocessor and passed to the second microprocessor via the serial link, wherein: the first microprocessor receives and compares the first and second control signals and generates a sixth control signal to control the means for varying the coupling between the primary and secondary winding of the pair of mutually coupled coils; the first microprocessor receives the third and fourth control signals and generates a seventh control signal to control means for varying the inductance of the tapped loading coil; and the second microprocessor generates an eighth control signal to control the output power level of the source of RF power.
Brief Description of the Drawings The present invention will now be described in detail with reference to the accompanying drawings, in which: FIG. 1 is a schematic block diagram of the matching network according to an embodiment the present invention; FIG. 2 is a circuit diagram showing the tuned, mutually coupled coils of the embodiment of FIG. 1 ; and FIG. 3 is a circuit diagram of the equivalent circuit to the circuitry of FIG. 2.
Detailed Description of the Invention The present invention utilizes two tuned, mutually coupled coils, between which the coupling factor k can be varied. Figure 2 shows the circuit diagram of this arrangement. The inductances of the primary 23 and the secondary 24 windings of the mutually coupled coils are equal and are tuned for series resonance at the operating carrier frequency by equal capacitors 21 and 22. Capacitors 21 and 22 are tuned to resonate with the equal fixed inductance values of the primary 23 and the secondary 24 windings of the mutually coupled coils hence ωl_ = ωC. Figure 3 shows the equivalent circuit of this arrangement shown in 5 Figure 2. An analysis of the equivalent circuit as shown in Figure 3 proceeds as follows: • Capacitors 25 and 28 have equal impedance values, -jωC = -jωL (since ωl_ = ωC) ; • Inductors 26 and 27 have equal impedance values, jω(L-M); 0 • Inductor 29 has an impedance value of jωM; and • Resistor 30 has an impedance value of RL. where, j = square root of -1 , ω = angular velocity of the input frequency in radians per second,
.5 C = capacitor value in Farads of both capacitors 21 and 22, L = inductance value in Henries of both inductors 23 and 24, M = mutual inductance between inductors 23 and 24, RL = resistance connected to the output terminals, and M = k * square root of (L2) = kl_
»0 where k = coupling coefficient between inductors 23 and 24.
Analysis of this circuit yields an input impedance Zin = k2 * (ω L)2/ RL This formula shows that providing the terminating resistance Ru is purely resistive, the input impedance Zin is also purely resistive and is proportional to
15 the square of the coupling coefficient k. Hence variation of the value of k can be used to vary the value of the input resistance without a related change in its phase angle. Figure 1 shows a schematic block diagram of the Automatic Matching and Tuning Unit. The transmitter (1 ) is connected via a radio frequency coaxial
50 cable with a 50 ohm characteristic impedance to the input of the AMTU. The cable must be terminated by a resistive, 50 ohm load to ensure maximum power transfer and minimum reflected power. The transmitter has an output power level that may be adjusted by both local front panel controls and an external remote power trim control. Input voltage sensing means 2 and input current sensing means 3 sample the high power input signal and generate dc voltages proportional,
5 respectively, to the rf input voltage and rf input current. When the input impedance is equal to 50 ohms, these dc voltages are of equal magnitude. Phase detector means 4 measures the phase angle between the rf input voltage and rf input current. The detector has two output lines. If the phase angle is zero no output signal is generated. If the voltage leads the current, a
0 positive voltage is generated at one of its two outputs. If the voltage lags the current, a positive voltage is generated at its other output. The RF power signal is passed via the means 1 , 2 and 3 to variable tuning capacitor 5. This variable tuning capacitor comprises an array of six fixed, high power rf capacitors which are selectively connected in parallel during
5 initial installation to resonate with the inductance of the primary winding of mutually coupled coils 6. The values of the six capacitors are chosen as a binary sequence (each capacitor has a value of twice the value of the previous capacitor in the sequence) providing 64 different combinations to cover the required operating range from 190 kHz to 535 kHz.
