WO2005081074A1 - Method of docking an autonomous robot - Google Patents

Method of docking an autonomous robot Download PDF

Info

Publication number
WO2005081074A1
WO2005081074A1 PCT/US2004/001504 US2004001504W WO2005081074A1 WO 2005081074 A1 WO2005081074 A1 WO 2005081074A1 US 2004001504 W US2004001504 W US 2004001504W WO 2005081074 A1 WO2005081074 A1 WO 2005081074A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
robotic device
base station
ofthe
robot
Prior art date
Application number
PCT/US2004/001504
Other languages
French (fr)
Inventor
David A. Cohen
Daniel Ozick
Clara Vu
James Lynch
Phillip R. Mass
Original Assignee
Irobot Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP20040704061 priority Critical patent/EP1706797B1/en
Priority to KR1020067014807A priority patent/KR101086092B1/en
Priority to KR1020147025894A priority patent/KR101719404B1/en
Priority to KR1020117029356A priority patent/KR101214667B1/en
Priority to KR1020097025882A priority patent/KR101149151B1/en
Priority to KR1020147004446A priority patent/KR101497883B1/en
Priority to KR1020127003177A priority patent/KR101460867B1/en
Priority to AU2004316156A priority patent/AU2004316156B2/en
Priority to EP20100160949 priority patent/EP2204717B1/en
Priority to EP20100181187 priority patent/EP2273336B1/en
Priority to KR1020157027048A priority patent/KR20150117306A/en
Priority to EP20100181174 priority patent/EP2273335B8/en
Priority to EP20080151962 priority patent/EP1921523B1/en
Priority to KR1020107025523A priority patent/KR101131375B1/en
Application filed by Irobot Corporation filed Critical Irobot Corporation
Priority to DE602004028183T priority patent/DE602004028183D1/en
Priority to KR1020117017478A priority patent/KR101154662B1/en
Priority to DE602004014817T priority patent/DE602004014817D1/en
Priority to KR1020137023507A priority patent/KR101437805B1/en
Priority to PCT/US2004/001504 priority patent/WO2005081074A1/en
Priority to KR1020127000418A priority patent/KR101358475B1/en
Priority to JP2006551013A priority patent/JP4472709B2/en
Publication of WO2005081074A1 publication Critical patent/WO2005081074A1/en
Priority to AU2010212297A priority patent/AU2010212297B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/009Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2852Elements for displacement of the vacuum cleaner or the accessories therefor, e.g. wheels, casters or nozzles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2857User input or output elements for control, e.g. buttons, switches or displays
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2868Arrangements for power supply of vacuum cleaners or the accessories thereof
    • A47L9/2873Docking units or charging stations
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2889Safety or protection devices or systems, e.g. for prevention of motor over-heating or for protection of the user
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2894Details related to signal transmission in suction cleaners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • B25J11/0085Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/14Systems for determining direction or position line using amplitude comparison of signals transmitted simultaneously from antennas or antenna systems having differently oriented overlapping directivity-characteristics
    • G01S1/16Azimuthal guidance systems, e.g. system for defining aircraft approach path, localiser system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/70Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using electromagnetic waves other than radio waves
    • G01S1/703Details
    • G01S1/7032Transmitters
    • G01S1/7034Mounting or deployment thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/70Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using electromagnetic waves other than radio waves
    • G01S1/703Details
    • G01S1/7032Transmitters
    • G01S1/7038Signal details
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0227Control of position or course in two dimensions specially adapted to land vehicles using mechanical sensing means, e.g. for sensing treated area
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/022Recharging of batteries
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/0009Storing devices ; Supports, stands or holders
    • A47L9/0063External storing devices; Stands, casings or the like for the storage of suction cleaners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/005Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators using batteries, e.g. as a back-up power source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2201/00Indexing scheme relating to beacons or beacon systems transmitting signals capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters
    • G01S2201/01Indexing scheme relating to beacons or beacon systems transmitting signals capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters adapted for specific applications or environments
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/01Mobile robot