,0 The adjustable mutually coupled coils 6, comprise two similar coils wound on cylindrical formers. The primary winding is mounted in a fixed position. The secondary winding has an outer diameter that is slightly smaller than the inner diameter of the primary winding, such that it can be moved inside the primary on the same axis. It has more turns spaced slightly closer together
:5 such that the coils have equal inductances and equal physical lengths. The position of the secondary winding is controlled by a lead screw, that is driven by a first bi-directional motor 12. The range of variation of the coupling coefficient k is from a value of 0.75 when fully inserted to a value of 0.3 when partially withdrawn. As the input impedance is proportional to k2, it can be seen
>0 that an overall variation of (0.75 / 0.3)2 = 6.25 : 1 is achieved. The secondary winding of mutually coupled coils 6 is connected via a single high power rf capacitor 7 that is approximately resonant with its inductance at the center of the operating frequency band, to the input of ferrite cored transformer 8. This rf autotransformer has fixed tapping positions which are set up during initial installation to present a desired impedance value at the secondary winding of the coupled coils. This transformer also provides a dc path to ground for the antenna, such that static voltage generation within the antenna is eliminated. Antenna current sensing means 9 samples the rf current that is applied to the input of the loading coil. It produces a dc voltage that is proportional the mean value of the antenna current. I The components of the AMTU are housed in an aluminum cabinet to contain the magnetic field of the loading coils. This is necessary to prevent external conditions from affecting the inductance of the loading coils and to prevent their strong magnetic field from causing undesi rable external effects.
The loading coil 10 comprises a pair of coils wound on cylindrical formers that are mounted side by side. The coils are wound in opposite directions (one in a clockwise direction and the other in a counterclockwise direction). This causes their combined magnetic flux to follow a tightly controlled path that is much more contained than that which is obtained with a single solenoid. This enables the size of the aluminum cabinet of the AMTU to be reduced, without introducing excessive eddy current losses. The coils contain multiple fixed tapping positions, which are selected during initial installation to resonate with the capacitance of the antenna. The coils may be connected either in series or in parallel, providing a wide selection of their combined inductance value.
For system power levels of less than 125 watts, ferrite slug assemblies are coaxially moved in or out to provide an inductance variation. With system power levels above 125 watts and up to 3000 watts, a cylindrical copper slug is inserted into one of the coils to obtain the required inductance variation. In either case, the tuning function is actuated by a lead screw driven by a second bi-directional dc motor 13. The loading coil 10 is connected to the load in series through a high voltage insulator 19. The dc voltages representing voltage and current produced by means 2 and 3 are compared by microprocessor 11. If they are equal, the microprocessor 11 turns on a match normal indicator. If the dc voltage representing the rf voltage is greater that the dc voltage representing the rf current, the microprocessor turns off the match normal indicator and turns on a match high indicator. The microprocessor 11 also produces a signal causing the bi-directional motor 12 to reduce the coupling coefficient between the mutually coupled coils 6. When the voltages representing voltage and current are equalized the match high indicator is turned off and the match normal indicator is turned on. If the dc voltage representing current is greater, indicating that the input resistance is less than 50 ohms, the microprocessor 11 turns off the match normal indicator and turns on a match low indicator. It also generates a signal to operate the bi-directional motor 12 to increase the coupling coefficient between the mutually coupled coils 6. When a correctly matched condition is re-established the