Definitions

  • the present invention relates generally to robotic systems and, more specifically, to auto-docking and energy management systems for autonomous robots.
  • Background [0002] Automated robots and robotic devices are becoming more prevalent today and are used to perform tasks traditionally considered mundane, time-consuming, or dangerous. As the programming technology increases, so too does the demand for robotic devices that require a minimum of human interaction for tasks such as robot refueling, testing, and servicing. A goal is a robot that could be configured a single time, which would then operate autonomously, without any need for human assistance or intervention.
  • Robotic devices and associated controls, navigational systems, and other related systems moving in this direction are being developed.
  • U.S. Patent No. 6,594,844 discloses a Robot Obstacle Detection System, the disclosure of which is hereby incorporated by reference in its entirety. Additional robot control and navigation systems are disclosed in U.S. Patent Application Serial Nos. 10/167,851, 10/056,804, 10/696,456, 10/661,835, and 10/320,729 the disclosures of which are hereby incorporated by reference in their entireties.
  • autonomous robotic devices include an on-board power unit (usually a battery) that is recharged at a base or docking station.
  • Base stations that utilize emitted signals often still require additional safeguards to ensure proper mating between the robot and base station and, therefore, safe and effective charging.
  • Such components can increase the size of he base station while decreasing the aesthetics, important considerations for automated robots directed at the consumer market.
  • An increase in base station size also typically makes unobtrusive placement in the home more difficult and decreases the floor area available for cleaning.
  • existing base stations generally lack the ability to protect themselves from contact with the robot during operation, increasing the likelihood of damage to either the station or robot, or dislocation ofthe base station. Such an unintentional collision may require human intervention to reposition the base station or repair a damaged component.
  • the invention relates to a method for energy management in a robotic device, the robotic device including at least one energy storage unit and a signal detector.
  • the method includes the steps of: providing a base station for mating with the robotic device, the base station having a plurality of signal emitters including a first signal emitter and a second signal emitter; determining a quantity of energy stored in the energy storage unit, the quantity characterized at least by a high energy level and a low energy level; and performing, by the robotic device, a predetermined task based at least in part on the quantity of energy stored.
  • coulometry or setting a time period are used to determine the quantity of energy stored or task period ofthe device.
  • the step of performing the predetermined task occurs when the quantity of energy stored exceeds the high energy level, the predetermined task including movement ofthe robotic device away from the base station in response to reception, by the signal detector, of a base station avoidance signal.
  • the step of returning the robotic device to the base station occurs when the quantity of energy stored is less than the low energy level, and wherein the predetermined task includes a reduction in energy use by the robotic device.
  • the invention relates to a method of docking a robotic device with a base station that has a plurality of signal emitters, including a first signal emitter and a second signal emitter.
  • the method includes the steps of orienting the robotic device in relation to (i) a first signal transmitted by the first signal emitter and (ii) a second signal transmitted by the second signal emitter, and maintaining an orientation ofthe robotic device relative to the first and second signals as the robotic device approaches to the base station.
  • Certain embodiments ofthe method ofthe foregoing aspect include the steps of detecting, by the robotic device, an overlap between the first signal and the second signal; following, by the robotic device, a path defined at least in part by the signal overlap; and docking the robotic device with the base station. Other related embodiments include reducing the velocity ofthe robotic device in the step of following the path defined at least in part by the signal overlap.
  • Various embodiments ofthe method ofthe foregoing aspect also include, during the step of docking the robotic device with the base station: detecting, by the robotic device, contact with charging terminals on the base station, and stopping movement ofthe robotic device. In some embodiments, contact of one or more on-board tactile sensors can be used, additionally or alternatively, to stop movement ofthe robotic device. Other embodiments include the step of charging fully the robotic device and/or charging the robotic device to one of a plurality of charging levels. Certain embodiments allow for resumption ofthe predetermined task or a new task upon completion of charging.
  • the invention in another aspect ofthe invention, relates to an autonomous system including a base station, that includes charging terminals for contacting external terminals of a robotic device, and a first signal emitter and a second signal emitter.
  • a base station that includes charging terminals for contacting external terminals of a robotic device
  • the first signal emitter transmit a base station avoidance signal
  • the second signal emitter transmit a base station homing signal.
  • the homing signal is a pair of signals, which can be either the same or different.
  • the pair of signals may be emitted by a pair of emitters.
  • the signals may overlap, and may be optical signals.
  • Certain embodiments ofthe above aspect further include a robotic device for performing a predetermined task, the robotic device having at least one energy storage unit with an external terminal for contacting the charging terminal, and at least one signal detector.
  • the at least one signal detector is adapted to detect at least one optical signal.
  • the robotic device has, in certain embodiments, the capability to distinguish between the signals generated by multiple emitters.
  • Still other aspects ofthe current invention relate to an energy manager including: a robotic device having at least one energy storage unit and a signal detector; a base station for mating with the robotic device, the base station having a plurality of signal emitters including a first signal emitter and a second signal emitter; and a processor for determining a quantity of energy stored in the energy storage unit.
  • Certain embodiments ofthe foregoing aspect use coulometry or set a time period to determine the quantity of energy stored or task period ofthe device.
  • the first signal emitter transmits an avoidance signal, thereby restricting a movement ofthe robotic device to directions away from the base station, and the second signal emitter transmits a homing signal, thereby directing a movement ofthe robotic device to the base station.
  • Other aspects ofthe invention relate to a homing system including a robotic device having a signal detector, and a base station having a first signal emitter and a second signal emitter. Certain embodiments ofthe foregoing aspect overlap signals transmitted by the first signal emitter and the second signal emitter.
  • An additional aspect ofthe invention relates to a homing system for a base station including a first signal emitter that transmits a first signal projected outward from the first signal emitter, and a second signal emitter that transmits a second signal projected outward from the second signal emitter, such that the first signal and the second signal overlap.
  • Another aspect relates to an avoidance system for restricting a movement of at least one of a first device and a second device, the avoidance system including a first device that emits a signal, and a second device that receives the signal, thereby restricting the movement of at least one ofthe first device and the second device.
  • Still another aspect ofthe invention relates to a base station, including a base plate and a backstop, for a robotic device including: electrical contacts located on a top side ofthe base plate; a first signal emitter located on the backstop wherein a signal transmitted by the first signal emitter restricts the robotic device from moving within a predetermined distance ofthe base station; and a second signal emitter and a third signal emitter, wherein a plurality of signals transmitted by the second signal emitter and the third signal emitter guide at least one electrical contact ofthe robotic device to contact the at least one electrical contact ofthe base station.
  • Another aspect ofthe invention relates to a method of charging a battery of a device, the method having the steps of providing low power to charging terminals of a charger, detecting presence ofthe device by monitoring at least one of a predetermined change in and a predetermined magnitude of a parameter associated with the charger, and increasing power to the charging terminals to charge the battery.
  • One embodiment ofthe method ofthe above aspect further includes the steps of determining a level of charge in the device, and permitting charging ofthe battery in the device when the level of charge is below a predetermined threshold.
  • Still another aspect ofthe invention relates to a system for charging a mobile device, the system having: a stationary charger comprising first charging terminals, circuitry for detecting presence ofthe device by monitoring at least one of a predetermined change in and a predetermined magnitude of a parameter associated with the charger, and a mobile device having: a battery, and second charging terminals adapted to mate with first charging terminals.
  • Narious embodiments ofthe above aspect include systems wherein the circuitry determines a level of charge in the battery and controls a power level provided to the first charging terminals.
  • Still other embodiments include systems wherein the circuitry increases the power level provided to the first charging terminals upon measuring a predetermined voltage across the first charging terminals when mated with the second charging terminal.
  • FIG. 1 is a schematic perspective view a base station in accordance with one embodiment ofthe invention
  • FIG. 2A is a schematic perspective view of an robotic device in accordance with one embodiment ofthe invention
  • FIG. 2B is a schematic side view ofthe robotic device of FIG. 2 A.
  • FIG. 3 is a schematic perspective view of a representation of robotic device and base station, depicting an avoidance signal in accordance with one embodiment ofthe invention transmitted by the base station and detected by the robotic device
  • FIGS. 6A-6B are flow charts of avoidance algorithms in accordance with one embodiment ofthe invention.
  • FIG. 7 is a flow chart of an energy management algorithm in accordance with one embodiment ofthe invention.
  • FIG. 8 depicts an embodiment ofthe charger circuitry schematic in accordance with one embodiment ofthe invention.
  • FIG. 1 is a schematic perspective view a base station 10 in accordance with one embodiment ofthe invention.
  • the base station 10 includes both a substantially horizontal base plate 12 and a substantially vertical backstop 14.
  • the base station 10 may be any of a variety of shapes or sizes, providing sufficient space for the desired components and systems, described below.
  • the base plate 12 is generally parallel to the ground surface on which the base station 10 rests, but may have a slight upwards angle directed toward the backstop 14.
  • the robotic device (FIGS. 2A-2B) may easily dock with the station 10.
  • Electrical charging contacts 16 are located on a top surface ofthe base plate 12, allowing them to contact corresponding contacts (FIG. 2B) on the underside ofthe robotic device.
  • the contacts 16 or the contacts on the robot may be either fixed or compliant. In the depicted embodiment, two contacts 16 (one positive, one negative) are utilized to properly detect a completed circuit when the robot 40 docks with the base station 10. This circuit recognition sequence is described in more detail below. In other embodiments, however, a single contact 16 or more than two contacts may be utilized. An additional contact would provide redundancy in the event that one ofthe robot contacts becomes damaged, dirty, or obstructed. This would allow the robot to dock and recharge itself properly, even after such an occurrence. Other embodiments utilize two contacts 16 to charge the battery and additional contacts to transmit data and information between the devices.
  • the contacts 16 are sized and positioned to reliably and repeatably contact the corresponding contacts on the robot.
  • the contacts 16 may be oversized and/or may extend above the base plate 12, e.g., in a domed shape, to ensure contact with the robot contacts.
  • the contacts 16 may be flush-mounted on a base plate 12 with a higher angle of rise or may protrude above a base plate 12 that is flat or has substantially no rise.
  • the base plate 12 angle of rise may vary from 0° to up to 20° and greater.
  • the embodiment depicted in FIG. 1 also includes a depression 26 in the base plate 12, between the two contacts 16, sized to engage a front caster (FIG. 2B) ofthe robot.
  • the depression 26, in combination with the configuration ofthe charging contacts 16, ensures proper alignment and registration between the charging contacts on both the base station 10 and the robot.
  • the depression 26 may contain one or more ofthe contacts 16 arranged to mate with one or more corresponding contacts on the front caster ofthe robot.
  • the backstop 14 provides locations for many ofthe base station 10 components. Specifically, in the depicted embodiment, the backstop 14 includes a top signal emitter 18, a front signal emitter 20, several indicator LEDs 22, and an AC plug receptacle 24.
  • the top signal emitter 18 generates a first signal, such as an avoidance signal (FIG.
  • the top signal emitter 18 generally utilizes a parabolic reflector to transmit the avoidance signal.
  • the avoidance signal is emitted by a single LED directed at a lens whose geometry is determined by rotating a parabola about its focus. This parabolic reflector thus projects the avoidance signal 60 out in a 360° pattern, without the necessity of multiple emitters.
  • a similar configuration can be employed in the detector on the robot, with a single receiver used in place ofthe single LED.
  • the location ofthe top signal emitter 18 may vary, locating the emitter 18 on top ofthe backstop 14 transmits the avoidance signal through an uninterrupted 360° field around the base station 10.
  • base stations designed for corner, on- wall, or near- wall installation may project the avoidance signal substantially only along the unobstructed side.
  • the front signal emitter 20 projects one or more additional signals, such as homing beams (FIGS. 4A- 4C), to allow the robotic device to orient itself during docking with the base station 10 for recharging or during periods of non-use.
  • a single emitter may be used to perform the functions of both emitters 18, 20. Both the avoidance signal and homing beams are described in more detail below.
  • FIGS. 2A-2B are schematic perspective views of a robotic device, such as an autonomous robot 40 adapted to mate with the base station 10.
  • a robotic device such as an autonomous robot 40 adapted to mate with the base station 10.
  • forward/fore refers generally to the primary direction of motion ofthe robot 40
  • fore-aft axis defines the forward direction of motion (indicated by arrowhead of the fore-aft axis FA), which is coincident with the fore-aft diameter ofthe robot 40.
  • the housing infrastructure 42 ofthe robot 40 includes a chassis 44, a cover 46, and a displaceable bumper 48.
  • the chassis 44 may be molded from a material such as plastic as a unitary element that includes a plurality of preformed wells, recesses, and structural members for, ter alia, mounting or integrating elements ofthe various subsystems that operate the robotic device 40.
  • Such subsystems may include a microprocessor, a power subsystem (including one or more power sources for the various subsystems and components), a motive subsystem, a sensor subsystem, and task-specific component subsystems.
  • the cover 46 may be molded from a material such as plastic as a unitary element that is complementary in configuration with the chassis 44 and provides protection of and access to elements and components mounted to the chassis 44.
  • the chassis 44 and the cover 46 are detachably integrated in combination by any suitable means (e.g., screws), and in combination, the chassis 44 and cover 46 form a structural envelope of minimal height having a generally cylindrical configuration that is generally symmetrical along the fore-aft axis FA.
  • the displaceable bumper 48 which has a generally arcuate configuration, is mounted in movable combination at the forward portion ofthe chassis 44 to extend outwardly therefrom (the "normal operating position").
  • the mounting configuration ofthe displaceable bumper 48 is such that it is displaced towards the chassis 44 (from the normal operating position) whenever the bumper 48 encounters a stationary object or obstacle of predetermined mass (the "displaced position"), and returns to the normal operating position when contact with the stationary object or obstacle is terminated (due to operation of a control sequence which, in response to any such displacement ofthe bumper 48, implements a "bounce" mode that causes the robot 40 to evade the stationary object or obstacle and continue its task routine).
  • the detectors 50, 52 receive signals projected from the emitters 18, 20 on the base station 10. In other embodiments, a single detector receives signals from both emitters 18, 20 on the base station 10, or more than two detectors may be used.
  • the detectors 50, 52 are standard infrared ("IR") detector modules, that include a photodiode and related amplification and detection circuitry, in conjunction with an omnidirectional lens, where omni-directional refers to a substantially single plane.
  • the IR detector module can be ofthe type manufactured by East Dynamic Corporation (p/n IRM-8601S).
  • any detector regardless of modulation or peak detection wavelength, can be used as long as the emitters 18, 20 on the base station 10 are adapted to match the detectors 50, 52 on the robot 40.
  • IR phototransistors may be used with or without electronic amplification elements and may be connected directly to the analog inputs of a microprocessor. Signal processing may then be used to measure the intensity of IR light at the robot 40, which provides an estimate ofthe distance between the robot 40 and the source of IR light.
  • At least one detector 50 is mounted at the highest point on the robot 40 and toward the front ofthe robot 40 as defined by the primary traveling direction, as indicated by an arrow on axis FA.
  • the detector 50 While the detector 50 is mounted at the highest point ofthe robot 40 in order to avoid shadows, it is desirable in certain applications to minimize the height ofthe robot 40 and/or the detector 50 to prevent operational difficulties and to allow the robot 40 to pass under obstacles.
  • the detector 50 can be spring-mounted to allow the detector 50 to collapse into the body of the robot 40 when the robot 40 runs under a solid overhanging object.
  • multiple detectors can be used. Such an embodiment might include using multiple side-mounted sensors or detectors. Each ofthe sensors can be oriented in a manner so that a collective field of view of all the sensors corresponds to that ofthe single, top mounted sensor. Because a single, omnidirectional detector is mounted at the highest point ofthe robot for optimal performance, it is possible to lower the profile ofthe robot by incorporating multiple, side mounted detectors.
  • the undercarriage ofthe robotic device 40 is indicated generally by numeral 54.
  • One or more charging contacts are present in the undercarriage 54, configured in such a location to correspond with the location ofthe electrical contacts 16 ofthe base station 10.
  • the charging contacts on the robotic device mirror those present on the base station 10, regardless of their location or orientation. In certain embodiments, the charging contacts may be larger on either the base station 10 or robot 40, to allow wider compliance in making contact.
  • the motive and task specific components ofthe robot 40 are located in the undercarriage 54.
  • the motive components may include any combination of motors, wheels, drive shafts, or tracks as desired, based on cost or intended application ofthe robot 40, all of which are well known in the art.
  • the motive components may include at least one caster 56 which, in this embodiment, drives the robot 40 and mates with the depression 26 on the base plate 12. As the tasks to which the robotic device 40 is suited are virtually unlimited, so too are the components to perform those tasks.
  • the robotic device 40 may be used for floor waxing and polishing, floor scrubbing, ice resurfacing (as typically performed by equipment manufactured under the brand name Zamboni®), sweeping and vacuuming, unfinished floor sanding and stain/paint application, ice melting and snow removal, grass cutting, etc. Any number of components may be required for such tasks, and may each be incorporated into the robotic device 40, as necessary. For simplicity, this application will describe vacuuming as the demonstrative predetermined task. It will be apparent, though, that the energy management and auto-docking functions disclosed herein have wide application across a variety of robotic systems. [0031] The robotic device 40 uses a variety of behavioral modes to vacuum effectively a working area.
  • Behavioral modes are layers of control systems that can be operated in parallel.
  • the microprocessor is operative to execute a prioritized arbitration scheme to identify and implement one or more dominant behavioral modes for any given scenario, based upon inputs from the sensor system.
  • the microprocessor is also operative to coordinate avoidance, homing, and docking maneuvers with the base station 10.
  • the behavioral modes for the described robotic device 40 can be characterized as: (1) coverage behavioral modes; (2) escape behavioral modes; and (3) safety behavioral modes.
  • Coverage behavioral modes are primarily designed to allow the robotic device 40 to perform its operations in an efficient and effective manner, while the escape and safety behavioral modes are priority behavioral modes implemented when a signal from the sensor system indicates that normal operation ofthe robotic device 40 is impaired (e.g., obstacle encountered), or is likely to be impaired (e.g., drop-off detected).
  • Representative and illustrative coverage behavioral modes (for vacuuming) for the robotic device 40 include: (1) a Spot Coverage pattern; (2) an Obstacle-Following (or Edge- Cleaning) Coverage pattern, and (3) a Room Coverage pattern.
  • the Spot Coverage pattern causes the robotic device 40 to clean a limited area within the defined working area, e.g., a high- traffic area.
  • the Spot Coverage pattern is implemented by means of a spiral algorithm (but other types of self-bounded area algorithms, such as polygonal, can be used).
  • the spiral algorithm which causes outward or inward spiraling movement ofthe robotic device 40, is implemented by control signals from the microprocessor to the motive system to change the turn radius/radii thereof as a function of time or distance traveled (thereby increasing/decreasing the spiral movement pattern ofthe robotic device 40).
  • the robotic device 40 is operated in the Spot Coverage pattern for a predetermined or random period of time, for a predetermined or random distance (e.g., a maximum spiral distance) and/or until the occurrence of a specified event, e.g., activation of one or more ofthe obstacle detection systems (collectively a transition condition).
  • a transition condition e.g., the robotic device 40 can implement or transition to a different behavioral mode, e.g., a Straight Line behavioral mode (in one embodiment ofthe robotic device 40, the Straight Line behavioral mode is a low priority, default behavior that propels the robot in an approximately straight line at a preset velocity of approximately 0.306 m/s) or a Bounce behavioral mode in combination with a Straight Line behavioral mode.
  • a Straight Line behavioral mode in one embodiment ofthe robotic device 40, the Straight Line behavioral mode is a low priority, default behavior that propels the robot in an approximately straight line at a preset velocity of approximately 0.306 m/s
  • Bounce behavioral mode in combination with a Straight
  • the Bounce behavioral mode is a basic function that allows the robot 40 to evade a stationary object or obstacle and continue its task routine. Avoidance is achieved by executing a series of turns until the obstacle is no longer detected (i.e., the bumper 48 is no longer compressed).
  • the robotic device 40 can take other actions in lieu of transitioning to a different behavioral mode.
  • the robotic device 40 can momentarily implement a behavioral mode to avoid or escape the obstacle and resume operation under control ofthe spiral algorithm (i.e., continue spiraling in the same direction).
  • the robotic device 40 can momentarily implement a behavioral mode to avoid or escape the obstacle and resume operation under control ofthe spiral algorithm (but in the opposite direction - reflective spiraling).
  • the Obstacle-Following Coverage pattern causes the robotic device 40 to clean the perimeter ofthe defined working area, e.g., a room bounded by walls, and/or the perimeter of an obstacle (e.g., furniture) within the defined working area.
  • the robotic device 40 utilizes an obstacle-following system to continuously maintain its position with respect to an obstacle, such as a wall or a piece of furniture, so that the motion ofthe robotic device 40 causes it to travel adjacent to and concomitantly clean along the perimeter ofthe obstacle.
  • Different embodiments ofthe obstacle-following system can be used to implement the Obstacle-Following behavioral pattern.
  • the obstacle-following system is operated to detect the presence or absence ofthe obstacle.
  • the obstacle-following system is operated to detect an obstacle and then maintain a predetermined distance between the obstacle and the robotic device 40.
  • the microprocessor is operative, in response to signals from the obstacle-following system, to implement small clockwise or counterclockwise turns to maintain its position with respect to the obstacle.
  • the robotic device 40 implements a small clockwise turn when the robotic device 40 transitions from obstacle detection to non- detection (reflection to non-reflection) or to implement a small counterclockwise turn when the robotic device 40 transitions from non-detection to detection (non-reflection to reflection). Similar turning behaviors are implemented by the robotic device 40 to maintain the predetermined distance from the obstacle.
  • the robotic device 40 is operated in the Obstacle-Following behavioral mode for a predetermined or random period of time, for a predetermined or random distance (e.g., a maximum or minimum distance) and/or until the occurrence of a specified event, e.g., activation of one or more ofthe obstacle detection system a predetermined number of times (collectively a transition condition).
  • the microprocessor will cause the robotic device 40 to implement an Align behavioral mode upon activation ofthe obstacle-detection system in the Obstacle-Following behavioral mode, wherein the robot 40 implements a minimum angle counterclockwise turn to align the robotic device 40 with the obstacle.
  • the Room Coverage pattern can be used by the robotic device 40 to clean any defined working area that is bounded by walls, stairs, obstacles or other barriers (e.g., a virtual wall unit that prevents the robotic device 40 from passing through an otherwise unbounded zone).
  • Certain embodiments ofthe Room Coverage pattern include the Random-Bounce behavioral mode in combination with the Straight Line behavioral mode. Initially, the robotic device 40 travels under control ofthe Straight-Line behavioral mode (wheels operating at the same rotational speed in the same direction) until an obstacle is encountered. The obstacle may be indicated by physical contact with a wall or detection ofthe base station avoidance signal. Upon activation of one or more ofthe obstacle detection system, the microprocessor is operative to compute an acceptable range of new directions based upon the obstacle detection system activated.
  • the microprocessor selects a new heading from within the acceptable range and implements a clockwise or counterclockwise turn to achieve the new heading with minimal movement, hi some embodiments, the new turn heading may be followed by forward movement to increase the cleaning efficiency ofthe robotic device 40.
  • the new heading may be randomly selected across the acceptable range of headings, or based upon some statistical selection scheme, such as Gaussian distribution.
  • the microprocessing unit can be programmed to change headings randomly or at predetermined times, without input from the sensor system.
  • the robotic device 40 is operated in the Room Coverage behavioral mode for a predetermined or random period of time, for a predetermined or random distance (e.g., a maximum or minimum distance) and/or until the occurrence of a specified event, e.g., activation ofthe obstacle-detection system a predetermined number of times (collectively a transition condition).
  • a predetermined or random distance e.g., a maximum or minimum distance
  • a specified event e.g., activation ofthe obstacle-detection system a predetermined number of times (collectively a transition condition).
  • Certain embodiments ofthe robotic device 40 include four escape behavioral modes: a Turn behavioral mode, an Edge behavioral mode, a Wheel Drop behavioral mode, and a Slow behavioral mode.
  • a Turn behavioral mode a Turn behavioral mode
  • an Edge behavioral mode a Wheel Drop behavioral mode
  • a Slow behavioral mode a behavioral mode that can be utilized by the robotic device 40.
  • One or more of these behavioral modes may be implemented, for example, in response to a current rise in one ofthe task components (indicating some sort of interference), the forward bumper 48 being in compressed position for determined time period, or detection of a wheel-drop event.
  • the robotic device 40 turns in place in a random direction, starting at higher velocity (e.g., twice normal turning velocity) and decreasing to a lower velocity (one-half normal turning velocity), i.e., small panic turns and large panic turns, respectively.
  • Low panic turns are preferably in the range of 45° to 90°
  • large panic turns are preferably in the range of 90° to 270°.
  • the Turn behavioral mode prevents the robotic device 40 from becoming stuck on surface impediments (e.g., high spot on carpet), from becoming stuck under other obstacles (e.g., an overhang), or from becoming trapped in a confined area.
  • the robotic device 40 follows the edge of an obstacle unit it has turned through a predetermined number of degrees, without activation of any ofthe obstacle detection units, or until the robotic device 40 has turned through a predetermined number of degrees, since initiation ofthe Edge behavioral mode.
  • the Edge behavioral mode allows the robotic device 40 to move through the smallest possible openings to escape from confined areas.
  • the microprocessor In the Wheel Drop behavioral mode, the microprocessor reverses the direction of the main wheel drive assemblies momentarily, then stops them. If the activated wheel drop sensor deactivates within a predetermined time, the microprocessor then reimplements the behavioral mode that was being executed prior to the activation ofthe wheel drop sensor.
  • the Slow behavioral mode is implemented to slow down the robotic device 40 for a predetermined distance and then ramp back up to its normal operating speed.
  • the robotic device 40 When a safety condition is detected by the sensor subsystem, e.g., a series of task component or wheel stalls that cause the corresponding electric motors to be temporarily cycled off, or a wheel drop sensor or a cliff detection sensor activated for greater that a predetermined period of time, the robotic device 40 is generally cycled to an off state. In addition, an audible alarm may be generated.
  • a safety condition e.g., a series of task component or wheel stalls that cause the corresponding electric motors to be temporarily cycled off, or a wheel drop sensor or a cliff detection sensor activated for greater that a predetermined period of time
  • the robotic device 40 When a safety condition is detected by the sensor subsystem, e.g., a series of task component or wheel stalls that cause the corresponding electric motors to be temporarily cycled off, or a wheel drop sensor or a cliff detection sensor activated for greater that a predetermined period of time, the robotic device 40 is generally cycled to an off state. In
  • a navigational control system may be used advantageously in combination with the robotic device 40 to enhance the cleaning efficiency thereof, by adding a deterministic component (in the form of a control signal that controls the movement ofthe robotic device 40) to the motion algorithms, including random motion, autonomously implemented by the robotic device 40.
  • the navigational control system operates under the direction of a navigation control algorithm.
  • the navigation control algorithm includes a definition of a predetermined triggering event.
  • the navigational control system under the direction of the navigation control algorithm, monitors the movement activity ofthe robotic device 40. In one embodiment, the monitored movement activity is defined in terms ofthe "position history" ofthe robotic device 40, as described in further detail below.
  • the monitored ⁇ movement activity is defined in terms ofthe "instantaneous position" ofthe robotic device 40.
  • the predetermined triggering event is a specific occurrence or condition in the movement activity ofthe robotic device 40.
  • the navigational control system operates to generate and communicate a control signal to the robotic device 40.
  • the robotic device 40 operates to implement or execute a conduct prescribed by the control signal, i.e., the prescribed conduct. This prescribed conduct represents a deterministic component ofthe movement activity ofthe robotic device 40.
  • the robotic device 40 While the robotic device 40 is vacuuming, it will periodically approach the stationary base station 10. Contact with the base station 10 could damage or move the base station into an area that would make docking impossible.
  • the base station 10 may generate an avoidance signal 60, as depicted in FIG. 3.
  • the avoidance signal 60 is shown being transmitted from the emitter 18 on the top ofthe backstop 14.
  • the radial range ofthe avoidance signal 60 from the base station 10 may vary, depending on predefined factory settings, user settings, or other considerations. At a minimum, the avoidance signal 60 need only project a distance sufficient to protect the base station 10 from unintentional contact with the robot 40.
  • the avoidance signal 60 range can extend from beyond the periphery ofthe base station 10, to up to and beyond several feet from the base station 10, depending on the application.
  • the avoidance signal 60 is depicted as an omni-directional (i.e., single plane) infrared beam, although other signals are contemplated, such as a plurality of single stationary beams or signals. If stationary beams are used, however, a sufficient number could provide adequate coverage around the base station 10 to increase the chances ofthe robotic device 40 encountering them.
  • the detector 50 ofthe robotic device 40 receives the avoidance signal 60 from the emitter 18, the robotic device 40 can alter its course, as required, to avoid the base station 10.
  • the robotic device 40 can alter its course toward the base station 10, such as by circling the base station 10, in such a way to increase the chances of encountering the homing signals described with respect to FIGS. 4A-4B below.
  • a collimated IR emitter is used, such as Waitrony p/n IE- 320H. Because of potential interference from sunlight and other IR sources, most IR devices, such as remote controls, personal digital assistants and other IR communication devices, emit signals that may be modulated. Herein, the emitters 18, 20 modulate the beams at 38 kHz. In an embodiment ofthe present invention, additional modulation ofthe beams at a frequency, for example 500 Hz, different from the frequency of common IR bit streams, prevents interference with other IR equipment. Generally, the avoidance signal 60 is coded, as are the homing signals 62, 64.
  • the bit encoding method as well as binary codes are selected such that the robot 40 can detect the presence of each signal, even if the robot 40 receives multiple codes simultaneously.
  • the robot's IR avoidance behavior is triggered. In one embodiment, this behavior causes the robot 40 to spin in place to the left until the IR signal falls below detectable levels. The robot 40 then resumes its previous motion. Spinning left is desired in certain systems because, by convention, the robot may attempt to keep all objects to its right during following operations. The robot's avoidance behavior is consistent with its other behaviors if it spins left on detecting the avoidance signal 60.
  • the detector 50 acts as a gradient detector.
  • the base station 10 includes multiple coded emitters at different power levels or emitters that vary their power level using a system of time multiplexing. These create concentric coded signal rings which enable the robot 40 to navigate towards the base station 10 from far away in the room.
  • the robot 40 would be aware ofthe presence of the base station 10 at all times, facilitating locating the base station 10, docking, determining how much ofthe room has been cleaned, etc.
  • the robot 40 uses its motion through the IR field to measure a gradient of IR energy.
  • the sign ofthe gradient is negative (i.e., the detected energy is decreasing with motion)
  • the robot 40 goes straight (away from the IR source).
  • the sign ofthe gradient is positive (energy increasing)
  • the robot 40 turns.
  • the net effect is to implement a "gradient descent algorithm," with the robot 40 escaping from the source ofthe avoidance signal 60.
  • This gradient method may also be used to seek the source of emitted signals.
  • the concentric rings at varying power levels facilitate this possibility even without a means for determination ofthe raw signal strength.
  • FIG. 6 A A flowchart of one embodiment ofthe control logic ofthe avoidance behavior 100 is shown in FIG. 6 A.
  • the robot 40 determines whether the signal 110 detected by the detector 50 is an avoidance signal 60. If an avoidance signal 60 is detected, the robot 40 chooses a turning direction 120. The robot 40 then begins to turn in the chosen direction until the avoidance signal 60 is no longer detected 130. Once the avoidance signal 60 is no longer detected, the robot 40 continues turning for an additional amount 140, such as 20°, or the robot may turn randomly between 0° and 135°.
  • an additional amount 140 such as 20°, or the robot may turn randomly between 0° and 135°.
  • the direction selection algorithm 120a While in flowchart step 120, the direction selection algorithm 120a, illustrated in the flowchart shown in FIG. 6B, is used.
  • the robot's control logic keeps track ofthe robot's discrete interactions with the beam.
  • the robot 40 first increments a counter by one 122. On odd numbered interactions, the robot 40 chooses a new turning direction randomly 124, 126; on even numbered interactions, the robot 40 again uses its most recent turning direction. In the alternative, the robot 40 may choose which direction to turn at random. It will continue to turn in that direction until it has moved a sufficient distance.
  • the robot 40 can always turn in a single direction or choose a direction randomly.
  • the robot 40 When the robot 40 always turns in one direction, it may get stuck in a loop by turning away from the beam, bumping into another obstacle in a room, turning back toward the beam, seeing the beam again, turning away, bumping again, ad infinitum. Moreover, when the robot 40 only turns in a single direction, it consequently may fail to vacuum certain areas of the floor. Thus, where the robot's task is to complete work evenly throughout a room, a single turning direction may not be optimal. If the direction is chosen purely randomly, the robot 40 may turn back and forth often, as it encounters the beam.
  • the robot 40 turns an additional 20° from the point at which the avoidance signal 60 is lost.
  • the arc ofthe turn can be varied for the particular robot 40 and application.
  • the additional turn helps to prevent the robot 40 from re-encountering the avoidance signal 60 immediately after first encountering it.
  • the amount of additional movement can be a predetermined distance, angle or time, or in the alternative may include a random component.
  • the robot's avoidance behavior may include reversing the robot's direction until the avoidance signal 60 is no longer detected, or as described above, the robot may turn randomly between 0° and 135° after losing the avoidance signal 60.
  • FIGS. 4A-4C depict the robotic device 40 in various stages of seeking the base station 10 by using the homing signals 62, 64.
  • the robotic device 40 may seek the base station 10 when it detects the need to recharge its battery, or when it has completed vacuuming the room.
  • the robotic device 40 detects the presence ofthe avoidance signal 60 (and therefore the base station 10)
  • it can move as required to detect the homing signals 62, 64.
  • the projected range and orientation ofthe homing signals 62, 64 may be varied, as desired. It should be noted however, that longer signals can increase the chance ofthe robot 40 finding the base station 10 efficiently.
  • Homing signal 62, 64 ranges that extend from approximately six inches beyond the front ofthe base plate 12, to up to and beyond several feet beyond the base plate 12 are contemplated, depending on application. Naturally, the angular width ofthe homing signals 62, 64 may vary depending on application, but angular widths in the range of 5° to up to and beyond 60° are contemplated. A gradient behavior as described above can also be used to aid the robot in seeking out the base station.
  • homing signals 62, 64 may also be used to transmit information, including programming data, fail safe and diagnostic information, docking control data and information, maintenance and control sequences, etc.
  • the signals can provide the control information, dictating the robot's reactions, as opposed to the robot 40 taking certain actions upon contacting certain signals from the base station 10.
  • the robot 40 functions as more of a slave to the base station 10, operating as directed by the signals sent.
  • the robot 40 performs its docking with the base station 10 accurately and repeatably, without the need for gross mechanical guidance features.
  • the two homing signals 62, 64 are distinguishable by the robotic device, for example as a red signal 62 and a green signal 64. IR beams are generally used to produce the signals and, as such, are not visible. The color distinction is given for illustrative purposes only, and any "color" (i.e., signal bit pattern) may be used, provided the robotic device 40 recognizes which signal to orient a particular side.
  • the signals 62, 64 may be distinguished by using different wavelengths or by using different carrier frequencies (e.g., 380 kHz versus 38 kHz, etc.)..
  • the robotic device 40 wants or needs to dock, if the detector 50 receives the red signal 62 transmitting from the base station 10, it moves to keep the red signal 62 on the robot's right side; if it detects the green signal 64 ttansmitting from the base station 10, it moves to keep the green signal 64 on the robot's left side. Where the two signals overlap (the "yellow" zone 66), the robot 40 knows that the base station 10 is nearby and may then dock. Such a system may be optimized to make the yellow zone 66 as thin as practicably possible, to ensure proper orientation and approach ofthe robot 40 and successful docking. Alternatively, the red signal 62 and green signal 64 may be replaced by a single signal, which the robot 40 would follow until docked.
  • FIGS. 4A-4C depict, at various stages, a docking procedure utilizing two signals.
  • the detector 50 is in the green or left signal 64 field, and thus the robotic device 40 will move towards the right, in direction M R in an effort to keep that green signal 64 to the left ofthe robot 40 (in actuality, the robot 40 moves to keep the green signal 64 to the left ofthe detector 50).
  • the detector 50 is in the red or right signal 62 field, and thus the robotic device 40 will move towards the left, in direction M in an effort to keep that red signal 64 to the right ofthe detector 50.
  • the detector 50 has encountered yellow zone 66.
  • the robotic device 40 will move in direction Mp directly towards the base station 10. While approaching the base station 10, the robotic device 40 may slow its speed of approach and/or discontinue vacuuming, or perform other functions to ensure trouble-free docking. These operations may occur when the robot 40 detects the avoidance signal 60, thus recognizing that it is close to the base station 10, or at some other predetermined time, e.g., upon a change in the signal from the emitters 62, 64.
  • Narious methods are contemplated for ensuring that the robot 40 correctly docks with base station 10.
  • the robot 40 can continue to move toward the base station 10 (within the yellow zone 66) until the bumper 48 is depressed, signaling the robot 40 that it has contacted the base station 10.
  • Another embodiment overlaps the homing signals 62, 64 such that the yellow zone 66 terminates at a point calibrated such that the robot 40 will contact the charging contacts 16 upon reaching the termination point.
  • Other embodiments simply stop the robot 40 when its electrical contacts touch the electrical contacts 16 on the base station 10. This would guarantee that the robot 40 is moving over the contacts 16, providing a wiping action that cleans the contacts 16 and improves the electrical integrity ofthe connection.
  • FIG. 5 shows the robotic device 40 completely docked with the base station 10. Naturally, this procedure may also utilize detector 52 or a combination of both detectors.
  • this embodiment ofthe invention describes use of IR signals for both avoidance and homing, the system and method ofthe present invention can use other signals to accomplish the goals.
  • Other types of waves may have drawbacks, however. For example, radio waves are more difficult and expensive to make directional, and visible light suffers from interference from many sources and may be distracting to users. Sound waves could also be used, but it is similarly difficult to make sound purely directional and such waves tend to scatter and reflect more.
  • FIG. 1 shows the robotic device 40 completely docked with the base station 10.
  • the control sequence 200 includes three subsequences based on the measured energy level ofthe robotic device 40. Those are referenced generally as a high energy level 210, a medium energy level 220, and a low energy level 230.
  • the robotic device 40 performs its predetermined task, in this case, vacuuming (utilizing various behavioral modes as described above), while avoiding the base station 212.
  • vacuuming utilizing various behavioral modes as described above
  • the robotic device 40 performs its avoidance behavior and continues to operate normally. This process continues while the robotic device 40 continually monitors its energy level 214.
  • Narious methods are available to monitor the energy level 214 ofthe power source, such as coulometry (i.e., the measuring of current constantly entering and leaving the power source), or simply measuring voltage remaining in the power source.
  • Other embodiments ofthe robotic device 40 may simply employ a timer and a look-up table stored in memory to determine how long the robotic device 40 can operate before it enters a different energy level subsequence.
  • Still other embodiments may simply operate the robot 40 for a predetermined time period before recharging, without determining which energy level subsequence it is operating in. If the robot 40 operates on a liquid or gaseous fuel, this level may also be measured with devices currently known in the art.
  • the robot 40 enters its medium energy level sequence 220.
  • the robot 40 continues to vacuum and monitor its energy level 224, employing methods indicated in step 214 above.
  • the robot 40 "passively seeks" 222 the base station 10. While passively seeking 222 the base station 10, the robot 40 does not alter its travel characteristics; rather, it continues about its normal behavioral mode until it fortuitously detects the avoidance signal 60 or a homing signal 62, 64, each of which may be followed until the robot 40 ultimately docks with the base station 10.
  • the robot 40 if the robot detects the avoidance signal 60 while passively seeking 222, rather than avoiding the base station 10 as it normally would, it alters its travel characteristics until it detects the homing signals 62 or 64, thus allowing it to dock.
  • the robot 40 continues operating in this medium energy level subsequence 220 until it registers an energy level 224 below a predetermined low level. At this point, the robot 40 enters the low level subsequence 230, characterized by a change in operation and travel characteristics. To conserve energy, the robot 40 may discontinue powering all incidental systems, and operations, such as vacuuming, allowing it to conserve as much energy as possible for "actively searching" 232 for the base station 10.
  • the robot 40 While actively searching 232, the robot 40 may alter its travel characteristics to increase its chances of finding the base station 10. It may discontinue behavioral modes such as those employing a spiral movement, which do not necessarily create a higher chance of locating the base station, in favor of more deliberate modes, such as wall-following. This deliberate seeking will continue until the robot 40 detects the presence ofthe base station 10, either by detecting the avoidance signal 60 or the homing signals 62, 64. Clearly, additional subsequences may be incorporated which sound alarms when the power remaining reaches a critical level, or which reconstruct the route the robot 40 has taken since last contacting the base station 10 to aid in relocating the station 10.
  • the robot 40 may also dock because it has determined that it has completed its assigned task (e.g., vacuuming a room). The robot 40 may make this determination based on a variety of factors, including considerations regarding room size, total run time, total distance traveled, dirt sensing, etc. Alternatively, the robot may employ room-mapping programs, using the base station 10 and/or walls and large objects as points of reference. Upon determining that it has completed its task, the robot 40 will alter its travel characteristics in order to find the base station 10 quickly. [0071] Once the robot 40 contacts the base station 10, it can recharge itself autonomously. Circuitry within the base station 10 detects the presence ofthe robot 40 and then switches on the charging voltage to its contacts 16.
  • the robot 40 detects the presence ofthe charging voltage and then switches on its internal transistor power switch to allow current flow into the battery.
  • the base station 10 contains a constant-current type switching charger. Maximum current is limited to approximately 1.25 amps even under a short circuit condition. Maximum unloaded terminal voltage is limited to approximately 22Ndc.
  • This constant-current charging circuit is used to charge the battery in the robot 40 via the electrical connections provided by the contacts 16 on the base station 10 and those on the undercarriage 54 ofthe robot 40.
  • This charging sequence is detailed below.
  • the charging contacts 16 will present five volts, limited to 1mA maximum short circuit current flow.
  • This low voltage/low current "sense" condition limits the amount of available energy at the contacts 16, thus rendering them safe in the event they are contacted by humans, animals, and electrically conductive objects.
  • the contacts on the undercarriage 54 ofthe robot 40 when contacting the contacts 16 on the base station 10, present a precise resistive load that, along with a resistor in the base station 10, creates a high impedance voltage divider.
  • a microprocessor that constantly monitors the voltage across the contacts 16 recognizes this lower voltage. This voltage divider creates a specific voltage, plus or minus a known tolerance. When the microprocessor determines that the voltage has fallen into the specific range, it detects that the robot 40 is present.
  • the microprocessor then turns on a transistor switch that delivers a higher voltage/current charge (capable of charging the robot's internal battery) to the charging contacts 16.
  • the robot 40 and/or base station 10 can verify the integrity ofthe charging circuit by sending signals through the IR beams, thereby confirming that the robot 40 has, in fact, docked.
  • FIG. 8 depicts an embodiment ofthe charger circuitry schematic. With five volts being presented by the base station, it is the job of resistor dividers R101 and Rl 16 to hold Q48 and Q5 off when J25 is in contact with the initial low voltage state. This divider also provides the known impedance of R101 plus Rl 16 in parallel with R224 plus the base-emitter diode drop of Q48. This Thevenin impedance is in series with a resistor in the docking station thus forming a voltage divider. A window comparator circuit within the docking station looks for a specific voltage created by the divider.
  • the robot Once the base station has determined this impedance is likely the robot (not some other conductive body), it then delivers the full 22 volt capable, 1.25 Amp charging voltage to the robot. [0074] At the onset of this higher voltage, the divider of Rl 01 and R224 are such that the requirements are met to turn on Q48 and Q5 respectively. It is this combination of transistors that then allows current to flow to the on-board robot electronics only, allowing the robot's processor to become active if in fact it was inoperative due to a depleted battery. [0075] Once operative, the robot's processor is then able to detect the presence ofthe base station voltage via Rl 13 and D 15 and if driving, turn off its drive motors.
  • the battery voltage is deemed less than 5 volts, it generally would not be desirable to allow the full current to flow to the battery on a continuous basis.
  • the reason this condition is of concern lies in the fact that the power source within the DOC is a constant current charger, which will adjust its output voltage to be slightly higher than the battery voltage in order to flow 1.25 A into the battery. In some cases, this might be millivolts higher than the battery voltage itself and in the case ofthe battery at low voltage, for example, 3 volts, would cause the output voltage to drop below the necessary 5 volt level needed to operate the on board base station and robot electronics suite.
  • the robot processor then delivers a pulse width modulation to the charger control line pertaining to Q47, such that the energy storage capacitors in both the robot and base station maintain enough charge to keep their respective electronics working properly throughout the charge pulse.
  • the energy storage capacitors are then replenished during the off time ofthe pulse width modulation charging cycle, ready to then sustain the next charge pulse. This scenario continues until the battery has been charged to the point where a continuous charge is no longer able to bring the supply voltage down to a critical level and the charge control can become a static level.
  • the described charging sequence provides particular safety features, even though the charging contacts 16 are exposed and energized. Because a specific resistance is required to create a specific voltage drop across the contacts 16 when the 5-volt sense voltage is present (i.e., when the robot 40 is not docked) there is no danger of electric shock due to accidental contact because the low sense current is harmless. Also, the base station 10 will never switch to the higher voltage/current level, because the sense current has not entered the predetermined range. When the base station 10 does determine that the robot 40 is present, it delivers the charging voltage/current. This charging current is limited to approximately 22 volts/ 1.25 amps maximum.
  • An additional safety feature of this charging sequence prevents overheating of contacts 16 due to intentional shorting or oxidation.
  • a thermal circuit breaker or similar device can be employed to perform this task, as well as a microprocessor equipped with a temperature measuring subroutine.
  • the circuit breaker provides the advantage of controlling contact temperature in the event of a microprocessor or software failure.
  • the base station 10 circuitry can also incorporate a timer to reset the temperature measuring subroutine or circuit breaker in the event of system failure. These safety controls may be incorporated into the "watchdog" described above.
  • the robot 40 While docked with the base station 10, the robot 40 can also perform other maintenance or diagnostic checks. In certain embodiments, the robot 40 can completely recharge its power source or only partially charge it, based on various factors.
  • the robot 40 may take only a minimal charge before returning to complete cleaning ofthe room. If, however, the robot 40 requires a full charge before returning to clean the room, that option is also available. If the robot 40 has completed its vacuuming ofthe room prior to docking, it may dock, fully recharge, and stand by to await a signal (either internal or external) to begin its next cleaning cycle. While in this stand-by mode, the robot 40 may continue to measure its energy levels and may begin charging sequences upon reaching an energy level below a predetermined amount. Alternatively, the robot 40 may maintain a constant or near-constant trickle charge to keep its energy levels at or near peak. Other behaviors while in the docking position such as diagnostic functions, internal mechanism cleaning, communication with a network, or data manipulation functions may also be performed.