microprocessor turns off the match low indicator and turns on the match normal indicator. The two output lines from phase detector means 4 are fed to microprocessor 11. If a positive voltage exists on either output line, the microprocessor 11 turns on the appropriate tune high or tune low indicator. The microprocessor 11 then controls the bi-directional DC motor 13 to adjust the inductance of the tapped loading coils 10 to reduce the phase angle to zero. When a tuned condition is re-established, the tune high/low indicator is turned off and a tune normal indicator is turned on. Seven momentary action, front panel switches are used to control the operation of microprocessor 11. LOC/REM switch toggles functional control between local and remote locations. When the REM condition is initiated by a momentary closure of the front panel LOC/REM, a LOG indicator is turned off, a REM indicator is turned on and serial data from the microprocessor 14 located in the transmitter 1 is used to control the following functions. Inhibit Tune When this condition is initiated an inhibit tune indicator turns on and the microprocessor 11 is inhibited from activating the motor 13.
5 Inhibit Match When this condition is initiated an inhibit match indicator turns on and microprocessor 11 is inhibited from activating the motor 12.
Slew Tune High .0 When this condition is initiated, the signals from the phase detector means 4 are ignored and the microprocessor 11 controls the motor 13 to move in the direction to increase the inductance of the loading coil 10.
Slew Tune Low .5 When this condition is initiated, the signals from the phase detector means 4 are ignored and the microprocessor 11 controls the motor 13 to move in the direction to decrease the inductance of the loading coil 10.
Slew Match High
10 When this condition is initiated the signals from the input voltage sensing means 2 and the input current sensing means 3 are ignored and the microprocessor 11 controls the motor 13 to move in the direction to increase the coupling co-efficient of the mutually coupled coils 6 thus increasing the input resistance.
.5 Slew Match Low When this condition is initiated the signals for the input voltage sensing means 2 and the input current sensing means 3 are ignored and the microprocessor 11 controls the motor 13 to move in the direction to reduce the i0 coupling co-efficient of the mutually coupled coils 6 thus reducing the input resistance. When the LOC control is initiated by a momentary closure of the front panel LOC/REM switch, a REM indicator is turned off and the LOC indicator is turned on. Serial data from microprocessor 14 is ignored and the remaining six momentary action switches are activated to control their respective functions.
5 Momentary closure of these six switches toggles their respective control function on or off and where appropriate turns on the inhibit tune or inhibit match indicators. Following an interruption of the system power supply, microprocessor 11 is designed to return to the state that existed at initiation of the interruption.
.0 The dc voltage representing the mean value of the Antenna Current produced by antenna current sensing means 9 is fed via microprocessor 11 and an RS485 serial link to microprocessor 14. Microprocessor 14 controls the output power level of the transmitter 1 to maintain the antenna current at the level that was set up during the initial installation.
.5 The dc voltages representing the level of the RF Voltage and RF Current from input voltage sensing means 2 and input current sensing means 3 are fed to a power detector 17. This power detector adds the two signals together to determine the forward power and subtracts the two signals to determine the reflected power for display on a front panel meter 20 as selected by selector
.0 switch 18. The required multiplication function is provided by use of a square law scale on the meter. This meter can also be switched by selector switch 18 to display the antenna current on a second, linear scale.
Industrial Applicability
.5 The present invention relates to a matching and tuning unit (AMTU) which connects the output from a low or medium frequency high power radio transmitter to an antenna with a complex input impedance. With the AMTU of the present invention the component changes to correct for reactive and resistive variations are independent, making automatic tuning and matching
>0 easier to implement.

Claims

Claims:
1. A matching and tuning network for connecting a source of RF power to a complex load, the network comprising: a primary circuit comprising a variable tuning capacitor (5) connected in series with a primary winding (23) of a pair of mutually coupled coils (6) adapted to connect to a source of RF power; a secondary circuit comprising a series connection of a secondary winding (24) of said pair of mutually coupled coils (6) and a fixed capacitor (22) connected to an input of a transformer; and a tertiary circuit comprising a connection of an output of the transformer and an input of a tapped loading coil (10) connected to said load; the matching and tuning network further comprises: input voltage sensing means (2); input current sensing means (3); impedance detector means connected to both said input voltage sensing means (2) and said input current sensing means (3); a phase detector means (4); and antenna current sensing means (9); wherein the impedance detector means controls means for varying the coupling between said primary winding (23) and said secondary winding (24) of said pair of mutually coupled coils (6), said phase detector means (4) controls means for varying the inductance of the tapped loading coil (10) so as to maintain a constant input impedance and a zero phase shift at the input to the network and said antenna current sensing means (9) controls means for varying the output power level of the source of RF power.
2. The matching and tuning network according to claim 1 , wherein the tapped loading coil (10) comprises a pair of cylindrically oppositely wound coils mounted side by side.
3. The matching and tuning network according to claim 1 , wherein the impedance detector is connected to a first bi-directional motor (12) to vary the coupling of the pair of mutually coupled coils (6).
4. The matching and tuning network according to claim 3, wherein the phase detector (4) is connected to a second bi-directional motor (13) to vary the inductance of said tapped loading coil (10).
5. The matching and tuning network according to claim 3, wherein the coupling of the pair of mutually coupled coils (6) is varied by moving the secondary winding (24) relative to the primary winding (23) which is fixed.
6. The matching and tuning network according to claim 4, wherein the inductance of said tapped loading coil (10) is varied by moving a first metallic slug in or out of one of said cylindrically oppositely wound coils and a second metallic slug in or out of the other one of said cylindrically oppositely wound coils.
7. The matching and tuning network according to claim 4, wherein the inductance of said tapped loading coil (10) is varied by moving a metallic slug in or out of one of said cylindrically oppositely wound coils.
8. The matching and tuning network according to claim 6, wherein said first and second metallic slugs are comprised of ferrite.
9. The matching and tuning network according to claim 6, wherein said metallic slug is comprised of copper.
10. The matching and tuning network according to claim 1 , wherein the voltage sensing means (2) is located at the RF power source and the input current detector means (3) and phase detector means (4) are located in series in the primary circuit, between the source of RF power and the variable tuning capacitor (5).
11. The matching and tuning network according to claim 1 , wherein the transformer has a plurality of fixed tapping positions, one of which may be selected to present a desired impedance value at the secondary winding (24) of said mutually coupled coils (6).
12. The matching and tuning network according to claim 10, wherein the transformer further comprises a dc path to ground for the antenna.
13. The matching and tuning network according to claim 2, wherein the pair of cylindrically oppositely wound coils have a plurality of fixed tapping positions, wherein a position on each of said cylindrically oppositely wound coils is selected and are connected so as to resonate the capacitance of the complex load.
14. The matching and tuning network according to claim 13, wherein said pair of cylindrically oppositely wound coils are connected in parallel or in series, providing a wide selection of capacitance values.
15. The matching and tuning network according to claim 1 further comprising: a power detector means (17) connected to said voltage detector means and said input current sensing means (3); a selector switch connected to said power detector means (17), said antenna current sensing means (9), and a front panel meter (20); wherein said power detector means (17) output a forward power value and a reflected power value to said selector switch (18) and said antenna current sensing means (9) outputs an antenna current value to said selector switch (18); and wherein said selector switch (18) may be positioned in one of a plurality of positions; one of said plurality of positions resulting in the display of said forward power value on said front panel meter (20), another of said plurality of positions resulting in the display of said reflected power value on said front panel meter (20), another of said plurality of positions resulting in the display of said antenna current value on said front panel meter (20) and yet another of said plurality of positions resulting in the display of said antenna current value on said front panel meter (20) on a second, linear scale.
16. The matching and tuning network according to claim 1 , wherein said variable tuning capacitor (5) comprises an array of six fixed high power capacitors which are selectively connected in parallel to resonate the inductance of the primary winding (23) of said pair of mutually coupled coils (6).