Abstract

A method of docking a robotic device with a base station includes the steps of detecting a low energy level in an on-board battery, orienting the robot in relation to a detected overlap between two infrared beams emitted by the station, detecting contact between the charging terminals on the robot and on the base station, charging the on-board battery and resuming a robot’s task, such as vacuuming. Also disclosed are systems for emitting avoidance signals to prevent inadvertent contact between the robot and the base station, and systems for emitting homing signals to allow the robot device to accurately dock with the base station.

Description

METHOD OF DOCKING AN AUTONOMOUS ROBOT
Technical Field
[0001] The present invention relates generally to robotic systems and, more specifically, to auto-docking and energy management systems for autonomous robots. Background [0002] Automated robots and robotic devices are becoming more prevalent today and are used to perform tasks traditionally considered mundane, time-consuming, or dangerous. As the programming technology increases, so too does the demand for robotic devices that require a minimum of human interaction for tasks such as robot refueling, testing, and servicing. A goal is a robot that could be configured a single time, which would then operate autonomously, without any need for human assistance or intervention.
[0003] Robotic devices and associated controls, navigational systems, and other related systems moving in this direction are being developed. For example, U.S. Patent No. 6,594,844 discloses a Robot Obstacle Detection System, the disclosure of which is hereby incorporated by reference in its entirety. Additional robot control and navigation systems are disclosed in U.S. Patent Application Serial Nos. 10/167,851, 10/056,804, 10/696,456, 10/661,835, and 10/320,729 the disclosures of which are hereby incorporated by reference in their entireties. [0004] Generally, autonomous robotic devices include an on-board power unit (usually a battery) that is recharged at a base or docking station. The types of charging stations and methods used by robots in finding or docking with them (e.g., radio signals, dead reckoning, ultrasonic beams, infrared beams coupled with radio signals, etc.) vary greatly in both effectiveness and application. Wires buried below the surface on which the robot operates are common, but are obviously limited in application, as it is costly to install guide wires within the floor of a building or below a road surface. If installed on the surface, the guide wires may be damaged by the robot itself or other traffic. Moreover, the wires need to be moved when the base station is relocated. A base station that emits a beam or beacon to attract the robotic device is, therefore, more desirable. Such devices, however, still exhibit numerous operational limitations. [0005] Base stations that utilize emitted signals often still require additional safeguards to ensure proper mating between the robot and base station and, therefore, safe and effective charging. Some require mechanical locking devices to prevent dislocation ofthe robot during charging, or other components such as raised guiding surfaces to direct the robot into contact with the station. Such components can increase the size of he base station while decreasing the aesthetics, important considerations for automated robots directed at the consumer market. An increase in base station size also typically makes unobtrusive placement in the home more difficult and decreases the floor area available for cleaning. Additionally, existing base stations generally lack the ability to protect themselves from contact with the robot during operation, increasing the likelihood of damage to either the station or robot, or dislocation ofthe base station. Such an unintentional collision may require human intervention to reposition the base station or repair a damaged component.
[0006] These limitations are, at present, a hurdle to creating a truly independent autonomous robot, free from human interaction. There is, therefore, a need for a robot and base station that can ensure proper mating regardless of location ofthe base station. Moreover, a system that can prevent inadvertent dislocation ofthe base station by eliminating collisions between the station and robot is desirable. Summary ofthe Invention [0007] In one aspect, the invention relates to a method for energy management in a robotic device, the robotic device including at least one energy storage unit and a signal detector. The method includes the steps of: providing a base station for mating with the robotic device, the base station having a plurality of signal emitters including a first signal emitter and a second signal emitter; determining a quantity of energy stored in the energy storage unit, the quantity characterized at least by a high energy level and a low energy level; and performing, by the robotic device, a predetermined task based at least in part on the quantity of energy stored. In various embodiments ofthe foregoing aspect, coulometry or setting a time period are used to determine the quantity of energy stored or task period ofthe device. [0008] In other embodiments ofthe foregoing aspect, the step of performing the predetermined task occurs when the quantity of energy stored exceeds the high energy level, the predetermined task including movement ofthe robotic device away from the base station in response to reception, by the signal detector, of a base station avoidance signal. Still other embodiments include the step of returning the robotic device to the base station in response to reception, by the signal detector, of a base station homing signal and/or returning the robotic device to the base station when the quantity of energy stored is less than the high energy level. In other embodiments ofthe foregoing aspect, the step of returning the robotic device to the base station occurs when the quantity of energy stored is less than the low energy level, and wherein the predetermined task includes a reduction in energy use by the robotic device. Various embodiments further include altering a travel characteristic ofthe robotic device to locate effectively the base station, charging the device upon contact, and/or resuming the predetermined or a different task. [0009] In another aspect, the invention relates to a method of docking a robotic device with a base station that has a plurality of signal emitters, including a first signal emitter and a second signal emitter. The method includes the steps of orienting the robotic device in relation to (i) a first signal transmitted by the first signal emitter and (ii) a second signal transmitted by the second signal emitter, and maintaining an orientation ofthe robotic device relative to the first and second signals as the robotic device approaches to the base station. Certain embodiments ofthe method ofthe foregoing aspect include the steps of detecting, by the robotic device, an overlap between the first signal and the second signal; following, by the robotic device, a path defined at least in part by the signal overlap; and docking the robotic device with the base station. Other related embodiments include reducing the velocity ofthe robotic device in the step of following the path defined at least in part by the signal overlap. [0010] Various embodiments ofthe method ofthe foregoing aspect also include, during the step of docking the robotic device with the base station: detecting, by the robotic device, contact with charging terminals on the base station, and stopping movement ofthe robotic device. In some embodiments, contact of one or more on-board tactile sensors can be used, additionally or alternatively, to stop movement ofthe robotic device. Other embodiments include the step of charging fully the robotic device and/or charging the robotic device to one of a plurality of charging levels. Certain embodiments allow for resumption ofthe predetermined task or a new task upon completion of charging.
[0011] In another aspect ofthe invention, the invention relates to an autonomous system including a base station, that includes charging terminals for contacting external terminals of a robotic device, and a first signal emitter and a second signal emitter. Certain embodiments ofthe above aspect provide that the first signal emitter transmit a base station avoidance signal and the second signal emitter transmit a base station homing signal. In other embodiments, the homing signal is a pair of signals, which can be either the same or different. The pair of signals may be emitted by a pair of emitters. In some embodiments, the signals may overlap, and may be optical signals.
[0012] Certain embodiments ofthe above aspect further include a robotic device for performing a predetermined task, the robotic device having at least one energy storage unit with an external terminal for contacting the charging terminal, and at least one signal detector. In certain embodiments, the at least one signal detector is adapted to detect at least one optical signal. The robotic device has, in certain embodiments, the capability to distinguish between the signals generated by multiple emitters. [0013] Still other aspects ofthe current invention relate to an energy manager including: a robotic device having at least one energy storage unit and a signal detector; a base station for mating with the robotic device, the base station having a plurality of signal emitters including a first signal emitter and a second signal emitter; and a processor for determining a quantity of energy stored in the energy storage unit. Certain embodiments ofthe foregoing aspect use coulometry or set a time period to determine the quantity of energy stored or task period ofthe device. In still other embodiments the first signal emitter transmits an avoidance signal, thereby restricting a movement ofthe robotic device to directions away from the base station, and the second signal emitter transmits a homing signal, thereby directing a movement ofthe robotic device to the base station. [0014] Other aspects ofthe invention relate to a homing system including a robotic device having a signal detector, and a base station having a first signal emitter and a second signal emitter. Certain embodiments ofthe foregoing aspect overlap signals transmitted by the first signal emitter and the second signal emitter. Still other embodiments further include charging terminals on the base station, and charging terminals on the robotic device. [0015] An additional aspect ofthe invention relates to a homing system for a base station including a first signal emitter that transmits a first signal projected outward from the first signal emitter, and a second signal emitter that transmits a second signal projected outward from the second signal emitter, such that the first signal and the second signal overlap. Another aspect relates to an avoidance system for restricting a movement of at least one of a first device and a second device, the avoidance system including a first device that emits a signal, and a second device that receives the signal, thereby restricting the movement of at least one ofthe first device and the second device. [0016] Still another aspect ofthe invention relates to a base station, including a base plate and a backstop, for a robotic device including: electrical contacts located on a top side ofthe base plate; a first signal emitter located on the backstop wherein a signal transmitted by the first signal emitter restricts the robotic device from moving within a predetermined distance ofthe base station; and a second signal emitter and a third signal emitter, wherein a plurality of signals transmitted by the second signal emitter and the third signal emitter guide at least one electrical contact ofthe robotic device to contact the at least one electrical contact ofthe base station. [0017] Another aspect ofthe invention relates to a method of charging a battery of a device, the method having the steps of providing low power to charging terminals of a charger, detecting presence ofthe device by monitoring at least one of a predetermined change in and a predetermined magnitude of a parameter associated with the charger, and increasing power to the charging terminals to charge the battery. One embodiment ofthe method ofthe above aspect further includes the steps of determining a level of charge in the device, and permitting charging ofthe battery in the device when the level of charge is below a predetermined threshold. [0018] Still another aspect ofthe invention relates to a system for charging a mobile device, the system having: a stationary charger comprising first charging terminals, circuitry for detecting presence ofthe device by monitoring at least one of a predetermined change in and a predetermined magnitude of a parameter associated with the charger, and a mobile device having: a battery, and second charging terminals adapted to mate with first charging terminals. Narious embodiments ofthe above aspect include systems wherein the circuitry determines a level of charge in the battery and controls a power level provided to the first charging terminals. Still other embodiments include systems wherein the circuitry increases the power level provided to the first charging terminals upon measuring a predetermined voltage across the first charging terminals when mated with the second charging terminal. Brief Description ofthe Drawings
[0019] In the drawings, like reference characters generally refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles ofthe invention. In the following description, various embodiments ofthe present invention are described with reference to the following drawings, in which: • FIG. 1 is a schematic perspective view a base station in accordance with one embodiment ofthe invention; • FIG. 2A is a schematic perspective view of an robotic device in accordance with one embodiment ofthe invention; • FIG. 2B is a schematic side view ofthe robotic device of FIG. 2 A. • FIG. 3 is a schematic perspective view of a representation of robotic device and base station, depicting an avoidance signal in accordance with one embodiment ofthe invention transmitted by the base station and detected by the robotic device; • FIGS. 4A-4C are schematic perspective views of representations of homing signals in accordance with one embodiment ofthe invention transmitted by the base station and detected by the robotic device; • FIG. 5 is a schematic perspective view ofthe robotic device and the base station in a docking or mating position; • FIGS. 6A-6B are flow charts of avoidance algorithms in accordance with one embodiment ofthe invention; • FIG. 7 is a flow chart of an energy management algorithm in accordance with one embodiment ofthe invention; and • FIG. 8 depicts an embodiment ofthe charger circuitry schematic in accordance with one embodiment ofthe invention. Detailed Description
[0020] FIG. 1 is a schematic perspective view a base station 10 in accordance with one embodiment ofthe invention. The base station 10 includes both a substantially horizontal base plate 12 and a substantially vertical backstop 14. The base station 10 may be any of a variety of shapes or sizes, providing sufficient space for the desired components and systems, described below. The base plate 12 is generally parallel to the ground surface on which the base station 10 rests, but may have a slight upwards angle directed toward the backstop 14. By minimizing the angle of rise ofthe base plate 12, the robotic device (FIGS. 2A-2B) may easily dock with the station 10. Electrical charging contacts 16 are located on a top surface ofthe base plate 12, allowing them to contact corresponding contacts (FIG. 2B) on the underside ofthe robotic device. The contacts 16 or the contacts on the robot may be either fixed or compliant. In the depicted embodiment, two contacts 16 (one positive, one negative) are utilized to properly detect a completed circuit when the robot 40 docks with the base station 10. This circuit recognition sequence is described in more detail below. In other embodiments, however, a single contact 16 or more than two contacts may be utilized. An additional contact would provide redundancy in the event that one ofthe robot contacts becomes damaged, dirty, or obstructed. This would allow the robot to dock and recharge itself properly, even after such an occurrence. Other embodiments utilize two contacts 16 to charge the battery and additional contacts to transmit data and information between the devices.
[0021] The contacts 16 are sized and positioned to reliably and repeatably contact the corresponding contacts on the robot. For example, the contacts 16 may be oversized and/or may extend above the base plate 12, e.g., in a domed shape, to ensure contact with the robot contacts. Alternatively, the contacts 16 may be flush-mounted on a base plate 12 with a higher angle of rise or may protrude above a base plate 12 that is flat or has substantially no rise. Depending on the application, the base plate 12 angle of rise may vary from 0° to up to 20° and greater. The embodiment depicted in FIG. 1 also includes a depression 26 in the base plate 12, between the two contacts 16, sized to engage a front caster (FIG. 2B) ofthe robot. The depression 26, in combination with the configuration ofthe charging contacts 16, ensures proper alignment and registration between the charging contacts on both the base station 10 and the robot. Alternatively, the depression 26 may contain one or more ofthe contacts 16 arranged to mate with one or more corresponding contacts on the front caster ofthe robot. [0022] The backstop 14 provides locations for many ofthe base station 10 components. Specifically, in the depicted embodiment, the backstop 14 includes a top signal emitter 18, a front signal emitter 20, several indicator LEDs 22, and an AC plug receptacle 24. The top signal emitter 18 generates a first signal, such as an avoidance signal (FIG. 3), in a diffuse region near the base station 10 to prevent generally the robot from coming into inadvertent direct contact with the base station 10 while performing a task, such as vacuuming. The top signal emitter 18 generally utilizes a parabolic reflector to transmit the avoidance signal. In such an embodiment, the avoidance signal is emitted by a single LED directed at a lens whose geometry is determined by rotating a parabola about its focus. This parabolic reflector thus projects the avoidance signal 60 out in a 360° pattern, without the necessity of multiple emitters. A similar configuration can be employed in the detector on the robot, with a single receiver used in place ofthe single LED. [0023] While the location ofthe top signal emitter 18 may vary, locating the emitter 18 on top ofthe backstop 14 transmits the avoidance signal through an uninterrupted 360° field around the base station 10. Alternatively, base stations designed for corner, on- wall, or near- wall installation may project the avoidance signal substantially only along the unobstructed side. The front signal emitter 20 projects one or more additional signals, such as homing beams (FIGS. 4A- 4C), to allow the robotic device to orient itself during docking with the base station 10 for recharging or during periods of non-use. Naturally, if properly located on the base station 10, a single emitter may be used to perform the functions of both emitters 18, 20. Both the avoidance signal and homing beams are described in more detail below. [0024] FIGS. 2A-2B are schematic perspective views of a robotic device, such as an autonomous robot 40 adapted to mate with the base station 10. In the following description of the autonomous robot 40, use ofthe terminology "forward/fore" refers generally to the primary direction of motion ofthe robot 40, and the terminology fore-aft axis (see reference characters "FA" in FIG. 2A) defines the forward direction of motion (indicated by arrowhead of the fore-aft axis FA), which is coincident with the fore-aft diameter ofthe robot 40.
[0025] In the embodiment depicted, the housing infrastructure 42 ofthe robot 40 includes a chassis 44, a cover 46, and a displaceable bumper 48. The chassis 44 may be molded from a material such as plastic as a unitary element that includes a plurality of preformed wells, recesses, and structural members for, ter alia, mounting or integrating elements ofthe various subsystems that operate the robotic device 40. Such subsystems may include a microprocessor, a power subsystem (including one or more power sources for the various subsystems and components), a motive subsystem, a sensor subsystem, and task-specific component subsystems. The cover 46 may be molded from a material such as plastic as a unitary element that is complementary in configuration with the chassis 44 and provides protection of and access to elements and components mounted to the chassis 44. The chassis 44 and the cover 46 are detachably integrated in combination by any suitable means (e.g., screws), and in combination, the chassis 44 and cover 46 form a structural envelope of minimal height having a generally cylindrical configuration that is generally symmetrical along the fore-aft axis FA. [0026] The displaceable bumper 48, which has a generally arcuate configuration, is mounted in movable combination at the forward portion ofthe chassis 44 to extend outwardly therefrom (the "normal operating position"). The mounting configuration ofthe displaceable bumper 48 is such that it is displaced towards the chassis 44 (from the normal operating position) whenever the bumper 48 encounters a stationary object or obstacle of predetermined mass (the "displaced position"), and returns to the normal operating position when contact with the stationary object or obstacle is terminated (due to operation of a control sequence which, in response to any such displacement ofthe bumper 48, implements a "bounce" mode that causes the robot 40 to evade the stationary object or obstacle and continue its task routine).
[0027] Mounted on the robotic device 40 are a pair of detectors 50, 52. In this embodiment ofthe robotic device 40, the detectors 50, 52 receive signals projected from the emitters 18, 20 on the base station 10. In other embodiments, a single detector receives signals from both emitters 18, 20 on the base station 10, or more than two detectors may be used. In certain embodiments, the detectors 50, 52 are standard infrared ("IR") detector modules, that include a photodiode and related amplification and detection circuitry, in conjunction with an omnidirectional lens, where omni-directional refers to a substantially single plane. The IR detector module can be ofthe type manufactured by East Dynamic Corporation (p/n IRM-8601S). However, any detector, regardless of modulation or peak detection wavelength, can be used as long as the emitters 18, 20 on the base station 10 are adapted to match the detectors 50, 52 on the robot 40. In another embodiment, IR phototransistors may be used with or without electronic amplification elements and may be connected directly to the analog inputs of a microprocessor. Signal processing may then be used to measure the intensity of IR light at the robot 40, which provides an estimate ofthe distance between the robot 40 and the source of IR light.