17. A control circuit for controlling a matching and tuning network according to claim 4, the control circuit comprising: a first microprocessor (11 ) and a second microprocessor (12) electrically connected to one another; a first control signal representative of the input voltage of the source of RF power output by said voltage sensing means (2) and input to said first microprocessor (11); a second control signal representative of the input current of the source of RF power output by said input current sensing means (3) and input to said first microprocessor (11); a third control signal representative of a situation where the input voltage leads the input current of the source of RF power and input to said first microprocessor (11); a fourth control signal representative of a situation where the input voltage lags the input current of the source of RF power and input to said first microprocessor (11); and a fifth control signal representative of the antenna current output by said antenna current sensing means (9) and input to said first microprocessor (11 ) and passed to said second microprocessor (14) via said serial link, wherein: said first microprocessor (11) receives and compares said first and said second control signals and generates a sixth control signal to control the means for varying the coupling between said primary winding (23) and said secondary winding (24) of said pair of mutually coupled coils (6); said first microprocessor (11) receives said third and fourth control signals and generates a seventh control signal to control means for varying the inductance of the tapped loading coil (10); and said second microprocessor (14) generates an eighth control signal to control the output power level of said source of RF power.
18. The control circuit according to claim 17, wherein said first microprocessor (11) and said second microprocessor (14) are connected via a serial link.
19. The control circuit according to claim 17, further comprising a plurality of momentary action switches, each connected to said first microprocessor (11), wherein: a first momentary action switches toggles functional control of said first microprocessor (11) between a local and a remote location; a second momentary action switches toggles the inhibition of activation of said first bi-directional motor (13); a third momentary action switches toggles the inhibition of activation of said second bi-directional motor (13); a fourth momentary action switches toggles the ignoring of said first and second control signals and instructs said first microprocessor (11) to control said first bi-directional motor (12) in the direction to decrease the coupling between said primary winding (23) and said secondary winding (24) of said pair of mutually coupled coils (6); a fifth momentary action switches toggles the ignoring of said first and second control signals and instructs said first microprocessor (11 ) to control said first bi-directional motor (12) in the direction to increase the coupling between said primary winding (23) and said secondary winding (24) of said pair of mutually coupled coils coil (6); a sixth momentary action switches toggles the ignoring of said third and fourth control signals and instructs said first microprocessor (11) to control said second bi-directional motor (13) in the direction to decrease the inductance of said tapped loading coil (10); and a seventh momentary action switches toggles the ignoring of said third and fourth control signals and instructs said first microprocessor (11) to control said second bi-directional motor (13) in the direction to increase the inductance of said tapped loading coil (10).
20. The control circuit according to claim 17, further comprising a plurality of front panel indicators, each connected to said first microprocessor (11), wherein: a first front panel indicator indicates local functional control of said microprocessor (11); a second front panel indicator indicates remote functional control of said microprocessor (11); a third front panel indicator indicates inhibition of activation of said first bi-directional motor (12); a fourth front panel indicator indicates inhibition of activation of said second bi-directional motor (13); a fifth front panel indicator indicates a situation where said first and second control signals are equal; a sixth front panel indicator indicates a situation where said first control signal is greater than second control signals; a seventh front panel indicator indicates a situation where said first control signal is lower than second control signals; an eighth front panel indicator indicates a situation where said third control signal is active; a ninth front panel indicator indicates a situation where said fourth control signal is active; and a tenth front panel indicator indicates a situation where said third and fourth control signals are inactive.
21. The control circuit according to claim 18, further comprising a plurality of front panel indicators, each connected to said first microprocessor, wherein: a first front panel indicator indicates local functional control of said microprocessor (11); a second front panel indicator indicates remote functional control of said microprocessor (11); a third front panel indicator indicates inhibition of activation of said first bi-directional motor (12); a fourth front panel indicator indicates inhibition of activation of said second bi-directional motor (13); a fifth front panel indicator indicates a situation where said first and second control signals are equal; a sixth front panel indicator indicates a situation where said first control signal is greater than second control signals; a seventh front panel indicator indicates a situation where said first control signal is lower than second control signals; an eighth front panel indicator indicates a situation where said third control signal is active; a ninth front panel indicator indicates a situation where said fourth control signal is active; and a tenth front panel indicator indicates a situation where said third and fourth control signals are inactive.
22. The control circuit according to claim 18, wherein said remote functional control is controlled by said second microprocessor (14) rendering said second to seventh momentary action switches inoperable.
23. The control circuit according to claim 18, wherein said local functional control is controlled by said first microprocessor (11) rendering said second to seventh momentary action switches operable.
24. The control circuit according to claim 18, wherein said remote location is a location shared by said source of RF power.
25. The control circuit according to claim 18, wherein said remote location is a terminal connected to the Internet.
PCT/CA2005/000182 2004-02-12 2005-02-14 Automatic matching and tuning unit WO2005078922A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002558294A CA2558294A1 (en) 2004-02-12 2005-02-14 Automatic matching and tuning unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/776,220 US7107026B2 (en) 2004-02-12 2004-02-12 Automatic matching and tuning unit
US10/776,220 2004-02-12