Alternatively, radio frequencies, magnetic fields, and ultrasonic sensors and transducers may be employed. As shown in FIGS. 2A-2B, at least one detector 50 is mounted at the highest point on the robot 40 and toward the front ofthe robot 40 as defined by the primary traveling direction, as indicated by an arrow on axis FA. [0028] While the detector 50 is mounted at the highest point ofthe robot 40 in order to avoid shadows, it is desirable in certain applications to minimize the height ofthe robot 40 and/or the detector 50 to prevent operational difficulties and to allow the robot 40 to pass under obstacles. In certain embodiments, the detector 50 can be spring-mounted to allow the detector 50 to collapse into the body of the robot 40 when the robot 40 runs under a solid overhanging object. [0029] One of skill in the art will recognize that, in alternative embodiments, multiple detectors can be used. Such an embodiment might include using multiple side-mounted sensors or detectors. Each ofthe sensors can be oriented in a manner so that a collective field of view of all the sensors corresponds to that ofthe single, top mounted sensor. Because a single, omnidirectional detector is mounted at the highest point ofthe robot for optimal performance, it is possible to lower the profile ofthe robot by incorporating multiple, side mounted detectors. [0030] The undercarriage ofthe robotic device 40 is indicated generally by numeral 54. One or more charging contacts are present in the undercarriage 54, configured in such a location to correspond with the location ofthe electrical contacts 16 ofthe base station 10. Generally, the charging contacts on the robotic device mirror those present on the base station 10, regardless of their location or orientation. In certain embodiments, the charging contacts may be larger on either the base station 10 or robot 40, to allow wider compliance in making contact. Also, the motive and task specific components ofthe robot 40 are located in the undercarriage 54. The motive components may include any combination of motors, wheels, drive shafts, or tracks as desired, based on cost or intended application ofthe robot 40, all of which are well known in the art. The motive components may include at least one caster 56 which, in this embodiment, drives the robot 40 and mates with the depression 26 on the base plate 12. As the tasks to which the robotic device 40 is suited are virtually unlimited, so too are the components to perform those tasks. For example, the robotic device 40 may be used for floor waxing and polishing, floor scrubbing, ice resurfacing (as typically performed by equipment manufactured under the brand name Zamboni®), sweeping and vacuuming, unfinished floor sanding and stain/paint application, ice melting and snow removal, grass cutting, etc. Any number of components may be required for such tasks, and may each be incorporated into the robotic device 40, as necessary. For simplicity, this application will describe vacuuming as the demonstrative predetermined task. It will be apparent, though, that the energy management and auto-docking functions disclosed herein have wide application across a variety of robotic systems. [0031] The robotic device 40 uses a variety of behavioral modes to vacuum effectively a working area. Behavioral modes are layers of control systems that can be operated in parallel. The microprocessor is operative to execute a prioritized arbitration scheme to identify and implement one or more dominant behavioral modes for any given scenario, based upon inputs from the sensor system. The microprocessor is also operative to coordinate avoidance, homing, and docking maneuvers with the base station 10. [0032] Generally, the behavioral modes for the described robotic device 40 can be characterized as: (1) coverage behavioral modes; (2) escape behavioral modes; and (3) safety behavioral modes. Coverage behavioral modes are primarily designed to allow the robotic device 40 to perform its operations in an efficient and effective manner, while the escape and safety behavioral modes are priority behavioral modes implemented when a signal from the sensor system indicates that normal operation ofthe robotic device 40 is impaired (e.g., obstacle encountered), or is likely to be impaired (e.g., drop-off detected).
[0033] Representative and illustrative coverage behavioral modes (for vacuuming) for the robotic device 40 include: (1) a Spot Coverage pattern; (2) an Obstacle-Following (or Edge- Cleaning) Coverage pattern, and (3) a Room Coverage pattern. The Spot Coverage pattern causes the robotic device 40 to clean a limited area within the defined working area, e.g., a high- traffic area. In a certain embodiments the Spot Coverage pattern is implemented by means of a spiral algorithm (but other types of self-bounded area algorithms, such as polygonal, can be used). The spiral algorithm, which causes outward or inward spiraling movement ofthe robotic device 40, is implemented by control signals from the microprocessor to the motive system to change the turn radius/radii thereof as a function of time or distance traveled (thereby increasing/decreasing the spiral movement pattern ofthe robotic device 40).
[0034] The robotic device 40 is operated in the Spot Coverage pattern for a predetermined or random period of time, for a predetermined or random distance (e.g., a maximum spiral distance) and/or until the occurrence of a specified event, e.g., activation of one or more ofthe obstacle detection systems (collectively a transition condition). Once a transition condition occurs, the robotic device 40 can implement or transition to a different behavioral mode, e.g., a Straight Line behavioral mode (in one embodiment ofthe robotic device 40, the Straight Line behavioral mode is a low priority, default behavior that propels the robot in an approximately straight line at a preset velocity of approximately 0.306 m/s) or a Bounce behavioral mode in combination with a Straight Line behavioral mode. The Bounce behavioral mode is a basic function that allows the robot 40 to evade a stationary object or obstacle and continue its task routine. Avoidance is achieved by executing a series of turns until the obstacle is no longer detected (i.e., the bumper 48 is no longer compressed).
[0035] If the transition condition is the result ofthe robotic device 40 encountering an obstacle, the robotic device 40 can take other actions in lieu of transitioning to a different behavioral mode. The robotic device 40 can momentarily implement a behavioral mode to avoid or escape the obstacle and resume operation under control ofthe spiral algorithm (i.e., continue spiraling in the same direction). Alternatively, the robotic device 40 can momentarily implement a behavioral mode to avoid or escape the obstacle and resume operation under control ofthe spiral algorithm (but in the opposite direction - reflective spiraling). [0036] The Obstacle-Following Coverage pattern causes the robotic device 40 to clean the perimeter ofthe defined working area, e.g., a room bounded by walls, and/or the perimeter of an obstacle (e.g., furniture) within the defined working area. Preferably, the robotic device 40 utilizes an obstacle-following system to continuously maintain its position with respect to an obstacle, such as a wall or a piece of furniture, so that the motion ofthe robotic device 40 causes it to travel adjacent to and concomitantly clean along the perimeter ofthe obstacle. Different embodiments ofthe obstacle-following system can be used to implement the Obstacle-Following behavioral pattern.
[0037] In certain embodiments, the obstacle-following system is operated to detect the presence or absence ofthe obstacle. In an alternative embodiment, the obstacle-following system is operated to detect an obstacle and then maintain a predetermined distance between the obstacle and the robotic device 40. In the first embodiment, the microprocessor is operative, in response to signals from the obstacle-following system, to implement small clockwise or counterclockwise turns to maintain its position with respect to the obstacle. The robotic device 40 implements a small clockwise turn when the robotic device 40 transitions from obstacle detection to non- detection (reflection to non-reflection) or to implement a small counterclockwise turn when the robotic device 40 transitions from non-detection to detection (non-reflection to reflection). Similar turning behaviors are implemented by the robotic device 40 to maintain the predetermined distance from the obstacle.
[0038] The robotic device 40 is operated in the Obstacle-Following behavioral mode for a predetermined or random period of time, for a predetermined or random distance (e.g., a maximum or minimum distance) and/or until the occurrence of a specified event, e.g., activation of one or more ofthe obstacle detection system a predetermined number of times (collectively a transition condition). In certain embodiments, the microprocessor will cause the robotic device 40 to implement an Align behavioral mode upon activation ofthe obstacle-detection system in the Obstacle-Following behavioral mode, wherein the robot 40 implements a minimum angle counterclockwise turn to align the robotic device 40 with the obstacle. [0039] The Room Coverage pattern can be used by the robotic device 40 to clean any defined working area that is bounded by walls, stairs, obstacles or other barriers (e.g., a virtual wall unit that prevents the robotic device 40 from passing through an otherwise unbounded zone). Certain embodiments ofthe Room Coverage pattern include the Random-Bounce behavioral mode in combination with the Straight Line behavioral mode. Initially, the robotic device 40 travels under control ofthe Straight-Line behavioral mode (wheels operating at the same rotational speed in the same direction) until an obstacle is encountered. The obstacle may be indicated by physical contact with a wall or detection ofthe base station avoidance signal. Upon activation of one or more ofthe obstacle detection system, the microprocessor is operative to compute an acceptable range of new directions based upon the obstacle detection system activated. The microprocessor selects a new heading from within the acceptable range and implements a clockwise or counterclockwise turn to achieve the new heading with minimal movement, hi some embodiments, the new turn heading may be followed by forward movement to increase the cleaning efficiency ofthe robotic device 40. The new heading may be randomly selected across the acceptable range of headings, or based upon some statistical selection scheme, such as Gaussian distribution. In other embodiments ofthe Room Coverage behavioral mode, the microprocessing unit can be programmed to change headings randomly or at predetermined times, without input from the sensor system.
[0040] The robotic device 40 is operated in the Room Coverage behavioral mode for a predetermined or random period of time, for a predetermined or random distance (e.g., a maximum or minimum distance) and/or until the occurrence of a specified event, e.g., activation ofthe obstacle-detection system a predetermined number of times (collectively a transition condition).
[0041] Certain embodiments ofthe robotic device 40 include four escape behavioral modes: a Turn behavioral mode, an Edge behavioral mode, a Wheel Drop behavioral mode, and a Slow behavioral mode. One skilled in the art will appreciate that other behavioral modes can be utilized by the robotic device 40. One or more of these behavioral modes may be implemented, for example, in response to a current rise in one ofthe task components (indicating some sort of interference), the forward bumper 48 being in compressed position for determined time period, or detection of a wheel-drop event.
[0042] In the Turn behavioral mode, the robotic device 40 turns in place in a random direction, starting at higher velocity (e.g., twice normal turning velocity) and decreasing to a lower velocity (one-half normal turning velocity), i.e., small panic turns and large panic turns, respectively. Low panic turns are preferably in the range of 45° to 90°, large panic turns are preferably in the range of 90° to 270°. The Turn behavioral mode prevents the robotic device 40 from becoming stuck on surface impediments (e.g., high spot on carpet), from becoming stuck under other obstacles (e.g., an overhang), or from becoming trapped in a confined area. [0043] In the Edge behavioral mode, the robotic device 40 follows the edge of an obstacle unit it has turned through a predetermined number of degrees, without activation of any ofthe obstacle detection units, or until the robotic device 40 has turned through a predetermined number of degrees, since initiation ofthe Edge behavioral mode. The Edge behavioral mode allows the robotic device 40 to move through the smallest possible openings to escape from confined areas. [0044] In the Wheel Drop behavioral mode, the microprocessor reverses the direction of the main wheel drive assemblies momentarily, then stops them. If the activated wheel drop sensor deactivates within a predetermined time, the microprocessor then reimplements the behavioral mode that was being executed prior to the activation ofthe wheel drop sensor. [0045] In response to certain events, e.g., activation of a wheel drop sensor or a cliff detector, the Slow behavioral mode is implemented to slow down the robotic device 40 for a predetermined distance and then ramp back up to its normal operating speed.
[0046] When a safety condition is detected by the sensor subsystem, e.g., a series of task component or wheel stalls that cause the corresponding electric motors to be temporarily cycled off, or a wheel drop sensor or a cliff detection sensor activated for greater that a predetermined period of time, the robotic device 40 is generally cycled to an off state. In addition, an audible alarm may be generated.
[0047] The foregoing description of typical behavioral modes for the robotic device 40 are intended to be representative ofthe types of operating modes that can be implemented by the robotic device 40. One skilled in the art will appreciate that the behavioral modes described above can be implemented in other combinations and other modes can be defined to achieve a desired result in a particular application.
[0048] A navigational control system may be used advantageously in combination with the robotic device 40 to enhance the cleaning efficiency thereof, by adding a deterministic component (in the form of a control signal that controls the movement ofthe robotic device 40) to the motion algorithms, including random motion, autonomously implemented by the robotic device 40. The navigational control system operates under the direction of a navigation control algorithm. The navigation control algorithm includes a definition of a predetermined triggering event. [0049] Broadly described, the navigational control system, under the direction of the navigation control algorithm, monitors the movement activity ofthe robotic device 40. In one embodiment, the monitored movement activity is defined in terms ofthe "position history" ofthe robotic device 40, as described in further detail below. In another embodiment, the monitored ■ movement activity is defined in terms ofthe "instantaneous position" ofthe robotic device 40. [0050] The predetermined triggering event is a specific occurrence or condition in the movement activity ofthe robotic device 40. Upon the realization ofthe predetermined triggering event, the navigational control system operates to generate and communicate a control signal to the robotic device 40. In response to the control signal, the robotic device 40 operates to implement or execute a conduct prescribed by the control signal, i.e., the prescribed conduct. This prescribed conduct represents a deterministic component ofthe movement activity ofthe robotic device 40. [0051] While the robotic device 40 is vacuuming, it will periodically approach the stationary base station 10. Contact with the base station 10 could damage or move the base station into an area that would make docking impossible. Therefore, avoidance functionality is desirable. To avoid inadvertent contact, the base station 10 may generate an avoidance signal 60, as depicted in FIG. 3. The avoidance signal 60 is shown being transmitted from the emitter 18 on the top ofthe backstop 14. The radial range ofthe avoidance signal 60 from the base station 10 may vary, depending on predefined factory settings, user settings, or other considerations. At a minimum, the avoidance signal 60 need only project a distance sufficient to protect the base station 10 from unintentional contact with the robot 40. The avoidance signal 60 range can extend from beyond the periphery ofthe base station 10, to up to and beyond several feet from the base station 10, depending on the application. [0052] Here, the avoidance signal 60 is depicted as an omni-directional (i.e., single plane) infrared beam, although other signals are contemplated, such as a plurality of single stationary beams or signals. If stationary beams are used, however, a sufficient number could provide adequate coverage around the base station 10 to increase the chances ofthe robotic device 40 encountering them. When the detector 50 ofthe robotic device 40 receives the avoidance signal 60 from the emitter 18, the robotic device 40 can alter its course, as required, to avoid the base station 10. Alternatively, if the robotic device 40 is actively or passively seeking the base station 10 (for recharging or other docking purposes), it can alter its course toward the base station 10, such as by circling the base station 10, in such a way to increase the chances of encountering the homing signals described with respect to FIGS. 4A-4B below.
[0053] In certain embodiments, a collimated IR emitter is used, such as Waitrony p/n IE- 320H. Because of potential interference from sunlight and other IR sources, most IR devices, such as remote controls, personal digital assistants and other IR communication devices, emit signals that may be modulated. Herein, the emitters 18, 20 modulate the beams at 38 kHz. In an embodiment ofthe present invention, additional modulation ofthe beams at a frequency, for example 500 Hz, different from the frequency of common IR bit streams, prevents interference with other IR equipment. Generally, the avoidance signal 60 is coded, as are the homing signals 62, 64. The bit encoding method as well as binary codes are selected such that the robot 40 can detect the presence of each signal, even if the robot 40 receives multiple codes simultaneously. [0054] Whenever a measurable level of IR radiation from the avoidance signal 60 strikes the detector 50, the robot's IR avoidance behavior is triggered. In one embodiment, this behavior causes the robot 40 to spin in place to the left until the IR signal falls below detectable levels. The robot 40 then resumes its previous motion. Spinning left is desired in certain systems because, by convention, the robot may attempt to keep all objects to its right during following operations. The robot's avoidance behavior is consistent with its other behaviors if it spins left on detecting the avoidance signal 60. In one embodiment, the detector 50 acts as a gradient detector. When the robot 40 encounters a region of higher IR intensity, the robot 40 spins in place. Because the detector 50 is mounted at the front ofthe robot 40 and because the robot 40 does not move backward, the detector 50 always "sees" the increasing IR intensity before other parts ofthe robot 40. Thus, spinning in place causes the detector 50 to move to a region of decreased intensity. When the robot 40 next moves forward, it necessarily moves to a region of decreased IR intensity - away from the avoidance signal 60. [0055] In other embodiments, the base station 10 includes multiple coded emitters at different power levels or emitters that vary their power level using a system of time multiplexing. These create concentric coded signal rings which enable the robot 40 to navigate towards the base station 10 from far away in the room. Thus, the robot 40 would be aware ofthe presence of the base station 10 at all times, facilitating locating the base station 10, docking, determining how much ofthe room has been cleaned, etc. Alternatively, the robot 40 uses its motion through the IR field to measure a gradient of IR energy. When the sign ofthe gradient is negative (i.e., the detected energy is decreasing with motion), the robot 40 goes straight (away from the IR source). When the sign ofthe gradient is positive (energy increasing), the robot 40 turns. The net effect is to implement a "gradient descent algorithm," with the robot 40 escaping from the source ofthe avoidance signal 60. This gradient method may also be used to seek the source of emitted signals. The concentric rings at varying power levels facilitate this possibility even without a means for determination ofthe raw signal strength.
[0056] A flowchart of one embodiment ofthe control logic ofthe avoidance behavior 100 is shown in FIG. 6 A. The robot 40 determines whether the signal 110 detected by the detector 50 is an avoidance signal 60. If an avoidance signal 60 is detected, the robot 40 chooses a turning direction 120. The robot 40 then begins to turn in the chosen direction until the avoidance signal 60 is no longer detected 130. Once the avoidance signal 60 is no longer detected, the robot 40 continues turning for an additional amount 140, such as 20°, or the robot may turn randomly between 0° and 135°.