Publications (1)

Publication Number Publication Date
WO2005078922A1 true WO2005078922A1 (en) 2005-08-25

Family

ID=34837902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2005/000182 WO2005078922A1 (en) 2004-02-12 2005-02-14 Automatic matching and tuning unit

Country Status (3)

Country Link
US (1) US7107026B2 (en)
CA (1) CA2558294A1 (en)
WO (1) WO2005078922A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283589B (en) * 2008-05-13 2017-01-11 高通股份有限公司 Reverse link signal modulated by received antenna impendence
US9584191B2 (en) 2013-12-20 2017-02-28 Southern Avionics Co. Antenna tuning unit
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817637B2 (en) 2006-11-18 2023-11-14 Rfmicron, Inc. Radio frequency identification (RFID) moisture tag(s) and sensors with extended sensing via capillaries
US10149177B2 (en) 2006-11-18 2018-12-04 Rfmicron, Inc. Wireless sensor including an RF signal circuit
US10715209B2 (en) 2006-11-18 2020-07-14 RF Micron, Inc. Computing device for processing environmental sensed conditions
DE102007007579B4 (en) * 2007-02-15 2015-05-21 Infineon Technologies Ag transmitter circuit
US7532164B1 (en) * 2007-05-16 2009-05-12 Motorola, Inc. Circular polarized antenna
US8405467B2 (en) * 2007-11-27 2013-03-26 Qualcomm Incorporated Methods and apparatuses for inductor tuning in radio frequency integrated circuits
TWI466375B (en) * 2010-01-19 2014-12-21 Murata Manufacturing Co An antenna device and a communication terminal device
EP2375363B1 (en) * 2010-04-08 2013-03-27 Nxp B.V. Non-contact communication device and method of operating the same
US9094055B2 (en) 2011-04-19 2015-07-28 Qualcomm Incorporated Wireless power transmitter tuning
CN206595403U (en) 2014-01-30 2017-10-27 株式会社村田制作所 Wireless Telecom Equipment and channel radio credit block
CN106411550A (en) * 2015-07-31 2017-02-15 中国电信股份有限公司 Antenna control method, device and system
CN107437968B (en) * 2016-05-26 2021-03-23 中兴通讯股份有限公司 Radio frequency transmitting circuit and circuit matching method
RU2689969C9 (en) * 2018-07-16 2019-07-23 Дмитрий Витальевич Федосов Resonant multi-band antenna
CN114423206B (en) * 2022-02-09 2024-02-02 东营市宇彤机电设备有限责任公司 Near-bit high-stability transmitting antenna tuning device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3117279A (en) * 1962-06-04 1964-01-07 Collins Radio Co Automatically controlled antenna tuning and loading system
US3355667A (en) * 1965-12-16 1967-11-28 Collins Radio Co Automatically tuned coupled resonant circuits
US3919644A (en) * 1970-02-02 1975-11-11 Gen Dynamics Corp Automatic antenna coupler utilizing system for measuring the real part of the complex impedance or admittance presented by an antenna or other network
US5631611A (en) * 1996-06-18 1997-05-20 Nautel Limited Automatic matching and tuning network
US5889252A (en) * 1996-12-19 1999-03-30 Lam Research Corporation Method of and apparatus for independently controlling electric parameters of an impedance matching network