[0057] While in flowchart step 120, the direction selection algorithm 120a, illustrated in the flowchart shown in FIG. 6B, is used. The robot's control logic keeps track ofthe robot's discrete interactions with the beam. The robot 40 first increments a counter by one 122. On odd numbered interactions, the robot 40 chooses a new turning direction randomly 124, 126; on even numbered interactions, the robot 40 again uses its most recent turning direction. In the alternative, the robot 40 may choose which direction to turn at random. It will continue to turn in that direction until it has moved a sufficient distance. [0058] In other embodiments, the robot 40 can always turn in a single direction or choose a direction randomly. When the robot 40 always turns in one direction, it may get stuck in a loop by turning away from the beam, bumping into another obstacle in a room, turning back toward the beam, seeing the beam again, turning away, bumping again, ad infinitum. Moreover, when the robot 40 only turns in a single direction, it consequently may fail to vacuum certain areas of the floor. Thus, where the robot's task is to complete work evenly throughout a room, a single turning direction may not be optimal. If the direction is chosen purely randomly, the robot 40 may turn back and forth often, as it encounters the beam.
[0059] Again referring to FIG. 6 A, in the embodiment of step 140, the robot 40 turns an additional 20° from the point at which the avoidance signal 60 is lost. The arc ofthe turn can be varied for the particular robot 40 and application. The additional turn helps to prevent the robot 40 from re-encountering the avoidance signal 60 immediately after first encountering it. For - l o -
various applications, the amount of additional movement (linear or turning) can be a predetermined distance, angle or time, or in the alternative may include a random component. In still other embodiments, the robot's avoidance behavior may include reversing the robot's direction until the avoidance signal 60 is no longer detected, or as described above, the robot may turn randomly between 0° and 135° after losing the avoidance signal 60.
[0060] FIGS. 4A-4C depict the robotic device 40 in various stages of seeking the base station 10 by using the homing signals 62, 64. The robotic device 40 may seek the base station 10 when it detects the need to recharge its battery, or when it has completed vacuuming the room. As described above, once the robotic device 40 detects the presence ofthe avoidance signal 60 (and therefore the base station 10), it can move as required to detect the homing signals 62, 64. As with the avoidance signal 60 above, the projected range and orientation ofthe homing signals 62, 64 may be varied, as desired. It should be noted however, that longer signals can increase the chance ofthe robot 40 finding the base station 10 efficiently. Longer signals can also be useful if the robotic device 40 is deployed in a particularly large room, where locating the base station 10 randomly could be inordinately time consuming. Homing signal 62, 64 ranges that extend from approximately six inches beyond the front ofthe base plate 12, to up to and beyond several feet beyond the base plate 12 are contemplated, depending on application. Naturally, the angular width ofthe homing signals 62, 64 may vary depending on application, but angular widths in the range of 5° to up to and beyond 60° are contemplated. A gradient behavior as described above can also be used to aid the robot in seeking out the base station.
[0061] In addition to operating as navigational beacons, homing signals 62, 64 (and even the avoidance signal 60) may also be used to transmit information, including programming data, fail safe and diagnostic information, docking control data and information, maintenance and control sequences, etc. In such an embodiment, the signals can provide the control information, dictating the robot's reactions, as opposed to the robot 40 taking certain actions upon contacting certain signals from the base station 10. In that case, the robot 40 functions as more of a slave to the base station 10, operating as directed by the signals sent.
[0062] The robot 40 performs its docking with the base station 10 accurately and repeatably, without the need for gross mechanical guidance features. The two homing signals 62, 64 are distinguishable by the robotic device, for example as a red signal 62 and a green signal 64. IR beams are generally used to produce the signals and, as such, are not visible. The color distinction is given for illustrative purposes only, and any "color" (i.e., signal bit pattern) may be used, provided the robotic device 40 recognizes which signal to orient a particular side. Alternatively, the signals 62, 64 may be distinguished by using different wavelengths or by using different carrier frequencies (e.g., 380 kHz versus 38 kHz, etc.).. [0063] Thus, when the robotic device 40 wants or needs to dock, if the detector 50 receives the red signal 62 transmitting from the base station 10, it moves to keep the red signal 62 on the robot's right side; if it detects the green signal 64 ttansmitting from the base station 10, it moves to keep the green signal 64 on the robot's left side. Where the two signals overlap (the "yellow" zone 66), the robot 40 knows that the base station 10 is nearby and may then dock. Such a system may be optimized to make the yellow zone 66 as thin as practicably possible, to ensure proper orientation and approach ofthe robot 40 and successful docking. Alternatively, the red signal 62 and green signal 64 may be replaced by a single signal, which the robot 40 would follow until docked. [0064] FIGS. 4A-4C depict, at various stages, a docking procedure utilizing two signals. In FIG. 4 A, the detector 50 is in the green or left signal 64 field, and thus the robotic device 40 will move towards the right, in direction MR in an effort to keep that green signal 64 to the left ofthe robot 40 (in actuality, the robot 40 moves to keep the green signal 64 to the left ofthe detector 50). Similarly, in FIG. 4B, the detector 50 is in the red or right signal 62 field, and thus the robotic device 40 will move towards the left, in direction M in an effort to keep that red signal 64 to the right ofthe detector 50. Last, in FIG. 4C, the detector 50 has encountered yellow zone 66. At this point, the robotic device 40 will move in direction Mp directly towards the base station 10. While approaching the base station 10, the robotic device 40 may slow its speed of approach and/or discontinue vacuuming, or perform other functions to ensure trouble-free docking. These operations may occur when the robot 40 detects the avoidance signal 60, thus recognizing that it is close to the base station 10, or at some other predetermined time, e.g., upon a change in the signal from the emitters 62, 64.
[0065] Narious methods are contemplated for ensuring that the robot 40 correctly docks with base station 10. For example, the robot 40 can continue to move toward the base station 10 (within the yellow zone 66) until the bumper 48 is depressed, signaling the robot 40 that it has contacted the base station 10. Another embodiment overlaps the homing signals 62, 64 such that the yellow zone 66 terminates at a point calibrated such that the robot 40 will contact the charging contacts 16 upon reaching the termination point. Other embodiments simply stop the robot 40 when its electrical contacts touch the electrical contacts 16 on the base station 10. This would guarantee that the robot 40 is moving over the contacts 16, providing a wiping action that cleans the contacts 16 and improves the electrical integrity ofthe connection. This also enables the base station 10 to be lighter, since it does not have to resist the force necessary to depress the robot's bumper 48. FIG. 5 shows the robotic device 40 completely docked with the base station 10. Naturally, this procedure may also utilize detector 52 or a combination of both detectors. [0066] While this embodiment ofthe invention describes use of IR signals for both avoidance and homing, the system and method ofthe present invention can use other signals to accomplish the goals. Other types of waves may have drawbacks, however. For example, radio waves are more difficult and expensive to make directional, and visible light suffers from interference from many sources and may be distracting to users. Sound waves could also be used, but it is similarly difficult to make sound purely directional and such waves tend to scatter and reflect more. [0067] FIG. 7 depicts a schematic diagram which shows the control sequence 200 ofthe robotic device 40 during vacuuming. Generally, the control sequence 200 includes three subsequences based on the measured energy level ofthe robotic device 40. Those are referenced generally as a high energy level 210, a medium energy level 220, and a low energy level 230. In the high energy level subsequence 210, the robotic device 40 performs its predetermined task, in this case, vacuuming (utilizing various behavioral modes as described above), while avoiding the base station 212. When avoiding the base station 212, the robotic device 40 performs its avoidance behavior and continues to operate normally. This process continues while the robotic device 40 continually monitors its energy level 214. Narious methods are available to monitor the energy level 214 ofthe power source, such as coulometry (i.e., the measuring of current constantly entering and leaving the power source), or simply measuring voltage remaining in the power source. Other embodiments ofthe robotic device 40 may simply employ a timer and a look-up table stored in memory to determine how long the robotic device 40 can operate before it enters a different energy level subsequence. Still other embodiments may simply operate the robot 40 for a predetermined time period before recharging, without determining which energy level subsequence it is operating in. If the robot 40 operates on a liquid or gaseous fuel, this level may also be measured with devices currently known in the art.
[0068] Once the energy remaining drops below a predetermined high level, the robot 40 enters its medium energy level sequence 220. The robot 40 continues to vacuum and monitor its energy level 224, employing methods indicated in step 214 above. In the medium energy level 220, however, the robot 40 "passively seeks" 222 the base station 10. While passively seeking 222 the base station 10, the robot 40 does not alter its travel characteristics; rather, it continues about its normal behavioral mode until it fortuitously detects the avoidance signal 60 or a homing signal 62, 64, each of which may be followed until the robot 40 ultimately docks with the base station 10. In other words, if the robot detects the avoidance signal 60 while passively seeking 222, rather than avoiding the base station 10 as it normally would, it alters its travel characteristics until it detects the homing signals 62 or 64, thus allowing it to dock. [0069] Alternatively, the robot 40 continues operating in this medium energy level subsequence 220 until it registers an energy level 224 below a predetermined low level. At this point, the robot 40 enters the low level subsequence 230, characterized by a change in operation and travel characteristics. To conserve energy, the robot 40 may discontinue powering all incidental systems, and operations, such as vacuuming, allowing it to conserve as much energy as possible for "actively searching" 232 for the base station 10. While actively searching 232, the robot 40 may alter its travel characteristics to increase its chances of finding the base station 10. It may discontinue behavioral modes such as those employing a spiral movement, which do not necessarily create a higher chance of locating the base station, in favor of more deliberate modes, such as wall-following. This deliberate seeking will continue until the robot 40 detects the presence ofthe base station 10, either by detecting the avoidance signal 60 or the homing signals 62, 64. Clearly, additional subsequences may be incorporated which sound alarms when the power remaining reaches a critical level, or which reconstruct the route the robot 40 has taken since last contacting the base station 10 to aid in relocating the station 10. [0070] The robot 40 may also dock because it has determined that it has completed its assigned task (e.g., vacuuming a room). The robot 40 may make this determination based on a variety of factors, including considerations regarding room size, total run time, total distance traveled, dirt sensing, etc. Alternatively, the robot may employ room-mapping programs, using the base station 10 and/or walls and large objects as points of reference. Upon determining that it has completed its task, the robot 40 will alter its travel characteristics in order to find the base station 10 quickly. [0071] Once the robot 40 contacts the base station 10, it can recharge itself autonomously. Circuitry within the base station 10 detects the presence ofthe robot 40 and then switches on the charging voltage to its contacts 16. The robot 40 then detects the presence ofthe charging voltage and then switches on its internal transistor power switch to allow current flow into the battery. In one embodiment, the base station 10 contains a constant-current type switching charger. Maximum current is limited to approximately 1.25 amps even under a short circuit condition. Maximum unloaded terminal voltage is limited to approximately 22Ndc. This constant-current charging circuit is used to charge the battery in the robot 40 via the electrical connections provided by the contacts 16 on the base station 10 and those on the undercarriage 54 ofthe robot 40. One embodiment of this charging sequence is detailed below. [0072] Generally, while the robot 40 is away from the base station 10, the charging contacts 16 will present five volts, limited to 1mA maximum short circuit current flow. This low voltage/low current "sense" condition limits the amount of available energy at the contacts 16, thus rendering them safe in the event they are contacted by humans, animals, and electrically conductive objects. The contacts on the undercarriage 54 ofthe robot 40, when contacting the contacts 16 on the base station 10, present a precise resistive load that, along with a resistor in the base station 10, creates a high impedance voltage divider. A microprocessor that constantly monitors the voltage across the contacts 16 recognizes this lower voltage. This voltage divider creates a specific voltage, plus or minus a known tolerance. When the microprocessor determines that the voltage has fallen into the specific range, it detects that the robot 40 is present. The microprocessor then turns on a transistor switch that delivers a higher voltage/current charge (capable of charging the robot's internal battery) to the charging contacts 16. Alternatively, the robot 40 and/or base station 10 can verify the integrity ofthe charging circuit by sending signals through the IR beams, thereby confirming that the robot 40 has, in fact, docked.
[0073] FIG. 8 depicts an embodiment ofthe charger circuitry schematic. With five volts being presented by the base station, it is the job of resistor dividers R101 and Rl 16 to hold Q48 and Q5 off when J25 is in contact with the initial low voltage state. This divider also provides the known impedance of R101 plus Rl 16 in parallel with R224 plus the base-emitter diode drop of Q48. This Thevenin impedance is in series with a resistor in the docking station thus forming a voltage divider. A window comparator circuit within the docking station looks for a specific voltage created by the divider. Once the base station has determined this impedance is likely the robot (not some other conductive body), it then delivers the full 22 volt capable, 1.25 Amp charging voltage to the robot. [0074] At the onset of this higher voltage, the divider of Rl 01 and R224 are such that the requirements are met to turn on Q48 and Q5 respectively. It is this combination of transistors that then allows current to flow to the on-board robot electronics only, allowing the robot's processor to become active if in fact it was inoperative due to a depleted battery. [0075] Once operative, the robot's processor is then able to detect the presence ofthe base station voltage via Rl 13 and D 15 and if driving, turn off its drive motors. Once stable on the charging contacts, it becomes the job ofthe robot processor to measure the internal robot battery and decide when and what type of charging control cycle is needed when allowing current to flow into the battery. For example, if the battery is at 12 volts, then it is acceptable to turn on Q45 and Q47 via processor control, in order to allow current to flow through FET U9 to the battery on a continuous basis.
[0076] If, however, the battery voltage is deemed less than 5 volts, it generally would not be desirable to allow the full current to flow to the battery on a continuous basis. The reason this condition is of concern lies in the fact that the power source within the DOC is a constant current charger, which will adjust its output voltage to be slightly higher than the battery voltage in order to flow 1.25 A into the battery. In some cases, this might be millivolts higher than the battery voltage itself and in the case ofthe battery at low voltage, for example, 3 volts, would cause the output voltage to drop below the necessary 5 volt level needed to operate the on board base station and robot electronics suite. [0077] In this case, the robot processor then delivers a pulse width modulation to the charger control line pertaining to Q47, such that the energy storage capacitors in both the robot and base station maintain enough charge to keep their respective electronics working properly throughout the charge pulse. The energy storage capacitors are then replenished during the off time ofthe pulse width modulation charging cycle, ready to then sustain the next charge pulse. This scenario continues until the battery has been charged to the point where a continuous charge is no longer able to bring the supply voltage down to a critical level and the charge control can become a static level.
[0078] Since this pulse width modulation process in this embodiment relies on software control, health monitoring ofthe processor, both within the base station and robot, are important. The requirement then set fourth for charging is for a charger "watchdog" be incorporated via Q45 such that a static high or low state on this signal line will disable current flow into the battery. It is a requirement ofthe robot processor to continuously pulse this control line in order for any current to flow, therefore eliminating most cases of processor latch up due to electrostatic discharge or other battery related events from mistreating the charging profile. Naturally, other control and related fail safe schemes could be utilized.
[0079] The described charging sequence provides particular safety features, even though the charging contacts 16 are exposed and energized. Because a specific resistance is required to create a specific voltage drop across the contacts 16 when the 5-volt sense voltage is present (i.e., when the robot 40 is not docked) there is no danger of electric shock due to accidental contact because the low sense current is harmless. Also, the base station 10 will never switch to the higher voltage/current level, because the sense current has not entered the predetermined range. When the base station 10 does determine that the robot 40 is present, it delivers the charging voltage/current. This charging current is limited to approximately 22 volts/ 1.25 amps maximum. Even if inadvertent contact occurred during delivery ofthe charging current ~ which is unlikely, since the robot chassis 44 effectively blocks the contacts 16 — the voltage delivered would not present a serious shock hazard, as it is relatively low. [0080] Another level of safety is afforded by the base station 10 checking for the robot 40 at regular intervals, from as little as once per minute to as much as 10 times per second or more. Thus, in the event that the robot 40 is dislodged from the base station 10 (either by an animal or human), the charging current could be shut down immediately. This same condition applies if the contacts 16 are short circuited with the robot 40 docked (either intentionally or accidentally, for example, if the robot 40 drags debris onto the charging contacts 16).
[0081] An additional safety feature of this charging sequence prevents overheating of contacts 16 due to intentional shorting or oxidation. A thermal circuit breaker or similar device can be employed to perform this task, as well as a microprocessor equipped with a temperature measuring subroutine. The circuit breaker, however, provides the advantage of controlling contact temperature in the event of a microprocessor or software failure. Additionally, the base station 10 circuitry can also incorporate a timer to reset the temperature measuring subroutine or circuit breaker in the event of system failure. These safety controls may be incorporated into the "watchdog" described above. [0082] While docked with the base station 10, the robot 40 can also perform other maintenance or diagnostic checks. In certain embodiments, the robot 40 can completely recharge its power source or only partially charge it, based on various factors. For example, if the robot 40 determines, through the use of route-tracking subroutines, that only a small portion ofthe room still requires vacuuming, it may take only a minimal charge before returning to complete cleaning ofthe room. If, however, the robot 40 requires a full charge before returning to clean the room, that option is also available. If the robot 40 has completed its vacuuming ofthe room prior to docking, it may dock, fully recharge, and stand by to await a signal (either internal or external) to begin its next cleaning cycle. While in this stand-by mode, the robot 40 may continue to measure its energy levels and may begin charging sequences upon reaching an energy level below a predetermined amount. Alternatively, the robot 40 may maintain a constant or near-constant trickle charge to keep its energy levels at or near peak. Other behaviors while in the docking position such as diagnostic functions, internal mechanism cleaning, communication with a network, or data manipulation functions may also be performed.
[0083] While there have been described herein what are to be considered exemplary and preferred embodiments ofthe present invention, other modifications ofthe invention will become apparent to those skilled in the art from the teachings herein. The particular methods of manufacture and geometries disclosed herein are exemplary in nature and are not to be considered limiting. It is therefore desired to be secured in the appended claims all such modifications as fall within the spirit and scope ofthe invention. Accordingly, what is desired to be secured by Letters Patent is the invention as defined and differentiated in the following claims.
[0084] What is claimed is:

Claims

Claims 1. A method for energy management in a robotic device, the robotic device comprising at least one energy storage unit and a signal detector, the method comprising the steps of: providing a base station for mating with the robotic device, the base station comprising a plurality of signal emitters including a first signal emitter and a second signal emitter; determining a quantity of energy stored in the energy storage unit, the quantity characterized at least by a high energy level and a low energy level; and performing, by the robotic device, a predetermined task based at least in part on the quantity of energy stored.
2. The method of claim 1 wherein the step of determining a quantity of energy stored comprises using coulometry.
3. The method of claim 1 wherein the step of determining a quantity of energy stored comprises setting a time period.
4. The method of claim 1 wherein the step of performing the predetermined task occurs when the quantity of energy stored exceeds the high energy level, the predetermined task comprising movement ofthe robotic device away from the base station in response to reception, by the signal detector, of a base station avoidance signal.
5. The method of claim 1 further comprising the step of returning the robotic device to the base station in response to reception, by the signal detector, of a base station homing signal.
6. The method of claim 5 wherein the step of returning the robotic device to the base station occurs when the quantity of energy stored is less than the high energy level.
7. The method of claim 5 wherein the step of returning the robotic device to the base station occurs when the quantity of energy stored is less than the low energy level, and wherein the predetermined task comprises a reduction in energy use by the robotic device.
8. The method of claim 7 wherein the predetermined task further comprises altering a travel characteristic ofthe robotic device.
9. The method of claim 5 further comprising the step of charging the robotic device.
10. The method of claim 9 further comprising the step of resuming the predetermined task.
11. A method of docking a robotic device with a base station comprising a plurality of signal emitters including a first signal emitter and a second signal emitter, the method comprising the steps of: orienting the robotic device in relation to (i) a first signal transmitted by the first signal emitter and (ii) a second signal transmitted by the second signal emitter; and maintaining an orientation ofthe robotic device relative to the first and second signals as the robotic device approaches to the base station.
12. The method of claim 11 further comprising the steps of: detecting, by the robotic device, an overlap between the first signal and the second signal; following, by the robotic device, a path defined at least in part by the signal overlap; and docking the robotic device with the base station.
13. The method of claim 12 wherein the step of following the path defined at least in part by the signal overlap comprises reducing velocity ofthe robotic device.
14. The method of claim 12 wherein the step of docking the robotic device with the base station comprises: detecting, by the robotic device, contact with charging terminals on the base station; and stopping movement of the robotic device.
15. The method of claim 14 further comprising the step of charging the robotic device.
16. The method of claim 15 wherein the step of charging the robotic device comprises a plurality of charging levels. ,
17. An autonomous system comprising a base station comprising: charging terminals for contacting an external terminal of a robotic device; and a first signal emitter and a second signal emitter.
18. The autonomous system of claim 17 wherein the first signal emitter transmits a base station avoidance signal.
19. The autonomous system of claim 17 wherein the second signal emitter transmits a base station homing signal.
20. The autonomous system of claim 19 wherein the homing signal comprises a pair of signals.
21. The autonomous system of claim 20 wherein the pair of signals comprise a first signal and a second different signal.
22. The autonomous system of claim 21 wherein the first signal and the second signal overlap.
23. The autonomous system of claim 17 wherein the first signal emitter and the second signal emitter transmit at least one optical signal. - 2o -
24. The autonomous system of claim 17 further comprising a robotic device for performing a predetermined task, the robotic device comprising: at least one energy storage unit with external terminals for contacting the charging terminals; and at least one signal detector.
25. The autonomous system of claim 24 wherein the at least one signal detector is adapted to detect at least one optical signal.
26. A method of charging a battery of a device, the method comprising the steps of: providing low energy to charging terminals of a charger; detecting presence of the device by monitoring at least one of a predetermined change in and a predetermined magnitude of a parameter associated with the charger; and increasing energy to the charging terminals to charge the battery.
27. The method according to claim 26, further comprising the steps of: determining a level of charge in the device; and permitting charging ofthe battery in the device when the level of charge is below a predetermined threshold.
28. A system for charging a mobile device, the system comprising: a stationary charger comprising a plurality of first charging terminals; circuitry for detecting presence ofthe device by monitoring at least one of a predetermined change in and a predetermined magnitude of a parameter associated with the charger; and a mobile device comprising: a battery; and a plurality of second charging terminals adapted to mate with first charging terminals.
29. The system of claim 28, wherein the circuitry determines a level of charge in the battery and controls an power level provided to the first charging terminals.
30. The system of claim 29 wherein the circuitry increases the power level provided to the first charging terminals upon measuring a predetermined voltage across the first charging terminals when mated with the second charging terminal.
PCT/US2004/001504 2004-01-21 2004-01-21 Method of docking an autonomous robot WO2005081074A1 (en)

Priority Applications (22)

Application Number Priority Date Filing Date Title
EP20100181174 EP2273335B8 (en) 2004-01-21 2004-01-21 Method of docking an autonomous robot
KR1020147025894A KR101719404B1 (en) 2004-01-21 2004-01-21 Method of docking an autonomous robot
KR1020117029356A KR101214667B1 (en) 2004-01-21 2004-01-21 Method of docking an autonomous robot
KR1020097025882A KR101149151B1 (en) 2004-01-21 2004-01-21 Method of docking an autonomous robot
KR1020147004446A KR101497883B1 (en) 2004-01-21 2004-01-21 Method of docking an autonomous robot
KR1020127003177A KR101460867B1 (en) 2004-01-21 2004-01-21 Method of docking an autonomous robot
AU2004316156A AU2004316156B2 (en) 2004-01-21 2004-01-21 Method of docking an autonomous robot
EP20100160949 EP2204717B1 (en) 2004-01-21 2004-01-21 Method of docking an autonomous robot
EP20100181187 EP2273336B1 (en) 2004-01-21 2004-01-21 Method of docking an autonomous robot
KR1020157027048A KR20150117306A (en) 2004-01-21 2004-01-21 Method of docking an autonomous robot
JP2006551013A JP4472709B2 (en) 2004-01-21 2004-01-21 Autonomous robot docking method
EP20040704061 EP1706797B1 (en) 2004-01-21 2004-01-21 Method of docking an autonomous robot
KR1020107025523A KR101131375B1 (en) 2004-01-21 2004-01-21 A robot and a docking station for the robot
EP20080151962 EP1921523B1 (en) 2004-01-21 2004-01-21 Method of charging a battery of a robotic device
DE602004028183T DE602004028183D1 (en) 2004-01-21 2004-01-21 Method for charging the battery of a robot
KR1020117017478A KR101154662B1 (en) 2004-01-21 2004-01-21 An autonomous robotic device
DE602004014817T DE602004014817D1 (en) 2004-01-21 2004-01-21 METHOD FOR DOCKING AN AUTONOMOUS ROBOT
KR1020137023507A KR101437805B1 (en) 2004-01-21 2004-01-21 Method of docking an autonomous robot
PCT/US2004/001504 WO2005081074A1 (en) 2004-01-21 2004-01-21 Method of docking an autonomous robot
KR1020127000418A KR101358475B1 (en) 2004-01-21 2004-01-21 Method of docking an autonomous robot
KR1020067014807A KR101086092B1 (en) 2004-01-21 2004-01-21 Method of docking an autonomous robot
AU2010212297A AU2010212297B2 (en) 2004-01-21 2010-08-12 Method of docking an autonomous robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2004/001504 WO2005081074A1 (en) 2004-01-21 2004-01-21 Method of docking an autonomous robot

Publications (1)

Publication Number Publication Date
WO2005081074A1 true WO2005081074A1 (en) 2005-09-01

Family

ID=52452349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/001504 WO2005081074A1 (en) 2004-01-21 2004-01-21 Method of docking an autonomous robot

Country Status (6)

Country Link
EP (5) EP1706797B1 (en)
JP (1) JP4472709B2 (en)
KR (11) KR101086092B1 (en)
AU (2) AU2004316156B2 (en)
DE (2) DE602004028183D1 (en)
WO (1) WO2005081074A1 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007065030A3 (en) * 2005-12-02 2007-09-20 Irobot Corp Autonomous coverage robot navigation system
DE102007036231A1 (en) * 2007-08-02 2009-02-05 BSH Bosch und Siemens Hausgeräte GmbH Method for controlling mobility of mobile device to stationary device, particularly for battery driven dust collecting robot to battery-charging station, involves emitting two guide signals with partially overlapping radiation lobes
JP2009518716A (en) * 2005-12-02 2009-05-07 アイロボット コーポレーション Robot system
EP2065774A1 (en) * 2005-12-02 2009-06-03 Irobot Corporation Autonomous coverage robot navigation system
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8800107B2 (en) 2010-02-16 2014-08-12 Irobot Corporation Vacuum brush
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
KR101660703B1 (en) 2015-06-26 2016-09-28 주식회사 유진로봇 Visual homing system and method using stereo camera and active logo
WO2018165508A1 (en) * 2017-03-10 2018-09-13 Diversey, Inc. Safety module for a floor cleaning unit
US10268189B2 (en) 2014-04-09 2019-04-23 Jason Yan Signal guided cleaning device and signal guided cleaning system thereof
US10557936B2 (en) * 2017-06-30 2020-02-11 Gopro, Inc. Target value detection for unmanned aerial vehicles
US10698417B2 (en) 2016-05-06 2020-06-30 Mtd Products Inc Autonomous mower navigation system and method
US11609575B2 (en) 2019-11-20 2023-03-21 Samsung Electronics Co., Ltd. Mobile robot device and method for controlling mobile robot device