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1207566A (en) * 1958-06-26 1960-02-17 Trt Telecom Radio Electr Improvements to automatic tuning devices on widely varying load
US3775707A (en) * 1972-11-06 1973-11-27 Collins Radio Co Method and means for antenna coupling
US4112395A (en) * 1977-06-10 1978-09-05 Cincinnati Electronics Corp. Method of and apparatus for matching a load circuit to a drive circuit
US4689803A (en) * 1985-06-10 1987-08-25 Megapulse Inc. Antenna tuning system and method
US6992543B2 (en) * 2002-11-22 2006-01-31 Raytheon Company Mems-tuned high power, high efficiency, wide bandwidth power amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3117279A (en) * 1962-06-04 1964-01-07 Collins Radio Co Automatically controlled antenna tuning and loading system
US3355667A (en) * 1965-12-16 1967-11-28 Collins Radio Co Automatically tuned coupled resonant circuits
US3919644A (en) * 1970-02-02 1975-11-11 Gen Dynamics Corp Automatic antenna coupler utilizing system for measuring the real part of the complex impedance or admittance presented by an antenna or other network
US5631611A (en) * 1996-06-18 1997-05-20 Nautel Limited Automatic matching and tuning network
US5889252A (en) * 1996-12-19 1999-03-30 Lam Research Corporation Method of and apparatus for independently controlling electric parameters of an impedance matching network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PINKS J. ET AL: "Development of an Antenna Coupler that Fully Compensates the Deficiencies of Electrically Short LF/MF Antennas.", ION ANNUAL MEETING., 8 June 2004 (2004-06-08), Retrieved from the Internet <URL:http://www.nautel.com/support/files/devofantennacoupler.pdf> *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283589B (en) * 2008-05-13 2017-01-11 高通股份有限公司 Reverse link signal modulated by received antenna impendence
US9954399B2 (en) 2008-05-13 2018-04-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US9991747B2 (en) 2008-05-13 2018-06-05 Qualcomm Incorporated Signaling charging in wireless power environment
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
US9584191B2 (en) 2013-12-20 2017-02-28 Southern Avionics Co. Antenna tuning unit

Also Published As

Publication number Publication date
US20050181750A1 (en) 2005-08-18
US7107026B2 (en) 2006-09-12
CA2558294A1 (en) 2005-08-25

Similar Documents

Publication Publication Date Title
WO2005078922A1 (en) Automatic matching and tuning unit
US20070296548A1 (en) Resonant circuit tuning system using magnetic field coupled reactive elements
US5631611A (en) Automatic matching and tuning network
CA2970598C (en) Antenna tuning unit
US6424232B1 (en) Method and apparatus for matching a variable load impedance with an RF power generator impedance
US4112395A (en) Method of and apparatus for matching a load circuit to a drive circuit
US5424691A (en) Apparatus and method for electronically controlled admittance matching network
US10291282B1 (en) Radio-frequency transceiver front-end circuit
US10804873B1 (en) Automatic impedance matching system, method and apparatus
US8982007B2 (en) Transfer unit for radio frequency signals and method for alternatively using an electrical antenna or a magnetic antenna with a classic antenna tuner
US10680582B1 (en) Single solution impedance matching method
CA2655562A1 (en) Resonant circuit tuning system using magnetic field coupled reactive elements
US2884632A (en) Antenna tuning system
US2742618A (en) Phasing and magnitude adjusting circuit
US4783629A (en) RF coil for MRI with self-tracking ganged coupling capacitors
US4803493A (en) Mobile antenna circuit with variable line length
US5165057A (en) Radio receiver antenna systems resistant to multiple path propagation fading
US6867745B2 (en) AM antenna noise reducing
Moores et al. VHF pulsed magnetic resonance duplexers
CN117424575B (en) Radio frequency circuit, radio frequency power supply equipment and reactance compensation method
Milind et al. AUTOMATIC HF ANTENNA TUNNER
US10340586B2 (en) Antenna tuning circuit, module, and system
Pinks Development of an Antenna Coupler that Fully Compensates the Deficiencies of Electrically Short LF/MF Antennas
JPH0575341A (en) Phase feeding type antenna system
JP2008147928A (en) Antenna matching system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2558294

Country of ref document: CA

122 Ep: pct application non-entry in european phase