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101086092B1 (en) * 2004-01-21 2011-11-25 아이로보트 코퍼레이션 Method of docking an autonomous robot
DE102004014273A1 (en) * 2004-03-22 2005-10-13 BSH Bosch und Siemens Hausgeräte GmbH Surface machining system
KR100907277B1 (en) * 2007-02-06 2009-07-13 성균관대학교산학협력단 Auto Recharging System for Mobile Robot and Method thereof
KR100845531B1 (en) * 2007-06-29 2008-07-10 (주)하기소닉 Docking system for self-charge of a mobile robot using anisotropic ultrasonic sensors
JP2009012668A (en) * 2007-07-06 2009-01-22 Sharp Corp Controller, and mobile robot system using it
JP4710058B2 (en) * 2008-02-20 2011-06-29 Necアクセステクニカ株式会社 Charger
TWI407280B (en) * 2009-08-20 2013-09-01 Nat Univ Tsing Hua Automatic searching system and method
US8942862B2 (en) * 2010-03-17 2015-01-27 Husqvarna Ab Method and system for guiding a robotic garden tool to a predetermined position
TWI424296B (en) * 2010-05-25 2014-01-21 Micro Star Int Co Ltd Guidance device and operation system utilizing the same
TWI409605B (en) * 2010-07-14 2013-09-21 Qisda Corp Electronic apparatus capable of automatic location and moving, and automatic homing method for moving element thereof
DE102010042227A1 (en) 2010-10-08 2012-04-12 Robert Bosch Gmbh Method and charging station for electrically charging an electrical energy store
US9480379B2 (en) * 2011-10-21 2016-11-01 Samsung Electronics Co., Ltd. Robot cleaner and control method for the same
WO2013127350A1 (en) * 2012-03-02 2013-09-06 苏州宝时得电动工具有限公司 Automatically travelling device and control method therefor
CN102799181B (en) * 2012-08-02 2015-05-27 江苏苏美达科技产业有限公司 Charging station system for automatic working device
US9178370B2 (en) * 2012-12-28 2015-11-03 Irobot Corporation Coverage robot docking station
CN103356136B (en) * 2013-07-24 2016-04-20 莱克电气股份有限公司 Optimize the method that robot cleaner charging returns docking location
CN104571102A (en) * 2013-10-21 2015-04-29 苏州宝时得电动工具有限公司 Butting system
CN103645733B (en) * 2013-12-02 2014-08-13 江苏建威电子科技有限公司 A robot automatically finding a charging station and a system and method for automatically finding a charging station thereof
EP3111285B1 (en) * 2014-02-25 2020-02-12 Alfred Kärcher SE & Co. KG Method for docking a floor treatment device to a base station, and floor treatment system
FR3021914B1 (en) * 2014-06-05 2018-02-23 Aldebaran Robotics BASE FOR RECHARGING A BATTERY AND METHOD FOR CHARGING USING SUCH A BASE
TWI551877B (en) * 2014-06-27 2016-10-01 Mobile guidance device and mobile guidance method
KR102180548B1 (en) * 2014-07-15 2020-11-18 엘지전자 주식회사 Docking station and Robot cleaning system including the same
JP6378986B2 (en) * 2014-09-11 2018-08-22 シャープ株式会社 Self-propelled electronic device and its return method
KR101520900B1 (en) * 2014-10-20 2015-05-21 곽병우 Robot-type AC Power Supply Apparatus
USD760649S1 (en) 2015-06-22 2016-07-05 Mtd Products Inc Docking station
US10967752B2 (en) * 2015-06-26 2021-04-06 Positec Power Tools (Suzhou) Co., Ltd. Autonomous mobile device and wireless charging system thereof
KR20170008614A (en) * 2015-07-14 2017-01-24 삼성전자주식회사 A movable object, a remote controller for controlling a movement of the movable object, a system for controlling of a movement of the movable object, a vacuum cleaner, a system for controlling of a movement of the vacuum cleaner, a method for controlling of a movement of the movable object and a method for controlling of a movement of the vacuum cleaner
KR102431996B1 (en) * 2015-10-12 2022-08-16 삼성전자주식회사 Cleaning robot and controlling method thereof
CN107037807B (en) * 2016-02-04 2020-05-19 科沃斯机器人股份有限公司 Self-moving robot pose calibration system and method
KR101943575B1 (en) * 2016-12-16 2019-01-29 충남대학교 산학협력단 PSD module for easy measurement at close range
CN106712194A (en) * 2017-01-18 2017-05-24 成都黑盒子电子技术有限公司 Automatic charging control method of robot
EP3413424B1 (en) 2017-06-09 2020-12-23 Andreas Stihl AG & Co. KG Method for determining an item of information for operating a battery, method for determining different times for charging different batteries and electric gardening and/or forest system
US10401864B2 (en) * 2017-09-22 2019-09-03 Locus Robotics Corp. Electrical charging system and method for an autonomous robot
CN109557908B (en) * 2017-09-27 2022-06-14 九阳股份有限公司 Robot navigation method and system based on projection virtual wall
GB2566959A (en) * 2017-09-28 2019-04-03 Black & Decker Inc Robotic device
KR102046057B1 (en) 2018-07-17 2019-11-18 (주)원익로보틱스 Apparatus and method for docking mobile robot
DE102018214450A1 (en) 2018-08-27 2020-02-27 BSH Hausgeräte GmbH Impedance detection of a consumer at a charging station
DE102018214449A1 (en) 2018-08-27 2020-02-27 BSH Hausgeräte GmbH Charging station for a consumer, arrangement comprising the consumer and the charging station and method
CA3121163C (en) * 2018-11-28 2023-09-05 Sharkninja Operating Llc Optical beacon for autonomous device and autonomous device configured to use the same
AU2020100041A4 (en) * 2019-01-11 2020-02-20 Bissell Inc. Artificial barrier for autonomous floor cleaner
WO2020153442A1 (en) * 2019-01-25 2020-07-30 シャープ株式会社 Mobile electronic apparatus, docking station and docking method
WO2021012525A1 (en) * 2019-07-24 2021-01-28 苏州宝时得电动工具有限公司 Method for controlling automatic locomotion device to return to station, and automatic locomotion device
CN110561449B (en) * 2019-08-30 2021-05-04 南京斯杩克机器人技术有限公司 Catering greeting robot and using method thereof
CN110609550B (en) 2019-09-11 2021-02-23 珠海市一微半导体有限公司 Method for preventing robot from colliding with charging seat
KR20210036160A (en) * 2019-09-25 2021-04-02 삼성전자주식회사 Robot cleaner and control method thereof
DE102019216919A1 (en) * 2019-11-04 2021-05-06 Contitech Antriebssysteme Gmbh System for generating a charging voltage for charging a battery of a vehicle
CN112186850A (en) * 2020-09-28 2021-01-05 达闼机器人有限公司 Intelligent robot charging pile
CN112636419A (en) * 2020-12-14 2021-04-09 蚌埠海航科技有限公司 Multi-station anti-creeping battery charging cabinet
CN113475987A (en) * 2021-08-17 2021-10-08 北京石头世纪科技股份有限公司 Charging pile
WO2023091703A1 (en) * 2021-11-22 2023-05-25 Locus Robotics Corp. A robot charging dock with illuminated charge connector
BE1029953B1 (en) * 2021-11-23 2023-06-19 Miele & Cie Cleaning station for vacuum robot and cleaning system
DE102022125143A1 (en) * 2022-09-29 2024-04-04 Miele & Cie. Kg Method and control device for operating a cleaning device and cleaning device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012681A (en) * 1975-01-03 1977-03-15 Curtis Instruments, Inc. Battery control system for battery operated vehicles
US4679152A (en) * 1985-02-20 1987-07-07 Heath Company Navigation system and method for a mobile robot
US20020120364A1 (en) * 1997-11-27 2002-08-29 Andre Colens Mobile robots and their control system
FR2828589A1 (en) * 2001-08-07 2003-02-14 France Telecom Vehicle battery station electrical recharging having vehicle/vehicle station with pluggable connectors with connectors parallel plane placed and having play up to 20 cm.
EP1331537A1 (en) * 2002-01-24 2003-07-30 iRobot Corporation Method and system for robot localization and confinement of workspace
WO2004006034A2 (en) * 2002-07-08 2004-01-15 Alfred Kärcher Gmbh & Co. Kg Floor treatment system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8302456A (en) * 1983-07-11 1985-02-01 Rueti Te Strake Bv Device for attaching an auxiliary member to the reed of a rinse-less weaving machine.
US5045769A (en) * 1989-11-14 1991-09-03 The United States Of America As Represented By The Secretary Of The Navy Intelligent battery charging system
US5404461A (en) 1991-03-29 1995-04-04 International Business Machines Corp. Broadcast/switching apparatus for executing broadcast/multi-cast transfers over unbuffered asynchronous switching networks
KR970000583B1 (en) * 1994-05-26 1997-01-14 삼성전자 주식회사 Method for leading charging of a robot cleaner
US5821730A (en) * 1997-08-18 1998-10-13 International Components Corp. Low cost battery sensing technique
US6594844B2 (en) 2000-01-24 2003-07-22 Irobot Corporation Robot obstacle detection system
US6883201B2 (en) 2002-01-03 2005-04-26 Irobot Corporation Autonomous floor-cleaning robot
US6690134B1 (en) 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
CA2376828C (en) 2001-03-16 2005-10-11 Daniel Chura Method and apparatus for attracting and collecting insects
AU767561B2 (en) * 2001-04-18 2003-11-13 Samsung Kwangju Electronics Co., Ltd. Robot cleaner, system employing the same and method for reconnecting to external recharging device
KR100437159B1 (en) * 2001-08-06 2004-06-25 삼성광주전자 주식회사 External charging apparatus and robot cleaner system employing and method of rejoining the same
US6580246B2 (en) * 2001-08-13 2003-06-17 Steven Jacobs Robot touch shield
WO2004025947A2 (en) 2002-09-13 2004-03-25 Irobot Corporation A navigational control system for a robotic device
KR101086092B1 (en) * 2004-01-21 2011-11-25 아이로보트 코퍼레이션 Method of docking an autonomous robot

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012681A (en) * 1975-01-03 1977-03-15 Curtis Instruments, Inc. Battery control system for battery operated vehicles
US4679152A (en) * 1985-02-20 1987-07-07 Heath Company Navigation system and method for a mobile robot
US20020120364A1 (en) * 1997-11-27 2002-08-29 Andre Colens Mobile robots and their control system
FR2828589A1 (en) * 2001-08-07 2003-02-14 France Telecom Vehicle battery station electrical recharging having vehicle/vehicle station with pluggable connectors with connectors parallel plane placed and having play up to 20 cm.
EP1331537A1 (en) * 2002-01-24 2003-07-30 iRobot Corporation Method and system for robot localization and confinement of workspace
WO2004006034A2 (en) * 2002-07-08 2004-01-15 Alfred Kärcher Gmbh & Co. Kg Floor treatment system

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8478442B2 (en) 2000-01-24 2013-07-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8565920B2 (en) 2000-01-24 2013-10-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8761935B2 (en) 2000-01-24 2014-06-24 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8686679B2 (en) 2001-01-24 2014-04-01 Irobot Corporation Robot confinement
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8516651B2 (en) 2002-01-03 2013-08-27 Irobot Corporation Autonomous floor-cleaning robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8749196B2 (en) 2004-01-21 2014-06-10 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8461803B2 (en) 2004-01-21 2013-06-11 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8598829B2 (en) 2004-01-28 2013-12-03 Irobot Corporation Debris sensor for cleaning apparatus
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8456125B2 (en) 2004-01-28 2013-06-04 Irobot Corporation Debris sensor for cleaning apparatus
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US9360300B2 (en) 2004-03-29 2016-06-07 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8966707B2 (en) 2005-02-18 2015-03-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8774966B2 (en) 2005-02-18 2014-07-08 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8670866B2 (en) 2005-02-18 2014-03-11 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8782848B2 (en) 2005-02-18 2014-07-22 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US10470629B2 (en) 2005-02-18 2019-11-12 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
JP2014075133A (en) * 2005-12-02 2014-04-24 Irobot Corp Autonomous coverage robot navigation system
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US9599990B2 (en) 2005-12-02 2017-03-21 Irobot Corporation Robot system
WO2007065030A3 (en) * 2005-12-02 2007-09-20 Irobot Corp Autonomous coverage robot navigation system
JP2009518715A (en) * 2005-12-02 2009-05-07 アイロボット コーポレーション Autonomous coverage robot navigation system
US8954192B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Navigating autonomous coverage robots
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8761931B2 (en) 2005-12-02 2014-06-24 Irobot Corporation Robot system
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
JP2009518716A (en) * 2005-12-02 2009-05-07 アイロボット コーポレーション Robot system
JP2016157464A (en) * 2005-12-02 2016-09-01 アイロボット コーポレイション Autonomous coverage robot navigation system
JP2012178162A (en) * 2005-12-02 2012-09-13 Irobot Corp Autonomous coverage robot navigation system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
EP2065774A1 (en) * 2005-12-02 2009-06-03 Irobot Corporation Autonomous coverage robot navigation system
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
US9149170B2 (en) 2005-12-02 2015-10-06 Irobot Corporation Navigating autonomous coverage robots
US8661605B2 (en) 2005-12-02 2014-03-04 Irobot Corporation Coverage robot mobility
US8606401B2 (en) 2005-12-02 2013-12-10 Irobot Corporation Autonomous coverage robot navigation system
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8572799B2 (en) 2006-05-19 2013-11-05 Irobot Corporation Removing debris from cleaning robots
US8528157B2 (en) 2006-05-19 2013-09-10 Irobot Corporation Coverage robots and associated cleaning bins
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US8438695B2 (en) 2007-05-09 2013-05-14 Irobot Corporation Autonomous coverage robot sensing
US11072250B2 (en) 2007-05-09 2021-07-27 Irobot Corporation Autonomous coverage robot sensing
US8726454B2 (en) 2007-05-09 2014-05-20 Irobot Corporation Autonomous coverage robot
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
DE102007036231A1 (en) * 2007-08-02 2009-02-05 BSH Bosch und Siemens Hausgeräte GmbH Method for controlling mobility of mobile device to stationary device, particularly for battery driven dust collecting robot to battery-charging station, involves emitting two guide signals with partially overlapping radiation lobes
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US8800107B2 (en) 2010-02-16 2014-08-12 Irobot Corporation Vacuum brush
US10268189B2 (en) 2014-04-09 2019-04-23 Jason Yan Signal guided cleaning device and signal guided cleaning system thereof
KR101660703B1 (en) 2015-06-26 2016-09-28 주식회사 유진로봇 Visual homing system and method using stereo camera and active logo
US10698417B2 (en) 2016-05-06 2020-06-30 Mtd Products Inc Autonomous mower navigation system and method
US11687093B2 (en) 2016-05-06 2023-06-27 Mtd Products Inc Autonomous mower navigation system and method
WO2018165508A1 (en) * 2017-03-10 2018-09-13 Diversey, Inc. Safety module for a floor cleaning unit
US11253124B2 (en) 2017-03-10 2022-02-22 Diversey, Inc. Safety module for a floor cleaning unit
US10557936B2 (en) * 2017-06-30 2020-02-11 Gopro, Inc. Target value detection for unmanned aerial vehicles
US11933891B2 (en) 2017-06-30 2024-03-19 Gopro, Inc. Target value detection for unmanned aerial vehicles
US11609575B2 (en) 2019-11-20 2023-03-21 Samsung Electronics Co., Ltd. Mobile robot device and method for controlling mobile robot device

Also Published As

Publication number Publication date
KR20110138423A (en) 2011-12-27
KR101214667B1 (en) 2012-12-24
EP2204717A1 (en) 2010-07-07
EP2273336B1 (en) 2013-10-02
EP1921523A3 (en) 2008-10-08
AU2010212297A1 (en) 2010-09-02
KR101154662B1 (en) 2012-06-11
EP2273335A3 (en) 2011-03-16
DE602004014817D1 (en) 2008-08-14
KR20100123783A (en) 2010-11-24
DE602004028183D1 (en) 2010-08-26
EP1921523B1 (en) 2010-07-14
JP4472709B2 (en) 2010-06-02
KR101719404B1 (en) 2017-03-23
KR20090131299A (en) 2009-12-28
KR20120027544A (en) 2012-03-21
KR101131375B1 (en) 2012-04-04
JP2007520012A (en) 2007-07-19
EP2273335A2 (en) 2011-01-12
AU2010212297B2 (en) 2011-04-28
KR20120016173A (en) 2012-02-22
KR101149151B1 (en) 2012-07-05
AU2004316156A1 (en) 2005-09-01
EP2273336A2 (en) 2011-01-12
EP2273336A3 (en) 2011-03-16
KR101358475B1 (en) 2014-02-06
KR20140040861A (en) 2014-04-03
KR101086092B1 (en) 2011-11-25
EP2273335B1 (en) 2013-10-30
KR101437805B1 (en) 2014-09-11
EP1921523A2 (en) 2008-05-14
KR101497883B1 (en) 2015-03-04
EP1706797A1 (en) 2006-10-04
KR20150117306A (en) 2015-10-19
KR20110091821A (en) 2011-08-12
AU2004316156B2 (en) 2010-09-02
EP1706797B1 (en) 2008-07-02
EP2204717B1 (en) 2013-07-31
KR20140130480A (en) 2014-11-10
KR20130103829A (en) 2013-09-24
KR101460867B1 (en) 2014-11-17
KR20060127904A (en) 2006-12-13
EP2273335B8 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
US20200323408A1 (en) Autonomous robot auto-docking and energy management systems and methods
AU2004316156B2 (en) Method of docking an autonomous robot
AU2012261668B2 (en) Method of docking an autonomous robot

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006551013

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004316156

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004704061

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067014807

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

ENP Entry into the national phase

Ref document number: 2004316156

Country of ref document: AU

Date of ref document: 20040121

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004316156

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004704061

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097025882

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020107025523

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020117017478

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020117029356

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020127000418

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020127003177

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020137023507

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020147004446

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020147025894

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020157027048

Country of ref document: KR